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Gold, when multiplied, conspire against his
master; but books, when multiplied, make
great use of those who have them.
—St. John Chrysostom (347–407)

He who neglects learning in his youth loses
the past and is dead for the future.
—Euripides (480 B.C.–406 B.C.)
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Foreword

Mathematics began with the positive integers. Next came fractions, the number zero,
and negative numbers. Attempts to extract the roots of cubic polynomials led to the
imaginary unit i D p�1; whose name suggests something fictitious and suspect.
Beyond the complex numbers, quaternions enlist a trio of noncommuting units.
Vectors arise from the need to keep track of multiple scalars, such as coordinates
in a plane or three-dimensional space.

Matrices, which represent linear functions on vectors, are of immense practical
importance in science and engineering, and the prosaic matrix-vector equation
Ax D b is possibly the most important equation in all of numerical computation.
The solution of a partial differential equation may entail a matrix A whose order
is in the thousands or millions, and the order of the Google page rank matrix,
which represents the interdependence of web sites, is several billion. Large matrices
represent real problems whose solution requires vast computing resources and
innovative algorithms. Matrices are the bread and butter of modern computation.

In this unique and charming book, Vasile Pop and Ovidiu Furdui eschew large
matrices and instead focus their attention on the simplest possible case, namely,
matrices of size 2 � 2. This raises two questions: Why consider such a special case?
and How much interesting mathematics can there be on 2 � 2 matrices? The second
question has a quick answer: A surprising amount. The first question requires more
discussion.

Since a 2 � 2 matrix has four entries, this book is devoted to the properties of
a mathematical structure specified by a quadruple of real numbers. For example,

the matrix A D
�

1 2

�2 1

�
provides a representation of the complex number 1 C 2i.

Moreover, using B D
�

3 4

�4 3

�
to represent 3 C 4i, the sum A C B represents 4 C 6i.

Likewise, AB represents .1 C 2i/.3 C 4i/, and A�1 represents 1
1C2i . Consequently,

2�2 matrices can be used to represent and manipulate complex numbers, all without
the need for the imaginary unit i.

ix



x Foreword

As a physical application of 2 � 2 matrices, the vector differential equation

x0 D Ax with A D
�

0 1

�!2
n 0

�
represents the simple harmonic oscillator with natural

frequency !n. The extension A D
�

0 1

�!2
n �2�!n

�
includes the effect of damping,

where � is the damping ratio. The special case A D
�

0 1

0 0

�
models a mass without

a spring or dashpot. Note that A is not zero but satisfies A2 D 0; A is nilpotent. No
nonzero real, complex, or quaternionic scalar can be nilpotent, and this observation
shows that matrices have properties that are not shared by scalars.

This book is innovative in its concept and scope, and exciting in its content. It
shows that a “simple” setting can illuminate and expose the beauty and intricacies of
a rich and useful mathematical construction. The authors of this book, both of whom
are world-renowned for the development and solution of mathematical problems,
have gathered a truly splendid collection of problems, ideas, and techniques. I await
the sequel on n � n matrices. After reading this wonderful book, dear reader, I am
sure that you will share my anticipation.

Ann Arbor, MI, USA Dennis S. Bernstein
August 2016



Preface

This book is the fruit of the authors’ work in the last decade in teaching linear
algebra classes and in preparing the students for university entrance examinations
tests as well as for national and international student competitions like Traian
Lalescu, a Romanian mathematical competition, Seemous, and IMC.

The goal of this book is to discuss completely and in detail all important topics
related to the theory of square matrices of order two and the theory of vector spaces
of dimension two with all of their implications in the study of plane geometry,
the algebraic curves of degree 2, the conics, the extension of elementary functions
from calculus to functions of matrices, and the applications of matrix calculus to
mathematical analysis.

We believe this book, which treats exclusively the applications of the matrix
calculus for square matrices of order 2, is necessary in the literature for the
following reasons:

� this is, perhaps, the first book in the literature that collects, in a single
volume, the theory, the applications, and the problems involving square
matrices of order 2;

� the book is written in a way that is accessible to anyone with a modest
background in mathematics;

� the topics and problems extend naturally to matrices of order n, and the
techniques and the ideas in the book, which are highly original, can be
used in linear algebra;

� the large number of problems of various degrees of difficulty, from easy to
difficult and challenging, offers the reader a valuable source for learning
the basics of linear algebra and matrix theory;

(continued)
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xii Preface

� the ideas and problems in the book are original, many of the
problems being proposed by the authors in journals from Romania
(Gazeta Matematică Seria B, Gazeta Matematică Seria A) and abroad
(the American Mathematical Monthly, Mathematics Magazine, the College
Mathematics Journal) and others will see the light of publication for the
first time in the literature.

To whom is this book addressed?
To you, the reader, who likes matrix theory and to those who have not had the

chance of being introduced yet to the fascinating world of matrices. The book is
geared towards high school students who wish to study the basics of matrix theory,
as well as undergraduate students who want to learn the first steps of linear algebra
and matrix theory, a fundamental topic that is taught nowadays in all universities of
the world.

We also address this book to first- and second-year graduate students who wish
to learn more about an application of a certain technique on matrices, to doctoral
students who are preparing for their prelim exams in linear algebra as well as to
anyone who is willing to explore the strategies in this book and savor a splendid
collection of problems involving matrices of order 2.

We also address this book to professionals and nonprofessionals who can find, in
a single volume, everything one needs to know, from the ABCs to the most advanced
topics of matrices of order 2 and their connection to mathematical analysis and
linear algebra.

The book is a must-have for students who take a linear algebra class and
for those who prepare for mathematical competitions like Putnam, Seemous, and
International Mathematical Competition for University Students.

The book can be used by our colleagues who teach elementary matrix theory in
high school, by instructors who teach linear algebra in college or university, and by
those who prepare students for mathematical competitions.

Why a book on matrices of order 2?

� First, because in any linear algebra class the students interact with matrices
and the most simple of them all are those of order 2.

� Second, because there are lots of beautiful results in matrix theory, see the
nice determinant formulae in Chapter 1, that hold only for square matrices
of order 2, their extension to n-dimensional matrices loses the splendor, the
simplicity, and the finesse of their proofs.

� Third, because in mathematics one needs to understand simple things first,
and what is most simple in linear algebra is a matrix of order 2.

(continued)



Preface xiii

� Fourth, because the authors wanted to gather together in a single volume,
for the help of students and instructors, everything that should be known
about matrices of order 2 and their applications. Although many excellent
books on linear algebra have a chapter or special sections devoted to square
matrices of order 2, in this text the reader has all the formulae one needs to
know about the most basic topics of matrix theory.

The book offers an unusual collection of problems specializing on matrices of
order 2 that are rarely seen. The problems vary in difficulty from the easiest ones
involving the calculations of the nth power of a matrix to the most advanced like
those in Chapter 4. Most of the problems in this book are new and original and see
the light of publication for the first time. Others are inspired by several books that
are not found in the western literature [47, 48, 50, 51]. Another important source
of inspiration for some of the problems is the famous Romanian journal Gazeta
Matematică B, the oldest mathematical publication in Romania, the first issue being
published in 1895, and perhaps the first mathematical journal in the world with a
problem column. We do not claim the originality of all the problems included in
this volume, and we are aware that some exercises and results are either known or
very old.

We solved most of the problems in detail, but there are a few exercises with
no solutions. This is because we want to stimulate the readers not to follow our
techniques for solving a problem but instead to develop their own methods of attack.
A couple of problems are challenge problems. These could be viewed as more
demanding problems that encourage the reader to be creative and stimulate research
and discovery of original solutions for proving known results and establishing new
ones.

The contents of the book

The book has six chapters and two appendices.
In Chapter 1, we go over the basic results and definitions and we give, among

others, the structure of special matrices, such as idempotent, nilpotent, involutory,
skew-involutory, and orthogonal. We also discuss the centralizer of a square matrix.
This chapter contains special problems on the computation of determinants as well
as a section of exercises on the classical algebraic structures such as groups, rings,
fields of matrices and their properties.

Chapter 2 deals with the celebrated Cayley–Hamilton theorem, its reciprocal, the
Jordan canonical form, the real and the rational canonical form of special matrices.
Also, this chapter contains a section called quickies which is about problems that
have an unexpected succinct solution.

In Chapter 3 we give formulae for the calculation of the nth power of a matrix, we
study sequences defined by linear and homographic recurrence relations, we solve
binomial matrix equations, and we review the famous equation of Pell. This chapter
contains a special section devoted to the binomial equation Xn D aI2, a 2 R

�,



xiv Preface

which we believe appears for the first time in the literature. The problems are new
and original, see the problem about Viéte’s formulae for a quadratic matrix equation,
and challenge the reader to explore the tools discussed throughout the chapter.

Chapter 4, the jewel of this book, is a mixture of matrix theory and mathematical
analysis. This chapter contains sequences and series of matrices, elementary
functions of matrices, and introduces, we believe for the first time in the literature,
the Riemann zeta function as well as the Gamma function of a square matrix.
The problems vary in diversity, from the computations of an exponential function,
the resolution of a system of differential equations to integrals of matrices, single or
double, and the calculation of Frullani matrix integrals.

Chapter 5, unique in the literature, is about the study of special linear appli-
cations of the plane such as projections and reflections and their fundamental
properties. Most of the problems in this chapter, which are gems of linear algebra,
appear for the first time in the literature.

In Chapter 6 we use the Jordan canonical form to reduce the algebraic curves of
degree 2, the conics, to their canonical form. The problems in this chapter are neither
standard nor known: they range from the reduction of a conic to its canonical form
to the study of an extremum problem or even to the calculation of a double integral
over an elliptical domain.

Appendix A contains a bouquet of topics from linear algebra such as the
computation of exponential and trigonometric functions of matrices to topics from
classical analysis like the calculation of nonstandard series and the discussion of
two Frullani integrals that are new in analysis.

In Appendix B, hopefully new in linear algebra, we solve the trigonometric
matrix equations and invite the reader to explore further these topics.

The book is designed to fascinate the novice, puzzle the expert, and trigger the
imaginations of all. It contains an unusual collection of problems in matrix theory
which we think they are splendid. Whether the problems turn out to be splendid or
not, and we believe they are!, that is for you the reader to decide. We hope you will
enjoy both the problems and the theory.

Acknowledgments
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Preface xv

Thank you all and enjoy the splendid 2 � 2 matrices!!!

Cluj-Napoca, Romania Vasile Pop
June 2016 Ovidiu Furdui
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Notations

N the set of natural numbers .N D f1; 2; 3; : : :g/
Z the set of integers (Z D f: : : ; �2; �1; 0; 1; 2; : : :g/
Q the set of rational numbers
Q

� the set of nonzero rational numbers .Q� D Q n f0g/
R the set of real numbers
R

� the set of nonzero real numbers .R� D R n f0g/
R the completed real line (R D R [ f�1; 1g)
C the set of complex numbers
C

� the set of nonzero complex numbers .C� D C n f0g/
<.z/ the real part of the complex number z
=.z/ the imaginary part of the complex number z�n

k

�
the binomial coefficient indexed by n and k is the coefficient
of xk term in the polynomial expansion of the binomial power
.1 C x/n

M2 .F/ the set of square matrices of order 2 with entries in F 2
fZ;Q;R;Cg

GL2 .C/ the set of invertible matrices
SL2 .C/ the special linear group
AT the transpose of A
A the conjugate of A
Tr.A/ the trace of A
det A the determinant of A
A�1 the inverse of A
A� the adjugate of A, also denoted by adj.A/

R˛ the rotation matrix of angle ˛, i.e., R˛ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�

JA the Jordan canonical form of the matrix A
.Fn/n�0 the Fibonacci sequence F0 D 0, F1 D 1 and FnC1 D FnCFn�1,

n � 1

.Ln/n�0 the Lucas sequence L0 D 2, L1 D 1 and LnC1 D Ln C Ln�1,
n � 1

xxi



xxii Notations

AX D �X, X ¤ 0 the eigenvalue-eigenvector equation
�.A/ the spectral radius of A
Spec.A/ the spectrum of A 2 M2 .C/

V1 ˚ V2 the direct sum of vector (sub)spaces V1 and V2

KerfA the kernel of the linear application fA
ImfA the image of the linear application fA
Hn the nth harmonic number

Hn D 1 C 1=2 C 1=3 C � � � C 1=n
�.3/ Apéry’s constant

�.3/ D P1
nD1 1=n3 D 1:2020569031 : : :

� the Riemann zeta function
�.z/ D P1

nD1 1=nz D 1 C 1=2z C 1=3z C � � � C 1=nz

C � � � ; <.z/ > 1

Li2 the Dilogarithm function
Li2.z/ D P1

kD1 zk=k2 D � R z
0

ln.1�t/
t dt; jzj � 1

Lin the Polylogarithm function
Lin.z/ D P1

kD1 zk=kn D R z
0

Lin�1.t/
t dt; jzj � 1 and n ¤ 1; 2

� the Gamma function (Euler’s Gamma function)
�.z/ D R1

0
xz�1e�xdx; <.z/ > 0



Chapter 1
Matrices of order 2

Any work has mistakes. Mistakes are an incentive
to do better. There comes a day when the worker
dies but the world has used his work and the pain
that brought a new work.

Nicolae Iorga (1871–1940)

1.1 Definitions and notations

Definition 1.1 Let F be a set of real or complex numbers. By a square matrix of
order 2 with entries of F we understand an array having two rows and two columns

A D
�

a11 a12

a21 a22

�
;

where aij 2 F, i; j 2 f1; 2g, are called the elements of the matrix A.

The ordered pair .a11; a22/ is called the main diagonal of A and the ordered pair
.a12; a21/ is called the secondary diagonal of A.

A matrix of order 2 is denoted by A D .aij/i;jD1;2 and the set of all matrices of
order two with complex entries is denoted by M2 .C/. In this set we distinguish the
following subsets

M2 .Z/ � M2 .Q/ � M2 .R/ � M2 .C/ :

If A D .ai;j/i;jD1;2 and B D .bi;j/i;jD1;2, then we say that A D B if and only if
ai;j D bi;j for all i; j 2 f1; 2g.

Definition 1.2 Addition of matrices. Let A; B 2 M2 .C/,

A D
�

a11 a12

a21 a22

�
and B D

�
b11 b12

b21 b22

�
:
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2 1 Matrices of order 2

The sum A C B of matrices A and B is the matrix

A C B D
�

a11 C b11 a12 C b12

a21 C b21 a22 C b22

�
:

We give below the properties of the addition of two matrices which can be
verified by direct computation.

Lemma 1.1 The following equalities hold:

(a) (commutativity) A C B D B C A, 8 A; B 2 M2 .C/;
(b) (associativity) .A C B/ C C D A C .B C C/, 8 A; B; C 2 M2 .C/;
(c) (the zero element) the zero matrix

O2 D
�

0 0

0 0

�

verifies the following equality A C O2 D O2 C A D A, 8 A 2 M2 .C/;
(d) (the opposite element) 8 A 2 M2 .C/ there is �A 2 M2 .C/ such that A C

.�A/ D .�A/ C A D O2. If A D .aij/i;jD1;2, then �A D .�aij/i;jD1;2.

Remark 1.1 Lemma 1.1 shows that .M2 .Z/ ; C/, .M2 .Q/ ; C/, .M2 .R/ ; C/, and
.M2 .C/ ; C/ are abelian groups.

Definition 1.3 Multiplication of matrices.
Let A; B 2 M2 .C/,

A D
�

a11 a12

a21 a22

�
and B D

�
b11 b12

b21 b22

�
:

The product AB of matrices A and B is the matrix defined by

AB D
�

a11b11 C a12b21 a11b12 C a12b22

a21b11 C a22b21 a21b12 C a22b22

�
:

In other words, the .i; j/ entry of the matrix AB is obtained by adding the products
of the corresponding entries of ith row of A with the corresponding entries of the jth
column of B.

In general, the multiplication of matrices is not commutative, i.e., AB ¤ BA. For
example, if

A D
�

1 2

�1 0

�
and B D

�
2 1

1 2

�
;
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then

AB D
�

4 5

�2 �1

�
¤
�

1 4

�1 2

�
D BA:

Next we give the properties of the multiplication of matrices which can be proved
by direct computation.

Lemma 1.2 The following equalities hold:

(a) (associativity) .AB/C D A.BC/, 8 A; B; C 2 M2 .C/;
(b) (distributivity to the left) A.B C C/ D AB C AC, 8 A; B; C 2 M2 .C/;
(c) (distributivity to the right) .A C B/C D AC C BC, 8 A; B; C 2 M2 .C/;
(d) (the unit matrix) the unit matrix

I2 D
�

1 0

0 1

�

verifies the equality AI2 D I2A D A, 8 A 2 M2 .C/.

Remark 1.2 Lemma 1.2 shows that .M2 .Q/ ; �/, .M2 .R/ ; �/, and .M2 .C/ ; �/ are
monoids.

Also, Lemma 1.1 and Lemma 1.2 show that .M2 .Q/ ; C; �/, .M2 .R/ ; C; �/, and
.M2 .C/ ; C; �/ are noncommutative rings with the zero element O2 and the unit
element I2.

Since the multiplication of matrices verifies part (a) of Lemma 1.2 we define the
powers of a matrix A 2 M2 .C/ as follows: A0 D I2 (if A ¤ O2/, A1 D A, A2 D A�A,
A3 D A2 � A, . . . , An D An�1 � A, n 2 N.

Definition 1.4 Multiplication by scalars.
Let ˛ 2 C and let A 2 M2 .C/,

A D
�

a11 a12

a21 a22

�
:

The product of the complex number ˛ and the matrix A is the matrix defined by

˛A D
�

˛a11 ˛a12

˛a21 ˛a22

�
:

Lemma 1.3 The following equalities hold:

(a) .˛ C ˇ/A D ˛A C ˇA, 8˛; ˇ 2 C, 8 A 2 M2 .C/;
(b) ˛.A C B/ D ˛A C ˛B, 8˛ 2 C, 8 A; B 2 M2 .C/;
(c) ˛.ˇA/ D .˛ˇ/A, 8˛; ˇ 2 C, 8 A 2 M2 .C/;
(d) 1 � A D A, 8 A 2 M2 .C/.
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Remark 1.3 The properties of Lemma 1.3 show that the groups .M2 .Q/ ; C/,
.M2 .R/ ; C/, and .M2 .C/ ; C/ are vector spaces over Q, R, and C respectively.

Definition 1.5 Diagonal and triangular matrices.

(a) A matrix of the form

�
a 0

0 d

�
2 M2 .C/ is called diagonal.

(b) Matrices of the form

�
a b
0 d

�
2 M2 .C/ or

�
a 0

c d

�
2 M2 .C/ are called

triangular.

We use notations M2;1 .C/ and M1;2 .C/ for the set of columns and the set of
rows with complex entries, respectively.

Operations with vectors

If C1 D
�

x1

y1

�
and C2 D

�
x2

y2

�
, then

C1 C C2 D
�

x1 C x2

y1 C y2

�
and ˛C1 D

�
˛x1

˛y1

�
; ˛ 2 C:

One can check that similar properties like those in Lemma 1.3 are verified by
vectors and we have that M2;1 .C/, M2;1 .R/ and M2;1 .Q/ are vector spaces over
C, R, and Q, respectively. Their dimension is 2 with canonical basis B D fE1; E2g,

where E1 D
�

1

0

�
and E2 D

�
0

1

�
.

Definition 1.6 Basis of vector spaces M2;1 .C/, M2;1 .R/, M2;1 .Q/.

The vectors X1 D
�

x1

y1

�
and X2 D

�
x2

y2

�
form a basis in M2;1 .C/ if for any

vector X D
�

x
y

�
2 M2;1 .C/ there exist and are unique ˛1; ˛2 2 C such that

X D ˛1X1 C ˛2X2.

Nota bene. The vectors E1 D
�

1

0

�
and E2 D

�
0

1

�
form a basis in M2;1 .C/

which is called the canonical basis. Any vector X D
�

x
y

�
2 M2;1 .C/ can be written

uniquely as X D xE1 C yE2.

Lemma 1.4 Two vectors X1 D
�

x1

y1

�
and X2 D

�
x2

y2

�
form a basis in M2;1 .C/ if

and only if the matrix P D
�

x1 x2

y1 y2

�
2 M2 .C/ is invertible (det P ¤ 0) and in this

case P is called the matrix of passing from the canonical basis B D fE1; E2g to the
basis B0 D fX1; X2g.
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Proof By definition, the vectors X1 and X2 form a basis in M2;1 .C/ if and only if for

any vector X D
�

x
y

�
2 M2;1 .C/ there exist and are unique the scalars ˛1; ˛2 2 C

such that ˛1X1 C ˛2X2 D X ,
(

˛1x1 C ˛2x2 D x

˛1y1 C ˛2y2 D y
, P

�
˛1

˛2

�
D
�

x
y

�
:

If P is invertible, i.e., det P ¤ 0, we get the unique solution

�
˛1

˛2

�
D P�1

�
x
y

�
.

If det P D 0, then the system P

�
˛1

˛2

�
D
�

0

0

�
, in variables ˛1; ˛2, has infinitely

many solutions. �

Multiplication by vectors

� a row and a matrix
If

v D
�

v1

v2

�
and A D

�
a11 a12

a21 a22

�
;

then

vTA D .v1 v2/

�
a11 a12

a21 a22

�
D .v1a11 C v2a21 v1a12 C v2a22/ I

� a matrix and a column
If

A D
�

a11 a12

a21 a22

�
and C D

�
c1

c2

�
;

then

AC D
�

a11 a12

a21 a22

��
c1

c2

�
D
�

a11c1 C a12c2

a21c1 C a22c2

�
:

� a row and a column

If L D .l1 l2/ and C D
�

c1

c2

�
, then

LC D .l1c1 C l2c2/ and CL D
�

c1l1 c1l2
c2l1 c2l2

�
:
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Nota bene. We mention that if A 2 M2 .C/, A ¤ O2, then det A D 0 if and only

if A D CL, where C D
�

c1

c2

�
¤
�

0

0

�
and L D .l1 l2/ ¤ .0 0/, i.e., a nonzero matrix

A has rank 1 if and only if A can be written as the product of a nonzero column and
a nonzero row. Thus, any matrix of rank 1 is of the following form

A D CL D
�

c1l1 c1l2
c2l1 c2l2

�
:

We will be using the notation .C1 j C2/ for a 2 � 2 matrix having columns C1 and

C2 and similarly
�

L1

L2

�
for a square matrix of order two with rows L1 and L2.

We have the following formulae involving products of special matrices.

(a) If C1 and C2 are two columns, we have

A.C1 j C2/ D .AC1 j AC2/

and, if L1 and L2 are two rows, then

�
L1

L2

�
A D

�
L1A

L2A

�
;

where A 2 M2 .C/ is a given matrix.
(b) We have

.C1 j C2/

�
L1

L2

�
D C1L1 C C2L2

and

�
L1

L2

�
.C1 j C2/ D

�
L1C1 L1C2

L2C1 L2C2

�
:

(c) The product involving a diagonal matrix

�
˛1 0

0 ˛2

��
L1

L2

�
D
�

˛1L1

˛2L2

�

and

.C1 j C2/

�
˛1 0

0 ˛2

�
D .˛1C1 j ˛2C2/:
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1.2 Matrices and their special properties

Definition 1.7 Elementary transformations.
Let A 2 M2 .C/. The following operations performed on the matrix A are called

elementary transformations:

� changing two rows of A;

� multiplying a row of A by a nonzero complex number;

� adding a row to another row.

Similarly, one can define the elementary transformations by performing the
corresponding operations on the columns of A.

Definition 1.8 Elementary matrices.
A matrix A 2 M2 .C/ is called an elementary matrix if A is obtained from I2 by

applying an elementary transformation.

Let a 2 C
� and let E1a and E2a be the following two special elementary matrices

E1a D
�

a 0

0 1

�
and E2a D

�
1 0

0 a

�
:

We observe that these two matrices have been obtained from the unit matrix I2 by
multiplication of the rows of I2 by the complex number a.

Operations with elementary matrices

We have:

� the multiplication of a row of a matrix A by a complex number a is
equivalent to multiplying A to the left by the corresponding elementary
matrix E1a or E2a:

E1a

�
L1

L2

�
D
�

aL1

L2

�
or E2a

�
L1

L2

�
D
�

L1

aL2

�
I

� the multiplication of a column of a matrix A by a complex number a is
equivalent to multiplying A to the right by the corresponding elementary
matrix E1a or E2a:

.C1 j C2/E1a D .aC1 j C2/ or .C1 j C2/E2a D .C1 j aC2/:

Let Ep be the permutation matrix

Ep D
�

0 1

1 0

�
:
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Then:

� to change two rows of A means to multiply A to the left by Ep

Ep

�
L1

L2

�
D
�

L2

L1

�
I

� to change two columns of A means to multiply A to the right by Ep

.C1 j C2/Ep D .C2 j C1/:

Let E12 and E21 be the elementary matrices corresponding to the addition of rows
and columns respectively, i.e.

E12 D
�

1 0

1 1

�
and E21 D

�
1 1

0 1

�
:

Then:

� to add the first row (the first column) of A to the second row (the second
column) of A means to multiply to the left (the right) the matrix A by E12

(E21):

E12

�
L1

L2

�
D
�

L1

L1 C L2

�
and .C1 j C2/E21 D .C1 j C1 C C2/I

� to add the second row (the second column) of A to the first row (the first
column) of A means to multiply to the left (the right) the matrix A by E21

(E12):

E21

�
L1

L2

�
D
�

L1 C L2

L2

�
and .C1 j C2/E12 D .C1 C C2 j C2/:

Definition 1.9 The transpose of a matrix A 2 M2 .C/,

A D
�

a11 a12

a21 a22

�
;

is defined by

AT D
�

a11 a21

a12 a22

�
:
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Thus, the transpose of a matrix A is obtained by taking the rows (respectively the
columns) of A as the columns (respectively the rows) of AT .

Property 1.1 If A; B 2 M2 .C/ and ˛ 2 C, then:

(a) .AT/T D A;
(b) .A C B/T D AT C BT ;
(c) .˛A/T D ˛AT ;
(d) .AB/T D BTAT .

The next definition introduces various types of square matrices.

Definition 1.10 Let A 2 M2 .C/.

(a) A is symmetric if AT D A. This implies a12 D a21. Thus, a symmetric matrix is
of the following form

A D
�

a b
b c

�
:

(b) A is antisymmetric or skew-symmetric if AT D �A. This implies aij D �aji,
8 i; j 2 f1; 2g. Thus, a symmetric matrix has the following form

A D
�

0 b
�b 0

�
:

(c) The conjugate of A D .aij/i;j2f1;2g is the matrix A D .aij/i;j2f1;2g, where aij is the
complex conjugate of aij.

(d) The conjugate transpose (sometimes called the adjoint or Hermitian adjoint) of
A is the matrix A� D .A/T . We note that

�
A��� D A; 8A 2 M2 .C/ :

Remark 1.4 One can prove, see problem 1.41, that any matrix M 2 M2 .C/ can be
written uniquely as the sum of a symmetric matrix S D 1

2
.M C MT/ (the symmetric

part of M) and an antisymmetric matrix A D 1
2
.M � MT/ (the antisymmetric part

of M).

Definition 1.11 If A D
�

a11 a12

a21 a22

�
2 M2 .C/, then the trace of A is the complex

number defined by Tr.A/ D a11 C a22. In other words, the trace of a square matrix
is the sum of the entries on the main diagonal.

Property 1.2 If A; B 2 M2 .C/ and ˛ 2 C then:

(a) Tr.A C B/ D Tr.A/ C Tr.B/;
(b) Tr.˛A/ D ˛Tr.A/;
(c) Tr.AB/ D Tr.BA/;
(d) Tr.A/ D Tr.AT/.
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Nota bene. In general Tr.AB/ ¤ Tr.A/Tr.B/.

Remark 1.5 If F 2 fQ;R;Cg, then the application Tr W M2.F/ ! F is a linear
functional from the vector space M2.F/, over F, to F.

Definition 1.12 If A D
�

a11 a12

a21 a22

�
2 M2 .C/, then the determinant of A is defined

by

det A D
ˇ̌̌
ˇa11 a12

a21 a22

ˇ̌̌
ˇ D a11a22 � a12a21:

Property 1.3 The following formulae hold:

(a) det.AB/ D det A det B, 8A; B 2 M2 .C/;
(b) det.A1A2 � � � An/ D det A1 det A2 � � � det An, 8Ak 2 M2 .C/, k D 1; n, n 2 N;
(c) det.An/ D .det A/n, 8 A 2 M2 .C/ and n 2 N;
(d) det

�
AT
� D det A, 8 A 2 M2 .C/;

(e) det.˛A/ D ˛2 det A, 8 A 2 M2 .C/ and ˛ 2 C;
(f) det.�A/ D det A, 8 A 2 M2 .C/;
(g) det

�
A
� D det A, 8 A 2 M2 .C/.

Proposition 1.1 If C1; C2 are the columns of a matrix A, i.e., A D .C1 j C2/, C0 is a
new column and a 2 C, then:

� det.C1 j C2/ D � det.C2 j C1/;

� det.aC1 j C2/ D det.C1 j aC2/ D a det.C1 j C2/;

� det.C1 C C0 j C2/ D det.C1 j C2/ C det.C0 j C2/.

If L1; L2 are the rows of a matrix A, i.e., A D
�

L1

L2

�
, L0 is a new row and a 2 C,

then:

� det

�
L1

L2

�
D � det

�
L2

L1

�
;

� det

�
aL1

L2

�
D det

�
L1

aL2

�
D a det

�
L1

L2

�
;

� det

�
L1 C L0

L2

�
D det

�
L1

L2

�
C det

�
L0

L2

�
.

Remark 1.6 It is worth mentioning that the function det W M2 .C/ Š C
2 �C

2 ! C

is an alternating bilinear application.

In general, det.A C B/ ¤ det A C det B. However, the following formula for the
determinant of the sum and the difference of two matrices holds true.
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Lemma 1.5 A special determinant formula.

If A; B 2 M2 .C/, then det.A C B/ C det.A � B/ D 2 det A C 2 det B.

Proof The lemma can be proved by direct computation, see the solution of part (a)
of problem 1.31. �

Lemma 1.6 Famous determinant inequalities.

(a) If A 2 M2 .R/, then det.A2 C I2/ � 0.
(b) If a, b and c are real numbers such that b2 � 4ac � 0, then

det
�
aA2 C bA C cI2

� � 0; 8A 2 M2 .R/ :

Proof (a) We have A2 C I2 D .A C iI2/.A � iI2/ and it follows that det.A2 C I2/ D
det.A C iI2/ det.A � iI2/ D det.A C iI2/det.A C iI2/ D j det.A C iI2/j2.

(b) If a D 0 we have, since b2 � 4ac � 0, that b D 0 and this implies that

det.cI2/ D c2 � 0. If a ¤ 0, then aA2 C bA C cI2 D a
h�

A C b
2a I2

�2 C 4ac�b2

4a2 I2

i
and it follows that

det.aA2 C bA C cI2/ D a2

ˇ̌
ˇ̌ det

 
A C b

2a
I2 C i

p
4ac � b2

2a
I2

! ˇ̌
ˇ̌2 :

The lemma is proved. �

Definition 1.13 If A 2 M2 .C/ and det A D 0 we say that the matrix A is singular
and if det A ¤ 0 we say that the matrix A is nonsingular.

We denote by GL2 .C/ the set of all nonsingular matrices

GL2 .C/ D fA 2 M2 .C/ W det A ¤ 0g :

A special subset of GL2 .C/, denoted by SL2 .C/, and called the special linear
group is the set of all matrices having the determinant equal to 1, i.e.

SL2 .C/ D fA 2 M2 .C/ W det A D 1g :

Remark 1.7 The pairs .GL2 .Q/ ; �/, .GL2 .R/ ; �/, and .GL2 .C/ ; �/ are noncommu-
tative groups called linear groups and .SL2 .Q/ ; �/, .SL2 .R/ ; �/, and .SL2 .C/ ; �/
are subgroups of them which are called special linear groups.



12 1 Matrices of order 2

Definition 1.14 We say the matrix A 2 M2 .C/ is invertible if there exists B 2
M2 .C/ such that AB D BA D I2. The matrix B is unique with this property, is
called the inverse of A and is denoted by A�1.

We have the following implications

A 2 M2 .C/ is invertible , det A ¤ 0 , A 2 GL2 .C/ :

One can prove, by direct calculations, that if A 2 M2 .C/,

A D
�

a b
c d

�

is invertible, then

A�1 D 1

det A
A�;

where

A� D
�

d �b
�c a

�
;

is the reciprocal matrix also known as the adjugate of A. Sometimes this matrix is
also denoted by adj.A/.

Remark 1.8 We mention that, if A 2 M2 .C/ is invertible, another method for
determining the inverse of A would be to use elementary transformations. More
precisely, we consider the matrix with blocks .A j I2/ and, by performing a sequence
of elementary transformations we transform it to the matrix .I2 j B/, in which case
B D A�1.

Property 1.4 If A; B 2 M2 .C/ are invertible and ˛ 2 C
�, then

(a) .AB/�1 D B�1A�1;

(b) .˛A/�1 D 1

˛
A�1;

(c)
�
AT
��1 D .A�1/T ;

(d) .An/�1 D .A�1/n.

One can also prove, by mathematical induction, that

.A1A2 � � � An/�1 D A�1
n A�1

n�1 � � � A�1
1 ;

where Ak 2 GL2 .C/, k D 1; n, n 2 N.
The next definition introduces some special classes of matrices.
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Definition 1.15 Let A 2 M2 .C/. Then:

(a) A is involutory if A2 D I2 (see problem 1.12);
(b) A is skew involutory if A2 D �I2 (see Example 1.2);
(c) A is idempotent if A2 D A (see problem 1.14);
(d) A is nilpotent if and only if A2 D O2 (see problem 1.8);
(e) A is Hermitian if A� D A. If A 2 M2 .R/, then A is a symmetric matrix;
(f) A is skew Hermitian if A� D �A. If A 2 M2 .R/, then A is an antisymmetric

matrix;
(g) A is normal if AA� D A�A;
(h) A is unitary if A� D A�1. If A 2 M2 .R/, then A is an orthogonal matrix (see

Example 1.1).

Lemma 1.7 Let A 2 M2 .C/.

(a) A is Hermitian if and only if iA is skew Hermitian.
(b) A is involutory if and only if iA is skew involutory.

Proof The proof is based on the definition of Hermitian, involutory, skew Hermi-
tian, and skew involutory matrices respectively. �

Example 1.1 Special unitary matrices (real and complex).

If A 2 M2 .C/ is a unitary matrix with det A D 1, then

A D
�

a b
�b a

�
;

where a; b 2 C with jaj2 C jbj2 D 1.

To see this, we let A D
�

a b
c d

�
, where a; b; c; d 2 C. Since det A D 1 we get that

A�1 D
�

d �b
�c a

�
and A� D .A/T D

�
a c
b d

�
:

We have A� D A�1 and this implies that d D a, c D �b and since ad � bc D 1 we

get that jaj2 C jbj2 D 1. Thus, A D
�

a b
�b a

�
.
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Similarly, if A 2 M2 .C/ is a unitary matrix with det A D �1, then

A D
�

a b
b �a

�
;

where a; b 2 C with jaj2 C jbj2 D 1.

In the particular case of real unitary (orthogonal) matrices we obtain

� rotation matrices A D
�

cos ˛ sin ˛

� sin ˛ cos ˛

�
with det A D 1;

� reflection matrices A D
�

cos ˛ sin ˛

sin ˛ � cos ˛

�
with det A D �1.

Nota bene. Let L be a line passing through the origin of the coordinate system
which makes an angle ˛ with the x-axis and let M.xM; yM/ be a point in the Cartesian
plane. If N.xN ; yN/ is the symmetric of M about the line L , then one can check that

�
xN

yN

�
D
�

cos.2˛/ sin.2˛/

sin.2˛/ � cos.2˛/

��
xM

yM

�
:

Because of this reason, the matrix

�
cos.2˛/ sin.2˛/

sin.2˛/ � cos.2˛/

�
is called a reflection

matrix. For the definition of rotation matrices see problem 1.61.

Definition 1.16 Equivalent matrices.
On the set M2 .C/ we define the relation A � B if and only if there exist P; Q 2

GL2 .C/ such that B D QAP. Two matrices A and B that satisfy this condition are
called equivalent.

Definition 1.17 Similar matrices.
On the set M2 .C/ we define the relation A 	 B if and only if there exists P 2

GL2 .C/ such that B D P�1AP. Two matrices A and B that verify this condition are
called similar.

Remark 1.9 It can be proved that two matrices are equivalent if and only if they
have the same rank and they are similar if and only if they have the same Jordan
canonical form.

Definition 1.18 Commuting matrices.
We say the matrices A; B 2 M2 .C/ commute if AB D BA.

If A 2 M2 .C/, then we denote by C .A/ the set of all matrices that commute
with A, also known as the centralizer of A (see [38, p. 213])
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C .A/ D fX 2 M2 .C/ W AX D XAg :

Now we give an important property of the centralizer of a square 2 � 2 matrix.

Theorem 1.1 The centralizer of a matrix A.

Let A 2 M2 .C/ and let C .A/ D fX 2 M2 .C/ W AX D XAg.

(a) If A D kI2, k 2 C, then C .A/ D M2 .C/;

(b) If A ¤ kI2, k 2 C, then C .A/ D f˛A C ˇI2 W ˛; ˇ 2 Cg.

Proof (a) If A D kI2, k 2 C, we have nothing to prove since any square matrix
commutes with kI2.

(b) Let A D
�

a b
c d

�
and let X D

�
x y
z t

�
. The equation AX D XA implies that

8̂̂
ˆ̂<
ˆ̂̂̂:

ax C bz D xa C yc

ay C bt D xb C yd

cx C dz D za C tc

cy C dt D zb C td

or

8̂̂
<
ˆ̂:

bz D cy

y.a � d/ D b.x � t/

z.a � d/ D c.x � t/:

If a ¤ d, then y D b˛, z D c˛, where ˛ D x � t

a � d
. We have t D x � ˛a C ˛d D

ˇ C ˛d, where ˇ D x � ˛a. This implies that

X D
�

˛a C ˇ b˛

c˛ ˛d C ˇ

�
D ˛

�
a b
c d

�
C ˇ

�
1 0

0 1

�
:

If a D d, then we distinguish between the cases when x ¤ t or x D t. If x ¤ t we
get that b D c D 0, which contradicts the fact that A ¤ kI2. Thus, x D t and we also
have that bz D cy. Observe that b and c cannot be both 0 since this would contradict
A ¤ kI2.

If b D 0 ) y D 0 and we have

X D
�

x 0

z x

�
D ˛

�
a 0

c a

�
C ˇ

�
1 0

0 1

�
; where ˛ D z

c
; ˇ D x � az

c
:

If b ¤ 0 we have z D cy

b
and

X D
�

x y
cy
b x

�
D ˛

�
a b
c a

�
C ˇ

�
1 0

0 1

�
; where ˛ D y

b
; ˇ D x � ay

b
:

The theorem is proved. �
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Remark 1.10 Theorem 1.1 also holds for matrices in M2

�
Zp
�
, where p � 2 is a

prime number.

Corollary 1.1 If A 2 M2 .C/ and P 2 CŒx�, then there exist a; b 2 C such that
P.A/ D aI2 C bA.

Proof If A D kI2, for some k 2 C, then P.A/ D P.k/I2, so a D P.k/ and b D 0.
If A ¤ kI2, for any k 2 C, then since the matrices A and P.A/ commute the result

follows based on part (b) of Theorem 1.1. �

Corollary 1.2 Where do two centralizers intersect?

Let X; Y 2 M2 .C/ such that XY ¤ YX. Then

C .X/ \ C .Y/ D f˛I2 W ˛ 2 Cg :

Proof Since XY ¤ YX we get that X ¤ xI2, 8x 2 C and Y ¤ yI2, 8y 2 C. If
Z 2 C .X/ \C .Y/ we get, based on Theorem 1.1, that there exist a; b; c; d 2 C such
that Z D aX C bI2 and Z D cY C dI2. This implies aX C bI2 D cY C dI2. If a ¤ 0 or
c ¤ 0 the previous equality would imply that XY D YX which is impossible. Thus,
a D c D 0 and b D d D ˛, which in turns implies that Z D ˛I2. �

Remark 1.11 Corollary 1.2 states that if a matrix A 2 M2 .C/ commutes with two
noncommuting matrices, then A is of the form ˛I2, ˛ 2 C.

Corollary 1.3 A 2 M2 .C/ commutes with all

(a) nilpotent
(b) idempotent
(c) involutory

matrices if and only if A is of the form ˛I2, ˛ 2 C.

Proof Use Remark 1.11. �

We mention that the basic algebraic formulae involving complex numbers also
hold for commuting matrices.

Property 1.5 If A; B 2 M2 .C/ such that AB D BA, then:

(a) AmBn D BnAm, 8m; n 2 N;
(b) An � Bn D .A � B/.An�1 C An�2B C � � � C ABn�2 C Bn�1/;
(c) A2nC1 C B2nC1 D .A C B/.A2n � A2n�1B C � � � � AB2n�1 C B2n/.
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Theorem 1.2 The binomial theorem for matrices.

Let n � 1 be an integer. If A; B 2 M2 .C/ such that AB D BA, then

.A C B/n D
nX

kD0

 
n

k

!
AkBn�k:

Proof The theorem can be proved by mathematical induction and by using the fact
that AkBp D BpAk, for all k; p 2 N. �

1.3 The set of complex numbers and matrices of order 2

In this section we establish an isomorphism between the field of complex numbers
C and a special field of matrices of order 2. Let

C D ˚
x C iy W x; y 2 R; i2 D �1

�

and let

MC D
	

A 2 M2 .R/ W A D
�

x �y
y x

�

:

Theorem 1.3 An isomorphism between two special fields.

The following properties hold:

(a) if A; B 2 MC, then A C B 2 MC;

(b) if A; B 2 MC, then AB 2 MC;

(c) the matrix

J D
�

0 �1

1 0

�
;

verifies the equalities J2 D �I2 and J4 D I2;

Let

f W C ! MC; f .x C iy/ D
�

x �y
y x

�
:

(continued)
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Theorem 1.3 (continued)

Then,

(d) f is a bijection and

f �1

�
x �y
y x

�
D x C iy:

(e) f .0/ D O2;

(f) f .1/ D I2;

(g) f .i/ D J;

(h) f .z1 C z2/ D f .z1/ C f .z2/, 8z1; z2 2 C;

(i) f .z1z2/ D f .z1/f .z2/, 8z1; z2 2 C;

(j) f .zn/ D .f .z//n, 8z 2 C;

(k) f .z/ D .f .z//T , 8z 2 C;

(l) det f .z/ D jzj2, 8z 2 C;

(m) f

�
1

z

�
D .f .z//�1 D 1

jzj2 .f .z//T , 8z 2 C;

(n) .MC; C; �/ is a field isomorphic to .C; C; �/, i.e., one has

.MC; C; �/ Š .C; C; �/ I
(o) Let U be the unit circle

U D fz 2 C W jzj D 1g D fcos ˛ C i sin ˛ W ˛ 2 Rg
and let R be the set of rotation matrices in the plane

R D
	

R˛ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�
; ˛ 2 R



:

Then f .cos ˛ C i sin ˛/ D R˛ and f .U/ D R;
(p) the group of the rotations of a regular n-gon.

If n � 2 is an integer and

Un D fz 2 C W zn D 1g and Rn D
n
R 2k�

n
W k D 0; 1; 2; : : : ; n � 1

o
;

then .Un; �/ Š .Rn; �/.
.Rn; �/, the group of the rotations of a regular n-gon, is isomorphic

to the multiplicative group of the nth roots of unity, which are also
isomorphic to the cyclic group .Zn; C/; thus, any finite cyclic group is
the group of the rotations of a regular n-gon.



1.3 The set of complex numbers and matrices of order 2 19

Proof The theorem which can be proved by straightforward calculations is left as
an exercise to the interested reader. �

The following formula is worth being mentioned

�
a �b
b a

�
D
p

a2 C b2

�
cos ˛ � sin ˛

sin ˛ cos ˛

�
;

where cos ˛ D ap
a2 C b2

and sin ˛ D bp
a2 C b2

.

Example 1.2 Skew involutory real matrices.

We determine all skew involutory real matrices, i.e., matrices A 2 M2 .R/ such
that A2 D �I2.

If A D
�

a b
c d

�
2 M2 .R/, we have, based on the matrix equation A2 D �I2, that

8̂̂
ˆ̂<
ˆ̂̂̂:

a2 C bc D �1

b.a C d/ D 0

c.a C d/ D 0

d2 C bc D �1

or

8̂̂
ˆ̂<
ˆ̂̂̂:

a2 C bc D �1

b.a C d/ D 0

c.a C d/ D 0

.a � d/.a C d/ D 0:

We distinguish between the cases when a C d ¤ 0 and a C d D 0.
When a C d ¤ 0 we get that b D c D 0, a D d, and a2 D �1, so there are no

real matrices that verify the equation A2 D �I2.
When a C d D 0, we get, from our system of equations, that a2 C bc D �1 and

we obtain the matrices
0
@ a b

�1 C a2

b
�a

1
A ; a 2 R; b 2 R

�:

In particular, for a D 0, b D �1 we get the skew involutory real matrix

J D
�

0 �1

1 0

�
;

and for a D b D 1 we obtain another skew involutory real matrix

K D
�

1 1

�2 �1

�
:
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Remark 1.12 (1) For any fixed skew involutory real matrix B 2 M2 .R/, i.e., B2 D
�I2, the centralizer of B

C .B/ D faI2 C bB W a; b 2 Rg ;

together with the addition and the multiplication of matrices is a commutative field
(check it!) and the following fields are isomorphic

.C .B/; C; �/ Š .C; C; �/ Š .MC; C; �/ :

The function f W C ! C .B/, f .a C ib/ D aI2 C bB is a field isomorphism (prove
it!).

(2) All skew involutory real matrices A 2 M2 .R/, i.e., A2 D �I2 are similar to
each other and also similar to the matrix

J D
�

0 �1

1 0

�
:

If we consider

P D
�

ab �b
�.a2 C 1/ 0

�
; a 2 R; b 2 R

�;

then

P�1 D � 1

b.a2 C 1/

�
0 b

a2 C 1 ab

�

and

P�1AP D P�1

0
@ a b

�1 C a2

b
�a

1
AP D J:

1.4 Problems

1.1 Let A D
�

2 i
i 0

�
, where i2 D �1. Prove that An D

�
n C 1 ni

ni 1 � n

�
, n 2 N.

1.2 If A 2 M2 .R/ what is the possible number of negative entries of A2?
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1.3 Let A D
�

a b
c d

�
2 M2 .R/ be such that bc ¤ 0 and there exists n � 2 an

integer such that bncn D 0, where An D
�

an bn

cn dn

�
, n 2 N. Prove that an D dn.

1.4 Determine all matrices in M2 .C/ which commute with the matrix A D
�

1 2

3 4

�
.

1.5 (a) Prove that A 2 M2 .C/ commutes with all symmetric matrices if and only
if A D ˛I2, ˛ 2 C.

(b) Prove that A 2 M2 .C/ commutes with all circulant matrices if and only if A
is a circulant matrix.

1.6 Involutory and nilpotent matrices do not commute.

Let A 2 M2 .C/, A ¤ ˙I2, be an involutory matrix and let B 2 M2 .C/, B ¤ O2,
be a nilpotent matrix. Prove that AB ¤ BA.

Moreover, if C 2 M2 .C/ commutes with both A and B, then C D ˛I2, ˛ 2 C.

1.7 Normal real matrices. Prove that A 2 M2 .R/ commutes with its
transpose if and only if A is symmetric or A is a scalar multiple of a rotation
matrix.

1.8 Find all matrices A 2 M2 .C/ such that A2 D O2.

1.9 Nilpotent real matrices. Let A 2 M2 .R/. Prove that A2 D O2

if and only if there exist a 2 R and ˛ 2 Œ0; 2�/ such that A D
a

�
cos ˛ 1 C sin ˛

�1 C sin ˛ � cos ˛

�
.

Observe B D
�

cos ˛ sin ˛

sin ˛ � cos ˛

�
is a reflection matrix and C D

�
0 1

�1 0

�
is

a rotation matrix of angle 3�
2

. So any nilpotent real matrix A can be written as
A D a.B C C/. Moreover, this writing is unique (see problem 1.43).

1.10 Determine the number of nilpotent matrices in M2

�
Zp
�
, where p � 2

is a prime number.

1.11 Find all matrices A 2 M2 .R/ such that .I2 C iA/�1 D I2 � iA.
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Remark 1.13 The reader may prove that if A; B 2 M2 .R/, then .ACiB/�1 D A�iB
if and only if AB D BA and A2 C B2 D I2. This is equivalent to finding matrices
A 2 M2 .C/ such that A�1 D A.

1.12 Find all matrices A 2 M2 .C/ such that A2 D I2.

1.13 Determine the number of involutory matrices in M2

�
Zp
�
, where p � 2

is a prime number.

1.14 Find all matrices A 2 M2 .C/ such that A2 D A.

1.15 Determine the number of idempotent matrices in M2

�
Zp
�
, where p � 2

is a prime number.

1.16 Prove that any matrix X 2 M2 .R/ can be written as a linear combination of
four orthogonal real matrices.

1.17 Complex orthogonal and skew orthogonal matrices.

(a) Find all matrices A 2 M2 .C/ such that AAT D I2.
(b) Find all matrices A 2 M2 .C/ such that AAT D �I2.

1.18 Let A 2 M2 .C/. Prove that A2 D A if and only if .2A � I2/2 D I2.

Remark 1.14 Problem 1.18 states that A is idempotent if and only if 2A � I2 is
involutory.

1.19 Let A; B 2 M2 .C/ be nonzero idempotent matrices. Prove that if A C B is
idempotent, then A C B D I2 (see also problem 5.10).

1.20 Let A; B 2 M2 .C/ be nonzero idempotent matrices. Prove that if A C B is
involutory, then A C B D I2 (see also problem 5.11).

1.21 Let A; B 2 M2 .C/ be such that A is idempotent and B is involutory. Prove
that if A C B is involutory, then A D O2.

1.22 A trace equality on special classes of matrices.

(a) Prove that Tr.AB/ D Tr.A/Tr.B/ for all involutory matrices B 2 M2 .C/ if and
only if A D O2.

(b) Prove that Tr.AB/ D Tr.A/Tr.B/ for all skew involutory matrices B 2 M2 .C/

if and only if A D O2.
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(c) Prove that Tr.AB/ D Tr.A/Tr.B/ for all idempotent matrices B 2 M2 .C/ if and
only if A D O2.

1.23 Proving that two matrices are equal.

(a) Let X 2 M2 .C/ such that X2 D X. Prove the matrix I2 C X is invertible
and .I2 C X/�1 D I2 � 1

2
X.

(b) Let A; B 2 M2 .C/ such that A � AB D B2 and B � BA D A2. Prove that
A D B.

1.24 Inverses of various matrices. Let A 2 M2 .C/.

(a) If A2 D A and ˛ 2 C, ˛ ¤ �1, then .I2 C ˛A/�1 D I2 � ˛
˛C1

A.
(b) If A2 D �A and ˛ 2 C, ˛ ¤ 1, then .I2 C ˛A/�1 D I2 C ˛

˛�1
A.

(c) If A2 D O2 and ˛ 2 C, then .I2 C ˛A/�1 D I2 � ˛A.

1.25 Let A D
�

1 0

1 1

�
. Calculate An, n � 1.

1.26 Let n 2 N and let A 2 M2 .C/ such that A C A�1 D �I2. Calculate An C A�n.

1.27 Let � 2 C and let J2.�/ be the Jordan cell of order 2 corresponding to �

J2.�/ D
�

� 1

0 �

�
:

Prove that Jn
2.�/ D

�
�n n�n�1

0 �n

�
, n 2 N.

1.28 Two rotation matrices in disguise.

(a) Calculate

�
1 C p

3 1 � p
3p

3 � 1 1 C p
3

�n

, n 2 N.

(b) Let a; b 2 R. Calculate

�
a �b
b a

�n

, n 2 N.

1.29 A Fibonacci matrix and Lucas numbers.

Let .Fn/n�0 be the Fibonacci sequence defined by the recurrence relation

F0 D 0, F1 D 1 and FnC1 D Fn C Fn�1, 8n � 1 and let A D
�

1 1

1 0

�
.

(continued)



24 1 Matrices of order 2

1.29 (continued)

Prove that:

(a) AnC1 D An C An�1, 8n � 1.

(b) An D
�

FnC1 Fn

Fn Fn�1

�
, 8n � 1.

(c) FnCm D FnC1Fm C FnFm�1, 8m; n 2 N.

(d) Fibonacci quadratic and cubic identities

� FnC1Fn�1 � F2
n D .�1/n, n � 1 (Cassini’s identity).

� F2n D F2
nC1 � F2

n�1, n � 1.
� F3n D F3

nC1 C F3
n � F3

n�1, n � 1.

(e) The Lucas numbers Ln are defined by the recurrence formula

L0 D 2; L1 D 1 and LnC2 D LnC1 C Ln; 8n � 1:

� Prove that Ln D FnC1 C Fn�1, 8n 2 N.
� Consider the recurrent system XnC1 D AXn, n � 0, and show that if

X0 D
�

3

1

�
then, for all n � 0 one has

Xn D
�

LnC2

LnC1

�
:

1.30 [23] Let B.x/ D
�

x 1

1 x

�
and let n � 2 be an integer. Calculate the product

B.2/B.3/ � � � B.n/:

Splendid determinant formulae

1.31 A special determinant formula.

(a) If A; B 2 M2 .C/, then

det.A C B/ C det.A � B/ D 2 det A C 2 det B:

(continued)
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1.31 (continued)
(b) Let Ak 2 M2 .C/, k D 1; n. Prove that

X
det.˙A1 ˙ A2 ˙ � � � ˙ An/ D 2n

nX
kD1

det Ak;

where the sum is taken over all possible combinations of signs.

1.32 Let A; B; C 2 M2 .C/. Prove that

det.ACBCC/Cdet ACdet BCdet C D det.ACB/Cdet.BCC/Cdet.ACC/:

1.33 Let A; B; C 2 M2 .C/. Prove that

det.A C B C C/ C det.�A C B C C/ C det.A � B C C/ C det.A C B � C/

D 4.det A C det B C det C/:

1.34 Let n � 2 be an integer. If Ai 2 M2 .C/, i D 1; n, then

det

 
nX

iD1

Ai

!
D

X
1�i<j�n

det.Ai C Aj/ � .n � 2/

nX
iD1

det Ai:

1.35 Let n � 2 be an integer, let A1; A2; : : : ; An 2 M2 .C/, and let S D
A1 C A2 C � � � C An: Prove that

det.S � A1/ C det.S � A2/ C � � � C det.S � An/ D .n � 2/ det S C
nX

iD1

det Ai:

1.36 Prove that if A; B; C 2 M2 .C/ are such that det.ACB/ D det C, det.BCC/ D
det A and det.C C A/ D det B, then det.A C B C C/ D 0.

1.37 Let A 2 M2 .R/ be a matrix such that det.ACAT/ D 8 and det.AC2AT/ D 27.
Calculate det A.
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1.38 Let A; B 2 M2 .C/ such that A2CB2C2AB D O2 and det A D det B. Calculate
det.A2 � B2/.

1.39 Let A 2 M2 .C/, A ¤ O2, be a diagonal matrix with different diagonal entries.
Prove that if B 2 M2 .C/ commutes with A, then B is also diagonal.

1.40 Let ˛ 2 R and let An D
�

1 ˛
n

� ˛
n 1

�n

. Prove that:

(a) there exist two sequences .an/n�1 and .bn/n�1 such that An D
�

an bn

�bn an

�
;

(b) lim
n!1 an D cos ˛ and lim

n!1 bn D sin ˛.

Remark 1.15 A simplified version of this problem can be found in [18, p. 76].

1.41 A unique decomposition of real matrices.

Let

S2 .R/ D ˚
A 2 M2 .R/ W A D AT

�

and

A2 .R/ D ˚
A 2 M2 .R/ W A D �AT

�
:

Prove that:

(a) if A; B 2 S2 .R/, then A C B 2 S2 .R/ and if A; B 2 A2 .R/, then A C B 2
A2 .R/;

(b) S2 .R/ \ A2 .R/ D fO2g (if a matrix is both symmetric and antisymmetric,
then it is the zero matrix);

(c) 8 M 2 M2 .R/ there are S 2 S2 .R/ and A 2 A2 .R/, both unique, such that
M D S C A (any matrix M 2 M2 .R/ can be written uniquely as the sum of a
symmetric and an antisymmetric, skew-symmetric, matrix).

1.42 Two matrix decompositions of complex matrices.

Prove that:

(a) Any matrix A 2 M2 .C/ can be written in exactly one way as A D B C iC,
B; C 2 M2 .R/ (B is called the real part of A and C is the imaginary part of A);

(b) Any matrix A 2 M2 .C/ can be written in exactly one way as A D H.A/ C
iK.A/, in which both H.A/ and K.A/ are Hermitian; the representation A D
H.A/C iK.A/ of a complex or a real matrix is called the Toeplitz decomposition
[38, p. 227].
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1.43 Rotation and reflection matrices and a direct sum.

Let U.a; b/ D
�

a �b
b a

�
, a; b 2 C and let V.˛; ˇ/ D

�
˛ ˇ

ˇ �˛

�
, ˛; ˇ 2 C.

The following properties hold.

(1) U.a; b/U.a0; b0/ D U.aa0 � bb0; a0b C ab0/.

(2) U�1.a; b/ D U

�
a

a2 C b2
; � b

a2 C b2

�
, a2 C b2 ¤ 0.

(3) U.a; b/V.˛; ˇ/ D V.a˛ � bˇ; aˇ C b˛/.
(4) V.˛; ˇ/U.a; b/ D V.˛a C ˇb; ˇa � ˛b/.
(5) U.˛; ˇ/V.1; 0/ D V.˛; ˇ/.
(6) V.˛; ˇ/V.˛0; ˇ0/ D U.˛˛0 C ˇˇ0; ˛0ˇ � ˛ˇ0/.

(7) V�1.˛; ˇ/ D V

�
˛

˛2 C ˇ2
;

ˇ

˛2 C ˇ2

�
, ˛2 C ˇ2 ¤ 0.

(8) V�1

 
˛p

˛2 C ˇ2
;

ˇp
˛2 C ˇ2

!
D V

 
˛p

˛2 C ˇ2
;

ˇp
˛2 C ˇ2

!
,

where ˛2 C ˇ2 ¤ 0.
(9) U D fU.a; b/ W a; b 2 Cg and V D fV.˛; ˇ/ W ˛; ˇ 2 Cg are vector

spaces over C.

(10) A direct sum. M2 .C/ D U ˚ V . Any matrix A D
�

a b
c d

�
2 M2 .C/

has a unique writing as A D U
�

aCd
2

; c�b
2

�C V
�

a�d
2

; cCb
2

�
.

(11) Orthogonality. The function h�; �i W M2 .C/ �M2 .C/ ! C defined by
hA; Bi D Tr.AB�/ is an inner product on M2 .C/ and .M2 .C/ ; h�; �i/ is
an Euclidean space. If U.a; b/ 2 U and V.˛; ˇ/ 2 V , then V�.˛; ˇ/ D
V
�
˛; ˇ

�
and hU.a; b/; V.˛; ˇ/i D 0. Thus, the subspaces U and V are

orthogonal and U is the orthogonal complement of V in M2 .C/, i.e.,
U D V ? and V D U ?.

(12) The geometric interpretation. If a; b 2 R, then

U.a; b/ D
p

a2 C b2

�
cos � � sin �

sin � cos �

�
;

where cos � D ap
a2Cb2

, sin � D bp
a2Cb2

, � 2 Œ0; 2�/, so U.a; b/ is the
matrix corresponding to the composition of the uniform scaling of factorp

a2 C b2 with the rotation of angle � .
If ˛; ˇ 2 R, then

V.˛; ˇ/ D
p

˛2 C ˇ2

�
cos t sin t
sin t � cos t

�
;

(continued)
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1.43 (continued)
where cos t D ˛p

˛2Cˇ2
, sin t D ˇp

˛2Cˇ2
, t 2 Œ0; 2�/, so V.˛; ˇ/ is

the matrix corresponding to the composition of the uniform scaling of
factor

p
˛2 C ˇ2 with the reflection across a line passing through the

origin which makes an angle t
2

with the x-axis.
Nota bene. Any square 2�2 real matrix A can be written uniquely as

the linear combination of a rotation matrix and a reflection matrix, i.e.,
A D �U.cos �; sin �/ C 	V.cos t; sin t/, where �; 	 2 R.

1.44 Let A; B; C 2 M2 .C/ such that A2 D BC, B2 D CA, C2 D AB. Prove that:

(a) A3 D B3 D C3;
(b) Give an example of three distinct matrices that satisfy the conditions of the

problem.

1.45 Let A D
�

a b
�b a

�
2 M2 .R/. The following statements are equivalent:

(a) there exists n 2 N such that An D I2;
(b) there exists q 2 Q

� such that a D cos q� and b D sin q� .

1.46 Let A; B 2 M2 .Z/ such that AB D BA and det A D det B D 0. Prove that,
there exists a 2 Z such that for any n 2 N we have

det.An � Bn/ D �an and det.An C Bn/ D an:

1.47 Prove that, if A; B; C 2 M2 .R/ verify the conditions AB D BA, BC D CB,
CA D AC, and det.A2 C B2 C C2 � AB � BC � CA/ D 0, then det.2A � B � C/ D
3 det.B � C/.

1.48 [60] Determine all pairs .a; b/ of real numbers for which there exists a unique
2 � 2 symmetric matrix M with real entries satisfying Tr.M/ D a and det M D b.

1.5 A bouquet of group, ring, and field theory problems

The next problems establish a connection between various algebraic structures and
square matrices. For a thorough exposition of the classical algebraic structures such
as groups, rings, and fields as well as other related topics in abstract algebra the
reader may wish to refer to the excellent book [17].
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1.49 (a) Prove that the set M D
	�

2 � a a � 1

2.1 � a/ 2a � 1

�
W a 2 R

�



together with

the multiplication of matrices is an abelian group.
(b) Prove that .M ; �/ is isomorphic to the multiplicative group .R�; �/.

1.50 Prove that the set M D
	�

x 2y
y x

�
W x; y 2 Q; x ¤ 0 or y ¤ 0



together with

the multiplication of matrices is an abelian group.

1.51 Prove that the set M D
	�

cos ˛ sin ˛

� sin ˛ cos ˛

�
W ˛ 2 R



together with the

multiplication of matrices is a group which is isomorphic to the multiplicative group
of complex numbers of absolute value 1.

1.52 Prove that the set M D
	�

cos ˛ 3 sin ˛

� 1
3

sin ˛ cos ˛

�
W ˛ 2 R



together with the

multiplication of matrices is a group which is isomorphic to the multiplicative group
of complex numbers of absolute value 1.

1.53 (a) Prove that the set G D
n
x C y

p
5 W x 2 Q; y 2 Q; x2 � 5y2 D 1

o
together

with the multiplication of numbers is an abelian group.

(b) Prove that the set M D
	�

x 2y
5
2
y x

�
W x; y 2 Q and x2 � 5y2 D 1



together with

the multiplication of matrices is an abelian group.

(c) Prove that the function f W G ! M , f .x C y
p

5/ D
�

x 2y
5
2
y x

�
is a group

isomorphism, i.e., .G ; �/ Š .M ; �/.

1.54 Let d 2 R and let Md D
	�

a db
b a

�
W a; b 2 R; a2 � db2 ¤ 0



.

(a) Prove that the set Md together with the multiplication of matrices is a group.

(b) Determine the values of d for which the group .Md; �/ is isomorphic to .C�; �/.
1.55 Generators of the modular group SL2.Z/.

Let U D
�

1 1

0 1

�
, V D

�
0 �1

1 0

�
, W D

�
1 0

1 1

�
and P D

�
0 �1

1 1

�
, Q D P2 D

��1 �1

1 0

�
. Check that:

(a) Uk D
�

1 k
0 1

�
, k 2 Z;

(b) V2 D �I2, V�1 D �V , V4 D I2;

(c) Wk D
�

1 0

k 1

�
, k 2 Z, W D UVU;

(d) P D VU D V2Q2, P3 D �I2;
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(e) Q D VUVU D VW, Q2 D
�

0 1

�1 �1

�
, Q3 D I2;

(f) U D V�1P D �VP D VP4 D VQ2.

These properties, which may be of independent interest for the reader, are used
for proving that, a result far beyond the purpose of this book, the modular group
SL2.Z/ is generated by matrices U and V (see [43, Chapter 5]).

1.56 The Klein 4-group. Prove that the set K4 D ˚
I2; Sx; Sy; S0

�
where

Sx D
��1 0

0 1

�
; Sy D

�
1 0

0 �1

�
and S0 D

��1 0

0 �1

�
;

together with the multiplication of matrices is an abelian group of four
elements called the Klein 4-group. Also, .K4; �/ is not isomorphic to .R4; �/,
the group of the rotations of a square.

Nota bene. Geometrically, in 2D the Klein 4-group is the symmetry group
of a rhombus and of a rectangle which are not squares, the four elements being
the identity I2, the horizontal reflection Sx, the vertical reflection Sy, and a 180
degree rotation (the reflection through the origin) S0.

1.57 Let

M D
	�

a C b b
c a C c

�
W a; b; c 2 R



:

Determine the set G of all orthogonal matrices from M and show that .G ; �/ is
isomorphic to the Klein 4-group (Viergruppe).

1.58 A group characterization of idempotent matrices.

Let n 2 N, A 2 M2 .C/, A ¤ O2; I2 and let Mn D
fX 2 M2 .C/ W Xn D Ag. Prove the following statements are equivalent:

(a) .Mn; �/ is a group;
(b) A2 D A;
(c) Mn D fsA; s 2 C; sn D 1g D UnA, i.e., .Mn; �/ Š .Un; �/.

1.59 Two nonisomorphic groups.

Let G D fA 2 M2 .C/ W det A D ˙1g and let S D fA 2 M2 .C/ W det A D 1g.
Prove that G and S together with the multiplication of matrices are nonisomorphic
groups. Note that S is the special linear group SL2 .C/.
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1.60 Let G be a group of matrices from .M2 .C/ ; �/ whose identity element
is different from I2. Prove that G is isomorphic to a subgroup of .C�; �/.

1.61 The rotation matrix R˛ .

Let ˛ 2 R and M.xM; yM/ be a point in the Cartesian plane. If we rotate
counterclockwise the segment ŒOM� by an angle ˛ around the origin we get
the segment ŒON�. If N.xN ; yN/, then one can check that

�
xN

yN

�
D
�

cos ˛ � sin ˛

sin ˛ cos ˛

��
xM

yM

�
:

Because of this reason, the matrix R˛ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�
is called the

rotation matrix of angle ˛.

Properties of the rotation matrix

(a) Prove that, for any ˛ 2 R the matrix R˛ is orthogonal.

(b) Let SO2 be the set

SO2 D
	�

cos ˛ � sin ˛

sin ˛ cos ˛

�
W ˛ 2 R



:

Prove that SO2 together with the multiplication of matrices is an
abelian group. Thus, SO2, which is called the special orthogonal group
consists of the orthogonal matrices whose determinant is 1.

(c) Prove that R˛Rˇ D R˛Cˇ .

(d) Prove that R�1
˛ D R�˛ .

(e) Calculate Rn
˛ , n � 1.

Nota bene. Recall that Euler’s totient function ' counts the positive
integers up to a given integer n that are relatively prime to n. If n � 2

is an integer, there are '.n/ real distinct pairwise commuting matrices
having the same order n. For example if n D 8, R �

8
, R 3�

8
, R 5�

8
, and R 7�

8

are distinct pairwise commuting matrices of order 8.
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1.62 Two special subgroups of M2 .C/.

Let A 2 M2 .C/, let G.A/ D fX 2 M2 .C/ W det.A C X/ D det A C det Xg,
and let H.A/ D fX 2 M2 .C/ W Tr.AX/ D Tr.A/Tr.X/g. Prove that .G.A/; C/

and .H.A/; C/ are subgroups of .M2 .C/ ; C/.
Challenge problem. Prove that if A; B 2 M2 .C/ are two nonzero

matrices, then the subgroups .G.A/; C/ and .H.B/; C/ are isomorphic.

1.63 Let � 2 R and let M.�/ D
�

cosh � sinh �

sinh � cosh �

�
. Prove that:

(a) det M.�/ D 1;

(b) M.�1/M.�2/ D M.�1 C �2/;

(c) Mn.�/ D M.n�/, n 2 N;

(d) The hyperbolic group. The set H D fM.�/ W � 2 Rg together with the
multiplication of matrices is an abelian group.

1.64 The dihedral group D2n. Let n � 3 be an integer. Prove that the set

D2n D
	�

cos � � sin �

sin � cos �

�
;

�� cos � sin �

sin � cos �

�
W � D 0;

2�

n
; : : : ;

2.n � 1/�

n




together with the multiplication of matrices is a group of 2n elements called
the dihedral group, also known as the set of the symmetries of a regular n gon.

Nota bene. .D2n; �/ is not isomorphic to .R2n; �/, the group of the rotations
of a regular 2n-gon.

A lovely presentation of dihedral groups can be found in [17, p. 23].

1.65 Prove that the ring M2 .R/ contains a subring that is isomorphic to C.

1.66 (a) Prove that the set M D
	�

x y
�y x

�
W x; y 2 Z



together with the addition

and multiplication of matrices is a ring.
(b) Prove that .M ; C; �/ Š .ZŒi�; C; �/, where ZŒi� is the ring of Gaussian

integers, i.e., the set of complex numbers x C iy with x; y 2 Z.
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1.67 Determine all functions f ; g W Z � Z ! Z such that .M ; C; �/, where

M D
	�

x y
f .x; y/ g.x; y/

�
W x; y 2 Z



;

is a subring of .M2 .Z/ ; C; �/ and I2 2 M .

1.68 [17, p. 251] Prove that the elements

�
0 1

0 0

�
and

�
0 0

1 0

�
are nilpotent elements

of M2 .Z/ whose sum is not nilpotent (note that these two matrices do not
commute). Deduce that the set of nilpotent elements in the noncommutative ring
M2 .Z/ is not an ideal.

1.69 Determine all functions f ; g W Z � Z ! Z such that the set

M D
	�

x f .x; y/

g.x; y/ y

�
W x; y 2 Z




together with the addition and the multiplication of matrices is a ring and
I2 2 M .

1.70 Prove that the set M D
	�

x �3y
�y x

�
W x; y 2 Z



together with the addition

and multiplication of matrices is a ring which is isomorphic to the ring

A D
n
x C y

p
3 W x; y 2 Z

o
:

The ring isomorphism is of the form x C y
p

3 �!
�

x �3y
�y x

�
.

1.71 Prove that the set M D
	�

x 4y
1
2
y x

�
W x; y 2 Q



together with the addition

and multiplication of matrices is a field which is isomorphic to the field

A D
n
x C y

p
2 W x; y 2 Q

o
:

The field isomorphism is of the form x C y
p

2 �!
�

x 4y
1
2
y x

�
.
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1.72 Determine all functions f ; g W Q � Q ! Q such that the set

M D
	�

x f .x; y/

g.x; y/ y

�
W x; y 2 Q




together with the addition and the multiplication of matrices is a field.

1.73 Matrix Hamilton Quaternions.

Let M be the set of square matrices of the following form

M D fm D aE C bI C cJ C dK W a; b; c; d 2 Rg ;

where

E D
�

1 0

0 1

�
; I D

�
i 0

0 �i

�
; J D

�
0 1

�1 0

�
and K D

�
0 i
i 0

�
:

(a) Calculate mem and emm where em D aE � bI � cJ � dK.

(b) Prove that M together with the addition and multiplication of matrices
is a noncommutative field (Matrix Hamilton Quaternions). Historically,
one of the first noncommutative rings was discovered in 1843 by Sir
William Rowell Hamilton (1805–1865). A nice paper about quaternions
describing what led Hamilton to his discovery is [7]. Quaternions,
matrices of quaternions, and their properties as well as related problems
are given in [62].

(c) Prove that the property”a polynomial of degree n has at most n roots”
which holds when the coefficients of the polynomial function belong
to a commutative field, fails to hold in M . To show this, consider the
polynomial function x2 C E.

A challenging problem would be to solve in M the equation x2 C E D
O2.

1.74 Hermitian and Pauli matrices.

(a) Prove the set of 2 � 2 Hermitian matrices is given by

H D
	�

a c
c d

�
W a; d 2 R; c 2 C



:

(continued)
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1.74 (continued)

(b) The famous Pauli matrices 
1, 
2 and 
3 are defined as follows


1 D
�

0 1

1 0

�
; 
2 D

�
0 �i
i 0

�
and 
3 D

�
1 0

0 �1

�
:

Prove the set of Pauli matrices together with the identity matrix I2 form
a basis for the real vector space H of 2 � 2 Hermitian matrices, so H is a
vector space of dimension 4 over R.

Observe that if A 2 H , then

A D
�

a x � iy
x C iy d

�
D a C d

2
I2 C a � d

2

3 C x
1 C y
2; a; d; x; y 2 R:

(c) Prove the real linear span of fI2; i
1; i
2; i
3g is isomorphic to the set M ,
the Matrix Hamilton Quaternions, defined in problem 1.73.

1.6 Solutions

1.1. Use mathematical induction.

1.2. A2 can have one, two, or three negative entries. For example, A2 can have one

negative entry for A D
�

2 1

�1 3

�
, two negative entries for A D

�
2 �1

�1 3

�
, and three

negative entries for A D
��1 2

�3 �1

�
. It is not possible to have four negative entries!

1.3. Using the equality AAn D AnA we get the relations

8̂̂
ˆ̂<
ˆ̂̂̂:

aan C bcn D ana C bnc

abn C bdn D anb C bnd

can C dcn D cna C dnc

cbn C ddn D cnb C dnd

which can be written as bcn D bnc, .a � d/bn D .an � dn/b, .a � d/cn D .an � dn/c,
cbn D cnb. If bn D 0 or cn D 0 we get, since b ¤ 0, c ¤ 0, that an � dn D 0 and
this implies that an D dn.
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1.4. Let X D
�

a b
c d

�
be such that AX D XA. We have

�
1 2

3 4

��
a b
c d

�
D
�

a b
c d

��
1 2

3 4

�
;

and this implies that

8̂
ˆ̂̂<
ˆ̂̂̂:

a C 2c D a C 3b

b C 2d D 2a C 4b

3a C 4c D c C 3d

3b C 4d D 2c C 4d:

We obtain the system

(
2c D 3b

2.d � a/ D 3b;

which has the solutions a D x, b D 2y, c D 3y, d D x C 3y, where x; y 2 C. Thus,

X D
�

x 2y
3y x C 3y

�
D yA C .x � y/I2:

1.8. Let A D
�

a b
c d

�
. The equation A2 D O2 implies that

8̂̂
ˆ̂<
ˆ̂̂̂:

a2 C bc D 0

b.a C d/ D 0

c.a C d/ D 0

bc C d2 D 0:

If a C d ¤ 0, then b D c D 0, a2 D d2 D 0 and this implies a D d D 0, which
contradicts a C d ¤ 0. Thus, a C d D 0 and we get that a D �d. We look at the
equation a2 C bc D 0 and we consider the following two cases:

� if b D 0 we have that a D 0 and A D
�

0 0

c 0

�
, where c 2 C;

� if b ¤ 0 we have that c D �a2

b
and A D

 
a b

� a2

b �a

!
, a; b 2 C, b ¤ 0.
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1.10. Like in the solution of problem 1.8 from the equation A2 D O2, with A D ba bb
bc bd

!
, we get that ba Cbd D b0 and ba2 Cbbbc D b0. It follows that bd D �ba and

bbbc D �ba2.
Ifbb Db0, thenba D 0 andbc 2 Zp is arbitrary taken. Thus, we have p matrices of

the form

 b0 b0
bc b0

!
.

Ifbb ¤b0, thenbc D �bb�1ba2, wherebb can be chosen in p � 1 ways andba in p ways

so that we have p.p �1/ matrices of the form

 ba bb
�bb�1ba2 �ba

!
,ba 2 Zp,bb 2 Zp n

nb0o.

Therefore, we have p C p2 � p D p2 nilpotent matrices in M2

�
Zp
�
.

1.11. From .I2 C iA/.I2 � iA/ D I2 we get that A2 D O2. It follows, based on the

solution of problem 1.8, that A is of the following form A D
�

0 0

c 0

�
, where c 2 R,

or A D
 

a b

� a2

b �a

!
, a; b 2 R, b ¤ 0.

1.12. Let A D
�

a b
c d

�
. The equation A2 D I2 implies that

8̂
ˆ̂̂<
ˆ̂̂̂:

a2 C bc D 1

b.a C d/ D 0

c.a C d/ D 0

bc C d2 D 1:

If aCd ¤ 0, then b D c D 0, a2 D d2 D 1 and it follows that a D ˙1 and d D ˙1.
Since a C d ¤ 0 we get that a D 1, d D 1 or a D �1, d D �1. It follows that

A D
�

1 0

0 1

�
D I2 or A D

��1 0

0 �1

�
D �I2:

If a C d D 0, then d D �a. If b D 0 we get that a2 D d2 D 1 and this implies
a D �1, d D 1 or a D 1, d D �1. Thus,

A D
��1 0

c 1

�
or A D

�
1 0

c �1

�
; c 2 C:

If b ¤ 0 we have that c D 1 � a2

b
and A has the form
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A D
0
@ a b

1 � a2

b
�a

1
A ; a 2 C; b 2 C

�:

1.13. If p ¤ 2, then a matrix B 2 M2

�
Zp
�

is idempotent (B2 D B) if and only if
the matrix A D 2B � I2 is involutory (A2 D I2) which implies that, in this case, the
number of involutory matrices is the same as the number of idempotent matrices,
which is p2 C p C 2 (see problem 1.15).

When p D 2 we solve in M2 .Z2/ the matrix equation A2 D I2. If A D
 ba bb
bc bd

!
,

then we have thatba2 Cbbbc D b1,bb �ba Cbd� D b0,bc �ba Cbd� D b0,bd2 Cbbbc D b1 and

these equations imply thatbd D �ba.
Ifba Db1 andbbbc Db0, then we get the matrices

A1 D
 b1 b0b0 b1

!
; A2 D

 b1 b0b1 b1
!

; A3 D
 b1 b1b0 b1

!
:

Ifba D b0, thenbd D b0 andbbbc D b1, sobb D bc D b1. Thus, we obtain the matrix

A4 D
 b0 b1b1 b0

!
. Therefore, when p D 2 there are 4 involutory matrices. Observe this

is different than p2 C p C 2 which is the number of involutory matrices when p ¤ 2.

1.14. Let A D
�

a b
c d

�
. The equation A2 D A implies that

8̂̂
ˆ̂<
ˆ̂̂̂:

a2 C bc D a

b.a C d/ D b

c.a C d/ D c

bc C d2 D d

or

8̂̂
ˆ̂<
ˆ̂̂̂:

a2 C bc D a

b.a C d � 1/ D 0

c.a C d � 1/ D 0

.a � d/.a C d � 1/ D 0:

If a C d � 1 ¤ 0, then b D c D 0, a D d 2 f0; 1g. It follows that A D O2 or A D I2.
If a C d �1 D 0, the system reduces to the equation a2 C bc D a. When b ¤ 0, then

c D a � a2

b
and A D

0
@ a b

a � a2

b
1 � a

1
A ; a; b 2 C; b ¤ 0:

When b D 0, then either a D 0 or a D 1 and this implies that

A D
�

0 0

c 1

�
or A D

�
1 0

c 0

�
; c 2 C:
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1.15. Like in the solution of problem 1.14 we get matrices A D O2, A D I2 and then

matrices A D
 ba bb
bc bd

!
which satisfy the conditionsba Cbd Db1 andba2 Cbbbc Dba.

Ifba Db0, thenbd Db1,bbbc Db0, sobb Db0 orbc Db0. Thus, we have p matrices of

the form A1 D
 b0 bbb0 b1

!
and p � 1 matrices of the form A2 D

 b0 b0
bc b1

!
. Therefore, we

have 2p � 1 matrices since we have counted the matrix

 b0 b0b0 b1
!

once.

If ba D b1, then bd D b0 and bbbc D b0. In the same way as above we get 2p � 1

matrices of the form A3 D
 b1 bbb0 b0

!
or A4 D

 b1 b0
bc b0

!
.

Ifba ¤b0;b1, thenba2 �ba ¤b0 and we get, from the two equations, thatbd Db1 �ba,bbbc Dba �ba2, sobc Dbb�1
�ba �ba2

�
. We obtain the matrices

A5 D
 ba bbbb�1

�ba �ba2
� b1 �ba

!
; ba 2 Zp n

nb0;b1o :

Observe thatba is chosen in p � 2 ways andbb ¤b0 is taken in p � 1 ways, so we have
.p � 1/.p � 2/ matrices of the form A5.

In conclusion the number of idempotent matrices in M2

�
Zp
�

is p2 C p C 2.

1.16. If X D
�

a b
c d

�
, A D 1p

2

�
1 1

�1 1

�
, B D 1p

2

�
1 1

1 �1

�
and C D

�
0 1

1 0

�
,

then X D ˛A C ˇB C �C C ıI2, where ˛ D b�cp
2

, ˇ D a�dp
2

, � D c�aCbCd
2

and

ı D aCcCd�b
2

.

1.17. (a) A D
�

a �b
b a

�
or A D

��a b
b a

�
, a; b 2 C, with a2 C b2 D 1.

(b) A D
�

a �b
b a

�
or A D

��a b
b a

�
, a; b 2 C, with a2 C b2 D �1.

1.19. We have A2 D A, B2 D B. The equality .A C B/2 D A C B implies that
ABCBA D O2. We multiply this equality by A to the left respectively to the right and
we get that AB C ABA D O2 and ABA C BA D O2. It follows that AB D BA D O2.

If A D ˛I2, ˛ 2 C
�, we get, since A2 D A, that ˛2 D ˛ ) ˛ D 1 ) A D

I2 ) B D BA D O2, which is impossible.
If A ¤ ˛I2, ˛ 2 C, then we have, based on Theorem 1.1, that B D aA C bI2, for

some a; b 2 C. Since B2 D B we get that .aA C bI2/2 D aA C bI2 ) .a2 C 2ab �
a/A D .b � b2/I2. It follows that a2 C 2ab � a D 0 and b � b2 D 0. If b D 0, then
a D 0 or a D 1. The case a D b D 0 implies that B D O2, which is impossible. If
b D 0 and a D 1, then A D B ) O2 D AB D A2 D A, which is impossible. If
b D 1, then a D 0 or a D �1. If b D 1 and a D 0, then B D I2 ) A D AB D O2,
which is impossible. If b D 1 and a D �1, then A C B D I2.
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1.23. (a) We have .I2 C X/.I2 � 1
2
X/ D I2 C 1

2
X � 1

2
X2 D I2.

(b) A D AB C B2 and B D BA C A2 and these imply A C B D .A C B/2 and
.A � B/.I2 C A C B/ D O2. Since the matrix I2 C A C B is invertible, see part (a),
the equality .A � B/.I2 C A C B/ D O2 implies that A D B.

1.25. Solution 1. Observe that An D
�

1 0

n 1

�
, n � 1 and prove it by induction.

Solution 2. We note that A D I2 C B, where B D
�

0 0

1 0

�
. Since B2 D O2 we have,

based on the Binomial Theorem, that

An D .I2 C B/n D
 

n

0

!
In
2 C

 
n

1

!
In�1
2 B C

 
n

2

!
In�2
2 B2 C � � � C

 
n

n

!
Bn

D I2 C nB D
�

1 0

n 1

�
:

1.27. The problem can be solved by mathematical induction.

1.28. (a) Observe that 1 C p
3 D 2

p
2 cos �

12
and

p
3 � 1 D 2

p
2 sin �

12
. It follows

that

�
1 C p

3 1 � p
3p

3 � 1 1 C p
3

�n

D .2
p

2/n

0
BB@

cos
n�

12
� sin

n�

12

sin
n�

12
cos

n�

12

1
CCA :

(b) We have that

�
a �b
b a

�n

D
�p

a2 C b2

�n
�

cos.n˛/ � sin.n˛/

sin.n˛/ cos.n˛/

�
;

where cos ˛ D ap
a2Cb2

and sin ˛ D bp
a2Cb2

.

1.29. (a) We have A D
�

1 1

1 0

�
, A2 D

�
2 1

1 1

�
and it follows that A2 D A C I2. We

multiply both sides of this equality by An�1, n � 1, and we get the Fibonacci matrix
recurrence formula AnC1 D An C An�1.

(b) The formula An D
�

FnC1 Fn

Fn Fn�1

�
, n � 1, can be proved by mathematical

induction.

We give here a different approach. Let An D
�

an bn

cn dn

�
, n � 1. The recurrence

formula AnC1 D An C An�1, from part (a) of the problem, implies that
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8̂
ˆ̂̂<
ˆ̂̂̂
:

anC1 D an C an�1; a1 D 1; a2 D 2; n � 1

bnC1 D bn C bn�1; b1 D 1; b2 D 1; n � 1

cnC1 D cn C cn�1; c1 D 1; c2 D 1; n � 1

dnC1 D dn C dn�1; d1 D 0; d2 D 1; n � 1:

These recurrence relations imply an D FnC1, bn D Fn, cn D Fn, dn D Fn�1 and it

follows that An D
�

FnC1 Fn

Fn Fn�1

�
, n � 1.

(c) The matrix identity AnCm D AnAm implies that

�
FnCmC1 FnCm

FnCm FnCm�1

�
D
�

FnC1 Fn

Fn Fn�1

��
FmC1 Fm

Fm Fm�1

�
:

We look at entry .1; 2/ of this identity and we get that FnCm D FnC1Fm C FnFm�1,
n; m 2 N.

(d) Since det.An/ D .det A/n we get that

FnC1Fn�1 � F2
n D det

�
FnC1 Fn

Fn Fn�1

�
D
�

det

�
1 1

1 0

��n

D .�1/n:

On the other hand, we have based on part (c) with m D n, that

F2n D FnC1Fn C FnFn�1

D Fn.FnC1 C Fn�1/

D .FnC1 � Fn�1/.FnC1 C Fn�1/

D F2
nC1 � F2

n�1

and similarly one can also prove that F2nC1 D F2
nC1 C F2

n , n � 0.
We have, based on the previous quadratic formulae, that

F3n D F2nCn D F2nC1Fn C F2nFn�1

D Fn.F2
nC1 C F2

n/ C .F2
nC1 � F2

n�1/Fn�1

D FnF2
nC1 C F3

n C F2
nC1Fn�1 � F3

n�1

D F2
nC1.Fn C Fn�1/ C F3

n � F3
n�1

D F3
nC1 C F3

n � F3
n�1:
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(e) We have, based on part (b) that Tr.An/ D FnC1 C Fn�1. A calculation shows

the eigenvalues of A are ˛ D 1Cp
5

2
and ˇ D 1�p

5
2

. Since the eigenvalues of An are
˛n and ˇn we get that Tr.An/ D ˛n C ˇn D Ln D FnC1 C Fn�1.

The equation XnC1 D AXn implies that Xn D AnX0. Thus

Xn D
�

FnC1 Fn

Fn Fn�1

��
3

1

�
D
�

3FnC1 C Fn

3Fn C Fn�1

�
:

It remains to prove that LnC2 D 3FnC1 C Fn, n � 0, and LnC1 D 3Fn C Fn�1,
n � 1. These recurrence formulae can be proved easily by observing that the Lucas
and Fibonacci sequences verify the formula LnC1 D FnC2 C Fn, for all n � 0.

1.30. Solution 1. Let A.n/ D B.2/B.3/ � � � B.n/, n � 2, and we consider the
sequences .an/n�2 and .bn/n�2 such that

A.n/ D
�

an bn

bn an

�
:

Since A.n C 1/ D A.n/B.n C 1/ we get that

A.n C 1/ D
�

an bn

bn an

��
n C 1 1

1 n C 1

�
D
�

an.n C 1/ C bn an C bn.n C 1/

an C bn.n C 1/ an.n C 1/ C bn

�
:

This implies that
(

anC1 D an.n C 1/ C bn

bnC1 D an C bn.n C 1/;

for all n � 2. Adding and subtracting these two recurrence relations we get that

(
anC1 � bnC1 D n.an � bn/

anC1 C bnC1 D .n C 2/.an C bn/;

for all n � 2. This implies that

8̂<
:̂

anC1 D nŠ

2
C .n C 2/Š

4

bnC1 D �nŠ

2
C .n C 2/Š

4
:

In conclusion

B.2/B.3/ � � � B.n/ D

0
B@

.n � 1/Š

2
C .n C 1/Š

4
� .n � 1/Š

2
C .n C 1/Š

4

� .n � 1/Š

2
C .n C 1/Š

4

.n � 1/Š

2
C .n C 1/Š

4

1
CA ; n � 2:
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Solution 2. We prove that

B.2/B.3/ � � � B.n/ D .n � 1/Š

4

�
n2 C n C 2 n2 C n � 2

n2 C n � 2 n2 C n C 2

�
:

A calculation shows that the eigenvalues of the matrix B.x/ are x C 1 and x � 1

with the corresponding eigenvectors .˛ ˛/T and .�ˇ ˇ/T . Thus B.x/ D PJB.x/P�1;

where JB.x/ denotes the Jordan canonical form of the matrix B.x/ and P is the
invertible matrix given below

JB.x/ D
�

1 C x 0

0 x � 1

�
; P D

�
1 �1

1 1

�
and P�1 D 1

2

�
1 1

�1 1

�
:

Thus,

B.2/B.3/ � � � B.n/ D
�

1 �1

1 1

�0@ .n C 1/Š

2
0

0 .n � 1/Š

1
A 1

2

�
1 1

�1 1

�

D .n � 1/Š

4

�
n2 C n C 2 n2 C n � 2

n2 C n � 2 n2 C n C 2

�
:

Another solution of this problem can be found in [40].

1.31. (a) Let A1, A2 be the columns of A and B1, B2 be the columns of B. We have,
based on Proposition 1.1, that

det.A C B/ D det.A1 C B1j A2 C B2/

D det.A1j A2 C B2/ C det.B1j A2 C B2/

D det.A1j A2/ C det.A1j B2/ C det.B1j A2/ C det.B1j B2/

D det A C det.A1j B2/ C det.B1j A2/ C det B

and

det.A � B/ D det.A1 � B1j A2 � B2/

D det.A1j A2 � B2/ � det.B1j A2 � B2/

D det.A1j A2/ � det.A1j B2/ � det.B1j A2/ C det.B1j B2/

D det A � det.A1j B2/ � det.B1j A2/ C det B:

Adding the previous equalities we get that part (a) of the problem is solved.
(b) We solve this part of the problem by mathematical induction. When n D 1

we need to prove that det A1 C det.�A1/ D det A1 C .�1/2 det A1 D 2 det A1, which
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holds trivially. Now we assume the formula holds for n D 1; p, p 2 N and we prove
it for n D p C 1. We have

X
det.˙A1 ˙ A2 ˙ � � � ˙ ApC1/ D

X
det

��˙A1 ˙ A2 ˙ � � � ˙ Ap
�C ApC1

�

C
X

det
��˙A1 ˙ A2 ˙ � � � ˙ Ap

� � ApC1

�
part (a)D 2

X�
det.˙A1˙A2˙ � � � ˙ Ap/C det ApC1

�

D 2

 
2p

pX
kD1

det Ak C 2p det ApC1

!

D 2pC1

pC1X
kD1

det Ak:

1.32. Let A1; A2 be the columns of A, B1; B2 be the columns of B and C1; C2 be the
columns of C respectively.

We have

det.A C B C C/ D det.A1 C B1 C C1j A2 C B2 C C2/

D det.A1j A2/ C det.A1j B2/ C det.A1j C2/

C det.B1j A2/ C det.B1j B2/ C det.B1j C2/

C det.C1j A2/ C det.C1j B2/ C det.C1j C2/:

On the other hand,

det.A C B/ D det.A1 C B1j A2 C B2/

D det.A1j A2/ C det.A1j B2/ C det.B1j A2/ C det.B1j B2/;

det.B C C/ D det.B1 C C1j B2 C C2/

D det.B1j B2/ C det.B1j C2/ C det.C1j B2/ C det.C1j C2/

and

det.A C C/ D det.A1 C C1j A2 C C2/

D det.A1j A2/ C det.A1j C2/ C det.C1j A2/ C det.C1j C2/:

Putting all these together we get, since det A D det.A1j A2/, det B D det.B1j B2/ and
det C D det.C1j C2/, that the problem is solved.

1.33. Let S D det.ACBCC/Cdet.�ACBCC/Cdet.A�BCC/Cdet.ACB�C/.
We have, based on part (a) of problem 1.31, that
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det.A C B C C/ C det.A C B � C/ D 2 det.A C B/ C 2 det C

det.A C B C C/ C det.A � B C C/ D 2 det.A C C/ C 2 det B

det.A C B C C/ C det.�A C B C C/ D 2 det.B C C/ C 2 det A.

Adding the previous equalities we get that

S C 2 det.A C B C C/ D 2 det.A C B/ C 2 det.B C C/ C 2 det.C C A/

C 2 det A C 2 det B C 2 det C;

and the result follows based on problem 1.32.

1.34. We solve the problem by mathematical induction. Let P.n/ be the proposition

P.n/ W det

 
nX

iD1

Ai

!
D

X
1�i<j�n

det.Ai C Aj/ � .n � 2/

nX
iD1

det Ai:

When n D 2 we have det.A1 C A2/ D det.A1 C A2/, so there is nothing to prove.
When n D 3 we need to prove that

P.3/ W det.A1 C A2 C A3/ D det.A1 C A2/ C det.A1 C A3/ C det.A2 C A3/

� det A1 � det A2 � det A3;

which holds based on problem 1.32.
Now we consider that P.k/ is true, for k D 2; 3; : : : ; n and we prove that P.nC1/

is true. We have

det.A1 C A2 C � � � C An�1 C An C AnC1/ D det.B C An C AnC1/

P.3/ trueD det.B C An/C det.B C AnC1/C det.An C AnC1/� det B� det An� det AnC1

D
X

1�i<j�n

det.Ai C Aj/ � .n � 2/

nX
iD1

det Ai C
X

1�i<j�nC1
i;j¤n

det.Ai C Aj/

� .n � 2/

nC1X
iD1
i¤n

det Ai C det.An C AnC1/ �
X

1�i<j�n�1

det.Ai C Aj/

C .n � 3/

n�1X
iD1

det Ai � det An � det AnC1

D
X

1�i<j�nC1

det.AiCAj/�.2n�4�nC3/

nX
iD1

det Ai � .n � 2/ det AnC1 � det AnC1

D
X

1�i<j�nC1

det.Ai C Aj/ � .n � 1/

nC1X
iD1

det Ai:
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1.35. We have, based on problem 1.34, that

det.S � A1/ D
X

2�i<j�n

det.Ai C Aj/ � .n � 3/

nX
iD2

det Ai:

The other n � 1 similar equalities also hold. Adding all these equalities we get that

nX
iD1

det.S � Ai/ D .n � 2/
X

1�i<j�n

det.Ai C Aj/ � .n � 1/.n � 3/

nX
iD1

det Ai:

On the other hand,

det S D
X

1�i<j�n

det.Ai C Aj/ � .n � 2/

nX
iD1

det Ai:

Thus, we need to check that

.n � 2/
X

1�i<j�n

det.Ai C Aj/ � .n � 1/.n � 3/

nX
iD1

det Ai

D .n � 2/
X

1�i<j�n

det.Ai C Aj/ � .n � 2/2

nX
iD1

det Ai C
nX

iD1

det Ai;

which holds since .n � 1/.n � 3/ D n2 � 4n C 3 D .n � 2/2 � 1.

1.36. We have, based on problem 1.32, that

det.ACBCC/D det.ACB/C det.BCC/C det.CCA/ � det A � det B � det CD0:

1.37. We have, based on part (a) of problem 1.31, that for X; Y 2 M2 .C/ one has
that det.X CY/Cdet.X �Y/ D 2 det X C2 det Y . If X D ACAT and Y D AT we get
that det.A C2AT/C det A D 2 det.A C AT/C2 det AT . This implies that det A D 11.

1.38. We have, based on part (a) of problem 1.31, that det.A2 CB2/Cdet.A2 �B2/ D
2 det.A2/ C 2 det.B2/. This implies, since A2 C B2 D �2AB, that det.�2AB/ C
det.A2 � B2/ D 4 det2 A. Thus 4 det2 A C det.A2 � B2/ D 4 det2 A, which implies
that det.A2 � B2/ D 0.

1.39. Use Theorem 1.1.

1.40. (a) Observe that
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0
@ 1

˛

n
�˛

n
1

1
A D

p
n2 C ˛2

n

0
B@

np
n2 C ˛2

˛p
n2 C ˛2

� ˛p
n2 C ˛2

np
n2 C ˛2

1
CA :

Let �n 2 Œ0; �� be such that cos �n D np
n2C˛2

and sin �n D ˛p
n2C˛2

. This implies
that

An D
�

1 C ˛2

n2

� n
2
�

cos.n�n/ sin.n�n/

� sin.n�n/ cos.n�n/

�
;

so an D
�
1 C ˛2

n2

� n
2

cos.n�n/ and bn D
�
1 C ˛2

n2

� n
2

sin.n�n/.

(b) Since tan �n D ˛
n we get that �n D arctan ˛

n . A calculation shows that

lim
n!1

�
1 C ˛2

n2

� n
2

D 1 and lim
n!1 n arctan

˛

n
D ˛;

which imply that lim
n!1 an D cos ˛ and lim

n!1 bn D sin ˛.

1.41. (a) If A and B are symmetric matrices, then .A C B/T D AT C BT D A C B,
which implies that A C B is a symmetric matrix.

On the other hand, if A and B are antisymmetric matrices, then .A C B/T D
AT C BT D �A � B D �.A C B/ and this implies that A C B is an antisymmetric
matrix.

(b) Let A 2 S2.R/ \ A2.R/. This implies that AT D A and AT D �A. Thus
2A D O2 ) A D O2.

(c) We have M D MCMT

2
C M�MT

2
. Now, one can prove that MCMT

2
2 S2.R/ and

M�MT

2
2 A2.R/.

To prove the uniqueness assertion, observe that if M D C C D, with C 2 S2.R/

and D 2 A2.R/, then

S D M C MT

2
D C C D C .C C D/T

2
D C C CT C D C DT

2
D C

and

A D M � MT

2
D .C C D/ � .C C D/T

2
D C � CT C D � DT

2
D D:

1.42. (a) Each A 2 M2 .C/ is written uniquely as A D B C iC, where B D 1
2
.A C A/

is the real part of A and C D 1
2i .A � A/ is the imaginary part of A.

To prove the writing is unique, observe that if A D E C iF, with both E; F 2
M2 .R/, then
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B D A C A

2
D E C iF C E C iF

2
D E C iF C E � iF

2
D E

and

C D A � A

2i
D E C iF � E C iF

2i
D E C iF � E C iF

2i
D F:

(b) Each A 2 M2 .C/ is written in exactly one way as A D H.A/ C iK.A/,
where H.A/ D 1

2
.A C A�/ is the Hermitian part of A and iK.A/ D 1

2
.A � A�/ is

the skew-Hermitian part of A. One can check that both matrices H.A/ and K.A/ are
Hermitian matrices.

To prove the uniqueness assertion, observe that if A D E C iF, with both E and
F Hermitian, then

2H.A/ D A C A� D .E C iF/ C .E C iF/� D E C iF C E� � iF� D 2E

and

2iK.A/ D A � A� D .E C iF/ � .E C iF/� D E C iF � E� C iF� D 2iF:

1.44. (a) We have A3 D A �A2 D A.BC/ D .AB/C D C2 �C D C3 and B3 D B �B2 D
B.CA/ D .BC/A D A2 � A D A3. It follows that A3 D B3 D C3.

(b) Let � ¤ 1 be a cubic root of unity, i.e., �2 C � C 1 D 0. Matrices A, �A, and
�2A are distinct matrices which verify the conditions of the problem.

1.45. (a) ) (b) We assume that there exists n 2 N such that An D I2. Passing
to determinants we get that detn A D 1 and since det A D a2 C b2 we get that
det A D a2 C b2 D 1. This implies there exists t 2 R such that a D cos t and
b D sin t. Thus

A D
�

cos t sin t
� sin t cos t

�
) Ak D

�
cos kt sin kt

� sin kt cos kt

�
; k 2 N:

The equation An D I2 implies that

�
cos nt sin nt

� sin nt cos nt

�
D
�

1 0

0 1

�
:

It follows that cos nt D 1 and sin nt D 0 which implies that nt D 2p� , p 2 Z. Thus
t D 2p

n � D q� , where q D 2p
n 2 Q and consequently a D cos q� and b D sin q� .

(b) ) (a) Let a D cos q� and b D sin q� , where q 2 Q
�, i.e., q D u

v
, u 2 Z and

v 2 N. Since q D 2u
2v

, we have that
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A D

0
BBB@

cos
2u�

2v
sin

2u�

2v

� sin
2u�

2v
cos

2u�

2v

1
CCCA ;

and it follows that A2v D I2.

1.46. Let f 2 ZŒx� be the polynomial

f .x/ D det.A � xB/ D det A C ˛x C .det B/x2 D ˛x; ˛ 2 Z:

Since AB D BA we have

An � Bn D
n�1Y
kD0

.A � �kB/; �n
k D 1; k D 0; 1; : : : ; n � 1

and

An C Bn D
n�1Y
kD0

.A � 	kB/; 	n
k D �1; k D 0; 1; : : : ; n � 1:

Passing to determinants we get that

det.An � Bn/ D
n�1Y
kD0

f .�k/ D
n�1Y
kD0

.˛�k/ D ˛n.�1/nC1 D �.�˛/n

and

det.An C Bn/ D
n�1Y
kD0

f .	k/ D
n�1Y
kD0

.˛	k/ D ˛n.�1/n D .�˛/n;

so a D �˛.

1.47. We have

MDA2CB2CC2�AB�BC�CADA2�A.BCC/C1

4
.BCC/2C3

4
.B�C/2

D 1

4

h
.2A � B � C/2 C .

p
3.B � C//2

i
:

Thus, det M D 0 if and only if det
h
.2A � B � C/2 C .

p
3.B � C//2

i
D 0.

Let P D 2A � B � C and Q D p
3.B � C/, P; Q 2 M2.R/.

We prove that if det.P2 C Q2/ D 0 and PQ D QP, then det P D det Q. We have,
since P2 C Q2 D .P C iQ/.P � iQ/, that det.P2 C Q2/ D det.P C iQ/ det.P � iQ/.
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On the other hand, det.P C iQ/ D det P C ˛i C i2 det Q D det P � det Q C ˛i
and det.P � iQ/ D det.P C iQ/ D det P � det Q � ˛i. Thus, det.P2 C Q2/ D
.det P � det Q/2 C ˛2 D 0 implies that ˛ D 0 and det P D det Q. Therefore,
det.2A � B � C/ D det..

p
3.B � C// which in turn implies that det.2A � B � C/ D

3 det.B � C/.

1.48. We prove that a2 D 4b. Let M D
�

x z
z y

�
. The two conditions give us xCy D a

and xy � z2 D b. Since these equations are symmetric in x and y, the matrix can be
unique if x D y. This implies that 2x D a and x2 � z2 D b. Moreover, if .x; y; z/ is a
solution of this system of equations, then .x; y; �z/ is also a solution, so M can only
be unique if z D 0. This means that 2x D a and x2 D b, so a2 D 4b.

If this is the case, then we prove that M is unique with the properties that Tr.M/ D
a and det M D b. If x C y D a and xy � z2 D b, then

.x � y/2 C 4z2 D .x C y/2 C 4z2 � 4xy D a2 � 4b D 0;

so we must have x D y and z D 0, which implies that M D
�

a=2 0

0 a=2

�
.

The second solution is based on a technique involving the eigenvalues of M (see
[60]).

1.49. (a) Let J1 D
�

2 �1

2 �1

�
and J2 D

��1 1

�2 2

�
and observe that J2

1 D J1, J2
2 D J2

and J1J2 D J2J1 D O2.
First we prove that M is closed under the multiplication of matrices. If Aa; Ab 2

M , then Aa D J1 C aJ2 and Ab D J1 C bJ2. A calculation shows that AaAb D
.J1 C aJ2/.J1 C bJ2/ D J2

1 C bJ1J2 C aJ2J1 C abJ2
2 D J1 C abJ2 D Aab 2 M .

Now we prove that M together with the multiplication of matrices is an abelian
group.

� associativity .AaAb/Ac D Aa.AbAc/ D Aabc, 8a; b; c 2 R
�;

� the identity Since I2 D J1 C J2 D A1 ) AaI2 D I2Aa D Aa, 8a 2 R
�;

� the inverse element AaA1=a D A1 D I2 D A1=aAa, 8a 2 R
� ) A�1

a D A1=a;

� commutativity AaAb D AbAa D Aab, 8a; b 2 R
�.

(b) Let f W M ! R
� be the function defined by f .Aa/ D a. First, we observe

that f is onto by definition. Now we prove that f is a one to one function. If f .Aa/ D
f .Ab/, then a D b and this implies that Aa D J1 C aJ2 D J1 C bJ2 D Ab.

On the other hand f .AaAb/ D f .Aab/ D ab D f .Aa/f .Ab/, 8a; b 2 R
�, which

implies that f is an isomorphism.

1.50. First we prove that M is closed under the multiplication of matrices. Let

A D
�

˛ 2ˇ

ˇ ˛

�
and B D

�
m 2n
n m

�
, where ˛; ˇ; m; n 2 Q, ˛ ¤ 0 or ˇ ¤ 0, m ¤ 0 or

n ¤ 0. A calculation shows that
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AB D
�

˛m C 2ˇn 2.˛n C ˇm/

˛n C ˇm ˛m C 2ˇn

�
D
�

x 2y
y x

�
;

where x D ˛m C 2ˇn and y D ˛n C ˇm.
We prove that x and y cannot be both 0. If x D y D 0 we get that

(
˛m C 2ˇn D 0

˛n C ˇm D 0:

This is a homogeneous system of equations, in variables m and n, whose determinant
is ˛2 � 2ˇ2 ¤ 0. If ˛2 � 2ˇ2 D 0 , .˛ � p

2ˇ/.˛ C p
2ˇ/ D 0 , ˛ D ˇ D 0

which contradicts the fact that ˛ and ˇ cannot be both 0. Thus, ˛2 � 2ˇ2 ¤ 0 and
this implies that the system has the unique solution m D n D 0 which contradicts
the hypothesis that m and n cannot be both 0. Therefore x and y cannot be both 0

and this implies that M is closed under the multiplication of matrices.
The reader should check that .M ; �/ is an abelian group.

� associativity .AB/C D A.BC/, 8A; B; C 2 M ;

� the identity I2 2 M and AI2 D I2A D A, 8A 2 M ;

� the inverse element observe that

�
x 2y
y x

��1

D

0
B@

x

x2 � 2y2
� 2y

x2 � 2y2

� y

x2 � 2y2

x

x2 � 2y2

1
CA 2 M I

� commutativity AB D BA, 8A; B 2 M .

1.51. To prove that .M ; �/ is an abelian group can be done by direct computations.
Let U D fz 2 C W jzj D 1g D fcos ˛ C i sin ˛ W ˛ 2 Rg, be the set of complex
numbers of absolute value 1. This set together with the multiplication of complex
numbers is an abelian group (check it!).

The function f W U ! M defined by

f .cos ˛ C i sin ˛/ D
�

cos ˛ sin ˛

� sin ˛ cos ˛

�

is a group isomorphism.

1.52. The solution of this problem is similar to the solution of problem 1.51.

1.53. (a) Let z; z0 2 G , z D x C y
p

5 and z0 D x0 C y0p5, where x; y; x0; y0 2 Q

with x2 � 5y2 D 1, x02 � 5y02 D 1. A calculation shows that zz0 D .x C y
p

5/.x0 C
y0p5/ D xx0 C 5yy0 C .xy0 C x0y/

p
5 D X C Y

p
5, where X D xx0 C 5yy0 2 Q and

Y D xy0 C x0y 2 Q. Also
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X2 � 5Y2 D .xx0 C 5yy0/2 � 5.xy0 C x0y/2

D x2x02 C 25y2y02 � 5x2y02 � 5x02y2

D x2.x02 � 5y02/ � 5y2.x02 � 5y02/

D x2 � 5y2

D 1:

This implies that G is closed under the multiplication of numbers.
One can check that the multiplication of numbers is both associative and

commutative. Since 1 D 1 C 0
p

5 and 12 � 5 � 02 D 1 we get that the identity
of G is 1. If z D x C y

p
5 2 G , with x; y 2 Q and x2 � 5y2 D 1, then

1

z
D 1

x C y
p

5
D x � y

p
5

x2 � 5y2
D x � y

p
5;

which implies, since x; �y 2 Q and x2 � 5.�y/2 D 1, that 1
z 2 G . Thus, the inverse

of z is 1
z . Putting all these together we get that .G ; �/ is an abelian group.

(b) If x; y; x0; y0 2 Q, x2 � 5y2 D 1, x02 � 5y02 D 1, then

�
x 2y
5
2
y x

��
x0 2y0
5
2
y0 x0

�
D
�

xx0 C 5yy0 2.x0y C y0x/
5
2
.x0y C y0x/ xx0 C 5yy0

�
D
�

X 2Y
5
2
Y X

�
;

where X D xx0 C 5yy0 2 Q and Y D xy0 C x0y 2 Q. Also, X2 � 5Y2 D 1 (see the
calculations from part (a)). This implies that M is closed under the multiplication
of matrices.

The multiplication of matrices is both associative and commutative. The unit
matrix I2 is the identity of M and the inverse of a matrix in M is given by

0
@ x 2y

5

2
y x

1
A

�1

D
0
@ x �2y

�5

2
y x

1
A 2 M :

Thus, .M ; �/ is an abelian group.
(c) The function f W G ! M defined by

f .x C y
p

5/ D
0
@ x 2y

5

2
y x

1
A

is a group isomorphism. We observe that f is onto by definition and that f is a one
to one function is easy to check. To shows that f is a homomorphism we have
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f ..x C y
p

5/.x0 C y0p5// D
0
@ xx0 C 5yy0 2.xy0 C x0y/

5

2
.xy0 C x0y/ xx0 C 5yy0

1
A

and

f .x C y
p

5/f .x0 C y0p5/ D
0
@ x 2y

5

2
y x

1
A
0
@ x0 2y0

5

2
y0 x0

1
A D

0
@ xx0 C 5yy0 2.xy0 C x0y/

5

2
.xy0 C x0y/ xx0 C 5yy0

1
A

so f ..x C y
p

5/.x0 C y0p5// D f .x C y
p

5/f .x0 C y0p5/.

1.54. (b) First, we observe the identity of .Md; �/ is I2. If f W C
� ! Md is an

isomorphism, then f .1/ D I2. If f .i/ D A D
�

a db
b a

�
, then f .i2/ D f .�1/ ¤ f .1/ D

I2, so A2 ¤ I2. On the other hand, f .i4/ D f .1/ D I2, so A4 D I2. A calculation
shows that

A2D
�

a2Cdb2 d.2ab/

2ab a2Cdb2

�
; A4D

�
.a2Cdb2/2C4a2b2d 4abd.a2Cdb2/

4ab.a2Cdb2/ .a2Cdb2/2C4a2b2d

�
:

The equation A4 D I2 implies that

(
.a2 C db2/2 C 4a2b2d D 1

ab.a2 C db2/ D 0:

� If a2 C db2 D 0 we get that 4a2b2d D 1 , 4a2.�a2/ D 1 , 4a4 D �1,
which does not have real solutions.

� If b D 0 we get that a4 D 1 ) a D ˙1 and A D ˙I2. This contradicts
A2 D I2.

� If a D 0 we get that .db2/2 D 1 ) db2 D ˙1. This equation also implies that
d ¤ 0. We have

A D
�

0 db
b 0

�
and A2 D

�
db2 0

0 db2

�
¤ I2

which implies that db2 D �1, so d < 0 and b D ˙ 1p�d
.

We obtained the condition d < 0 is necessary.
To prove this condition is also sufficient we observe the function f W C� ! Md

defined by
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f .x C iy/ D
�

x d˛y
˛y x

�
;

where x; y 2 R and ˛ D ˙ 1p�d
, is a group isomorphism.

1.55. The problem can be solved by direct computations.

1.56. Cayley’s table for K4 is given below

� I2 Sx Sy S0

I2 I2 Sx Sy S0

Sx Sx I2 S0 Sy

Sy Sy S0 I2 Sx

S0 S0 Sy Sx I2

Cayley’s table for K4

1.57. Let a; b; c 2 R and let A D
�

a C b b
c a C c

�
be an orthogonal matrix.

We have 1 D det I2 D det.AAT/ D det2 A which implies that det A D ˙1.

� If det A D 1, then AT D A�1 D A�, so

�
a C b c

b a C c

�
D
�

a C c �b
�c a C b

�
;

from which it follows that b D c and �b D c. This implies that b D c D 0 and
since det A D a2 we get that a D ˙1. Therefore A D ˙I2.

� If det A D �1, then AT D A�1 D �A�, so

�
a C b c

b a C c

�
D
��a � c b

c �a � b

�
;

from which it follows that b D c and a C b D �a � c. This implies that b D c

and a C b D 0. Therefore A D
�

0 �a
�a 0

�
and since det A D �a2 D �1 we get

that a D ˙1. It follows that A D ˙U, where U D
�

0 1

1 0

�
.

We obtained G D fI2; �I2; U; �Ug and this group is isomorphic to the Klein
4-group K4.

1.58. (a) ) (b) If E is the identity element of Mn and X 2 Mn, then A D .EX/n D
EnXn D AA D A2.

(b) ) (c) Since A2 D A and A ¤ I2 we get that det A D 0 and from Xn D A we
have that det X D 0, for all X 2 Mn. The Cayley–Hamilton Theorem implies that for
all X 2 Mn there exists t 2 C such that X2 D tX. This implies that A D Xn D tn�1X
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and, since A ¤ O2, we get that t ¤ 0, X D sA with s D t1�n. The equation Xn D A
implies that sn D 1 and it follows that Mn 
 fsA W sn D 1g. To prove the other
inclusion, if X 2 fsA W sn D 1g, then Xn D snA D A, so Mn 
 fsA W sn D 1g D UnA
and f W Un ! Mn, f .z/ D zA is the isomorphism.

(c) ) (a) This implication holds by triviality.

1.59. It is easy to check that G and S together with the multiplication of matrices
are groups. We assume that G is isomorphic to S. This implies, since any group
isomorphism sends elements of G to elements of S of the same order and vice versa,
that both groups have the same number of elements of order less than or equal to 2.
Therefore, the equation X2 D I2 has the same number of solutions in both groups.

Let X 2 S such that X2 D I2. We have, based on the Cayley–Hamilton Theorem,
that X2 � tX C I2 D O2, where t D Tr.X/. It follows that tX D 2I2, so t ¤ 0 and X D
2
t I2. This implies that t D Tr.X/ D Tr

�
2
t I2

� D 4
t ) t D ˙2. Thus, X 2 f�I2; I2g.

However, in G the equation X2 D I2 has also the solutions Xa D
�

0 a
1
a 0

�
, a 2 C

�.

1.60. If G D fO2g, then G Š f1g, the unit subgroup of .C�; �/. If G ¤ fO2g we
have that, if O2 2 G, then AO2 D O2 and hence G D fO2g. Thus, if G ¤ fO2g, then
O2 … G.

Let A 2 G. Since AE D A and A2E D A2 we get based on the Cayley–Hamilton
Theorem that .tA � dI2/E D tA � dI2, where t D Tr.A/ and d D det A. It follows
that tA � dE D tA � dI2 and this implies that d.E � I2/ D O2. Since E ¤ I2 one
has that det A D 0. Thus, det A D 0, for all A 2 G, and we have based on the
Cayley–Hamilton Theorem that A2 D tA.

Let A0 be the symmetric element of A in group G. We have

This implies that G � f˛E; ˛ 2 C
�g. Let f W G ! C

� be the function defined by
f .A/ D ˛ .D Tr.A//. First, we note that f is well defined since if A D ˛E D ˇE,
from E ¤ O2, we get that ˛ D ˇ.

If A; B 2 G such that A D ˛E and B D ˇE we have

f .AB/ D f .˛ˇE2/ D f .˛ˇE/ D ˛ˇ D f .A/f .B/;

which implies that f is a group homomorphism. Since f is injective (check it!) we
get that G Š f .G/ � .C�; �/.
1.61. (a) One can check, see part (d) of the problem, that R�1

˛ D
�

cos ˛ sin ˛

� sin ˛ cos ˛

�
.

However, this implies that RT
˛ D R�1

˛ which means that R˛ is an orthogonal matrix.

(b) One should check that the following conditions hold:

� associativity .R˛Rˇ/R� D R˛.RˇR� /, 8˛; ˇ; � 2 R;

� the identity R˛I2 D I2R˛ D R˛ , 8˛ 2 R (note that I2 D R0);

A2A0 D tAA0 D tE , A.AA0/ D tE , AE D tE , A D tE D Tr.A/E:
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� the inverse element R˛R�˛ D R�˛R˛ D I2, which implies that R�1
˛ D R�˛;

� commutativity R˛Rˇ D RˇR˛ , 8˛; ˇ 2 R.

We leave these calculations to the interested reader.

(c) We have

R˛Rˇ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

��
cos ˇ � sin ˇ

sin ˇ cos ˇ

�
D
�

cos.˛ C ˇ/ � sin.˛ C ˇ/

sin.˛ C ˇ/ cos.˛ C ˇ/

�

and

RˇR˛ D
�

cos ˇ � sin ˇ

sin ˇ cos ˇ

��
cos ˛ � sin ˛

sin ˛ cos ˛

�
D
�

cos.ˇ C ˛/ � sin.ˇ C ˛/

sin.ˇ C ˛/ cos.ˇ C ˛/

�

and this implies that R˛Rˇ D RˇR˛ D R˛Cˇ .

(d) We have, based on part (c), that R˛R�˛ D R�˛R˛ D R0 D I2 and this implies
that R�1

˛ D R�˛ .

(e) Observe that

Rn
˛ D

�
cos.n˛/ � sin.n˛/

sin.n˛/ cos.n˛/

�
; n � 1

and prove this formula by mathematical induction.

1.62. Clearly O2 2 G.A/. We prove that if X 2 G.A/, then �X 2 G.A/. Since
det.A C X/ C det.A � X/ D 2 det A C 2 det X and det.A C X/ D det A C det X, we
get that det.A � X/ D det A C det X D det A C det.�X/.

If X; Y 2 G.A/ we prove that X C Y 2 G.A/. Let X; Y 2 G.A/. We have, based
on problem 1.32, that

and this implies that X C Y 2 G.A/.
Now we prove that .H.A/; C/ is a subgroup of .M2.C/; C/. First, we observe

that O2 2 H.A/. Second, we show that if X; Y 2 H.A/, then X � Y 2 H.A/. We have

Tr.A.X � Y// D Tr.AX � AY/

D Tr.AX/ � Tr.AY/

D Tr.A/Tr.X/ � Tr.A/Tr.Y/

D Tr.A/ .Tr.X/ � Tr.Y//

D Tr.A/Tr.X � Y/:

det.A C X C Y/ D det.A C X/ C det.A C Y/ C det.X C Y/ � det A � det X � det Y

D det A C det X C det A C det Y C det.X C Y/ � det A � det X � det Y

D det A C det.X C Y/;
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Remark 1.16 One can also prove that .G0.A/; C/ is a subgroup of .M2.C/; C/,
where G0.A/ D fX 2 M2 .C/ W det.A � X/ D det A C det Xg.

1.63. (a) det M.�/ D cosh2 � � sinh2 � D 1.
(b) We have

M.�1/M.�2/ D
�

cosh �1 sinh �1

sinh �1 cosh �1

��
cosh �2 sinh �2

sinh �2 cosh �2

�

D
�

cosh �1 cosh �2 C sinh �1 sinh �2 cosh �1 sinh �2 C sinh �1 cosh �2

sinh �1 cosh �2 C cosh �1 sinh �2 sinh �1 sinh �2 C cosh �1 cosh �2

�

D
�

cosh.�1 C �2/ sinh.�1 C �2/

sinh.�1 C �2/ cosh.�1 C �2/

�

D M.�1 C �2/:

(c) This follows based on part (b) combined to mathematical induction.
(d) The multiplication of matrices in H is both associative and commutative.

The identity element is M.0/ D I2 and the inverse of M.�/ is the matrix M.��/.

1.64. Observe that D2n D
	

R� ; SR� W S D
��1 0

0 1

�
; R� 2 Rn



, where Rn is the

group of rotations introduced in Theorem 1.3.
We have the following relations:

� R�1.SR�2/ D SR�2��1 ;

� .SR�1/R�2 D SR�1C�2 ;

� .SR�1/.SR�2/ D R�2��2 .

1.65. The set

MC D
	

A 2 M2 .R/ W A D
�

x �y
y x

�


is a subring of .M2 .R/ ; C; �/ which is isomorphic to C (see Theorem 1.3).

1.66. (a) This part of the problem can be solved by direct computations.
(b) Let f W ZŒi� ! M be the function defined by

f .x C iy/ D
�

x y
�y x

�
:

It is easy to see that f is a bijection. To prove that f is a ring homomorphism we
check that
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f ..x C iy/ C .x0 C iy0// D f .x C x0 C i.y C y0//

D
�

x C x0 y C y0
�.y C y0/ x C x0

�

D
�

x y
�y x

�
C
�

x0 y0
�y0 x0

�

D f .x C iy/ C f .x0 C iy0/

and

f ..x C iy/.x0 C iy0// D f .xx0 � yy0 C i.xy0 C yx0//

D
�

xx0 � yy0 xy0 C yx0
�.xy0 C yx0/ xx0 � yy0

�

D
�

x y
�y x

��
x0 y0

�y0 x0
�

D f .x C iy/f .x0 C iy0/:

1.67. Let A.x; y/ D
�

x y
f .x; y/ g.x; y/

�
. We have, since M is closed under addition,

that for x1; y1; x2; y2 2 Z there exist x3; y3 2 Z such that A.x1; y1/ C A.x2; y2/ D
A.x3; y3/. This implies that

(
f .x1 C x2; y1 C y2/ D f .x1; y1/ C f .x2; y2/

g.x1 C x2; y1 C y2/ D g.x1; y1/ C g.x2; y2/:
(1.1)

If x1 D x2 D y1 D y2 D 0 we get that f .0; 0/ D g.0; 0/ D 0. If x1 D y2 D 0 and
x2 D x, y1 D y we get that

(
f .x; y/ D f .x; 0/ C f .0; y/ D f1.x/ C f2.y/

g.x; y/ D g.x; 0/ C g.0; y/ D g1.x/ C g2.y/;

where f1.x/ D f .x; 0/, f2.x/ D f .0; x/, g1.x/ D g.x; 0/, g2.x/ D g.0; x/.
Letting y1 D y2 D 0 in (1.1), we get that

(
f1.x1 C x2/ D f1.x1/ C f1.x2/

g1.x1 C x2/ D g1.x1/ C g1.x2/
8 x1; x2 2 Z;

and by letting x1 D x2 D 0 in (1.1) we get the same relations hold for the functions
f2 and g2, so f1; f2; g1; g2 are additive functions.



1.6 Solutions 59

Let h W Z ! Z be an additive function, i.e., h.x C y/ D h.x/ C h.y/, 8x; y 2
Z. Then, h.0/ D 0, h.n/ D nh.1/, h.�n/ D �h.n/, so h.x/ D xh.1/, 8x 2 Z.
Therefore f1.x/ D xf1.1/, f2.x/ D xf2.1/, g1.x/ D xg1.1/ and g2.x/ D xg2.1/. Since
I2 2 M we get that

I2 2 M )
�

1 0

f .1; 0/ g.1; 0/

�
D
�

1 0

0 1

�
;

which implies that f .1; 0/ D 0 and g.1; 0/ D 1. This in turn implies that f1.1/ D 0

and g1.1/ D 1, so f1.x/ D 0, 8x 2 Z and g1.x/ D x, 8x 2 Z.
Let f2.1/ D a 2 Z, g2.1/ D b 2 Z and we have that

f .x; y/ D ay and g.x; y/ D x C by; 8.x; y/ 2 Z � Z:

Now it is easy to check that these conditions are also sufficient.

1.68. Let A D
�

0 1

0 0

�
and B D

�
0 0

1 0

�
. Then A2 D B2 D O2, so both A and B are

nilpotent elements.

On the other hand, ACB D
�

0 1

1 0

�
and we have .ACB/2 D I2. This implies that

there is no k 2 N such that .A C B/k D O2, so A C B is not a nilpotent matrix. This
also proves that the set of nilpotent matrices in the noncommutative ring M2.Z/ is
not an ideal.

Nota bene. The problem states that the set of nilpotent elements in a noncommu-
tative ring need not be an ideal. However, one can prove that if R is a commutative
ring, then the set of nilpotent elements form an ideal called the nilradical of R and
denoted by N .R/.

1.69. Let A.x; y/ D
�

x f .x; y/

g.x; y/ y

�
. We have, since M is closed under addition,

that

(
f .x1 C x2; y1 C y2/ D f .x1; y1/ C f .x2; y2/

g.x1 C x2; y1 C y2/ D g.x1; y1/ C g.x2; y2/:

If y1 D y2 D 0 we get that f .x1 C x2; 0/ D f .x1; 0/ C f .x2; 0/. This implies that
f .n; 0/ D nf .1; 0/ and f .�n; 0/ D �nf .1; 0/, 8n 2 N. Since f .0; 0/ D 0 we get that
f .k; 0/ D ak, 8k 2 Z, where a D f .1; 0/ 2 Z. Similarly we get that f .0; k/ D bk,
8k 2 Z, where b D f .0; 1/ 2 Z. Thus, the functions f and g are of the following
form

(
f .x; y/ D ax C by

g.x; y/ D cx C dy
8.x; y/ 2 Z � Z:
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Since I2 2 M we get that

�
1 0

0 1

�
D
�

1 f .1; 1/

g.1; 1/ 1

�
;

and this implies that f .1; 1/ D g.1; 1/ D 0 ) a C b D c C d D 0.
Now one can check that the set

M D
	�

x a.x � y/

c.x � y/ y

�
W x; y 2 Z




together with the addition and the multiplication of matrices is a ring with unity.
In conclusion, the functions f and g are f .x; y/ D a.x � y/, 8.x; y/ 2 Z � Z and

g.x; y/ D c.x � y/, 8.x; y/ 2 Z � Z, where a; c 2 Z are arbitrary constants.

1.70 and 1.71. These two problems can be solved by direct computations.

1.72. Let A.x; y/ D
�

x f .x; y/

g.x; y/ y

�
. Since M is closed under addition, we get

that

(
f .x1 C x2; y1 C y2/ D f .x1; y1/ C f .x2; y2/

g.x1 C x2; y1 C y2/ D g.x1; y1/ C g.x2; y2/:

If y1 D y2 D 0 we get that f .x1 C x2; 0/ D f .x1; 0/ C f .x2; 0/. This implies the
function f1.x/ D f .x; 0/, 8x 2 Q is an additive function, i.e., there exists a 2 Q such
that f1.x/ D ax, 8x 2 Q. Similarly, we obtain that f2.y/ D f .0; y/, g1.x/ D g.x; 0/

and g2.y/ D g2.0; y/ are additive functions on Q, so f2.y/ D by, g2.x/ D cx and
g2.y/ D dy, 8x; y 2 Q. These imply that f .x; y/ D ax C by and g.x; y/ D cx C dy,
8x; y 2 Q, where a; b; c; d 2 Q are fixed constants.

The unit matrix I2 should belong to M and this implies that there exist x; y 2 Q

such that A.x; y/ D I2 , f .1; 1/ D g.1; 1/ D 0 ) a C b D c C d D 0.
Now one can check that the set

M D
	�

x a.x � y/

c.x � y/ y

�
W x; y 2 Q




together with the addition and the multiplication of matrices is a ring. This ring is a
field provided that every nonzero matrix in M has an inverse, i.e., det A.x; y/ ¤ 0,
when .x; y/ ¤ .0; 0/. This implies that xy � ac.x � y/2 ¤ 0, 8.x; y/ ¤ .0; 0/.

Let .x; y/ ¤ .0; 0/ and consider the equation acx2 � .2ac C 1/xy C acy2 D 0.
The condition ac ¤ 0 is necessary. Otherwise, .1; 0/ ¤ .0; 0/ but det A.1; 0/ D 0.
If y D 0 the previous equation implies that x D 0, which contradicts the fact that
.x; y/ ¤ .0; 0/. If y ¤ 0 we consider the equation
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ac

�
x

y

�2

� .2ac C 1/
x

y
C ac D 0;

which should not have rational solutions, so 
 D 4ac C 1 < 0 or 
 � 0 andp
4ac C 1 … Q.
In conclusion, f .x; y/ D a.x�y/ and g.x; y/ D c.x�y/, 8x; y 2 Q, where a; c 2 Q

are constants such that either 4ac C 1 < 0 or 4ac C 1 � 0 and
p

4ac C 1 … Q.

1.73. (a) If m D aE C bI C cJ C dK and m0 D a0E C b0I C c0J C d0K, then

m C m0 D .a C a0/E C .b C b0/I C .c C c0/J C .d C d0/K 2 M

and

mm0 D .aa0 � bb0 � cc0 � dd0/E C .ab0 C ba0 C cd0 � dc0/I

C .ac0 C ca0 C db0 � bd0/J C .ad0 C da0 C bc0 � cb0/K 2 M :

We have mem D .a2 C b2 C c2 C d2/E D emm.
(b) One can check that M together with the addition and the multiplication of

matrices is a ring with unity E 2 M , E D 1E C 0I C 0J C 0K. If m ¤ O2, i.e., at
least one of the coefficients a, b, c or d is not zero, then a2 C b2 C c2 C d2 ¤ 0 and

m
1

a2 C b2 C c2 C d2
em D 1

a2 C b2 C c2 C d2
emm D E:

Hence

m�1 D 1

a2 C b2 C c2 C d2
m 2 M :

Therefore .M ; C; �/ is a field. This is a noncommutative field since IJ ¤ JI.
(c) The polynomial p.x/ D x2 CE has the roots I, J, K, �I, �J, and �K, so it has

at least six roots. In fact, it can be shown that p has an infinite number of roots. To
prove this observe that an element in M is a matrix which has the following form

�
a C bi c C di

�c C di a � bi

�
; a; b; c; d 2 R:

Thus, to solve the equation x2 C E D O2 one has to determine the real numbers
a; b; c; d such that

�
a C bi c C di

�c C di a � bi

�2

D
��1 0

0 �1

�
:
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A calculation shows that the solutions of this equation are of the following form

�
bi c C di

�c C di �bi

�
D bI C cJ C dK;

where b; c; d 2 R with b2 C c2 C d2 D 1.



Chapter 2
The Cayley–Hamilton Theorem

If A 2 M2 .C/, then A2 � Tr.A/A C .det A/I2 D O2.
Cayley–Hamilton

2.1 The Cayley–Hamilton Theorem

If A D
�

a b
c d

�
2 M2 .C/, then:

� the characteristic polynomial of A is defined by

fA.x/ D det.A � xI2/ D x2 � .a C d/x C ad � bc D x2 � Tr.A/x C det A 2 CŒx�I

� the equation

fA.�/ D 0 , �2 � Tr.A/� C det A D 0

is called the characteristic equation of A;

� the solutions �1; �2 of the characteristic equation are called the eigenvalues of A
and the set f�1; �2g is called the spectrum of A and is denoted by Spec.A/.

It follows, based on Viète’s formulae, that

�1 C �2 D Tr.A/ and �1�2 D det A:

Next we give some properties of the eigenvalues of a matrix which can be proved
by direct computation.

© Springer International Publishing AG 2017
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Let � 2 C. Then:

� if � is not an eigenvalue of A, then the system

(
.a � �/x C by D 0

cx C .d � �/y D 0
, AX D �X; where X D

�
x
y

�
;

has only the trivial solution .x; y/ D .0; 0/;
� if � is an eigenvalue of A, then the system AX D �X has at least a

nontrivial solution X ¤ 0; such a solution is called an eigenvector of A
corresponding to the eigenvalue �;

� � 2 C is an eigenvalue of A if and only if there exists

X D
�

x
y

�
¤
�

0

0

�
such that AX D �XI

If �1; �2 are the eigenvalues of A, then:

� �n
1, �n

2 are the eigenvalues of An, n 2 N;

� P.�1/, P.�2/ are the eigenvalues of the matrix P.A/, for any polynomial
function P 2 CŒx�;

�
1
�1

, 1
�2

are the eigenvalues of A�1, if A is invertible det A D det.A�0I2/ ¤
0, so 0 is not an eigenvalue of A.

The next theorem gives the eigenvalues of the sum and the product of two
commuting matrices.

Theorem 2.1 The eigenvalues of the sum and the product of two com-
muting matrices.

If A; B 2 M2 .C/ are commuting matrices, then the eigenvalues of matrices
A C B and AB are of the following form

�ACB D �A C �B and �AB D �A�B:

Proof If B D ˛I2, then A C B D A C ˛I2 which has eigenvalues �1 C ˛ and �2 C ˛,
where �1; �2 are the eigenvalues of A and ˛ is the eigenvalue of B. On the other
hand, AB D ˛A which has eigenvalues ˛�1 and ˛�2.

If B ¤ ˛I2, ˛ 2 C, then B 2 C .A/ and we have, based on part (b) of
Theorem 1.1, that B D ˛I2 C ˇA, for some ˛; ˇ 2 C. We have that �B D ˛ C ˇ�A,
ACB D ˛I2C.ˇC1/A and AB D ˛ACˇA2. It follows that �ACB D ˛C.ˇC1/�A D
�A C �B and �A�B D ˛�A C ˇ�2

A D �A�B. �
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Remark 2.1 If ˛; ˇ 2 C, i; k 2 N and A; B 2 M2 .C/ are commuting matrices, then
the eigenvalues of matrices ˛A C ˇB and AiBk are of the following form

�˛ACˇB D ˛�A C ˇ�B and �AiBk D �i
A�k

B:

Now we are ready to discuss the celebrated Cayley–Hamilton Theorem which
states that any square matrix cancels its characteristic polynomial.

Theorem 2.2 The Cayley–Hamilton Theorem.

If A 2 M2 .C/, then A2 � Tr.A/A C .det A/I2 D O2.

Proof We prove the theorem by direct computation. Let A D
�

a b
c d

�
.

A calculation shows that

A2 D
�

a2 C bc b.a C d/

c.a C d/ d2 C bc

�
:

If x D Tr.A/ D a C d, then

A2 � Tr.A/A C .det A/I2 D
�

a2 C bc b.a C d/

c.a C d/ d2 C bc

�
�
�

ax bx
cx dx

�

C
�

ad � bc 0

0 ad � bc

�

D
�

a2 C ad � ax 0

0 d2 C ad � dx

�

D O2;

and the theorem is proved. �

Historical note. The Cayley–Hamilton Theorem was first proved in 1853 in terms
of linear functions of quaternions by Hamilton [36]. This corresponds to the special
case of certain 4 � 4 real or 2 � 2 complex matrices. In 1858 Cayley stated it for
3 � 3 matrices and published a proof only for the 2 � 2 case [14]. “Not generally
an excitable person, at the point of discovery Cayley declared the Cayley–Hamilton
Theorem as “very remarkable” and generations of mathematicians have shared his
delight” [35, p. 772]. However, it was Frobenius who proved the general case in
1878 [19].

Next we give some applications of the Cayley–Hamilton Theorem.

Lemma 2.1 If A 2 M2 .C/ is invertible, then

A�1 D 1

det A
.Tr.A/I2 � A/ and Tr.A�1/ D Tr.A/

det A
:
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Proof We have, based on the Cayley–Hamilton Theorem, that A2 � Tr.A/A C
.det A/I2 D O2. We multiply this equality by A�1 and we get that A � Tr.A/I2 C
.det A/A�1 D O2 ) A�1 D 1

det A .Tr.A/I2 � A/. The second part of the lemma
follows by passing to trace in the first formula. �

The next lemma is about calculating powers of a square matrix of order 2 for the
special cases when the determinant or the trace of the matrix are 0.

Lemma 2.2 The nth power of two special matrices.

(a) If A 2 M2 .C/ such that det A D 0, then

An D .Tr.A//n�1A; 8n 2 N:

(b) If A 2 M2 .C/ such that Tr.A/ D 0, then

An D
(

.� det A/kI2; n D 2k; k 2 N

.� det A/k�1A; n D 2k � 1; k 2 N:

Proof (a) We have, based on Theorem 2.2, that A2 D Tr.A/A. This implies

A3 D A2A D .TrA/AA D Tr.A/Tr.A/A D Tr2.A/A:

Using mathematical induction we have that An D .Tr.A//n�1A; 8n 2 N.
(b) Since Tr.A/ D 0 we get based on Theorem 2.2 that A2 C .det A/I2 D O2. This

implies that A2 D �.det A/I2 and the proof is completed by mathematical induction
according to the cases when n is an even or an odd integer. �

Lemma 2.3 Let A 2 M2 .C/. The following statements are equivalent:

(a) A2 D O2;
(b) There is n 2 N, n � 2 such that An D O2.

Proof The implication (a) ) (b) is clear. To prove that (b) ) (a) we observe that
the eigenvalues of A are all equal to 0 and hence the characteristic polynomial of A
is fA.x/ D x2. This implies, based on Theorem 2.2, that A2 D O2 and the lemma is
proved. �

As a consequence of Lemma 2.3 we have that if A2 ¤ O2, then no power of A
can be zero. We record it as a lemma.

Lemma 2.4 If A 2 M2 .C/ such that A2 ¤ O2, then An ¤ O2 for any n 2 N.

Lemma 2.5 A fact on nilpotent matrices.
Let A; B 2 M2 .C/. If A and B are nilpotent matrices and AB D BA, then both

A C B and A � B are nilpotent matrices.

Proof The proof of the lemma is equivalent to proving that if A and B are
commuting matrices such that A2 D O2 and B2 D O2, then .A˙B/2 D O2. We have
.A˙B/2 D A2 ˙2ABCB2 D ˙2AB and this implies that .A˙B/4 D 4A2B2 D O2.
Now the result follows based on Lemma 2.3. �
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Now we turn our attention to the applications of Theorem 2.2 related to
determinants of special matrices of order 2.

Lemma 2.6 The determinant in terms of traces.

If A 2 M2 .C/, then

det A D 1

2

�
.Tr.A//2 � Tr.A2/

�
: (2.1)

Proof We have, based on Theorem 2.2, that A2 � Tr.A/A C .det A/I2 D O2. Passing
to trace on both sides of the previous equality we get that

Tr.A2/ � Tr.A/Tr.A/ C 2 det A D 0;

and the lemma is proved. �

Remark 2.2 Another version of the Cayley–Hamilton Theorem, based on iden-
tity (2.1), has the following formulation

A2 � Tr.A/A C 1

2

�
.Tr.A//2 � Tr.A2/

�
I2 D O2; 8A 2 M2 .C/ :

Lemma 2.7 [45] A master determinant formula.

If A; B 2 M2 .C/ and x 2 C, then

det.A C xB/ D det A C .Tr.A/Tr.B/ � Tr.AB//x C .det B/x2: (2.2)

Proof We have, based on formula (2.1), that

det.A C xB/ D 1

2

�
.Tr.A C xB//2 � Tr..A C xB/2/

�

D 1

2

�
.Tr.A/ C xTr.B//2 � Tr.A2 C xAB C xBA C B2x2/

�

D 1

2

�
.Tr.A//2 C 2Tr.A/Tr.B/x C .Tr.B//2x2 � Tr.A2/

�2Tr.AB/x � Tr.B2/x2
�

D 1

2

�
.Tr.A//2 � Tr.A2/

�C .Tr.A/Tr.B/ � Tr.AB// x

C 1

2

�
.Tr.B//2 � Tr.B2/

�
x2

D det A C .Tr.A/Tr.B/ � Tr.AB//x C .det B/x2;

and the lemma is proved. �
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Corollary 2.1 If A; B 2 M2 .C/, then

det.A C B/ C det.A � B/ D 2 det A C 2 det B:

Proof This follows based on formula (2.2) with x D 1 respectively x D �1 and
then by adding the two equalities. See also the solution of part (a) of problem 1.31
for a different approach. �

Corollary 2.2 Determinant and trace identities.

If A; B 2 M2 .C/, then:

(a) det.A C B/ � det A � det B D Tr.A/Tr.B/ � Tr.AB/;
(b) det.A � B/ � det A � det B D Tr.AB/ � Tr.A/Tr.B/;
(c) det.A C B/ � det.A � B/ D 2 .Tr.A/Tr.B/ � Tr.AB//.

Proof Parts (a) and (b) follow in view of formula (2.2) by taking x D 1 and x D �1

and part (c) follows by subtracting the equalities from parts (a) and (b). �

Theorem 2.3 The polarized Cayley–Hamilton Theorem.

If A; B 2 M2 .C/, then

AB C BA � Tr.A/B � Tr.B/A C ŒTr.A/Tr.B/ � Tr.AB/� I2 D O2:

Proof Let x 2 R. We apply the Cayley–Hamilton Theorem to the matrix A C xB
and we have

.A C xB/2 � Tr.A C xB/.A C xB/ C det.A C xB/I2 D O2:

Since .A C xB/2 D A2 C B2x2 C x.AB C BA/ we have, based on Lemma 2.7, that

A2 C B2x2 C .AB C BA/x � �
Tr.A/A C x .Tr.B/A C Tr.A/B/ C x2Tr.B/B

�
C �

det A C .Tr.A/Tr.B/ � Tr.AB// x C x2 det B
�

I2 D O2:

Letting x D 1 in the previous equality the theorem is proved. �
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Corollary 2.3 Let A; B; C 2 M2 .C/. Then:

(a) Another polarized version of the Cayley–Hamilton Theorem

2ABC D Tr.A/BC C Tr.B/AC C Tr.C/AB � Tr.AC/B

C ŒTr.AB/ � Tr.A/Tr.B/� C C ŒTr.BC/ � Tr.B/Tr.C/� A

� ŒTr.ACB/ � Tr.AC/Tr.B/� I2I

(b) A trace identity

Tr.ABC/ D Tr.A/Tr.BC/ C Tr.B/Tr.AC/ C Tr.C/Tr.AB/

� Tr.ACB/ � Tr.A/Tr.B/Tr.C/:

Proof (a) We have, based on Theorem 2.3, that

2ABC D A.BC C CB/ C .AB C BA/C � ŒB.AC/ C .AC/B�

D A ŒTr.B/C C Tr.C/B � .Tr.B/Tr.C/ � Tr.BC// I2�

C ŒTr.A/B C Tr.B/A � .Tr.A/Tr.B/ � Tr.AB// I2� C

� ŒTr.AC/B C Tr.B/AC � .Tr.B/Tr.AC/ � Tr.ACB// I2�

D Tr.A/BC C Tr.B/AC C Tr.C/AB � Tr.AC/B

C ŒTr.AB/ � Tr.A/Tr.B/� C C ŒTr.BC/ � Tr.B/Tr.C/� A

� ŒTr.ACB/ � Tr.AC/Tr.B/� I2:

(b) This part of the corollary follows by applying the trace function to the equality
in part (a). �

Corollary 2.4 A polynomial with special coefficients.

If A; B 2 M2 .C/ and x; y 2 C, then

det.xA C yB/ D x2 det A C y2 det B C xy Œdet.A C B/ � det A � det B� :
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Proof If x D 0 we have nothing to prove. If x ¤ 0 we let ˛ D y
x . We have,

det.xA C yB/ D x2 det .A C ˛B/

Lemma 2.7D x2
�
det A C .Tr.A/Tr.B/ � Tr.AB//˛ C ˛2 det B

�
D x2 det A C xy.Tr.A/Tr.B/ � Tr.AB// C y2 det B

D x2 det A C xy Œdet.A C B/ � det A � det B� C y2 det B;

where the last equality follows from part (a) of Corollary 2.2. �

Corollary 2.5 If A 2 M2 .C/ and x 2 C, then det.A C xI2/ D det A C Tr.A/x C x2.

Proof This follows from Lemma 2.7 by taking B D I2. �

Lemma 2.8 If A 2 M2 .C/, then A C A� D Tr.A/I2.

Proof The lemma can be proved by direct calculations. �

Lemma 2.9 If A; B 2 M2 .C/, then

Tr.A�B/ D Tr.AB�/ D Tr.A/Tr.B/ � Tr.AB/:

Proof We have, based on Lemma 2.8, that

A� D Tr.A/I2 � A ) Tr.A�B/ D Tr.Tr.A/B � AB/ D Tr.A/Tr.B/ � Tr.AB/

and similarly Tr.AB�/ D Tr.A/Tr.B/ � Tr.AB/. �

The next corollary is a consequence of Lemma 2.7 and Lemma 2.9.

Corollary 2.6 If A; B 2 M2 .C/ and x 2 C, then

det.A C xB/ D det A C Tr.AB�/x C .det B/x2:

Lemma 2.10 If A; B 2 M2 .C/, then det.AB � BA/ D Tr.A2B2/ � Tr..AB/2/.

Proof We have, based on formula (2.2), that

det.AB � BA/ D det.AB/ � �
Tr.AB/Tr.BA/ � Tr.AB2A/

�C det.BA/:

We note that det.AB/ D det.BA/, Tr.AB/ D Tr.BA/ and Tr.AB2A/ D Tr.A2B2/.
It follows that

det.AB � BA/ D 2 det.AB/ � .Tr.AB//2 C Tr.A2B2/

which combined to formula (2.1) proves the lemma. �
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Lemma 2.11 If A; B 2 M2 .C/, then

det.A � B/ det.A C B/ D det.A2 � B2/ C det.AB � BA/:

Proof We have, based on Corollary 2.1, that

detŒ.A2 � B2/ C .AB � BA/� C detŒ.A2 � B2/ � .AB � BA/�

D 2
�
det.A2 � B2/ C det.AB � BA/

�
:

However

detŒ.A2 � B2/ C .AB � BA/� D detŒ.A � B/.A C B/� D det.A � B/ det.A C B/

and

detŒ.A2 � B2/ � .AB � BA/� D detŒ.A C B/.A � B/� D det.A C B/ det.A � B/

and the lemma is proved. �

Lemma 2.12 If A; B 2 M2 .C/, then

det.A2 C B2/ D det.AB � BA/ C .det A � det B/2 C .det.A C B/ � det A � det B/2 :

Proof We apply Lemma 2.11 with B replaced by iB and we get that

det.A � iB/ det.A C iB/ D det.A2 C B2/ C detŒi.AB � BA/�:

This implies that

det.A2 C B2/ D det.AB � BA/ C det.A � iB/ det.A C iB/: (2.3)

On the other hand, we have based on formula (2.2) that

det.A C iB/ D det A � det B C .Tr.A/Tr.B/ � Tr.AB// i

and

det.A � iB/ D det A � det B � .Tr.A/Tr.B/ � Tr.AB// i:

It follows that

det.A � iB/ det.A C iB/ D .det A � det B/2 C .Tr.A/Tr.B/ � Tr.AB//2
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which combined to part (a) of Corollary 2.2 shows that

det.A� iB/ det.AC iB/ D .det A�det B/2 C.det.ACB/�det A�det B/2: (2.4)

Combining (2.3) and (2.4) the lemma is proved. �

Theorem 2.4 Power matrix identities.

Let �1; �2 be the eigenvalues of A 2 M2 .C/. The following identities
hold:

(a) .A � �1I2/2n C .A � �2I2/2n D .�2 � �1/2nI2, n � 1;

(b) .A � �1I2/2n�1 � .A � �2I2/2n�1 D .�2 � �1/2n�1I2, n � 1.

Proof (a) We prove part (a) of the theorem by induction on n. Let P.n/ be the
proposition

P.n/ W .A � �1I2/2n C .A � �2I2/2n D .�2 � �1/2nI2:

First, we prove that P.1/ is true. We need to check the equality

.A � �1I2/2 C .A � �2I2/2 D .�2 � �1/2I2

holds true. We have

.A � �1I2/2 C .A � �2I2/2 D A2 � 2�1A C �2
1I2 C A2 � 2�2A C �2

2I2

D 2ŒA2 � .�1 C �2/A C �1�2I2� C .�2
1 � 2�1�2 C �2

2/I2

D .�2 � �1/2I2;

where the last equality follows based on the Cayley–Hamilton Theorem.
Now we assume that P.k/ is true for k D 1; 2; : : : ; n and we prove that P.n C 1/

is true. We have, since P.1/ and P.n/ hold true, that

.A � �1I2/2nC2 C .A � �2I2/2nC2

D �
.A � �1I2/2n C .A � �2I2/2n

� �
.A � �1I2/2 C .A � �2I2/2

�
� .A � �1I2/2n.A � �2I2/2 � .A � �2I2/2n.A � �1I2/2

D .�2 � �1/2n.�2 � �1/2I2

D .�2 � �1/2nC2I2;

since .A � �1I2/.A � �2I2/ D .A � �2I2/.A � �1I2/ D O2.
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(b) When n D 1 there is nothing to prove. Let X D A � �1I2 and Y D A � �2I2.
We have

X2n�1 � Y2n�1 D .X2n�2 C Y2n�2/.X � Y/ C X2n�2Y � Y2n�2X

.a/D .�2 � �1/2n�2.�2 � �1/I2

D .�2 � �1/2n�1I2;

since XY D YX D O2. The theorem is proved. �

2.2 The eigenvalues of symmetric matrices

In this section we show that a real 2 � 2 symmetric matrix is diagonalizable and
the invertible matrix P 2 M2 .R/ which diagonalizes A can be chosen to be an
orthogonal matrix, i.e., PT D P�1. In fact P is a rotation matrix. This idea is used
frequently in Chapters 4 and 6 for calculating double integrals over various domains
and it is also used in Chapter 6 for reducing a conic to its canonical form.

Theorem 2.5 Symmetric matrices and their eigenvalues.

Let A D
�

a b
b d

�
2 M2 .R/.

(a) A has real eigenvalues

�1 D a C d Cp
.a � d/2 C 4b2

2
and �2 D a C d �p

.a � d/2 C 4b2

2
;

and �1 D �2 D � if and only if A D �I2.
(b) A is diagonalizable and the invertible matrix P 2 M2 .R/ which

diagonalizes A can be chosen to be a rotation matrix. We have

P�1APD
�

�1 0

0 �2

�
; where PDR� ; tan �Dd�aCp.a�d/2C4b2

2b
; b¤0:

Proof (a) This part follows by direct computation.
(b) The invertible matrix P has as columns the eigenvectors corresponding to the

eigenvalues �1 and �2. If vi, i D 1; 2, are the eigenvectors corresponding to the
eigenvalues �i, i D 1; 2, then the systems .A � �iI2/vi D 0, i D 1; 2, imply that
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v1 D
 

1
d�aC

p
.a�d/2C4b2

2b

!
and v2 D

 
a�d�

p
.a�d/2C4b2

2b
1

!
:

We divide these two vectors by their length

jjv1jj D jjv2jj D
vuut1 C

 
d � a Cp

.a � d/2 C 4b2

2b

!2

and we take

P D
�

v1

jjv1jj
ˇ̌̌
ˇ v2

jjv2jj
�

D R� ; where tan � D d � a Cp
.a � d/2 C 4b2

2b
; b ¤ 0:

The theorem is proved. �

2.3 The reciprocal of the Cayley–Hamilton Theorem

In this section we discuss the reciprocal of the Cayley–Hamilton Theorem.

Theorem 2.6 The reciprocal of the Cayley–Hamilton Theorem.

Let A 2 M2 .C/ and let a; b 2 C be such that A2 � aA C bI2 D O2. If
A … f˛I2 W ˛ 2 Cg, then Tr.A/ D a and det A D b.

Proof We have, based on the Cayley–Hamilton Theorem, that

A2 � aA C bI2 D O2

A2 � Tr.A/A C .det A/I2 D O2;

and it follows that Œa � Tr.A/� A D .b � det A/I2.
If a � Tr.A/ ¤ 0 we get that

A D b � det A

a � Tr.A/
I2;

which is a contradiction to A … f˛I2 W ˛ 2 Cg.
If a � Tr.A/ D 0 we get that b � det A D 0 and the theorem is proved. �
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Remark 2.3 It is worth mentioning that there do exist matrices A 2 M2 .C/ such
that A2 � aA C bI2 D O2, with a ¤ Tr.A/ and b ¤ det A. To see this we let A D ˛I2,
where ˛ 2 C verifies the equation ˛2 � a˛ C b D 0. Then, Tr.A/ D 2˛, det A D ˛2

and if a and b are such that a2 �4b ¤ 0 and b ¤ 0 one has a ¤ Tr.A/ and b ¤ det A.

2.4 The characteristic polynomial of matrices XY and YX

In this section we prove two fundamental results in matrix theory concerning the
characteristic polynomial of matrices XY and YX.

Theorem 2.7 The characteristic polynomial of matrices XY and YX.

If X; Y 2 M2 .C/, then matrices XY and YX have the same characteristic
polynomials, i.e., fXY D fYX.

Proof We have, since Tr.XY/ D Tr.YX/ and det.XY/ D det.YX/, that

fXY.x/ D x2 � Tr.XY/x C det.XY/ D x2 � Tr.YX/x C det.YX/ D fYX.x/:

Nota bene. Theorem 2.7 implies the following equality holds

det.XY � �I2/ D det.YX � �I2/; 8X; Y 2 M2 .C/ ; 8� 2 C:

The theorem also implies that matrices XY and YX have the same eigenvalues. �

The next theorem is the reciprocal of Theorem 2.7.

Theorem 2.8 If A 2 M2 .C/ verifies

det.XY � A/ D det.YX � A/; 8 X; Y 2 M2 .C/ ;

then there exists a 2 C such that A D aI2.

Proof Let Ei;j be the matrix having the .i; j/ entry equal to 1 and all the other entries

equal to 0 and let A D
�

a b
c d

�
2 M2 .C/.

If X D E1;2 and Y D E2;2, then XY D E1;2, YX D O2 and the equality from the
hypothesis of the theorem becomes

det

��a 1 � b
�c �d

�
D det

��a �b
�c �d

�
;

which implies that c D 0.
If X D E2;1, Y D E1;1, then XY D E2;1 and YX D O2. In this case the equality

from the hypothesis of the theorem becomes
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det

� �a �b
1 � c �d

�
D det

��a �b
�c �d

�
;

which implies that b D 0. Thus, A D
�

a 0

0 d

�
.

If X D E1;2, Y D E2;1 we get that XY D E1;1 and YX D E2;2 and the condition

det

�
1 � a 0

0 �d

�
D det

��a 0

0 1 � d

�

implies that a D d. Thus, A D aI2 and the theorem is proved. �

Now we give an application of the previous theorem.

Corollary 2.7 If A; B 2 M2 .C/ are two invertible matrices such that

det.XAY C B/ D det.YBX C A/; 8 X; Y 2 M2 .C/ ; (2.5)

then, there exists a 2 C
� such that A2 D B2 D aI2.

Proof If Y D O2 we get that det A D det B. If Y D I2 we get that det.XA C B/ D
det.BX C A/, 8X 2 M2 .C/. We multiply, since det A D det B, the left-hand side of
the previous equality to the left by det B and the right-hand side of the same equality
to the right by det A and we get that

det.BXA C B2/ D det.BXA C A2/; 8 X 2 M2 .C/ : (2.6)

Since matrices A and B are invertible, the function f W M2 .C/ ! M2 .C/ defined
by f .X/ D BXA is onto and equality (2.6) implies that

det.Z C B2/ D det.Z C A2/; 8 Z 2 M2 .C/ : (2.7)

Taking Z be equal to O2, E1;1; E1;2; E2;1; E2;2 in (2.7) we get that B2 D A2. Now we
multiply the left-hand side of equality (2.5) to the right by det B and the right-hand
side to the right by det A and we get that

det.XAYB C B2/ D det.YBXA C A2/; 8 X; Y 2 M2 .C/ ;

or

det.X1Y1 C C/ D det.Y1X1 C C/; 8 X1; Y1 2 M2 .C/ ;

where C D A2 D B2. It follows, based on Theorem 2.8, that there exists a 2 C
�

such that C D aI2. Thus, A2 D B2 D aI2 and the corollary is proved. �
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2.5 The Jordan canonical form

Theorem 2.9 The complex Jordan canonical form.

Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A. Then:

(a) if �1 ¤ �2 or A D ˛I2, for some ˛ 2 C, there exists an invertible matrix
P 2 M2 .C/ such that

A D P

�
�1 0

0 �2

�
P�1I

(b) if �1 D �2 D � and A ¤ �I2, there exists an invertible matrix P 2
M2 .C/ such that

A D P

�
� 1

0 �

�
P�1:

Proof (a) Let �1 ¤ �2 be the eigenvalues of A D
�

a b
c d

�
: We have, since the

eigenvalues are distinct, that .a � d/2 C 4bc ¤ 0. Also, there exists X1 D
�

x1

y1

�
¤

�
0

0

�
such that

AX1 D �1X1 (2.8)

and there exists X2 D
�

x2

y2

�
¤
�

0

0

�
such that

AX2 D �2X2: (2.9)

Now, we note that X2 ¤ ˛X1, for all ˛ 2 C, i.e., the eigenvectors associated with
the eigenvalues �1 and �2 are not proportional. Otherwise, if X2 D ˛X1 for some
˛ 2 C this would imply that AX2 D ˛AX1 which in turn implies that �2X2 D ˛�1X1.
Thus, ˛.�2 � �1/X1 D 0 and since X1 ¤ 0 we get that �1 D �2, which contradicts
�1 ¤ �2. Therefore the eigenvectors X1 and X2 are not proportional and this implies
that the matrix P D .X1 j X2/ is invertible.

Equalities (2.8) and (2.9) can be written as follows A.X1 j X2/ D .�1X1 j �2X2/ or

AP D P

�
�1 0

0 �2

�
, A D PJAP�1 where JA D

�
�1 0

0 �2

�
:
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(b) Now we consider the case when the eigenvalues of A are equal, i.e., �1 D
�2 D � and A ¤ �I2. We choose the vector X1 D

�
x1

y1

�
¤

�
0

0

�
such that

AX1 D �X1 and X0
1 D

�
x0

1

y0
1

�
such that AX0

1 D �X0
1 C X1. We mention that while the

vector X1 is the eigenvector associated with �, the vector X0
1 is called the generalized

eigenvector associated with the eigenvalue �. Let P D .X1 j X0
1/ and we have

AP D A.X1 j X0
1/ D .�X1 j �X0

1 C X1/

or

AP D P

�
� 1

0 �

�
, A D PJAP�1 where JA D

�
� 1

0 �

�
:

The theorem is proved. �

Remark 2.4 The matrices

JA D
�

�1 0

0 �2

�
or JA D

�
� 1

0 �

�
;

are called the Jordan canonical forms of A. The columns X1; X2 or X1; X0
1 of P

form a basis in M2 .C/ called the Jordan basis corresponding to the matrix
A and the matrix P is, according to Lemma 1.4, the matrix of passing from the
canonical basis B D fE1; E2g to the Jordan basis.

Corollary 2.8 The Jordan canonical form of special matrices.

� All nilpotent matrices A 2 M2 .C/ with A ¤ O2 are of the following form

A D P

�
0 1

0 0

�
P�1;

where P is any invertible matrix.

� All idempotent matrices A 2 M2 .C/ are A D O2, A D I2 or

A D P

�
1 0

0 0

�
P�1;

(continued)
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Corollary 2.8 (continued)

where P is any invertible matrix.

� All involutory matrices A 2 M2 .C/ are A D ˙I2 or

A D P

�
1 0

0 �1

�
P�1;

where P is any invertible matrix.

� All skew involutory matrices A 2 M2 .C/ are A D ˙i � I2 or

A D P

�
0 �1

1 0

�
P�1;

where P is any invertible matrix.

Now we discuss the real canonical form of a matrix A 2 M2 .R/. We have the
following theorem.

Theorem 2.10 The real canonical form of a real matrix.

(a) If A 2 M2 .R/ and �1; �2 are the real eigenvalues of A, then there exists
P 2 M2 .R/ such that

A D P

�
�1 0

0 �2

�
P�1 or A D P

�
� 1

0 �

�
P�1;

according to whether the eigenvalues of A are distinct or not.

(b) If A 2 M2 .R/ and the eigenvalues of A are �1 D ˛Ciˇ and �2 D ˛�iˇ,
˛ 2 R and ˇ 2 R

�, then there exists an invertible matrix P 2 M2 .R/

such that

A D P

�
˛ ˇ

�ˇ ˛

�
P�1:

Proof (a) The proof of part (a) is similar to the proof of Theorem 2.9.
(b) We mention that, in this case, the Jordan canonical form of A is given by

JA D
�

˛ C iˇ 0

0 ˛ � iˇ

�
;
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and if AZ D �1Z, Z ¤ 0, then AZ D �1Z D �2Z and the invertible matrix PC,
which verifies A D PCJAP�1

C
, would be PC D .Z j Z/.

If Z D X C iY , with X and Y real vectors, we have

AZ D �1Z , A.X C iY/ D .˛ C iˇ/.X C iY/

and we obtain the following equalities AX D ˛X � ˇY and AY D ˇX C ˛Y .
We define the matrix P D .X j Y/ and we have that

AP D A.X j Y/ D .AX j AY/ D .˛X � ˇY j ˇX C ˛Y/ D P

�
˛ ˇ

�ˇ ˛

�

or A D PJRA P�1, where the matrix

JRA D
�

˛ ˇ

�ˇ ˛

�

is called the real canonical form of A. The theorem is proved. �

Now we give the rational canonical form of a matrix A 2 M2 .Q/. We have the
following theorem.

Theorem 2.11 The rational canonical form of a rational matrix.

(a) If A 2 M2 .Q/ and �1; �2 are the rational eigenvalues of A, then there
exists P 2 M2 .Q/ such that

A D P

�
�1 0

0 �2

�
P�1 or A D P

�
� 1

0 �

�
P�1;

according to whether the eigenvalues of A are distinct or not.
(b) If A 2 M2 .Q/ and the distinct eigenvalues of A are �1; �2 2 C n Q, then

�1 D ˛ C p
ˇ and �2 D ˛ � p

ˇ, ˛ 2 Q, ˇ 2 Q
� and there exists an

invertible matrix P 2 M2 .Q/ such that

A D P

�
˛ 1

ˇ ˛

�
P�1:

Proof (a) The proof of part (a) is similar to the proof of Theorem 2.9.
(b) In this case the Jordan canonical form of A is given by

JA D
�

˛ Cp
ˇ 0

0 ˛ �p
ˇ

�
:
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If Z ¤ 0 is the eigenvector associated with the eigenvalue �1 D ˛ C p
ˇ, then

AZ D �1Z. Let Z D X C p
ˇY , where X and Y are rational vectors. A calculation

shows that A.X Cp
ˇY/ D .˛ Cp

ˇ/.X Cp
ˇY/ implies

AX D ˛X C ˇY and AY D X C ˛Y:

This in turn implies that A.X � p
ˇY/ D .˛ � p

ˇ/.X � p
ˇY/, or AZ0 D �2Z0,

where Z0 D X � p
ˇY . The invertible matrix PC which verifies A D PCJAP�1

C
is

given by PC D .Z j Z0/.
Let P D .X j Y/ 2 M2.Q/. We have

AP D .AX j AY/ D .˛X C ˇY j X C ˛Y/ D .X j Y/

�
˛ 1

ˇ ˛

�
D P

�
˛ 1

ˇ ˛

�

or A D PJQA P�1, where the matrix

JQA D
�

˛ 1

ˇ ˛

�

is called the rational canonical form of A. The theorem is proved. �

2.6 Problems

2.1 Let A 2 M2 .C/ with det A D 1. Prove that det.A2 CA�I2/Cdet.A2 CI2/ D 5.

2.2 Let A 2 M2 .Z/ with det A D 1. Find Tr.A/ if

det.A2 � 3A C I2/ C det.A2 C A � I2/ D �4:

2.3 Let A 2 M2 .C/ with Tr.A/ D �1. Prove that

det.A2 C 3A C 3I2/ � det.A2 C A/ D 3:

2.4 Let a 2 Z, a ¤ ˙1 and let A 2 M2 .Z/. Prove the matrices aA C .a C 1/I2 and
aA � .a C 1/I2 are invertible.

2.5 Prove that any matrix A 2 M2 .C/ is the sum of two invertible matrices.

2.6 1 Let A 2 M2 .C/ with det A D 0. Prove that there is a sequence of matrices
.An/n2N such that det An ¤ 0 and lim

n!1 An D A.

1The problem states that any singular matrix is the limit of a sequence of nonsingular matrices.
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Remark 2.5 The density of invertible matrices. Problem 2.6 is used for proving
that the set of invertible matrices is dense in the set of all matrices.

2.7 Let A 2 M2 .C/. Prove that A and A� have the same characteristic polynomials
(the same eigenvalues).

2.8 A right stochastic matrix is a square matrix with nonnegative real numbers with
each row summing to 1. Prove that the eigenvalues of A 2 M2 .C/ are 1, the largest,
and Tr.A/ � 1, the smallest, and determine the corresponding eigenvectors.

2.9 Prove that if A 2 M2 .C/ has all its eigenvalues equal to 1, then A is similar to
Ak for every positive integer k.

2.10 Let n 2 N. Prove that if A; B 2 M2 .C/ are similar matrices, then An and Bn

are similar matrices. Does the reverse implication hold?

2.11 Let A D
�

0 0

1 0

�
.

(a) Determine all matrices B 2 M2 .R/ which are similar to A.
(b) Prove that A and O2 have the same characteristic polynomial but the matrices

are not similar.

2.12 Two classes of special similar matrices.

(a) Prove that any matrix A 2 M2 .C/ is similar to its transpose.
(b) Prove that any matrix A 2 M2 .C/ is similar to a symmetric matrix.

Nota bene. Part (b) of the problem reduces to the case of proving that any

matrix of the form

�
� 1

0 �

�
, � 2 C, is similar to a complex symmetric matrix.

2.13 The transpose and the adjugate matrices are similar.

Prove that there exists P 2 M2 .C/ such that A� D PATP�1, for all A 2
M2 .C/. Determine all matrices P with this property.

2.14 Any matrix A 2 M2 .C/ is the product of two symmetric matrices.

2.15 Let n 2 N, n � 2 and let A 2 M2 .R/. Prove that if An is a symmetric matrix
which is not of the form ˛I2, ˛ 2 R, then A is a symmetric matrix.
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2.16 Let M be the set of matrices in M2 .C/ which have the property that the
absolute values of their eigenvalues is less than or equal to 1. Prove that if A; B 2 M
and AB D BA, then AB 2 M .

2.17 Let A D
�

2 5

�3 10

�
and let B D

�
3 �2

4 9

�
. Prove that

An � Bn D 7n � 5n

2
.A � B/; 8 n 2 N:

2.18 Let A; B 2 M2 .R/ such that AB D
�

5 2

7 3

�
. Prove that BA C A�1B�1 D 8I2.

2.19 Let A D
�

1 3

3 10

�
and let .an/n�0 be the sequence defined by the recurrence

relation anC1 D 3an C an�1, n � 1, a0 D 0, a1 D 1.

(a) Prove that An D
�

a2n�1 a2n

a2n a2nC1

�
, n � 1.

(b) If the sequences .xn/n�0 and .yn/n�0 verify the recurrence relation

�
xnC1

ynC1

�
D

A

�
xn

yn

�
, n � 0, and

�
x0

y0

�
D
�

1

0

�
, prove that x2

nC1 C 3xnC1ynC1 � y2
nC1 D

x2
n C 3xnyn � y2

n, for all n � 0.

(c) Prove that if the natural numbers x; y 2 N verify the equation x2 C3xy�y2 D 1,
then there exists n 2 N such that .x; y/ D .a2n�1; a2n/.

2.20 Let A; B 2 M2 .R/ such that there exists n 2 N with .AB � BA/n D I2. Prove
that .AB � BA/4 D I2 and n is an even integer.

2.21 Let n � 2 be an integer and let A; B 2 M2 .C/ such that AB ¤ BA and
.AB/n D .BA/n. Prove that .AB/n D bI2, for some b 2 C.

2.22 Let A 2 M2 .R/ such that det.A2 � A C I2/ D 0.

(a) Prove that A2 � A C I2 D O2.
(b) Calculate det.A2 C ˛A C ˇI2/, where ˛; ˇ 2 R.

2.23 Prove that any matrix A 2 M2 .R/ can be written A D B2 C C2, with B; C 2
M2 .R/. Does the result hold if we add the supplementary condition BC D CB?

2.24 Let A 2 M2 .C/. Prove that:

(a) <.det A/ D det <.A/ � det =.A/;
(b) =.det A/ D det .<.A/ C =.A// � det <.A/ � det =.A/.
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2.25 An extremum problem.

Let M D ˚
A D .ai;j/ 2 M2 .R/ W �1 � ai;j � 1; 8i; j D 1; 2

�
. Prove that

maxA;B2M det.AB � BA/ D 16.

2.26 Let A; B 2 M2 .C/. Prove that if det.ACX/ D det.BCX/, for all X 2 M2 .C/,
then A D B.

2.27 Let A; B 2 M2 .R/. Prove that

det.A2 C B2 C AB � BA/ D det.A2 C B2/ C det.AB � BA/:

2.28 Let A; B 2 M2 .R/. Prove that det.A2 C B2/ � det.AB � BA/.

2.29 Let A; B 2 M2 .R/. Prove that if det.AB C BA/ � 0, then det.A2 C B2/ � 0.

2.30 Let A; B 2 M2 .R/ such that A2 C B2 D O2 and AB D BA. Prove that det.A C
B/ D det A C det B.

2.31 Prove that if A; B 2 M2 .R/ such that det.A2CB2/ D 0 and AB D BA, then:

(a) det A D det B;
(b) if det A ¤ 0, then A2 C B2 D O2.

Nota bene. If A; B 2 M2 .R/ are such that det.A2 C B2/ D 0 and AB D BA, then
it does not follow that A2 C B2 D O2.

2.32 Let A; B 2 M2 .R/. Prove that if AB D BA and det.2A2 � 3AB C 2B2/ D 0,
then det A D det B and det.A C B/ D 7

2
det A.

2.33 Let A; B 2 M2 .Q/ be two commuting matrices such that det A D 10 and
det.A C p

5B/ D 0. Calculate det.A2 � AB C B2/.

2.34 Prove that 8 A; B 2 M2 .C/ and 8 a; b; c 2 C one has

det.aAB C bBA C cI2/ D det.aBA C bAB C cI2/:

2.35 Let A 2 M2 .R/ and let

fA W M2 .R/ ! R; fA.X/ D det.X C A/ � det.X � A/:

Prove that:

(a) faA D afA, a 2 R;

(b) fACB D fA C fB, B 2 M2 .R/;

(c) there exist sequences .xn/n�1 and .yn/n�1 such that fAn D xnfA C ynfI2 .

2.36 Prove that the unique function f W M2 .C/ ! C which verifies the
conditions
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(a) f .XY/ D f .X/f .Y/, 8 X; Y 2 M2 .C/

(b) f .X C I2/ D f .X/ C f .I2/ C Tr.X/, 8 X 2 M2 .C/,

is the determinant function f .X/ D det X.

2.37 Let A 2 M2 .R/ and let f W M2;1 .R/ ! M2;1 .R/ be the function defined by

fA

�
x
y

�
D A

�
x
y

�
;

�
x
y

�
2 M2;1 .R/ :

Prove the following statements are equivalent:

(a) fA is injective;
(b) fA is surjective;
(c) det A ¤ 0.

2.38 Let A 2 M2 .Z/ and let f W M2;1 .Z/ ! M2;1 .Z/ be the function defined by

fA

�
x
y

�
D A

�
x
y

�
;

�
x
y

�
2 M2;1 .Z/ :

Prove that:

(a) fA is injective if and only if det A ¤ 0;
(b) fA is surjective if and only if det A 2 f�1; 1g.

2.39 The power function.

Prove the function f W M2 .C/ ! M2 .C/, f .X/ D Xn is neither injective nor
surjective for any n 2 N, n � 2.

2.40 Non-surjective functions.

(a) Prove the function f W M2 .R/ ! M2 .R/, f .X/ D X2016 C X2015 is not
surjective.

(b) Prove the function f W M2 .R/ ! M2 .R/, f .X/ D I2 C X C X2 C � � � C X2016

is not surjective.

2.41 Let a; b; c; d 2 .0; 1/ such that ad � bc > 0 and let A D
�

a �b
�c d

�
2

M2 .R/. We say that a matrix X 2 M2 .R/ is positive if all of its entries are positive
real numbers and we use the notation X > 0. Prove that:

(a) for any positive matrix X0 there is a positive matrix X such that AX D X0;
(b) there is X > 0 such that X0 D AX > 0.

2.42 [58] Let A D
�

a b
c d

�
2 M2 .R/ with a > 0, b > 0, c > 0, d > 0. Prove that

A has an eigenvector X D
�

x
y

�
with x > 0 and y > 0.
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2.43 Let A; B 2 M2 .R/ be matrices with strictly positive entries. Prove that
.AB/2 D .BA/2 if and only if AB D BA.

2.44 Let A 2 M2 .C/ such that Tr.A/ D �1 and det A D 1. How many elements
does the set fAn W n 2 Ng have?

2.45 A 2016 Seemous problem.

Let n � 2 be an integer and let Pn D fXn W X 2 M2 .C/g. Prove that
P2 D Pn, 8 n � 2.

The problem generalizes part (a) of Problem 2 of Seemous 2016, Protaras,
Cyprus.

2.46 Let A; B 2 M2 .R/ such that det A D det B D 1. Prove that:

(a) Tr.AB/ C Tr.A�1B/ D Tr.A/Tr.B/;
(b) Tr.BAB/ C Tr.A/ D Tr.B/Tr.AB/.

2.47 (a) Let A 2 M2 .R/ be such that Tr.A/ > 2. Prove that for any n 2 N, An ¤ I2.

(b) Let r > 0 and let A 2 M2 .R/ be such that Tr.A/ > 2r. Prove that for any n 2 N,
An ¤ rnI2.

2.48 Let A 2 M2 .R/ with det A D 1 and jTr.A/j < 2. Prove that for any n � 2 we
have jTr.An/j � 2 and there exists Bn 2 M2 .R/ such that det Bn D 1, jTr.Bn/j < 2

and jTr.Bn
n/j D 2.

2.49 Let A; B 2 M2 .C/ with A ¤ B and let C D AB � BA. Prove that C
commutes with both A and B if and only if C D O2, that is, if and only if A
commutes with B.

2.50 Let A 2 M2 .C/ such that det.A � I2/ 2 R and there exists n 2 N such that
An D I2. Prove that det.A � xI2/ 2 R, for any x 2 R.

2.51 Let A; B 2 M2 .C/ and let n � 2 be a fixed integer. Prove that:

(a) If .AB/n D O2, then .BA/n D O2;
(b) If .AB/n D I2, then .BA/n D I2;
(c) If AB ¤ BA, find the matrix C 2 M2 .C/ for which the following implication

holds .AB/n D C ) .BA/n D C.

2.52 Let A; B 2 GL2 .C/ and ˛; ˇ 2 C with j˛j ¤ jˇj such that ˛AB C ˇBA D I2.
Prove that det.AB � BA/ D 0.
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2.53 Let A; B; C 2 M2 .R/ be matrices which commute one another with det C D
0. Prove that det.A2 C B2 C C2/ � 0.

2.54 Let A0; A1; : : : ; An 2 M2 .R/, n � 2, be nonzero matrices which verify the
conditions A0 ¤ aI2, 8a 2 R and A0Ak D AkA0, 8k D 1; 2; : : : ; n. Prove that:

(a) det

�
nP

kD1

A2
k

�
� 0;

(b) If det

�
nP

kD1

A2
k

�
D 0 and A2 ¤ aA1, for all a 2 R, then

nP
kD1

A2
k D O2.

2.55 Let a 2 .�1; 1/ and let A 2 M2 .R/ be such that det.A4 � aA3 � aA C I2/ D 0.
Prove that det A D 1.

2.56 Let B 2 M2 .C/ be a nilpotent matrix. Prove that if A 2 M2 .C/ commutes
with B, then det.A C B/ D det A.

2.57 Let A; B 2 M2 .C/ be such that AB D BA. Prove that if there exist integers
m; n 2 N such that Am D O2 and Bn D O2, then AB D O2. The problem states that
if two nilpotent matrices commute their product is zero.

2.58 When is the sum (difference) of two nilpotent matrices a nilpotent matrix?

Let A; B 2 M2 .C/ be two nonzero nilpotent matrices. Prove that A ˙ B is a
nilpotent matrix if and only if both AB and BA are nilpotent matrices.

2.59 Let A; B 2 M2 .C/. Prove that Tr..AB/2/ D Tr.A2B2/ , .AB � BA/2 D O2.

2.60 When is the matrix AB � BA nilpotent?

(a) [28] If A; B 2 M2 .C/ are such that 2015AB � 2016BA D 2017I2, then .AB �
BA/2 D O2.

(b) More generally, let m; n; p 2 R, m ¤ n and let A; B 2 M2 .C/ such that mAB �
nBA D pI2. Prove that .AB � BA/2 D O2.

2.61 Let A; B 2 M2 .C/. Prove that .AB/2 D AB2A , .BA/2 D BA2B.

2.62 Let A; B 2 M2 .C/. Prove that

det.A � B/ det.A C B/ D det.A2 � B2/ , .AB � BA/2 D O2:

2.63 Let A; B 2 M2 .R/. Prove that any two of the following statements imply the
third one:

(a) det.A2 C B2/ D 0;
(b) det.AB � BA/ D 0;
(c) det A D det B D 1

2
det.A C B/.

2.64 If A; B 2 M2 .R/ such that det.AB C BA/ D det.AB � BA/, then
det.A2 C B2/ � 0.

2.65 If A; B 2 M2 .C/ and n 2 N, then det.An C Bn ˙ AB/ D det.An C Bn ˙ BA/.
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2.66 If A; B 2 M2 .C/ and A2 C B2 D AB, then .AB � BA/2 D O2.

2.67 If A; B 2 M2 .C/ and A2 D O2, then det.AB � BA/ D 0 , det.A C B/ D
det B.

2.68 Let A 2 M2 .R/ such that A2 D O2. Prove that 8 B 2 M2 .R/ the following
inequalities hold det.AB � BA/ � 0 � det.AB C BA/.

2.69 Let A; B 2 M2 .C/ n fO2g be such that AB C BA D O2. Prove that if det.A �
B/ D 0, then Tr.A/ D Tr.B/ D 0.

2.70 If A; B 2 M2 .C/ such that Tr.A/Tr.B/ D Tr.AB/, then

det.A2 C B2 C AB/ D det.A2 C B2/ C det.AB/:

2.71 The centralizer of a nilpotent matrix.

Let A 2 M2 .C/ and let C .A/ D fX 2 M2 .C/ W AX D XAg. Prove that

A2 D O2 , j det.A C X/j � j det Xj; 8 X 2 C .A/:

2.72 (a) If A; B 2 M2 .R/ are matrices such that .A � B/�1 D A�1 � B�1,
then det A D det B D det.A � B/.

(b) Does the result hold if A; B 2 M2 .C/?

2.73 Let P be a polynomial function with real coefficients which does not
have real roots and let A 2 M2 .R/ be such that det P.A/ D 0. Prove that
P.A/ D O2.

2.74 [58, p. 145] Let A; B 2 M2 .R/ be matrices such that A2 D B2 D I2 and
AB C BA D O2. Prove that there exists an invertible matrix Q 2 M2 .R/ such that

Q�1AQ D
�

1 0

0 �1

�
and Q�1BQ D

�
0 1

1 0

�
:

2.75 Let A; B 2 M2 .C/ be such that AB D O2. Prove that

det.A C B/n D det.An C Bn/; 8n � 1:



2.7 Solutions 89

2.76 (a) Prove that there exist matrices A; B 2 M2 .R/ such that

det.xA C yB/ D x2 C y2; 8 x; y 2 R:

(b) Prove that there do not exist matrices A; B; C 2 M2 .R/ such that

det.xA C yB C zC/ D x2 C y2 C z2; 8 x; y; z 2 R:

2.7 Solutions

2.1. Let fA.x/ D det.A � xI2/ D x2 � tx C 1, where t D Tr.A/. We have, based on
Theorem 2.2, that A2 D tA � I2 and this implies that A2 C A � I2 D .t C 1/A � 2I2

and A2 C I2 D tA. A calculation shows that

det.A2 C A � I2/ C det.A2 C I2/ D .t C 1/2fA

�
2

t C 1

�
C t2

D .t C 1/2

"�
2

t C 1

�2

� 2t

t C 1
C 1

#
C t2

D 5:

2.2. Tr.A/ D 3. See the solution of problem 2.1.

2.3. Let fA.x/ D det.A�xI2/ D x2CxCd, where d D det A. Theorem 2.2 shows that
A2 D �A�dI2 and this implies A2 C3AC3I2 D 2A� .d �3/I2 and A2 CA D �dI2.
It follows that

det.A2 C 3A C 3I2/ � det.A2 C A/ D 4fA

�
d � 3

2

�
� d2

D 4

"�
d � 3

2

�2

C d � 3

2
C d

#
� d2

D 3:

2.4. We have, based on Corollary 2.4, that det.aA C .a C 1/I2/ D a2 det A C a.a C
1/˛ C .a C 1/2, for some ˛ 2 Z. If det.aA C .a C 1/I2/ D 0, then a2 det A C a.a C
1/˛ C .a C 1/2 D 0 ) a j.a C 1/2. It follows that a2 C 2a C 1 D ab, for some
b 2 Z. However, the last equality implies that a j1, which contradicts a ¤ ˙1.

2.5. Let � … Spec.A/, � ¤ 0 and let B D A � �I2 and C D �I2.
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2.6. Since det A D 0 we get that 0 2 Spec.A/. Let �n be a sequence of real or
complex numbers such that lim

n!1 �n D 0 and �n … Spec.A/. Let An D A � �nI2. We

have lim
n!1 An D A and det.An/ D det.A � �nI2/ ¤ 0, since �n … Spec.A/.

2.7. We have

fA
�

.x/ D det.A� � xI2/ D
ˇ̌̌
ˇ d � x �b

�c a � x

ˇ̌̌
ˇD x2 � .a C d/x C ad � bc D fA.x/:

2.9. Let JA be the Jordan canonical form of A and let P be the invertible matrix

such that A D PJAP�1. If JA D I2 there is nothing to prove. If JA D
�

1 1

0 1

�
, then

Ak D PJk
AP�1 D P

�
1 k
0 1

�
P�1. A calculation shows that

�
1 k
0 1

�
D Jk

A D Q�1JAQ,

where Q D
�

1 0

0 k

�
. This implies that

Ak D PQ�1JAQP�1 D �
PQP�1

��1
PJAP�1

�
PQP�1

� D �
PQP�1

��1
A
�
PQP�1

�
;

which implies that Ak 	 A.

2.10. A 	 B ) 9 P 2 GL2 .C/ such that B D P�1AP. This implies that Bn D
P�1AnP, which shows that An 	 Bn.

The reverse implication does not hold. Let n D 2 and let A D
�

0 0

1 0

�
and

B D O2. Then, A2 D B2 D O2 so A2 	 B2. However, A and B are not similar
matrices.

2.12. (a) It suffices to solve the problem for Jordan canonical forms. If JA D�
�1 0

0 �2

�
there is nothing to prove. If JA D

�
� 1

0 �

�
, then we let P D

�
0 1

1 0

�

and we have that P�1JAP D JT
A .

(b) It suffices to solve the problem for Jordan canonical forms. If JA D
�

�1 0

0 �2

�

there is nothing to prove. If JA D
�

� 1

0 �

�
, then we need to find an invertible matrix

Q 2 M2 .C/ and a symmetric matrix B 2 M2 .C/ such that Q�1JAQ D B. Let

Q D
�

a b
c d

�
and let 
 D ad � bc ¤ 0. A calculation shows that

B D 1




�
cd C �
 d2

�c2 �cd C �


�
;
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and since B is a symmetric matrix we get that c2 C d2 D 0. Observe that B cannot
be a real matrix. Let d D i, c D 1, a D i, b D 0 and we have that

Q D
�

i 0

1 i

�
and B D

�
� � i 1

1 � C i

�
:

2.13. Let A D
�

a b
c d

�
and A� D

�
d �b

�c a

�
. If P D

�
0 �1

1 0

�
, then PATP�1 D A�.

If Q is another matrix such that QATQ�1 D A�, 8 A 2 M2 .C/, then PATP�1 D
QATQ�1 ) .Q�1P/AT D AT.Q�1P/, 8 A 2 M2 .C/. This implies that Q�1P
commutes with all matrices in M2 .C/. It follows, based on Theorem 1.1, that

Q�1P D ˛I2, for some ˛ 2 C. This implies that Q D
�

0 �ˇ

ˇ 0

�
, where ˇ 2 C

�.

2.14. Let JA be the Jordan canonical form of A and let P be the invertible matrix

such that A D PJAP�1. If JA D
�

�1 0

0 �2

�
, then JA D BC, where

B D
�

�1 0

0 1

�
and C D

�
1 0

0 �2

�
:

We have A D PJAP�1 D �
PBPT

� �
.P�1/TCP�1

�
, where PBPT and .P�1/TCP�1 are

symmetric matrices.

If JA D
�

� 1

0 �

�
, then JA D BC, where

B D
�

1 1

1 0

�
and C D

�
0 �

� 1 � �

�
:

We have A D PJAP�1 D �
PBPT

� �
.P�1/TCP�1

�
, where PBPT and .P�1/TCP�1 are

symmetric matrices.

2.16. Let A; B 2 M . If �A is an eigenvalue of A and �B is an eigenvalue of B, then
since AB D BA we get, based on Theorem 2.1, that �AB D �A�B. It follows that
j�ABj D j�Ajj�Bj � 1.

2.17. The eigenvalues of A and B are 7 and 5. We have, based on Theorem 3.1, that
An D 7nD C 5nC, where D D A�5I2

2
and C D 7I2�A

2
and Bn D 7nU C 5nV , where

U D B�5I2
2

and V D 7I2�B
2

. It follows that An � Bn D 1
2
.7n � 5n/.A � B/.

2.18. The characteristic polynomial of the matrix BA is fBA.x/ D fAB.x/ D x2 �8x C
1. It follows, based on Theorem 2.2, that .BA/2 � 8BA C I2 D O2. We multiply this
identity by .BA/�1 D A�1B�1 and we get that BA C A�1B�1 D 8I2.

2.20. We have that Tr.AB � BA/ D 0 and detn.AB � BA/ D 1 ) det.AB � BA/ D
˙1. We apply the Cayley–Hamilton Theorem for the matrix AB � BA and we get
that .AB � BA/2 D ˙I2 which implies that .AB � BA/4 D I2.
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By contradiction, we assume that n D 2k C 1. We have, since .AB � BA/n D I2,
that det.AB�BA/ D �1 and it follows based on the Cayley–Hamilton Theorem that
.AB � BA/2 D �I2. Thus, I2 D .AB � BA/2kC1 D .�I2/k.AB � BA/ and this implies
that AB � BA D .�1/kI2. This contradicts the fact that Tr.AB � BA/ D 0.

2.21. Let f 2 CŒx� be the characteristic polynomial of matrices AB and BA. Dividing
the polynomial xn by f we get that there exist Q 2 CŒx� and a; b 2 C such that
xn D f .x/Q.x/ C ax C b. Replacing x by AB and BA we get that .AB/n D aAB C bI2

and .BA/n D aBA C bI2. Since .AB/n D .BA/n and AB ¤ BA we get that a D 0 and
this in turn implies that .AB/n D .BA/n D bI2.

2.22. (a) Observe that A2 � A C I2 D .A � �I2/.A � �I2/, where �2 � � C 1 D 0,
� 2 C n R. Since det.A2 � A C I2/ D 0 we have that either det.A � �I2/ D 0 or
det.A � �I2/ D 0. Let f .x/ D det.A � xI2/ 2 RŒx� be the characteristic polynomial
of A. If � or � is a root of f , then since f has real coefficients we get that both �

and � are roots of f . This implies that f .x/ D .x � �/.x � �/ D x2 � x C 1 and the
Cayley–Hamilton Theorem implies that A2 � A C I2 D O2.

(b) We have det.A2 C ˛A C ˇI2/ D det Œ.˛ C 1/A C .ˇ � 1/I2�. We distinguish
between the cases when ˛ D �1 and ˛ ¤ �1.

If ˛ D �1, we have, based on part (a), that A2 � A C ˇI2 D .ˇ � 1/I2 and this
implies that det.A2 � A C ˇI2/ D .ˇ � 1/2.

If ˛ ¤ �1, we have that

det.A2 C ˛A C ˇI2/ D .˛ C 1/2 det

�
A � 1 � ˇ

˛ C 1
I2

�

D .˛ C 1/2f

�
1 � ˇ

˛ C 1

�

D .˛ C 1/2

"�
1 � ˇ

˛ C 1

�2

� 1 � ˇ

˛ C 1
C 1

#

D ˛2 C ˇ2 C ˛ˇ C ˛ � ˇ C 1:

2.23. (a) Let A D ˛I2, where ˛ 2 R. If ˛ < 0, then B D C D p� ˛
2

�
0 1

�1 0

�
. If

˛ D 0, then B D C D O2. If ˛ > 0, then B D C D p
˛
2

I2.
Now we consider the case when A ¤ ˛I2, for all ˛ 2 R. Let t D Tr.A/, d D det A

and we have that A2 � tA C dI2 D O2. We determine ˛; ˇ; � 2 R such that A D
.˛ACˇI2/2 C� I2. A calculation shows that A D .˛2t C2˛ˇ/AC .ˇ2 C� �˛2d/I2.
This implies that ˛2t C2˛ˇ D 1 and ˇ2 C� �˛2d D 0. We choose ˛ D 1, ˇ D 1�t

2

and � D d � .1�t/2

4
.

� If � > 0, then B D ˛A C ˇI2 and C D p
�I2.

� If � D 0, then B D C D 1p
2
.˛A C ˇI2/.

� If � < 0, then B D ˛A C ˇI2 and C D p��

�
0 1

�1 0

�
.
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(b) If BC D CB, then B2 C C2 D .B C iC/.B � iC/ and det.B2 C C2/ D
j det.B C iC/j2 � 0, so there is no matrix A with det A < 0 such that A D B2 C C2

with BC D CB.

2.24. Observe that A D <.A/ C i=.A/ and use Corollary 2.4 with x D 1 and y D i.

2.25. Using Lemma 2.10 we have that det.AB � BA/ D Tr.A2B2/ � Tr..AB/2/.
A calculation based on Theorem 2.2 shows that Tr.A2B2/ � Tr..AB/2/ D �t2AB C
tAtBtAB � t2AdB �dAt2B C4dAdB, which is a quadratic function in tAB. The discriminant
of this function is 
 D .t2A � 4dA/.t2B � 4dB/ and its maximum value is 


4
D 1

4
.t2A �

4dA/.t2B � 4dB/. If A D
�

a b
c d

�
2 M2 .R/, then t2A � 4dA D .a � d/2 C 4bc � 8,

since a; b; c; d 2 Œ�1; 1�. It follows that maxA;B2M det.AB�BA/ D 16, with equality

when A D
�

1 �1

�1 1

�
and B D

��1 �1

�1 1

�
.

2.26. Let Ei;j, i; j D 1; 2 be the matrix having the .i; j/ entry equal to 1 and all the
other entries equal to 0 and let X D O2; E1;1; E1;2; E2;1 and E2;2.

2.27. and 2.28. We have

j det.A C iB/j2 D det.A C iB/ det.A � iB/ D det
�
A2 C B2 � i.AB � BA/

�
:

It follows, based on Corollary 2.4 with x D 1 and y D �i, that

det
�
A2 C B2 � i.AB � BA/

� D det.A2 C B2/ � det.AB � BA/

� i
�
det.A2 C B2 C AB � BA/ � det.A2 C B2/ � det.AB � BA/

�
:

Since det
�
A2 C B2 � i.AB � BA/

� D j det.AC iB/j2 � 0 we get that det.A2 CB2/ �
det.AB � BA/ and det.A2 C B2 C AB � BA/ � det.A2 C B2/ � det.AB � BA/ D 0.

2.29. Let f .x/ D det
�
A2 C B2 C x.AB C BA/

� 2 RŒx�. We have

f .1/ D det.A C B/2 D det2.A C B/ � 0,
f .�1/ D det.A � B/2 D det2.A � B/ � 0,
f .x/ D det.A2 C B2/ C ˛x C x2 det.AB C BA/, where ˛ 2 R.

If det.AB C BA/ D 0, then f is a linear monotonic function (or the constant
function) and since f .0/ is between f .�1/ and f .1/ we get that f .0/ � 0.

If det.AB C BA/ < 0, then f is a quadratic function which has a maximum. Since
f .�1/ � 0 and f .1/ � 0 we get that �1 and 1 are between the roots of the equation
f .x/ D 0 and, since 0 is between �1 and 1, we get that f .0/ � 0.

2.30. We have 0 D det.A2 C B2/ D det.A C iB/.A � iB/ D det.A C iB/ det.A � iB/

and it follows that either det.A C iB/ D 0 or det.A � iB/ D 0. Using Corollary 2.4
we get that

det.A ˙ iB/ D det A � det B ˙ i Œdet.A C B/ � det A � det B� :

We have, since det.A ˙ iB/ D 0, that det A D det B and det.A C B/ D det A C det B.
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2.31. (a) For this part of the problem see the solution of problem 2.30.
(b) If det A ¤ 0, then A2 C B2 D A2

�
I2 C C2

�
, where C D A�1B 2 M2 .R/. We

have det.A2 C B2/ D 0 , det.I2 C C2/ D 0 , det.C C iI2/.C � iI2/ D 0. Using
a technique as in the solution of problem 2.30 we get that det C D 1 and det.C C
I2/ D det C C 1. The last equality implies, since det.C C I2/ D det C C Tr.C/ C 1,
that Tr.C/ D 0. The Cayley–Hamilton Theorem applied to matrix C shows that
C2 C I2 D O2 which implies A2 C B2 D A2.I2 C C2/ D O2.

2.32. Let ˛ D 3Ci
p

7
4

and observe that 2A2 � 3AB C 2B2 D 2.A � ˛B/.A � ˛B/.
We have 0 D det.2A2�3ABC2B2/ D 4j det.A�˛B/j2 which implies det.A�˛B/ D
0. We have, based on Corollary 2.4, that

det.A � ˛B/ D det A C ˛2 det B � ˛ Œdet.A C B/ � det A � det B�

and it follows, since ˛2 D 3
2
˛ � 1, that

det.A � ˛B/ D det A � det B C ˛



det A C 5

2
det B � det.A C B/

�
D 0:

Since ˛ … R we have that det A C 5
2

det B � det.A C B/ D 0 and det A D det B.
However, this implies that det.A C B/ D 7

2
det A.

Remark 2.6 If A; B 2 M2 .R/ are commuting matrices with det A ¤ 0 or det B ¤ 0

and det.2A2 � 3AB C 2B2/ D 0, then 2A2 � 3AB C 2B2 D O2 (for a proof see the
solution of problem 2.31).

2.33. det.A2 � AB C B2/ D 124.

2.34. Let f .x; y/ D det.xAB C yBA C cI2/ and g.x; y/ D det.xBA C yAB C cI2/. We
note that both f and g are polynomials of degree less than or equal to 2 in variables
x and y of the following form

f .x; y/ D a11x2 C a12xy C a22y2 C a1x C a2y C a3

g.x; y/ D b11x2 C b12xy C b22y2 C b1x C b2y C b3.

Since f .x; y/ D g.y; x/ we get that a11 D b22, a12 D b12, a22 D b11, a1 D b2,
a2 D b1, and a3 D b3. It follows that

f .x; y/ D a11x2 C a12xy C a22y2 C a1x C a2y C a3

g.x; y/ D a22x2 C a12xy C a11y2 C a2x C a1y C a3.

We have

f .x; 0/ D det.xAB C cI2/ D x2 det.AB/ C cxTr.AB/ C c2

g.x; 0/ D det.xBA C cI2/ D x2 det.BA/ C cxTr.BA/ C c2,

so f .x; 0/ D g.x; 0/, 8x 2 C and it follows that a11 D a22 and a1 D a2. Thus,

f .x; y/ D g.x; y/ D a11.x2 C y2/ C a12xy C a1.x C y/ C a3; 8 x; y 2 C:
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2.35. Let A1, A2 be the columns of A and let X1, X2 be the columns of X, i.e.,
A D .A1 j A2/ and X D .X1 j X2/. A calculation shows that

fA.X/ D det.A1 C X1 j A2 C X2/ � det.X1 � A1 j X2 � A2/

D det.A1 j A2/ C det.A1 j X2/ C det.X1 j A2/ C det.X1 j X2/

� det.X1 j X2/ C det.X1 j A2/ C det.A1 j X2/ � det.A1 j A2/

D 2 Œdet.A1 j X2/ C det.X1 j A2/� :

(a) We have

faA.X/ D 2 Œdet.aA1 j X2/ C det.X1 j aA2/�

D 2a Œdet.A1 j X2/ C det.X1 j A2/�

D afA.X/:

(b) We have

fACB.X/ D 2 Œdet.A1 C B1 j X2/ C det.X1 j A2 C B2/�

D 2 Œdet.A1 j X2/ C det.X1 j A2/� C 2 Œdet.B1 j X2/ C det.X1 j B2/�

D fA.X/ C fB.X/:

(c) We have based on Theorem 3.2 that there exist sequences .xn/n�1 and .yn/n�1

such that An D xnA C ynI2, 8 n � 1. It follows, based on parts (a) and (b), that

fAn D fxnACynI2 D fxnA C fynI2 D xnfA C ynfI2 :

We mention that fI2 .X/ D 2Tr.X/.

2.37. We prove that (a) , (c) and (b) , (c). We have

fA

�
x1

y1

�
D fA

�
x2

y2

�
, A

�
x1 � x2

y1 � y2

�
D
�

0

0

�
;

which is a homogeneous system of two equations and two variables. The system has
only the zero solution x1 � x2 D 0, y1 � y2 D 0 if and only if det A ¤ 0. Thus,

det A ¤ 0 ,
�

x1

y1

�
D
�

x2

y2

�
:

Now we consider the system A

�
x
y

�
D
�

u
v

�
, which has a solution for any u; v 2

R if and only if det A ¤ 0 in which case

�
x
y

�
D A�1

�
u
v

�
.

2.38. (a) See the solution of problem 2.37.



96 2 The Cayley–Hamilton Theorem

(b) If det A D ˙1, then fA is surjective (for a proof of this implication see the
solution of problem 2.37). Now we prove that if fA is surjective, then det A D ˙1.

We have, based on the surjectivity of fA, that there exists

�
x1

y1

�
2 M2;1 .Z/ such that

fA

�
x1

y1

�
D
�

1

0

�
and there exists

�
x2

y2

�
2 M2;1 .Z/ such that fA

�
x2

y2

�
D
�

0

1

�
. It

follows that

A

�
x1 x2

y1 y2

�
D
�

1 0

0 1

�
;

so A is invertible and A�1 D
�

x1 x2

y1 y2

�
2 M2 .Z/. Since A; A�1 2 M2 .Z/ and

AA�1 D I2 we have that det A det
�
A�1

� D 1 which implies det A D ˙1.

2.39. Let A D
�

0 0

1 0

�
. Since An D O2 D On

2 we get that f is not injective.

To prove that f is not surjective we let B D
�

0 1

0 0

�
and we prove the equation

Xn D B does not have solutions in M2 .C/. If a solution X 2 M2 .C/ would exist,
then det X D 0 and we have based on the Cayley–Hamilton Theorem that X2 � tX D
O2, where t D Tr.X/. This implies that Xn D tn�1X ) tn�1X D B. Passing to
trace in this equality we get that tn D 0 ) t D 0 ) X2 D O2 ) Xn D O2,
which contradicts the fact that Xn D B.

2.40. (a) Let g W R ! R, g.x/ D x2016 C x2015 and let Y D
�

y 0

0 0

�
, where y <

g
�� 2015

2016

�
. The equation f .X/ D Y does not have solutions in M2 .R/.

(b) Let Y D
��1 0

0 0

�
. The equation f .X/ D Y does not have solutions in M2 .R/.

2.41. (a) AX D X0 , X D A�1X0, A�1 D 1

ad � bc

�
d b
c a

�
> 0. Thus, A�1 > 0,

X0 > 0 and these imply that A�1X0 > 0.
(b) Let X1; X2 be the columns of X and X0

1; X0
2 be the columns of X0. We have

X0
1 D AX1 and X0

2 D AX2. If X1 D
�

x
y

�
, then X0

1 D
�

ax � by
�cx C dy

�
and the conditions

X > 0, X0 > 0 give

8̂̂
ˆ̂<
ˆ̂̂̂:

ax � by > 0

�cx C dy > 0

x > 0

y > 0:
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Each of these inequalities are, from a geometrical point of view, semiplans which
we need to prove they intersect. The frontier of the first semiplan is a line of slope
m1 D a

b and the frontier of the second semiplan has slope m2 D c
d . These two

semiplans intersect in the first quadrant if we have that m1 > m2 , ad � bc > 0,
which holds. We can choose X1 D X2 with x and y a solution of the previous system
of inequalities.

2.43. We have, based on the Cayley–Hamilton Theorem for matrices AB and BA,
that (

.AB/2 � Tr.AB/AB C det.AB/I2 D O2

.BA/2 � Tr.BA/BA C det.BA/I2 D O2:

Since Tr.AB/ D Tr.BA/ and det.AB/ D det.BA/ we get that Tr.AB/.AB�BA/ D O2.
This implies, since Tr.AB/ > 0, that AB D BA.

2.44.
˚
I2; A; A2

�
.

2.45. Let n � 2. To prove that Pn 
 P2 we need to prove that for any X 2 M2 .C/

there exists Y 2 M2 .C/ such that Xn D Y2. Let JX be the Jordan canonical form of
X, let P be the invertible matrix such that X D PJXP�1, and let Y D PY1P�1. The
equation Xn D Y2 becomes Jn

X D Y2
1 . We distinguish the following two cases.

If JX D
�

�1 0

0 �2

�
, then Jn

X D
�

�n
1 0

0 �n
2

�
and we choose Y1 D

�
	1 0

0 	2

�
, with

	1; 	2 2 C such that 	2
1 D �n

1 and 	2
2 D �n

2.

If JX D
�

� 1

0 �

�
, then Jn

X D
�

�n n�n�1

0 �n

�
. If Y1 D

�
a b
0 a

�
, then we have

Y2
1 D

�
a2 2ab
0 a2

�
and we get the equations a2 D �n and 2ab D n�n�1. If � D 0

we take a D b D 0. If � ¤ 0, then we take a 2 C
� such that a2 D �n and

b D n�n�1

2a .

To prove the inclusion P2 
 Pn we need to prove that for any X 2 M2 .C/

there exists Y 2 M2 .C/ such that X2 D Yn. Exactly as in the proof of the previous
inclusion we pass to Jordan canonical form and we need to solve the equation
J2

X D Yn
1 .

If JX D
�

�1 0

0 �2

�
we take Y1 D

�
	1 0

0 	2

�
, with 	n

1 D �2
1 and 	n

2 D �2
2.

If JX D
�

� 1

0 �

�
, then J2

X D
�

�2 2�

0 �2

�
and we take Y1 D

�
a b
0 a

�
,

Yn
1 D

�
an nan�1b
0 an

�
. We get the system of equations an D �2 and nan�1b D 2�.

If � D 0 we let a D b D 0. If � ¤ 0 we let a 2 C
� with an D �2 and b D 2�

nan�1 .

2.46. (a) We have, based on the Cayley–Hamilton Theorem, that A2 � Tr.A/A C
I2 D O2 and it follows that A C A�1 D Tr.A/I2. This implies that AB C A�1B D
Tr.A/B which in turn implies, by passing to trace, that Tr.AB C A�1B/ D Tr.AB/ C
Tr.A�1B/ D Tr .Tr.A/B/ D Tr.A/Tr.B/.
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(b) B C B�1 D Tr.B/I2 ) BAB C BAB�1 D Tr.B/BA. This implies, by passing
to trace, that Tr

�
BAB C BAB�1

� D Tr .Tr.B/BA/ ) Tr.BAB/ C Tr.BAB�1/ D
Tr.B/Tr.BA/. Since Tr.BAB�1/ D Tr.A/ and Tr.BA/ D Tr.AB/ we obtain that
Tr.BAB/ C Tr.A/ D Tr.B/Tr.AB/.

2.47. (a) By way of contradiction we assume that there exists n 2 N such that
An D I2. This implies that det.An/ D detn A D 1. If �1; �2 are the eigenvalues of A,
then �1 C �2 D Tr.A/ > 2, �1�2 D det A D 1 and it follows that �n

1�n
2 D 1 and

�n
1 C �n

2 D Tr.An/ D Tr.I2/ D 2. This implies that �n
1 D �n

2 D 1 ) j�1j D j�2j D
1. We have 2 D j�1j C j�2j � j�1 C �2j D Tr.A/ > 2, which is a contradiction.

(b) Let A D rB and observe the problem reduces to part (a).

2.48. Let �1; �2 be the eigenvalues of A, i.e., the solutions of the equation x2 �
Tr.A/x C det A D 0. Since 
 D Tr2.A/ �4 det A < 0 we get that �1; �2 2 CnR and
�2 D �1. On the other hand, �1�2 D 1 which implies that �1;2 D cos ˛ ˙ i sin ˛,
with sin ˛ ¤ 0. We have jTr.An/j D j2 cos.n˛/j � 2.

The matrix

Bn D
�

cos �
n � sin �

n
sin �

n cos �
n

�

verifies the conditions of the problem.

2.49. One implication is trivial. We prove that if C commutes with both A and B,
then C D O2. If A or B are of the form ˛I2, ˛ 2 C, then there is nothing to prove. So
we assume that both A and B are not of the form ˛I2, ˛ 2 C. Since AC D CA and
CB D BC we have, based on Theorem 1.1, that C D ˛1ACˇ1I2 and C D ˛2BCˇ2I2,
for some ˛1; ˛2; ˇ1; ˇ2 2 C. It follows that ˛1A C ˇ1I2 D ˛2B C ˇ2I2.

If ˛1 D 0 we get that ˇ1I2 D ˛2B C ˇ2I2. If ˛2 ¤ 0 we get that B D ˇ1�ˇ2

˛2
I2

which is impossible. Therefore ˛2 D 0 and ˇ1 D ˇ2. Since ˛1 D 0 we get that
C D ˇ1I2. Also Tr.C/ D 0 ) ˇ1 D 0 ) C D O2.

If ˛1 ¤ 0 we get that A D ˛2

˛1
B C ˇ2�ˇ1

˛1
I2 D ıB C � I2, where ı D ˛2

˛1
and

� D ˇ2�ˇ1

˛1
. It follows that C D AB � BA D .ıB C � I2/ B � B .ıB C � I2/ D O2.

2.50. Let fA.x/ D det.A�xI2/ D x2�Tr.A/xCdet A be the characteristic polynomial
of A and let �1; �2 be its roots. Since An D I2 we get that �n

1 D �n
2 D 1 ) j�1j D

j�2j D 1 and the condition det.A � I2/ 2 R implies that fA.1/ D 1 � .�1 C �2/ C
�1�2 2 R.

We have

�1�2 � .�1 C �2/ 2 R , �1 � �2 � .�1 C �2/ 2 R

, 1

�1

� 1

�2

� 1

�1

� 1

�2

2 R

, 1 � �1 � �2

�1�2

2 R:
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Let �1 C �2 D �1�2 C a, a 2 R and 1��1�2�a
�1�2

D b 2 R. These imply that
�1�2 2 R and �1 C �2 2 R and hence fA 2 RŒx�.

2.51. (a) We have .AB/n D O2 ) .AB/2 D O2 ) B.AB/2A D O2 ) .BA/3 D
O2 ) .BA/2 D O2 ) .BA/n D O2.

(b) Let f D fAB D fBA be the characteristic polynomial of AB and BA. We have
xn D Q.x/f .x/ C ax C b, where Q 2 RŒx� and a; b 2 R. Thus, .AB/n D I2 ,
Q.AB/f .AB/ C aAB C bI2 D I2 , aAB C .b � 1/I2 D O2.

If a D 0, then b D 1 and these imply that .BA/n D Q.BA/f .BA/ C I2 D I2.
If a ¤ 0, then AB D 1�b

a I2, with 1�b
a ¤ 0, which implies, since A and B are

invertible, that AB D BA.
(c) .AB/n D C , aAB C bI2 D C. On the other hand, .BA/n D C ,

aBA C bI2 D C and, since AB ¤ BA, we get a D 0 and C D bI2.

2.52. ˛AB C ˇBA D I2 ) ˛.AB � BA/ D I2 � .˛ C ˇ/BA and ˇ.BA � AB/ D
I2 � .˛ C ˇ/AB. Also,

det.I2 � xBA/ D det.A�1I2A � A�1xABA/

D det.A�1/ det.I2 � xAB/ det A

D det.I2 � xAB/:

It follows, by passing to determinants in the previous equalities, that

˛2 det.AB � BA/ D ˇ2 det.BA � AB/ , .˛2 � ˇ2/ det.AB � BA/ D 0;

which implies, since ˛ ¤ ˙ˇ, that det.AB � BA/ D 0.

2.53. Let f .x/ D det.A2 C B2 C C2 C xBC/ 2 RŒx�. We have f .�2/ D det.A2 C .B �
C/2/ � 0 and f .2/ D det.A2 C.BCC/2/ � 0. A calculation, based on Corollary 2.4,
shows that f .x/ D det.A2CB2CC2/C˛xCx2 det B det C D det.A2CB2CC2/C˛x,
for some ˛ 2 R. Thus, f is a monotonic function being a polynomial of degree 1
and since 0 is between �2 and 2 we get that f .0/ D det.A2 C B2 C C2/ � 0.

2.55. We have z4 � az3 � az C 1 D .z2 � ˛1z C 1/.z2 � ˛2z C 1/, where ˛1;2 D
a˙p

a2C8
2

. Since a 2 .�1; 1/ we get that j˛1;2j < 2 which implies the equations
z2 � ˛1z C 1 D 0 and z2 � ˛2z C 1 D 0 have only complex solutions. Their
solutions are z1; z2 and z3; z4 such that z1z2 D z3z4 D 1. This implies, since z1; z2

and z3; z4 are complex conjugates, that jz1j D jz2j D jz3j D jz4j D 1. We have
det

�
.A2 � ˛1A C I2/.A2 � ˛2A C I2/

� D 0 ) det.A2 � ˛1A C I2/ D 0 or det.A2 �
˛2A C I2/ D 0. If det.A2 � ˛1A C I2/ D 0 , det.A � z1I2/.A � z2I2/ D j det.A �
z1I2/j2 D 0. This implies det.A � z1I2/ D 0. It follows, based on Corollary 2.5, that
0 D det.A � z1I2/ D det A � Tr.A/z1 C z2

1 D det A � 1 C z1 .˛1 � Tr.A// and this
implies det A D 1.

2.56. Since B is nilpotent we get that its eigenvalues are equal to 0. It follows, based
on Theorem 2.1, that �ACB D �A C �B D �A and 	ACB D 	A C 	B D 	A. This
implies det.A C B/ D �ACB	ACB D �A	A D det A.
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2.57. If m D 1 or n D 1 the problem is trivial, so we assume that both m and n are
greater than or equal to 2. Observe that A2 D B2 D O2 and use problem 1.8.

2.58. First we prove that if AB and BA are nilpotent matrices, then ACB is a nilpotent
matrix. We have .A C B/2 D A2 C B2 C AB C BA D AB C BA and .A C B/4 D
.AB C BA/2 D .AB/2 C AB2A C BA2B C .BA/2 D O2 and this implies, based on
Lemma 2.3, that .A C B/2 D O2.

Now we prove that if A C B is a nilpotent matrix, then both AB and BA are
nilpotent matrices. We have .A C B/2 D O2 ) A2 C AB C BA C B2 D O2 )
AB D �BA. This implies that .AB/2 D ABAB D A.�AB/B D �A2B2 D O2 and
.BA/2 D BABA D B.�BA/A D �B2A2 D O2.

2.59. We apply the Cayley–Hamilton Theorem for the matrix AB � BA and we get
that

.AB � BA/2 � Tr.AB � BA/.AB � BA/ C det.AB � BA/I2 D O2:

It follows, since Tr.AB � BA/ D 0, that .AB � BA/2 C det.AB � BA/I2 D O2.
This implies that det.AB � BA/ D 0 , .AB � BA/2 D O2. We have, based on
Lemma 2.10, that det.AB � BA/ D 0 , Tr.A2B2/ D Tr..AB/2/.

2.61. We have .AB/2 D AB2A ) Tr..AB/2/ D Tr.AB2A/ D Tr.A2B2/ and we get,
based on problem 2.59, that .AB � BA/2 D O2. This implies that .AB/2 � AB2A C
.BA/2 � BA2B D O2. Since .AB/2 D AB2A we get that .BA/2 D BA2B. The other
implication is solved similarly.

2.62. We have, based on Lemma 2.11, that

det.A � B/ det.A C B/ D det.A2 � B2/ , det.AB � BA/ D 0:

However, .AB � BA/2 D � det.AB � BA/I2 and we have .AB � BA/2 D O2 ,
det.AB � BA/ D 0.

2.63. Use Lemma 2.12.

2.64. If det.AB � BA/ � 0 we have, based on Lemma 2.12, that det.A2 C B2/ � 0.
If det.AB � BA/ � 0, then det.AB C BA/ � 0. We have, based on Corollary 2.1,

that

det..A2 C B2/ C .AB C BA//C det..A2 C B2/ � .AB C BA//

D 2 det.A2 C B2/ C 2 det.AB C BA/:

However, det.A2 C B2 C AB C BA/ D det..A C B/2/ D det2.A C B/ and det..A2 C
B2/ � .AB C BA// D det2.A � B/. It follows that det2.A C B/ C det2.A � B/ D
2 det.A2CB2/C2 det.ABCBA/: Since det.ABCBA/ � 0 we have det.A2CB2/ � 0.
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2.65. We have, based on problem 1.32, that

det.An C Bn C AB/ D det.An C Bn/ C det.An C AB/ C det.Bn C AB/

� det.An/ � det.Bn/ � det.AB/

D det.An C Bn/ C det A det.An�1 C B/ C det.Bn�1 C A/ det B

� det.An/ � det.Bn/ � det.BA/

D det.An C Bn/ C det.An�1 C B/ det A C det B det.Bn�1 C A/

� det.An/ � det.Bn/ � det.BA/

D det.An C Bn/ C det.An C BA/ C det.Bn C BA/

� det.An/ � det.Bn/ � det.BA/

D det.An C Bn C BA/:

Similarly one can prove that det.An C Bn � AB/ D det.An C Bn � BA/.

2.66. We have, based on problem 2.65 with n D 2, that

det.A2 C B2 � AB/ D det.A2 C B2 � BA/:

Since A2 CB2 �AB D O2 and A2 CB2 �BA D AB�BA we get that det.AB�BA/ D
0 , .AB � BA/2 D O2.

2.67. Since A2 D O2 we get that det A D 0. We have, based on Lemma 2.12, that

det.B2/ D det.AB � BA/ C .det B/2 C .det.A C B/ � det B/2 ;

which implies that 0 D det.AB � BA/ C .det.A C B/ � det B/2. Now the equivalence
to prove follows easily.

2.68. Since A2 D O2 we get that det A D 0 and det.AB/ D 0, 8B 2 M2 .R/. Using
Lemma 2.7 we get that

det.AB � BA/ D det.AB/ � Tr.AB/Tr.BA/ C Tr.AB2A/ C det.BA/

D 2 det.AB/ � .Tr.AB//2 C Tr.A2B2/

D � .Tr.AB//2

� 0:

Similarly one can prove that det.AB C BA/ D .Tr.AB//2 � 0.

2.71. Let A 2 M2 .C/ with A2 D O2 and let X 2 M2 .C/ such that AX D XA. Then,
det.AX � XA/ D 0 and we have, based on problem 2.67, that det.A C X/ D det X.



102 2 The Cayley–Hamilton Theorem

To prove the other implication we let x1; x2 be the solutions of the equation
det.A C xI2/ D x2 C Tr.A/x C det A D 0. Since x1I2; x2I2 2 C .A/ we get that
0 D j det.A C xiI2/j � jxij2, i D 1; 2, which implies that x1 D x2 D 0. Thus,
Tr.A/ D det A D 0 ) A2 D O2.

2.72. (a) .A � B/.A�1 � B�1/ D I2 ) AB�1 C BA�1 D I2 ) A � B D AB�1A
and B � A D BA�1B. It follows that

.det B/2

det A
D det.BA�1B/ D det.B � A/ D det.A � B/ D det.AB�1A/ D .det A/2

det B

and this implies that det A D det B and det.A � B/ D det A.
We give below two matrices A; B 2 M2 .R/ which verify the condition of the

problem. Let ˛; u; x 2 R with ˛; x ¤ 0 and let

A D
0
@x

˛x � ˛2 � x2

u
u ˛ � x

1
A and B D

0
@x � ˛

˛x � ˛2 � x2

u
u �x

1
A :

Then

A�1 D 1

˛2

0
@˛ � x

x2 C ˛2 � ˛x

u
�u x

1
A and B�1 D 1

˛2

0
@�x

x2 C ˛2 � ˛x

u
�u x � ˛

1
A :

We have det A D det B D det.A � B/ D ˛2.

(b) The result does not hold. Let � D 1Ci
p

3
2

and let

A D
�

� 0

0 1

�
and B D

�
1 0

0 �

�
:

Then A�1 � B�1 D .A � B/�1 but det A ¤ det B.

2.73. It suffices to consider that P is a polynomial of degree 2.

2.75. If A or B is invertible, then B D O2 or A D O2, so there is nothing to prove.
Now we assume that neither A nor B are invertible. Since AB D O2 we get that

.A C B/n D An C Bn C B
�
An�2 C BAn�3 C � � � C Bn�2

�
A D An C Bn C C:

All the factors which contain AB are equal to O2. We have, based on problem 1.32,
that

det.A C B/n D det.An C Bn C C/

D det.An C Bn/ C det.An C C/ C det.Bn C C/

� det.An/ � det.Bn/ � det C

D det.An C Bn/;

since det.An/ D det.Bn/ D det C D det.An C C/ D det.Bn C C/ D 0.
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2.76. (a) Let A D I2 and B D
�

0 1

�1 0

�
. Then det.xA C yB/ D

ˇ̌
ˇ̌ x y

�y x

ˇ̌
ˇ̌D x2 C y2.

(b) For any matrices A; B; C 2 M2 .R/ we can choose the real numbers x0; y0; z0

not all equal to 0 such that the first row of the matrix x0A C y0B C z0C is zero. If
the first row of the matrices A; B and C are Œa1; a2�, Œb1; b2�, and Œc1; c2� respectively,
then the system

(
a1x C b1y C c1z D 0

a2x C b2y C c2z D 0;

has the nontrivial solution .x0; y0; z0/ ¤ .0; 0; 0/. Then det.x0A C y0B C z0C/ D 0

and x2
0 C y2

0 C z2
0 ¤ 0.

2.8 Quickies

2.77 Let A; B 2 M2 .C/ such that ABAB D O2. Does it follow that BABA D O2?

2.78 Let A 2 M2 .R/ be a matrix such that Ak ¤ �I2, k 2 N. Prove that if the
matrix Ak has its .1; 2/ entry equal to 0, then the same property have all the matrices
An, for all n 2 N.

2.79 Do there exist matrices A; B 2 M2 .Z/ such that det.AC2B/ D 3 and det.AC
5B/ D 7?

2.80 Let A; B 2 M2 .Q/ such that det A D 0 and det.A C p
2B/ D 2. Prove that

det B D 1 and det.A C p
pB/ D p, for any prime number p.

2.81 Let A; B 2 M2 .Q/ such that det A D 1 and det.A C p
3B/ D 4. Prove that

det B D 1 and det.A C p
5B/ D 6.

2.82 Let A; B 2 M2 .Q/ such that det.A C 3
p

3B/ D 3. Prove that det.A C p
2B/ D

3.

2.83 Let A; B 2 M2 .C/ such that Tr.AB/ D 0. Prove that .AB/2 D .BA/2.

2.84 Let A; B 2 M2 .R/ such that A2 C B2 C 2AB D O2 and det.A2 � B2/ D 0.
Prove that det .Tr.A/A � Tr.B/B/ D 0.

2.85 Let n 2 N. Prove that if A 2 M2 .C/ such that Tr.A/ D 0, then Tr.A2nC1/ D 0.

2.86 Let A 2 M2 .C/ such that Ak D AkC1, for some positive integer k. Prove that

Tr.A/ D Tr.A2/ D Tr.A3/ D � � � D Tr.An/ D : : : :

2.87 Let A 2 M2 .C/ such that there exists n 2 N with Tr.An/ D Tr.AnC1/ D 0.
Prove that A2 D O2.
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2.88 A; B 2 M2 .C/ have the same characteristic polynomials, and hence the same
eigenvalues, if and only if Tr.Ak/ D Tr.Bk/, for all k D 1; 2. Deduce that A is
nilpotent if and only if Tr.Ak/ D 0, for all k D 1; 2.

2.89 Jacobson’s lemma.

Let A; B 2 M2 .C/ and let C D AB � BA. Prove that C is nilpotent if it
commutes with either A or B.

2.90 Are the matrices equal?

Let A; B 2 M2 .C/ such that Tr.A/ D Tr.B/ and det A D det B. Does it follow
that A D B?

2.91 If A; B 2 M2 .C/ such that Tr.A/ D Tr.B/, then A.A � B/B D B.A � B/A.

2.92 Let A 2 M2 .C/ such that Ak D O2, k 2 N. Prove that .I2 � A/�1 D
I2 C A.

2.93 For any A; B 2 M2 .R/ there exists ˛ 2 R such that .AB � BA/2 D ˛I2.

2.94 (a) Find two matrices A; B 2 M2 .R/ such that A2 C B2 D
�

1 2

2 1

�
.

(b) Prove that any two matrices that verify the equality A2 C B2 D
�

1 2

2 1

�
do not

commute.

2.9 Solutions

2.77. The answer is yes. Since ABAB D O2 ) BABABA D O2 ) .BA/3 D
O2 ) .BA/2 D O2.

2.78. We have, based on Theorem 3.2, that there exist sequences .xn/n2N and .yn/n2N
such that An D xnA C ynI2, for all n 2 N. When n D k one has that Ak D xkA C ykI2

which implies A D 1
xk

.Ak � ykI2/ D
�� 0

� �
�

. Thus, if n 2 N we get An D xnA C

ynI2 D
�� 0

� �
�

.

2.79. Such matrices do not exist. We have, based on Lemma 2.7, that det.ACxB/ D
det AC˛x Cx2 det B, where ˛ 2 Z. If k 2 Z we have det.ACkB/ D det ACmk, for
some m 2 Z. Thus 7 D det.AC5B/ D det..AC2B/C3B/ D det.AC2B/C3m0 D
3.1 C m0/, for some m0 2 Z, which is impossible.
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2.80. Let f .x/ D det.A C xB/ D ˛x C x2 det B, where ˛ 2 Q and det B 2 Q. Since
f .

p
2/ D 2 we get that ˛Cp

2 det B D p
2 which implies that ˛ D 0 and det B D 1.

It follows that det.A C p
pB/ D f .

p
p/ D p det B D p.

2.81. Let f .x/ D det.A C xB/ D 1 C ˛x C x2 det B 2 QŒx�, ˛ 2 Q. Since f .
p

3/ D 4

we get that 1 C ˛
p

3 C 3 det B D 4 which implies, since det B 2 Q, that ˛ D 0 and
det B D 1. Thus f .x/ D 1 C x2 and det.A C p

5B/ D f .
p

5/ D 6.

2.82. Let f .x/ D det.A C xB/ D det A C ˛x C x2 det B 2 QŒx�, ˛ 2 Q. Since
f .

3
p

3/ D 3 we get that det A C ˛
3

p
3 C 3

p
9 det B D 3. It follows that det A D 3 and

˛ D det B D 0. Therefore f .x/ D 3 and det.A C p
2B/ D f .

p
2/ D 3.

2.83. Since Tr.AB/ D Tr.BA/ D 0 we get, based on the Cayley–Hamilton Theorem,
that .AB/2 D � det.AB/I2 D � det.BA/I2 D .BA/2.

2.85. Let �1; �2 be the eigenvalues of A. The eigenvalues of A2nC1 are �2nC1
1 ; �2nC1

2

and we have, since Tr.A/ D �1 C �2 D 0, that Tr.A2nC1/ D �2nC1
1 C �2nC1

2 D
��2nC1

2 C �2nC1
2 D 0.

2.87. Let �1; �2 be the eigenvalues of A. We have Tr.An/ D �n
1 C �n

2 D 0 and
Tr.AnC1/ D �nC1

1 C �nC1
2 D 0. A calculation shows that �1 D �2 D 0 and

Theorem 2.2 implies that A2 D O2.

2.88. Only one implication needs to be proved. Let �1; �2 be the eigenvalues of A
and 	1; 	2 be the eigenvalues of B. An easy calculation shows that the system

(
�1 C �2 D 	1 C 	2

�2
1 C �2

2 D 	2
1 C 	2

2;

implies that �1 D 	1 and �2 D 	2 or �1 D 	2 and �2 D 	1. In both cases one has
that A and B have the same characteristic polynomials.

To prove the second part of the problem observe that a matrix A is nilpotent if and
only if A2 D O2 if and only if A and O2 have the same characteristic polynomials.

2.89. We assume that C D AB � BA commutes with A and we prove that C is
nilpotent. We have Tr.C/ D Tr.AB � BA/ D 0 and Tr.C2/ D Tr.C.AB � BA// D
Tr.CAB/�Tr.CBA/ D Tr.ACB/�Tr.CBA/ D 0. It follows, based on problem 2.88,
that C is nilpotent.

2.90. The matrices are not equal. Let A D
�

2 3

4 6

�
and B D

�
4 16

1 4

�
.

2.91. Theorem 2.2 implies that A2 D .Tr.A//A � .det A/I2 and B2 D .Tr.B//B �
.det B/I2. We have, since Tr.A/ D Tr.B/, that

A.A � B/B D A2B � AB2

D Œ.Tr.A//A � .det A/I2� B � A Œ.Tr.B//B � .det B/I2�

D A det B � B det A:

Similarly one can prove that B.A � B/A D A det B � B det A.
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2.92. If k D 1 we get that A D O2 and we have nothing to prove. Let k � 2. If �

is an eigenvalue of A we get that �k D 0 which implies that � D 0. Thus, all the
eigenvalues of A are 0. This in turn implies, based on Theorem 2.2, that A2 D O2.
We have .I2 � A/.I2 C A/ D I2 � A2 D I2 ) .I2 � A/�1 D I2 C A.

2.93. Let X D AB � BA. Since Tr.X/ D 0 we have, based on Theorem 2.2, that
X2 D ˛I2, where ˛ D � det.AB � BA/.

2.94. (a) A D
�

1 1

1 1

�
and B D

�
0 1

�1 0

�
.

(b) If two such matrices commute, then det.A2 CB2/ D j det.AC iB/j � 0 which

contradicts det.A2 C B2/ D
ˇ̌
ˇ̌ 1 2

2 1

ˇ̌
ˇ̌D �3 < 0.



Chapter 3
Applications of Cayley–Hamilton Theorem

The greatest mathematicians like Archimedes,
Newton, and Gauss have always been able
to combine theory and applications into one.

Felix Klein (1849–1925)

3.1 The nth power of a square matrix of order 2

In this section we prove a theorem which is about calculating the nth power of a
matrix A in terms of both the entry values of A and the eigenvalues of A.

Theorem 3.1 Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A.

(a) If �1 ¤ �2, then for all n � 1 we have An D �n
1B C �n

2C, where

B D A � �2I2

�1 � �2

and C D A � �1I2

�2 � �1

:

(b) If �1 D �2 D �, then for all n � 1 we have An D �nB C n�n�1C, where

B D I2 and C D A � �I2:

Proof Let A D
�

a b
c d

�
and we have A2 � Tr.A/A C .det A/I2 D O2, where Tr.A/ D

a C d and det A D ad � bc. We multiply the preceding identity by An�1 and we get

AnC1 � Tr.A/An C .det A/An�1 D O2

which implies that

AnC1 D Tr.A/An � .det A/An�1: (3.1)

© Springer International Publishing AG 2017
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Let An D
�

an bn

cn dn

�
. Using (3.1) we get that the following recurrence formulae

hold:

anC1 D Tr.A/an � .det A/an�1

bnC1 D Tr.A/bn � .det A/bn�1

cnC1 D Tr.A/cn � .det A/cn�1

dnC1 D Tr.A/dn � .det A/dn�1, n � 2.

Thus, the sequences .an/n�1, .bn/n�1, .cn/n�1, and .dn/n�1 verify the same
recurrence relation

xnC1 D Tr.A/xn � .det A/xn�1; n � 2

which has the characteristic equation �2 � Tr.A/� C det A D 0.
We distinguish the following two cases.

� If �1 ¤ �2 we get that xn D ˛x�
n
1 C ˇx�

n
2, where ˛x; ˇx 2 C. Thus

an D ˛a�n
1 C ˇa�n

2

bn D ˛b�n
1 C ˇb�n

2

cn D ˛c�
n
1 C ˇc�

n
2

dn D ˛d�n
1 C ˇd�n

2.

These imply there exist matrices B; C 2 M2 .C/,

B D
�

˛a ˛b

˛c ˛d

�
and C D

�
ˇa ˇb

ˇc ˇd

�
;

such that An D �n
1B C �n

2C.
� If �1 D �2 D � we get that xn D ˛x�

n C ˇxn�n�1, where ˛x; ˇx 2 C. Thus

an D ˛a�n C ˇan�n�1

bn D ˛b�n C ˇbn�n�1

cn D ˛c�
n C ˇcn�n�1

dn D ˛d�n C ˇdn�n�1.

These imply there exist matrices B; C 2 M2 .C/,

B D
�

˛a ˛b

˛c ˛d

�
and C D

�
ˇa ˇb

ˇc ˇd

�
;

such that An D �nB C �n�1nC.
Matrices B and C are determined by solving a system of linear matrix equations

obtained by giving to n the values 0 and 1 and by considering that A0 D I2.
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Remark 3.1 Theorem 3.1 has an equivalent statement.

If n 2 N, A 2 M2 .C/, and �1; �2 are the eigenvalues of A, then

An D
(

�n
1��n

2

�1��2
A � det A �n�1

1 ��n�1
2

�1��2
I2 if �1 ¤ �2

n�n�1A � .n � 1/�nI2 if �1 D �2 D �:

Theorem 3.2 If A 2 M2 .C/ there exist sequences .xn/n�1 and .yn/n�1 such that

An D xnA C ynI2; for all n 2 N;

where the sequences .xn/n�1 and .yn/n�1 verify the recurrence relations:

xnC1 D Tr.A/xn � .det A/xn�1, n 2 N

ynC1 D Tr.A/yn � .det A/yn�1, n 2 N.

Proof If A D ˛I2, then An D ˛nI2, Tr.A/ D 2˛, det A D ˛2 and we take xn D ˛n

and yn D 0.
If A ¤ ˛I2, we apply Theorem 1.1 and we have, since AnA D AAn, that An D

xnA C ynI2, n 2 N. From AnC1 D xnC1A C ynC1I2 and

AnC1 D AnA D xnA2 C ynA D xn ŒTr.A/A � .det A/I2� C ynA

we obtain xnC1 D xnTr.A/ C yn and ynC1 D �xn det A. Since yn D �xn�1 det A we
have xnC1 D xnTr.A/ � xn�1 det A and similarly, we get that the same recurrence
relation is verified by the sequence .yn/n�1.

Remark 3.2 The characteristic equation of the sequences .xn/n�1 and .yn/n�1 is the
characteristic equation of the matrix A

�2 � Tr.A/� C det A D 0

having the solutions �1; �2, the eigenvalues of A.

� If �1 ¤ �2, a calculation shows that

xn D �n
1 � �n

2

�1 � �2

and yn D � det A
�n�1

1 � �n�1
2

�1 � �2

; n � 1:

� If �1 D �2 D �, we have that xn D n�n�1 and yn D �.n � 1/�n, n � 1.
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3.1.1 Problems

3.1 Let A D
��2 4

�5 7

�
. Calculate An, n 2 N.

3.2 Let A D
�

1 3

�3 �5

�
. Calculate An, n 2 N.

3.3 Let A D
�

1 3

�1 �2

�
. Calculate An, n 2 N.

3.4 Let A D
�

3 �2

2 �1

�
. Calculate An, n 2 N.

3.5 Let A D
�

3 1

�1 1

�
. Calculate An, n 2 N.

3.6 Let A D
�

1 C i 2 � i
2 C i 1 � i

�
. Calculate An, n 2 N.

3.7 Let A D
 b4 b2b2 b2

!
2 M2 .Z5/. Calculate An, n 2 N.

3.8 Let A D
�

1 �1

�1 1

�
.

(a) Prove that An D 2n�1A, 8n 2 N.

(b) Calculate the sum A C A2 C � � � C An.

3.9 Let A D
�

a 1

0 a

�
, a 2 R. Calculate det.A C A2 C � � � C An/, n 2 N.

3.10 Prove that

�p
3 �1

1
p

3

�12

D 212

�
1 0

0 1

�
:

3.11 An invitation to circulant matrices.

� A matrix of the form C.a; b/ D
�

a b
b a

�
, a; b 2 C, is called a circulant

matrix. Let C D fC.a; b/ W a; b 2 C g be the set of circulant matrices.
Then:

(continued)
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3.11 (continued)

(a) C.1; 0/ D I2, C.0; 1/ D
�

0 1

1 0

�
D C, C2n D I2, C2nC1 D C, n 2 N

and C.a; b/ D aI2 C bC, a; b 2 C.

(b) C is closed under addition and multiplication of matrices, i.e., if A; B 2
C , then A C B 2 C , AB 2 C and the following formulae hold

C.a; b/ C C.c; d/ D C.a C c; b C d/

C.a; b/C.c; d/ D C.ac C bd; ad C bc/.

(c) The nth power of a circulant matrix. We have

Cn.a; b/ D C

�
.a C b/n C .a � b/n

2
;

.a C b/n � .a � b/n

2

�
; n 2 N:

(d) The eigenvalues of C are �1 D 1 and �2 D �1 and the eigenvalues of
the matrix C.a; b/ are 	1 D aCb and 	2 D a�b. The Jordan canonical

form of the matrix C.a; b/ is given by JC.a;b/ D
�

a C b 0

0 a � b

�
and the

invertible matrix P which verifies the equality JC.a;b/ D P�1C.a; b/P is

given by P D
�

1 �1

1 1

�
.

(e) If n 2 N and An is a circulant matrix which is not of the form ˛I2,
˛ 2 C, then A is also a circulant matrix.

(f) The matrix C.a; b/ is invertible if and only if a2 ¤ b2 and

C�1.a; b/ D C

�
a

a2 � b2
; � b

a2 � b2

�
:

(g) .C ; C; �/ is a commutative ring with unity, a subring of .M2 .C/ ; C; �/,
in which the group of invertible elements .U.C /; �/ consists of invert-
ible circulant matrices.

(h) If X; Y 2 M2 .C/ are such that XY D C.a; b/, a2 ¤ b2, then X
commutes with Y if and only if both X and Y are circulant matrices.

(i) The group .C ; C/ is a vector space over C of dimension 2 with
canonical base BC D fI2; Cg.

� Let a; b 2 C and let D.a; b/ D
�

a b
�b �a

�
D aD1 C bD2, where D1 D

�
1 0

0 �1

�
, D2 D

�
0 1

�1 0

�
and let D D fD.a; b/ W a; b 2 Cg.

(continued)
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3.11 (continued)

Then:

(j) D2
1 D I2, D2

2 D �I2, D1D2 D C, D2D1 D �C, CD1 D �D2, D1C D
D2, CD2 D �D1, D2C D D1.

(k) D2n
1 D I2, D2nC1

1 D D1, D4n
2 D I2, D4nC1

2 D D2, D4nC2
2 D �I2,

D4nC3
2 D �D2, n 2 N.

(l) The matrix D.a; b/ is invertible if and only if a2 ¤ b2 and

D�1.a; b/ D D

�
a

a2 � b2
;

b

a2 � b2

�
:

(m) .D ; C/ is a vector space over C of dimension 2 with canonical basis
BD D fD1; D2g.

(n) If A; B 2 D , then AB 2 C .

(o) If A 2 C and B 2 D , then AB 2 D and BA 2 D .

(p) A direct sum. M2 .C/ D C ˚D . Any matrix A D
�

a b
c d

�
2 M2 .C/

has a unique writing as A D C.x; y/CD.z; t/, where x D aCd
2

, y D bCc
2

,
z D a�d

2
and t D b�c

2
.

Nota bene. Any matrix A 2 M2 .C/ can be written uniquely as the
sum of a circulant and a zero trace matrix.

(q) Orthogonality. The function h�; �i W M2 .C/�M2 .C/ ! C defined by
hA; Bi D Tr.AB�/ is an inner product on M2 .C/ and .M2 .C/ ; h�; �i/
is an Euclidean space.

If C.a; b/ 2 C and D.c; d/ 2 D , then D�.c; d/ D D
�
c; �d

�
and

hC.a; b/; D.c; d/i D 0. Thus, the subspaces C and D are orthogonal.
Property .o/ implies that C is the orthogonal complement of D in
M2 .C/, i.e., C D D? and D D C?.

We also have

C D fC 2 M2 .C/ W Tr.CD�/ D 0; 8D 2 Dg

and

D D fD 2 M2 .C/ W Tr.CD�/ D 0; 8C 2 C g :

Nota bene. BM2.C/ D fI2; C; D1; D2g is an orthogonal basis of
M2 .C/ with jjI2jj D jjCjj D jjD1jj D jjD2jj D p

2.
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3.12 Double stochastic matrices.

(a) Prove that

�
a 1 � a

1 � a a

�n

D 1

2

�
1 C .2a � 1/n 1 � .2a � 1/n

1 � .2a � 1/n 1 C .2a C 1/n

�
; a 2 Œ0; 1�:

(b) Let � 2 R. Prove that

�
cos2 � sin2 �

sin2 � cos2 �

�n

D 1

2

�
1 C cosn.2�/ 1 � cosn.2�/

1 � cosn.2�/ 1 C cosn.2�/

�
:

Remark 3.3 The matrices in parts (a) and (b) of problem 3.12 are called double
stochastic matrices. A double stochastic matrix is a square matrix with nonnegative
entries (representing a probability) with each row and column summing to 1.

3.13 Calculate An, where

A D
�

1 C a �a
�b 1 C b

�
; a; b 2 R; n 2 N:

3.14 Let ˛ 2 R
�. Calculate

�
1 ˛2

1 1

�n

; n 2 N:

3.15 Let a 2 C. Calculate

�
2a �a2

1 0

�n

; n 2 N:

3.16 The nth power of an L matrix.

Let a; b 2 R with a ¤ b and ab > 0. Calculate

�
a b
a a

�n

.

3.17 Let a; b 2 R such that ab > 0. Prove that

�
1 a
b 1

�n

D

0
BB@

.1 C p
ab/n C .1 � p

ab/n

2

a.1 C p
ab/n � a.1 � p

ab/n

2
p

ab
b.1 C p

ab/n � b.1 � p
ab/n

2
p

ab

.1 C p
ab/n C .1 � p

ab/n

2

1
CCA :
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3.18 Let A D
�

a b
c d

�
2 M2 .R/ be such that a ¤ d, b ¤ c, b ¤ 0, c ¤ 0.

If An D
�

an bn

cn dn

�
, n 2 N, prove that

bn

b
D cn

c
D an � dn

a � d
.

3.19 Let A D
�

a b
�b a

�
2 M2 .R/ such that a2 C b2 < 1. Prove the matrix An,

n 2 N, is of the following form

�
an bn

�bn an

�
;

where .an/n�1 and .bn/n�1 are sequences which converge to 0.

3.20 A Pythagorean triple1 consists of three positive integers a, b and c such that
a2 C b2 D c2. Let .a; b; c/ be a Pythagorean triple and let

A D
�

a �b
b a

�
2 M2 .Z/ :

Let .an/n�1 and .bn/n�1 be the sequences defined by An D
�

an �bn

bn an

�
, n � 1.

Prove that bn ¤ 0, for all n � 1.

3.21 For a 2 R, we let Xa D
�

a 1

�1 a

�
and let

Xn
a D

�
an bn

�bn an

�
; n � 1:

Prove there exists a 2 R such that

b1 < a1; b2 < a2; b3 < a3; : : : ; b2016 < a2016 and b2017 > a2017:

3.22 Let a; b; c; d be real numbers in arithmetic progression. If

A D
�

a b
c d

�
and An D

�
an bn

cn dn

�
; n 2 N;

prove the real numbers bn � an, cn � dn, and dn � cn are in arithmetic progression.

1A fundamental formula for generating Pythagorean triples given an arbitrary pair of positive
integers m and n with m > n is Euclid’s formula. The formula states that the integers a D m2 � n2,
b D 2mn, and c D m2 C n2 form a Pythagorean triple [15, p. 165].
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3.23 Let A 2 M2 .Z/ be an invertible matrix such that A�1 2 M2 .Z/. Let

An D
�

an bn

cn dn

�
; n � 1:

Prove that .an; bn/ D .an; cn/ D .bn; dn/ D .cn; dn/ D 1, where .x; y/ denotes
the greatest common divisor of integers x and y.

3.24 Another Fibonacci matrix.

Let .Fn/n�0 be the Fibonacci sequence defined by the recurrence relation

F0 D 0, F1 D 1 and FnC1 D Fn C Fn�1; 8n � 1 and let A D
�

0 1

1 1

�
.

Prove that:

(a) An D
�

Fn�1 Fn

Fn FnC1

�
, 8 n � 1.

(b) Two properties of the Fibonacci sequence.

(
FnCm�1 D FnFm C Fn�1Fm�1; 8 m; n � 1

Fn�1FnC1 � F2
n D .�1/n; n � 1:

(c) The nth term of the Fibonacci sequence.

Fn D 1p
5

" 
1 C p

5

2

!n

�
 

1 � p
5

2

!n#
; 8 n � 0:

3.25 Let A D
�

1 1

1 2

�
and let .Fn/n�1 be the Fibonacci sequence defined by F1 D 1,

F2 D 1 and FnC1 D Fn C Fn�1, n � 2.

(a) Prove that An D
�

F2n�1 F2n

F2n F2nC1

�
, n � 1.

(b) If the sequences .xn/n�1 and .yn/n�1 verify the recurrence relation

�
xnC1

ynC1

�
D

A

�
xn

yn

�
, n � 1, and

�
x1

y1

�
D
�

1

1

�
, prove that x2

nC1 C xnC1ynC1 � y2
nC1 D

x2
n C xnyn � y2

n, for all n � 1.
(c) Prove that if the natural numbers x; y 2 N verify the equation x2 C xy � y2 D 1,

then there exists n 2 N such that .x; y/ D .F2n�1; F2n/.
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3.26 Let A D
�

1 1

0 1

�
. Determine the sequences .xn/n�1 and .yn/n�1 such that An D

xnA C ynI2, n 2 N and calculate lim
n!1

xn

yn
.

3.27 Let A D
�

a b
c d

�
2 M2 .R/ be a matrix such that j det Aj � 1 and let

An D
�

an bn

cn dn

�
, n � 1. Prove the sequences .an/n�1, .bn/n�1, .cn/n�1, and .dn/n�1

converge if and only if A D I2.

3.1.2 Solutions

3.1. The characteristic equation of A is �2 � 5� C 6 D 0, which implies that �1 D 2

and �2 D 3. It follows that An D 2nB C 3nC, where B; C 2 M2 .R/. We determine
matrices B and C by letting n D 0 and n D 1 and it follows that

B D
�

5 �4

5 �4

�
and C D

��4 4

�5 5

�
:

Thus,

An D
�

5 � 2n � 4 � 3n 4 � 3n � 4 � 2n

5 � 2n � 5 � 3n 5 � 3n � 4 � 2n

�
; n 2 N:

3.2. An D .�2/n�1

�
3n � 2 3n
�3n �3n � 2

�
, n 2 N.

3.3. The characteristic equation of A is �2 C � C 1 D 0, so A2 C A C I2 D O2. We
multiply this equality by A � I2 and we get that A3 D I2. Thus, An D I2 if n D 3k,
An D A if n D 3k C 1, and An D A2 if n D 3k C 2.

3.4. An D
�

2n C 1 �2n
2n �2n C 1

�
, n 2 N.

3.5. The characteristic equation of A is .� � 2/2 D 0, so we have .A � 2I2/2 D O2.

Let B D A � 2I2 D
�

1 1

�1 �1

�
and we observe that B2 D O2. We have, based on

the Binomial Theorem, that

An D .2I2 C B/n D 2nI2 C n2n�1B D
�

2n C n2n�1 n2n�1

�n2n�1 2n � n2n�1

�
:
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3.6. A D I2 C B where B D
�

i 2 � i
2 C i �i

�
and B2 D 4I2. A calculation shows that

if k � 1 is an integer, then B2k�1 D 4k�1B and B2k D 4kI2. We have

A2n D
2nX

kD0

 
2n

k

!
Bk

D
nX

iD0

 
2n

2i

!
B2i C

nX
iD1

 
2n

2i � 1

!
B2i�1

D
nX

iD0

 
2n

2i

!
4iI2 C

nX
iD1

 
2n

2i � 1

!
4i�1B

D 32n C 1

2
I2 C 32n � 1

4
B

and A2n�1 D A2n�2A, n � 1.

3.7. An D
 
4.2n C 1/3n

b4n3n

22n3n�1 5.4n C 3/3n�1

!
, n 2 N.

3.8. (a) This part of the problem can be solved either by mathematical induction or
by direct computation.

(b) We have

A C A2 C � � � C An D A C 2A C 22A C � � � C 2n�1A

D �
1 C 2 C 22 C � � � C 2n�1

�
A

D .2n � 1/A:

3.9. We have An D
�

an nan�1

0 an

�
. If a D 1, then

nX
iD1

Ai D
nX

iD1

�
1 i
0 1

�
D
�

n n.nC1/

2

0 n

�

which implies det.A C A2 C � � � C An/ D n2.
If a ¤ 1, then

nX
iD1

Ai D
nX

iD1

�
ai iai�1

0 ai

�
D

0
BB@

nP
iD1

ai
nP

iD1

iai�1

0
nP

iD1

ai

1
CCA D

0
@ a.1�an/

1�a

nP
iD1

iai�1

0
a.1�an/

1�a

1
A
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which implies det.A C A2 C � � � C An/ D a2
�

1�an

1�a

�2
.

3.10. We have

�p
3 �1

1
p

3

�
D 2

�
cos �

6
� sin �

6

sin �
6

cos �
6

�
.

Thus,

�p
3 �1

1
p

3

�12

D 212

�
cos 2� � sin 2�

sin 2� cos 2�

�
D 212I2.

3.11. These properties of the circulant matrices can be checked by direct computa-
tion.

3.12. The matrix in part (a) is a circulant matrix and part (b) follows from part (a)
by setting a D cos2 � .

3.13. We note that A D I2 C B, where B D
�

a �a
�b b

�
. We have B2 D .a C b/B and

Bk D .a C b/k�1B, 8k � 1. Thus,

An D .I2 C B/n

D I2 C
nX

kD1

 
n

k

!
Bk

D I2 C
"

nX
kD1

 
n

k

!
.a C b/k�1

#
B

D I2 C .a C b C 1/n � 1

a C b
B;

if a C b ¤ 0. If a C b D 0 we have that An D I2 C nB.

3.14. We have

�
1 ˛2

1 1

�n

D .1 C ˛/n C .1 � ˛/n

2
I2 C .1 C ˛/n � .1 � ˛/n

2˛

�
0 ˛2

1 0

�
:

3.15.
�

2a �a2

1 0

�n

D an�1

�
a.n C 1/ �na2

n a.�n C 1/

�
, n 2 N.

3.16. Observe that

�
a b
a a

�
D a

�
1 ˛2

1 1

�
, where ˛2 D b

a and use problem 3.14.

3.18. Since AnA D AAn we have that

�
an bn

cn dn

��
a b
c d

�
D
�

a b
c d

��
an bn

cn dn

�
;

and this implies
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8̂
ˆ̂̂<
ˆ̂̂̂
:

aan C bnc D aan C bcn

anb C bnd D abn C bdn

cna C dnc D can C dcn

cnb C dnd D cbn C ddn;

for all n � 1. From the first or the fourth equation we get that bnc D bcn, which
implies that bn

b D cn
c , 8n � 1. The second equation implies that an�dn

a�d D bn
b , 8n � 1.

3.19. Observe that A D
p

a2 C b2

�
cos � sin �

� sin � cos �

�
, where cos � D ap

a2 C b2
and

sin � D bp
a2 C b2

. It follows, proved it by mathematical induction, that

An D .a2 C b2/
n
2

�
cos n� sin n�

� sin n� cos n�

�
; n � 1:

Thus, an D .a2 Cb2/
n
2 cos n� and bn D .a2 Cb2/

n
2 sin n� and, since a2 Cb2 < 1,

we have that lim
n!1 an D lim

n!1 bn D 0.

3.20. Let B D 1

c
A D

�
x �y
y x

�
, where x D a

c and y D b
c . Since a2 C b2 D c2 there

exists t 2 Œ0; 2�/ such that x D cos t 2 Q and y D sin t 2 Q. This implies that

An D cn

�
cos nt � sin nt
sin nt cos nt

�
;

so an D cn cos nt and bn D cn sin nt.
By contradiction, we assume that bn D 0. This implies sin nt D 0 and cos nt D

˙1, so cos 2nt D 2 cos2 nt � 1 D 1. We prove that if cos t 2 Q and cos 2nt D 1,
then cos t 2 ˚0; ˙1; ˙ 1

2

�
. We need the following lemma.

Lemma 3.1 There exists a monic polynomial of degree n, Pn 2 ZŒx� such that
2 cos nt D Pn.2 cos t/, t 2 R, n 2 N.

Proof We prove the lemma by induction on n. If n D 1 we let P1.x/ D x. If
n D 2, then P2.x/ D x2 � 2. Using the formula 2 cos.n C 1/t C 2 cos.n � 1/t D
.2 cos t/.2 cos nt/ we get that PnC1.x/ C Pn�1.x/ D xPn.x/ and this implies that if
both Pn and Pn�1 are monic polynomials, then PnC1 is a monic polynomial as well.
This proves the lemma. ut
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The equation cos.2nt/ D 1 implies, based on the previous lemma, that

2 cos.2nt/ D .2 cos t/2n C � � � D 2 , x2n C � � � D 0;

where x D 2 cos t 2 Q. Since the rational roots of a monic polynomial with integer
coefficients are integer roots we get that 2 cos t 2 Z. This implies that 2 cos t 2
f0; ˙1; ˙2g , cos t 2 ˚0; ˙1; ˙ 1

2

�
.

� if cos t D a
c D 0 we get a D 0 which is a contradiction with a ¤ 0.

� if cos t D ˙ 1
2

we get that sin t D ˙
p

3
2

… Q, which contradicts sin t 2 Q.

� if cos t D ˙1 we have sin t D 0 and, since sin t D b
c , we get that b D 0 which

contradicts b ¤ 0.

Thus, our assumption that bn D 0 is false and the problem is solved.

3.21. We write Xa D p
1 C a2

�
cos t sin t

� sin t cos t

�
, where t 2 Œ0; 2�/ and cos t D

ap
1Ca2

, sin t D 1p
1Ca2

. This implies

Xn
a D

p
1 C a2

n
�

cos nt sin nt
� sin nt cos nt

�

and the conditions of the problem become cos nt > sin nt, for n D 1; 2; : : : ; 2016

and cos 2017t < sin 2017t.
We choose t D �

8066
and we let b D sin2 �

8066
. This implies, since sin t D 1p

1Ca2
,

that a D
q

1�b
b .

3.22. Let r be the ratio of the arithmetic progression a; b; c; d.
There exist sequences of real numbers .˛n/n2N and .ˇn/n2N such that An D ˛nAC

ˇnI2. This implies

8̂̂
ˆ̂<
ˆ̂̂̂:

an D ˛na C ˇn

bn D ˛nb

cn D ˛nc

dn D ˛nd C ˇn:

Thus, bn � an C dn � cn D .bn C dn/ � .an C cn/ D ˛n.b � a C d � c/ D 2r˛n and
2.cn � bn/ D 2˛n.c � b/ D 2r˛n, 8n � 1.

3.23. The equality AA�1 D I2 implies det A det
�
A�1

� D 1. Since det A; det
�
A�1

� 2
Z we get that det A D det

�
A�1

� 2 f�1; 1g. We have det.An/ D detn A 2 f�1; 1g
, andn �bncn 2 f�1; 1g. If .an; bn/ D ˛, then ˛ divides andn �bncn, so ˛ divides 1

or �1 and this implies ˛ D 1. Similarly, we have .an; cn/ D .bn; dn/ D .cn; dn/ D 1.

3.24. (a) This part of the problem can be solved either by mathematical induction or
by direct computation (the eigenvalue technique).



3.1 The nth power of a square matrix of order 2 121

(b) Since AnCm D AnAm we have that

�
FnCm�1 FnCm

FnCm FnCmC1

�
D
�

Fn�1 Fn

Fn FnC1

��
Fm�1 Fm

Fm FmC1

�
:

We look at .1; 1/ entry of this identity and we have FnCm�1 D FnFm C Fn�1Fm�1,
8 m; n � 1. On the other hand, det.An/ D detn A ) Fn�1FnC1 � F2

n D .�1/n,
n � 1.

(c) A calculation shows that the eigenvalues of A are ˛ D 1Cp
5

2
and ˇ D 1�p

5
2

.
It follows, based on Remark 3.1, that

�
Fn�1 Fn

Fn FnC1

�
D
�

0 1

1 1

�n

D ˛n � ˇn

˛ � ˇ
A C ˛n�1 � ˇn�1

˛ � ˇ
I2; n � 1:

Looking at .1; 2/ entry of this equality part (c) of the problem is solved.

3.25. The problem is about solving the diophantine equation x2 C xy � y2 D 1. This
equation can be written equivalently as .2x C y/2 �5y2 D 4 which is a Pell equation
of the form x2 � dy2 D k.

3.26. Since A D 1A C 0I2 we have x1 D 1 and y1 D 0. Also, A2 � 2A C I2 D O2

which implies A2 D 2A � I2. Let An D xnA C ynI2. We have

AnC1 D AnA D .xnA C ynI2/A D xnA2 C ynA D xn.2A � I2/ C ynA

D .2xn C yn/A � xnI2 D xnC1A C ynC1I2:

This implies xnC1 D 2xn C yn, ynC1 D �xn, 8n � 1. It follows that xnC1 � 2xn �
xn�1 D 0, 8n � 1. The characteristic equation r2 � 2r C 1 D 0 implies r D 1.
Therefore, xn D ˛ C ˇn, where ˛; ˇ 2 R. Since x1 D 1 and x2 D 2 we get that
˛ D 0, ˇ D 1 which implies that xn D n and yn D �n C 1. Thus, lim

n!1
xn
yn

D �1.

3.27. If the sequences .an/n�1, .bn/n�1, .cn/n�1, and .dn/n�1 converge, then the
sequence with the general term andn � bncn D detn A converges. This implies
that det A 2 .�1; 1� and since j det Aj � 1 we get that det A D 1. Clearly, A
verifies the equation A2 � .a C d/A C .det A/I2 D O2. We multiply this equation
by An�1 and we get that AnC1 � .a C d/An C .det A/An�1 D O2. This implies
that sequences .an/n�1, .bn/n�1, .cn/n�1 and .dn/n�1 verify the recurrence relation
xnC1 � .a C d/xn C .det A/xn�1 D 0. Passing to the limit in the preceding equality
we get that lx.1 � a � d C det A/ D 0 , lx.2 � a � d/ D 0, where lx D lim

n!1 xn.

If a C d ¤ 2 we get that lx D 0 and this implies that sequences .an/n�1, .bn/n�1,
.cn/n�1 and .dn/n�1 converge to 0, which contradicts

lim
n!1.andn � bncn/ D lim

n!1.det A/n D 1:
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Therefore, we must have a C d D 2 and we have AnC1 � 2An C An�1 D O2, 8n � 1.
Equivalently, AnC1 � An D An � An�1, 8n � 1, which implies An D I2 C n.A � I2/,
8n � 1. Hence, an D 1 C n.a � 1/, bn D nb, cn D nc and dn D 1 C n.d � 1/. These
sequences converge if and only if a D 1, b D 0, c D 0 and d D 1, so A D I2.

3.2 Sequences defined by systems of linear recurrence
relations

In this section we bring into light a method for determining the general term of
sequences defined by systems of linear recurrence relations.

Theorem 3.3 Let

A D
�

a b
c d

�
2 M2 .C/

and let .xn/n�0 and .yn/n�0 be the sequences defined by the system of linear
recurrence relations

(
xnC1 D axn C byn

ynC1 D cxn C dyn; n � 0:
(3.2)

Then

�
xn

yn

�
D An

�
x0

y0

�
; 8 n � 0:

Let �1; �2 be the eigenvalues of A.

� If �1 ¤ �2, then

(
xn D ˛�n

1 C ˇ�n
2

yn D ��n
1 C ı�n

2;

for some ˛; ˇ; �; ı 2 C.

� If �1 D �2 D �, then

(
xn D �n.˛ C ˇn/

yn D �n.� C ın/;

for some ˛; ˇ; �; ı 2 C.
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Proof The system (3.2) can be written in the following form

�
xnC1

ynC1

�
D
�

a b
c d

��
xn

yn

�
or

�
xnC1

ynC1

�
D A

�
xn

yn

�
; 8 n � 0:

It follows that

�
xnC1

ynC1

�
D A

�
xn

yn

�
D A2

�
xn

yn

�
D � � � D AnC1

�
x0

y0

�
:

Thus

�
xn

yn

�
D An

�
x0

y0

�

and the problem reduces to the computation of An.
The second part of the theorem follows based on Theorem 3.1. ut

3.2.1 Problems

3.28 Find the general terms of the sequences .xn/n2N and .yn/n2N defined by the
system of linear recurrence relations

(
xnC1 D 3xn C yn

ynC1 D �xn C yn; n � 1;

where x1 D 1 and y1 D �2.

3.29 Find the general terms of the sequences .xn/n�0 and .yn/n�0 defined by the
system of linear recurrence relations

(
xnC1 D xn C 2yn

ynC1 D �2xn C 5yn; n � 0;

where x0 D 1 and y0 D 2.

3.30 Prove the sequences .xn/n�0 and .yn/n�0 defined by the system

(
2xn D p

3xn�1 C yn�1

2yn D �xn�1 C p
3yn�1; n � 1;

are periodic and have the same period.
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3.31 (a) Find the general terms of sequences .xn/n�0 and .yn/n�0 defined by the
system of linear recurrence relations

8̂
<
:̂

xnC1 D xn C 3yn

4

ynC1 D 3xn C 2yn

5
;

where x0; y0 2 R.
(b) Find lim

n!1 xn and lim
n!1 yn.

3.32 Let .an/n�0 and .bn/n�0 be the sequences defined by

a0 D 1; b0 D 4; anC1 D an C 2bn

3
; bnC1 D an C 3bn

4
; 8n � 0:

Prove that:

(a) the sequence .cn/n2N defined by cn D bn � an is a geometric progression;
(b) the sequence .dn/n2N defined by dn D 3an C 8bn is constant;
(c) calculate lim

n!1 an and lim
n!1 bn.

3.33 A geometric progression. Let A D
�

a b
c d

�
2 M2 .C/ and let .xn/n2N

and .yn/n2N be the sequences defined by

(
xnC1 D axn C byn

ynC1 D cxn C dyn;

n 2 N. Prove that if � 2 C is an eigenvalue for AT and Z D
�

˛

ˇ

�
is the

corresponding eigenvector, then the sequence .un/n2N defined by un D ˛xn C
ˇyn is a geometric progression.

3.34 Let .xn/n�1 and .yn/n�1 be the sequences defined by

(
xn D �3xn�1 � yn�1 C n

yn D xn�1 C yn�1 � 2;

for all n � 2 and x1 D y1 D 1. Find the general terms of the sequences .xn/n�1 and
.yn/n�1.

3.35 Let .xn/n�0 and .yn/n�0 be the sequences defined by the system
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(
xnC1 D .1 � a/xn C ayn

ynC1 D bxn C .1 � b/yn; n � 0;

where a; b 2 .0; 1/ and x0; y0 2 R. Calculate lim
n!1 xn and lim

n!1 yn.

3.36 Study the convergence of the sequences .xn/n�0 and .yn/n�0 defined by the
system of linear recurrence relations

(
xnC1 D axn � byn

ynC1 D bxn C ayn;

where a; b; x0; y0 2 R and a2 C b2 � 1.

3.37 Let .tn/n�0 be a sequence of real numbers such that tn 2 .0; 1/, 8n � 0 and
there exists lim

n!1 tn 2 .0; 1/. Prove the sequences .xn/n�0 and .yn/n�0 defined by the

recurrence relations

(
xnC1 D tnxn C .1 � tn/yn

ynC1 D .1 � tn/xn C tnyn; 8n � 0;

are convergent and calculate their limits.

3.38 An IMO 2013 shortlist problem.
Let n be a positive integer and let a1; a2; : : : ; an�1 be arbitrary real numbers.

Define the sequences u0; u1; : : : ; un and v0; v1; : : : ; vn inductively by u0 D u1 D
v0 D v1 D 1 and ukC1 D uk C akuk�1, vkC1 D vk C an�kvk�1, for k D 1; : : : ; n � 1.
Prove that un D vn.

3.2.2 Solutions

3.28. xn D 2n�1 � .n � 1/2n�2, yn D .n � 1/2n�2 � 2n, 8n � 1.

3.29. xn D 3n�1.2n C 3/, yn D 3n�1.2n C 6/, 8n � 0.

3.30. xn D
�

cos
n�

6

�
x0 C

�
sin

n�

6

�
y0, yn D �

�
sin

n�

6

�
x0 C

�
cos

n�

6

�
y0,

n � 0. Since xnC12 D xn and ynC12 D yn, 8n � 0, the sequences are periodic of
period 12.

3.31. (a) A calculation shows that

xn D



4

9
C
�

� 7

20

�n
5

9

�
x0 C



5

9
�
�

� 7

20

�n
5

9

�
y0

yn D



4

9
�
�

� 7

20

�n
4

9

�
x0 C



5

9
C
�

� 7

20

�n
4

9

�
y0.
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(b) lim
n!1 xn D lim

n!1 yn D 4x0 C 5y0

9
.

3.32. Solution 1. Let A D

0
B@

1

3

2

3
1

4

3

4

1
CA. We have

�
an

bn

�
D A

�
an�1

bn�1

�
D � � � D An

�
a0

b0

�
D An

�
1

4

�
:

The eigenvalues of A are �1 D 1, �2 D 1
12

and we have, based on Theorem 3.1, that

An D B C 1

12n
C, n 2 N, where

B D 1

11

�
3 8

3 8

�
and C D 1

11

�
8 �8

�3 3

�
:

It follows that an D 1

11

�
35 � 24

12n

�
and bn D 1

11

�
35 C 9

12n

�
.

(a) bn � an D 3

12n
, n � 0, which is a geometric progression of ratio 1

12
.

(b) 3an C 8bn D 35, n � 0.

(c) lim
n!1 an D lim

n!1 bn D 35

11
.

Solution 2. (a) We have

cnC1

cn
D bnC1 � anC1

bn � an
D

1
4
an C 3

4
bn � 1

3
an � 2

3
bn

bn � an
D

1
12

bn � 1
12

an

bn � an
D 1

12
:

(b) dnC1 D 3anC1 C 8bnC1 D an C 2bn C 2an C 6bn D 3an C 8bn D dn, 8n � 0.
This implies dn D d0 D 3a0 C 8b0 D 35, 8n � 0.

(c) We have, based on part (a), that cn D bn � an D 3

12n
and it follows that

lim
n!1 an D lim

n!1 bn. Using part (b) of the problem we get that 3 lim
n!1 anC8 lim

n!1 bn D
35 and we have lim

n!1 an D lim
n!1 bn D 35

11
.

3.33. We have ATZ D �Z which implies that

(
a˛ C cˇ D �˛

b˛ C dˇ D �ˇ:
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We calculate

unC1

un
D ˛xnC1 C ˇynC1

˛xn C ˇyn

D ˛.axn C byn/ C ˇ.cxn C dyn/

˛xn C ˇyn

D .˛a C ˇc/xn C .˛b C ˇd/yn

˛xn C ˇyn

D �˛xn C �ˇyn

˛xn C ˇyn

D �:

Thus, the sequence .un/n2N is a geometric progression of ratio � which is also an
eigenvalue of A.

3.34. Let xn D un C an C b and yn D vn C cn C d, n � 1. A calculation shows
a D 0, b D 3, c D 1, and d D �11, so xn D un C 3 and yn D vn C n � 11, n � 1.
The system of recurrence relations becomes

(
un D �3un�1 � vn�1

vn D un�1 C vn�1;

for n � 2. Solving the system we obtain, after some calculations, that

� xn D �2
p

3 � 7

2
p

3
.
p

3 � 1/n�1 C 7 � 2
p

3

2
p

3
.�1 � p

3/n�1 C 3

� yn D 20 C 11
p

3

2
p

3
.
p

3 � 1/n�1 C 11
p

3 � 20

2
p

3
.�1 � p

3/n�1 C n � 11.

3.35. We write the system in the matrix form

�
xnC1

ynC1

�
D
�

1 � a a
b 1 � b

��
xn

yn

�
or

�
xnC1

ynC1

�
D A

�
xn

yn

�
;

where

A D
�

1 � a a
b 1 � b

�
:

It follows that

�
xn

yn

�
D An

�
x0

y0

�
. We calculate An. The eigenvalues of A are �1 D 1,

�2 D 1 � a � b and we note that �1 ¤ �2 since a C b ¤ 0. It follows that
An D B C .1 � a � b/nC, where
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B D 1

a C b

�
b a
b a

�
and C D 1

a C b

�
a �a

�b b

�
:

Thus

An D 1

a C b

�
b C a.1 � a � b/n a � a.1 � a � b/n

b � b.1 � a � b/n a C b.1 � a � b/n

�
;

which implies

xn D 1

a C b
fŒb C a.1 � a � b/n�x0 C Œa � a.1 � a � b/n�y0g

yn D 1

a C b
fŒb � b.1 � a � b/n�x0 C Œa C b.1 � a � b/n�y0g.

A calculation shows, since j1 � a � bj < 1, that lim
n!1 xn D lim

n!1 yn D bx0 C ay0

a C b
.

3.36. Let Un D
�

xn

yn

�
and let A D

�
a �b
b a

�
. Since UnC1 D AUn we get that

Un D AnU0. Let r D p
a2 C b2 and let t 2 Œ0; 2�/ such that a D r cos t and

b D r sin t. It follows that

An D rn

�
cos nt � sin nt
sin nt cos nt

�
;

which implies that xn D rn.x0 cos nt �y0 sin nt/ and yn D rn.x0 sin nt Cy0 cos nt/.

� If r 2 Œ0; 1/, then .xn/n�0 and .yn/n�0 converge and lim
n!1 xn D lim

n!1 yn D 0.

� If r D 1 and t 2 �Q, then .xn/n�0 and .yn/n�0 are periodic. If t D p
q � , .p; q/ D

1, the sequences .xn/n�0 and .yn/n�0 have the same period 2q.
� If r D 1 and t 2 �.R n Q/, then .xn/n�0 and .yn/n�0 are dense in the interval


�
q

x2
0 C y2

0;

q
x2

0 C y2
0

�
.

3.37. Let Un D
�

xn

yn

�
and let An D

�
tn 1 � tn

1 � tn tn

�
. Since UnC1 D AnUn, n � 0, we

have that UnC1 D AnAn�1 � � � A0U0. We calculate the matrix product AnAn�1 � � � A0.
The eigenvalues of An are �1 D 1 and �2 D 2tn � 1 and the corresponding

eigenvectors are X1 D
�

1

1

�
and X2 D

��1

1

�
(they are the same for all n). If

P D
�

1 �1

1 1

�
) An D P

�
1 0

0 2tn � 1

�
P�1:
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This implies that

AnAn�1 � � � A0 D P

�
1 0

0 sn

�
P�1;

where sn D
nY

kD0

.2tk � 1/.

If one of the terms of the sequence .tn/n�0 is 1
2
, i.e., tn0 D 1

2
, then sn D 0, 8n �

n0. If all of the terms of .tn/n�0 are different from 1
2
, we obtain, since lim

n!1
snC1

sn
D

lim
n!1.2tnC1 � 1/ 2 .�1; 1/, that lim

n!1 sn D 0 and this implies that

lim
n!1 UnC1 D P

�
1 0

0 0

�
P�1

�
x0

y0

�
:

Thus, lim
n!1 xn D x0 C y0

2
D lim

n!1 yn.

3.38. For k D 1; 2; : : : ; n � 1; let xkC1 D ukC1 � uk, ykC1 D vkC1 � vk and let

Ak D
�

1 C ak �ak

ak �ak

�
. The following relations hold

�
ukC1

xkC1

�
D Ak

�
uk

xk

�
and

�
vkC1

ykC1

�
D An�k

�
vk

yk

�

and it follows that

�

�
un

xn

�
D An�1An�2 � � � A1

�
u1

x1

�
D An�1An�2 � � � A1

�
1

0

�

�

�
vn

yn

�
D A1A2 � � � An�1

�
v1

y1

�
D A1A2 � � � An�1

�
1

0

�
.

This implies un D vn.

Remark 3.4 If a1 D a2 D � � � D an�1 D 1, then we have un D vn D FnC1.

3.3 Sequences defined by homographic recurrence relations

In this section we discuss sequences defined by homographic recurrence relations.

Definition 3.1 The function f W R n
	

�d

c



! R, f .x/ D ax C b

cx C d
, a; b; c; d 2 R is

called a homographic function and
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Mf D
�

a b
c d

�

is the matrix associated with f .

� If D � R and f ; g W D ! R are homographic functions, then f ı g and
f n D f ı f ı � � � ı f„ ƒ‚ …

n functions

, n 2 N, are homographic functions and we have the following

relations involving their associated matrices

Mf ıg D Mf Mg and Mf n D Mn
f ; n 2 N:

Definition 3.2 A sequence defined by a recurrence relation xnC1 D f .xn/, where f
is a homographic function is called a homographic sequence. Thus, a homographic
sequence is defined by the recurrence formula

xnC1 D axn C b

cxn C d
; n � 0; a; b; c; d 2 R:

� The sequence .xn/n2N is well defined if cxn C d ¤ 0, for all n � 0.

� If xnC1 D f .xn/, 8 n � 0, then xn D f n.x0/, where

f n.x0/ D f ı f ı � � � ı f„ ƒ‚ …
n functions

.x0/:

� If

f .x/ D ax C b

cx C d
and

�
a b
c d

�n

D
�

an bn

cn dn

�
;

then

f n.x/ D anx C bn

cnx C dn
:

� If xnC1 D f .xn/, n � 0, then

xn D anx0 C bn

cnx0 C dn
:

� The sequence .xn/n�0 is well defined, if some conditions are imposed upon its
initial term x0. More precisely, we determine the existence conditions of the
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sequence .xn/n�0 from the expression of An, i.e., cnx0 C dn ¤ 0, 8 n � 0. This

implies that x0 ¤ �dn

cn
, for all n � 0. Thus, we need to determine the set

S D
	

�dn

cn
W n � 0




and the condition, the sequence .xn/n�0 is well defined, is that x0 2 R n S.

� To determine the general term of a sequence defined by a homographic recur-
rence relation one has to calculate the nth power of the matrix associated with
the homographic function which defines the recurrence relation.

3.3.1 Problems

3.39 Let f .x/ D 4x C 1

2x C 3
, x 2 R, be such that the function

fn.x/ D f ı f ı � � � ı f„ ƒ‚ …
n functions

.x/; 8 n 2 N;

is well defined. Determine fn.

3.40 Let f W .0; 1/ ! R, f .x/ D 2x C 1

x C 2
. Calculate

fn D f ı f ı � � � ı f„ ƒ‚ …
n functions

; 8 n 2 N:

3.41 Let .xn/n�1 be the sequence defined by

x1 D 1; xnC1 D 2 C xn

1 C xn
; 8 n � 1:

Prove the sequence .xn/n�1 converges and find its limit.

3.42 Let .xn/n�0 be the sequence defined by

x0 D a > 0; xnC1 D 2xn C 1

2xn C 3
; 8 n � 0:

Determine the general term of the sequence .xn/n�0 and calculate lim
n!1 xn.

3.43 Let a; x0 2 R and let .xn/n�0 be the sequence defined by

xnC1 D 2axn

xn C a
; 8 n � 0:

Study the convergence of the sequence .xn/n�0, when a > 0 and x0 > 0.
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3.44 Let .xn/n�0 be the sequence defined by

x0 > 0; xnC1 D 4

xn C 3
; 8 n � 0:

Determine the general term of the sequence .xn/n�0 and calculate lim
n!1 xn.

3.45 Calculate the limit of the sequence defined by

x1 D 1

�2
; xnC1 D n2xn

xn C n2
; 8n � 1:

3.46 Study the convergence of the sequence

x0 2 R n Q; xnC1 D 1 C 1

xn
; 8n � 0:

3.47 Let a 2 R. Study the convergence of the sequence defined by

x0 D 1; xnC1xn C a.xnC1 � xn/ C 1 D 0; 8n � 0:

3.48 Let .xn/n�0 be the sequence defined by

x0 D 2 and xnC1 D 2xn C 1

xn C 2
; 8n � 0:

Prove the sequences .xn/n�0 and .x0 C x1 C � � � C xn � n/n�0 converge.

3.49 Let .an/n�1 be the sequence of real numbers which verifies the recurrence
relation

anC1an C 3anC1 C an C 4 D 0; 8 n � 1:

Determine all possible values of a1 such that a2016 � an, for all n � 1.

3.50 Let A D
�

a b
c d

�
2 M2 .Q/ with the property that bc ¤ 0 and there exists

n 2 N, n � 2 such that bncn D 0, where An D
�

an bn

cn dn

�
, n 2 N.

(a) Prove that an D dn.

(b) Study the convergence of the sequence .xn/n�0 defined by the recurrence
relation

x0 2 R n Q; xnC1 D axn C b

cxn C d
; n � 0:
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3.51 A special sequence with arctangent sums.

Let .xn/n�1 be the sequence defined by

x1 D 1; xn D xn�1 C n

1 � nxn�1

; n � 2:

Prove that:

(a) xn D tan
nX

kD1

arctan k;

(b) Conjecture. For n � 5, the value xn is not an integer [3, Conjecture 1.2].

Remark 3.5 This sequence was studied in [3] where it was proved that 1�nxn�1 ¤ 0

for n > 1, so .xn/n�1 is well defined. Other special properties of this sequence, which
are far beyond the goal of this book, are that xn vanishes only when n D 3 and, for
n > 4, the terms xn�1 and xn cannot both be integers.

3.3.2 Solutions

3.39. fn.x/ D .2n C 2 � 5n/x C 5n � 2n

.2 � 5n � 2nC1/x C 2nC1 C 5n
, n 2 N.

3.40. fn.x/ D .3n C 1/x C 3n � 1

.3n � 1/x C 3n C 1
, n 2 N.

3.42. xn D .2 C 4n/x0 C 4n � 1

2.4n � 1/x0 C 2 � 4n C 1
and lim

n!1 xn D 1
2
.

3.43. xn D 2nax0

.2n � 1/x0 C a
, 8n 2 N. The sequence .xn/n�0 converges and

lim
n!1 xn D a.

3.44. xn D Œ4n C 4.�1/n� x0 C 4nC1 � 4.�1/n

Œ4n � .�1/n� x0 C 4nC1 C .�1/n
and lim

n!1 xn D 1.

3.45. Solution 1. If yn D 1

xn
, then ynC1 D 1

n2
C yn, 8n � 1, and it follows that

ynC1 D 1 C 1

22
C � � � C 1

n2
C �2. Thus, xn D 1

1 C 1
22 C � � � C 1

.n�1/2 C �2
and

lim
n!1 xn D 6

7�2
.

Solution 2. xnC1 D fn.xn/ D fn ı fn�1.xn�1/ D � � � D fn ı fn�1 ı � � � ı f1.x1/, where

fn.x/ D n2x

x C n2
. Let An D

�
n2 0

1 n2

�
. We have
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fn ı fn�1 ı � � � ı f1.x1/ D ax1 C b

cx1 C d
;

where

�
a b
c d

�
D AnAn�1 � � � A1 D .nŠ/2

0
B@

1 0
nX

kD1

1

k2
1

1
CA :

This implies that

xnC1 D x1

x1

nP
kD1

1
k2 C 1

and lim
n!1 xnC1 D x1

�2

6
x1 C 1

D 6

7�2
:

3.46. xnC1 D xn C 1

xn
, 8n � 0. It follows that xn D FnC1x0 C Fn

Fnx0 C Fn�1

, 8n � 1, where

.Fn/n�0 denotes the Fibonacci sequence. A calculation shows that lim
n!1 xn D 1Cp

5
2

.

We used that

Fn D 1p
5

" 
1 C p

5

2

!n

�
 

1 � p
5

2

!n#
; n � 0:

3.47. xnC1 D axn � 1

xn C a
) xn D anx0 C bn

cnx0 C dn
, where

�
an bn

cn dn

�
D
�

a �1

1 a

�n

D
�p

1 C a2

�n
�

cos nt � sin nt
sin nt cos nt

�

with tan t D 1
a , a ¤ 0. If a D 0 the sequence is periodic of period 2, x2nC1 D �1

and x2n D 1, for all n � 0. It follows that

xn D cos nt � sin nt

cos nt C sin nt
D 1 � tan nt

1 C tan nt
:

If
t

�
… Q, the set ftan nt W n 2 Ng is dense in R and the range of the function

f .x/ D 1 � x

1 C x
is R n f�1g, so the sequence .xn/n2N is dense in R.

The expression xnC1 D axn � 1

xn C a
is well defined since xn ¤ �a, 8n � 0.

Otherwise, if xn D �a, for some n, then �axnC1 C a.xnC1 C a/ C 1 D 0 )
a2 C 1 D 0, which is impossible since a 2 R.

3.50. (a) See the solution of problem 1.3.
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(b) Since a; b; c; d 2 Q and x0 2 R n Q we get that xk 2 R n Q, 8k � 0, and

cxk C d ¤ 0. Let f W R nQ ! R nQ be the function defined by f .x/ D ax C b

cx C d
. The

recurrence relation xkC1 D f .xk/ implies that xk D f k.x0/, where f k D f ı � � � ı f .
When k D n we have, based on part (a), that an D dn and we also know that
bncn D 0 which implies (see the solution of problem 1.3) that bn D cn D 0. We

obtain xn D anx0

an
D x0. It follows that

xnC1 D axn C b

cxn C d
D ax0 C b

cx0 C d
D x1; xnC2 D axnC1 C b

cxnC1 C d
D ax1 C b

cx1 C d
D x2;

and xnCk D xn, 8k 2 N. Such a sequence converges provided it is constant, so

x0 D f .x0/ , x0 D ax0 C b

cx0 C d
, ax0 Cb D cx2

0 Cdx0 , cx2
0 C.d�a/x0 �b D 0.

This equation has the solutions

x0 D a � d ˙p
.d � a/2 C 4bc

2c
; .d � a/2 C 4bc > 0:

Thus, the sequence converges provided that .d � a/2 C 4bc > 0 and .d � a/2 C 4bc
is not of the form q2, where q 2 Q.

3.51. (a) We prove this part of the problem by mathematical induction. Let P.n/

be the statement xn D tan

�
nP

kD1

arctan k

�
. When n D 1 we get that x1 D

tan.arctan 1/ D 1, so P.1/ is true. We prove that P.n/ ) P.n C 1/. We have

xnC1 D xn C n C 1

1 � .n C 1/xn

D
tan

�
nP

kD1

arctan k

�
C n C 1

1 � .n C 1/ tan

�
nP

kD1

arctan k

�

D
tan

�
nP

kD1

arctan k

�
C tan.arctan.n C 1//

1 � tan.arctan.n C 1// tan

�
nP

kD1

arctan k

�

D tan

 
nX

kD1

arctan k C arctan.n C 1/

!

D tan

 
nC1X
kD1

arctan k

!
:
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Remarks and further comments. We mention that xn can be expressed in terms of
the Stirling numbers of the first kind. We have

xn D fn.xn�1/ D � � � D fn ı fn�1 ı � � � ı f2.x1/ D fn ı fn�1 ı � � � ı f2.1/;

where fn.x/ D x C n

�nx C 1
. Let An D

�
1 n

�n 1

�
. It follows that

fn ı fn�1 ı � � � ı f2.x/ D anx C bn

cnx C dn
and fn ı fn�1 ı � � � ı f2.1/ D an C bn

cn C dn

where

AnAn�1 � � � A2 D
�

an bn

cn dn

�
:

A calculation shows the eigenvalues of An are 1 ˙ ni and it follows that

An D 1

2

�
1 i
i 1

��
1 C ni 0

0 1 � ni

��
1 �i
�i 1

�
;

which implies

AnAn�1 � � � A2 D 1

2

�
1 i
i 1

��
˛ 0

0 ˇ

��
1 �i
�i 1

�

D 1

2

�
˛ C ˇ �˛i C ˇi
˛i � ˇi ˛ C ˇ

�
;

where

˛ D
nY

kD2

.1 C ki/ and ˇ D
nY

kD2

.1 � ki/:

It follows that

xn D ˛.1 � i/ C ˇ.1 C i/

˛.1 C i/ C ˇ.1 � i/
D ˇ1 � ˛1

ˇ1 C ˛1

i;

where

˛1 D
nY

kD1

.1 C ki/ and ˇ1 D
nY

kD1

.1 � ki/:

The Stirling numbers s.n; k/ of the first kind [59, p. 56] are defined by the formula
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nY
kD1

.1 C kx/ D
nC1X
kD1

.�x/nC1�ks.n C 1; k/;

and this implies that

˛1 D
nC1X
kD1

.�i/nC1�ks.n C 1; k/ and ˇ1 D
nC1X
kD1

inC1�ks.n C 1; k/:

We consider the cases when n is an even, respectively an odd integer.

� Case n D 2p. We have x2p D
Pp

jD1.�1/p�jC1s.2p C 1; 2j/PpC1
jD1 .�1/p�jC1s.2p C 1; 2j � 1/

.

� Case n D 2p � 1. We have x2p�1 D
Pp

jD1.�1/p�jC1s.2p; 2j � 1/Pp
jD1.�1/p�js.2p; 2j/

.

3.4 Binomial matrix equations

In this section we solve the binomial equation Xn D A, where A 2 M2 .C/ and
n � 2 is an integer.

Definition 3.3 Let A 2 M2 .C/ and let n � 2 be an integer. The equation Xn D A,
where X 2 M2 .C/, is called the binomial matrix equation.

In general, for solving binomial matrix equations we need some simple properties
which we record in the next lemma.

Lemma 3.2 The following statements hold.

(a) If X 2 M2 .C/ and det X D 0, then Xn D Trn�1.X/X, n � 1.

(b) If Xn D A, then matrices A and X commute, AX D AAn D AnC1 D AnA D XA.

(c) If A 2 M2 .C/, A ¤ aI2, a 2 C, then matrix X which commutes with A has the
following form X D ˛A C ˇI2.

(d) If X 2 M2 .C/, X D
�

a b
c d

�
, then X2 � .a C d/X C .ad � bc/I2 D O2.

(e) If X 2 M2 .C/ and if there exists n � 2 such that Xn D O2, then X2 D O2.

(f) If the eigenvalues of A 2 M2 .C/ are distinct �1 ¤ �2, then there exists a
nonsingular matrix P such that

P�1AP D
�

�1 0

0 �2

�
:
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Proof These properties are elementary and left as an exercise to the interested
reader. ut
Theorem 3.4 The equation Xn D A, n � 2, A 2 M2 .C/ with det A D 0.

Let A 2 M2 .C/ be such that det A D 0 and let n � 2 be an integer.

(1) If Tr.A/ ¤ 0 the equation Xn D A has n solutions in M2 .C/ given by

Xk D zk

Tr.A/
A;

where zk, k D 1; n, are the solutions of the equation zn D Tr.A/.

(2) If Tr.A/ D 0, then:

(a) If A ¤ O2 and A2 D O2 the equation Xn D A has no solutions in M2 .C/,
for n � 2;

(b) If A D O2, the solutions of the equation Xn D A are

Xa;b D
0
@ a b

�a2

b
�a

1
A ; a 2 C; b 2 C

� and Xc D
�

0 0

c 0

�
; c 2 C:

Proof Since Xn D A, we get that detn X D det A D 0 ) det X D 0. It follows,
based on part (a) of Lemma 3.2, that Xn D Trn�1.X/X. We obtain Trn�1.X/X D A
which implies Trn.X/ D Tr.A/.

We distinguish between the following cases.

(1) If Tr.A/ ¤ 0, we get based on part (d) of Lemma 3.2, that A2 ¤ O2, and the
equation Trn.X/ D Tr.A/ implies that Tr.X/ 2 ft1; t2; : : : ; tng, where ti, i D 1; n
are the solutions of the equation zn D Tr.A/.

Thus, for A 2 M2 .C/, A2 ¤ O2 and det A D 0, the solutions of the matrix
equation Xn D A are

Xk D zk

Tr.A/
A;

where zk, k D 1; n, are the solutions of the equation zn D Tr.A/.
(2) If Tr.A/ D 0, then A2 D O2 and the equation Xn D A implies that X2n D A2 D

O2 which combined to part (e) of Lemma 3.2 shows that X2 D O2.

(a) Thus, if A ¤ O2 and A2 D O2 the equation Xn D A has no solutions in M2 .C/,
for n � 2.

(b) If A D O2, then Xn D O2 implies X2 D O2 which has the solutions (see problem
1.8)
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Xa;b D
0
@ a b

�a2

b
�a

1
A ; a 2 C; b 2 C

� and Xc D
�

0 0

c 0

�
; c 2 C:

The theorem is proved. ut

Example 3.1 We solve the equation X4 D
��1 �2

1 2

�
.

Let A D
��1 �2

1 2

�
. Then, det A D 0, Tr.A/ D 1 and the equation z4 D 1 has

the following solutions, the fourth roots of unity, f1; �1; i; �ig. Thus, the solutions
of X4 D A are matrices ˙A; ˙iA.

Example 3.2 Now we prove the equation Xn D
�

0 1

0 0

�
has no solutions for n � 2.

Squaring both sides of the equation we have X2n D O2 ) X2 D O2 and, since
n � 2, we obtain

Xn D O2 ¤
�

0 1

0 0

�
:

Example 3.3 We determine the matrices X D
�

a b
�c �d

�
2 M2 .Z/, where a; b; c; d

are prime numbers, such that X2 D O2.
From the general solution of the equation X2 D O2 we get that

Xa;b D
0
@ a b

�a2

b
�a

1
A

and the condition a2

b is a prime number implies that a D b.
Thus, the solutions of our equation are

X D
�

p p
�p �p

�
D p

�
1 1

�1 �1

�
;

where p is a prime number.

Theorem 3.5 The equation Xn D aI2, a 2 C
�, n � 2.

Let a 2 C
� and let n � 2 be an integer. The solutions of the equation Xn D aI2

are given by

X D P

�
ai 0

0 aj

�
P�1;
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where P is any invertible matrix and ai, i D 1; n, are the solutions of the equation
zn D a.

Proof We start by observing that if X 2 M2 .C/ is a solution of the equation Xn D
aI2, then the matrix XP D P�1XP is also a solution, for any invertible matrix P. This
can be proved as follows

Xn
P D �

P�1XP
� �

P�1XP
� � � � �P�1XP

� D P�1XnP D P�1 .aI2/ P D aI2:

We distinguish between the cases when the eigenvalues of X are distinct or not.

� If the eigenvalues of X are distinct, we have, based on part (f) of Lemma 3.2, that

XP D
�

�1 0

0 �2

�

and the matrix equation becomes

�
�n

1 0

0 �n
2

�
D
�

a 0

0 a

�
:

This implies �1; �2 2 fa1; a2; : : : ; ang, where ai, i D 1; n, are the solutions of the
equation zn D a.
Thus, some of the solutions of the matrix equation Xn D aI2 are given by

X D P

�
ai 0

0 aj

�
P�1;

where ai ¤ aj are the arbitrary solutions of the equation zn D a and P is any
invertible matrix.

� If the eigenvalues of X are equal �1 D �2 D �, we have based on part (d) of
Lemma 3.2 that .X � �I2/2 D O2. If Y D X � �I2, then X D �I2 C Y with
Y2 D O2. We have Xn D �nI2 C n�n�1Y and the equation Xn D aI2 becomes
�nI2 C n�n�1Y D aI2 which implies that n�n�1Y D .a � �n/I2.

Since a ¤ 0 we obtain that � ¤ 0 and Y2 D O2 combined to Y D a � �n

n�n�1
I2

implies that a D �n and Y D O2. Therefore X D aiI2, where ai, i D 1; n, are the
solutions of the equation �n D a.
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In conclusion, the solutions of the equation Xn D aI2 are

X D P

�
ai 0

0 aj

�
P�1;

where ai; aj are the arbitrary solutions of the equation zn D a and P is any
invertible matrix. ut

Lemma 3.3 The nth roots of a special diagonal matrix.

Let ˛; ˇ 2 C with ˛ ¤ ˇ and let n � 2 be an integer. The solutions of the

equation Xn D
�

˛ 0

0 ˇ

�
are given by X D

�
a 0

0 d

�
, where a; d 2 C with a ¤ d and

an D ˛ and dn D ˇ.

Proof Let X D
�

a b
c d

�
2 M2 .C/ such that Xn D

�
˛ 0

0 ˇ

�
. Since X commutes with

�
˛ 0

0 ˇ

�
we get that .˛ � ˇ/b D 0 and .˛ � ˇ/c D 0. These imply, since ˛ ¤ ˇ,

that b D c D 0. It follows that

Xn D
�

a 0

0 d

�n

D
�

an 0

0 dn

�
D
�

˛ 0

0 ˇ

�
;

and the lemma is proved. ut
Nota bene. Lemma 3.3 states that, under certain conditions, the nth roots of a

diagonal matrix are diagonal matrices.

Theorem 3.6 The equation Xn D A, when A has distinct eigenvalues.

Let A 2 M2 .C/ be a matrix which has distinct eigenvalues. The solutions of the
equation Xn D A are given by

X D PA

�
˛ 0

0 ˇ

�
P�1

A ;

where PA is the invertible matrix which verifies P�1
A APA D

�
�1 0

0 �2

�
and ˛n D �1,

ˇn D �2, where �1 ¤ �2 are the eigenvalues of A.

Proof Let �1 ¤ �2 be the eigenvalues of A and let PA be the invertible matrix which
verifies

P�1
A APA D

�
�1 0

0 �2

�
:
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We have

.P�1
A XPA/n D P�1

A XnPA D P�1
A APA D

�
�1 0

0 �2

�
:

This implies, based on Lemma 3.3, that P�1
A XPA is a diagonal matrix, i.e.

P�1
A XPA D

�
˛ 0

0 ˇ

�
:

It follows that

�
˛ 0

0 ˇ

�n

D
�

�1 0

0 �2

�

and this implies that ˛n D �1 and ˇn D �2.
Thus, the solutions of the equation are

X D PA

�
˛ 0

0 ˇ

�
P�1

A ;

where PA is the invertible matrix which verifies P�1
A APA D JA and ˛n D �1, ˇn D

�2. The theorem is proved. ut
Another method for proving Theorem 3.6 is based on parts (b) and (c) of

Lemma 3.2.

Corollary 3.1 The nth roots of an antidiagonal matrix.

Let a; b 2 R such that ab > 0 and let n � 2 be an integer. The solutions,
in M2 .C/, of the equation

Xn D
�

0 a
b 0

�

are given by

Xk;j D
2n
p

ab

2

 
�k C 	j

ap
ab

�
�k � 	j

�
p

ab
a

�
�k � 	j

�
�k C 	j

!
;

where �k D exp
�

2k�
n i
�
, k D 0; n � 1, are the nth roots of unity and 	j D

exp
�

.2jC1/�

n i
�

, j D 0; n � 1, are the nth roots of �1.
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Theorem 3.7 The equation Xn D A, where A ¤ aI2, a 2 C.

Let A 2 M2 .C/ be such that A ¤ aI2, a 2 C, and let n � 2 be an integer. Let
�1 ¤ �2 be the eigenvalues of A and let 	1; 	2 2 C be fixed such that 	n

1 D �1 and
	n

2 D �2. The solutions of the equation Xn D A are given by

X D ˛A C ˇI2;

with

˛ D 	1�k � 	2�p

�1 � �2

and ˇ D 	2�p�1 � 	1�k�2

�1 � �2

; �1 ¤ �2;

where �k, �p are the nth roots of unity.

Proof We have, since A ¤ aI2, a 2 C, that the matrix X which verifies the equation
Xn D A commutes with A. This implies, based on Theorem 1.1, that X D ˛A C ˇI2,
for some ˛; ˇ 2 C. If �1; �2 are the eigenvalues of A, then the eigenvalues of X are
˛�1 C ˇ and ˛�2 C ˇ and the eigenvalues of Xn are .˛�1 C ˇ/n and .˛�2 C ˇ/n.
The equation Xn D A implies that .˛�1 C ˇ/n D �1 and .˛�2 C ˇ/n D �2.

Let 	1 2 C such that 	n
1 D �1 and let 	2 2 C such that 	n

2 D �2. The last two
equations imply that

(
˛�1 C ˇ D 	1�k

˛�2 C ˇ D 	2�p

where �k; �p are the nth roots of unity. Solving this system of equations we obtain
the values of ˛ and ˇ as given above. The theorem is proved. ut
Lemma 3.4 The nth roots of a Jordan cell.

Let � 2 C
� and let n � 2 be an integer. The solutions of the equation Xn D�

� 1

0 �

�
2 M2 .C/ are given by

X D
0
@a

1

nan�1

0 a

1
A ;

where a 2 C with an D �.

Proof Let X D
�

a b
c d

�
. Since X commutes with

�
� 1

0 �

�
we obtain, after simple

calculations, that a D d and c D 0. It follows that X D
�

a b
0 a

�
and the equation
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Xn D
�

an nan�1b
0 an

�
D
�

� 1

0 �

�

implies that an D � and nan�1b D 1. ut
Nota bene. Lemma 3.4 states that, under certain conditions, the nth roots of a

triangular matrix are triangular.

Theorem 3.8 The equation Xn D A, when A has equal nonzero eigenvalues.

Let A 2 M2 .C/ be a matrix which has equal nonzero eigenvalues such that
A ¤ ˛I2, ˛ 2 C, and let n � 2 be an integer. The solutions of the equation Xn D A
are given by

X D PA

0
@a

1

nan�1

0 a

1
AP�1

A ;

where PA is the invertible matrix which verifies P�1
A APA D JA and a 2 C with

an D �.

Proof The theorem can be proved by using the same ideas as in the proof of
Theorem 3.6 combined with Lemma 3.4. ut
Theorem 3.9 A special quadratic equation.

Let a; b; c 2 C, a ¤ 0 and let A 2 M2 .C/. The quadratic equation

aX2 C bX C cI2 D A

reduces to an equation of the form Y2 D B, for some B 2 M2 .C/.

Proof The equation aX2 C bX C cI2 D A implies that

X2 C b

a
X C c

a
I2 D 1

a
A ,

�
X C b

2a
I2

�2

D 1

a
A C

�
b2

4a2
� c

a

�
I2:

If Y and B are the matrices

Y D X C b

2a
I2 and B D 1

a
A C b2 � 4ac

4a2
I2;

the equation to solve becomes Y2 D B. ut
The next theorem shows which real matrices admit real square roots.

Theorem 3.10 [4] Let A 2 M2 .R/ be a given matrix. There are matrices S 2
M2 .R/ such that S2 D A if and only if det A � 0 and, either A D �p

det A I2 or
Tr.A/ C 2

p
det A > 0. Obviously, in the latter case, Tr.A/ C 2

p
det A D 0.
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3.4.1 An artistry of binomial equations. The nth real roots
of aI2, a 2 R

�

In this section we solve in M2 .R/ the equation Xn D aI2, where a 2 R
� and n 2 N.

Let X 2 M2 .R/ be a solution of the equation Xn D aI2.

� First we consider the case when the eigenvalues of X are real.

(a) If n is odd, then X D n
p

aI2, since the Jordan canonical form of a matrix X
which verifies the equation Xn D aI2 is a diagonal matrix and its eigenvalues
verify the equation �n D a, which has the unique real solution � D n

p
a.

(b) If n is even and a > 0, then

X1 D n
p

aI2; X2 D � n
p

aI2 and X3 D n
p

aP

�
1 0

0 �1

�
P�1;

where P is any arbitrary invertible matrix. We observe that X3 D n
p

aA, with
A2 D I2. The solution X1 corresponds to the case when the eigenvalues of X
are �1 D �2 D n

p
a, X2 when �1 D �2 D � n

p
a and X3 when �1 D n

p
a and

�2 D � n
p

a respectively.

� Now we consider the case when �1; �2 2 C n R.
In this case �n

1 D �n
2 D a and �2 D �1. The complex canonical form of X

is the matrix

�
�1 0

0 �1

�
, where �1 D ˛ C iˇ, ˛; ˇ 2 R, ˇ ¤ 0, and the real

canonical form of X is given by

�
˛ �ˇ

ˇ ˛

�
. It follows that X D P�1

�
˛ �ˇ

ˇ ˛

�
P,

where P 2 M2 .R/ is an invertible matrix. We obtain X D ˛I2 C ˇB, where
B 2 M2 .R/ verifies the equation B2 D �I2.

Let P D
�

a b
c d

�
and let 
 D ad � bc ¤ 0. Then

P�1

�
˛ �ˇ

ˇ ˛

�
P D ˛I2 C ˇ




��.ab C cd/ �.b2 C d2/

a2 C c2 ab C cd

�
D ˛I2 C ˇB;

where B D 1




��.ab C cd/ �.b2 C d2/

a2 C c2 ab C cd

�
and B2 D �I2.

It follows that the solutions of the equation Xn D aI2, which have eigenvalues
in C n R, are of the following form:

(i) X D n
p

a

�
cos

2k�

n
I2 C sin

2k�

n
B

�
, k 2 f1; 2; : : : ; n � 1g, B 2 M2 .R/

with B2 D �I2, for n odd or n even and a > 0.
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(ii) X D n
p�a

�
cos

.2k C 1/�

n
I2 C sin

.2k C 1/�

n
B

�
, k 2 f0; 1; : : : ; n � 1g,

B 2 M2 .R/ with B2 D �I2, for n even and a < 0.

Conversely we prove that matrices in .i/ and .ii/ verify the equation Xn D aI2.

(i) We have

Xn D a

�
cos

2k�

n
I2 C sin

2k�

n
B

�n

D a
nX

jD0

 
n

j

!
sinj 2k�

n
Bj cosn�j 2k�

n
I2

D a
X
jD2l

 
n

j

!
sinj 2k�

n
.�1/l cosn�j 2k�

n
I2

C a
X

jD2l�1

 
n

j

!
sinj 2k�

n
.�1/l�1B cosn�j 2k�

n
I2

D a<

�

cos
2k�

n
C i sin

2k�

n

�n�
I2Ca=


�
cos

2k�

n
C i sin

2k�

n

�n�
B

D aI2 C 0B

D aI2:

(ii) As in the previous case

Xn D �a<

�

cos
.2k C 1/�

n
C i sin

.2k C 1/�

n

�n�
I2

� a=

�

cos
.2k C 1/�

n
C i sin

.2k C 1/�

n

�n�
B

D �a Œ.�1/I2 C 0B�

D aI2:

When a D 1 we have the following corollary.
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Corollary 3.2 The nth real roots of I2.

The solutions, in M2 .R/, of the equation Xn D I2 are of the following form

X D cos
2k�

n
I2 C sin

2k�

n
B; k 2 f0; 1; : : : ; n � 1g ;

where B 2 M2 .R/ with B2 D �I2 and if n is even we also have the matrices
�I2 and

X D P

�
1 0

0 �1

�
P�1;

where P is any arbitrary invertible matrix.

Remark 3.6 Observe that if X D P

�
1 0

0 �1

�
P�1, then X2 D I2, so X is

involutory. Conversely, if n is even, any involutory matrix X verifies the equation
Xn D I2. It follows that the solutions of the equation Xn D I2 are

X D cos
2k�

n
I2 C sin

2k�

n
B; k D 0; 1; : : : ; n � 1;

where B 2 M2 .R/ with B2 D �I2, for any n, and if n is even we also have the
solutions X D A, A 2 M2 .R/, with A2 D I2. It follow from Example 1.2 that B
is of the following form

B D
0
@ a b

�1 C a2

b
�a

1
A ; a 2 R; b 2 R

�:

We collect these calculations and state the following theorem.

Theorem 3.11 The nth real roots of aI2.

The matrix X 2 M2 .R/ verifies the equation Xn D aI2, a 2 R
� if and only

if X is of the following form:

� when n is odd or n is even and a > 0

X D n
p

a

�
cos

2k�

n
I2 C sin

2k�

n
B

�
; k 2 f0; 1; : : : ; n � 1g ;

(continued)
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Theorem 3.11 (continued)

B 2 M2 .R/ with B2 D �I2. When n is even and a > 0 we also have the
solutions

X D n
p

aA; A 2 M2 .R/ with A2 D I2:

� when n is even and a < 0

X D n
p�a

�
cos

.2k C 1/�

n
I2 C sin

.2k C 1/�

n
B

�
; k 2 f0; 1; : : : ; n � 1g ;

B 2 M2 .R/ with B2 D �I2.

The next corollary gives the nth real roots of �I2.

Corollary 3.3 The nth real roots of �I2.

The solutions, in M2 .R/, of the equation Xn D �I2 are of the following
form:

� for n odd

X D � cos
2k�

n
I2 � sin

2k�

n
B; k 2 f0; 1; : : : ; n � 1g ;

where B 2 M2 .R/ with B2 D �I2.
� for n even

X D cos
.2k C 1/�

n
I2 C sin

.2k C 1/�

n
B; k 2 f0; 1; : : : ; n � 1g ;

where B 2 M2 .R/ with B2 D �I2.

Example 3.4 The product is zero and the sum of their nth power is I2.

Let n 2 N. We determine matrices A; B 2 M2 .R/ such that

AB D O2 and An C Bn D I2:

We have An D I2 � Bn ) O2 D AnB D B � BnC1 ) BnC1 � B D O2 )
det B D 0 or detn B D 1. Similarly, AnC1 D A ) det A D 0 or detn A D 1.

If det A ¤ 0 ) A is invertible ) B D O2 ) An D I2.
If det B ¤ 0 ) B is invertible ) A D O2 ) Bn D I2.
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If det A D det B D 0, then A2 D tAA and B2 D tBB, where tA D Tr.A/ and
tB D Tr.B/. The equation An C Bn D I2 implies that tn�1

A A C tn�1
B B D I2.

Since AnC1 D A we get that
�
tn
A � 1

�
A D O2. If tn

A ¤ 1, then A D O2 ) Bn D
I2, which contradicts det B D 0. Thus, tn

A D 1 ) tA D ˙1. Similarly, we have
tB D ˙1.

If tA D tB D 1 we obtain the matrices A2 D A and B D I2 � A.
If tA D 1 and tB D �1 (this implies n is even), then A2 D A and B2 D �B and

we obtain the matrices A2 D A and B D A � I2.
If tA D �1 and tB D 1 (this implies n is even), then A2 D �A and B2 D B and

we obtain the matrices B2 D B and A D B � I2.
If tA D tB D �1 (this implies n is even) we obtain the matrices A2 D �A and

B D �A � I2.

3.4.2 Problems

3.52 Quadratic binomial equations.

(a) Let N0 D f0g[N. Find all matrices A 2 M2 .N0/ such that A2�6AC5I2 D O2.
(b) Let a; b 2 N0 with a2 � 4b < 0. Prove the equation A2 � aA C bI2 D O2 does

not have solutions in M2 .N0/.

3.53 Give an example of a matrix A 2 M2 .C/ that has exactly two square roots in
M2 .C/.

3.54 Find all X 2 M2 .R/ such that X2 D
�

6 5

10 11

�
.

3.55 (a) Find all matrices A 2 M2 .R/ such that A2 D
�

1 0

d 2

�
, where d D det A.

(b) Find all matrices A 2 M2 .R/ such that A2 D
�

1 0

t 2

�
, where t D Tr.A/.

3.56 Is there a real 2 � 2 matrix A such that

A2 D
��1 0

0 �1 � �

�
; � > 0‹

3.57 [58, p. 140] For which positive integer n is there a matrix A 2 M2 .Z/ such
that An D I2 and Ak ¤ I2 for 0 < k < n?

3.58 Determine all matrices A 2 M2 .R/ such that AAT D
�

1 1

1 1

�
.

3.59 Find all matrices A 2 M2 .R/ such that AATA D
�

˛ ˛

˛ ˛

�
, where ˛ 2 R.
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3.60 [27] Let A 2 M2 .R/ such that AAT D
�

a b
b a

�
, where a > b > 0. Prove that

AAT D ATA if and only if A D
�

˛ ˇ

ˇ ˛

�
or A D

�
ˇ ˛

˛ ˇ

�
, where

˛ D ˙p
a C b ˙ p

a � b

2
and ˇ D ˙p

a C b � p
a � b

2
:

3.61 If A 2 M2 .Z/ is such that A4 D I2, then either A2 D I2 or A2 D �I2.

3.62 If A 2 M2 .Z/ and there exists n 2 N with .n; 6/ D 1 such that An D I2, then
A D I2.

3.63 Let A 2 M2 .Q/ be such that there exists n 2 N with An D �I2. Prove
that either A2 D �I2 or A3 D �I2.

3.64 The order of an element in M2 .Q/.

Let A 2 M2 .Q/ be such that there exists n 2 N with An D I2. Prove that
A12 D I2.

3.65 Determine all matrices A 2 M2 .Z/ such that A3 D
�

5 8

8 13

�
.

3.66 Solve in M2 .R/ the equation X3 D
�

1 �2

2 �3

�
.

3.67 The real cubic roots of I2.

(a) Determine all matrices X 2 M2 .R/ such that X3 D I2.
(b) Let � ¤ 1 be a cubic root of unity. Determine all matrices X 2 M2 .R/

such that X2 C �X C �2I2 D O2.

3.68 Find all A 2 M2 .R/ such that AATA D I2.

3.69 Prove that there is no A 2 M2 .Q/ such that A4 C 15A2 C 2I2 D O2.

3.70 Let SL2 .Z/ D fX 2 M2 .Z/ W det X D 1g.
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(a) Prove that the equation X2 C X�2 D I2 has no solutions in SL2 .Z/.

(b) Prove that the equation X2 CX�2 D �I2 has solutions in SL2 .Z/ and determine
the set

˚
Xn C X�n W X2 C X�2 D �I2; n 2 N

�
.

3.71 A quintic equation with a unique solution.

Prove that for any a 2 R the equation

X5 D
�

a 1 � a
1 C a �a

�

has a unique solution in M2 .R/.

3.72 Let n � 1 be an integer and let A D
�

cos ˛ sin ˛

� sin ˛ cos ˛

�
: Find ˛ 2 R such that

An D I2.

3.73 The nth real roots of the rotation matrix.

Let t 2 .0; �/ be fixed. Find all solutions X 2 M2 .R/ of the equation

Xn D
�

cos t � sin t
sin t cos t

�
:

3.74 Let n � 2 be an integer. Solve in M2 .C/ the equation

Xn D
�

1 2

2 4

�
:

3.75 Solve in M2 .C/ the equation Xn D
�

1 a
0 1

�
, a 2 C

�.

3.76 Let A 2 M2 .C/, A ¤ O2 and det A D 0. Prove that the equation Xn D A,
n � 2, has solutions if and only if A2 ¤ O2.

3.77 Let n � 2 be an integer. Solve in M2 .C/ the equation

Xn D
�

a b
b a

�
; a; b 2 C; b ¤ 0:

3.78 Let n 2 N, n � 2, a 2 R, and b 2 R
�. Solve in M2 .R/ the equation

Xn D
�

a b
�b a

�
:
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3.79 Prove that the equation

Xn D
�

3 �1

0 0

�
; n 2 N; n � 2;

has no solutions in M2 .Q/.

3.80 Solve in M2 .Z/ the equation X3 � 3X D
��7 �9

3 2

�
.

3.81 Solve in M2 .R/ the equation X3 C X2 D
�

1 1

1 1

�
.

3.82 Two special equations with no solutions.

(a) Prove that the equation A3 � A � I2 D O2 has no solutions in M2 .Q/.
(b) Let n 2 N, n � 2. Prove that the equation An � AC.0; 1/ � I2 D O2 has

no solutions in M2 .Q/, where C.0; 1/ D
�

0 1

1 0

�
.

3.83 A jewel of binomial matrix theory.

Let n; k � 2 be integers. Prove that the equation An � AkC.a; b/ � I2 D O2

has no solutions in M2 .Q/, where C.a; b/ D
�

a b
b a

�
with a � 0 and b � 1

integers. (C.a; b/ is the circulant matrix defined in problem 3.11).

3.84 A matrix equation with determinants and traces.

(a) Solve in M2 .Z/ the equation

Xt C X D
�

2 0

3 2

�
; where t D Tr.X/:

(b) Solve in M2 .Z/ the equation

Xd C X D
�

2 0

3 2

�
; where d D det X:
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3.85 Let n � 3 be an integer. Find X 2 M2 .R/ such that

Xn C Xn�2 D
�

1 �1

�1 1

�
:

3.86 Two matrix equations over M2 .Z/.

(a) Let n 2 N. Solve in M2 .Z/ the equation X2nC1 C X D I2.
(b) Let n 2 N. Solve in M2 .Z/ the equation X2nC1 � X D I2.

3.87 [41] Find all prime numbers p such that there exists a 2 � 2 matrix A with
integer entries, other than the identity matrix I2, for which ApCAp�1C� � �CA D pI2.

3.88 Let n 2 N. Solve in M2 .R/ the equation

A C A3 C � � � C A2n�1 D
�

n n2

0 n

�
:

3.89 Two cousin equations.

Let m; n � 2 be integers and let A 2 M2 .C/ be a given matrix. Prove
that the equation Xm D A has solutions in M2 .C/ if and only if the equation
Yn D A has solutions in M2 .C/.

3.90 Viète’s formulae for a quadratic matrix equation.

Let A; B 2 M2 .C/ be two given matrices and consider the quadratic
equation in M2 .C/

X2 � AX C B D O2:

Prove that if X1; X2 are two solutions of this equation and if the matrix
X1 � X2 is invertible, then

Tr.X1 C X2/ D Tr.A/ and det.X1X2/ D det B:
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3.91 Matrix delights in M2

�
Zp
�
.

Let p be a prime number. Prove that:

(a)

 ba bbb0 ba
!p

D
 ba b0bb ba

!p

DbaI2.

(b) If p � 3, then

 ba bbbb ba
!p

D
 ba bbbb ba

!
.

(c) Ifba Cbb ¤b0, then Xp D
 ba bb
ba bb

!
if and only if X D

 ba bb
ba bb

!
.

(d) If ba Cbb D b0, ba ¤ b0, the equation Xp D
 ba bb
ba bb

!
has no solutions in

M2

�
Zp
�
.

(e) If X 2 M2

�
Zp
�

such that det X Db0 and Tr.X/ ¤b0, then Xp D X.

(f)

 b0 babb b0
!p

D
 b0 ba pC1

2 bb p�1
2

ba p�1
2 bb pC1

2 b0
!

, p � 3.

(g)

�ba bb
ba ba

�p

D
 ba ba p�1

2 bb pC1
2

ba pC1
2 bb p�1

2 ba
!

, p � 3.

(h) If p � 5 is a prime number, there are exactly p2 matrices in M2

�
Zp
�

which commute with

 b1 b2b3 b4
!

.

(i) The number of invertible matrices in M2

�
Zp
�

is .p2 � 1/.p2 � p/.

3.92 (a) Solve in M2 .Z5/ the equation X5 D
 b0 b1b2 b0

!
.

(b) Let p � 3 be a prime number. Prove that the equation Xp D
 b0 babb b0

!
has

the unique solution

8̂
ˆ̂̂<
ˆ̂̂̂
:

X D
 b0 ba
bb b0

!
if and only if .ba�1bb/

p�1
2 Db1

X D
 b0 1p � a
1p � b b0

!
if and only if .ba�1bb/

p�1
2 D �b1:
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3.93 Splendid binomial equations.

(a) [49] Solve in M2 .Z5/ the equation

X5 D
 b4 b2b4 b1

!
:

(b) Let p � 3 be a prime number. Solve in M2

�
Zp
�

the equation

Xp D
 
1p � 1 b2
1p � 1 b1

!
:

3.94 Let A 2 M2 .C/. Prove that the equation AX � XA D A has a solution in
M2 .C/ if and only if A2 D O2.

3.95 Two binomial equations with symmetric terms.

(a) Let A 2 M2 .C/. Prove that the equation AX �XA D I2 does not have solutions
in M2 .C/.

(b) Prove that if the equation AX C XA D I2 has solutions in M2 .C/, then either
A is invertible or A2 D O2.
Conversely, show that if A is invertible or A2 D O2 and A ¤ O2, then the
equation AX C XA D I2 has solutions in M2 .C/.

3.96 Let P 2 CŒx� be a polynomial of degree n. Prove that the following statements
are equivalent:

(a) the equation P.X/ D
�

1 1

0 1

�
has n distinct solutions in M2 .C/;

(b) the equation P.x/ D 1 has n distinct solutions.

Is the problem true if the solutions of the equation P.x/ D 1 are not distinct?

3.97 Let A D
�

a b
c d

�
2 M2 .R/ with aCd ¤ 0. Prove that the matrix B 2 M2 .R/

commutes with A if and only if B commutes with A2.

3.98 Let m; n 2 N and let A; B 2 M2 .R/ be such that AmBn D BnAm. Prove that if
Am and Bn are not of the form �I2, for some � 2 R, then AB D BA.

3.99 Let A; B 2 M2 .R/ be such that AmB D Am C B, m 2 N. Prove that AB D BA.
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3.4.3 Solutions

3.52. (a) If A D ˛I2 we get ˛ D 1 or ˛ D 5 ) A D I2 or A D 5I2. If A ¤ ˛I2 we
have, based on Theorem 2.6, that Tr.A/ D 6 and det A D 5.

If A D
�

a b
c d

�
2 M2 .N0/, then a C d D 6 and ad � bc D 5. It follows that

A 2
	�

1 0

c 5

�
;

�
1 b
0 5

�
;

�
5 0

c 1

�
;

�
5 b
0 1

�
; b; c 2 N0




and

A 2
	�

2 3

1 4

�
;

�
4 3

1 2

�
;

�
2 1

3 4

�
;

�
4 1

3 2

�
;

�
3 4

1 3

�
;

�
3 1

4 3

�
;

�
3 2

2 3

�

:

(b) Use Theorem 2.6.

3.53. A D
�

1 0

0 0

�
.

3.54. Solution 1. The problem can be solved by direct computation.
Solution 2. Since det2 X D det

�
X2
� D 16 we get that det X D ˙4.

Case 1. If det X D 4 we have, based on Cayley–Hamilton Theorem, that X2 �
Tr.X/X C 4I2 D O2 and this implies, passing to trace, that Tr.X2/ � .Tr.X//2 C
4Tr.I2/ D 0. We obtain Tr.X/ D ˙5 and ˙5X D X2 C 4I2. Thus

X1;2 D ˙
�

2 1

2 3

�
:

Case 2. If det X D �4 we obtain, after some calculations similar to those in Case 1,
that

X3;4 D ˙1

3

�
2 5

10 7

�
:

3.55. (a) ˙
�

1 0

2 � p
2

p
2

�
and ˙

�
1 0

2 C p
2 �p

2

�
.

(b)

�
1 0

1
p

2

�
,

��1 0

1 �p
2

�
,

��1 0

1
p

2

�
and

�
1 0

1 �p
2

�
.

3.56. Let B D
��1 0

0 �1 � �

�
and let A 2 M2 .R/ be such that A2 D B. Since A

and B commute we get that A D
�

a 0

0 d

�
. This implies, since A2 D

�
a2 0

0 d2

�
, that
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a2 D �1 and d2 D �1��. Since these equations do not have real solutions we have
that there is no A 2 M2 .R/ such that A2 D B.

3.57. The possible values of n are 2, 3, 4, and 6 (see [58, 528–529]).

3.58. A D
�

cos � sin �

cos � sin �

�
, where � 2 R.

3.60. One implication is easy to prove. If A D
�

˛ ˇ

ˇ ˛

�
or A D

�
ˇ ˛

˛ ˇ

�
, with

˛ D ˙p
a C b ˙ p

a � b

2
and ˇ D ˙p

a C b � p
a � b

2
, then

AAT D ATA D
�

˛2 C ˇ2 2˛ˇ

2˛ˇ ˛2 C ˇ2

�
D
�

a b
b a

�
:

Now we prove the other implication. First we note, since det.AAT/ D det2 A D
a2 � b2 > 0, that A is invertible. The equation AAT D

�
a b
b a

�
implies that AT D

A�1

�
a b
b a

�
D A�1.aI2 CbJ/, where J D

�
0 1

1 0

�
. The equation AAT D ATA implies

that AAT D aI2CbJ D .aA�1CbA�1J/A D ATA, and this in turn implies bA�1JA D
bJ and, since b ¤ 0, we get that JA D AJ. Let A D

�
x y
u v

�
. Since JA D AJ we get

that u D y and v D x, so A D
�

x y
y x

�
. We have

AAT D
�

x2 C y2 2xy
2xy x2 C y2

�
D
�

a b
b a

�

and this implies that x2 C y2 D a and 2xy D b. Since we have a symmetric system
it is clear that the values of x and y could be interchanged. Adding and subtracting
these equations we get that .x C y/2 D a C b and .x � y/2 D a � b, and we have

x C y D ˙p
a C b and x � y D ˙p

a � b. Thus, x D ˙p
a C b ˙ p

a � b

2
and

y D ˙p
a C b � p

a � b

2
.

3.61. If � is an eigenvalue of A we have, since A4 D I2, that �4 D 1 which implies
that � 2 f˙1; ˙ig. Let �1; �2 be the eigenvalues of A.

If �1 D ˙1, then �2 D ˙1 or �2 D �1 and in all cases we have that A2 D I2.
If �1 D i, then �2 D �i and we have that A2 D �I2.

3.62. First observe that n D 6l C 1 or n D 6l C 5, where l � 0 is
an integer. If � is an eigenvalue of A we have that �n D 1 ) � 2˚
cos 2k�

n C i sin 2k�
n W k D 0; 1; : : : ; n � 1

�
. Since the characteristic polynomial of A
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has integer coefficients, then either the eigenvalues of A are equal to 1 or they are
complex conjugate.

If �1 D �2 D 1 we have, based on the Cayley–Hamilton Theorem, that .A �
I2/2 D O2. It follows that I2 D An D .I2 C A � I2/n D I2 C n.A � I2/ ) A D I2.

If the eigenvalues of A are complex conjugate, then we let �1 D cos 2k�
n Ci sin 2k�

n

and �2 D cos 2k�
n � i sin 2k�

n , for some k 2 f1; 2; : : : ; n � 1g. Since Tr.A/ D �1 C
�2 D 2 cos 2k�

n 2 Z we have that 2 cos 2k�
n 2 f˙1; 0; ˙2g.

If 2 cos 2k�
n D �1 ) cos 2k�

n D cos 2�
3

) 2k�
n D 2�

3
) n D 3k, which

contradicts .n; 6/ D 1.
If 2 cos 2k�

n D 1 ) cos 2k�
n D cos �

3
) 2k�

n D �
3

) n D 6k,
which contradicts .n; 6/ D 1.

If 2 cos 2k�
n D 0 ) cos 2k�

n D cos �
2

) 2k�
n D �

2
) n D 4k, which

contradicts .n; 6/ D 1.
If 2 cos 2k�

n D 2 ) cos 2k�
n D 1, which is impossible since 1 � k � n � 1.

If 2 cos 2k�
n D �2 ) cos 2k�

n D �1 ) 2k�
n D � ) n D 2k, which

contradicts .n; 6/ D 1.

3.63. Let fA.x/ D det.A � xI2/ 2 QŒx� be the characteristic polynomial of A and let
�1; �2 be the eigenvalues of A. If � is an eigenvalue of A we have, since An D �I2,
that �n D �1. It follows, since fA 2 QŒx�, that either both eigenvalues of A are equal
to �1 and n is odd or they are complex conjugate.

If �1 D �2 D �1 we have that .A C I2/2 D O2. It follows that �I2 D An D
.A C I2 � I2/n D n.A C I2/ � I2 ) A D �I2 ) A3 D �I2.

If the eigenvalues of A are complex conjugate, then we let �1 D cos t C i sin t and
�2 D cos t � i sin t, �1; �2 2 C n R. Since �n

1 D �1 we have that cos.nt/ D �1.
On the other hand, �1 C �2 D 2 cos t D s 2 Q. Using Lemma 3.1 we

have that there exists a monic polynomial Pn 2 ZŒx� such that 2 cos.nt/ D
Pn.2 cos t/. It follows that 2 cos t D s is a rational root of a monic polynomial
with integer coefficients, hence s must be an integer. Since, s 2 Œ�2; 2�, we get that
s 2 f˙1; 0; ˙2g.

If 2 cos t D 2 ) �1 D �2 D 1, which is impossible since 1n ¤ �1.
If 2 cos t D �2 ) �1 D �2 D �1 and this case was studied above.
If 2 cos t D 0 ) A2 C I2 D O2 ) A2 D �I2.
If 2 cos t D 1 ) Tr.A/ D 2 cos t D 1 and det A D �1�2 D 1 ) A2 �AC I2 D

O2 ) .A C I2/.A2 � A C I2/ D O2 ) A3 D �I2.
If 2 cos t D �1 ) A2CACI2 D O2 ) .A�I2/.A2CACI2/ D O2 ) A3 D I2,

so An 2 ˚I2; A; A2
�
. Since An D �I2 we get that either A D �I2 or A2 D �I2, which

implies that either A3 D �I2 or A2 D �I2.

3.64. Let fA.x/ D det.A � xI2/ 2 QŒx� be the characteristic polynomial of A and let
�1; �2 be the eigenvalues of A. We have, since An D I2, that �n

1 D �n
2 D 1. It follows

that either �1; �2 are real or they are complex conjugate.
If the eigenvalues of A are real, then �1; �2 2 f�1; 1g.
If �1 D �2 D 1, then we have that .A�I2/2 D O2 ) I2 D An D .I2CA�I2/n D

I2 C n.A � I2/ ) A D I2 ) A12 D I2.
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If �1 D �2 D �1, then n is even and .A C I2/2 D O2. It follows that I2 D An D
.�I2 C .A C I2//n D I2 � n.A C I2/ ) A D �I2 ) A12 D I2.

If �1 D 1 and �2 D �1, then A2 � I2 D O2 ) A2 D I2 ) A12 D I2.
If the eigenvalues of A are complex conjugate we let �1;2 D cos ˛ ˙ i sin ˛ and

we have that Tr.A/ D 2 cos ˛ D s 2 Q, cos.n˛/ D 1 and det A D �1�2 D 1.
We have based on Lemma 3.1 that there exists a monic polynomial Pn 2 ZŒx�

such that 2 cos.n˛/ D Pn.2 cos ˛/. Thus, s D 2 cos ˛ is a root of a monic
polynomial with integer coefficients, i.e., it is a solution of the equation Pn.x/�2 D
0. Thus, s must be an integer and since s 2 Œ�2; 2� we have that s 2 f˙2; ˙1; 0g.

The cases when s D �2 or s D 2 imply that �1 D �2 D �1 or �1 D �2 D 1

which have been discussed above.
If s D �1, then A2 C A C I2 D O2 ) .A � I2/.A2 C A C I2/ D O2 ) A3 D

I2 ) A12 D I2.
If s D 1, then A2 � A C I2 D O2 ) .A C I2/.A2 � A C I2/ D O2 ) A3 D

�I2 ) A12 D I2.
If s D 0, then A2 C I2 D O2 ) A2 D �I2 ) A12 D I2.
The previous calculations show that the order of matrices in M2 .Q/ could be

1, 2, 3, 4, and 6 respectively. Examples of matrices of such orders are given by

A1 D I2, with A1
1 D I2, A2 D �I2, with A2

2 D I2, A3 D
��1 1

�1 0

�
, with A3

3 D I2,

A4 D
�

0 �1

1 0

�
, with A4

4 D I2 and A5 D
�

1 1

�1 0

�
, with A6

5 D I2, which prove the

order of matrices in GL2 .Q/ are 1, 2, 3, 4, and 6 respectively.
For the case when A is a matrix with integer entries which verifies the conditions

of the problem see [58, Problem 7.7.7, p. 145].

3.65. Since det3 A D det.A3/ D 1 we get that det A D 1. On the other hand, the
Cayley–Hamilton Theorem implies that A2 D Tr.A/A � I2 and it follows that A3 D
Tr.A/A2 � A D �

Tr2.A/ � 1
�

A � Tr.A/I2. Passing to trace in the previous equality

we have 18 D Tr.A3/ D Tr3.A/ � 3Tr.A/. Thus, Tr.A/ D 3 and A D
�

1 1

1 2

�
.

3.66. Since det3 X D 1 we get that det X D 1. If t D Tr.A/, then the Cayley–
Hamilton Theorem implies X2 � tX C I2 D O2 and X3 D tX2 � X D .t2 � 1/X � tI2.
Passing to trace in this equality we have t3 � 3t C 2 D 0, which implies that t 2
f�2; 1g.

If t D 1 we get X3 D �I2 which is impossible since X3 D
�

1 �2

2 �3

�
.

If t D �2 we get, since 3X C 2I2 D X3 D
�

1 �2

2 �3

�
, that X D 1

3

��1 �2

2 �5

�
.

3.67. (a) Let X D
�

a b
c d

�
. Since X3 D I2 we get, by passing to determinants, that

det X D 1. We have, based on the Cayley–Hamilton Theorem, that X2 D .aCd/X �
I2 and this implies X3 D .a C d/X2 � X D .a C d/2X � .a C d/I2 � X D I2. Thus
Œ.a C d/2 � 1�X D .1 C a C d/I2 which in turn implies that
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8̂
ˆ̂̂<
ˆ̂̂̂
:

Œ.a C d/2 � 1�a D 1 C a C d

Œ.a C d/2 � 1�b D 0

Œ.a C d/2 � 1�c D 0

Œ.a C d/2 � 1�d D 1 C a C d:

Adding the first and the last equation we get t3 � 3t � 2 D 0, where t D a C d, with
solutions t1 D t2 D �1 and t3 D 2.

If a C d D �1, then

X D
�

a b
c �1 � a

�
; a 2 R; bc D �1 � a � a2:

If a C d D 2, then a D d D 1, b D c D 0 which implies that X D I2.
(b) We get, since X2 C �X C �2I2 D O2, that X3 D I2 and it follows, based on

part (a), that X D I2.

3.68. We have that A�1 D AAT and, since AAT is a symmetric matrix, we get that A
is also a symmetric matrix. The equation to solve becomes A3 D I2 and, since A is
symmetric, we get that A D I2.

3.71. If A D
�

a 1 � a
1 C a �a

�
, then det5 X D det A D �1, so det X D �1. Let

t D Tr.X/. We have, based on Cayley–Hamilton Theorem, that X2 � tX � I2 D O2,
X3 D tX2 C X D .t2 C 1/X C tI2, and X5 D X2X3 D .t4 C 3t2 C 1/X C .t3 C 2t/I2.
Passing to trace in the last equality and using that X5 D A we get that .t4 C 3t2 C
1/t C 2.t3 C 2t/ D 0 , t5 C 5t3 C 5t D 0, which has the unique real solution
t D 0. This implies that X2 D I2 and X D X5 D A.

3.72. Since An D
�

cos n˛ sin n˛

� sin n˛ cos n˛

�
, we get that cos n˛ D 1 and sin n˛ D 0. This

implies that n˛ D 2k� , k 2 Z and n˛ D m� , m 2 Z. Thus 2k D m and ˛ D 2k�

n
,

k 2 Z.

3.73. Let

A D
�

cos t � sin t
sin t cos t

�
and X D

�
a b
c d

�
:

We have XnC1 D AX D XA and this implies

(
b sin t D �c sin t

�a sin t D �d sin t

sin t¤0”
(

a D d

b C c D 0;
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so X D
�

a �b
b a

�
. Since Xn D A we get that detn X D det A D 1, which implies that

det X 2 f˙1g , a2 C b2 2 f˙1g, so a2 C b2 D 1. There exists x 2 R such that
a D cos x and y D sin x and this implies that

X D
�

cos x � sin x
sin x cos x

�
and Xn D

�
cos nx � sin nx
sin nx cos nx

�
D
�

cos t � sin t
sin t cos t

�
:

Therefore nx D t C 2k� , k 2 Z. The equation has n solutions

Xk D
�

cos xk � sin xk

sin xk cos xk

�
; xk D t C 2k�

n
; k D 0; n � 1:

3.74. Let A D
�

1 2

2 4

�
. The equation Xn D A implies that det X D 0 and this in

turn implies tn�1X D A, where t D Tr.A/. Passing to trace in this equation we get

that tn D 5. The solutions of this equation are tk D n
p

5

�
cos

2k�

n
C i sin

2k�

n

�
,

k D 0; 1; : : : ; n � 1. Thus, Xk D 1

tn�1
k

A, k D 0; 1; : : : ; n � 1, are the n solutions of

the matrix equation.

3.75. If A D
�

1 a
0 1

�
we get, since AX D XA, that X D

�
˛ ˇ

0 ˛

�
and this implies that

Xn D
�

˛n n˛n�1ˇ

0 ˛n

�
D
�

1 a
0 1

�
;

so ˛n D 1 and n˛n�1ˇ D a. It follows that

˛ D �k D cos
2k�

n
C i sin

2k�

n
and ˇk D a�k

n
; k D 0; n � 1:

The equation has n solutions

Xk D
 

�k
a�k

n
0 �k

!
; k D 0; n � 1:

3.76. First we prove the implication “).” We have Xn D A ) det X D 0 )
Xn D tn�1X, where t D Tr.X/. Thus, tn�1X D A. If, by way of contradiction,
A2 D O2, then t D 0 and tn�1X D A D O2, which contradicts A ¤ O2.

Now we prove the implication “(.” Solving the equation Xn D A we get det X D
0 ) Xn D tn�1X, where t D Tr.X/ and we have t ¤ 0 since X2 ¤ O2. It follows
tn�1X D A and, by passing to trace, we get that tn D Tr.A/ and observe Tr.A/ ¤ 0
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since A2 ¤ O2. We obtain the solutions Xk D tk
Tr.A/

A, k D 0; n � 1, where tk are the
solutions of the equation tn D Tr.A/.

3.77. Let A D
�

a b
b a

�
. Since XnC1 D XnX D XXn we get that AX D XA and this

implies, since b ¤ 0, that X D
�

x y
y x

�
. A calculation shows that

Xn D

0
B@

.x C y/n C .x � y/n

2

.x C y/n � .x � y/n

2
.x C y/n � .x � y/n

2

.x C y/n C .x � y/n

2

1
CA :

The equation Xn D A implies that

(
.x C y/n C .x � y/n D 2a

.x C y/n � .x � y/n D 2b
)

(
.x C y/n D a C b

.x � y/n D a � b:

The solutions of this system are x D ˛Cˇ

2
and y D ˛�ˇ

2
, where ˛; ˇ 2 C with

˛n D a C b and ˇn D a � b. Thus,

X D

0
B@

˛ C ˇ

2

˛ � ˇ

2
˛ � ˇ

2

˛ C ˇ

2

1
CA :

The matrix equation has n2 solutions in M2 .C/.

3.78. Observe that A D
�

a b
�b a

�
D
p

a2 C b2

�
cos t sin t

� sin t sin t

�
and see the solution

of problem 3.73.

3.79. Let A D
�

3 �1

0 0

�
. We assume, by way of contradiction, that there is

X 2 M2 .Q/ such that Xn D A, n � 2. This implies that det X D 0 ) Xn D tn�1X,
where t D Tr.X/. The matrix equation becomes tn�1X D A and, by passing to trace
in this equation, we get that tn D 3. However, this equation does not have rational
solutions.

3.80. Let A D
��7 �9

3 2

�
, t D Tr.X/ 2 Z and let d D det X 2 Z. The Cayley–

Hamilton Theorem implies that X2 � tX C dI2 D O2 and X3 � 3X D .t2 � d �
3/X � tdI2. Thus, A D .t2 � d � 3/X � tdI2. Passing to trace in this equation we
get that .t2 � d � 3/t � 2td D �5 , t.t2 � 3d � 3/ D �5 which implies that
t 2 f�5; �1; 1; 5g.
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If t D �5 we get that d D 7 and these imply that X … M2 .Z/.

If t D 1 we have that d D 1 and X D
�

2 3

�1 �1

�
2 M2 .Z/.

The cases when t D �1 or t D 5 lead to d … Z.

Hence, the only solution of the cubic matrix equation is X D
�

2 3

�1 �1

�
.

3.81. Let A D
�

1 1

1 1

�
and let X 2 M2 .R/ be such that X3 C X2 D A. We have

AX D XA D X4 C X3 and it follows that X D
�

x y
y x

�
, x; y 2 R. Straightforward

calculations imply that

(
x3 C 3xy2 C x2 C y2 D 1

3x2y C y3 C 2xy D 1:

Subtracting these equations we obtain that .x � y/2.x � y C 1/ D 0 and it follows
that x D y or x D y � 1. We obtain the solutions

X1 D 1

2

�
1 1

1 1

�
and X2 D

�
0 1

1 0

�
:

3.82. (a) Let �1; �2 be the eigenvalues of A. We apply Theorem 2.11. First we
consider the case when �1; �2 2 Q.

If JA D
�

�1 0

0 �2

�
, then A3 � A � I2 D O2 implies that J3

A � JA � I2 D O2 )
�3

i � �i � 1 D 0, i D 1; 2. However, the equation x3 � x � 1 D 0 does not have
rational solutions.

If JA D
�

� 1

0 �

�
, � 2 Q, then J3

A � JA � I2 D O2 implies that �3 � � � 1 D 0 and

3�2 � 1 D 0. These equations do not have rational solutions.
Now we consider the case when �1; �2 2 CnQ, �1 D ˛Cpˇ and �2 D ˛�pˇ,

˛ 2 Q, ˇ 2 Q
�. Let JA D

�
˛ 1

ˇ ˛

�
be the rational canonical form of A. The equation

J3
A � JA � I2 D O2 implies that ˛3 C 3˛ˇ � ˛ � 1 D 0 and 3˛2 C ˇ � 1 D 0. It

follows that 8˛3 � 2˛ C 1 D 0, which does not have rational solutions.
(b) See the solution of problem 3.83.

3.83. Without loosing the generality we consider that n � k. We have Ak.An�k �
C.a; b// D I2, which implies that Ak and An�k � C.a; b/ are inverses one another,
hence they commute. It follows that .An�k � C.a; b//Ak D I2 and this implies that

AkC.a; b/ D C.a; b/Ak. A calculation shows that Ak D
�

x y
y x

�
, x; y 2 Q. We have

Ak D ˛kA C ˇkI2, ˛k; ˇk 2 Q. We distinguish between the cases when ˛k D 0 and
˛k ¤ 0.
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The case ˛k D 0. If ˛k D 0, then Ak D ˇkI2 D C.x; y/ ) ˇk D x and
y D 0, so Ak D xI2. Observe that x ¤ 0, otherwise Ak D O2 which contradicts
the fact that A is invertible. The equation An � AkC.a; b/ � I2 D O2 implies, since
Ak D xI2, that An�k D C

�
a C 1

x ; b
�
. Since A commutes with C

�
a C 1

x ; b
�

and b ¤ 0

we get that A is also a circulant matrix. Let A D C.u; v/. The equation Ak D xI2

implies that .u C v/k C .u � v/k D 2x and .u C v/k � .u � v/k D 0. If u C v D 0

we get that A D C.u; �u/ which is not invertible. Thus, u C v ¤ 0 and the equation
.u C v/k � .u � v/k D 0 implies that u � v D ˙.u C v/.

If u � v D u C v, then v D 0 ) A D uI2 ) An�k D un�kI2 D C
�
a C 1

x ; b
�
,

which contradicts b ¤ 0.
If u � v D �u � v, then u D 0 ) A D C.0; v/ and the equation Ak D xI2

implies that k is even and x D vk > 0. On the other hand,

C

�
a C 1

x
; b

�
D An�k D

(
vn�kC.0; 1/ if n is odd

vn�kI2 if n is even:

If n is an odd integer, then we have a C 1
x D 0 ) x D � 1

a < 0, which
contradicts x > 0.

If n is an even integer, then b D 0 which is impossible.
The case ˛k ¤ 0. We have A D 1

˛k

�
Ak � ˇkI2

� D 1
˛k

.C.x; y/ � ˇkI2/. Thus, A is
a circulant matrix. Let A D C.�; ı/, �; ı 2 Q. Let

tk D .� C ı/k C .� � ı/k

2
and wk D .� C ı/k � .� � ı/k

2
:

The equation An � AkC.a; b/ � I2 D O2 implies that tn � atk � bwk � 1 D 0 and
wn � btk � awk D 0. Adding these two equations we get that .� C ı/n � .a C b/.� C
ı/k � 1 D 0. However, this equation does not have rational solutions.

3.84. (a) Let A D
�

2 0

3 2

�
and let X 2 M2 .Z/ be a solution of the matrix equation

Xt C X D A, where t D Tr.X/. Since X commutes with A, a calculation shows that

X D
�

x 0

u x

�
, x; u 2 Z.

On the other hand, Xk D
�

xk 0

kxk�1u xk

�
, k 2 Z, and this implies that

Xt C X D
�

xt C x 0

txt�1u C u xt C x

�
D
�

2 0

3 2

�
:

We obtain the equations xt C x D 2 and txt�1u C u D 3 where t D Tr.X/ D 2x.

A calculation shows that x D u D 1 and hence X D
�

1 0

1 1

�
.
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(b) Exactly as in part (a) we get the equations xd C x D 2 and dxd�1u C u D 3,
where d D x2, and these imply that the equation XdCX D A does not have solutions.

3.85. Let X D
�

a b
c d

�
be a solution of our equation. We have

Xn C Xn�2 D Xn�2.X C iI2/.X � iI2/

and it follows that det X D 0 or det.X C iI2/ D 0 or det.X � iI2/ D 0.
If det.X C iI2/ D 0 we get that .a C i/.d C i/ � bc D 0 ) ad � bc � 1 D 0 and

a C d D 0. We have d D �a, bc D �1 � a2 and a calculation shows that

X2 D
�

a2 C bc b.a C d/

c.a C d/ d2 C bc

�
D
��1 0

0 �1

�
D �I2;

and this implies Xn�2.X2 C I2/ D O2, which is a contradiction.
By a similar analysis we get that the case det.X�iI2/ D 0 leads to a contradiction.
Now we study the case det X D 0. The Cayley–Hamilton Theorem implies that

X2 D .a C d/X ) Xk D .a C d/k�1X, 8k � 1. Thus,

Xn C Xn�2 D �
.a C d/n�1 C .a C d/n�3

�
X D

�
1 �1

�1 1

�
:

Let a C d D t and it follows, from the previous equation, that

8̂
ˆ̂̂<
ˆ̂̂̂:

a.tn�1 C tn�3/ D 1

b.tn�1 C tn�3/ D �1

c.tn�1 C tn�3/ D �1

d.tn�1 C tn�3/ D 1:

Adding the first and the last equation we have tn C tn�2 � 2 D 0.
Let f W R ! R, f .x/ D xn C xn�2 � 2 and we note that f 0.x/ D xn�3.nx2 C n � 2/.
We study the cases when n is an even or an odd integer.

� n is an even integer. In this case we have that f 0.x/ > 0 on .0; 1/ and f 0.x/ < 0

on .�1; 0/. Since f .�1/ D f .1/ D 0 we get that �1 and 1 are the unique real
solutions of the equation f .x/ D 0. A calculation shows that

t D 1 ) X1 D 1

2

�
1 �1

�1 1

�

and

t D �1 ) X2 D �1

2

�
1 �1

�1 1

�
:
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� n is an odd integer. We have f 0.x/ > 0 for x ¤ 0 and 1 is the unique real
solution of the equation f .x/ D 0, which implies the unique solution of the matrix
equation is

X D 1

2

�
1 �1

�1 1

�
:

3.86. (a) The equation has solutions if and only if n D 3k C 2, k � 0. In this case
the equation is equivalent to X2 � X C I2 D O2.

(b) The equation has no solutions in M2 .Z/.

3.87. The only primes that qualify are 2 and 3 (see [46]).

3.88. A D
�

1 1

0 1

�
.

3.89. We prove that the equation Xm D A has solution in M2 .C/ if and only if
A2 ¤ O2 or A D O2 (the same conditions hold for the equation Yn D A). Let JA

be the Jordan canonical form of A and let P 2 M2 .C/ be the invertible matrix such
that A D PJAP�1. Let X 2 M2 .C/ be a solution of the equation Xm D A and let
X1 D P�1XP. The matrix equation Xm D A becomes Xm

1 D JA.

If the matrix JA is diagonal, i.e., JA D
�

�1 0

0 �2

�
clearly a solution is

X1 D
�

	1 0

0 	2

�
, with 	m

1 D �1 and 	m
2 D �2.

If JA D
�

� 1

0 �

�
then X1 commutes with JA, so X1 D

�
a b
0 a

�
and

Xm
1 D

�
am mam�1b
0 am

�
. We obtain the equations am D � and mam�1b D 1, which

have solutions if and only if � ¤ 0 and when � D 0 they do not have solutions.
Thus, the only case when the equation Xm D A does not have solutions is the case

when the Jordan canonical form of A is JA D
�

0 1

0 0

�
which corresponds to the case

when A2 D O2 and A ¤ O2.

3.90. Since X1 and X2 are solutions we get that X2
1 �AX1 CB D O2, X2

2 �AX2 CB D
O2 and by subtracting these equations we get that X2

1 � X2
2 D A.X1 � X2/. Let

Y D X1 � X2 and we obtain that A D .X2
1 � X2

2/Y�1. Let Z D YX2Y�1. Since
Tr.X2/ D Tr.Z/ we have
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Tr.X1 C X2/ D Tr.X1/ C Tr.X2/

D Tr.X1/ C Tr.Z/

D Tr.X1 C Z/

D Tr
�
.X1Y C YX2/Y�1

�
D Tr

�
.X2

1 � X1X2 C X1X2 � X2
2/Y�1

�
D Tr

�
.X2

1 � X2
2/Y�1

�
D Tr.A/:

On the other hand,

B D AX1 � X2
1

D .X2
1 � X2

2/Y�1X1 � X2
1

D .X2
1 � X2

2 � X1Y/Y�1X1

D .X2
1 � X2

2 � X2
1 C X1X2/Y�1X1

D .X1 � X2/X2Y�1X1

D YX2Y�1X1;

and by passing to determinants we get det B D det.X1X2/.

3.91. (a) Let B D
 b0 b1b0 b0

!
and observe that B2 D O2. We have

 ba bbb0 ba
!p

D .baI2 CbbB/p DbapI2 CbbpBp DbaI2:

(b) Let p D 2k C 1, k � 1 and let J D
 b0 b1b1 b0

!
. Observe that J2 D I2 and

Jp D J2kJ D J. We have
 ba bbbb ba

!p

D .baI2 CbbJ/p DbapI2 CbbpJp DbaI2 CbbJ:
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(c) The equation Xp D
 ba bb
ba bb

!
implies that detp X Db0 ) det X Db0. It follows,

based on Cayley–Hamilton Theorem that X2 DbtX, wherebt D Tr.X/. This implies

that Xp Dbtp�1X D X ) X D
 ba bb
ba bb

!
.

Conversely, if X D
 ba bb
ba bb

!
, then det X Db0 and Tr.X/ Dba Cbb ¤b0. It follows

that X2 DbtX ) Xp Dbtp�1X D X.

(d) The equation Xp D
 ba bb
ba bb

!
implies that detp X D b0 ) det X D b0. Since

Tr.X/ Dba Cbb Db0 we get, based on the Cayley–Hamilton Theorem, that X2 D O2.
It follows that Xp D O2, which contradictsba ¤b0.

(e) Letbt D Tr.X/. If X 2 M2

�
Zp
�

such that det X D b0 and Tr.X/ ¤ b0, then
X2 DbtX. This implies that Xp Dbtp�1X D X.

(f) Let X D
 b0 babb b0

!
and observe that X2 DbabbI2. Then

Xp D �
X2
� p�1

2 X D
�babb�

p�1
2

X D
 b0 ba pC1

2 bb p�1
2

ba p�1
2 bb pC1

2 b0
!

:

(g) Let Y D
 b0 bb
ba b0

!
. We have, based on part (f), that

�ba bb
ba ba

�p

D .baI2 C Y/
p DbapI2 C Yp DbaI2 C

 b0 ba p�1
2 bb pC1

2

ba pC1
2 bb p�1

2 b0
!

:

(i) There are exactly p2 � 1 ways to choose the first line of the matrix such that it
is nonzero, then the second line can be chosen in any way except for the cases when
the second line is proportional to the first line, so there are p2 � p such possibilities.
It follows that there are .p2 � 1/.p2 � p/ invertible matrices in M2

�
Zp
�
.

3.92. (a) Let A D
 b0 b1b2 b0

!
. Since X commutes with A we get that X D

 ba bbb2bb ba
!

D

baI2CbbA. A calculation shows that A5 D
 b0 b4b3 b0

!
Db4A. Using the Binomial Theorem

we get that

X5 D
�baI2 CbbA

�5 Dba5I2 Cbb5A5 DbaI2 Cb4bbA D
 ba b4bbb3bb ba

!
D
 b0 b1b2 b0

!
:
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It follows thatba Db0 andbb Db4. Thus, X Db4A D
 b0 b4b3 b0

!
.

(b) Let A D
 b0 babb b0

!
. Since X commutes with A we have that

X D
� bx by
ba�1bbby bx

�
DbxI2 Cby

 b0 b1
ba�1bb b0

!
DbxI2 CbyB;

where B D
 b0 b1
ba�1bb b0

!
. A calculation shows that B2 D ˛I2, where ˛ Dba�1bb.

Let p D 2k C 1, k � 1. Then Bp D B2kB D ˛kB D
�ba�1bb�

p�1
2

B.

We have

Xp D .bxI2 CbyB/
p DbxpI2 CbypBp DbxI2 Cby �ba�1bb�

p�1
2

B

and it follows that

0
B@ bx by �ba�1bb�

p�1
2

by �ba�1bb�
pC1

2 bx

1
CA D

 b0 babb b0
!

:

Thus,bx Db0,by �ba�1bb�
p�1

2 Dba andby �ba�1bb�
pC1

2 Dbb. The last two equalities imply

thatby2 Dba2 ) by Dba orby D �ba.

Ifby Dba we get that
�ba�1bb�

p�1
2 Db1 and X DbaB D

 b0 babb b0
!

.

Ifby D �ba we get that
�ba�1bb�

p�1
2 D �b1 and

X D �baB D
 b0 �ba

�bb b0
!

D
 b0 1p � a
1p � b b0

!
:

The reverse implication is easy to check.

3.93. (a) Solution 1. Let A D
 b4 b2b4 b1

!
. Since X commutes with A a calculation shows

that

X D
 ba bbb2bb ba Cbb

!
DbaI2 CbbB;
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where B D
 b0 b1b2 b1

!
. One can check that B5 D B and we have, based on the Binomial

Theorem, that

X5 D
�baI2 CbbB

�5 Dba5I2Cbb5B5 Dba5I2Cbb5B D
 ba5 bb5

b2bb5 ba5 Cbb5

!
D
 ba bbb2bb ba Cbb

!
:

Thus,ba Db4,bb Db2, and X D A is the unique solution of the equation.

Solution 2. Let A D
 b4 b2b4 b1

!
. Since, Tr.A/ Db0 and det A Db1, we have based on

the Cayley–Hamilton Theorem that A2 Cb1I2 D O2 ) A2 Db4I2. This implies that
A5 D A.

Let Y 2 M2 .Z5/ such that X D Y CA. First we observe that Y commutes with A.
We have X6 D AX D A.Y C A/ D AY C A2 and X6 D XA D .Y C A/A D YA C A2.
It follows that AY D YA. Using the Binomial Theorem we have

X5 D .Y C A/5 D Y5 C A5 D Y5 C A D A ) Y5 D O2 ) Y2 D O2:

Since matrices which commute with A are of the following form

 ba bbb2bb ba Cbb
!

and Y commutes with A we get that there areba;bb 2 Z5 such that

Y D
 ba bbb2bb ba Cbb

!
:

The equation Y2 D O2 implies that

0
@ ba2 Cb2bb2 bb �bb Cb2ba�
b2bb �bb Cb2ba� b2bb2 C

�ba Cbb�2

1
A D O2:

A calculation shows thatba Dbb Db0 which implies that Y D O2. Thus, the only
solution of the matrix equation X5 D A is X D A.

Solution 3. Letbt D Tr.X/ and letbd D det X. Since X5 D A we getbd5 D b1 )bd D 1. We distinguish between the following two cases.

� Tr.X/ Db0. We have, based on the Cayley–Hamilton Theorem, that X2 Cb1I2 D
O2 ) X2 Db4I2 ) X4 Db1I2 ) X5 D X. Thus, X D A is the solution of our
equation.
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� Tr.X/ ¤ b0. The Cayley–Hamilton Theorem implies that X2 D btX Cb4I2 )
X4 D

�bt3 Cb3bt�X C
�b4bt2 Cb1� I2 ) X5 D

�bt4 Cb2bt2 Cb1�X C
�b4bt3 Cb2bt� I2.

This implies that
�bt4 Cb2bt2 Cb1�X C

�b4bt3 Cb2bt� I2 D A. Passing to trace in this

equation we get that

�bt4 Cb2bt2 Cb1�bt Cb2 �b4bt3 Cb2bt� Db0 ) bt5 Db0:

This implies thatbt Db0, which is impossible.

Thus, the only solution of the equation X5 D A is X D A.
(b) The equation has a unique solution given by

8̂̂
ˆ̂<
ˆ̂̂̂:

X D
 
1p � 1 b2
1p � 1 b1

!
if p 
 1 mod 4

X D
 b1 1p � 2

b1 1p � 1

!
if p 
 3 mod 4:

Let A D
 
1p � 1 b2
1p � 1 b1

!
. Since Tr.A/ D b0 and det A D b1 we have, based on the

Cayley–Hamilton Theorem, that A2 D �b1I2 D 1p � 1I2. Let p D 2k C 1, k � 1. We
have

Ap D A2kA D 1p � 1kA D 1p � 1
p�1

2 A D b̨A;

where b̨D 1p � 1
p�1

2 . On the other hand,

.b̨A/
p D b̨pAp D b̨Ap D b̨2A D 1p � 1p�1A D A:

Since X commutes with A a calculation shows that

X D
 ba bb
bp�1

2
bb ba Cbb

!
:

Let Y 2 M2

�
Zp
�

be such that X D Y C b̨A. First we observe that Y commutes
with A. We have XpC1 D XpX D AX D A.Y C b̨A/ D AY C b̨A2 and XpC1 D
XXp D XA D .Y C b̨A/A D YA C b̨A2. These imply that AY D YA.

We apply the Binomial Theorem and we have that

Xp D .Y Cb̨A/p D Yp C .b̨A/
p D Yp C A D A ) Yp D O2 ) Y2 D O2:
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Since Y commutes with A we let Y D
 ba bb
bp�1

2
bb ba Cbb

!
. A calculation shows that

Y2 D
0
@ ba2 Cbp�1

2
bb2 bb �b2ba Cbb�

bp�1

2
bb �b2ba Cbb� bp�1

2
bb2 C .ba Cbb/2

1
A :

Since Y2 D O2 we get thatba2 C bp�1

2
bb2 D b0 andbb �b2ba Cbb� D b0. The equation

bb �b2ba Cbb� Db0 implies thatbb Db0 orb2ba Cbb Db0.

Ifbb Db0 we get from the first equation thatba Db0, so Y D O2.

If bb D �b2ba D 1p � 2ba, the first equation implies that ba2

�b1 Cbp�1

2
1p � 22

�
D

b0 ) 1p � 1ba2 D 0 ) ba Db0 ) Y D O2.

Thus, the solution of the matrix equation is X D 1p � 1
p�1

2 A. If p D 4i C 1 we

have that 1p � 1
p�1

2 D b1, so X D A and if p D 4i C 3, then 1p � 1
p�1

2 D 1p � 1, so

X D 1p � 1A D
 b1 1p � 2b1 1p � 1

!
.

3.94. First we prove that if the equation AX � XA D A has a solution, then A2 D O2.
We have, Tr.A/ D Tr.AX � XA/ D 0 and Tr.A2/ D Tr ŒA.AX � XA/� D Tr.A2X/ �
Tr.AXA/ D Tr.AXA/ � Tr.AXA/ D 0. It follows, based on problem 2.88, that A is
nilpotent and the implication is proved.

Now we prove that if A2 D O2, then the equation AX � XA D A has a solution

in M2 .C/. Let A D
�

a b
c d

�
with A2 D O2. A calculation shows (see problem 1.8)

that A1 D
�

0 0

c 0

�
, c 2 C, or A2 D

 
a b

� a2

b �a

!
, a; b 2 C, b ¤ 0.

If A D A1 the equation AX � XA D A has the solution X1 D
�

1 0

0 0

�
and if

A D A2 the equation has the solution X2 D
�

0 0
a
b 1

�
.

3.96. (a) ) (b) Let P.x/ D anxn C an�1xn�1 C � � � C a1x C a0, an ¤ 0 and let X be

a solution of the equation P.X/ D A, where A D
�

1 1

0 1

�
. Since X and A commute

we get that X D
�

a b
0 a

�
, a; b 2 C. A calculation shows that, for k � 1, we have

Xk D
�

ak kak�1b
0 ak

�
and P.X/ D

�
P.a/ bP0.a/

0 P.a/

�
D
�

1 1

0 1

�
;
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which implies that P.a/ D 1 and bP0.a/ D 1. Observe that since the equation
P.x/ D 1 has n distinct solutions we cannot have the situation that there exists
˛ 2 C such that P.˛/ D 1 and P0.˛/ D 0. Therefore, the equation P.x/ D 1 has n
distinct solutions.

(b) ) (a) If the solutions of the equation P.x/ D 1 are x1; x2; : : : ; xn, then the

solutions of the matrix equation P.X/ D A are

0
@xk

1

P0.xk/
0 xk

1
A, k D 1; 2; : : : ; n.

If the solutions of the equation P.x/ D 1 are not distinct, then the statement of
the problem is no longer valid. Let P.x/ D .x � 1/2 C 1 D x2 � 2x C 2 and we
note that the equation P.x/ D 1 has the double solution 1. However, there is no

matrix X D
�

a b
0 a

�
2 M2 .C/ such that P.X/ D A, since this would imply that

a2 � 2a C 2 D 1 and 2b.a � 1/ D 1.

3.97. The Cayley–Hamilton Theorem implies that A2 � tA C dI2 D O2, where
t D Tr.A/ and d D det A. Therefore

(
BA2 D tBA � dB

A2B D tAB � dB;

and this implies, since t ¤ 0, that BA2 D A2B , tBA D tAB , BA D AB.

3.98. There are real numbers ˛m; ˇm; un; vn 2 R, ˛m ¤ 0, un ¤ 0, such that Am D
˛mA C ˇmI2 and Bn D unB C vnI2. We have

(
AmBn D ˛munAB C ˛mvnA C ˇmunB C ˇmvnI2

BnAm D un˛mBA C unˇmB C vn˛mA C vnˇmI2;

and this implies that AmBn D BnAm , ˛munAB D un˛mBA
un˛m¤0” AB D BA.

3.99. AmB D Am C B , .Am � I2/.B � I2/ D I2. This implies that matrices Am � I2

and B � I2 are inverses one another, hence they commute. Therefore .B � I2/.Am �
I2/ D I2 , BAm D B C Am. This implies AmB D BAm. If Am D ˛mI2, for some
˛m 2 R, then the matrix equality AmB D Am C B implies that .˛m � 1/B D ˛mI2.

Observe that ˛m ¤ 1, otherwise we get a contradiction. Thus, B D ˛m

˛m � 1
I2 and

this clearly implies AB D BA. If Am D ˛mA C ˇmI2, with ˛m; ˇm 2 R, ˛m ¤ 0, then
since AmB D BAm, we have ˛mAB D ˛mBA and since ˛m ¤ 0 we get that AB D BA.

3.5 Pell’s diophantine equation

Let d � 2 be an integer which is not a perfect square.
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Definition 3.4 The diophantine equation

x2 � dy2 D 1; x; y 2 Z; (3.3)

is called Pell’s equation2.

In what follows we are going to solve, in integers, Pell’s equation. First, we
observe that the pairs .�1; 0/ and .1; 0/ are solutions of equation (3.3) which are
called the trivial solutions. On the other hand, if .x; y/ is a solution of equation
(3.3), then .�x; y/, .x; �y/, and .�x; �y/ are also solutions of the same equation.
Thus, to solve Pell’s equation it suffices to find its solutions in positive integers, i.e.,
the solutions of the following form .x; y/ 2 N � N.

Let .x; y/ 2 N � N and let

A.x;y/ D
�

x dy
y x

�
;

where x and y are such that det A.x;y/ D x2 � dy2 D 1.
Let SP be the set of the solutions of the equation (3.3). We note that .x; y/ 2 SP if

and only if det A.x;y/ D 1 and .x; y/ ¤ .1; 0/ if and only if A.x;y/ ¤ I2.
If .x0; y0/ 2 SP, .x0; y0/ ¤ .1; 0/, then det A.x0;y0/ D 1 and it follows that

det An
.x0;y0/ D 1:

Let

An
.x0;y0/ D

�
xn dyn

yn xn

�
with x2

n � dy2
n D 1:

If

AnC1
.x0;y0/ D

�
xnC1 dynC1

ynC1 xnC1

�
;

then

AnC1
.x0;y0/ D An

.x0;y0/A.x0;y0/ D
�

xn dyn

yn xn

��
x0 dy0

y0 x0

�

D
�

x0xn C dy0yn d.y0xn C x0yn/

y0xn C x0yn x0xn C dy0yn

�

2This equation which bears the name of Pell, due to a confusion originating with Euler, should
have been designated as Fermat’s equation [15, p. 341].
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and

det AnC1
.x0;y0/ D det

�
An

.x0;y0/A.x0;y0/

�
D det An

.x0;y0/ det A.x0;y0/ D 1:

It follows that

(
xnC1 D x0xn C dy0yn

ynC1 D y0xn C x0yn

or

(
xn D x0xn�1 C dy0yn�1

yn D y0xn�1 C x0yn�1

for n � 1, where x0; y0 are given such that .x0; y0/ ¤ .1; 0/.
We note that if .x0; y0/ 2 N � N, then we also have that .xn; yn/ 2 N � N. In

other words, if .x0; y0/ is a solution of equation (3.3), then .xn; yn/ is also a solution
of equation (3.3).

The previous recurrence relations can be written as follows

�
xn

yn

�
D
�

x0 dy0

y0 x0

��
xn�1

yn�1

�
;

and this implies that

�
xn

yn

�
D
�

x0 dy0

y0 x0

�n �
x0

y0

�
:

Thus,

8̂̂
<
ˆ̂:

xn D 1

2


�
x0 C y0

p
d
�nC1 C

�
x0 � y0

p
d
�nC1

�

yn D 1

2
p

d


�
x0 C y0

p
d
�nC1 �

�
x0 � y0

p
d
�nC1

�
; n � 0:

(3.4)

By a fundamental solution of Pell’s equation we understand the pair .x0; y0/, with
x0; y0 2 N, and x2

0 �dy2
0 D 1 such that x0 is minimal if and only if y0 is minimal, i.e.,

x0 Cp
dy0 is minimal among xCp

dy, where .x; y/ is a solution, in positive integers,
of Pell’s equation. We mention that the existence of the fundamental solution of
Pell’s equation can be proved.

Now, if we consider that .x0; y0/ is the fundamental solution of Pell’s equation
we get that

SP 
 f.�1; 0/; .1; 0/; .xn; yn/; .�xn; yn/; .xn; �yn/ W n 2 Ng D S:

Next we prove that S 
 SP. If .x; y/ 2 S \ .N � N/, we define B D A.x;y/ and
B1 D A�1B, where
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A D A.x0;y0/ D
�

x0 dy0

y0 x0

�

and .x0; y0/ is the fundamental solution. It follows that det B1 D 1 and

B1 D
�

x0 dy0
y0 x0

�
with

(
x0 D x0x � dy0y

y0 D x0y � y0x:

It follows that x0 < x, y0 < y, and .x0; y0/ 2 N � N. We continue this algorithm and
we get that B2 D A�1B1, B3 D A�1B2, . . . , Bk D A�1Bk�1 D I2. We have, by going
backwards, that A.x;y/ D Ak

.x0;y0/ which implies, based on (3.4), that .x; y/ 2 SP.
Thus, we have proved the following theorem.

Theorem 3.12 The diophantine equation x2 � dy2 D 1, where d � 2 is an integer
which is not a perfect square, has the following solutions in positive integers

8̂̂
<
ˆ̂:

xn D 1

2


�
x0 C y0

p
d
�nC1 C

�
x0 � y0

p
d
�nC1

�

yn D 1

2
p

d


�
x0 C y0

p
d
�nC1 �

�
x0 � y0

p
d
�nC1

�
; n � 0;

where .x0; y0/ is the fundamental solution.

Example 3.5 We solve in Z � Z the equation x2 � 2y2 D 1.
Since the fundamental solution of this equation is .3; 2/ we have, based on

Theorem 3.12, that the equation has infinitely many solutions which are given by

8̂̂
<
ˆ̂:

xn D 1

2


�
3 C 2

p
2
�nC1 C

�
3 � 2

p
2
�nC1

�

yn D 1

2
p

2


�
3 C 2

p
2
�nC1 �

�
3 � 2

p
2
�nC1

�
; n � 0;

and hence SP D f.˙xn; ˙yn/ W n 2 Ng [ f.˙1; 0/g.

Remark 3.7 The solutions of Pell’s equation can be used to approximate the square
roots of natural numbers which are not perfect square. If .xn; yn/, n � 1, are positive
solutions of Pell’s equation x2 � dy2 D 1, then

xn � p
dyn D 1

xn C p
dyn

) xn

yn
� p

d D 1

yn.xn C p
dyn/

;

which implies that

lim
n!1

xn

yn
D p

d:
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Thus, the fractions
xn

yn
approximate

p
d by an error less than

1

y2
n

.

Now we study the diophantine equation

ax2 � by2 D 1; where a; b 2 N: (3.5)

Lemma 3.5 If ab D k2, k 2 N, k � 2, then the equation ax2 � by2 D 1 has no
solutions in N � N.

Proof We prove the lemma by contradiction. We assume that the equation has a
solution .x0; y0/ 2 N � N. It follows that ax2

0 � by2
0 D 1 and this implies that a

and b are relatively prime. The identity ab D k2 implies that a D k2
1 and b D k2

2,
with k1k2 D k, k1; k2 2 N. In this case, the equation becomes k2

1x2
0 � k2

2y2
0 D 1 or

.k1x0�k2y0/.k1x0Ck2y0/ D 1 and this implies that 1 D k1x0Ck2y0 D k1x0�k2y0 )
y0 D 0, which contradicts y0 2 N. ut

We define the Pell resolvent of ax2 � by2 D 1 the following diophantine equation

u2 � abv2 D 1: (3.6)

Lemma 3.6 If equation (3.5) has a nontrivial solution in N�N, then it has infinitely
many solutions.

Proof Let .x0; y0/ be a solution of equation (3.5). Since ab is not a perfect square,
see Lemma 3.5, we get that equation (3.6) has infinitely many solutions in positive
integers which are given by the formulae in Theorem 3.12.

We denote by .un; vn/, n 2 N, the general solution of equation (3.6). Let .xn; yn/,
n 2 N, where xn D x0un Cby0vn and yn D y0un Cax0vn, and we observe that .xn; yn/

are solutions of the equation ax2 � by2 D 1, since

ax2
n � by2

n D a.x0un C by0vn/2 � b.y0un C ax0vn/2

D .ax2
0 � by2

0/.u2
n � abv2

n/

D 1:

The lemma is proved. ut
Theorem 3.13 Let .A; B/ be the minimal solution of equation (3.5). The general
solution of equation (3.5) is given by .xn; yn/, n 2 N, with

(
xn D Aun C bBvn

yn D Bun C aAvn;

where .un; vn/, n 2 N, is the general solution of equation (3.6).
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Proof We showed in the proof of Lemma 3.6 that if .un; vn/, n 2 N, are the solutions
of equation (3.6), then .xn; yn/, n 2 N, are the solutions of equation (3.5).

To prove the other implication, we show that if .xn; yn/, n 2 N, are the solutions
of equation (3.5), then .un; vn/, n 2 N, with

(
un D aAxn � bByn

vn D Bxn � Ayn;

are solutions of equation (3.6).
We have,

u2
n � abv2

n D .aAxn � bByn/2 � ab.Bxn � Ayn/2

D .aA2 � bB2/.ax2
n � by2

n/

D 1;

and the theorem is proved. ut
In the particular case when b D 1, the technique given in the previous results can

be used to solve the diophantine equation

dx2 � y2 D 1; (3.7)

which is called the conjugate Pell equation.
The general solution of equation (3.7) is given by

(
xn D Aun C Bvn

yn D Bun C dAvn;
(3.8)

where .A; B/ is the fundamental solution of equation (3.7) and .un; vn/, n 2 N, are
the solutions of Pell’s equation u2 � dv2 D 1.

Remark 3.8 The sequences .xn/n�1 and .yn/n�1 defined recursively by (3.8) verify
the interesting identity

yn D
jp

dxn

k
; n 2 N;

where bxc denotes the floor of x.
To see this, we note that since .xn; yn/ is the solution of Pell’s conjugate equation

dx2 � y2 D 1 we have that

.
p

dxn C yn/.
p

dxn � yn/ D 1:
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However, xn; yn 2 N and it follows that
p

dxn C yn > 1. Therefore, 0 <
p

dxn �
yn < 1 ) yn <

p
dxn < yn C 1, which implies that yn D

jp
dxn

k
, n 2 N.

Example 3.6 We solve in N � N the equation 6x2 � 5y2 D 1.
First, we observe that the fundamental solution of this equation is .1; 1/. Also,

Pell’s resolvent equation becomes u2 � 30v2 D 1, which has the fundamental
solution .11; 2/. It follows that the general solution of Pell’s resolvent equation is
.un; vn/, where

(
unC1 D 11un C 60vn

vnC1 D 2un C 11vn; n 2 N;

with u1 D 11 and v1 D 2.
Thus, the general solution of our equation is

8̂̂
<
ˆ̂:

xn D 6 C p
30

12
.11 C 2

p
30/n C 6 � p

30

12
.11 � 2

p
30/n

yn D 5 C p
30

12
.11 C 2

p
30/n C 5 � p

30

12
.11 � 2

p
30/n:

3.5.1 Problems

3.100 Find all right angle triangles ABC with integer side lengths a; b; c, with a >

b, a > c such that the triangle with sides a0 D a C 4, b0 D b C 3, and c0 D c C 3 is
a right angle triangle.

3.101 Solve in Z � Z the equation x2 � 8y2 D 1.

3.102 Solve in Z � Z the equation 2x2 � 6xy C 3y2 C 1 D 0.

3.103 Prove that for any nonzero integer k the equation x2 � 2kxy C y2 D 1 has an
infinite number of solutions in Z � Z.

3.104 3 Find all positive integers n such that

 
n

k � 1

!
D 2

 
n

k

!
C
 

n

k C 1

!
for

some natural numbers k < n.

3.105 Prove that if m D 2 C 2
p

28n2 C 1 is an integer for some n 2 N, then m is a
perfect square.

3Problems 3.104, 3.105 and 3.106 are taken from [16].
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3.106 Prove that if n is an integer such that 3n C 1 and 4n C 1 are both perfect
squares, then n is divisible by 56.

Chebyshev polynomials. For �1 < t < 1, let � be such that 0 < � < � and
t D cos � (i.e., � D arccos t). Let Tn and Un be the polynomials defined by

Tn.t/ D cos n� D cos.n arccos t/

and

Un.t/ D sin n�

sin �
D sin .n arccos t/p

1 � t2
:

While these functions are initially defined on a restricted domain, they turn
out to be polynomials in t and so they have meanings for all real values of t.

The polynomials Tn are called Chebyshev polynomials of the first kind
and the Un are called Chebyshev polynomials of the second kind. These
polynomials are widely used in a variety of mathematical contexts and they
have a number of remarkable properties (see [8, Section 3.4]).

3.107 [8, p. 39] Chebyshev polynomials and Pell’s equation.

Prove the solution of the equation x2�.t2�1/y2 D 1, where t is a parameter,
is of the form .xn; yn/ D .Tn.t/; Un.t//.

3.5.2 Solutions

3.100. Since a, b, and c are Pythagorean numbers, let a D m2 C n2, b D 2mn, and
c D m2�n2, where m; n 2 N and m > n. The equation .aC4/2 D .bC3/2C.cC3/2

implies that 4a D 3b C 3c C 1 ) m2 C 7n2 � 6mn D 1 or .m � 3n/2 � 2n2 D 1.
Using the substitutions m � 3n D x and n D y we get the equation x2 � 2y2 D 1.
This equation, which has the minimal solution .3; 2/, is solved in Example 3.5 and
the general solution .xk; yk/, k 2 N, implies that mk D xk C 3yk and nk D yk, k 2 N.

3.101. Since the minimal solution of the equation is .3; 1/ we get that

8̂<
:̂

xn D 1

2

h
.3 C 2

p
2/nC1 C .3 � 2

p
2/nC1

i

yn D 1

4
p

2

h
.3 C 2

p
2/nC1 C .3 � 2

p
2/nC1

i
; n � 0:

The solution of Pell’s equation is given by f.˙xn; ˙yn/ W n 2 Ng [ f.�1; 0/; .1; 0/g.
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3.102. The equation can be written in the following form x2 � 3.y � x/2 D 1. Using
the substitutions X D x, Y D y � x we get that X2 � 3Y2 D 1. The minimal solution
of this equation is .2; 1/ and we get that

8̂<
:̂

Xn D 1

2

h
.2 C p

3/nC1 C .2 � p
3/nC1

i

Yn D 1

2
p

3

h
.2 C p

3/nC1 � .2 � p
3/nC1

i
; n � 0;

and xn D Xn and yn D xn C Yn D Xn C Yn, n � 0. The solution of the equation is
f.˙xn; ˙yn/ W n 2 Ng [ f.1; 1/; .�1; �1/g.

3.103. The equation can be written in the following form .x � ky/2 � .k2 �1/y2 D 1.
Using the substitutions x � ky D u and y D v the equation becomes u2 � dv2 D 1,
where d D k2 � 1. If k ¤ 0 or k ¤ ˙1, then d is a positive integer which is not a
perfect square.

If k D 1 the equation becomes .x � y/2 D 1 which has an infinite numbers of
solutions given by .p ˙ 1; p/, p 2 Z.

If k D �1 we get that .x C y/2 D 1 with solutions .�p ˙ 1; p/, p 2 Z.

If jkj � 2 we consider the matrix A D
�

k k2 � 1

1 k

�
which has det A D 1. We

have det.An/ D 1, An D
�

un dvn

vn un

�
and det.An/ D u2

n � dv2
n D 1. Since u0 D k,

v0 D 1 the equation u2�dv2 D 1 has an infinite number of solutions .un; vn/, n 2 N,
which generate an infinite number of solutions for the equation x2 � 2kxy C y2 D 1,
which are given by xn D un C kvn and yn D vn, n 2 N.

3.104.–3.106. See [16].

3.107. If t D ˙1, then x D ˙1, so the solutions of our equation are .˙1; ˛/, ˛ 2 R.
Let jtj < 1. An obvious solution is .t; 1/. Other solutions can be obtained from

xn C
p

t2 � 1yn D .t C
p

t2 � 1/n D .t C i
p

1 � t2/n:

Using the substitution t D cos � we get that

xn C i sin �yn D .cos � C i sin �/n D cos.n�/ C i sin.n�/;

and it follows that xn D cos.n�/ D Tn.t/ and yn D sin.n�/

sin �
D Un.t/.

If jtj > 1, then

(
xn C

p
t2 � 1yn D .t C

p
t2 � 1/n

xn �
p

t2 � 1yn D .t �
p

t2 � 1/n
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and it follows that

8̂<
:̂

xn D 1

2

h
.t C

p
t2 � 1/n C .t �

p
t2 � 1/n

i

yn D 1

2
p

t2 � 1

h
.t C

p
t2 � 1/n � .t �

p
t2 � 1/n

i
; n � 0:

The reader should check that .xn; yn/ D .Tn.t/; Un.t//, n � 0.



Chapter 4
Functions of matrices. Matrix calculus

Sleepiness and fatigue are the enemies of learning.
Platon (427 B.C.–347 B.C.)

4.1 Sequences and series of matrices

Let A 2 M2 .C/ and let f 2 CŒx� be the polynomial function

f .x/ D a0 C a1x C a2x2 C � � � C anxn:

The matrix f .A/ D a0I2 C a1A C a2A2 C � � � C anAn is called the polynomial
function f evaluated at A. For any matrix A and any polynomial function f we can
define the matrix f .A/.

We extend this definition to other functions, non-polynomial ones, extension
which turns out to have applications to other branches of mathematics such as
solving systems of differential equations and studying the stability of various
phenomena modeled by systems of differential equations. The difficulty of this
extension stands in the fact that if a numerical function f , defined on a set D, is
given and A is a matrix, then to define the matrix f .A/ one needs some conditions
that the matrix A should satisfy.

It turns out to be very useful to study limits of polynomial functions, so it is
necessary to define the limit of a sequence of matrices.

Let .An/n2N be a sequence of matrices, An D
�

a.n/
i;j

�
i;jD1;2

2 M2.C/.

Definition 4.1 We say that the sequence .An/n2N is convergent if the sequences�
a.n/

i;j

�
n2N are convergent for all i; j D 1; 2. If ai;j D lim

n!1 a.n/
i;j , then the matrix

A D .ai;j/i;jD1;2 is called the limit of the sequence .An/n2N and we write A D lim
n!1 An.

Sometimes the notation A1 D lim
n!1 An is used.

The next proposition, whose proof is straightforward, gives the most elementary
properties of limits of sequences of matrices.

© Springer International Publishing AG 2017
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Proposition 4.1 If A D lim
n!1 An, B D lim

n!1 Bn and P 2 M2 .C/ is an invertible

matrix, then:

(a) lim
n!1.˛An C ˇBn/ D ˛A C ˇB, ˛; ˇ 2 C;

(b) lim
n!1.AnBn/ D AB;

(c) lim
n!1.P�1AnP/ D P�1AP.

Remark 4.1 We mention that the limit of a sequence of invertible matrices need not
be invertible, i.e., if .An/n2N is a sequence of invertible matrices and A D lim

n!1 An

then, the matrix A need not be invertible (see the case of lim
n!1

1
n I2 D O2).

Let .fn/n2N be a sequence of polynomials, fn 2 CŒx� and let A 2 M2 .C/.

Theorem 4.1 If JA is the Jordan canonical form of A, then lim
n!1 fn.A/ exists if and

only if lim
n!1 fn.JA/ exists. In this case if P is the invertible matrix such that JA D

P�1AP, then

lim
n!1 fn.A/ D P

�
lim

n!1 fn.JA/
�

P�1:

Proof For any polynomial function f 2 CŒx� we have f .JA/ D P�1f .A/P. This
follows based on the formula JA D P�1AP which implies that Jn

A D P�1AnP.
Now we apply part (c) of Proposition 4.1 to the equalities fn.JA/ D P�1fn.A/P
and fn.A/ D Pfn.JA/P�1 and we obtain the simultaneous existence or nonexistence
of the limits lim

n!1 fn.A/ and lim
n!1 fn.JA/ and the relation between them. ut

Remark 4.2 Theorem 4.1 reduces the calculation of the limit of a sequence of
polynomial functions of a given matrix A to the study of the limit of the polynomial
function of the corresponding Jordan canonical form JA.

We mention that a 2 � 2 matrix can have two Jordan cells of order 1, i.e., these

are matrices of the form J� D Œ�� or a Jordan cell of order 2, J� D
�

� 1

0 �

�
.

Theorem 4.2 Let � 2 C and let

J� D
�

� 1

0 �

�

be a Jordan cell of order 2. Then, for any polynomial function f 2 CŒx� we have

f .J�/ D
�

f .�/ f 0.�/

0 f .�/

�
:
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Proof Let gn.�/ D �n and let J0 D
�

0 1

0 0

�
. First we note that J2

0 D O2 and we have

Jn
� D .�I2 C J0/n D �nI2 C

 
n

1

!
�n�1J0 D gn.�/I2 C g0

n.�/J0:

Thus, the theorem is valid for any polynomial of the form f .x/ D xn and based on
linearity it is also valid for any polynomial function f 2 CŒx�. ut
Theorem 4.3 The sequence of matrices .fn.J�//n2N converges if and only if the
numerical sequences .fn.�//n2N and .f 0

n.�//n2N converge. If lim
n!1 fn.�/ D f .�/ and

lim
n!1 f 0

n.�/ D f 0.�/, then

f .J�/ D lim
n!1 fn.J�/ D

�
f .�/ f 0.�/

0 f .�/

�
:

Proof We apply theorem 4.2. ut
Recall that for a matrix A its spectrum, denoted by Spec.A/ is the set of all

eigenvalues of A. In our case Spec.A/ D f�1; �2g � C.

Definition 4.2 We say that the sequence .fn/n2N is convergent on the spectrum of
A if for any �i 2 Spec.A/, i D 1; 2, the limits lim

n!1 fn.�i/, i D 1; 2 and lim
n!1 f 0

n.�i/,

i D 1; 2 exist and are finite. Moreover, if there exists a function f defined on a subset
of C which contains Spec.A/ and lim

n!1 fn.�i/ D f .�i/ and lim
n!1 f 0

n.�i/ D f 0.�i/,

for i D 1; 2, then the function f is called the limit of the sequence .fn/n2N on the
spectrum of A and we write lim

Spec.A/
fn D f .

Theorem 4.4 The sequence of matrices .fn.A//n2N converges if and only if the
sequence of polynomials .fn/n2N is convergent on the spectrum of A. If

lim
Spec.A/

fk D f then lim
n!1 fn.A/ D f .A/:

Proof This follows based on theorems 4.1, 4.2, and 4.3 ut
Definition 4.3 If the sequence .fn/n2N is convergent on the spectrum of A and
lim

Spec.A/
fn D f , then the matrix f .A/ D lim

n!1 fn.A/ is called the function f of the

matrix A.

Remark 4.3 We have lim
n!1 fn.A/ D

�
lim

Spec.A/
fn

�
.A/.

Remark 4.4 Let D � C, let f W D ! C be the function which is the limit of the
sequence of polynomials .fn/n2N, and let A be a matrix. Then, in order to define
the matrix f .A/ it is necessary to verify the conditions Spec.A/ � D and the
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convergence of the sequence .fn/n2N on the spectrum of A. A possible algorithm
for calculating the matrix f .A/ has, based on the previous theorems, the following
steps:

(1) Determine the spectrum of A and check the convergence on the spectrum of A
of the sequence .fn/n2N to the function f ;

(2) Determine the matrix P and the Jordan canonical form JA of the matrix A;

(3) Determine f .JA/;

(4) Write f .A/ D Pf .JA/P�1.

Sometimes it is not necessary to use the Jordan canonical form in order to find
lim

n!1 fn.A/. Next, we consider the case when f is an analytic function, these are

functions that can be written as power series.

Let
1P

mD0

amzm be a power series having the radius of convergence R, let fn.z/ D
nP

mD0

amzm and let f .z/ be the sum of the power series. We have

lim
n!1 fn.z/ D f .z/ for z 2 DR D fz 2 C W jzj < Rg

lim
n!1 f .i/

n .z/ D f .i/.z/; i 2 N; z 2 DR

(4.1)

and for jzj > R the preceding limits do not exist, so the function f is defined only on
DR and eventually at some points on the circle CR D @DR D fz 2 C W jzj D Rg.

Definition 4.4 Let A 2 M2 .C/. The spectral radius of A is the real number
defined by

�.A/ D max fj�1j; j�2jg :

We try to determine the conditions on which one could define the matrix f .A/.

Clearly fn.z/ D
nP

mD0

amzm are polynomials and we have, based on Theorem 4.4,

that the matrix f .A/ D lim
n!1 fn.A/ exists if and only if the sequence of polynomials

.fn/n2N converges, on the spectrum of A, to f .

Theorem 4.5 Let R be the radius of convergence of the power series f .z/ D
1P

mD0

amzm and let A 2 M2 .C/. Then:
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(a) If �.A/ < R, i.e., all the eigenvalues of A belong to the disk DR, then the series

of matrices
1P

mD0

amAm converges and the matrix f .A/ exists and is defined by

f .A/ D
1P

mD0

amAm;

(b) If �.A/ D R, i.e., there are eigenvalues of A on the circle CR, then the series of

matrices
1P

mD0

amAm converges if for any eigenvalue �, with j�j D R, the series

1X
mD0

am�m and
1X

mD1

mam�m�1 (4.2)

converge.

Proof (a) Since any eigenvalue of A belongs to DR we have, based on (4.1), that

the sequence .fn/n2N, of the partial sums of the power series,
1P

mD0

amzm converges on

the spectrum of A to f and this implies in view of Theorem 4.4 that f .A/ exists and

f .A/ D
1P

mD0

amAm.

(b) The convergence of the sequence .fn/n2N, of the partial sums, on the spectrum
of A reduces to the conditions (4.2). We have, based on (4.1), that these conditions
hold for the eigenvalues of A in the convergence disk and they need to be studied
for the eigenvalues of A on CR. ut

Theorem 4.6 Let f be a function which has the Taylor series expansion at z0,

f .z/ D
1X

nD0

f .n/.z0/

nŠ
.z � z0/n; jz � z0j < R;

where R 2 .0; 1�. If A 2 M2 .C/ has eigenvalues �1; �2 2 C such that
j�i � z0j < R, i D 1; 2, then the matrix f .A/ has the eigenvalues f .�1/ and
f .�2/.

Proof Since similar matrices have the same eigenvalues and f .A/ is similar to f .JA/

the theorem follows based on Theorems 4.2 and 4.3.
Another “proof” is based on a formal computation. Let X ¤ 0 be the eigenvector

corresponding to the eigenvalue �, i.e., AX D �X. We have

f .A/X D
 1X

nD0

f .n/.z0/

nŠ
.A � z0I2/n

!
X D

1X
nD0

f .n/.z0/

nŠ
.� � z0/nX D f .�/X;

and the theorem is proved. ut
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4.2 Elementary functions of matrices

In this section we introduce the elementary functions of matrices that are used
throughout this book.

� The polynomial function

If f 2 CŒx� is the polynomial function defined by f .x/ D a0 C a1x C � � � C
anxn, ai 2 C, i D 0; n, then

f .A/ D a0I2 C a1A C � � � C anAn; A 2 M2 .C/ :

� The exponential function

eA D
1X

nD0

An

nŠ
; A 2 M2 .C/ :

� The hyperbolic functions
cosine hyperbolic

cosh A D
1X

nD0

A2n

.2n/Š
; A 2 M2 .C/ :

sine hyperbolic

sinh A D
1X

nD0

A2nC1

.2n C 1/Š
; A 2 M2 .C/ :

� The trigonometric functions
cosine

cos A D
1X

nD0

.�1/n

.2n/Š
A2n; A 2 M2 .C/ :

sine

sin A D
1X

nD0

.�1/n

.2n C 1/Š
A2nC1; A 2 M2 .C/ :

(continued)
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� The Neumann (geometric) series

.I2 � A/�1 D
1X

nD0

An; A 2 M2 .C/ ; �.A/ < 1:

� The binomial series

.I2 � A/�˛ D
1X

nD0

�.n C ˛/

�.˛/nŠ
An; A 2 M2 .C/ ; �.A/ < 1; ˛ > 0;

where � denotes the Gamma function.
� The logarithmic functions

ln.I2 C A/ D
1X

nD1

.�1/n�1

n
An; A 2 M2 .C/ ; �.A/ < 1:

ln.I2 � A/ D �
1X

nD1

An

n
; A 2 M2 .C/ ; �.A/ < 1:

� The power function
If z 2 C

�, then

zA D e.ln z/A D
1X

nD0

lnn z

nŠ
An; A 2 M2 .C/ :

Nota bene. If a formula of the form ˚.f1.z1/; f2.z2/; : : : ; fp.zp// D 0 holds on
C, where fi, i D 1; p, are some functions and zi 2 C, i D 1; p, then if the matrices
Ai 2 M2 .C/, i D 1; p, commute and fi.Ai/, i D 1; p, exist we also have the matrix
formula ˚.f1.A1/; f2.A2/; : : : ; fp.Ap// D O2.

Lemma 4.1 Properties of the exponential function.
The following statements hold:

(a) If a 2 C, then eaI2 D eaI2;

(b) Euler’s matrix formula. If A 2 M2 .C/, then eiA D cos A C i sin A;

(c) If A; B 2 M2 .C/ commute, then eAeB D eBeA D eACB.

Proof (a) We have

eaI2 D
1X

nD0

.aI2/n

nŠ
D
 1X

nD0

an

nŠ

!
I2 D eaI2:
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(b) We calculate

eiA D
1X

nD0

.iA/n

nŠ

D
1X

kD0

.iA/2k

.2k/Š
C

1X
kD1

.iA/2k�1

.2k � 1/Š

D
1X

kD0

.�1/k A2k

.2k/Š
C i

1X
kD1

.�1/k�1 A2k�1

.2k � 1/Š

D cos A C i sin A:

(c) We have

eAeB D
1X

nD0

An

nŠ

1X
mD0

Bm

mŠ

D
1X

nD0

1X
mD0

AnBm

nŠmŠ

D
1X

nD0

1X
mD0

1

.n C m/Š

 
n C m

n

!
AnBm

D
1X

kD0

1

kŠ

X
nCmDk

 
n C m

n

!
AnBm

D
1X

kD0

.A C B/k

kŠ

D eACB;

and the lemma is proved. ut
Lemma 4.2 Properties of the trigonometric functions sine and cosine.

Let A 2 M2 .C/. The following statements hold:

(a) sin A D eiA � e�iA

2i
;

(b) cos A D eiA C e�iA

2
;

(c) The fundamental identity of matrix trigonometry

sin2 A C cos2 A D I2I
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(d) Double trigonometric matrix formulae

sin.2A/ D 2 sin A cos A and cos.2A/ D 2 cos2 A � I2 D I2 � 2 sin2 AI

(e) If A; B 2 M2 .C/ commute, then sin.A C B/ D sin A cos B C cos A sin B;

(f) If A 2 M2 .C/ is involutory and k 2 Z, then cos.k�A/ D .�1/kI2.

Proof (a) and (b) First we prove that if A 2 M2 .C/, then sin.�A/ D � sin A and
cos.�A/ D cos A. We have

sin.�A/ D
1X

nD1

.�1/n�1 .�A/2n�1

.2n � 1/Š
D �

1X
nD1

.�1/n�1 A2n�1

.2n � 1/Š
D � sin A

cos.�A/ D
1X

nD0

.�1/n .�A/2n

.2n/Š
D

1X
nD0

.�1/n A2n

.2n/Š
D cos A:

It follows, based on part (b) of Lemma 4.1, that

eiA D cos A C i sin A

e�iA D cos.�A/ C i sin.�A/ D cos A � i sin A:

Solving the system for cos A and sin A we get that parts (a) and (b) of the lemma are
proved.

(c) We have, based on parts (a) and (b), that

sin2 A C cos2 A D
�

eiA � e�iA

2i

�2

C
�

eiA C e�iA

2

�2

D �e2iA � 2I2 C e2iA

4
C e2iA C 2I2 C e2iA

4

D I2:

(d) We have, based on parts (a) and (b), that

2 sin A cos A D 2
eiA � e�iA

2i
� eiA C e�iA

2
D e2iA � e�2iA

2i
D sin.2A/

2 cos2 A � I2 D 2

�
eiA C e�iA

2

�2

� I2 D e2iA C e�2iA

2
D cos.2A/:

The identity cos.2A/ D I2 � 2 sin2 A is proved similarly.
(e) Since the matrices A and B commute, we have in view of part (c) of

Lemma 4.1 that
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sin A cos B C cos A sin B D eiA � e�iA

2i
� eiB C e�iB

2
C eiA C e�iA

2
� eiB � e�iB

2i

D ei.ACB/ � e�i.ACB/

2i

D sin.A C B/:

(f) We have, since A2n D I2 for any integer n � 0, that

cos.k�A/ D
1X

nD0

.�1/n .k�A/2n

.2n/Š
D
 1X

nD0

.�1/n .k�/2n

.2n/Š

!
I2 D cos.k�/I2 D .�1/kI2;

and the lemma is proved. ut

Lemma 4.3 Limits and derivatives. Let A 2 M2 .C/. Then:

(a) lim
t!0

eAt � I2

t
D A;

(b) lim
t!0

sin.At/

t
D A;

(c) lim
t!0

I2 � cos.At/

t2
D A2

2
;

(d) .eAt/0 D AeAt;

(e) .sin.At//0 D A cos.At/;

(f) .cos.At//0 D �A sin.At/.

Proof (a) Since A D PJAP�1 we have that

eAt � I2

t
D P

eJAt � I2

t
P�1: (4.3)

Let �1 and �2 be the eigenvalues of A. Then

eJAt � I2

t
D

8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
:

0
B@

e�1t � 1

t
0

0
e�2t � 1

t

1
CA if JA D

 
�1 0

0 �2

!

0
B@

e�t � 1

t
e�t

0
e�t � 1

t

1
CA if JA D

 
� 1

0 �

!
:

(4.4)
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Combining (4.3) and (4.4) and passing to the limit when t ! 0 we get that part (a)
of the lemma is proved.

(b) Since

sin.At/ D eiAt � e�iAt

2i
;

we get that

lim
t!0

sin.At/

t
D lim

t!0

eiAt � e�iAt

2it

D lim
t!0

eiAt � I2

2it
� lim

t!0

e�iAt � I2

2it

.a/D iA � .�iA/

2i

D A:

(c) Since 2 sin2 At
2

D I2 � cos.At/ we get, based on part (b) of the lemma, that

lim
t!0

I2 � cos.At/

t2
D 2 lim

t!0

 
sin At

2

t

!2

D A2

2
:

(d) Let f .t/ D eAt. Then

f 0.t/ D lim
h!0

f .t C h/ � f .t/

h
D lim

h!0

eAt
�
eAh � I2

�
h

D eAt lim
h!0

eAh � I2

h
.a/D AeAt:

(e) We have, based on part (d) of the lemma, that

.sin.At//0 D
�

eiAt � e�iAt

2i

�0
D iAeiAt � .�iA/e�iAt

2i

D A
eiAt C e�iAt

2

D A cos.At/:

(f) The proof of this part of the lemma is similar to the proof of part (e). ut
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4.3 A novel computation of function matrices

In this section we give a technique, presumably new?!, for calculating the function
matrix f .A/ where f is an analytic function and A 2 M2 .C/. We prove that f .A/ can
be expressed as a linear combination of A and I2. This method is different than the
technique involving the Jordan canonical form of A.

Theorem 4.7 Expressing f .A/ as a linear combination of A and I2. Let f
be a function which has the Taylor series expansion at 0

f .z/ D
1X

nD0

f .n/.0/

nŠ
zn; jzj < R;

where R 2 .0; 1� and let A 2 M2 .C/ be such that �.A/ < R. Then:

f .A/ D
8<
:

f .�1/ � f .�2/

�1 � �2

A C �1f .�2/ � �2f .�1/

�1 � �2

I2 if �1 ¤ �2

f 0.�/A C .f .�/ � �f 0.�//I2 if �1 D �2 D �:

Proof First we consider the case when �1 ¤ �2. We have, based on Theorem 3.1,
that if n � 1 is an integer, then An D �n

1B C �n
2C, where

B D A � �2I2

�1 � �2

and C D A � �1I2

�2 � �1

:

It follows that

f .A/ D
1X

nD0

f .n/.0/

nŠ
An

D I2 C
1X

nD1

f .n/.0/

nŠ

�
�n

1B C �n
2C
�

D B C
1X

nD1

f .n/.0/

nŠ
�n

1B C C C
1X

nD1

f .n/.0/

nŠ
�n

2C

D
1X

nD0

f .n/.0/

nŠ
�n

1B C
1X

nD0

f .n/.0/

nŠ
�n

2C

D f .�1/B C f .�2/C

D f .�1/ � f .�2/

�1 � �2

A C �1f .�2/ � �2f .�1/

�1 � �2

I2:
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Now we consider the case when �1 D �2 D �. Using Theorem 3.1 we have that
if n � 1 is an integer, then An D �nB C n�n�1C, where B D I2 and C D A � �I2.
This implies that

f .A/ D
1X

nD0

f .n/.0/

nŠ
An

D I2 C
1X

nD1

f .n/.0/

nŠ

�
�nB C n�n�1C

�

D I2 C
1X

nD1

f .n/.0/

nŠ
�nB C

1X
nD1

f .n/.0/

.n � 1/Š
�n�1C

D
1X

nD0

f .n/.0/

nŠ
�nI2 C

1X
nD1

f .n/.0/

.n � 1/Š
�n�1.A � �I2/

D f .�/I2 C f 0.�/.A � �I2/

D f 0.�/A C .f .�/ � �f 0.�//I2:

The theorem is proved. ut

Remark 4.5 More generally, one can prove that if f is a function which has
the Taylor series expansion at z0

f .z/ D
1X

nD0

f .n/.z0/

nŠ
.z � z0/n; jz � z0j < R;

where R 2 .0; 1� and A 2 M2 .C/ with �1; �2 2 D.z0; R/, then

f .A/ D
8<
:

f .�1/ � f .�2/

�1 � �2

A C �1f .�2/ � �2f .�1/

�1 � �2

I2 if �1 ¤ �2

f 0.�/A C .f .�/ � �f 0.�//I2 if �1 D �2 D �:

The proof of the preceding formula, which is left as an exercise to the
interested reader, follows the same steps as in the case when z0 D 0.

Corollary 4.1 Let f be as in Theorem 4.7 and let ˛ 2 C.
(a) If �1 ¤ �2 2 C are such that j�ij < R, i D 1; 2, then

(continued)
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Corollary 4.1 (continued)

f

�
�1 ˛

0 �2

�
D
0
@f .�1/

f .�1/ � f .�2/

�1 � �2

˛

0 f .�2/

1
A :

(b) If � 2 C with j�j < R, then

f

�
� ˛

0 �

�
D
�

f .�/ ˛f 0.�/

0 f .�/

�
:

Theorem 4.8 Expressing f .A/ in terms of Tr.A/ and det A.

Let f be a function which has the Taylor series expansion at 0

f .z/ D
1X

nD0

f .n/.0/

nŠ
zn; jzj < R;

where R 2 .0; 1� and let A 2 M2 .C/ be such that �.A/ < R.
If t D Tr.A/, d D det A and 
 D t2 � 4d, then:

f .A/D
f
�

tCp



2

�
�f
�

t�p



2

�
p



AC

.tCp

/f

�
t�p



2

�
� .t � p


/f
�

tCp



2

�

2
p



I2

if 
 < 0 or 
 > 0 and

f .A/ D f 0 � t

2

�
A C

h
f
� t

2

�
� t

2
f 0 � t

2

�i
I2 if 
 D 0:

Proof This theorem follows from Theorem 4.7 since the eigenvalues of A are the
solutions of the characteristic equation �2 � t� C d D 0. ut

Next we give a new proof, which is based on an application of Theorem 4.7, of
a classical limit from matrix theory. More precisely we prove that if A 2 M2 .C/,
then

lim
n!1

�
I2 C A

n

�n

D eA:
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Let n 2 N and let f be the polynomial function defined by f .x/ D �
1 C x

n

�n
.

Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A. We have, based on
Theorem 4.7, that

�
I2 C A

n

�n

D
8<
:
�
1C �1

n

�n�
�
1C �2

n

�n

�1��2
A C �1

�
1C �2

n

�n��2

�
1C �1

n

�n

�1��2
I2 if �1 ¤ �2�

1 C �
n

�n�1
A C

h�
1 C �

n

�n � �
�
1 C �

n

�n�1
i

I2 if �1 D �2 D �:

Passing to the limit as n ! 1 in the previous equality we get that

lim
n!1

�
I2 C A

n

�n

D
8<
:

e�1 � e�2

�1 � �2

A C �1e�2 � �2e�1

�1 � �2

I2 if �1 ¤ �2

e�A C �
e� � �e�

�
I2 if �1 D �2 D �

D eA:

Another proof of this formula which uses the Jordan canonical form of A is given
in the solution of problem 4.5. The previous limit is a particular case of a more
general result involving limits of functions of matrices.

Theorem 4.9 A general exponential limit.

If f W C ! C is an entire function with f .0/ D 1 and A 2 M2 .C/, then

lim
n!1 f n

�
A

n

�
D ef 0.0/A:

Proof Let �1; �2 be the eigenvalues of A, let JA be the Jordan canonical form of
A, and let P be the invertible matrix such that A D PJAP�1. We have f

�
A
n

� D
Pf
� JA

n

�
P�1 which implies f n

�
A
n

� D Pf n
� JA

n

�
P�1.

We distinguish between the cases when �1 ¤ �2 and �1 D �2.

Case �1 ¤ �2. Let JA D
�

�1 0

0 �2

�
. We have, based on Corollary 4.1, that

f

�
JA

n

�
D
0
@f
�

�1

n

�
0

0 f
�

�2

n

�
1
A :

This implies

f n

�
A

n

�
D P

0
@f n

�
�1

n

�
0

0 f n
�

�2

n

�
1
AP�1
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and it follows that

lim
n!1 f n

�
A

n

�
D P

�
ef 0.0/�1 0

0 ef 0.0/�2

�
P�1 D ef 0.0/A:

Case �1 D �2 D �. In this case there are two possible subcases according to

whether JA D
�

� 0

0 �

�
or JA D

�
� 1

0 �

�
. If JA D

�
� 0

0 �

�
, then A D �I2. This

implies that f n
�

A
n

� D f n
�

�
n I2

� D f n
�

�
n

�
I2. Therefore,

lim
n!1 f n

�
A

n

�
D lim

n!1 f n

�
�

n

�
I2 D ef 0.0/�I2 D ef 0.0/A:

Now we consider the case when JA D
�

� 1

0 �

�
. An application of Corollary 4.1

shows that

f

�
JA

n

�
D
�

f
�

�
n

�
1
n f 0 ��

n

�
0 f

�
�
n

�
�

;

which implies

f n

�
A

n

�
D P

�
f n
�

�
n

�
f 0 ��

n

�
f n�1

�
�
n

�
0 f n

�
�
n

�
�

P�1:

Thus,

lim
n!1 f n

�
A

n

�
D P

�
ef 0.0/� f 0.0/ef 0.0/�

0 ef 0.0/�

�
P�1 D ef 0.0/A;

and the theorem is proved. ut
Remark 4.6 We mention that Theorem 4.9 is a particular case of a more general
result [37], which states that if A; B 2 Mk .C/ and f ; g are entire functions with
f .0/ D g.0/ D 1, then

lim
n!1

�
f

�
A

n

�
g

�
B

n

��n

D ef 0.0/ACg0.0/B: (4.5)

When f D g D exp, one obtains Lie’s famous product formula for matrices. Herzog
proves (4.5) by using a technique based on inequalities involving norms of matrices.
However, when g.x/ D 1 and A 2 M2 .C/, the proof of Theorem 4.9, which we
believe is new in the literature, is based on an application of Corollary 4.1 combined
to the Jordan canonical form theorem.
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4.4 Explicit expressions of eA, sin A, and cos A

In this section we give explicit expressions for the exponential function eA and the
trigonometric functions sin A and cos A in the case of a general matrix A 2 M2 .C/.
These expressions are given in terms of both the entries and the eigenvalues of A.

Theorem 4.10 Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A. Then

eA D
8<
:

e�1 � e�2

�1 � �2

A C �1e�2 � �2e�1

�1 � �2

I2 if �1 ¤ �2

e�.A C .1 � �/I2/ if �1 D �2 D �:

Proof This follows from Theorem 4.7. See also [10, Theorem 2.2, p. 1228]. ut

Corollary 4.2 [9, p. 716] If A D
�

a b
0 d

�
2 M2 .C/, then

eA D

8̂̂
ˆ̂<
ˆ̂̂̂:

ea

 
1 b

0 1

!
if a D d

 
ea ea�ed

a�d b

0 ed

!
if a ¤ d:

Corollary 4.3 [9, p. 717] Let t 2 C and let A D
�

0 1

0 ˛

�
2 M2 .C/. Then

etA D

8̂̂
ˆ̂<
ˆ̂̂̂:

 
1 e˛t�1

˛

0 e˛t

!
if ˛ ¤ 0

 
1 t

0 1

!
if ˛ D 0:

Corollary 4.4 [9, p. 717] If � 2 R, A D
�

0 �

�� 0

�
and B D

�
0 �

2
� �

� �
2

C � 0

�
,

then

eA D
�

cos � sin �

� sin � cos �

�
and eB D

�
sin � cos �

� cos � sin �

�
:
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The next lemma gives the expressions for the exponential function of special
matrices.

Lemma 4.4 Let A 2 M2 .C/ and let t 2 C. The following statements hold:

(a) (nilpotent) If A2 D O2, then etA D I2 C tA;

(b) (involutory) If A2 D I2, then etA D .cosh t/I2 C .sinh t/A;

(c) (skew involutory) If A2 D �I2, then etA D .cos t/I2 C .sin t/A;

(d) (idempotent) If A2 D A, then etA D I2 C �
et � 1

�
A;

(e) If A2 D �A, then etA D I2 C .1 � e�t/A.

Proof We prove only part (a) of the lemma and leave the proofs of the other parts
as an exercise to the interested reader. First, we observe that since A2 D O2, then
An D O2, for all n � 2. Thus

etA D
1X

nD0

.tA/n

nŠ
D I2 C tA C

1X
nD2

.tA/n

nŠ
D I2 C tA;

and part (a) of the lemma is proved. ut
Let J2 2 M2 .R/ be the matrix

J2 D
�

0 1

�1 0

�
:

Note that J2 is skew symmetric and orthogonal, that is JT
2 D �J2 D J�1

2 . Observe
that, based on Theorem 1.3, this matrix corresponds to the complex number �i.

Lemma 4.5 If A D
�

0 1

1 0

�
, then

etA D .cosh t/I2 C .sinh t/A

and

etJ2 D .cos t/I2 C .sin t/A:

Proof Use Theorem 4.7. ut
Theorem 4.11 Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A. Then

sin A D
8<
:

sin �1 � sin �2

�1 � �2

A C �1 sin �2 � �2 sin �1

�1 � �2

I2 if �1 ¤ �2

.cos �/A C .sin � � � cos �/I2; if �1 D �2 D �



4.5 Systems of first order differential equations with constant coefficients 201

and

cos A D
8<
:

cos �1 � cos �2

�1 � �2

A C �1 cos �2 � �2 cos �1

�1 � �2

I2 if �1 ¤ �2

�.sin �/A C .cos � C � sin �/I2 if �1 D �2 D �:

Proof This follows from Theorem 4.7. ut

4.5 Systems of first order differential equations
with constant coefficients

In this section we solve systems of linear differential equations with constant
coefficients by using a classical technique from matrix theory.

Let A.t/ D
�

a.t/ b.t/
c.t/ d.t/

�
, where a; b; c; d W I ! R are functions of t. Then,

A0.t/ D
�

a0.t/ b0.t/
c0.t/ d0.t/

�
and

Z
A.t/dt D

�R
a.t/dt

R
b.t/dtR

c.t/dt
R

d.t/dt

�
:

That is, by differentiating or integrating a matrix we mean to perform the
operation on each of the matrix entries. It can be shown that the product rule for
derivatives in calculus holds for matrices whereas the power rule does not.

Let S0 be the homogeneous system of linear differential equations with constant
coefficients

S0 W
(

x0 D a11x C a12y

y0 D a21x C a22y;

where ai;j 2 R, i; j D 1; 2, and x D x.t/, y D y.t/ are the functions to be determined.
Since the solutions of systems of differential equations with constant coefficients are
defined on R in what follows we solve the system on R.

Let X.t/ D
�

x.t/
y.t/

�
and A D

�
a11 a12

a21 a22

�
and we observe that the system S0

becomes

S0 W X0.t/ D AX.t/:

This implies that X0.t/ � AX.t/ D O2 and by multiplying the system by the
nonsingular matrix e�At we get that

�e�AtAX.t/ C e�AtX0.t/ D O2:
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This implies, since
�
e�At

�0 D �Ae�At, that the system is equivalent to

�
e�AtX.t/

�0 D O2;

and it follows that the general solution of our system is

X.t/ D eAtC;

where C D
�

c1

c2

�
is a constant vector.

If the initial condition X.t0/ D X0, t0 2 R, is added to the system S0, then we
have X0 D eAt0 C from which it follows that C D e�At0X0. Thus, the solution of the
Cauchy problem (or the system with initial condition) is

X.t/ D eA.t�t0/X0:

Now we turn our attention to the study of the nonhomogeneous systems of linear
differential equations with constant coefficients.

We consider the system

S W
(

x0 D a11x C a12y C f

y0 D a21x C a22y C g;

where f D f .t/ and g D g.t/ are continuous functions, t 2 R.

Let F.t/ D
�

f .t/
g.t/

�
and exactly as in the previous case we obtain that our system

can be written into the matrix form

X0.t/ D AX.t/ C F.t/:

This implies that .X0.t/ � AX.t/ D F.t/ and multiplying both sides of the system by
the nonsingular matrix e�At we get that

�
e�AtX.t/

�0 D e�AtF.t/

and it follows that

e�AtX.t/ D
Z

e�AtF.t/dt C C;

where C is a constant vector. Thus, the general solution of the nonhomogeneous
system becomes
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X.t/ D eAt


Z
e�AtF.t/dt

�
C eAtC:

If we add to the system S the initial condition X.t0/ D X0, t0 2 R, then
the solution of the Cauchy problem becomes, after simple computations which the
reader is invited to check

X.t/ D
Z t

t0

eA.t�u/F.u/du C eA.t�t0/X0:

Since for solving systems of linear differential equations with constant coeffi-
cients one needs to calculate the exponential matrix eAt we give below a simple
algorithm for calculating eAt.

Algorithm for the computation of the exponential matrix eAt.

Step 1. Find the eigenvalues of A, determine the matrix JA and the
invertible matrix P which verifies A D PJAP�1.

Step 2. Observe that eAt D PeJAtP�1.

Step 3. Determine eJAt and eAt.

� If the eigenvalues of A are �1 and �2 and JA D
�

�1 0

0 �2

�
, then

eJAt D
�

e�1t 0

0 e�2t

�
:

This implies

eAt D P

�
e�1t 0

0 e�2t

�
P�1:

� If the eigenvalues of A are �1 D �2 D � and JA D
�

� 1

0 �

�
, then

eJAt D e�t

�
1 t
0 1

�
:

This implies

eAt D e�tP

�
1 t
0 1

�
P�1:
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Remark 4.7 The solutions of the homogeneous system S0 W X0.t/ D AX.t/, t 2 R,
are given by:

(a) If �1; �2 2 R and �1 ¤ �2, then

(
x.t/ D ˛1e�1t C ˇ1e�2t; ˛1; ˇ1 2 R; t 2 R

y.t/ D ˛2e�1t C ˇ2e�2t; ˛2; ˇ2 2 R; t 2 RI

(b) If �1; �2 2 R and �1 D �2 D � but A ¤ �I2, then

(
x.t/ D e�t .˛1 C ˇ1t/ ; ˛1; ˇ1 2 R; t 2 R

y.t/ D e�t .˛2 C ˇ2t/ ; ˛2; ˇ2 2 R; t 2 RI

(c) If �1; �2 2 C, �1;2 D r ˙ is, r; s 2 R, s ¤ 0, then

(
x.t/ D ert .˛1 cos st C ˇ1 sin st/ ; ˛1; ˇ1 2 R; t 2 R

y.t/ D ert .˛2 cos st C ˇ2 sin st/ ; ˛2; ˇ2 2 R; t 2 R:

Definition 4.5 The stability of homogeneous linear systems.

Let S0 W X0.t/ D AX.t/, t 2 R, be a system of differential equations.

(a) The solution X0 of S0 which verifies the initial condition X0.t0/ D C0 is called
stable (in the sense of Liapunov) if for any � > 0 there exists ı.�/ > 0 such that
for any C 2 R

2 with the property jjC �C0jj < ı we have jjX.t/�X0.t/jj < � for
any t > t0, where X.t/ is the solution of the system S0 with the initial condition
X.t0/ D C.

(b) The solution X0 is called unstable if it is not stable.
(c) The solution X0 is called asymptotically stable if it is stable and

lim
t!1 jjX.t/ � X0.t/jj D 0;

for any solution X with the initial condition X.t0/ D C, where C is in a
neighborhood from R

2 of C0.

Theorem 4.12 All solutions of the system S0 have the same type of stability
as the zero solution.

Proof If XC0 is a unique solution of the system with the initial condition XC0 .t0/ D
C0 and XC is the solution with the initial condition XC.t0/ D C, then XC � XC0 is
the solution of the system with the initial condition .XC � XC0 /.t0/ D C � C0, so
XC � XC0 D XC�C0 . We have jjXC.t/ � XC0 .t/jj D jjXC�C0 .t/ � 0jj D jjXC�C0 .t/jj
and lim

t!1 jjXC.t/ � XC0 .t/jj D 0 , lim
t!1 jjXC�C0 .t/ � 0jj D 0. ut
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Remark 4.8 We mention that, based on the stability of the nonzero solution of
system S0, stable, asymptotically stable or unstable, we say that the system S0

is stable, asymptotically stable, or unstable respectively.
For studying the stability of the system S0 we have based on remark 4.7 and

Theorem 4.12 the following observations:

(a) If �1; �2 2 R and max f�1; �2g > 0, then the function f .t/ D ˛e�1t C ˇe�2t,
t � t0, ˛2 C ˇ2 ¤ 0, is unbounded;

(b) If �1; �2 2 R and max f�1; �2g < 0, then lim
t!1 j˛e�1t C ˇe�2tj D 0;

(c) If �1 D �2 D 0, then the function f .t/ D ˛ C ˇt, ˇ ¤ 0, t � t0 is unbounded;
(d) If r > 0 and ˛2 C ˇ2 ¤ 0, then the function f .t/ D ert .˛ cos st C ˇ sin st/,

t � t0 is unbounded;
(e) If r < 0, then lim

t!1 jert .˛ cos st C ˇ sin st/ j D 0;

(f) The function f .t/ D ˛ cos st C ˇ sin st, t � t0 is bounded.

4.6 The matrix Riemann zeta function

The celebrated zeta function of Riemann [61, p. 265] is a function of a complex
variable defined by

�.z/ D
1X

nD1

1

nz
D 1 C 1

2z
C � � � C 1

nz
C � � � ; <.z/ > 1:

In this section we consider a matrix A 2 M2 .C/ and we introduce, hopefully for
the first time in the literature?!, the matrix Riemann zeta function �.A/ and discuss
some of its properties. First, we define the power matrix function aA, where a 2 C

�
and A 2 M2 .C/.

Definition 4.6 If a 2 C
� and A 2 M2 .C/, then aA D e.Ln a/A.

Remark 4.9 We mention that [42, p. 224] the function Ln, which is called the
logarithm, is the multiple-valued function defined, for z 2 C

�, by Ln.z/ D ln jzj C
i.arg z C 2k�/, k 2 Z. The function ln z D ln jzj C i arg z, where arg z 2 .��; �� is
called the principal value. In what follows, throughout this book we consider, both
in theory and problems, for the definition of the power matrix function the formula
aA D e.ln a/A involving the principal value.

Theorem 4.13 Let a 2 C
� and let �1; �2 be the eigenvalues of A 2 M2 .C/. Then

aA D
8<
:

a�1 � a�2

�1 � �2

A C �1a�2 � �2a�1

�1 � �2

I2 if �1 ¤ �2�
a� ln a

�
A C a�.1 � � ln a/I2 if �1 D �2 D �:
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Proof The proof follows based on the formula aA D e.ln a/A combined to Theo-
rem 4.7. ut
Corollary 4.5 Power matrix function properties.

(a) If a 2 C
� and ˛ 2 C, then a˛I2 D a˛I2.

(b) If A 2 M2 .C/, then 1A D I2.
(c) If a 2 C

�, then aO2 D I2.
(d) If A 2 M2 .C/, then

iA D cos
��

2
A
�

C i sin
��

2
A
�

:

(e) If a 2 C
� and A 2 M2 .C/ is a symmetric matrix, then aA is also a symmetric

matrix.
(f) If AB D BA, then aAaB D aACB, a 2 C

�.
(g) If a; b 2 C

�, then aAbA D .ab/A.

Corollary 4.6 Special power matrix functions.

(a) If a 2 C
� and ˛; ˇ 2 C, then

a

0
@˛ 0

0 ˇ

1
A

D
�

a˛ 0

0 aˇ

�
:

(b) If a 2 C
� and ˛; ˇ 2 C, then

a

0
@˛ ˇ

0 ˛

1
A

D a˛

�
1 ˇ ln a
0 1

�
:

(c) If a 2 C
� and ˛; ˇ 2 C, then

a

0
@˛ 0

ˇ ˛

1
A

D a˛

�
1 0

ˇ ln a 1

�
:

(d) If a 2 C
� and ˛ 2 C, then

a

0
@˛ ˛

˛ ˛

1
A

D 1

2

�
a2˛ C 1 a2˛ � 1

a2˛ � 1 a2˛ C 1

�
:



4.6 The matrix Riemann zeta function 207

(e) If a 2 C
� and ˛; ˇ 2 C, ˇ ¤ 0, then

a

0
@˛ ˇ

ˇ ˛

1
A

D 1

2

�
a˛Cˇ C a˛�ˇ a˛Cˇ � a˛�ˇ

a˛Cˇ � a˛�ˇ a˛Cˇ C a˛�ˇ

�
:

Definition 4.7 The Riemann zeta function of a 2 � 2 matrix.

Let A 2 M2 .C/ and let �1; �2 be its eigenvalues. The Riemann zeta
function of the matrix A is defined by

�.A/ D
1X

nD1

�
1

n

�A

; <.�1/ > 1; <.�2/ > 1:

By an abuse of notation we also use the writing �.A/ D P1
nD1

1
nA . The next

theorem gives the expression of �.A/ in terms of both the entry values of A and the
eigenvalues of A.

Theorem 4.14 Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A with
<.�1/ > 1, <.�2/ > 1. Then

�.A/ D
8<
:

�.�1/ � �.�2/

�1 � �2

A C �1�.�2/ � �2�.�1/

�1 � �2

I2 if �1 ¤ �2

�0.�/A C .�.�/ � ��0.�// I2 if �1 D �2 D �:

Proof We have, based on Theorem 4.13, that

�
1

n

�A

D

8̂
<̂
ˆ̂:

1

n�1
� 1

n�2

�1 � �2

A C
�1

n�2
� �2

n�1

�1 � �2

I2 if �1 ¤ �2�
1

n�
ln

1

n

�
A C 1

n�

�
1 � � ln

1

n

�
I2 if �1 D �2 D �:

If �1 ¤ �2, then

�.A/ D 1

�1 � �2

 1X
nD1

1

n�1
�

1X
nD1

1

n�2

!
A C 1

�1 � �2

 
�1

1X
nD1

1

n�2
� �2

1X
nD1

1

n�1

!
I2

D �.�1/ � �.�2/

�1 � �2

A C �1�.�2/ � �2�.�1/

�1 � �2

I2:
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If �1 D �2 D �, then

�.A/ D
 1X

nD1

1

n�
ln

1

n

!
A C

1X
nD1

1

n�

�
1 � � ln

1

n

�
I2

D �0.�/A C �
�.�/ � ��0.�/

�
I2;

and the theorem is proved. ut
Corollary 4.7 If A 2 M2 .C/ is a symmetric matrix, then �.A/ is also a symmetric
matrix.

Corollary 4.8 Let a 2 C be such that <.a/ > 1. Then �.aI2/ D �.a/I2.

Corollary 4.9 Special matrix zeta functions.

(a) If a; b 2 C such that <.a/ > 1, <.b/ > 1 and a ¤ b, then

�

�
a 0

0 b

�
D
�

�.a/ 0

0 �.b/

�
:

(b) If a; b 2 C such that <.a/ > 1, then

�

�
a b
0 a

�
D
�

�.a/ b�0.a/

0 �.a/

�
:

(c) If a; b 2 C such that <.a/ > 1, then

�

�
a 0

b a

�
D
�

�.a/ 0

b�0.a/ �.a/

�
:

(d) If a; b 2 C such that <.a ˙ b/ > 1, then

�

�
a b
b a

�
D 1

2

�
�.a C b/ C �.a � b/ �.a C b/ � �.a � b/

�.a C b/ � �.a � b/ �.a C b/ C �.a � b/

�
:

4.7 The matrix Gamma function

Euler’s Gamma function � [61, p. 235] is a function of a complex variable
defined by

�.z/ D
Z 1

0

tz�1e�tdt; <.z/ > 0:
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We extend this definition to square matrices of order 2.

Definition 4.8 The matrix Gamma function of a 2 � 2 matrix.

If A 2 M2 .C/ and �1; �2 are the eigenvalues of A with <.�i/ > 0, i D 1; 2,
then we define

�.A/ D
Z 1

0

tAt�1e�tdt D
Z 1

0

tA�I2e�tdt:

The next theorem gives the expression of �.A/ in terms of both the entry values
of A and the eigenvalues of A.

Theorem 4.15 Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A with
<.�i/ > 0, i D 1; 2. Then

�.A/ D
8<
:

�.�1/ � �.�2/

�1 � �2

A C �1�.�2/ � �2�.�1/

�1 � �2

I2 if �1 ¤ �2

� 0.�/A C .�.�/ � �� 0.�// I2 if �1 D �2 D �:

Proof We have, based on Theorem 4.13, that

tA D
8<
:

t�1 � t�2

�1 � �2

A C �1t�2 � �2t�1

�1 � �2

I2 if �1 ¤ �2�
t� ln t

�
A C t�.1 � � ln t/I2 if �1 D �2 D �:

If �1 ¤ �2, then

�.A/ D 1

�1 � �2

�Z 1

0

t�1�1e�tdt �
Z 1

0

t�2�1e�tdt

�
A

C 1

�1 � �2

�
�1

Z 1

0

t�2�1e�tdt � �2

Z 1

0

t�1�1e�tdt

�
I2

D �.�1/ � �.�2/

�1 � �2

A C �1�.�2/ � �2�.�1/

�1 � �2

I2:

If �1 D �2 D �, then

�.A/ D
�Z 1

0

t��1e�t ln tdt

�
A C

�Z 1

0

t��1e�tdt � �

Z 1

0

t��1e�t ln tdt

�
I2

D � 0.�/A C �
�.�/ � �� 0.�/

�
I2;

and the theorem is proved. ut
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Corollary 4.10 The Gamma function of special matrices.

(a) If a 2 C such that <.a/ > 0, then �.aI2/ D �.a/I2.

(b) If ˛; ˇ 2 C such that <.˛/ > 0, <.ˇ/ > 0, then

�

�
˛ 0

0 ˇ

�
D
�

�.˛/ 0

0 �.ˇ/

�
:

(c) If ˛; ˇ 2 C such that <.˛/ > 0, then

�

�
˛ ˇ

0 ˛

�
D
�

�.˛/ ˇ� 0.˛/

0 �.˛/

�
:

(d) If ˛; ˇ 2 C such that <.˛ ˙ ˇ/ > 0, then

�

�
˛ ˇ

ˇ ˛

�
D 1

2

�
�.˛ C ˇ/ C �.˛ � ˇ/ �.˛ C ˇ/ � �.˛ � ˇ/

�.˛ C ˇ/ � �.˛ � ˇ/ �.˛ C ˇ/ C �.˛ � ˇ/

�
:

Lemma 4.6 A difference matrix equation.

If A 2 M2 .C/ with <.�i/ > 0, i D 1; 2, then �.I2 C A/ D A�.A/:

Proof First we observe the eigenvalues of I2 C A are 1 C �1 and 1 C �2. Using
Theorem 4.15 we have that

�.I2 C A/ D
8<
:

�1�.�1/ � �2�.�2/

�1 � �2
A � �1�2 .�.�1/ � �.�2//

�1 � �2
I2 if �1 ¤ �2

� 0.1 C �/A � �2� 0.�/I2 if �1 D �2 D �:

If �1 ¤ �2 the Cayley–Hamilton Theorem implies that A2 � .�1 C �2/A C
�1�2I2 D O2. We apply Theorem 4.15 and we have that

A�.A/ D �.�1/ � �.�2/

�1 � �2

A2 C �1�.�2/ � �2�.�1/

�1 � �2

A

D �1�.�1/ � �2�.�2/

�1 � �2

A � �1�2 .�.�1/ � �.�2//

�1 � �2

I2:

If �1 ¤ �2 the Cayley–Hamilton Theorem implies that A2 � 2�A C �2I2 D O2.
We have, based on Theorem 4.15, that

A�.A/ D � 0.�/A2 C �
�.�/ � �� 0.�/

�
A D � 0.1 C �/A � �2� 0.�/I2;

and the lemma is proved. ut
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Corollary 4.11 A product of two Gamma functions.
Let ˛ be a real number such that 0 < ˛ < 1, let ˇ 2 C and let A D�

˛ ˇ

0 ˛

�
. Then

�.A/�.I2 � A/ D �

sin.�˛/

�
1 ��ˇ cot.�˛/

0 1

�
:

Proof Use part (c) of Corollary 4.10 and the formula �.˛/�.1�˛/ D �

sin.�˛/
. ut

4.8 Problems

4.1 Prove that if A D
�

0 1

1 0

�
, then

An D

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

 
0 1

1 0

!
if n is odd

 
1 0

0 1

!
if n is even.

Deduce that A1 D lim
n!1 An does not exists. A clue to this behavior can be found by

examining the eigenvalues, ˙1 of A.

Remark 4.10 The matrix A in the previous problem is called a transition or a double
stochastic matrix. Such a matrix has the property that all its entries are greater than
or equal to 0 and the sum of all its row and column entries is equal to 1 [34, p. 221].

4.2 Let A 2 M2 .C/. Prove that lim
n!1 An D O2 if and only if �.A/ < 1.

4.3 Let A 2 M2 .C/ such that �.A/ < 1 and let k � 1 be an integer. Prove that
lim

n!1 nkAn D O2.

4.4 If A; B 2 M2 .C/ such that AB D BA and lim
n!1 An D O2 and lim

n!1 Bn D O2,

then lim
n!1.AB/n D O2.

4.5 Let A 2 M2 .C/ and let n 2 N. Prove by using the Jordan canonical form of A
that
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lim
n!1

�
I2 C A

n

�n

D eA and lim
n!1

�
I2 � A

n

�n

D e�A:

4.6 [63, p. 339] Let A D
�

1 � a b
a 1 � b

�
and B D

��a b
a �b

�
, where 0 < a < 1,

0 < b < 1. Prove that An D I2 C 1 � .1 � a � b/n

a C b
B, n 2 N, and calculate lim

n!1 An.

Remark 4.11 Matrix A in the previous problem is called a left stochastic matrix
or a column stochastic matrix. A left stochastic matrix is a square matrix with
nonnegative entries with each column summing to 1.

4.7 [1] Let B.x/ D
�

1 x
x 1

�
: Consider the infinite matrix product

M.t/ D B.2�t/B.3�t/B.5�t/ � � � D
Y

p

B.p�t/; t > 1;

where the product runs over all primes, taken in increasing order. Calculate M.t/.

4.8 Let

A.x/ D
�

xxx
1

.1 � x/3 xx

�
2 M2 .R/ and let An.x/ D

�
an.x/ bn.x/

cn.x/ dn.x/

�
; n 2 N:

Calculate lim
x!1

an.x/ � dn.x/

cn.x/
.

4.9 Calculate

�
1 C 1

n
1
n

1
n 1

�n

; n 2 N:

4.10 Prove that

lim
n!1

 
1 1

n
1
n 1 C 1

n2

!n

D
�

cosh 1 sinh 1

sinh 1 cosh 1

�
:

4.11 Calculate

lim
n!1

 
1 � 1

n2
1
n

1
n 1 C 1

n2

!n

:
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4.12 [29] Let A D
�

3 1

�4 �1

�
. Calculate

lim
n!1

1

n

�
I2 C An

n

�n

and lim
n!1

1

n

�
I2 � An

n

�n

:

4.13 Let A D
�

2 �1

�2 3

�
. Calculate

lim
n!1

�
cos2 A

n C 1
C cos2.2A/

n C 2
C � � � C cos2.nA/

2n

�
:

4.14 Gelfand’s spectral radius formula, 1941.

Let A D
�

a b
c d

�
2 M2 .C/ and let jjAjj be the Frobenius norm of A

defined by

jjAjj D
p

Tr.AA�/ D
p

jaj2 C jbj2 C jcj2 C jdj2:

Prove that

�.A/ D lim
n!1 jjAnjj 1

n :

4.15 Limits, nth roots and norms of matrices. Let A D
�

3 �1

4 �2

�
.

(a) Calculate

lim
n!1

n
pjjA.A C I2/.A C 2I2/ � � � .A C nI2/jj

n
:

(b) Calculate

lim
n!1

n

r jjA.A C 2I2/.A C 4I2/ � � � .A C 2nI2/jj
nŠ

:

(c) Calculate

lim
n!1

jj.A C .n C 1/I2/.A C .n C 4/I2/ � � � .A C .4n � 2/I2/jj
jj.A C nI2/.A C .n C 3/I2/ � � � .A C .4n � 3/I2/jj ;

where jjAjj denotes the norm of A defined in problem 4.14.
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4.16 Pitagora in matrix form. The Frobenius norm of a matrix A 2 M2 .C/, also
known as the Euclidean norm or Hilbert–Schmidt norm, is defined by jjAjj D
Tr.AA�/. Prove that if A 2 M2 .C/, then jjAjj2 D jj<.A/jj2 C jj=.A/jj2, where
<.A/ and =.A/ denote the real part and the imaginary part of A respectively.

4.17 A bella problema. Let A D
�

2 1

�1 0

�
. Prove that:

(a) An D
�

n C 1 n
�n 1 � n

�
, for n � 1;

(b) eA D eA;

(c) eAx D ex

�
x C 1 x
�x 1 � x

�
, x 2 R.

4.18 Calculate eA for the following matrices:

(a) A D
�

3 �1

1 1

�
;

(b) A D
�

4 �2

6 �3

�
.

4.19 Prove that

e

0
@0 1

1 0

1
A

D
�

cosh 1 sinh 1

sinh 1 cosh 1

�
:

4.20 (a) Let ˛; ˇ 2 R. Prove that

e

0
@ 0 iˇ

iˇ 0

1
A

D
�

cos ˇ i sin ˇ

i sin ˇ cos ˇ

�
:

(b) Prove that

e

0
@˛ iˇ

iˇ ˛

1
A

D e˛

�
cos ˇ i sin ˇ

i sin ˇ cos ˇ

�
:

4.21 A rotation matrix as an exponential.

If � 2 R and J2 D
�

0 1

�1 0

�
, then

(continued)
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4.21 (continued)

e��J2 D
�

cos � � sin �

sin � cos �

�
:

Remark 4.12 We note that, based on Theorem 1.3, this problem is the matrix
version of the famous Euler’s formula ei� D cos � C i sin � , from complex analysis.

4.22 Let A 2 M2 .C/.
(a) Prove that if eA is a triangular matrix which is not of the form ˛I2, ˛ 2 C,

then A is a triangular matrix.
(b) Show that if eA is triangular, then A need not be triangular.

4.23 Prove that

e

0
@ a 1

�1 a

1
A

D ea

�
cos 1 sin 1

� sin 1 cos 1

�
; a 2 R:

4.24 Let a; b 2 R. Calculate eA, where A D
�

a b
�b a

�
.

4.25 [6, p. 205] Let t 2 R and let A.t/ D
�

t t � 1

0 1

�
. Prove that eA.t/ D eA

�
et�1

�
.

4.26 Let A 2 M2 .C/. Prove that if � is an eigenvalue of A, then e� is an eigenvalue
of eA and det

�
eA
� D eTr.A/.

4.27 Commuting exponentials.

Let A; B 2 M2 .C/ be such that both A and B have real eigenvalues. Prove
that if eA commutes with eB, then A commutes with B.

Nota bene. If A and B have complex eigenvalues the problem is no longer

valid. If A D
�

0 �

�� 0

�
and B D

�
0 .7 C 4

p
3/�

.�7 C 4
p

3/� 0

�
, then eA D

eB D �I2, eACB D I2 and AB ¤ BA [9, p. 709].
More generally, if .xn; yn/ ¤ .1; 0/ are the solutions in positive integers of

Pell’s equation x2 � dy2 D 1, d 2 N, d � 2, and

A D
�

0 �

�� 0

�
and B D

�
0 .xn C p

dyn/�

.�xn C p
dyn/� 0

�
;

(continued)
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4.27 (continued)
then eA D eB D �I2 and AB ¤ BA. Moreover, if 1 C xn D 2k2, k 2 N, then
eACB D I2, so eAeB D eBeA ¤ eACB.

4.28 [25] When is an exponential matrix an integer matrix?

Let A 2 M2 .Z/. Prove that eA 2 M2 .Z/ if and only if A2 D O2.

4.29 [26] A gem of matrix analysis.

Let A 2 M2 .Z/. Prove that:

� sin A 2 M2 .Z/ if and only if A2 D O2;

� cos A 2 M2 .Z/ if and only if A2 D O2.

4.30 [30] Another gem of matrix analysis.

Let A 2 M2 .Q/ be such that �.A/ < 1. Prove that:

� ln.I2 � A/ 2 M2 .Q/ if and only if A2 D O2;

� ln.I2 C A/ 2 M2 .Q/ if and only if A2 D O2.

4.31 Let A; B; C 2 M2 .R/ be commuting matrices. Prove that if cos A C cos B C
cos C D O2 and sin A C sin B C sin C D O2, then

(a) cos.2A/ C cos.2B/ C cos.2C/ D O2;
(b) sin.2A/ C sin.2B/ C sin.2C/ D O2;
(c) cos.3A/ C cos.3B/ C cos.3C/ D 3 cos.A C B C C/;
(d) sin.3A/ C sin.3B/ C sin.3C/ D 3 sin.A C B C C/.

4.32 Matrix delights. Prove that:

(a) e

0
@a b

b a

1
A

D ea

�
cosh b sinh b
sinh b cosh b

�
, a; b 2 C;

(b) e

0
@0 a

b 0

1
A

D
 

cosh
p

ab ap
ab

sinh
p

ab
bp
ab

sinh
p

ab cosh
p

ab

!
, a; b 2 R, ab > 0;
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(c) e

0
@1 1

1 0

1
A

D 1p
5

�
˛e˛ � ˇeˇ e˛ � eˇ

e˛ � eˇ ˛eˇ � ˇe˛

�
, ˛ D 1Cp

5
2

, ˇ D 1�p
5

2
;

(d)
1X

nD1

1

.2n � 1/A
D �

I2 � 2�A
�

�.A/, where A 2 M2 .C/, <.�1/ > 1, <.�2/ >

1.

4.33 Functions of rotation matrices.

Let � 2 R and let f be a function which has the Taylor series expansion at 0

f .z/ D
1X

nD0

f .n/.0/

nŠ
zn; jzj < R;

where R > 1. Prove that

f

�
cos � � sin �

sin � cos �

�
D 1

2

�
f
�
ei�
�C f

�
e�i�

�
f
�
e�i�

� � f
�
ei�
�

f
�
ei�
� � f

�
e�i�

�
f
�
ei�
�C f

�
e�i�

�
�

:

4.34 Functions of circulant matrices.

(a) Let ˛; ˇ 2 R. Prove that

cos

�
˛ ˇ

ˇ ˛

�
D
�

cos ˛ cos ˇ � sin ˛ sin ˇ

� sin ˛ sin ˇ cos ˛ cos ˇ

�
:

(b) Let f be a function which has the Taylor series expansion at 0

f .z/ D
1X

nD0

f .n/.0/

nŠ
zn; jzj < R;

where R 2 .0; 1� and let ˛; ˇ 2 R be such that j˛ ˙ ˇj < R. Prove that

f

�
˛ ˇ

ˇ ˛

�
D 1

2

�
f .˛ C ˇ/ C f .˛ � ˇ/ f .˛ C ˇ/ � f .˛ � ˇ/

f .˛ C ˇ/ � f .˛ � ˇ/ f .˛ C ˇ/ C f .˛ � ˇ/

�
:
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4.35 Complex numbers and matrix formulae. Courtesy of Theorem 1.3.

We identify, based on Theorem 1.3, the complex number z D x C iy, x; y 2
R, by the real matrix A D

�
x �y
y x

�
.

(1) The matrix corresponding to the complex conjugate z D x � iy is the

adjugate matrix A� D
�

x y
�y x

�
.

(2) .x C iy/.x � iy/ D x2 C y2 and

�
x �y
y x

��
x y

�y x

�
D .x2 C y2/I2:

(3) .x C iy/.a C ib/ D xa � yb C i.xb C ya/ and

�
x �y
y x

��
a �b
b a

�
D
�

xa � yb �.xb C ya/

xb C ya xa � yb

�
:

(4)
1

x C iy
D x � iy

x2 C y2
, x2 C y2 ¤ 0 and

�
x �y
y x

��1

D 1

x2 C y2

�
x y

�y x

�
:

(5) in D cos
n�

2
C i sin

n�

2
and

�
0 �1

1 0

�n

D
0
@cos n�

2
� sin n�

2

sin n�
2

cos n�
2

1
A :

(6) de Moivre’s formula. .cos � C i sin �/n D cos.n�/ C i sin.n�/, n 2 N,
� 2 R and

�
cos � � sin �

sin � cos �

�n

D
�

cos.n�/ � sin.n�/

sin.n�/ cos.n�/

�
:

(7) .x C iy/n D �n.cos.n�/ C i sin.n�//, � D p
x2 C y2, � 2 Œ0; 2�/ and

�
x �y
y x

�n

D �n

�
cos.n�/ � sin.n�/

sin.n�/ cos.n�/

�
:

(continued)
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4.35 (continued)
(8) Euler’s formula. ei� D cos � C i sin � , � 2 R and

e

0
@0 ��

� 0

1
A

D
�

cos � � sin �

sin � cos �

�
:

(9) exCiy D ex .cos y C i sin y/ and

e

0
@x �y

y x

1
A

D ex

�
cos y � sin y
sin y cos y

�
:

(10) sinh.x C iy/ D sinh x cos y C i cosh x sin y and

sinh

�
x �y
y x

�
D
�

sinh x cos y � cosh x sin y
cosh x sin y sinh x cos y

�
:

(11) cosh.x C iy/ D cosh x cos y C i sinh x sin y and

cosh

�
x �y
y x

�
D
�

cosh x cos y � sinh x sin y
sinh x sin y cosh x cos y

�
:

(12) sin.x C iy/ D sin x cosh y C i cos x sinh y and

sin

�
x �y
y x

�
D
�

sin x cosh y � cos x sinh y
cos x sinh y sin x cosh y

�
:

(13) cos.x C iy/ D cos x cosh y � i sin x sinh y and

cos

�
x �y
y x

�
D
�

cos x cosh y sin x sinh y
� sin x sinh y cos x cosh y

�
:

(14) If f .x C iy/ D u.x; y/ C iv.x; y/, then

f

�
x �y
y x

�
D
�

u.x; y/ �v.x; y/

v.x; y/ u.x; y/

�
:

4.36 Solve in M2 .C/ the equation eA D ˛I2, ˛ 2 C
�.

4.37 Solve in M2 .C/ the equation eA D
�

a 0

0 b

�
, a; b 2 C

�, a ¤ b.
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4.38 A circulant exponential equation.

Solve in M2 .C/ the equation eA D
�

0 1

1 0

�
.

4.39 A triangular exponential equation.

Solve in M2 .C/ the equation eA D
�

a a
0 a

�
, a 2 C

�.

4.40 Check the identity sin.2A/ D 2 sin A cos A, where A D
�

� � 1 1

�1 � C 1

�
.

4.41 If A 2 M2 .C/ is an idempotent matrix and k 2 Z, then sin.k�A/ D O2.

4.42 (a) Are there matrices A 2 M2 .C/ such that sin A D
�

1 2016

0 1

�
?

(b) Are there matrices A 2 M2 .C/ such that cosh A D
�

1 ˛

0 1

�
, ˛ ¤ 0?

4.43 Let A 2 M2 .C/ be a matrix such that det A D 0. Prove that:

� if Tr.A/ D 0, then 2A D I2 C .ln 2/A;

� if Tr.A/ ¤ 0, then 2A D I2 C 2Tr.A/ � 1

Tr.A/
A.

4.44 Divertimento. Let A D
�

a b
c d

�
2 M2 .R/. Prove that

An D
�

an bn

cn dn

�
; 8 n 2 N

if and only if A is of the following form

�
˛ 0

˛ 0

�
;

�
0 ˛

0 ˛

�
;

�
0 0

˛ ˛

�
;

�
˛ ˛

0 0

�
;

�
˛ 0

0 ˇ

�
; ˛; ˇ 2 R:

Challenge problems.

(continued)
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4.44 (continued)

� Find all matrices A D
�

a b
c d

�
2 M2 .R/ such that sin A D

�
sin a sin b
sin c sin d

�
.

All matrices written above verify this equation. Are there any other?

� Find all matrices A D
�

a b
c d

�
2 M2 .R/ such that cos A D

�
cos a cos b
cos c cos d

�
.

4.45 [31] Are there matrices A D
�

a b
c d

�
2 M2 .R/ such that eA D

�
ea eb

ec ed

�
?

4.46 Derivatives of matrices.

(a) Let A and B be square matrices whose entries are differentiable functions.
Prove that .AB/0 D A0B C AB0.

(b) It can be shown that if A is a differentiable and invertible square matrix
function, then A�1 is differentiable.

� Prove that .A�1/0 D �A�1A0A�1.

� Calculate the derivative of A�n D .A�1/n, where n � 2 is an integer.

4.47 [6, p. 205] If A.t/ is a scalar function of t, the derivative of eA.t/ is eA.t/A0.t/.

Calculate the derivative of eA.t/ when A.t/ D
�

1 t
0 0

�
and show that the result is not

equal to either of the two products eA.t/A0.t/ or A0.t/eA.t/.

Systems of differential equations

4.48 Solve the system of differential equations

(
x0

1 D x1 � 4x2

x0
2 D �2x1 C 3x2:

4.49 Let a > 0 be a real number and let A D
�

1 1

�a 1

�
.

(a) Calculate eAt, t 2 R.

(b) Solve the system of differential equations
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(
x0 D x C y

y0 D �ax C y:

Remark 4.13 This problem was inspired by [52, Example 5.2.5, p. 238].

4.50 Let A D
�

2 1

3 4

�
:

(a) Calculate eAt, t 2 R.

(b) Solve the system of differential equations
(

x0 D 2x C y

y0 D 3x C 4y;

with initial conditions x.0/ D 2, y.0/ D 4.

4.51 Let A D
��4 1

�1 �2

�
:

(a) Calculate eAt, t 2 R.

(b) Solve the system of differential equations
(

x0 D �4x C 2y

y0 D �x � 2y C et;

with initial conditions x.0/ D 1, y.0/ D 7.

4.52 (a) Prove the solution of the linear differential system S0: tX0.t/ D AX.t/,
where A 2 M2 .R/ and t > 0 is given by X.t/ D tAC, where C is a constant vector.

(b) Determine the solution of the nonhomogeneous system of linear differential
equations S : tX0.t/ D AX.t/ C F.t/, F is a continuous function vector.

4.53 Solve the system of differential equations
(

tx0 D �x C 3y C 1

ty0 D x C y C 1;

with initial conditions x.1/ D 1
2

and y.1/ D 3
2
.

Stability of homogeneous linear systems of differential equations

4.54 Discuss the stability of the system

(
x0 D ax C by

y0 D cx C dy;

according to the values of the parameters a; b; c; d 2 R.
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4.55 Discuss the stability of the system

(
x0 D �a2x C ay

y0 D x � y;

according to the values of the parameter a 2 R.

4.56 Discuss the stability of the system

(
x0 D �ax C .a � 1/y

y0 D x;

according to the values of the parameter a 2 R.

4.57 Discuss the stability of the system
(

x0 D by

y0 D cx;

according to the values of the parameters b; c 2 R.

4.58 Discuss the stability of the system
(

x0 D �x C ay

y0 D bx � y;

according to the values of the parameters a; b 2 R.

4.59 Discuss the stability of the system
(

x0 D ax C y

y0 D bx C ay;

according to the values of the parameters a; b 2 R.

Series of matrices

4.60 Let x 2 R and let A D
��1 x

0 �1

�
. Prove that

1X
nD1

An

n2
D
 

� �2

12
x ln 2

0 � �2

12

!
.

Remark 4.14 This problem was inspired by [63, problem 12, p. 65].

4.61 Let A 2 M2 .C/. Prove that

1X
nD0

A3n

.3n/Š
D 1

3

 
eA C 2e� A

2 cos

p
3A

2

!
:
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4.62 Abel’s summation by parts formula for matrices.

Let .an/n�1 be a sequence of complex numbers, .Bn/n�1 2 M2 .C/ be a
sequence of matrices and let An D Pn

kD1 ak. Then:
(a) the finite version

nX
kD1

akBk D AnBnC1 C
nX

kD1

Ak.Bk � BkC1/I

(b) the infinite version

1X
kD1

akBk D lim
n!1 AnBnC1 C

1X
kD1

Ak.Bk � BkC1/;

if the limit is finite and the series converges.

Remark 4.15 We mention that Abel’s summation by parts formula for sums of real
or complex numbers as well as applications can be found in [11, p. 55], [22, p. 258],
[57, p. 26].

4.63 The ”matrix generating function” for the Fibonacci sequence.

Let .Fn/n�0 be the Fibonacci sequence defined by the recurrence formula F0 D 0,
F1 D 1 and FnC1 D Fn C Fn�1, 8 n � 1. Prove that

1X
nD1

FnAn�1 D �
I2 � A � A2

��1
; 8A 2 M2 .C/ with �.A/ <

p
5 � 1

2
:

4.64 If n � 1 is an integer, the nth harmonic number Hn is defined by the formula

Hn D 1 C 1

2
C 1

3
C � � � C 1

n
:

Let x be a real number, ˛ 2 .�1; 1/ and let A D
�

˛ x
0 ˛

�
and B D

�
0 x
0 0

�
.

(a) Prove that

1X
nD1

HnAn D � ln.1 � ˛/

1 � ˛
I2 C 1 � ln.1 � ˛/

.1 � ˛/2
B:
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(b) Prove that

1X
nD1

Hn

n C 1
An D ln2.1 � ˛/

2˛
I2 �

 
ln.1 � ˛/

˛.1 � ˛/
C ln2.1 � ˛/

2˛2

!
B; ˛ ¤ 0:

4.65 The generating functions of two harmonic numbers.

Let A 2 M2 .C/ with �.A/ < 1 and let Hn denote the nth harmonic number.
Prove that:

(a)
1X

nD1

HnAn D �.I2 � A/�1 ln.I2 � A/;

(b)
1X

nD1

nHnAn D A.I2 � ln.I2 � A//.I2 � A/�2.

4.66 A power series with the tail of ln 1
2
.

Let A 2 M2 .R/ be such that �.A/ < 1 and let �1; �2 be the real
eigenvalues of A. Prove that

1X
nD1

�
ln

1

2
C 1 � 1

2
C � � � C .�1/n�1

n

�
An

D
8<
:

.I2 � A/�1 .ln.I2 C A/ � .ln 2/A/ if 0 < j�1j; j�2j < 1;

1

1 � Tr.A/

�
ln.1 C Tr.A//

Tr.A/
� ln 2

�
A if �1 D 0; 0 < j�2j < 1:

4.67 A sum with the tail of the logarithmic series.

Let A 2 M2 .R/ be a matrix whose eigenvalues belong to .�1; 1/.
(a) Prove that

lim
n!1 n

�
ln.I2 � A/ C A C A2

2
C � � � C An

n

�
D O2:

(b) Prove that

1X
nD1

�
ln.I2 � A/ C A C A2

2
C � � � C An

n

�
D � ln.I2 � A/ � A .I2 � A/�1 :
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4.68 Logarithmic series and harmonic numbers.
Let A 2 M2 .C/ with �.A/ < 1. Prove that:

(a) H1 C H2 C � � � C Hn D .n C 1/Hn � n, 8 n � 1;

(b)
1X

nD1

Hn

�
ln.I2 � A/ C A C A2

2
C � � � C An

n

�
D .ACln.I2�A//.I2�A/�1.

4.69 An arctan series.

Let A 2 M2 .R/ be a matrix whose eigenvalues belong to .�1; 1/.
(a) Prove that

lim
n!1 n

�
arctan A � A C A3

3
C � � � C .�1/n A2n�1

2n � 1

�
D O2:

(b) Prove that

1X
nD1

�
arctan A � A C A3

3
C � � � C .�1/n A2n�1

2n � 1

�
D A

2
.I2 CA2/�1 � arctan A

2
:

4.70 Summing the tail of eA.

Let A 2 M2 .C/. Prove that:

(a)
1X

nD0

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D AeA;

(b)
1X

nD1

n

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D A2

2
eA.

Remark 4.16 A matrix series and Touchard’s polynomials.

More generally, if p � 1 is an integer and A 2 M2 .C/, then

1X
nD1

np

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D eA

pX
kD1

S.p; k/

k C 1
AkC1;

where S.p; k/ are the Stirling numbers of the second kind [59, p. 58].
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The polynomial Qp defined by Qp.x/ D
pP

kD1

S.p; k/xk, where S.p; k/ are the

Stirling numbers of the second kind is known in the mathematical literature as
Touchard’s polynomial [13].

The problem was inspired by the calculation of the series

1X
nD1

np

�
ex � 1 � x

1Š
� � � � � xn

nŠ

�
;

where p � 1 is an integer and x 2 R (see [24]) with a solution in [44].

4.71 Let k � 0 be an integer and let A 2 M2 .C/. Prove that

1X
nDk

 
n

k

!�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D AkC1

.k C 1/Š
eA:

4.72 Let A 2 M2 .C/. Prove that

(a)
1X

nD1

.�1/b n
2 c
�

eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D I2 � cos A;

(b)
1X

nD1

.�1/b n
2 c
�

eA � I2 � A

1Š
� A2

2Š
� � � � � An�1

.n � 1/Š

�
D sin A.

Here bac denotes the integer part of a.

4.73 Let f be a function which has the Taylor series expansion at 0,

f .z/ D
1X

nD0

f .n/.0/

nŠ
zn; jzj < R;

where R 2 .0; 1� and let A 2 M2 .C/ be such that �.A/ < R. Prove that:

(a)
1X

nD0

�
f .A/ � f .0/I2 � f 0.0/

1Š
A � � � � � f .n/.0/

nŠ
An

�
D Af 0.A/;

(b)
1X

nD1

n

�
f .A/ � f .0/I2 � f 0.0/

1Š
A � � � � � f .n/.0/

nŠ
An

�
D A2

2
f 00.A/.
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4.74 An exponential power series.

Let A 2 M2 .C/ and let x 2 C.
(a) Prove that

1X
nD1

xn

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D
8<
:

xeA � eAx

1 � x
C I2 if x ¤ 1;

AeA C I2 � eA if x D 1:

(b) Prove that

1X
nD1

.�1/n�1

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D cosh A � I2:

4.75 A variation on the same theme.

Let A 2 M2 .C/, let �1; �2 be the eigenvalues of A, and let

S.A/ D
1X

nD1

�
e � 1 � 1

1Š
� 1

2Š
� � � � � 1

nŠ

�
An:

Prove that:

(a) S.A/ D I2 C e�2 � e�2

.�2 � 1/2
.A � I2/ if �1 D 1, �2 ¤ 1;

(b) S.A/ D I2 C e�1 � e�1

.�1 � �2/.�1 � 1/
.A � �2I2/ C e�2 � e�2

.�2 � �1/.�2 � 1/
.A � �1I2/ if

�1 ¤ 1, �2 ¤ 1, �1 ¤ �2;

(c) S.A/ D
�
1 � e

2

�
I2 C e

2
A if �1 D �2 D 1;

(d) S.A/ D
�

e� � e�

� � 1
C 1

�
I2 C �e� � 2e� C e

.� � 1/2
.A � �I2/ if �1 D �2 D � ¤ 1.

4.76 Sine and cosine series.

Let A 2 M2 .C/. Prove that:

(a)
1X

nD0

�
cos A � I2 C A2

2Š
� � � � � .�1/n A2n

.2n/Š

�
D �A sin A

2
;

(b)
1X

nD1

�
sin A � A C A3

3Š
� � � � � .�1/n�1 A2n�1

.2n � 1/Š

�
D A cos A � sin A

2
.
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4.77 (a) Let A D
��1 x

0 �1

�
2 M2 .R/. Prove that

1X
nD1

�
�.3/ � 1 � 1

23
� � � � � 1

n3

�
An D

 
� �.3/

8

�
7�.3/

16
� �.2/

4

�
x

0 � �.3/

8

!
;

where � denotes the Riemann zeta function.

(b) Let A 2 M2 .C/ with �.A/ < 1. Prove that

1X
nD1

�
�.3/ � 1 � 1

23
� � � � � 1

n3

�
An D .�.3/A � Li3.A// .I2 � A/�1;

where Li3 denotes the polylogarithm function.

Remark 4.17 More generally, if A 2 M2 .C/ with �.A/ < 1, then

1X
nD1

�
�.k/ � 1 � 1

2k
� � � � � 1

nk

�
An D .�.k/A � Lik.A// .I2 � A/�1;

where k � 3 is an integer and Lik denotes the polylogarithm function.

4.78 (a) 1 If a 2 C such that <.a/ > 2, then
1X

nD1

n

naI2
D �.a � 1/I2.

(b) If ˛; ˇ 2 C such that <.˛/ > 2, then

1X
nD1

n

n

0
@˛ ˇ

0 ˛

1
A

D
�

�.˛ � 1/ ˇ�0.˛ � 1/

0 �.˛ � 1/

�
:

4.79 Computing �.A � I2/.

Let A 2 M2 .C/ and let �1; �2 be its eigenvalues.

(a) If �1 ¤ �2, <.�1/ > 2, <.�2/ > 2, then

(continued)

1By an abuse of notation, if A 2 M2 .C/ we use the writing 1
nA D �

1
n

�A
.
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4.79 (continued)
1X

nD1

n

nA
D �.�1 � 1/ � �.�2 � 1/

�1 � �2

A C �1�.�2 � 1/ � �2�.�1 � 1/

�1 � �2

I2:

(b) If �1 D �2 D �, <.�/ > 2, then

1X
nD1

n

nA
D �0.� � 1/A C �

�.� � 1/ � ��0.� � 1/
�

I2:

Remark 4.18 If k � 1 is an integer one may also express, using Theorem 4.14, the
matrix zeta function

�.A � kI2/ D
1X

nD1

nk

nA

in terms of the eigenvalues of A, where A 2 M2 .C/ with <.�1/ > k C 1 and
<.�2/ > k C 1.

4.80 Summing the tail of �.A/.

Let A 2 M2 .C/ and let �1; �2 be its eigenvalues.

(a) Prove that if A is a matrix such that <.�i/ > 2, i D 1; 2, then

1X
nD1

�
�.A/ � 1

1A
� 1

2A
� � � � � 1

nA

�
D �.A � I2/ � �.A/:

(b) Prove that if A is a matrix such that <.�i/ > 3, i D 1; 2, then

1X
nD1

n

�
�.A/ � 1

1A
� 1

2A
� � � � � 1

nA

�
D �.A � 2I2/ � �.A � I2/

2
:

Integrals of matrices

4.81 The Dilogarithm function Li2 is the special function defined, for jzj � 1, by

Li2.z/ D
1X

nD1

zn

n2
D �

Z z

0

ln.1 � t/

t
dt:
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Let a 2 Œ�1; 1/ n f0g, b 2 R and let A D
�

a b
0 a

�
. Prove that

Z 1

0

ln.I2 � Ax/

x
dx D

0
@�Li2.a/

b ln.1 � a/

a
0 �Li2.a/

1
A :

4.82 Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A. Prove that

Z 1

0

ln.I2 � Ax/

x
dx D

(
�A if �1 D �2 D 0;

��.2/A if �1 D 0; �2 D 1;

where � denotes the Riemann zeta function.

4.83 Let A 2 M2 .C/ and let �1; �2 be the eigenvalues of A with �.A/ < 1. Prove
that

Z 1

0

ln.I2 � Ax/

x
dx D

8̂
<̂
ˆ̂:

Li2.�2/�Li2.�1/
�1��2

A C �2Li2.�1/��1Li2.�2/
�1��2

I2 if �1 ¤ �2;

�A if �1 D �2 D 0;
ln.1��/

�
A � .Li2.�/ C ln.1 � �// I2 if �1 D �2 D � ¤ 0:

4.84 (a) Let A 2 M2 .C/ be a matrix having both eigenvalues equal to 0. Prove that

Z 1

0

ln2.I2 � Ax/

x
dx D O2:

(b) A matrix logarithmic integral and Apery’s constant. Let A 2 M2 .C/ be a matrix

having the eigenvalues 0 and 1. Prove that

Z 1

0

ln2.I2 � Ax/

x
dx D 2�.3/A;

where � denotes the Riemann zeta function.

Nota bene. The constant �.3/ D
1X

nD1

1

n3
D 1:2020569031 : : : is known in

the mathematical literature as Apéry’s constant. In 1979, Apéry [5] stunned the
mathematical world with a miraculous proof that �.3/ is irrational.

4.85 Let A 2 M2 .C/ with �.A/ < 1 and let �1; �2 be the eigenvalues of A.
Prove that
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Z 1

0

ln.I2 � Ax/dx

D

8̂̂
ˆ̂<
ˆ̂̂̂:

�A

2
if �1 D �2 D 0;

�
�

.1 � Tr.A// ln .1 � Tr.A//

Tr2.A/
C 1

Tr.A/

�
A if �1 D 0; 0 < j�2j < 1;

.I2 � A�1/ ln.I2 � A/ � I2 if 0 < j�1j; j�2j < 1:

4.86 Let A 2 M2 .R/ and let �1; �2 be the eigenvalues of A. Prove that

Z 1

0

eAxdx D

8̂̂
ˆ̂<
ˆ̂̂̂:

I2 C A

2
if �1 D �2 D 0;

I2 C eTr.A/ � 1 � Tr.A/

Tr2.A/
A if �1 D 0; �2 ¤ 0;

�
eA � I2

�
A�1 if �1; �2 ¤ 0:

4.87 Let A 2 M2 .R/ and let �1; �2 be the eigenvalues of A.
(a) Prove that

Z 1

0

cos.Ax/dx D

8̂̂
<̂
ˆ̂̂:

I2 if �1 D �2 D 0;

I2 C sin Tr.A/ � Tr.A/

Tr2.A/
A if �1 D 0; �2 ¤ 0;

A�1 sin A if �1; �2 ¤ 0:

(b) Prove that

Z 1

0

sin.Ax/dx D

8̂̂
ˆ̂<
ˆ̂̂̂:

A

2
if �1 D �2 D 0;

1 � cos Tr.A/

Tr2.A/
A if �1 D 0; �2 ¤ 0;

A�1 .I2 � cos A/ if �1; �2 ¤ 0:

(c) Prove that

Z 1

0

Z 1

0

sin A.x C y/dxdy D

8̂
ˆ̂<
ˆ̂̂:

A if �1 D �2 D 0;
2 sin Tr.A/ � sin 2Tr.A/

Tr3.A/
A if �1 D 0; �2 ¤ 0;

A�2 .2 sin A � sin.2A// if �1; �2 ¤ 0:
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4.88 2 Let A 2 M2 .R/. Prove that

Z Z
R2

vTAv e�vT vdxdy D �

2
Tr.A/; where v D

�
x
y

�
:

4.89 Let A 2 M2 .R/ be a symmetric matrix with positive eigenvalues.

(a) Prove that

Z Z
R2

e�vT Avdxdy D �p
det A

:

(b) Let ˛ > �1 be a real number. Prove that

Z Z
R2

.vTAv/˛e�vT Avdxdy D ��.˛ C 1/p
det A

;

where � denotes the Gamma function.

4.90 Let A 2 M2 .R/ be a symmetric matrix with positive eigenvalues and let
f W R2 ! R be the function defined by

f .x; y/ D e� 1
2 vT A�1v

2�
p

det A
; where v D

�
x
y

�
2 R

2:

Prove that
Z Z

R2

f .x; y/ ln f .x; y/dxdy D � ln.2�e
p

det A/:

4.91 Let A 2 M2 .C/ and let ˛ be a positive number. Prove that

Z 1

�1
eAxe�˛x2

dx D
r

�

˛
e

A2

4˛ :

4.92 Let A 2 M2 .R/ and let ˛ be a positive number. Prove that:

(a)
Z 1

�1
cos.Ax/e�˛x2

dx D
r

�

˛
e� A2

4˛ ;

(b)
Z 1

�1
sin.Ax/e�˛x2

dx D O2.

2We mention that if v D
�

x
y

�
is a vector in R

2 and A 2 M2 .R/, then vT Av is a matrix having one

row and one column, i.e., vT Av D .u/. We identify, by an abuse of notation, the matrix vT Av by
the real number u. Also, we identify vTv by x2 C y2.
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4.93 Let A 2 M2 .R/ with �.A/ < ˛ and let ˛ be a positive number. Prove that:

(a)
Z 1

0

sin.Ax/e�˛xdx D A
�
A2 C ˛2I2

��1
;

(b)
Z 1

0

cos.Ax/e�˛xdx D ˛
�
A2 C ˛2I2

��1
.

4.94 Euler–Poisson matrix integrals.

(a) If A D
�

1 1

�1 3

�
calculate

Z 1

0

e�Ax2

dx:

(b) Let A D
�

a b
b a

�
2 M2 .R/ with a > ˙b and let n 2 N. Prove that

Z 1

0

e�Axn
dx D �

�
1 C 1

n

�
2

 
1

npaCb
C 1

npa�b
1

npaCb
� 1

npa�b
1

npaCb
� 1

npa�b
1

npaCb
C 1

npa�b

!
;

where � denotes the Gamma function.

4.95 When Laplace comes into play!

Let A D
�

a b
b a

�
2 M2 .R/.

(a) Prove that

Z 1

0

cos.Ax/

x2 C 1
dx D �

4

�
e�jaCbj C e�ja�bj e�jaCbj � e�ja�bj
e�jaCbj � e�ja�bj e�jaCbj C e�ja�bj

�
:

A challenge. Calculate
Z 1

0

x sin.Ax/

x2 C 1
dx.

(b) Prove that

Z 1

0

e�x2

cos.Ax/dx D
p

�

4

0
@e� .aCb/2

4 C e� .a�b/2

4 e� .aCb/2

4 � e� .a�b/2

4

e� .aCb/2

4 � e� .a�b/2

4 e� .aCb/2

4 C e� .a�b/2

4

1
A :

4.96 Don’t forget Fresnel.

Let A D
�

a b
b a

�
2 M2 .R/ with a ¤ ˙b.

(continued)
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4.96 (continued)
(a) Prove that

Z 1

0

cos.Ax2/dx D 1

4

r
�

2

 
1pjaCbj C 1pja�bj

1pjaCbj � 1pja�bj
1pjaCbj � 1pja�bj

1pjaCbj C 1pja�bj

!
:

(b) If a D ˙b and a ¤ 0, then
R1

0
cos.Ax2/dx D 1

8a

q
�
jaj A.

A challenge. Calculate
R1

0
cos.Axn/dx, where n � 2 is an integer.

4.97 Exponential matrix integrals.
(a) Let A 2 M2 .R/ be a matrix with positive eigenvalues. Calculate

Z 1

0

e�Axdx:

(b) Let ˛ > 0 and let A 2 M2 .R/ be a matrix with real eigenvalues such
that �1; �2 > ˛. Calculate

Z 1

0

e�Axe˛xdx:

(c) Let n � 0 be an integer and let A 2 M2 .R/ be a matrix with positive
eigenvalues. Calculate

Z 1

0

e�Axxndx:

4.98 Dirichlet matrix integrals.

(a) Let A 2 M2 .R/ be a matrix which has two distinct real eigenvalues such that
�1�2 > 0. Prove that

Z 1

0

sin.Ax/

x
dx D

(
�
2

I2 if �1; �2 > 0

� �
2

I2 if �1; �2 < 0:

(b) Let A 2 M2 .R/ be a matrix whose eigenvalues are real such that �1�2 > 0.
Prove that

Z 1

0

sin2.Ax/

x2
dx D

(
�
2

A if �1; �2 > 0

� �
2

A if �1; �2 < 0:
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4.99 Let A 2 M2 .R/ be a matrix which has two distinct real eigenvalues with
�.A/ < 1. Calculate

Z 1

0

sin.Ax/ cos x

x
dx:

A beautiful result often attributed to Frullani is contained in the following
formula

Z 1

0

f .ax/ � f .bx/

x
dx D .f .0/ � f .1// ln

b

a
; a; b > 0;

where f W Œ0; 1/ ! R is a continuous function (it may be assumed to be
L-integrable over any interval of the form 0 < A � x � B < 1) and f .1/ D
lim

x!1 f .x/ exists and is finite.

In the next two problems we extend this formula to square 2 � 2 real matrices.

4.100 An exponential Frullani matrix integral.

Let A 2 M2 .R/ be a matrix which has positive eigenvalues and let ˛; ˇ > 0.
Prove that

Z 1

0

e�˛Ax � e�ˇAx

x
dx D

�
ln

ˇ

˛

�
I2:

4.101 (a) Frullani matrix integrals.

Let f W Œ0; 1/ ! R be a continuous differentiable function such that
lim

x!1 f .x/ D f .1/ exists and is finite. Let ˛; ˇ be positive real numbers and

let A 2 M2 .R/ be a matrix which has positive eigenvalues. Prove that

Z 1

0

f .˛Ax/ � f .ˇAx/

x
dx D



.f .0/ � f .1// ln

ˇ

˛

�
I2:

(b) Two sine Frullani integrals.

Let A 2 M2 .R/ be a matrix which has positive eigenvalues. Calculate

Z 1

0

sin4.Ax/

x3
dx and

Z 1

0

sin3.Ax/

x2
dx:

(c) A quadratic Frullani integral.

Let A 2 M2 .R/ be a matrix which has positive eigenvalues. Calculate

Z 1

0

�
I2 � e�Ax

x

�2

dx:
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4.102 A spectacular double integral.

Let A 2 M2 .R/ be a matrix which has distinct positive eigenvalues. Prove
that

Z 1

0

Z 1

0

�
e�Ax � e�Ay

x � y

�2

dxdy D .ln 4/ I2:

4.9 Solutions

4.2. Solution 1. We have, based on Theorem 3.1, that

An D
(

�n
1B C �n

2C; if �1 ¤ �2

�nB C n�n�1C; if �1 D �2 D �

and it follows that lim
n!1 An D O2 if and only if lim

n!1 �n
1 D lim

n!1 �n
2 D 0 if �1 ¤ �2

and lim
n!1 �n D lim

n!1 n�n�1 D 0 if �1 D �2 D �. In both cases the preceding limits

are 0 if and only if j�1j; j�2j < 1.

Solution 2. We have, based on Theorem 2.9, that there exists a nonsingular matrix
P such that A D PJAP�1, which implies An D PJn

AP�1. Thus,

An D

8̂
ˆ̂̂<
ˆ̂̂̂:

P

 
�n

1 0

0 �n
2

!
P�1 if �1 ¤ �2

P

 
�n n�n�1

0 �n

!
P�1 if �1 D �2 D �:

The problem reduces to the calculation of lim
n!1 �n and lim

n!1 n�n�1, which are both

0 if and only if j�j < 1.

4.3. See the solution of problem 4.2.

4.4. We have, based on problem 4.2., that �.A/ < 1 and �.B/ < 1. An application
of Theorem 2.1 shows that �AB D �A�B and this implies that j�ABj D j�Ajj�Bj < 1.
Thus, �.AB/ < 1 and we have, based on problem 4.2., that lim

n!1.AB/n D O2.

4.5. Let P be the nonsingular matrix such that A D PJAP�1. We have
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�
I2 C A

n

�n

D P

�
I2 C JA

n

�n

P�1

D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

P

0
@
�
1 C �1

n

�n
0

0
�
1 C �2

n

�n

1
AP�1 if JA D

 
�1 0

0 �2

!

P

 �
1 C �

n

�n �
1 C �

n

�n�1

0
�
1 C �

n

�n

!
P�1 if JA D

 
� 1

0 �

!
:

It follows that

lim
n!1

�
I2 C A

n

�n

D

8̂̂
ˆ̂<
ˆ̂̂̂
:

P

 
e�1 0

0 e�2

!
P�1 if JA D

 
�1 0

0 �2

!

P

 
e� e�

0 e�

!
P�1 if JA D

 
� 1

0 �

!

D eA:

The second limit follows, from the first limit, by replacing A by �A.

4.6. Solution 1. Prove by induction that An D I2 C 1�.1�a�b/n

aCb B, n 2 N.

Solution 2. Observe the eigenvalues of A are 1 and 1�a�b and use Theorem 3.1.
On the other hand,

lim
n!1 An D I2 C 1

a C b
B D 1

a C b

�
b b
a a

�
:

4.7. We prove that

M.t/ D 1

2

 
�.t/
�.2t/ C 1

�.t/
�.t/
�.2t/ � 1

�.t/
�.t/
�.2t/ � 1

�.t/
�.t/
�.2t/ C 1

�.t/

!
;

where � denotes the Riemann zeta function. In particular, M.2/ D 3

2�2

�
7 3

3 7

�
.

A calculation shows that the eigenvalues of the matrix B.x/ are 1Cx and 1�x with
the corresponding eigenvectors .˛; ˛/T and .�ˇ; ˇ/T . Thus, B.x/ D PJB.x/P�1;

where JB.x/ denotes the Jordan canonical form and P is the matrix formed by the
eigenvectors of B.x/, i.e.

JB.x/ D
�

1 C x 0

0 1 � x

�
and P D

�
1 �1

1 1

�
:



4.9 Solutions 239

Thus,

M.t/ D
Y

p

B.p�t/ D
Y

p

PJB.p�t/P�1 D P

 Y
p

JB.p�t/

!
P�1

D P
Y

p

�
1 C p�t 0

0 1 � p�t

�
P�1

D P

 Q
p.1 C p�t/ 0

0
Q

p.1 � p�t/

!
P�1:

Using Euler’s product formula [61, p. 272], 1=�.s/ D Q
p.1 � 1=ps/, for <.s/ >

1; we get that

1

�.2t/
D
Y

p

�
1 � 1

p2t

�
D
Y

p

�
1 � 1

pt

�Y
p

�
1 C 1

pt

�
D 1

�.t/

Y
p

�
1 C 1

pt

�
;

and this implies that
Q

p.1 C p�t/ D �.t/=�.2t/.
Thus,

M.t/ D P

�
�.t/=�.2t/ 0

0 1=�.t/

�
P�1

D 1

2

�
1 �1

1 1

��
�.t/=�.2t/ 0

0 1=�.t/

��
1 1

�1 1

�

D 1

2

 
�.t/
�.2t/ C 1

�.t/
�.t/
�.2t/ � 1

�.t/
�.t/
�.2t/ � 1

�.t/
�.t/
�.2t/ C 1

�.t/

!
:

4.8. The limit equals �1. First we prove the limit does not depend on n. Let A 2
M2 .R/, A D

�
a b
c d

�
with c ¤ 0 and let An D

�
an bn

cn dn

�
. We have, since AAn D

AnA D AnC1, n 2 N, that

(
aan C bcn D aan C cbn

abn C bdn D ban C dbn

,
(

bcn D cbn

.an � dn/b D .a � d/bn

) an�dn
cn

D a�d
c . Thus, we need to calculate lim

x!1

xxx �xx

.1�x/3 .

More generally [20] we let n � 1 be a natural number and let

fn.x/ D xx�

�

�

x

;
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where the number of x’s in the definition of fn is n. For example

f1.x/ D x; f2.x/ D xx; f3.x/ D xxx
; : : : :

Then

Ln D lim
x!1

fn.x/ � fn�1.x/

.1 � x/n
D .�1/n:

We have, based on the Mean Value Theorem, that

fn.x/ � fn�1.x/ D exp.ln fn.x// � exp.ln fn�1.x//

D exp.fn�1.x/ ln x/ � exp.fn�2.x/ ln x/

D .fn�1.x/ � fn�2.x// � ln x � exp.�n.x//;

where �n.x/ is between fn�1.x/ ln x and fn�2.x/ ln x. This implies limx!1 �n.x/ D 0.
Thus,

Ln D lim
x!1

fn.x/ � fn�1.x/

.1 � x/n D lim
x!1

�
fn�1.x/ � fn�2.x/

.1 � x/n�1
� ln x

1 � x
� exp.�n.x//

�
D �Ln�1:

It follows, since L2 D lim
x!1

xx�x
.1�x/2 D 1, that Ln D .�1/n�2L2 D .�1/n.

4.9. Let ˛ D 1Cp
5

2
and ˇ D 1�p

5
2

. We prove that

�
1 C 1

n
1
n

1
n 1

�n

D 1p
5

0
@˛

�
1 C ˛

n

�n � ˇ
�
1 C ˇ

n

�n �
1 C ˛

n

�n �
�
1 C ˇ

n

�n

�
1 C ˛

n

�n �
�
1 C ˇ

n

�n
1
˛

�
1 C ˛

n

�n � 1
ˇ

�
1 C ˇ

n

�n

1
A :

Let B D
�

1 1

1 0

�
. We have based on the binomial theorem, part (b) of problem

1.29, and the definition of the Fibonacci sequence that

�
1 C 1

n
1
n

1
n 1

�n

D
�

I2 C 1

n
B

�n

D
nX

iD0

 
n

i

!
1

ni
Bi D I2 C

nX
iD1

 
n

i

!
1

ni

�
FiC1 Fi

Fi Fi�1

�
;

and the result follows by straightforward calculations.

4.10. Solution 1. It is known that if A and B are two commutative matrices, then
eAeB D eACB D eBeA. However, these formulae fail to hold if AB ¤ BA. Lie’s
famous product formula for matrices [37] states that if A; B 2 Mk .C/, then

lim
n!1

�
e

A
n e

B
n

�n D eACB:
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Our problem follows by taking A D
�

0 0

1 0

�
and B D

�
0 1

0 0

�
.

Solution 2. Let n 2 N, let f be the polynomial function f .x/ D �
1 C x

n

�n
, and let

A D
�

0 1

1 1
n

�
. A calculation shows that the eigenvalues of A are �1 D 1

2n C
q

1 C 1
4n2

and �2 D 1
2n �

q
1 C 1

4n2 . We have, based on Theorem 4.7, that

 
1 1

n
1
n 1 C 1

n2

!n

D
�
1 C 1

2n2 C 1
n

q
1 C 1

4n2

�n

�
�
1 C 1

2n2 � 1
n

q
1 C 1

4n2

�n

q
4 C 1

n2

�
0 1

1 1
n

�

C
"

1

2

�
1 C 1p

4n2 C 1

� 
1 C 1

2n2
� 1

n

r
1 C 1

4n2

!n

C1

2

�
1 � 1p

4n2 C 1

� 
1 C 1

2n2
C 1

n

r
1 C 1

4n2

!n#
I2:

Passing to the limit as n ! 1 in the previous equality, we get that

lim
n!1

 
1 1

n
1
n 1 C 1

n2

!n

D sinh 1

�
0 1

1 0

�
C cosh 1

�
1 0

0 1

�
:

4.11. Let n 2 N, let f be the polynomial function f .x/ D �
1 C x

n

�n
, and let A D�� 1

n 1

1 1
n

�
. The eigenvalues of A are �1 D

q
1 C 1

n2 and �2 D �
q

1 C 1
n2 . We have

based on Theorem 4.7 that

 
1 � 1

n2
1
n

1
n 1 C 1

n2

!n

D
�
1 C 1

n

q
1 C 1

n2

�n

�
�
1 � 1

n

q
1 C 1

n2

�n

2
q

1 C 1
n2

�� 1
n 1

1 1
n

�

C
�
1 C 1

n

q
1 C 1

n2

�n

C
�
1 � 1

n

q
1 C 1

n2

�n

2
I2:

Therefore

lim
n!1

 
1 � 1

n2
1
n

1
n 1 C 1

n2

!n

D sinh 1

�
0 1

1 0

�
C cosh 1

�
1 0

0 1

�
:
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4.12. The first limit equals e

�
2 1

�4 �2

�
.

First, we observe that both eigenvalues of A are equal to 1. Let P be the

nonsingular matrix such that P�1AP D JA D
�

1 1

0 1

�
. A calculation shows that

P D
�

1 0

�2 1

�
and P�1 D

�
1 0

2 1

�
. We have

1

n

�
I2 C An

n

�n

D P



1

n

�
I2 C 1

n
Jn

A

�n�
P�1:

On the other hand, since Jn
A D

�
1 n
0 1

�
, we get that

1

n

�
I2 C 1

n
Jn

A

�n

D 1

n


�
1 0

0 1

�
C
�

1
n 1

0 1
n

��n

D 1

n

�
1 C 1

n 1

0 1 C 1
n

�n

D 1

n

 �
1 C 1

n

�n
n
�
1 C 1

n

�n�1

0
�
1 C 1

n

�n

!
;

and this implies that

lim
n!1

1

n

�
I2 C An

n

�n

D lim
n!1 P

"
1

n

 �
1 C 1

n

�n
n
�
1 C 1

n

�n�1

0
�
1 C 1

n

�n

!#
P�1

D P

�
0 e
0 0

�
P�1

D e

�
2 1

�4 �2

�
:

Similarly one can prove the second limit equals
1

e

��2 �1

4 2

�
.

Another approach for solving the problem would be to use Theorem 4.7.

Remark 4.19 Let fn.x/ D 1
n

�
1 C xn

n

�n
, n 2 N. If both eigenvalues of A are equal

real numbers �1 D �2 D � and A ¤ �I2, we have based on Theorem 4.7 that

fn.A/ D
�

1 C �n

n

�n�1

�n�1A C
"

1

n

�
1 C �n

n

�n

� �n

�
1 C �n

n

�n�1
#

I2:
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It follows that lim
n!1 fn.A/ is O2 if j�j < 1 and e.A � I2/, when � D 1.

If A D �I2, � 2 R, then fn.A/ D 1
n

�
1 C �n

n

�n
I2 and the limit equals 1 if � > 1,

the limit does not exist if � � �1 and the limit equals O2 if �1 < � � 1.

4.13. The limit equals .ln
p

2/I2. Use that if � 2 R, � ¤ k� , k 2 Z, then

lim
n!1

�
cos.2�/

n C 1
C cos.4�/

n C 2
C � � � C cos.2n�/

2n

�
D 0:

4.14. Use Theorem 3.1 and the formula

lim
n!1

n
p

jajn C jbjn C jcjn C jdjn D max fjaj; jbj; jcj; jdjg ; where a; b; c; d 2 C:

4.15. (a) A D PJAP�1, where JA D
�

2 0

0 �1

�
, P D

�
1 1

1 4

�
and P�1 D 1

3

�
4 �1

�1 1

�
.

We have

A.A C I2/.A C 2I2/ � � � .A C nI2/ D PJA.JA C I2/.JA C 2I2/ � � � .JA C nI2/P�1

D P

�
.n C 2/Š 0

0 0

�
P�1

D .n C 2/Š

3

�
4 �1

4 �1

�
:

It follows that

lim
n!1

n
pjjA.A C I2/.A C 2I2/ � � � .A C nI2/jj

n
D lim

n!1
n
p

.n C 2/Š

n

n

sp
34

3
D 1

e
:

(b) The limit equals 2. Use Cauchy-d’Alembert’s criteria3 and the problem
reduces to the calculation of the limit

lim
n!1

jjA.A C 2I2/.A C 4I2/ � � � .A C .2n C 2/I2/jj
.n C 1/jjA.A C 2I2/.A C 4I2/ � � � .A C 2nI2/jj D 2:

(c) We have

.A C .n C 1/I2/.A C .n C 4/I2/ � � � .A C .4n � 2/I2/

D P.JA C .n C 1/I2/.JA C .n C 4/I2/ � � � .JA C .4n � 2/I2/P�1

D P

�
.n C 3/.n C 6/ � � � .4n/ 0

0 n.n C 3/ � � � .4n � 3/

�
P�1

D 1

3

�
4˛n � ˇn �˛n C ˇn

4˛n � 4ˇn �˛n C 4ˇn

�
;

3The Cauchy-d’Alembert criteria states that if .an/n�1 is a sequence of positive real numbers such
that lim

n!1

anC1

an
D l 2 R, then lim

n!1

n
p

an D l.
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where ˛n D .n C 3/.n C 6/ � � � .4n/ and ˇn D n.n C 3/ � � � .4n � 3/. It follows that

jj.A C .n C 1/I2/.A C .n C 4/I2/ � � � .A C .4n � 2/I2/jj

D 1

3

q
34˛2

n C 34ˇ2
n � 50˛nˇn:

Similarly,

.A C nI2/.A C .n C 3/I2/ � � � .A C .4n � 3/I2/ D 1

3

�
4un � vn �un C vn

4un � 4vn �un C 4vn

�
;

where un D .n C 2/.n C 5/ � � � .4n � 1/ and vn D .n � 1/.n C 2/ � � � .4n � 4/. This
implies that

jj.A C nI2/.A C .n C 3/I2/ � � � .A C .4n � 3/I2/jj D 1

3

q
34u2

n C 34v2
n � 50unvn:

Therefore

lim
n!1

jj.A C .n C 1/I2/.A C .n C 4/I2/ � � � .A C .4n � 2/I2/jj
jj.A C nI2/.A C .n C 3/I2/ � � � .A C .4n � 3/I2/jj

D lim
n!1

.n C 3/.n C 6/ � � � .4n/

.n C 2/.n C 5/ � � � .4n � 1/

vuut 34 C 34
42 � 50

4

34 C 34
.n�1/2

.4n�1/2 � 50 n�1
4n�1

D 3
p

4;

since (prove it!)

lim
n!1

.n C 3/.n C 6/ � � � .4n/

.n C 2/.n C 5/ � � � .4n � 1/
D 3

p
4:

Remark 4.20 We mention that beautiful limits, like in the previous formula,
involving products of sequences of integer numbers in arithmetic progression which
can be solved by elementary techniques based on the Squeeze Theorem can be found
in [53, problem 59, p. 19], [54, 55, 56].

4.16. A D <.A/ C i=.A/ and A� D <.A/T � i=.A/T . It follows that

jjAjj2 D Tr
�
.<.A/ C i=.A//

�<.A/T � i=.A/T
��

D Tr
�<.A/<.A/T C =.A/=.A/T C i

�<.A/T=.A/ � =.A/T<.A/
��

D Tr
�<.A/<.A/T

�C Tr
�=.A/=.A/T

�
D jj<.A/jj2 C jj=.A/jj2:
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4.17. Solution 1. Use that .A � I2/2 D O2.

Solution 2. (a) Use mathematical induction.
(b) Part (b) follows from part (c) when x D 1.
(c) We have, based on part (a), that

eAx D
1X

nD0

Anxn

nŠ
D

0
BB@

1P
nD0

xn.nC1/

nŠ

1P
nD1

xn

.n�1/Š

�
1P

nD1

xn

.n�1/Š

1P
nD0

xn.1�n/

nŠ

1
CCA D ex

�
x C 1 x
�x 1 � x

�
:

4.18. (a) eA D e2

�
2 �1

1 0

�
. We have that A2 � 4A C 4I2 D O2 , .A � 2I2/2 D O2.

Let B D A � 2I2. This implies that B2 D O2 and A D B C 2I2. We have

e2I2 D e2I2 and eB D I2 C B

1Š
C B2

2Š
C � � � C Bn

nŠ
C � � � D I2 C B:

It follows, since matrices 2I2 and B commute, that

eA D e2I2CB D e2I2eB D e2.I2 C B/ D e2.A � I2/ D e2

�
2 �1

1 0

�
:

(b) eA D
�

4e � 3 2 � 2e
6e � 6 4 � 3e

�
. We have, based on Theorem 2.2, that A2 D A )

An D A, for all n � 1. It follows that

eA D I2 C A

1Š
C A2

2Š
C � � � C An

nŠ
C � � �

D I2 C A

�
1

1Š
C 1

2Š
C � � � C 1

nŠ
C � � �

�

D I2 C .e � 1/A

D
�

4e � 3 2 � 2e
6e � 6 4 � 3e

�
:

4.19. Let A D
�

0 1

1 0

�
. Observe that A D Ep is the permutation matrix. A calculation

shows that A2n D I2 and A2n�1 D A, for all n 2 N. It follows that
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eA D
1X

nD0

An

nŠ
D

1X
nD0

A2n

.2n/Š
C

1X
nD1

A2n�1

.2n � 1/Š

D
1X

nD0

1

.2n/Š
I2 C

1X
nD1

1

.2n � 1/Š
A

D .cosh 1/I2 C .sinh 1/A

D
�

cosh 1 sinh 1

sinh 1 cosh 1

�
:

4.21. Solution 1. We have J2k
2 D .�1/kI2 and J2k�1

2 D .�1/k�1J2, for all k � 1. It
follows that

e��J2 D
1X

nD0

.��J2/n

nŠ

D
1X

kD0

.��J2/2k

.2k/Š
C

1X
kD1

.��J2/.2k�1/

.2k � 1/Š

D
1X

kD0

.�1/k �2k

.2k/Š
I2 C

1X
nD1

.�1/k �2k�1

.2k � 1/Š
J2

D .cos �/I2 � .sin �/J2

D
�

cos � � sin �

sin � cos �

�
:

Solution 2. Observe that

�J2 D
�

cos �
2

� sin �
2

sin �
2

cos �
2

�
and Jn

2 D .�1/n

�
cos n�

2
� sin n�

2

sin n�
2

cos n�
2

�
:

It follows that

e��J2 D
1X

nD0

.��J2/n

nŠ
D

1X
nD0

�n

nŠ

�
cos n�

2
� sin n�

2

sin n�
2

cos n�
2

�

D

0
BB@

1P
nD0

�n

nŠ
cos n�

2
�

1P
nD0

�n

nŠ
sin n�

2

1P
nD0

�n

nŠ
sin n�

2

1P
nD0

�n

nŠ
cos n�

2

1
CCA :
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Let S1 D
1X

nD0

�n

nŠ
cos

n�

2
and S2 D

1X
nD0

�n

nŠ
sin

n�

2
. We have

S1 C iS2 D
1X

nD0

�n

nŠ

�
cos

�

2
C i sin

�

2

�n D ei� D cos � C i sin �;

and it follows that S1 D cos � and S2 D sin � .

4.22. (a) Use that eA D ˛A C ˇI2, for some ˛; ˇ 2 C.

(b) Let A D
�

0 ��

� 0

�
. Then eA D �I2 (see problem 4.21).

4.23. See the solution of problem 4.24.

4.24. Observe that A D aI2 C bJ2. We have, since matrices aI2 and bJ2 commute,
that

eA D eaI2CbJ2 D eaI2ebJ2 D eaI2

�
cos.�b/ � sin.�b/

sin.�b/ cos.�b/

�
D ea

�
cos b sin b

� sin b cos b

�
:

We used in our calculations the result in problem 4.21 with � D �b.

4.25. First we consider the case when t D 1. We have, since A.1/ D I2, that eA.1/ D
eI2 D eI2 D eA.e0/.

Now we consider the case when t ¤ 1. The eigenvalues of A.t/ are 1 and t. We
have that A.t/ D PJA.t/P�1, where

JA.t/ D
�

1 0

0 t

�
; P D

��1 1

1 0

�
and P�1 D

�
0 1

1 1

�
:

It follows that

eA.t/ D PeJA.t/ P�1 D P

�
e 0

0 et

�
P�1 D

�
et et � e
0 e

�
D eA

�
et�1

�
:

4.26. See Theorem 4.6. Another “solution” is based on a formal computation. If �

is an eigenvalue of A there exists a nonzero vector X such that AX D �X. We have

eAX D
 1X

nD0

An

nŠ

!
X D

1X
nD0

AnX

nŠ
D

1X
nD0

�nX

nŠ
D
 1X

nD0

�n

nŠ

!
X D e�X;

which shows that e� is an eigenvalue of eA and X is its corresponding eigenvector.
Recall that the determinant of a matrix equals the product of the eigenvalues and

the trace equals the sum of the eigenvalues. We have det
�
eA
� D e�1e�2 D e�1C�2

D eTr.A/.



248 4 Functions of matrices. Matrix calculus

4.27. eAeB D eBeA. We consider the following two cases.
Case eA D ˛I2, ˛ 2 C. If JA is the Jordan canonical form of A we get that

eJA D ˛I2 and this implies that JA is diagonal. If JA D
�

�1 0

0 �2

�
2 M2 .R/, we

have that e�1 D e�2 D ˛ which implies, since �1; �2 2 R, that ˛ 2 R, ˛ > 0,
�1 D �2 D ln ˛ and A D .ln ˛/I2. Clearly, in this case A commutes with B.

Case eA ¤ ˛I2, ˛ 2 C. We have, based on Theorem 1.1, that eB D aeA C bI2, for
some a; b 2 C. If a D 0 we get that eB D bI2 and, like in the previous case, we get
that b 2 R, b > 0 and B D .ln b/I2. Clearly in this case B commutes with A.

If a ¤ 0 we have, since B commutes with eB, that a
�
BeA � eAB

� D O2 )
BeA D eAB. It follows, based on Theorem 1.1, that B D ceACdI2, for some c; d 2 C.
Thus, AB D A.ceA C dI2/ D .ceA C dI2/A D BA.

4.28. First we prove that if A2 D O2, then eA 2 M2 .Z/. We have

eA D I2 C A

1Š
C A2

2Š
C � � � C An

nŠ
C � � � D I2 C A 2 M2 .Z/ :

Now we prove that if eA 2 M2 .Z/, then A2 D O2. If �1, �2 are the eigenvalues
of A, recall the eigenvalues of eA are e�1 and e�2 . Observe that both �1 and �2

are algebraic numbers being the roots of the characteristic polynomial of A which
has integer coefficients. On the other hand, e�1 and e�2 are also algebraic numbers
since they are the roots of the characteristic polynomial of eA which has integer
coefficients. It follows that �1 and �2 are both 0, otherwise this would contradict
the Lindemann–Weierstrass Theorem which states that if ˛ is a nonzero algebraic
number, then e˛ is transcendental. Thus, �1 D �2 D 0 and we have based on
Theorem 2.2 that A2 D O2.

4.29. We solve only the first part of the problem, the second part can be solved
similarly.

We need the following lemma.

Lemma 4.7 If q 2 Q
�, then cos q is transcendental.

Proof We assume that cos q D a is algebraic. Then, sin q D ˙p
1 � a2 is also

algebraic. It follows, since the sum of two algebraic numbers is algebraic, that eiq D
cos q C i sin q is algebraic. However, this contradicts the Lindemann–Weierstrass
theorem which states that if ˛ ¤ 0 is algebraic, then e˛ is transcendental. ut

First we prove that if A2 D O2, then sin A 2 M2 .Z/. We have

sin A D
1X

nD0

.�1/n A2nC1

.2n C 1/Š
D A � A3

3Š
C � � � D A 2 M2 .Z/ :
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Now we prove the reverse implication. Let �1 D c C id and �2 D c � id be the
eigenvalues of A and let sin �1 D a C ib and sin �2 D a � ib be the eigenvalues of
sin A. Observe that c D 1

2
Tr.A/ 2 Q and d D 1

2

p
4 det A � Tr2.A/ is an algebraic

number. We have, �1C�2 D 2c 2 Z, �1�2 D c2Cd2 2 Z, sin �1Csin �2 D 2a 2 Z,
and sin �1 sin �2 D a2 C b2 D v 2 Z. We calculate

sin �1 C sin �2 D 2 sin
�1 C �2

2
cos

�1 � �2

2
D 2 sin c cos

�1 � �2

2
D 2a

which implies that sin c cos �1��2

2
D a. On the other hand,

sin �1 sin �2 D cos.�1 � �2/ � cos.�1 C �2/

2
D v 2 Z:

This implies that cos2 �1��2

2
� cos2 c D v.

If sin c ¤ 0, and this implies since c 2 Q that c ¤ 0, then cos �1��2

2
D a

sin c .
It follows, after simple calculations, that cos4 c C .v � 1/ cos2 c C a2 � v D 0

which implies that cos c is algebraic. This contradicts Lemma 4.7. Thus, c D 0 )
�1 D id and �2 D �id. A calculation shows that sin �1 sin �2 D sin.id/ sin.�id/ D
.ed�e�d/2

4
D v 2 Z. This implies d D 0.

If d ¤ 0, then ed is the solution of the equation x4 � .2 C 4v/x2 C 1 D 0, hence
ed is algebraic. However, this contradicts the Lindemann–Weierstrass theorem.
Therefore, d D 0 ) �1 D �2 D 0 ) A2 D O2.

Remark 4.21 The problem has an equivalent formulation. If A 2 M2 .Z/ then:

� sin A 2 M2 .Z/ if and only if sin A D A;

� cos A 2 M2 .Z/ if and only if cos A D I2.

4.30. We solve only the first part of the problem. If A2 D O2, then

ln.I2 � A/ D �
1X

nD1

An

n
D �A 2 M2 .Q/ :

Now we prove the other implication. Let �1; �2 be the eigenvalues of A. We have
�1 C �2 D k 2 Q and �1�2 D i 2 Q. Recall the eigenvalues of ln.I2 � A/ are
ln.1 � �1/ and ln.1 � �2/ and we get, since ln.I2 � A/ 2 M2 .Q/, that ln.1 � �1/ C
ln.1 � �2/ D ln Œ.1 � �1/.1 � �2/� 2 Q and ln.1 � �1/ ln.1 � �2/ 2 Q. We have
ln Œ.1 � �1/.1 � �2/� D ln.1 � �1 � �2 C �1�2/ D ln.1 � k C i/ D a 2 Q.

If a ¤ 0 we have that ea D 1 � k C i 2 Q ) ea is algebraic. However, this
contradicts the Lindemann–Weierstrass Theorem which states that if ˛ is a nonzero
algebraic number, then e˛ is transcendental. Therefore a D 0 ) 1 � k C i D 1 )
.1 � �1/.1 � �2/ D 1. This implies � ln2.1 � �1/ 2 Q. Let ln2.1 � �1/ D b 2
Q ) ln.1 � �1/ D ˙p

b ) �1 D 1 � e˙p
b ) �2 D 1 � 1

1��1
D 1 � e�p

b.

Since �1 C �2 D k 2 Q we get that 2 � k D e˙p
b C e�p

b and this in turn implies
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that e˙p
b is algebraic. This implies that b D 0 otherwise, if b ¤ 0 we get based

on Lindemann–Weierstrass Theorem, since ˙p
b is nonzero algebraic, that e˙p

b

is transcendental. Therefore b D 0 and this implies that �1 D �2 D 0. Thus, both
eigenvalues of A are 0 and we get based on the Cayley–Hamilton Theorem that
A2 D O2.

The second part of the problem can be solved similarly.

Remark 4.22 The problem has an equivalent formulation. If A 2 M2 .Q/ such that
�.A/ < 1 then:

� ln.I2 � A/ 2 M2 .Q/ if and only if ln.I2 � A/ D �A;

� ln.I2 C A/ 2 M2 .Q/ if and only if ln.I2 C A/ D A.

4.31. We have eiA C eiB C eiC D O2 and e�iA C e�iB C e�iC D O2. It follows that

O2 D �
eiA C eiB C eiC

�2 D e2iA C e2iB C e2iC C 2ei.ACBCC/
�
e�iA C e�iB C e�iC

�
:

This implies that e2iA C e2iB C e2iC D O2 ) cos.2A/ C cos.2B/ C cos.2C/ D O2

and sin.2A/ C sin.2B/ C sin.2C/ D O2. On the other hand, O2 D e3iA C e3iB C
e3iC � 3ei.ACBCC/ and parts (c) and (d) follow.

4.32. (a) Let A D
�

a b
b a

�
and observe that A D aI2 C bEp, where Ep D

�
0 1

1 0

�

is the permutation matrix. We use a technique similar to the one in the solution of
problem 4.19 and we get that

eA D eaI2CbEp D eaI2ebEp D ea

�
cosh b sinh b
sinh b cosh b

�
:

Parts (b) and (c) can be solved using Theorem 4.10.
(d) We have

1X
nD1

1

.2n � 1/A
D

1X
nD1

1

nA
�

1X
nD1

1

.2n/A

D �.A/ � 2�A
1X

nD1

1

nA

D �.A/ � 2�A�.A/

D �
I2 � 2�A

�
�.A/:

4.36. Let ˛ D �.cos t C i sin t/, � > 0, t 2 .��; ��. Then,

A D P

�
ln � C .t C 2k�/i 0

0 ln � C .t C 2l�/i

�
P�1;

where k; l 2 Z and P 2 GL2 .C/.
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4.37. Let a D �a.cos ta C i sin ta/, �a > 0, ta 2 .��; �� and b D �b.cos tb C i sin tb/,
�b > 0, tb 2 .��; ��. Then,

A D
�

ln �a C .ta C 2k�/i 0

0 ln �b C .tb C 2l�/i

�
;

where k; n 2 Z.

4.38. A D
��

2k C 1
2

�
� i

�
2n � 1

2

�
� i�

2n � 1
2

�
� i

�
2k C 1

2

�
� i

�
or A D

��
2k � 1

2

�
� i

�
2n C 1

2

�
� i�

2n C 1
2

�
� i

�
2k � 1

2

�
� i

�
,

where k; n 2 Z.
Observe that A commutes with eA and use Theorem 1.1 to deduce that A is a

circulant matrix, i.e., A D
�

ˇ ˛

˛ ˇ

�
, ˛; ˇ 2 C. It follows, based on part (a) of

problem 4.32, that

eA D eˇ

�
cosh ˛ sinh ˛

sinh ˛ cosh ˛

�
D
�

0 1

1 0

�
:

This implies that eˇ cosh ˛ D 0 and eˇ sinh ˛ D 1. The first equation implies that
cosh ˛ D 0 ) e2˛ D �1 ) ˛ D 2pC1

2
� i, p 2 Z. A calculation shows that

sinh ˛ D .�1/pi and the second equation implies that eˇ D .�1/p�1i. The cases
when p is even or odd lead to the desired solution.

4.39. Let a D �.cos � C i sin �/, � > 0, and � 2 .��; ��. Then,

A D
�

ln � C .� C 2k�/i 1

0 ln � C .� C 2k�/i

�
; k 2 Z:

4.40. We observe that A D �I2 C B, where B D
��1 1

�1 1

�
and note that B2 D O2.

We have

sin A D sin.�I2 C B/ D sin.�I2/ cos B C cos.�I2/ sin B D cos.�I2/ sin B D �B

cos A D cos.�I2 C B/ D cos.�I2/ cos B � sin.�I2/ sin B D cos.�I2/ cos B D �I2

and similarly sin.2A/ D 2B.

4.41. We have, since A2 D A, that

sin.k�A/ D
1X

nD0

.�1/n

.2n C 1/Š
.k�A/2nC1 D

1X
nD0

.�1/n

.2n C 1/Š
.k�/2nC1A D sin.k�/A D O2:

Similarly, if A is idempotent, then cos.k�A/ D I2 C ..�1/k � 1/A, for all k 2 Z.
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4.42. (a) If such a matrix would exist, then sin2 A D
�

1 4032

0 1

�
and this implies,

since cos2 A D I2 � sin2 A, that cos2 A D
�

0 �4032

0 0

�
. However, there is no X 2

M2 .C/ such that X2 D
�

0 a
0 0

�
, with a ¤ 0.

(b) If such a matrix would exist, then cosh2 A D
�

1 2˛

0 1

�
and this implies,

since cosh2 A � sinh2 A D I2, that sinh2 A D
�

0 2˛

0 0

�
. This is impossible since

the equation X2 D
�

0 a
0 0

�
, with a ¤ 0, has no solutions in M2 .C/.

4.43. If Tr.A/ D 0 we have based on the Cayley–Hamilton Theorem that A2 D O2.
Thus,

2A D e.ln 2/A D
1X

nD0

..ln 2/A/n

nŠ
D I2 C .ln 2/A:

If Tr.A/ ¤ 0, the Cayley–Hamilton Theorem implies that A2 D Tr.A/A which in
turn implies that An D Trn�1.A/A, for all n 2 N. It follows that

2A D e.ln 2/A D
1X

nD0

..ln 2/A/n

nŠ
D I2 C 1

Tr.A/

1X
nD1

Trn.A/ lnn 2

nŠ
A D I2 C 2Tr.A/ � 1

Tr.A/
A:

4.45. There are no such matrices. If �1; �2 are the eigenvalues of A, then e�1 ; e�2 are
the eigenvalues of eA. We have

eaCd D eTr.A/ D e�1C�2 D e�1e�2 D det
�
eA
� D eaed � ebec D eaCd � ebCc:

This implies that ebCc D 0, which is impossible.

4.46. (a) Let A D .aij/i;jD1;2, B D .bij/i;jD1;2 and let C D .cij/i;jD1;2, where C D AB.
We have .cij/

0 D .ai1b1j C ai2b2j/
0 D a0

i1b1j C ai1b0
1j C a0

i2b2j C ai2b0
2j, for all

i; j D 1; 2, which implies that .AB/0 D A0B C AB0.
(b) We have that A�1A D I2 and it follows, based on part (a), that .A�1A/0 D

O2. Therefore .A�1/0A C A�1A0 D O2 ) .A�1/0A D �A�1A0 ) .A�1/0 D
�A�1A0A�1.

We have, based on part (a) and the first formula in part (b), that

.A�n/0 D .A�.n�1/A�1/0

D .A�.n�1//0A�1 C A�.n�1/.A�1/0

D .A�.n�1//0A�1 � A�nA0A�1:
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Let Yn D A�n. The previous formula implies that Y 0
n D Y 0

n�1A�1 � A�nA0A�1 )
Y 0

nAn D Y 0
n�1An�1 � A�nA0An�1. It follows that

Y 0
nAn D � �A�1A0 C A�2A0A C A�3A0A2 C � � � C A�nA0An�1

�

and this implies

.A�n/0 D � �A�1A0 C A�2A0A C A�3A0A2 C � � � C A�nA0An�1
�

A�n:

4.47. First we observe that A2.t/ D A.t/ which implies that An.t/ D A.t/, for all
n � 1. It follows that

eA.t/ D I2 C
1X

nD1

An.t/

nŠ
D I2 C

 1X
nD1

1

nŠ

!
A.t/ D I2 C .e � 1/A.t/ D

�
e .e � 1/t
0 1

�
;

and this implies

�
eA.t/

�0 D
�

0 e � 1

0 0

�
:

On the other hand,

eA.t/A0.t/ D
�

e .e � 1/t
0 1

��
0 1

0 0

�
D
�

0 e
0 0

�
¤ �

eA.t/
�0

and

A0.t/eA.t/ D
�

0 1

0 0

��
e .e � 1/t
0 1

�
D
�

0 1

0 0

�
¤ �

eA.t/
�0

:

4.48. The solution of the system is

(
x1.t/ D �

2e�t C e5t
�

c1 C �
2e�t � 2e5t

�
c2

x2.t/ D �
e�t � e5t

�
c1 C �

e�t C 2e5t
�

c2;

with c1; c2 2 R.

4.49. (a) The characteristic equation of A is .x � 1/2 C a D 0 and it follows that
.A � I2/2 C aI2 D O2. Let B D A � I2 and we have that B2 D �aI2. This implies
that B2k D .�1/kakI2 and B2k�1 D .�1/k�1ak�1B, for all k � 1. We have eAt D
eI2tCBt D eteBt. On the other hand,
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eBt D
1X

kD0

.Bt/2k

.2k/Š
C

1X
kD1

.Bt/2k�1

.2k � 1/Š

D
1X

kD0

.�1/k .t
p

a/2k

.2k/Š
I2 C 1p

a

1X
kD1

.�1/k�1 .t
p

a/2k�1

.2k � 1/Š
B

D cos.t
p

a/I2 C sin.t
p

a/p
a

B

D
 

cos.t
p

a/
sin.t

p
a/p

a

�p
a sin.t

p
a/ cos.t

p
a/

!
:

This implies that

eAt D et

 
cos.t

p
a/

sin.t
p

a/p
a

�p
a sin.t

p
a/ cos.t

p
a/

!
:

(b) The system can be written as X0 D AX and we have that X.t/ D eAtC, where
C is a constant vector. This implies that

(
x.t/ D c1et cos.t

p
a/ C c2p

a
et sin.t

p
a/

y.t/ D �c1

p
aet sin.t

p
a/ C c2et cos.t

p
a/;

where c1; c2 2 R.

4.52. (a) tX0.t/ D AX.t/ ) X0.t/� A
t X.t/ D 0. We multiply this equation by t�A D

e�.ln t/A and we get that
�
e�.ln t/AX.t/

�0 D 0 , �
t�AX.t/

�0 D 0 ) t�AX.t/ D
C ) X.t/ D tAC, where C is a constant vector.

(b) We divide by t and we multiply the system by t�A D e�.ln t/A and we have

�
t�AX.t/

�0 D 1

t
t�AF.t/ , �

t�AX.t/
�0 D t�.ACI2/F.t/

which implies

t�AX.t/ D
Z t

t0

u�.ACI2/F.u/du:

Thus

X.t/ D tA
Z t

t0

u�.ACI2/F.u/du:
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4.53. We have, based on problem 4.52, that

(
x.t/ D 7

4
t2 � 3

4t2
� 1

2

y.t/ D 7
4
t2 C 1

4t2
� 1

2
:

4.54. The eigenvalues of the matrix of the system A are the solutions of the
characteristic equation �2 � .a C d/� C ad � bc D 0 or �2 � Tr.A/� C det A D 0.
Using remarks 4.7 and 4.8 we have the following cases:

� If �1; �2 2 R, �1; �2 < 0, i.e., Tr.A/ < 0, 
 � 0 and det A > 0, then the zero
solution is asymptotically stable;

� If �1; �2 2 CnR, �1;2 D r ˙ is, r 2 R, s 2 R
� and r < 0, i.e., Tr.A/ < 0, 
 < 0

and det A > 0, the zero solution is asymptotically stable. It follows, by combining
this case with the previous case, that the system is asymptotically stable if and
only if Tr.A/ < 0 and det A > 0;

� Using parts (c) and (d) of remark 4.8 we obtain that the zero solution is unstable
if at least a solution of the characteristic equation has a positive real part or
both solutions are equal to 0 (but A ¤ O2). We have the following possibilities:
det A < 0 , �1; �2 2 R, �1 < 0 < �2 or det A > 0 and Tr.A/ > 0 , �1; �2 2
C n R and �1 C �2 > 0 or Tr.A/ D det A D 0 , �1 D �2 D 0. Therefore the
system is unstable if and only if det A < 0 or Tr.A/ > 0 or Tr.A/ D det A D 0;

� In all the other cases Tr.A/ D 0 and det A > 0 or Tr.A/ < 0 and det A D 0 the
system is stable but not asymptotically stable.

In conclusion we have that:

� the system is asymptotically stable if Tr.A/ < 0 and det A > 0;
� the system is stable if Tr.A/ D 0 and det A > 0 or Tr.A/ < 0 and det A D 0;
� the system is unstable if Tr.A/ > 0 or det A < 0 or Tr.A/ D det A D 0.

4.55. Tr.A/ D �.a2 C 1/ and det A D a2 � a. We have, based on problem 4.54, that
the system is:

� asymptotically stable for a 2 .�1; 0/ [ .1; 1/;
� stable for a 2 f0; 1g;
� unstable for a 2 .0; 1/.

4.56. Tr.A/ D �a and det A D 1 � a. We have, based on problem 4.54, that the
system is:

� asymptotically stable for a 2 .0; 1/;
� stable for a 2 f0; 1g;
� unstable for a 2 .�1; 0/ [ .1; 1/.

4.57. Tr.A/ D 0 and det A D �bc. It follows, based on problem 4.54, that the system
is stable for bc < 0 and unstable if bc � 0.
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4.58. Tr.A/ D �2 and det A D 1 � ab. We have, based on problem 4.54, that

� the system is asymptotically stable if ab < 1;
� the system is stable if ab D 1;
� the system is unstable if ab > 1.

4.59. Tr.A/ D 2a and det A D a2 � b. We have, based on problem 4.54, that

� the system is asymptotically stable if a < 0 and a2 � b > 0;
� the system is stable if a D 0 and b < 0 or a < 0 and a2 D b;
� the system is unstable if a > 0 or a2 � b < 0 or a D b D 0.

4.60. Observe that A D �I2 C B, where B D
�

0 x
0 0

�
and note that B2 D O2. We

have, based on the Binomial Theorem, that

An D .�1/nI2 C n.�1/n�1B D
�

.�1/n nx.�1/n�1

0 .�1/n

�
:

It follows that

1X
nD1

An

n2
D

0
BB@

1P
nD1

.�1/n

n2 x
1P

nD1

.�1/n�1

n

0
1P

nD1

.�1/n

n2

1
CCA D

 
� �2

12
x ln 2

0 � �2

12

!
;

since
1P

nD1

.�1/n

n2 D � �2

12
and

1P
nD1

.�1/n�1

n D ln 2.

4.61. Let � D �1Ci
p

3
2

. We have

1X
nD0

A3n

.3n/Š
D 1

3

�
eA C e�A C e�2A

�
:

A calculation shows that �2 D �1�i
p

3
2

and this implies that

e�A C e�2A D e� A
2 Ci

p

3A
2 C e� A

2 �i
p

3A
2 D 2e� A

2 cos

p
3A

2
:

4.62. Part (a) of the problem can be proved by mathematical induction and part (b)
follows from part (a) by passing to the limit as n ! 1.
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4.63. We have

f .A/ D
1X

nD1

FnAn�1 D I2 C
1X

nD2

FnAn�1 D I2 C
1X

mD1

FmC1Am

D I2 C
1X

mD1

.Fm C Fm�1/ Am D I2 C
1X

mD1

FmAm C
1X

mD1

Fm�1Am

D I2 C Af .A/ C
1X

mD2

Fm�1Am D I2 C Af .A/ C
1X

kD1

FkAkC1

D I2 C Af .A/ C A2f .A/;

and it follows that f .A/.I2 � A � A2/ D I2.

4.64. Recall the generating function for the nth harmonic numbers is given by

1X
nD1

Hnxn D � ln.1 � x/

1 � x
; �1 < x < 1; (4.6)

and it follows, by differentiation and integration, that

1X
nD1

nHnxn�1 D 1 � ln.1 � x/

.1 � x/2
; �1 < x < 1 (4.7)

and

1X
nD1

Hn

n C 1
xnC1 D ln2.1 � x/

2
; �1 � x < 1: (4.8)

We have A D ˛I2 C B, B2 D O2, and it follows, by the Binomial Theorem, that
An D ˛nI2 C n˛n�1B, for all n � 1.

(a) We have, based on (4.6) and (4.7), that

1X
nD1

HnAn D
1X

nD1

Hn˛nI2 C
1X

nD1

nHn˛n�1B D � ln.1 � ˛/

1 � ˛
I2 C 1 � ln.1 � ˛/

.1 � ˛/2
B:

(b) If ˛ D 0, then A D B with B2 D O2. It follows that
1P

nD1

Hn
nC1

An D B
2

.
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Let ˛ ¤ 0. We have, based on formulae (4.6), (4.7), and (4.8), that

1X
nD1

Hn

n C 1
An D

1X
nD1

Hn

n C 1
˛nI2 C

1X
nD1

nHn

n C 1
˛n�1B

D ln2.1 � ˛/

2˛
I2 C

 1X
nD1

Hn˛n�1 �
1X

nD1

Hn

n C 1
˛n�1

!
B

D ln2.1 � ˛/

2˛
I2 �

 
ln.1 � ˛/

˛.1 � ˛/
C ln2.1 � ˛/

2˛2

!
B:

4.65. Use the Jordan canonical form of A combined to the power series formulae

(a)
1X

nD1

Hnzn D � ln.1 � z/

1 � z
, for jzj < 1;

(b)
1X

nD1

nHnzn D z.1 � ln.1 � z//

.1 � z/2
, for jzj < 1.

4.66. We use the following result [32] whose proof can be found in Appendix A.

A power series with the tail of ln 1
2
.

Let x 2 R. The following equality holds:

1X
nD1

�
ln

1

2
C 1 � 1

2
C � � � C .�1/n�1

n

�
xn D

(
ln 2 � 1

2
if x D 1

ln.1Cx/�x ln 2

1�x if x 2 .�1; 1/:

First we consider the case when �1 D 0 and 0 < j�2j < 1. Let t D �2 D Tr.A/.
The Cayley–Hamilton Theorem implies that A2 � tA D O2 ) An D tn�1A, for all
n � 1.

Let an D ln 1
2

C 1 � 1
2

C � � � C .�1/n�1

n . We have

1X
nD1

anAn D 1

t

1X
nD1

antnA D 1

1 � t

�
ln.1 C t/

t
� ln 2

�
A:

Now we consider the case when 0 < j�1j; j�2j < 1. Let JA D
�

�1 0

0 �2

�
. We

have A D PJAP�1 ) An D PJn
AP�1, with Jn

A D
�

�n
1 0

0 �n
2

�
. It follows that
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1X
nD1

anAn D P

 1X
nD1

anJn
A

!
P�1 D P

0
BB@

1P
nD1

an�n
1 0

0
1P

nD1

an�n
2

1
CCAP�1

D P

 
ln.1C�1/��1 ln 2

1��1
0

0
ln.1C�2/��2 ln 2

1��2

!
P�1

D .I2 � A/�1 .ln.I2 C A/ � .ln 2/A/ :

If JA D
�

� 1

0 �

�
, we have An D PJn

AP�1, with Jn
A D

�
�n n�n�1

0 �n

�
.

Let f .x/ D
1P

nD1

anxn D ln.1Cx/�x ln 2

1�x , x 2 .�1; 1/. We have

1X
nD1

anAn D P

 1X
nD1

anJn
A

!
P�1 D P

�
f .�/ f 0.�/

0 f .�/

�
P�1 D f .A/:

4.67. (a) Let fn.x/ D ln.1 � x/ C x C x2

2
C � � � C xn

n , x 2 .�1; 1/. One can prove
that

� lim
n!1 nfn.x/ D lim

n!1 n
�

ln.1 � x/ C x C x2

2
C � � � C xn

n

�
D 0;

� lim
n!1 nf 0

n.x/ D lim
n!1 n

� �1
1�x C x C x2 C � � � C xn�1

� D 0.

Let �1; �2 be the eigenvalues of A and let A D PJAP�1. If

JA D
�

�1 0

0 �2

�
) nfn.A/ D P

�
nfn.�1/ 0

0 nfn.�2/

�
P�1;

and it follows, based on the first limit above, that lim
n!1 nfn.A/ D O2.

If

JA D
�

� 1

0 �

�
) nfn.A/ D P

�
nfn.�/ nf 0

n.�/

0 nfn.�/

�
P�1;

and we have, based on the previous limits, that lim
n!1 nfn.A/ D O2.

(b) We calculate the series by Abel’s summation formula, part (b) of problem
4.62, with an D 1 and Bn D ln.I2 � A/ C A C A2

2
C � � � C An

n . We have, based on part
(a), that
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1X
nD1

�
ln.I2 � A/ C A C A2

2
C � � � C An

n

�

D lim
n!1 n

�
ln.I2 � A/ C A C A2

2
C � � � C AnC1

n C 1

�
�

1X
nD1

n

n C 1
AnC1

D
1X

nD1

�
AnC1

n C 1
� AnC1

�

D
1X

mD1

�
Am

m
� Am

�

D � ln.I2 � A/ � A.I2 � A/�1:

4.68. (a) Use mathematical induction.
(b) We calculate the series using part (b) of problem 4.62, with an D Hn and

Bn D ln.I2 � A/ C A C A2

2
C � � � C An

n , and we have

1X
nD1

Hn

�
ln.I2 � A/ C A C A2

2
C � � � C An

n

�

D lim
n!1 ..n C 1/Hn � n/

�
ln.I2 � A/ C A C A2

2
C � � � C AnC1

n C 1

�

�
1X

nD1

..n C 1/Hn � n/
AnC1

n C 1

D �A
1X

nD1

HnAn C
1X

nD1

AnC1 �
1X

nD1

AnC1

n C 1

D A.I2 � A/�1 ln.I2 � A/ C A2.I2 � A/�1 C ln.I2 � A/ C A

D .A C ln.I2 � A//.I2 � A/�1:

We used that

lim
n!1 ..n C 1/Hn � n/

�
ln.I2 � A/ C A C A2

2
C � � � C AnC1

n C 1

�
D 0

combined to the first formula in problem 4.65.

4.69. (a) See the idea in the solution of part (a) of problem 4.67.
(b) Use Abel’s summation formula, part (b) of problem 4.62, with an D 1 and

Bn D arctan A � A C A3

3
C � � � C .�1/n A2n�1

2n�1
.
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4.70. (a) First, one can prove that if A 2 M2 .C/, then

lim
n!1 n

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D O2:

We calculate the series by Abel’s summation formula, part (b) of problem 4.62,
with an D 1 and Bn D eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ
, and we have

1X
nD1

 
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

!
D lim

n!1 n

 
eA � I2 � A

1Š
� A2

2Š
� � � � � AnC1

.n C 1/Š

!

C
1X

nD1

n
AnC1

.n C 1/Š

D
1X

nD1

AnC1

nŠ
�

1X
nD1

AnC1

.n C 1/Š

D AeA � eA C I2:

(b) If A 2 M2 .C/, then (prove it!)

lim
n!1 n2

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�
D O2:

We calculate the series by Abel’s summation formula, part (b) of problem 4.62,
with an D n and Bn D eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ
, and we have

1X
nD1

n

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�

D lim
n!1

n.n C 1/

2

�
eA � I2 � A

1Š
� A2

2Š
� � � � � AnC1

.n C 1/Š

�

C
1X

nD1

n.n C 1/

2
� AnC1

.n C 1/Š

D A2

2

1X
nD1

An�1

.n � 1/Š

D A2

2
eA:
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4.73. Apply Abel’s summation formula with an D 1 and Bn D f .A/ � f .0/I2 �
f 0.0/

1Š
A � � � � � f .n/.0/

nŠ
An, for the first series and the same formula with an D n and

Bn D f .A/ � f .0/I2 � f 0.0/

1Š
A � � � � � f .n/.0/

nŠ
An, for the second series.

4.74. (a) First one can show that if x; y 2 C, then

lim
n!1 xn

�
ey � 1 � y

1Š
� y2

2Š
� � � � � yn

nŠ

�
D 0:

When x D 1 this is part (a) of problem 4.70, so we solve the problem for the case
when x ¤ 1.

We calculate the series by Abel’s summation formula, part (b) of problem 4.62,
with an D xn and Bn D eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ
. We have

1X
nD1

xn

�
eA � I2 � A

1Š
� A2

2Š
� � � � � An

nŠ

�

D lim
n!1 x

1 � xn

1 � x

�
eA � I2 � A

1Š
� A2

2Š
� � � � � AnC1

.n C 1/Š

�

C
1X

nD1

x
1 � xn

1 � x
� AnC1

.n C 1/Š

D x

1 � x

1X
nD1

AnC1

.n C 1/Š
� 1

1 � x

1X
nD1

.Ax/nC1

.n C 1/Š

D x

1 � x

�
eA � I2 � A

� � 1

1 � x

�
eAx � I2 � Ax

�

D xeA � eAx

1 � x
C I2:

(b) This part follows from part (a) when x D �1.

4.75. Prove, using Abel’s summation formula (see Appendix A), that if z 2 C the
following equality holds

1X
nD1

�
e � 1 � 1

1Š
� 1

2Š
� � � � � 1

nŠ

�
zn D

8<
:

ez � ez

z � 1
C 1 if z ¤ 1

1 if z D 1:

It follows, by differentiation, that

1X
nD1

n

�
e � 1 � 1

1Š
� 1

2Š
� � � � � 1

nŠ

�
zn�1 D

8<
:

zez � 2ez C e

.z � 1/2
if z ¤ 1

e
2

if z D 1:
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Calculate the matrix series using the previous two formulae combined to
Theorem 3.1.

4.76. Use Abel’s summation formula.

4.77. We need the following two results (see Appendix A).

Let k � 3 be an integer and let x 2 Œ�1; 1�. The following formula holds

1X
nD1

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

nk

�
xn D

8<
:

x�.k/ � Lik.x/

1 � x
if x 2 Œ�1; 1/

�.k � 1/ � �.k/ if x D 1;

where Lik denotes the polylogarithm function.

Let k � 3 be an integer and let x 2 Œ�1; 1/. The following formula holds

1X
nD1

n

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

nk

�
xn�1 D �.k/ � 1�x

x Lik�1.x/ � Lik.x/

.1 � x/2
;

where Lik denotes the polylogarithm function.

(a) Use that An D
�

.�1/n n.�1/n�1x
0 .�1/n

�
and the preceding two formulae with

k D 3 and x D �1

(b) Express An in terms of the eigenvalues of A using Theorem 4.7 and apply the
preceding two formulae.

4.78. (a) Observe that
1P

nD1

n
naI2

D �..a � 1/I2/ and use Corollary 4.8.

(b) We have

1X
nD1

n

n

0
@˛ ˇ

0 ˛

1
A

D �

�
˛ � 1 ˇ

0 ˛ � 1

�

and the problem follows based on part (b) of Corollary 4.9.

4.79. Observe that
1P

nD1

n
nA D �.A � I2/, then use Theorem 4.14.

4.80. (a) Use Abel’s summation formula with an D 1 and Bn D �.A/ � 1
1A � 1

2A �
� � � � 1

nA .
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(b) Use Abel’s summation formula with an D n and Bn D �.A/� 1
1A � 1

2A �� � �� 1
nA .

4.81. An D
�

an nan�1b
0 an

�
. It follows that

Z 1

0

ln.I2 � Ax/

x
dx D �

Z 1

0

 1X
nD1

xn�1

n
An

!
dx

D �
1X

nD1

An

n2

D �
1X

nD1

1

n2

�
an nan�1b
0 an

�

D
��Li2.a/

b ln.1�a/

a
0 �Li2.a/

�
:

4.82. If �1 D 0 and �2 D 1 we have that A2 D A and this implies that An D A, for
all n � 1. Therefore

Z 1

0

ln.I2 � Ax/

x
dx D �

1X
nD1

An

n2
D �A

1X
nD1

1

n2
D �A�.2/:

If �1 D �2 D 0, then A2 D O2 which implies that An D O2, for all n � 2. Thus,

Z 1

0

ln.I2 � Ax/

x
dx D �

1X
nD1

An

n2
D �A:

4.83. Use Theorem 4.7 with f .x/ D ln.1 � x/ and A replaced by xA. Observe the
eigenvalues of xA are x�1 and x�2.

4.84. We use the following series formula.

The quadratic logarithmic function.
The following equality holds

ln2.I2 � A/ D 2

1X
nD1

Hn

n C 1
AnC1;

where Hn denotes the nth harmonic number and A 2 M2 .C/ with �.A/ < 1.
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We have

Z 1

0

ln2.I2 � Ax/

x
dx D

Z 1

0

 
2

1X
nD1

Hn

n C 1
xnAnC1

!
dx D 2

1X
nD1

Hn

.n C 1/2
AnC1:

(a) If �1 D �2 D 0, then A2 D O2 ) An D O2, for all n � 2. We have, based
on the previous formula, that

Z 1

0

ln2.I2 � Ax/

x
dx D O2:

(b) If �1 D 0 and �2 D 1, then A2 D A ) An D A, for all n � 1. It follows,
based on the previous formula, that

Z 1

0

ln2.I2 � Ax/

x
dx D 2

1X
nD1

Hn

.n C 1/2
A D 2�.3/A:

To prove the last equality we note that

1X
nD1

Hn

.n C 1/2
D

1X
nD1

HnC1 � 1
nC1

.n C 1/2
D

1X
nD1

Hn

n2
�

1X
nD1

1

n3
D �.3/;

since
1X

nD1

Hn

n2
D 2�.3/ (see [22, Problem 3.55, p. 148]).

4.85. We have

Z 1

0

ln.I2 � Ax/dx D �
Z 1

0

 1X
nD1

xnAn

n

!
dx D �

1X
nD1

An

n.n C 1/
:

If �1 D �2 D 0, then A2 D O2 ) An D O2, for all n � 2. We have, based on
the previous formula, that

Z 1

0

ln.I2 � Ax/dx D �A

2
:

If �1 D 0 and 0 < j�2j < 1, then A2 D tA, where t D Tr.A/. This implies that
An D tn�1A, for all n � 1. It follows that
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Z 1

0

ln.I2 � Ax/dx D �
1X

nD1

tn�1

n.n C 1/
A

D �
 

1

t

1X
nD1

tn

n
� 1

t2

1X
nD1

tnC1

n C 1

!
A

D �
�

.1 � t/ ln.1 � t/

t2
C 1

t

�
A:

If 0 < j�1j; j�2j < 1, then

Z 1

0

ln.I2 � Ax/dx D �
1X

nD1

An

n.n C 1/

D �
1X

nD1

�
An

n
� An

n C 1

�

D ln.I2 � A/ C A�1.� ln.I2 � A/ � A/

D .I2 � A�1/ ln.I2 � A/ � I2:

4.86. We have

Z 1

0

eAxdx D
Z 1

0

 1X
nD0

.xA/n

nŠ

!
dx D

1X
nD0

An

.n C 1/Š
:

If �1 D �2 D 0, then A2 D O2 ) An D O2, for all n � 2. Thus

Z 1

0

eAxdx D
1X

nD0

An

.n C 1/Š
D I2 C A

2
:

If �1 D 0 and �2 ¤ 0, then A2 D tA, where t D Tr.A/. This implies that
An D tn�1A, for all n � 1. It follows that

Z 1

0

exAdx D
1X

nD0

An

.n C 1/Š
D I2 C

1X
nD1

tn�1

.n C 1/Š
A D I2 C et � 1 � t

t2
A:

If �1; �2 ¤ 0, then

Z 1

0

eAxdx D
1X

nD0

An

.n C 1/Š
D �

eA � I2

�
A�1:
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4.87. (a) We have

Z 1

0

cos.Ax/dx D
Z 1

0

 1X
nD0

.�1/n .xA/2n

.2n/Š

!
dx D

1X
nD0

.�1/n A2n

.2n C 1/Š
:

If �1 D �2 D 0, then A2 D O2 which implies that An D O2, for all n � 2. Thus

Z 1

0

cos.Ax/dx D
1X

nD0

.�1/n A2n

.2n C 1/Š
D I2:

If �1 D 0 and �2 ¤ 0, then A2 D tA, where t D Tr.A/. This implies that
An D tn�1A, for all n � 1. It follows that

Z 1

0

cos.Ax/dx D I2 C
1X

nD1

.�1/n A2n

.2n C 1/Š

D I2 C
1X

nD1

.�1/n t2n�1

.2n C 1/Š
A

D I2 C sin t � t

t2
A:

If �1; �2 ¤ 0, then

Z 1

0

cos.Ax/dx D
1X

nD0

.�1/n A2n

.2n C 1/Š
D A�1 sin A:

(b) This part of the problem is solved similarly.
(c) We use the formula sin A.x C y/ D sin Ax cos Ay C cos Ax sin Ay, and we

get that

Z 1

0

Z 1

0

sin A.x C y/dxdy D
Z 1

0

Z 1

0

.sin Ax cos Ay C cos Ax sin Ay/ dxdy

D 2

Z 1

0

sin Axdx
Z 1

0

cos Aydy;

and the result follows from parts (a) and (b).

4.89. We solve only part (b) of the problem. Let �1; �2 be the eigenvalues of A
and let

JA D
�

�1 0

0 �2

�
and P D

�
cos ˇ � sin ˇ

sin ˇ cos ˇ

�
:
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Nota bene. We have that A D PJAP�1 and we choose P to be a rotation
matrix. We mention that the matrix P is the invertible matrix whose columns are
the eigenvectors corresponding to the eigenvalues �1, �2 of A and we normalize
them in order to have a rotation matrix (see Theorem 2.5).

We calculate the double integral by changing the variables according to the
formula X D PY , i.e.

�
x
y

�
D
�

cos ˇ � sin ˇ

sin ˇ cos ˇ

��
u
v

�

and we have that

I.˛/ D
Z 1

�1

Z 1

�1
.vTAv/˛e�vT Avdxdy

D
Z 1

�1

Z 1

�1
�
�1u2 C �2v2

�˛
e�.�1u2C�2v2/

ˇ̌̌
ˇ D.x; y/

D.u; v/

ˇ̌̌
ˇ dudv

D
Z 1

�1

Z 1

�1
�
�1u2 C �2v2

�˛
e�.�1u2C�2v2/dudv;

where
D.x; y/

D.u; v/
is the Jacobian of the transformation.

Using the substitutions u D x0p
�1

and v D y0p
�2

we get that

I.˛/ D 1p
�1�2

Z 1

�1

Z 1

�1
�
x02 C y02�˛ e�.x02Cy02/dx0dy0

D 1p
det A

Z 1

0

Z 2�

0

�2˛e��2

�d�d�

D 2�p
det A

Z 1

0

�2˛e��2

�d� .�2 D t/

D �p
det A

Z 1

0

t˛e�tdt

D ��.˛ C 1/p
det A

:

When ˛ D 0 and A D
�

2 �1

�1 2

�
we obtain [58, Problem 2.3.3, p. 40] which

states that
Z 1

�1

Z 1

�1
e�.x2C.x�y/2Cy2/dxdy D �p

3
:
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4.90. If �1; �2 are the eigenvalues of A, then 1
�1

and 1
�2

are the eigenvalues of A�1.

Let P be the rotation matrix which verifies the equality A�1 D PJA�1 P�1. We
calculate the integral by using the substitution X D PY , i.e.

�
x
y

�
D
�

cos � � sin �

sin � cos �

��
x0
y0
�

and we have that
Z Z

R2

e� 1
2 vT A�1v

�
�1

2
vTA�1v � ln.2�

p
det A/

�
dxdy

D
Z Z

R2

e� 1
2 . x02

�1
C y02

�2
/



�1

2

�
x02

�1

C y02

�2

�
� ln.2�

p
det A/

� ˇ̌ˇ̌ D.x; y/

D.x0; y0/

ˇ̌
ˇ̌ dx0dy0

D
Z Z

R2

e� 1
2 . x02

�1
C y02

�2
/



�1

2

�
x02

�1

C y02

�2

�
� ln.2�

p
det A/

�
dx0dy0

�
x0 D p

�1u
y0 D p

�2v

�

D
Z Z

R2

e� 1
2 .u2Cv2/

�
�1

2
.u2 C v2/ � ln.2�

p
det A/

�p
�1�2dudv

D p
det A

Z 1

0

Z 2�

0

e� 1
2 �2

�
�1

2
�2 � ln.2�

p
det A/

�
�d�d˛

D 2�
p

det A



�1

2

Z 1

0

e� 1
2 �2

�3d� � ln.2�
p

det A/

Z 1

0

e� 1
2 �2

�d�

�

D �2�
p

det A
h
1 C ln.2�

p
det A/

i
:

4.91. Let �1; �2 be the eigenvalues of A and let P be the invertible matrix such that
A D PJAP�1. We have that

eAx D

8̂
ˆ̂̂<
ˆ̂̂̂
:

P

 
e�1x 0

0 e�2x

!
P�1 if JA D

 
�1 0

0 �2

!

P

 
e�x xe�x

0 e�x

!
P�1 if JA D

 
� 1

0 �

!
:

We are going to use in our calculations the following integral formulae which
can be proved by direct computations.

If � 2 C and ˛ > 0, then:

Z 1

�1
e�˛x2C�xdx D

r
�

˛
e

�2

4˛ and
Z 1

�1
xe�˛x2C�xdx D

r
�

˛

�

2˛
e

�2

4˛ :
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If JA D
�

�1 0

0 �2

�
we have that

Z 1

�1
eAxe�˛x2

dx D P

�Z 1

�1
eJAxe�˛x2

dx

�
P�1

D P

�Z 1

�1

�
e�1x 0

0 e�2x

�
e�˛x2

dx

�
P�1

D P

 R1
�1 e�˛x2C�1xdx 0

0
R1

�1 e�˛x2C�2xdx

!
P�1

D
r

�

˛
P

0
@e

�2
1

4˛ 0

0 e
�2

2
4˛

1
AP�1

D
r

�

˛
e

A2

4˛ :

If JA D
�

� 1

0 �

�
, then

Z 1

�1
eAxe�˛x2

dx D P

�Z 1

�1
eJAxe�˛x2

dx

�
P�1

D P

�Z 1

�1

�
e�x xe�x

0 e�x

�
e�˛x2

dx

�
P�1

D P

 R1
�1 e�˛x2C�xdx

R1
�1 xe�˛x2C�xdx

0
R1

�1 e�˛x2C�xdx

!
P�1

D
r

�

˛
P

 
e

�2

4˛
�
2˛

e
�2

4˛

0 e
�2

4˛

!
P�1

D
r

�

˛
e

A2

4˛ :

4.92. Solution 1. Replacing A by iA in problem 4.91 we have that

Z 1

�1
eiAxe�˛x2

dx D
r

�

˛
e� A2

4˛ ;



4.9 Solutions 271

and it follows, since eiAx D cos.Ax/ C i sin.Ax/, that

Z 1

�1
.cos.Ax/ C i sin.Ax// e�˛x2

dx D
r

�

˛
e� A2

4˛ :

Identifying the real and the imaginary parts in the previous formula the problem
is solved.

Solution 2. Use a technique similar to the method in the solution of problem 4.91.

4.93. We need the following formulae which can be proved by direct computation.

Three exponential integrals with sine and cosine.

If ˛ is a positive real number and ˇ 2 C with ˛ > j=.ˇ/j, then

(a)
Z 1

0

e�˛x cos.ˇx/dx D ˛

˛2 C ˇ2
;

(b)
Z 1

0

e�˛x sin.ˇx/dx D ˇ

˛2 C ˇ2
;

(c)
Z 1

0

xe�˛x cos.ˇx/dx D ˛2 � ˇ2

.˛2 C ˇ2/2
.

(a) Let �1 and �2 be the eigenvalues of A. Let JA D
�

�1 0

0 �2

�
and let P

be the nonsingular matrix such that A D PJAP�1. This implies that sin.Ax/ D
P sin.JAx/P�1, where sin.JAx/ D

�
sin.�1x/ 0

0 sin.�2x/

�
. It follows that

Z 1

0

sin.Ax/e�˛xdx D P

�Z 1

0

sin.JAx/e�˛xdx

�
P�1

D P

�R1
0

sin.�1x/e�˛xdx 0

0
R1

0
sin.�2x/e�˛xdx

�
P�1

D P

 
�1

�2
1C˛2

0

0 �2

�2
2C˛2

!
P�1

D A.A2 C ˛2I2/�1:
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If JA D
�

� 1

0 �

�
, then sin.JAx/ D

�
sin.�x/ x cos.�x/

0 sin.�x/

�
. We have

Z 1

0

sin.Ax/e�˛xdx D P

�Z 1

0

sin.JAx/e�˛xdx

�
P�1

D P

�R1
0

sin.�x/e�˛xdx
R1

0
x cos.�x/e�˛xdx

0
R1

0
sin.�x/e�˛xdx

�
P�1

D P

 
�

�2C˛2
˛2��2

.˛2C�2/2

0 �
�2C˛2

!
P�1

D A.A2 C ˛2I2/�1:

Part (b) of the problem is solved similarly.

4.94. (a) We need the following integral formulae which can be proved by direct
computation.

Euler–Poisson integrals. Let � > 0. The following formulae hold:

(a)
Z 1

0

e��x2

dx D
p

�

2
p

�
;

(b)
Z 1

0

x2e��x2

dx D
p

�

4�
p

�
;

(c)
Z 1

0

e��xn
dx D �

�
1 C 1

n

�
n

p
�

, where � denotes the Gamma function and

n 2 N.

Let JA be the Jordan canonical form of A and let P be the invertible matrix which

verifies A D PJAP�1. A calculation shows that JA D
�

2 1

0 2

�
, P D

�
1 0

1 1

�
and

P�1 D
�

1 0

�1 1

�
. We have

e�Ax2 D P

 
e�2x2 �x2e�2x2

0 e�2x2

!
P�1
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and it follows that

Z 1

0

e�Ax2

dx D P

 R1
0

e�2x2
dx � R1

0
x2e�2x2

dx
0

R1
0

e�2x2
dx

!
P�1

D
p

�

2
P

 
1p
2

� 1

4
p

2

0 1p
2

!
P�1

D
p

�

2

�
1 0

1 1

� 1p
2

� 1

4
p

2

0 1p
2

!�
1 0

�1 1

�

D
p

�

2

 
5

4
p

2
� 1

4
p

2
1

4
p

2

3

4
p

2

!
:

Observe that if B D
 

5

4
p

2
� 1

4
p

2
1

4
p

2

3

4
p

2

!
, then B2 D A�1.

(b) A D aI2 C bJ, where J D
�

0 1

1 0

�
. It follows that

e�Axn D e�.aI2CbJ/xn D e�axnI2e�bxnJ D e�axn
e�bxnJ :

A calculation shows that e�bxnJ D cosh.bxn/I2 � sinh.bxn/J and it follows that

e�Axn D e�.a�b/xn C e�.aCb/xn

2
I2 � e�.a�b/xn � e�.aCb/xn

2
J:

Now the problem follows by integration and by using part (c) of Euler–Poisson
integrals. Another method for calculating e�Axn

is to use part (a) of problem 4.32.

4.95. We need the following integrals due to Laplace.

Three integrals of Laplace.

(a) The following formulae hold:

Z 1

0

cos ax

1 C x2
dx D �

2
e�jaj and

Z 1

0

x sin ax

1 C x2
dx D �

2
e�jajsign a; a 2 R:

(b) If a 2 R, then

Z 1

0

e�x2

cos 2ax dx D
p

�

2
e�a2

:
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(a) Observe that A D aI2 C bJ, where J D
�

0 1

1 0

�
. It follows that

cos.Ax/ D cos.aI2 C bJ/x D cos.ax/ cos.bxJ/ � sin.ax/ sin.bxJ/:

A calculation shows that cos.bxJ/ D cos.bx/I2 and sin.bxJ/ D sin.bx/J. This
implies that

cos.Ax/ D cos.ax/ cos.bx/I2 � sin.ax/ sin.bx/J

D .cos.a C b/x C cos.a � b/x/
I2

2
� .cos.a � b/x � cos.a C b/x/

J

2

and we have

Z 1

0

cos.Ax/

1 C x2
dx D

�Z 1

0

cos.a C b/x C cos.a � b/x

1 C x2
dx

�
I2

2

�
�Z 1

0

cos.a � b/x � cos.a C b/x

1 C x2
dx

�
J

2

D �

4

�
e�jaCbj C e�ja�bj e�jaCbj � e�ja�bj
e�jaCbj � e�ja�bj e�jaCbj C e�ja�bj

�
:

The challenge integral as well as part (b) of the problem can be solved similarly.

Remark 4.23 If A 2 M2 .R/ the reader may wish to calculate the integrals

Z 1

0

cos.Ax/

1 C x2
dx;

Z 1

0

x sin.Ax/

1 C x2
dx and

Z 1

0

e�x2

cos.Ax/dx

by using Theorems A.2 and A.3.

4.96. Observe that A D aI2 C bJ, where J D
�

0 1

1 0

�
, and use Fresnel’s integrals

Z 1

0

sin x2dx D
Z 1

0

cos x2dx D 1

2

r
�

2
:
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The challenge integral can be calculated by using the Fresnel integral

Z 1

0

cos xndx D �

�
1 C 1

n

�
cos

�

2n
:

We leave the details to the interested reader.

4.97. (a) Let JA be the Jordan canonical form of A and let P be the invertible matrix

such that A D PJAP�1. If JA D
�

�1 0

0 �2

�
, then e�Ax D P

�
e��1x 0

0 e��2x

�
P�1. It

follows that
Z 1

0

e�Axdx D P

�R1
0

e��1xdx 0

0
R1

0
e��2xdx

�
P�1

D P

 
1
�1

0

0 1
�2

!
P�1

D A�1:

If JA D
�

� 1

0 �

�
, then e�Ax D P

�
e��x �xe��x

0 e��x

�
P�1. It follows that

Z 1

0

e�Axdx D P

�R1
0

e��xdx � R1
0

e��xxdx
0

R1
0

e��xdx

�
P�1

D P

�
1
�

� 1
�2

0 1
�

�
P�1

D A�1:

(b) We have, based on part (a), that
Z 1

0

e�Axe˛xdx D
Z 1

0

e�.A�˛I2/xdx D .A � ˛I2/�1:

(c) If JA D
�

�1 0

0 �2

�
, then

Z 1

0

e�Axxndx D P

�R1
0

e��1xxndx 0

0
R1

0
e��2xxndx

�
P�1

D P

0
@

nŠ

�
nC1
1

0

0 nŠ

�
nC1
2

1
AP�1

D nŠA�.nC1/:
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If JA D
�

� 1

0 �

�
, then

Z 1

0

e�Axxndx D P

�R1
0

e��xxndx � R1
0

e��xxnC1dx
0

R1
0

e��xxndx

�
P�1

D P

 
nŠ

�nC1 � .nC1/Š

�nC2

0 nŠ

�nC1

!
P�1

D nŠA�.nC1/:

4.98. (a) Let JA D
�

�1 0

0 �2

�
be the Jordan canonical form of A and let P be the

invertible matrix such that A D PJAP�1. We have

Z 1

0

sin.Ax/

x
dx D P

 R1
0

sin.�1x/

x dx 0

0
R1

0
sin.�2x/

x dx

!
P�1

D P

�
sign.�1/ �

2
0

0 sign.�2/ �
2

�
P�1

D
(

�
2

I2 if �1; �2 > 0

� �
2

I2 if �1; �2 < 0:

We used in the previous calculations Dirichlet’s integral
R1

0
sin.�x/

x dx D sign.�/ �
2

,
� 2 R.

(b) If JA D
�

�1 0

0 �2

�
, then

Z 1

0

sin2.Ax/

x2
dx D P

 R1
0

sin2.�1x/

x2 dx 0

0
R1

0
sin2.�2x/

x2 dx

!
P�1

D P

�
sign.�1/�1

�
2

0

0 sign.�2/�2
�
2

�
P�1

D
(

�
2

A if �1; �2 > 0

� �
2

A if �1; �2 < 0:
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If JA D
�

� 1

0 �

�
, then

Z 1

0

sin2.Ax/

x2
dx D P

 R1
0

sin2.�x/

x2 dx
R1

0
sin.2�x/

x dx

0
R1

0
sin2.�x/

x2 dx

!
P�1

D P

�
sign.�/� �

2
sign.�/ �

2

0 sign.�/� �
2

�
P�1

D
(

�
2

A if � > 0

� �
2

A if � < 0:

We used in our calculations the formula
R1

0
sin2.�x/

x2 dx D sign.�/� �
2

.

4.99. Let �1 and �2 be the distinct eigenvalues of A. The eigenvalues of A C I2 are
the positive real numbers �1 C 1 and �2 C 1 and the eigenvalues of A � I2 are the
negative real numbers �1 � 1 and �2 � 1. We have, based on part (a) of problem
4.98, that

Z 1

0

sin.Ax/ cos x

x
dx D

Z 1

0

sin.Ax/ cos.I2x/

x
dx

D
Z 1

0

sin.A C I2/x C sin.A � I2/x

2x
dx

D 1

2

��

2
I2 �

�
��

2

�
I2

�

D �

2
I2:

4.100. Let �1; �2 be the eigenvalues of A, let JA be the Jordan canonical form of A,
and let P be the invertible matrix such that A D PJAP�1.

If JA D
�

�1 0

0 �2

�
, then

Z 1

0

e�˛Ax � e�ˇAx

x
dx D P

 R1
0

e�˛�1x�e�ˇ�1x

x dx 0

0
R1

0
e�˛�2x�e�ˇ�2x

x dx

!
P�1

D P

 
ln ˇ

˛
0

0 ln ˇ

˛

!
P�1

D
�

ln
ˇ

˛

�
I2:
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If JA D
�

� 1

0 �

�
, then

Z 1

0

e�˛Ax � e�ˇAx

x
dx D P

 R1
0

e�˛�x�e�ˇ�x

x dx
R1

0
�˛xe�˛�xCˇxe�ˇ�x

x dx

0
R1

0
e�˛�x�e�ˇ�x

x dx

!
P�1

D P

 
ln ˇ

˛
0

0 ln ˇ

˛

!
P�1

D
�

ln
ˇ

˛

�
I2:

4.101. (a) Let �1; �2 be the eigenvalues of A, let JA be the Jordan canonical form of
A, and let P be the invertible matrix such that A D PJAP�1.

If JA D
�

�1 0

0 �2

�
, then

Z 1

0

f .˛Ax/ � f .ˇAx/

x
dx D P

�Z 1

0

f .˛JAx/ � f .ˇJAx/

x
dx

�
P�1

D P

 R1
0

f .˛�1x/�f .ˇ�1x/

x dx 0

0
R1

0
f .˛�2x/�f .ˇ�2x/

x dx

!
P�1

D P

 
.f .0/ � f .1// ln ˇ

˛
0

0 .f .0/ � f .1// ln ˇ

˛

!
P�1

D


.f .0/ � f .1// ln

ˇ

˛

�
I2:

If JA D
�

� 1

0 �

�
we have that

f .˛Ax/ � f .ˇAx/ D
�

f .˛�x/ � f .ˇ�x/ ˛xf 0.˛�x/ � ˇxf 0.ˇ�x/

0 f .˛�x/ � f .ˇ�x/

�
:

Thus,

Z 1

0

f .˛Ax/ � f .ˇAx/

x
dx

D P

 R1
0

f .˛�x/�f .ˇ�x/

x dx
R1

0
.˛f 0.˛�x/ � ˇf 0.ˇ�x// dx

0
R1

0
f .˛�x/�f .ˇ�x/

x dx

!
P�1

D P

 
.f .0/ � f .1// ln ˇ

˛
0

0 .f .0/ � f .1// ln ˇ

˛

!
P�1

D


.f .0/ � f .1// ln

ˇ

˛

�
I2:
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(b) Let f W Œ0; 1/ ! R be the function defined by f .x/ D sin2 x
x2 if x ¤ 0 and

f .0/ D 1. Observe that

sin4.Ax/

x3
D

sin2.Ax/

x2 � sin2.2Ax/

4x2

x
D f .Ax/ � f .2Ax/

x
A2:

This implies, based on part (a), that

Z 1

0

sin4.Ax/

x3
dx D A2 ln 2:

To calculate the second integral we let g W Œ0; 1/ ! R be the function g.x/ D
sin x

x if x ¤ 0 and g.0/ D 1. We have

sin3.Ax/

x2
D g.Ax/ � g.3Ax/

x
� 3A

4
:

It follows, based on part (a), that

Z 1

0

sin3.Ax/

x2
dx D 3 ln 3

4
A:

(c) Let f W Œ0; 1/ ! R be the function f .x/ D 1�e�x

x if x ¤ 0 and f .0/ D 1. A
calculation shows that

�
I2 � e�Ax

x

�2

D 2A
f .Ax/ � f .2Ax/

x
;

which implies, based on part (a), that
Z 1

0

�
I2 � e�Ax

x

�2

dx D .2 ln 2/A.

We mention that parts (b) and (c) of this problem were inspired by the sine
Frullani integrals

Z 1

0

sin4 x

x3
dx D ln 2 and

Z 1

0

sin3 x

x2
dx D 3 ln 3

4
;

the first of which being due to Mircea Ivan, and the quadratic Frullani integral due
to Furdui and Sîntămărian [33]

Z 1

0

�
1 � e�x

x

�2

dx D 2 ln 2:



280 4 Functions of matrices. Matrix calculus

4.102. Let �1; �2 be the eigenvalues of A, let JA D
�

�1 0

0 �2

�
be the Jordan canonical

form of A, and let P be the invertible matrix such that A D PJAP�1. Then

�
e�Ax � e�Ay

x � y

�2

D P

0
B@
�

e��1x�e��1y

x�y

�2

0

0
�

e��2x�e��2y

x�y

�2

1
CAP�1;

which implies, based on Lemma A.4, that

Z 1

0

Z 1

0

�
e�Ax � e�Ay

x � y

�2

dxdy

D P

0
B@
R1

0

R1
0

�
e��1x�e��1y

x�y

�2

dxdy 0

0
R1

0

R1
0

�
e��2x�e��2y

x�y

�2

dxdy

1
CAP�1

D P

�
ln 4 0

0 ln 4

�
P�1

D .ln 4/I2:



Chapter 5
Applications of matrices to plane geometry

Everyone wants to teach and nobody to learn.
Niels Abel (1802–1829)

5.1 Linear transformations

Definition 5.1 Let A 2 M2 .R/. The function fA W R2 ! R
2, defined by

fA.x; y/ D .x0; y0/; where

�
x0
y0
�

D A

�
x
y

�
;

is called a linear transformation defined by the matrix A (or linear map defined by
A) of R2.

The matrix A is called the matrix associated with the linear transformation fA, in
the canonical basis, and is denoted by Af .

Proposition 5.1 The linear transformation fA W R2 ! R
2, fA.x; y/ D .x0; y0/, where

�
x0
y0
�

D A

�
x
y

�
; A 2 M2 .R/ ;

has the following properties:

(a) fA..x1; y1/ C .x2; y2// D fA.x1; y1/ C fA.x2; y2/, 8 .x1; y1/; .x2; y2/ 2 R
2

(b) fA.˛.x1; y1// D ˛fA.x1; y1/, 8˛ 2 R, 8 .x1; y1/ 2 R
2,

where the operations with respect to which R
2 is a real vector space are those

defined for one line matrices or (one column matrices) as in Remark 1.3.

Proof (a) We have,

A


�
x1

y1

�
C
�

x2

y2

��
D A

�
x1 C x2

y1 C y2

�
D A

�
x1

y1

�
C A

�
x2

y2

�
;

and part (a) follows.
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(b) On the other hand,

A˛

�
x
y

�
D A

�
˛x
˛y

�
D ˛A

�
x
y

�
;

and the proposition is proved. �

Remark 5.1 We mention that the properties in parts (a) and (b) of Proposition 5.1
are equivalent to

fA.˛.x1; y1/ C ˇ.x2; y2// D ˛fA.x1; y1/ C ˇfA.x2; y2/;

8˛; ˇ 2 R and 8 .x1; y1/; .x2; y2/ 2 R
2.

We also have the following properties:

� the zero vector is preserved: fA.0; 0/ D .0; 0/;

� fA.�.x; y// D �fA.x; y/;

� the identity map: fI2 .x; y/ D .x; y/ or fI2 D IR2 .

Definition 5.2 The kernel and the image of a linear transformation. The set

KerfA D ˚
.x; y/ 2 R

2 W fA.x; y/ D .0; 0/
�

is called the kernel of fA and the set

ImfA D ˚
fA.x; y/ W .x; y/ 2 R

2
�

is called the image of fA.

Thus, the kernel of a linear transformation consists of all points (vectors) in R
2

which are mapped by fA to zero (the zero vector in R
2) and the image of fA consists

of all points (vectors) in R
2 which were mapped from points (vectors) in R

2.
It should be mentioned that the kernel and the image of a linear transformation

are analogous to the zeros and the range of a function.

Lemma 5.1 The following properties hold:

(a) The kernel of fA as a vector subspace of R2.
8˛; ˇ 2 R and 8.x1; y1/; .x2; y2/ 2 KerfA we have ˛.x1; y1/Cˇ.x2; y2/ 2 KerfAI

(b) The image of fA as a vector subspace of R2.
8˛; ˇ 2 R and 8.x0; y0/; .x00; y00/ 2 ImfA we have ˛.x0; y0/ C ˇ.x00; y00/ 2 ImfA.

Proof The proof of the lemma is left, as an exercise, to the interested reader. �

Theorem 5.1 If A; B 2 M2 .R/ and fA; fB are the linear transformations deter-
mined by A and B, then the function fA ı fB W R2 ! R

2 is a linear transformation
having the associated matrix AB.
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Proof If fB.x; y/ D .x0; y0/ and fA.x0; y0/ D .x00; y00/, then

fA ı fB.x; y/ D fA.fB.x; y// D fA.x0; y0/ D .x00; y00/;

where

�
x00
y00
�

D A

�
x0
y0
�

and

�
x0
y0
�

D B

�
x
y

�
:

It follows that

�
x00
y00
�

D AB

�
x
y

�
;

so the matrix of the linear transformation fA ı fB is AB. �

5.2 The matrix of special transformations

In this section and in what follows, to simplify the calculations, we identify the point

.x; y/ 2 R
2 by the vector

�
x
y

�
.

Theorem 5.2 The matrix of a linear transformation.

If the linear transformation fA W R
2 ! R

2, fA

�
x
y

�
D A

�
x
y

�
, where A 2

M2 .R/, verifies

fA

�
1

0

�
D
�

a
b

�
and fA

�
0

1

�
D
�

c
d

�
; then A D

�
a c
b d

�
:

Proof Let A D
�

m n
p q

�
. Since

fA

�
1

0

�
D
�

m n
p q

��
1

0

�
D
�

m
p

�
D
�

a
b

�
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and

fA

�
0

1

�
D
�

m n
p q

��
0

1

�
D
�

n
q

�
D
�

c
d

�
;

we get that A D
�

a c
b d

�
and the theorem is proved. �

Using Theorem 5.2 we can determine the matrices associated with various linear
transformations.

The matrix of the reflection through the origin

We wish to determine the matrix of the reflection of a point through the
origin. This is the linear transformation which sends the point M.x; y/ to the point
M0.�x; �y/, the symmetric of M about the origin.

Let fA W R2 ! R
2, fA

�
x
y

�
D A

�
x
y

�
, where A D

�
a c
b d

�
.

Since

fA

�
1

0

�
D
��1

0

�
and fA

�
0

1

�
D
�

0

�1

�
;

we have, based on Theorem 5.2, that A D
��1 0

0 �1

�
is the matrix of the reflection

through the origin.

The matrix of the reflection across the x-axis

Now we determine the reflection across the x-axis. This is the linear transforma-
tion which sends the point M.x; y/ to the point M0.x; �y/ which is the symmetric of
M about the x-axis.

Since

fA

�
1

0

�
D
�

1

0

�
and fA

�
0

1

�
D
�

0

�1

�
;

we have, based on Theorem 5.2, that A D
�

1 0

0 �1

�
is the matrix of the reflection

across the x-axis.

The matrix of the reflection across the y-axis

As in the previous calculations we have that the matrix of the reflection across

the y-axis is given by A D
��1 0

0 1

�
.

The rotation matrix of angle ˛ and center the origin
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Let ˛ 2 .0; 2�/. The rotation of angle ˛ and center the origin O is the
transformation which preserves the origin (it sends O to O) and sends the point
M to the point M0 such that the segments ŒOM� and ŒOM0� have the same lengths,
i.e., OM D OM0 and 1MOM0 and b̨ are equal and have the same orientation (if ˛ > 0

the rotation is counterclockwise, if ˛ < 0 the rotation is clockwise).

Let fA W R2 ! R
2, fA

�
x
y

�
D A

�
x
y

�
, where A D

�
a c
b d

�
and ˛ � 0.

We have x0 D cos.� C ˛/ D cos � cos ˛ � sin � sin ˛, cos � D x, sin � D y.
It follows that x0 D x cos ˛ � y sin ˛. Similarly, y0 D sin.� C ˛/ D sin � cos ˛ C
cos � sin ˛, and we have that y0 D x sin ˛ C y cos ˛.

Since

fA

�
1

0

�
D
�

cos ˛

sin ˛

�
and fA

�
0

1

�
D
�� sin ˛

cos ˛

�
;

we have, based on Theorem 5.2, that A D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�
is the matrix of the

rotation of angle ˛ and center the origin.

We have denoted this matrix (see problem 1.61) by R˛ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�
.

Any rotation of angle ˛ is a bijective transformation and its inverse is the rotation
of angle �˛.

The set of all rotations around the origin together with the composition (of
transformations) is an abelian group which is called the group of rotations.

The rotation around an arbitrary point .x0; y0/ has the equations

(
x0 D x0 C .x � x0/ cos ˛ � .y � y0/ sin ˛

y0 D y0 C .x � x0/ sin ˛ C .y � y0/ cos ˛:

The matrix of the uniform scaling of factor k

Let k 2 R
�. The uniform scaling of factor k is the linear transformation

(geometrical transformation) which associates to the point M, the point M0 such

that
��!
OM0 D k

��!
OM, where O is the origin of the coordinate system. We immediately

obtain that the image of M.x; y/ is the point M0.kx; ky/.
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Let fA W R2 ! R
2, fA

�
x
y

�
D A

�
x
y

�
, where A D

�
a c
b d

�
. Since

fA

�
1

0

�
D
�

k
0

�
and fA

�
0

1

�
D
�

0

k

�
;

we have, based on Theorem 5.2, that A D
�

k 0

0 k

�
is the matrix of uniform scaling

of factor k.

Remark 5.2 When k D �1 the uniform scaling becomes the reflection through the
origin.

We mention that in geometry the uniform scaling of factor k > 0 is also known
as the homothety of center the origin and ratio k. We denote the uniform scaling of
factor k by �0;k and we have �0;k.x; y/ D .kx; ky/.

The homothety of center .x0; y0/ and ratio k denoted by �.x0;y0/;k is defined by

�.x0;y0/;k.x; y/ D .x0 C k.x � x0/; y0 C k.y � y0//:

The matrix of the orthogonal projection of vectors from R
2 onto the x-axis

Let fA W R2 ! R
2, fA

�
x
y

�
D A

�
x
y

�
, where A D

�
a c
b d

�
.

Since the projection of M.x; y/ onto the x-axis is the point M0.x; 0/, we get that

fA

�
1

0

�
D
�

1

0

�
and fA

�
0

1

�
D
�

0

0

�
;

and we have, based on Theorem 5.2, that A D
�

1 0

0 0

�
is the matrix of the orthogonal

projection of vectors from R
2 onto the x-axis.

The matrix of the orthogonal projection of vectors from R
2 onto the x-axis

Similarly one has that A D
�

0 0

0 1

�
is the matrix of the orthogonal projection of

vectors from R
2 onto the y-axis.

5.3 Projections and reflections of the plane

Definition 5.3 A linear transformation P W R2 ! R
2 such that P ı P D P is called

the projection of the plane.
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Remark 5.3 A projection is an idempotent transformation, i.e., P ı P ı � � � ı P„ ƒ‚ …
n times

D P,

for any integer n � 2.

Theorem 5.3 If P W R
2 ! R

2 is a projection defined by the matrix A, then the
matrix A is idempotent, i.e., A2 D A.

Proof We have, based on Theorem 5.1, that APıP D APAP D A2
P, and it follows that

A2 D A. �

To determine all the projections of the plane we need to determine first their
associated matrices, i.e., the idempotent matrices.

Theorem 5.4 Idempotent real matrices.

The matrix A D
�

a b
c d

�
2 M2 .R/ is idempotent if and only if it has one of

the following forms:

(1) A1 D O2;

(2) A2 D I2;

(3) A3 D
�

0 0

c 1

�
, c 2 R;

(4) A4 D
�

1 0

c 0

�
, c 2 R;

(5) A5 D
 

a b
a�a2

b 1 � a

!
, a 2 R, b 2 R

�.

Proof See the solution of problem 1.14. �

The next theorem gives the geometrical interpretation of all the projections of the
plane.

Theorem 5.5 The projections of the plane.

The projections of the plane are the linear maps P1; P2; P3; P4; P5 W R2 ! R
2

defined by:

(1) P1.x; y/ D .0; 0/ (the zero projection, all points of the plane are projected
to the origin);

(2) P2.x; y/ D .x; y/ (the identity);

(continued)
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Theorem 5.5 (continued)

(3) P3.x; y/ D .0; cx C y/ (the oblique projection onto the y-axis on the
direction of the line cx C y D 0);

The point M.x; y/ is projected onto the y-axis. The lines which connect
a point .x; y/ with its image P.x; y/ D .x0; y0/ have the same slope

m D y0 � y

x0 � x
D cx C y � y

�x
D �c .constant/:

In conclusion, P3 is the oblique projection onto the y-axis on the
direction of the line cx C y D 0.

(4) P4.x; y/ D .x; cx/ (the vertical projection onto the line y D cx);
We have ImP4 D f.x; cx/ W x 2 Rg, i.e., the image of this transforma-

tion is the line y D cx. Since the points .x; y/ and .x; cx/ are located on
the same vertical line, we get that P4 is the vertical projection onto the
line y D cx.

(5) P5.x; y/ D
�

ax C by; a�a2

b x C .1 � a/y
�

(the oblique projection onto the

line y D 1�a
b x on the direction of the line ax C by D 0);

We have

ImP5 D
	�

t;
1 � a

b
t

�
W t 2 R



;

and it follows that the image of this transformation is the line of equation
y D 1�a

b x.
The lines which connect a point M.x; y/ with its image P5.x; y/ D

M0.x0; y0/ have the slope

m D y0 � y

x0 � x
D �a

b
.constant/:

In conclusion P5 is the oblique projection onto the line y D 1�a
b x on the

direction of the line ax C by D 0.

Proof This follows from Theorem 5.4.

Theorem 5.6 The fundamental properties of projections.

Let A 2 M2 .R/, A2 D A, A ¤ O2, A ¤ I2 and let

PA W R2 ! R
2; PA

�
x
y

�
D A

�
x
y

�
:

(continued)
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Theorem 5.6 (continued)

Then:

(a) KerPA is a line;

(b) ImPA is a line;

(c) PA projects the point .x; y/ onto the line ImPA on the direction of the line
KerPA;

(d) any point .x; y/ 2 R
2 can be written uniquely as the sum of a point in

KerPA and another point in ImPA (this means that R2 is the direct sum of
the vector subspaces KerPA and ImPA, i.e., R2 D KerPA ˚ ImPA);

(e) the Jordan canonical form of an idempotent matrix A, with A ¤ O2 and

A ¤ I2, is given by JA D
�

1 0

0 0

�
.

Proof From the conditions of the theorem we see that the rank of A is 1, so the
system AX D 0 has a nontrivial solution X0 ¤ 0 and any other solution of the
system is of the following form X D ˛X0, ˛ 2 R.

(a) KerPA D f.x; y/ W xy0 D yx0g, where X0 D
�

x0

y0

�
.

(b) Y 2 ImPA , there exists X 2 R
2 such that AX D Y , i.e., the nonhomogeneous

system AX D Y is compatible. This is equivalent to saying that rank.A j Y/ D
rank.A/ D 1 and this implies that, if A1 is a nonzero column of A, then Y D ˛A1,

˛ 2 R. Thus, for A1 D
�

a
c

�
we have that ImPA D f.x; y/ W cx D ayg.

(c) Clearly PA projects the points of the plane onto the line ImPA. We only need
to prove that the vector which connects a point on the plane with its image is
parallel to the line KerPA, i.e., the vector AX � X is proportional to the vector
X0, with AX0 D 0. However, A.AX � X/ D A2X � AX D .A2 � A/X D 0, which
implies that the vector X1 D AX � X is a solution of the system AX1 D 0, so
X1 2 KerPA.

(d) Observe that any point .x; y/ 2 R
2 can be written uniquely as .x; y/ D .x; y/ �

PA.x; y/ C PA.x; y/, where .x; y/ � PA.x; y/ 2 KerPA and PA.x; y/ 2 ImPA.

The theorem is proved. �

Definition 5.4 A linear transformation S W R2 ! R
2 such that S ı S D IR2 (this

implies that S is bijective and S�1 D S) is called an involution or a reflection of the
plane.
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Theorem 5.7 If S W R
2 ! R

2 is an involution defined by the matrix A, then the
matrix A is involutory, i.e., A2 D I2.

Proof We have, based on Theorem 5.1, that ASıS D ASAS D A2
S, and it follows that

A2 D I2. �

To determine all the reflections of the plane we need to determine first their
matrices, i.e., the real involutory matrices.

Theorem 5.8 Involutory real matrices.

The matrix B D
�

a b
c d

�
2 M2 .R/ is involutory if and only if B has one of the

following forms:

(1) B1 D �I2;

(2) B2 D I2;

(3) B3 D
��1 0

c 1

�
, c 2 R;

(4) B4 D
�

1 0

c �1

�
, c 2 R;

(5) A5 D
 

a b
1�a2

b �a

!
, a 2 R, b 2 R

�.

Proof See the solution of problem 1.12. �

Like in the case of projections, the geometrical interpretations of all the
reflections of the plane are given by the next theorem.

Theorem 5.9 The reflections of the plane.

The reflections of the plane are the linear maps S1; S2; S3; S4; S5 W R2 ! R
2

defined by:

(1) S1.x; y/ D .�x; �y/ (the reflections through the origin);

(2) S2.x; y/ D .x; y/ (the identity map);

(3) S3.x; y/ D .�x; cx C y/ (the reflection across the y-axis on the direction
of the line cx C 2y D 0);

(4) S4.x; y/ D .x; cx � y/ (the reflection across the line cx � 2y D 0 on the
direction of the y-axis);

(continued)
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Theorem 5.9 (continued)

(5) S5.x; y/ D
�

ax C by;
1 � a2

b
x � ay

�
(the reflection across the line

.a � 1/x C by D 0 on the direction of the line .a C 1/x C by D 0).

Proof This follows from Theorem 5.8. �

Theorem 5.10 The fundamental properties of reflections.

Let A 2 M2 .R/, A2 D I2, A ¤ ˙I2, and let

SA W R2 ! R
2; SA

�
x
y

�
D A

�
x
y

�
:

Then:

(a) the set InvSA D ˚
.x; y/ 2 R

2 W SA.x; y/ D .�x; �y/
�

is a line;

(b) the set of fixed points FixSA D ˚
.x; y/ 2 R

2 W SA.x; y/ D .x; y/
�

is a line;

(c) for any X D
�

x
y

�
there exist and are unique the vectors X1; X2 2 R

2 with

AX1 D �X1, AX2 D X2 and X D X1 C X2;

(d) SA is the reflection across the line FixSA, on the direction of the line InvSA;

(e) any point .x; y/ 2 R
2 can be written uniquely as the sum of a point in

FixSA and a point in InvSA (this means that R2 is the direct sum of the
vector subspaces FixSA and InvSA, i.e., R2 D FixSA ˚ InvSA);

(f) the Jordan canonical form of an involutory matrix A, with A ¤ ˙I2, is

given by JA D
�

1 0

0 �1

�
.

Proof (a) The matrix AC I2 has rank 1, so the system AX D �X , .AC I2/X D O2

has nontrivial solutions, all of them being of the form ˛X0, X0 2 R
2, X0 ¤ 0 and

˛ 2 R.
(b) The matrix A � I2 has rank 1, so the system AX D X , .A � I2/X D O2 has

nontrivial solutions, all of them being of the form ˇX1, X1 2 R
2, X1 ¤ 0 and ˇ 2 R.

(c) If X1 and X2 would exist, then AX D AX1CAX2 D �X1CX2 and X D X1CX2,
so X1 D 1

2
.X � AX/ and X2 D 1

2
.X C AX/, which verify the conditions AX1 D �X1

and AX2 D X2.
(d) We prove that the line which connects a point with its image has a fixed

direction. We have A.AX � X/ D A2X � AX D X � AX, which implies the vector
X1 D AX � X verifies the equality AX1 D �X1, so X1 2 InvSA. On the other hand,
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A
�

1
2
.AX C X/

� D 1
2
.A2X C AX/ D 1

2
.X C AX/, so X2 D 1

2
.X C AX/ is a fixed

vector, i.e., AX2 D X2.
(e) Any vector v D .x; y/ 2 R

2 can be written uniquely as v D 1
2

.v C SA.v// C
1
2

.v � SA.v//, where 1
2

.v C SA.v// 2 FixSA and 1
2

.v � SA.v// 2 InvSA. �

Now, we establish a connection between projections and involutions. Intuitively,
we have the formula

P.x; y/ D 1

2
..x; y/ C S.x; y// ; .x; y/ 2 R

2;

which can be viewed geometrically as the point P.x; y/ is the midpoint of the
segment determined by .x; y/ and S.x; y/.

Theorem 5.11 The link between projections and involutions.

If P W R
2 ! R

2 is a projection, then S D 2P � I is an involution and
conversely, if S W R2 ! R

2 is an involution, then P D 1
2
.I CS/ is a projection,

where I W R2 ! R
2 is the identity map.

Proof Let A 2 M2 .R/ be the matrix of P and let B 2 M2 .R/ be the matrix of S.
Then, A2 D A and B2 D I2. If B D 2A � I2, then

B2 D 4A2 � 4A C I2 D 4A � 4A C I2 D I2:

On the other hand, if A D 1

2
.I2 C B/, then

A2 D 1

4
.I2 C 2B C B2/ D 1

4
.I2 C 2B C I2/ D 1

2
.I2 C B/ D A;

and the theorem is proved. �

5.4 Gems on projections and reflections

In this section we collect gems and miscellaneous results about the projections and
the reflections of the plane.

Theorem 5.12 Let D1 W ax C by D 0 and D2 W cx C dy D 0, a2 C b2 ¤ 0,
c2 C d2 ¤ 0 and ad � bc ¤ 0 be two lines passing through the origin.

(continued)
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Theorem 5.12 (continued)

(a) The projection P onto the line D1 on the direction of the line D2 is the
linear transformation defined by P W R2 ! R

2

P.x; y/ D
��bcx � bdy

ad � bc
;

acx C ady

ad � bc

�
:

(b) The reflection S across the line D1 on the direction of the line D2 is the
linear transformation defined by S W R2 ! R

2

S.x; y/ D
��.ad C bc/x � 2bdy

ad � bc
;

2acx C .ad C bc/y

ad � bc

�
:

Proof For any .x; y/ 2 R
2 there exist and are unique .x1; y1/ 2 D1 and .x2; y2/ 2 D2

such that .x; y/ D .x1; y1/ C .x2; y2/. Since ImP D FixS D D1 and KerP D InvS D
D2, we get that P.x; y/ D .x1; y1/ and S.x; y/ D .x1; y1/ � .x2; y2/.

Solving the system 8̂
ˆ̂̂<
ˆ̂̂̂:

ax1 C by1 D 0

cx2 C dy2 D 0

x1 C x2 D x

y1 C y2 D y;

we get that

x1 D �bcx � bdy

ad � bc
; y1 D acx C ady

ad � bc
; x2 D adx C bdy

ad � bc
; y2 D �acx � bcy

ad � bc

and it follows that

P.x; y/ D
��bcx � bdy

ad � bc
;

acx C ady

ad � bc

�

and

S.x; y/ D
��.ad C bc/x � 2bdy

ad � bc
;

2acx C .ad C bc/y

ad � bc

�
:

The matrices of P and S are

MP D 1

ad � bc

��bc �bd
ac ad

�
and MS D 1

ad � bc

��.ad C bc/ �2bd
2ac ad C bc

�
:

The theorem is proved. �
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Lemma 5.2 Let D1, D2, D3, D4 be four lines passing through the origin such
that D1 ? D3 and D2 ? D4. If the matrix of the projection onto the line D1

on the direction of line D2 is M, then the matrix of the projection onto the line
D4 on the direction of line D3 is MT.

Proof Let D1 W ax C by D 0, D2 W cx C dy D 0, D3 W �bx C ay D 0 and
D4 W �dxCcy D 0 be the lines through the origin. We have, based on Theorem 5.12,
that the matrix of the projection onto the line D1 on the direction of D2 is

M D 1

ad � bc

��bc �bd
ac ad

�

and the matrix of the projection onto the line D4 on the direction of D3 is obtained
from matrix M via the substitutions a ! �d, b ! c, c ! �b, d ! a and we get
that

1

�ad C bc

�
bc �ac
bd �ad

�
D 1

ad � bc

��bc ac
�bd ad

�
D MT :

Similarly one can prove that if A is the matrix of the reflection across the line D1

on the direction of D2, then AT is the matrix of the reflection across the line D4 on
the direction of D3. �

Lemma 5.3 When is a linear map an orthogonal projection?

Let A 2 M2 .R/, A ¤ O2, A ¤ I2 and let fA W R
2 ! R

2 be the linear
transformation defined by the matrix A. Then, fA is an orthogonal projection
if and only if AAT D A.

Proof Since AAT D A we get that AAT D AT which implies that A D AT . Thus,
A2 D A which shows that A is an idempotent matrix and fA is a projection. We have,
based on Lemma 5.2, that the projection on line D1 on the direction of line D2 is
orthogonal if D1 ? D2, so D3 
 D2 and D4 
 D1. It follows that the projection fA
is orthogonal if and only if A D AT . �

Nota bene. The matrix of an orthogonal projection P W R2 ! R
2 is given by

(see problem 5.8)

(continued)
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MP D
�

a b
b 1 � a

�
; a; b 2 R with a2 C b2 D a;

and P.x; y/ D .ax C by; bx C .1 � a/y/, 8 .x; y/ 2 R
2.

Observe this is not an orthogonal matrix, i.e., the matrix corresponding to
an orthogonal projection is symmetric and not orthogonal!

Lemma 5.4 Projections and their matrices.

Let A 2 M2 .R/ be a matrix having the eigenvalues �1 D 1 and �2 D 0 and

the corresponding eigenvectors X1 D
�

a
b

�
and X2 D

�
c
d

�
. Then, A is the

matrix of the projection onto the line D1 W bx � ay D 0 on the direction of the
line D2 W dx � cy D 0.

Proof The Jordan canonical form of A is JA D
�

1 0

0 0

�
and the invertible matrix P

is given by P D .X1 j X2/ D
�

a c
b d

�
. A calculation shows that

A D PJAP�1 D 1

ad � bc

�
ad �ac
bd �bc

�
:

We obtain, by replacing a ! b, b ! �a, c ! d, and d ! �c in the formula
of matrix MP given at the end of the proof of Theorem 5.12, the matrix A and this
proves the lemma. �

Lemma 5.5 Reflections and their matrices.

Let B 2 M2 .R/ be a matrix having the eigenvalues �1 D 1 and �2 D �1

and the corresponding eigenvectors X1 D
�

a
b

�
and X2 D

�
c
d

�
. Then, B is the

matrix of the reflection across the line D1 W bx � ay D 0 on the direction of
the line D2 W dx � cy D 0.

Proof The Jordan canonical form of B is JB D
�

1 0

0 �1

�
and the invertible matrix

Q is given by Q D .X1 j X2/ D
�

a c
b d

�
with Q�1 D 1

ad � bc

�
d �c

�b a

�
.
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A calculation shows that

B D QJBQ�1 D 1

ad � bc

�
ad C bc �2ac

2bd �.ad C bc/

�
:

We obtain by replacing in the formula of matrix MS given at the end of the proof of
Theorem 5.12 by a ! b, b ! �a, c ! d, and d ! �c the matrix B and this proves
the lemma. �

5.5 The isometries of the plane

Definition 5.5 A linear transformation T W R2 ! R
2 with T.x; y/ D .x0; y0/, such

that x2 C y2 D x02 C y02, for all .x; y/ 2 R
2, is called a linear isometry of the plane.

Lemma 5.6 An isometry preserves the inner product, the distance between points
and the angle between vectors in R

2.

Proof If T.x1; y1/ D .x0
1; y0

1/ and T.x2; y2/ D .x0
2; y0

2/, we need to prove that

x1x2 C y1y2 D x0
1x0

2 C y0
1y0

2:

We have

T.x1 C x2; y1 C y2/ D .x0
1 C x0

2; y0
1 C y0

2/

and .x1 C x2/2 C .y1 C y2/2 D .x0
1 C x0

2/2 C .y0
1 C y0

2/2.
This implies that

x2
1 C 2x1x2 C x2

2 C y2
1 C 2y1y2 C y2

2 D x02
1 C 2x0

1x0
2 C x02

2 C y02
1 C 2y0

1y0
2 C y02

2 :

Since x2
1Cy2

1 D x02
1 Cy02

1 and x2
2Cy2

2 D x02
2 Cy02

2 we get that x1x2Cy1y2 D x0
1x0

2Cy0
1y0

2.
If ˛ D † ..x1; y1/; .x2; y2// and ˛0 D † .T.x1; y1/; T.x2; y2//, then

cos ˛ D x1x2 C y1y2q
x2

1 C y2
1

q
x2

2 C y2
2

and cos ˛0 D x0
1x0

2 C y0
1y0

2q
x02

1 C y02
1

q
x02

2 C y02
2

which are equal based on the first part of the theorem.
To prove that d..x1; y1/; .x2; y2// D d .T.x1; y1/; T.x2; y2// we need to show that

.x1 � x2/2 C .y1 � y2/2 D .x0
1 � x0

2/2 C .y0
1 � y0

2/2, which reduces to proving that
x1x2 C y1y2 D x0

1x0
2 C y0

1y0
2. �

Definition 5.6 A function F W R2 ! R
2, not necessarily a linear transformation,

which preserves the distance between points is called an isometry.
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Theorem 5.13 A linear transformation T W R2 ! R
2 is an isometry if and

only if its associated matrix MT has one of the following forms

MT D
�

cos t � sin t
sin t cos t

�
or MT D

�
cos t sin t
sin t � cos t

�
:

Proof Let MT D
�

a b
c d

�
. We have T.x; y/ D .x0; y0/ D .ax C by; cx C dy/ and

x2 C y2 D .ax C by/2 C .cx C dy/2; 8 .x; y/ 2 R
2:

This implies by identifying the coefficients of x2; y2, and xy that a2 C c2 D 1,
b2 C d2 D 1, and ab C cd D 0. Since a2 C c2 D 1 and b2 C d2 D 1 we get that there
exist t; s 2 R such that cos t D a, sin t D c and cos s D d, sin s D b. The equality
ab C cd D 0 implies that

cos t sin s C sin t cos s D 0 , sin.s C t/ D 0

and it follows that t C s 2 fk� W k 2 Zg.

When s C t D 0 we get s D �t and this implies that MT1 D
�

cos t � sin t
sin t cos t

�
.

When s C t D � we get s D � � t and this implies that MT2 D
�

cos t sin t
sin t � cos t

�
.

The theorem is proved. �

Remark 5.4 We mention that the matrix

MT1 D
�

cos t � sin t
sin t cos t

�

corresponds to a counterclockwise rotation of angle t, while the matrix

MT2 D
�

cos t sin t
sin t � cos t

�

corresponds to the composition of a rotation and a reflection, i.e., MT2 D MT1MS,

where MS D
�

1 0

0 �1

�
is the matrix of the reflection across the x-axis.

Definition 5.7 Let .x0; y0/ 2 R
2 be fixed. A function T.x0;y0/ W R2 ! R

2 defined by
T.x0;y0/.x; y/ D .x C x0; y C y0/ is called the translation of vector .x0; y0/.

Thus, the equations of the translation are
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T.x0;y0/.x; y/ D .x0; y0/ ,
(

x0 D x0 C x

y0 D y0 C y:

The origin .0; 0/ is translated to the point .x0; y0/.
The composition of two translations is a translation

T.x0;y0/ ı T.x0

0;y0

0/ D T.x0Cx0

0;y0Cy0

0/

and the inverse of a translation is also a translation T�1
.x0;y0/ D T.�x0;�y0/.

We mention that a translation preserves the distances between two points, the
angles between lines, transforms parallel lines to parallel lines, and sends circles to
circles.

The set of all translations together with the composition of applications is a group
which is called the group of translations of the plane.

Definition 5.8 If f W R
2 ! R

2 is a linear transformation and T W R
2 ! R

2 is
a translation, then the functions g1; g2 W R

2 ! R
2, defined by g1 D T ı f and

g2 D f ı T are called affine transformations.

Thus, the affine transformations are translations composed to linear transforma-
tions.

If A D
�

a b
c d

�
, is the matrix associated with f and .x0; y0/ is the vector of the

translation, then g.x; y/ D .x0; y0/ where

�
x0
y0
�

D A

�
x
y

�
C
�

x0

y0

�
;

which implies that g.x; y/ D .ax C by C x0; cx C dy C y0/, .x; y/ 2 R
2, and

(
x0 D ax C by C x0

y0 D cx C dy C y0;

are the equations of the affine transformation.

The set of all affine applications together with the composition of functions is a
group which is called the group of affine transformations.
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5.6 Systems of coordinates on the plane

The standard coordinate cartesian system xOy in the plane R2 D f.x; y/ W x; y 2 Rg
consists of two orthogonal lines, the x-axis, Ox D f.x; 0/ W x 2 Rg and the y-axis,
Oy D f.0; y/ W y 2 Rg, which intersect at the origin of the cartesian system O.0; 0/.

By rotating the cartesian system around the origin counterclockwise by an angle
˛ we obtain a new system of coordinates which we denote by x0Oy0. Any point M
on the plane is uniquely determined with respect to the system xOy by the pair of
real numbers .x; y/ and the same point considered with respect to the system x0Oy0
is determined by the pair of real numbers .x0; y0/. These two pairs are related to one
another by the formulae

�
x
y

�
D
�

cos ˛ � sin ˛

sin ˛ cos ˛

��
x0
y0
�

or

�
x0
y0
�

D
�

cos ˛ sin ˛

� sin ˛ cos ˛

��
x
y

�

which allows one to pass from one coordinate system to another via the rotation
matrices R˛ or R�˛ .

By translating the coordinate system x0Oy0, so that the origin O.0; 0/ is translated
to the point O00.x0; y0/, we obtain a new coordinate system x00O00y00 of the plane. We
denote by .x00; y00/ the coordinate of M with respect to the new system x00O00y00, then
we have the formula

�
x00
y00
�

D R�˛

�
x � x0

y � y0

�

or

�
x
y

�
D
�

x0

y0

�
C R˛

�
x00
y00
�

:

Example 5.1 If the coordinate system x00O00y00 is obtained by rotating the cartesian
system xOy counterclockwise by the angle �

6
and then by translating it to the point

O00.1; 2/, then a point M on the plane which has coordinates .x; y/ with respect
to the standard coordinate system and with respect to the new system x00O00y00 has
coordinates .x00; y00/ are given by the formula

�
x00
y00
�

D
 p

3
2

1
2

� 1
2

p
3

2

!�
x � 1

y � 2

�
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or

�
x
y

�
D
�

1

2

�
C
 p

3
2

� 1
2

1
2

p
3

2

!�
x00
y00
�

:

5.7 Problems

5.1 Let Sx be the reflection across the x-axis and Sy be the reflection across the
y-axis. Find the matrix associated with Sx ı Sy.

5.2 Let ABCDEF be a regular hexagon with side length 2 which viewed with
respect to the system xCy has the vertices B and E on Cx respectively Cy. We con-
sider another system x0Fy0 positively oriented, the x0-axis being FA. Determine:

(a) the formula of passing from the system xCy to the system x0Fy0;
(b) the coordinates of vertices C and E with respect to the system x0Fy0.

5.3 What becomes the equation x2 � y2 D 2 when the system xOy is rotated
counterclockwise by an angle of �

4
around the origin?

5.4 Projections. Give the geometrical interpretation of the following linear trans-
formations f W R2 ! R

2:

(a) f .x; y/ D .0; 2x C y/;

(b) f .x; y/ D .x; 2x/;

(c) f .x; y/ D .3x � y; 6x � 2y/.

5.5 Reflections. Give the geometrical interpretation of the following linear transfor-
mations f W R2 ! R

2:

(a) f .x; y/ D .�x; 2x C y/;

(b) f .x; y/ D .x; 2x � y/;

(c) f .x; y/ D .3x � y; 8x � 3y/.

5.6 Find a; b 2 R such that the following matrices are projection matrices and give
the geometrical interpretation of these projections:

(a) M1 D
�

2 a
1 b

�
;

(b) M2 D
�

2 1

a b

�
.

5.7 Prove that the function

f W R2 ! R
2; f .x; y/ D .ax � by C b; bx C ay � a C 1/;
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is a rotation for any .a; b/ ¤ .1; 0/ with a2 C b2 D 1. Determine the center and the
angle of the rotation.

5.8 Orthogonal projections and their matrices.

Prove that the linear transformation P W R2 ! R
2 is an orthogonal projection

onto a line passing through the origin if and only if there exist a; b 2 R such
that a2 C b2 D a and P.x; y/ D .ax C by; bx C .1 � a/y/, 8.x; y/ 2 R

2.

5.9 Orthogonal reflections and their matrices.

Prove that the linear transformation S W R2 ! R
2 is an orthogonal reflection

across a line passing through the origin if and only if there exist a; b 2 R such
that a2 C b2 D 1 and S.x; y/ D .ax C by; bx � ay/, 8.x; y/ 2 R

2.

5.10 When is the sum of two projections a projection?

Let P1; P2 W R2 ! R
2 be two nonzero projections. Prove that if P1 C P2 is a

projection, then P1 C P2 D IR2 .

5.11 When is the sum of two projections an involution?

Let P1; P2 W R2 ! R
2 be two nonzero projections. Prove that if P1 C P2 is an

involution, then P1 C P2 D IR2 .

5.12 Prove that an isometry of the plane is uniquely determined by the images of
three noncollinear points.

5.13 Prove that any isometry of the plane is of the form F D RıT or F D S ıRıT ,
where T is a translation, R is an affine rotation (around a point), and S is a reflection
across a line.

5.14 Prove that the composition of two orthogonal reflections is a rotation.

5.15 Let C be the curve 5x2 C8xyC5y2 D 1. Prove that there exits a rotation in the
plane, .x; y/ ! .x0; y0/ D R.x; y/, such that with respect to the system of coordinates
x0Oy0 the curve C has the equation ax02 C by02 D 1, for some a; b 2 R.

5.16 Write the affine application f W R2 ! R
2, f .x; y/ D .2x � 3y C 1; 3x C 2y � 1/

as a composition of elementary transformations.
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5.17 Let xOy be the coordinate system of the plane and let C be the curve
2x2 � y2 � 4xy D 1. Determine a rotation R˛ W R2 ! R

2, R˛.x; y/ D .x0; y0/ such
that in the new system of coordinates x0Oy0 the equation of the curve C becomes
ax02 C by02 D 1.

5.18 Find the image of the square ABCD, where A.1; 1/, B.�1; 1/, C.�1; �1/, and

D.1; �1/, under the transformation whose matrix is

�
2 �2

1 3

�
.

5.19 Let xOy be the coordinate system of the plane and let A.2; 0/, B.2; 2/, C.0; 2/

be the vertices of a square. We consider the transformation which sends the origin
to O0.3; �1/ and such that the new axis of coordinate O0C0 makes with the x-axis
an angle ˛ with tan ˛ D 3

4
. Determine the coordinates of the vertices of the square

O0A0B0C0 with respect to the coordinate system xOy.

5.20 What is the image of the line x � y C 1 D 0 under the rotation R of center the
origin and angle �

3
?

5.21 Give the geometrical interpretation of the linear transformation f W R2 ! R
2:

f .x; y/ D .
p

3x � y; x C p
3y/:

5.22 Orthogonal reflections revisited.

Prove that for any orthogonal reflection S across a line which passes through
the origin, there exists t 2 R such that the matrix associated with S is

MS D
�

cos t sin t
sin t � cos t

�
:

5.23 Determine the projection onto the line D1 W 2x C y D 0 on the direction of the
line D2 W x � 3y D 0.

5.24 Orthogonal projection and reflection across a line passing through
the origin.

Determine the equations of the orthogonal projection onto the line D : ax C
by D 0, a2 C b2 ¤ 0 and the equations of the orthogonal reflection across the
line D .
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5.25 Orthogonal projection and reflection across a line not passing
through the origin.

Determine the equations of the orthogonal projection and the orthogonal
reflection across the line D : a.x � x0/ C b.y � y0/ D 0.

5.26 The isometries of the square. Let P be the set of points in the plane
located in the interior or on the square ABCD. Determine all isometries of the
square ABCD, i.e., all isometries f W P ! P .

5.27 The billiard problem. Let D be a line and let A and B be two distinct points
on the same side of D . Determine the point M on D such that AMCMB is minimum.

5.28 Pompeiu’s Theorem. Let 4ABC be an equilateral triangle and let M be a
point on the plane of 4ABC not on the circumscribed circle of 4ABC. Prove that
the segments ŒMA�, ŒMB� and ŒMC� are the sides of a triangle.

5.29 Torricelli’s point. Determine a point on the plane of 4ABC such that the sum
of the distances to the vertices of the triangle is minimum.

5.8 Solutions

5.1. The matrix associated with Sx is A D
�

1 0

0 �1

�
and the matrix associated with

Sy is B D
��1 0

0 1

�
. It follows that the matrix associated with Sx ı Sy is AB D �I2.

5.2. (a) The coordinate systems xCy and x0Fy0 have different orientation and the

matrix of the linear application is of the form A D
�

cos ˛ � sin ˛

� sin ˛ � cos ˛

�
, where ˛ D

�
3

is the angle between the axes Cx and Fx0. The change of coordinates is given by
the formula

�
x
y

�
D A

�
x0
y0
�

C
�

2

2
p

3

�
or

(
x D 1

2
x0 �

p
3

2
y0 C 2

y D �
p

3
2

x0 � 1
2
y0 C 2

p
3:

(b) For the point C, which has the coordinates x D 0, y D 0, we get that x0 D 2,
y0 D 2

p
2, so C.2; 2

p
2/. For the point E, with coordinates x D 0 and y D 2

p
3, we

have that x0 D �1 and y0 D p
3, so E.�1;

p
3/.
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5.3. Let x and y be the coordinates of a point on the hyperbola x2 �y2 �2 D 0 before
the rotation and let X and Y be the coordinates of the same point on the hyperbola
after the rotation. We have

8̂̂
<
ˆ̂:

x D X cos
�

4
� Y sin

�

4
D

p
2

2
.X � Y/

y D X sin
�

4
C Y cos

�

4
D

p
2

2
.X C Y/:

It follows that

x2 � y2 � 2 D
 p

2

2
.X � Y/

!2

�
 p

2

2
.X C Y/

!2

� 2 D �2XY � 2 D 0:

Thus, in the new system of coordinates the hyperbola x2 � y2 � 2 D 0 has the
equation XY C 1 D 0 and the x-axis is the symmetry axis of the hyperbola.

5.4. (a) The matrix of the linear transformation is A D
�

0 0

2 1

�
, so we have a

projection onto the y-axis on the direction of the line D W 2x C y D 0.

(b) The matrix of the linear transformation is A D
�

1 0

2 0

�
and this is a vertical

projection onto the line D W y � 2x D 0.

(c) The matrix of the linear transformation is A D
�

3 �1

6 �2

�
and we have a

projection onto the line D W y � 2x D 0 on the direction of the line D 0 W 3x � y D 0.

5.5. (a) The matrix of the linear transformation is A D
��1 0

2 1

�
, A2 D I2, so f is a

reflection across the y-axis on the direction of the line x C y D 0.

(b) The matrix of the linear transformation is A D
�

1 0

2 �1

�
, A2 D I2, so f is a

vertical reflection across the line x � y D 0.

(c) The matrix of the linear transformation is A D
�

3 �1

8 �3

�
, A2 D I2, so f is a

reflection across the line 2x � y D 0 on the direction of the line 4x � y D 0.

5.6. (a) The condition M2
1 D M1 implies that a D �2, b D �1, and M1 D

�
2 �2

1 �1

�
.

We have

P1

�
x
y

�
D M1

�
x
y

�
D
�

2x � 2y
x � y

�
:

It follows that P1 is the projection onto the line D1 W x D 2y on the direction of the
line D2 W x � y D 0.
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(b) From M2
2 D M2 we get that a D �2, b D �1 and M2 D

�
2 1

�2 �1

�
. We have

P2.x; y/ D .2x C y; �2x � y/, which is the projection onto the line D3 W x C y D 0

on the direction of the line D4 W 2x C y D 0.

5.7. The center of the rotation is the unique fix point of the rotation. Thus,
f .x0; y0/ D .x0; y0/ and we get that

(
ax0 � by0 C b D x0

bx0 C ay0 � a C 1 D y0

,
(

.a � 1/x0 � by0 D �b

bx0 C .a � 1/y0 D a � 1:

The determinant of the system is

ˇ̌̌
ˇ a � 1 �b

b a � 1

ˇ̌̌
ˇD .a � 1/2 C b2 ¤ 0, since

.a; b/ ¤ .1; 0/. The system has a unique solution x0 D 0 and y0 D 1 and we have
that the center of the rotation is C.0; 1/.

The equations of a rotation of center C.x0; y0/ and angle ˛ are�
x0
y0
�

D
�

x0

y0

�
C
�

cos ˛ � sin ˛

sin ˛ cos ˛

��
x � x0

y � y0

�
:

In our case these equations become�
ax � by C b

bx C ay � a C 1

�
D
�

0

1

�
C
�

cos ˛ � sin ˛

sin ˛ cos ˛

��
x

y � 1

�
:

These imply that

(
ax � by C b D x cos ˛ � .y � 1/ sin ˛

bx C ay � a C 1 D 1 C x sin ˛ C .y � 1/ cos ˛;

for all x; y 2 R. We get the necessary conditions cos ˛ D a and sin ˛ D b and we
note that these conditions can be satisfied since a2 C b2 D 1. There is ˛ 2 .0; 2�/

such that cos ˛ D a and sin ˛ D b.

5.8. We have, based on Lemma 5.3, that P is an orthogonal projection if and only if
its matrix is a symmetric matrix, i.e., MP D MT

P . However, Theorem 5.4 shows that
the symmetric matrices of rank 1 are

A3 D
�

0 0

0 1

�
; A4 D

�
1 0

0 0

�
and A5 D

 
a b

a�a2

b 1 � a

!
; a 2 R; b 2 R

�:

Using the condition AT
5 D A5 we get that a�a2

b D b , a2 C b2 D a, so

A5 D
�

a b
b 1 � a

�
; a 2 R; b 2 R

�;

and if we allow b D 0 we recover the matrices A3 and A4.
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It follows that the matrix MP is of the following form

MP D
�

a b
b 1 � a

�
; a; b 2 R with a2 C b2 D a;

and P.x; y/ D .ax C by; bx C .1 � a/y/, 8 .x; y/ 2 R
2.

5.9. We have, based on Lemma 5.2, that the matrix of an orthogonal reflection is a
symmetric matrix so that we choose from Theorem 5.8 only the symmetric matrices.
These are

B3 D
��1 0

0 1

�
; B4 D

�
1 0

0 �1

�
and B5 D

 
a b

1�a2

b �a

!
; a 2 R; b 2 R

�:

The symmetry condition on matrix B5 implies that a2 C b2 D 1. Thus, matrix B5 is
of the following form

B5 D
�

a b
b �a

�
;

and if we allow b D 0 we get matrices B3 and B4.
It follows that the matrix MS of the orthogonal reflection S across a line passing

through the origin is of the following form

MS D
�

a b
b �a

�
; a; b 2 R with a2 C b2 D 1:

If we let a D cos t and b D sin t we get that MS D
�

cos t sin t
sin t � cos t

�
. This is,

according to Theorem 5.13, the matrix of an isometry which appears in problem
5.22 by a different reasoning.

5.10. Since .P1 C P2/2 D P1 C P2, P2
1 D P1, and P2

2 D P2 we get that

P1 ı P2 C P2 ı P1 D 0: (5.1)

Applying P2 to the left and to the right in (5.1) we get that P2 ıP1 ıP2 CP2 ıP1 D 0

and P1 ı P2 C P2 ı P1 ı P2 D 0 which implies that P1 ı P2 D P2 ı P1. It follows,
based on (5.1), that P1 ı P2 D P2 ı P1 D 0.

We make the observation that if P is a projection, then FixP D ImP.
If x 2 FixP1, then P2 ı P1.x/ D 0 implies that P2.x/ D 0, so FixP1 
 KerP2.

Analogously FixP2 
 KerP1. Since P1 ¤ 0 and P2 ¤ 0 we get that FixP1 ¤
f.0; 0/g, KerP2 ¤ R

2, so FixP1 D KerP2 and FixP2 D KerP1. However, FixP1 D
D1 D KerP2 and FixP2 D D2 D KerP1 are distinct lines passing through the origin.
It follows, since D1 ˚ D2 D R

2, that if .x; y/ D .x1; y1/ C .x2; y2/, .x1; y1/ 2 D1,
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.x2; y2/ 2 D2, then P1.x; y/ D .x1; y1/ and P2.x; y/ D .x2; y2/. Thus, P1.x; y/ C
P2.x; y/ D .x; y/ ) P1 C P2 D I.

Remark 5.5 It is worth mentioning that if P1 is the projection onto the line D1 on
the direction of line D2, then P2 is the projection onto the line D2 on the direction
of line D1.

5.11. Since .P1 C P2/2 D I, P2
1 D P1 and P2

2 D P2 we get that P1 C P2 C P1 ı P2 C
P2 ı P1 D I. Applying P2 to the left and to the right in the preceding equality we get
that 2P2 ı P1 C P2 ı P1 ı P2 D 0 and 2P1 ı P2 C P2 ı P1 ı P2 D 0 and it follows
that P1 ı P2 D P2 ı P1. However, the equality 2P2 ı P1 C P2 ı P1 ı P2 D 0 implies
that 3P2 ı P1 D 0 ) P1 ı P2 D P2 ı P1 D 0. Now the solution is the same as the
solution of problem 5.10.

5.12. Let A1, A2, and A3 be three noncollinear points. First we prove that the only
isometry F which satisfies the conditions F.A1/ D A1, F.A2/ D A2, and F.A3/ D A3

is the identity. For any point M on the plane let r1, r2, and r3 be the distances from M
to A1, A2, and A3 respectively. Since d.F.M/; F.Ai// D d.M; Ai/ D ri, i D 1; 2; 3,
we get that F.M/ is the point located at the intersection of the circles with centers
A1, A2, and A3 and radius r1, r2, and r3. This point is unique, so F.M/ D M.

Now, if we assume that there are two isometries which satisfy F1.Ai/ D F2.Ai/,
i D 1; 2; 3, then .F�1

1 ı F2/.Ai/ D Ai, i D 1; 2; 3, so F1 D F2.

5.13. We have based on problem 5.12 that any isometry is uniquely determined by
images of three noncollinear points. Let A; B; C be the vertices of a triangle with
different side lengths and let A0 D F.A/, B0 D F.B/, and C0 D F.C/, where F
is an isometry of the plane. Observe that 4ABC and 4A0B0C0 are congruent since
AB D A0B0, AC D A0C0, and BC D B0C0.

If 4ABC and 4A0B0C0 have the same orientation, they may overlap via a
translation defined by T.A/ D A0 followed by a rotation R, around point A0, of

angle3AB; A0B0.
If 4ABC and 4A0B0C0 have different orientation, they may overlap after a

translation T followed by a rotation R, like in the previous case (the side AB overlaps
onto the side A0B0) and a reflection across the line A0B0.
5.14. The matrices of such reflections are given, based on problem 5.9, by M1 D�

cos t1 sin t1
sin t1 � cos t1

�
and M2 D

�
cos t2 sin t2
sin t2 � cos t2

�
. The matrix of the composition of

the two reflections is M1M2 D
�

cos.t1 � t2/ � sin.t1 � t2/

sin.t1 � t2/ cos.t1 � t2/

�
D Rt1�t2 , which is the

matrix of a rotation of angle t1 � t2.

5.15. The matrix of the rotation is R˛ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�
and the equations of the

rotation are

�
x0
y0
�

D R˛

�
x
y

�
or

�
x
y

�
D R�˛

�
x0
y0
�

. This implies that
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(
x D x0 cos ˛ C y0 sin ˛

y D �x0 sin ˛ C y0 cos ˛:

Putting these values of x and y in the equation of the curve C we get that

C W 5.x02 C y02/ � 8x02 sin ˛ cos ˛ C 8y02 sin ˛ cos ˛ C 8.cos2 ˛ � sin2 ˛/x0y0 D 1:

Since the term x0y0 should vanish we obtain that angle ˛ verifies the equation
cos2 ˛ � sin2 ˛ D 0, so we can choose ˛ D �

4
. Thus, by rotating the system of

coordinates xOy by an angle of �
4

the equation of the conic C becomes x02 C 9y02 D
1, so a D 1 and b D 9.

5.16. We have

�
x0
y0
�

D
�

2 �3

3 2

��
x
y

�
C
�

1

�1

�

D p
13

�
cos t � sin t
sin t cos t

��
x
y

�
C
�

1

�1

�

D
�p

13 0

0
p

13

�
Rt

�
x
y

�
C
�

1

�1

�

D Op
13Rt

�
x
y

�
C v;

so f D Tv ı Op
13 ı Rt, where Rt is a rotation of angle t D arctan 3

2
, Op

13 is the

uniform scaling of factor k D p
13 and Tv is the translation of vector v D

�
1

�1

�
.

5.17. Since the matrix of the rotation is R˛ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�
and the equations of

the rotation are

�
x0
y0
�

D R˛

�
x
y

�
or

�
x
y

�
D R�˛

�
x0
y0
�

. This implies that

(
x D x0 cos ˛ C y0 sin ˛

y D �x0 sin ˛ C y0 cos ˛:

Putting these values of x and y in the equation of the curve C we get that

.2 cos2 ˛ � sin2 ˛ C 4 sin ˛ cos ˛/x02 C y02.2 sin2 ˛ � cos2 ˛ � 4 sin ˛ cos ˛/

C .6 sin ˛ cos ˛ � 4 cos2 ˛ C 4 sin2 ˛/x0y0 D 1:
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Since the coefficient of x0y0 should vanish we have that 6 sin ˛ cos ˛ � 4 cos2 ˛ C
4 sin2 ˛ D 0 ) ˛ D 1

2
arctan 4

3
and the equation of the conic C becomes 3x02 �

2y02 D 1, so a D 3 and b D �2.

5.18.
�

2 �2

1 3

��
1

1

�
D
�

0

4

�
, so A0.0; 4/. Similarly we get that B0.�4; 2/, C0.0; �4/,

and D0.4; �2/, so the square ABCD is mapped to the parallelogram A0B0C0D0.
5.19. Observe the rotation angle is � D 3�

2
C˛. Therefore, cos � D cos

�
3�
2

C ˛
� D

sin ˛ D 3
5

and sin � D � cos ˛ D � 4
5
. The transformation formulae are

8̂<
:̂

x D 3

5
x0 C 4

5
y0 C 3

y D �4

5
x0 C 3

5
y0 � 1:

With respect to the new coordinate system x0O0y0, the vertices A0, B0, C0, and D0 have
the same coordinates like the vertices O, A, B, and C with respect to the old system of
coordinates xOy. The coordinates of A0, B0, and C0 with respect to the system xOy are
obtained from the transformation formulae and we have A0 � 21

5
; � 13

5

�
, B0 � 29

5
; � 7

5

�
and C0 � 23

5
; 1

5

�
.

5.20. The rotation of center the origin and angle �
3

is given by the equations

8̂̂
<̂
ˆ̂̂:

x0 D x cos
�

3
� y sin

�

3

y0 D x sin
�

3
C y sin

�

3

,

8̂̂
<
ˆ̂:

x D 1

2
x0 C

p
3

2
y0

y D �
p

3

2
x0 C 1

2
y0:

Replacing x and y in the equation x � y C 1 D 0 we get
p

3C1
2

x0 C
p

3�1
2

y0 C 1 D 0,
which is the equation of a line.

5.21. The matrix of the linear transformation is

�p
3 �1

1
p

3

�
D
�

2 0

0 2

��
cos �

6
� sin �

6

sin �
6

cos �
6

�
;

so f is the composition of a counterclockwise rotation of angle �
6

and a uniform
scaling of factor 2.

5.22. The matrix of a reflection is of the form MS D
 

a b
1�a2

b �a

!
and represents

the reflection across the line D1 W .a � 1/x C by D 0 on the direction of the line
D2 W .a C 1/x C by D 0. The condition that the lines D1 and D2 are perpendicular
is a2 � 1 C b2 D 0 , a2 C b2 D 1. This implies there exists t 2 Œ0; 2�/ such that
a D cos t, b D sin t, so the matrix MS has the required form.

5.23. We write .x; y/ D .x1; y1/ C .x2; y2/, with .x1; y1/ 2 D1 and .x2; y2/ 2 D2.
This implies that 2x1 C y1 D 0, x2 � 3y2 D 0, x1 C x2 D x, y1 C y2 D y. It follows
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that x1 D 1
7
.x � 3y/, x2 D 3

7
.2x C y/, y1 D � 2

7
.x � 3y/, y2 D 1

7
.2x C y/ and we have

P.x; y/ D
�

x � 3y

7
;

�2x C 6y

7

�
:

5.24. The direction line to which the projection and the reflection are done is the
line D 0 W �bx C ay D 0, the perpendicular line to D . Any point .x; y/ 2 R

2 can be
written in the form .x; y/ D .x1; y1/ C .x2; y2/, with .x1; y1/ 2 D , .x2; y2/ 2 D 0 and
we have P.x; y/ D .x1; y1/ and S.x; y/ D 2P.x; y/ � .x; y/ D .x1; y1/ � .x2; y2/. We
have the system of equations

8̂
ˆ̂̂<
ˆ̂̂̂
:

x1 C x2 D x

y1 C y2 D y

ax1 C by1 D 0

�bx2 C ay2 D 0;

from which it follows that

x1 D b2x � aby

a2 C b2
; y1 D �abx C a2y

a2 C b2
; x2 D a2x C aby

a2 C b2
; y2 D abx C b2y

a2 C b2
:

The matrices of the two linear transformations are

MP D 1

a2 C b2

�
b2 �ab

�ab a2

�
and MS D 1

a2 C b2

��a2 C b2 �2ab
�2ab a2 � b2

�
:

One can check that M2
P D MP and M2

S D I2.

5.25. Let P1 and S1 be the orthogonal projection and the orthogonal reflection across
the line D W a.x�x0/Cb.y�y0/ D 0 and let P and S be the orthogonal projection and
the orthogonal reflection across the line ax C by D 0. Then, P1.x; y/ D .x0; y0/ C
P.x � x0; y � y0/ and S1.x; y/ D .x0; y0/ C S.x � x0; y � y0/. We have, based on
problem 5.24, that

P1.x; y/ D
�

a2x0 C aby0

a2 C b2
;

abx0 C b2y0

a2 C b2

�
C
�

b2x � aby

a2 C b2
;

�abx C a2y

a2 C b2

�

and

S1.x; y/ D 2P1.x; y/ � .x; y/ D
�

2a2x0 C 2aby0

a2 C b2
;

2abx0 C 2b2y0

a2 C b2

�

C
�

.b2 � a2/x � 2aby

a2 C b2
;

�2abx C .a2 � b2/y

a2 C b2

�
:
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If P1.x; y/ D .x1; y1/ and S1.x; y/ D .x2; y2/, then we have the matrix equations

�
x1

y1

�
D 1

a2 C b2

�
a2 ab
ab b2

��
x0

y0

�
C 1

a2 C b2

�
b2 �ab

�ab a2

��
x
y

�

and

�
x2

y2

�
D 2

a2 C b2

�
a2 ab
ab b2

��
x0

y0

�
C 1

a2 C b2

�
b2 � a2 �2ab
�2ab a2 � b2

��
x
y

�
:

5.26. It suffices to solve the problem for the square with vertices A.1; 0/, B.0; 1/,
C.�1; 0/, and D.0; �1/.

First, we observe that since d.A; C/ D d.B; D/ D 2, then for any isometry f
we have d .f .A/; f .C// D d .f .B/; f .D// D 2 and this implies that the vertices of
the square ABCD are sent to vertices, i.e., f .A/, f .C/ and f .B/, f .D/ are opposite
vertices of the square. The value f .A/ is chosen from the set fA; B; C; Dg in four
possible ways and f .C/ is the opposite vertex of f .A/. In each of these cases f .B/ is
chosen in two possible ways from the other two vertices. We obtain 8 such functions
which are, so far, only isometries of the set of vertices of the square ABCD.

Second, we note that if M 2 P , which is different from the vertices of the square,
then M is uniquely determined by the distances from M to the vertices A; B; C, i.e.,
a D d.M; A/, b D d.M; B/ and c D d.M; C/. We note that M is located at the
intersection of the circles C .A; a/, C .B; b/ and C .C; c/. It follows that the point
f .M/ is located at the intersection of the circles with centers f .A/; f .B/; f .C/ and
radius a; b; c respectively. The 8 isometries of the vertices extend to the 8 isometries
of the square. These are:

� f .A/ D A, f .C/ D C, f .B/ D B and f .D/ D D ) f D 1P ;
� f .A/ D A, f .C/ D C, f .B/ D D and f .D/ D B ) f D 
x the symmetry across

the x-axis;
� f .A/ D C, f .C/ D A, f .B/ D B and f .D/ D D ) f D 
y the symmetry across

the y-axis;
� f .A/ D C, f .C/ D A, f .B/ D D and f .D/ D B ) f D 
O the symmetry through

the origin;
� f .A/ D B, f .C/ D D, f .B/ D A and f .D/ D C ) f D 
y�xD0 the symmetry

across the line y � x D 0;
� f .A/ D B, f .C/ D D, f .B/ D C and f .D/ D A ) f D R �

2
the rotation of angle

�
2

with center the origin;
� f .A/ D D, f .C/ D B, f .B/ D C and f .D/ D A ) f D 
yCxD0 the symmetry

across the line y C x D 0;
� f .A/ D D, f .C/ D B, f .B/ D A and f .D/ D C ) f D R� �

2
the rotation of angle

� �
2

with center the origin.

These isometries form the dihedral group D8.
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5.27. Let sD be the orthogonal reflection across the line D and let A0 D sD .A/ and
fMg D D \ BA0. We prove that M is the point for which the minimum is attained. If
P 2 D , is an arbitrary point, then we apply triangle’s inequality in 4A0PB and we
get that A0P C PB � A0B, with equality if and only if P D M. On the other hand,
A0P D AP, A0M D AM and we have AP C PB D A0P C PB � A0B D AM C MB,
which implies that the minimum is attained when P D M (Fig. 5.1).
5.28. Let r D rB;� �

3
be the clockwise rotation of angle �

3
around B. Then, r.A/ D C,

r.C/ D C0, r.M/ D M0 and point B is fixed. We have that 4MBM0 is an isosceles
triangle and sincebB D �

3
we get that 4MBM0 is equilateral. Therefore 4CMM0 has

its sides congruent to the segments ŒMC�, ŒMB� and ŒMA�. Observe that 4CMM0
degenerates if and only if M is located on the circle circumscribed to 4ABC
(Fig. 5.2).
5.29. Let r D rA; �

3
be the counterclockwise rotation around point A of angle �

3
and

let C0 D r.C/, M0 D r.M/, where M is an arbitrary point on the plane of 4ABC.
We have MA C MB C MC D BM C MM0 C M0C0 � BC0, with equality if and

Fig. 5.1 The billiard
problem

Fig. 5.2 Pompeiu’s Theorem
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Fig. 5.3 The Torricelli point

only if the points B; M; M0 and C0 are collinear. Since 4AMM0 is equilateral we
get that bAMB D 120ı and 1AM0C0 D 120ı. It follows that bAMB D 1AMC D 120ı.
The construction of the Torricelli’s point T is as follows: we construct the equilateral
triangles 4AC0C and 4AB0B to the exterior of 4ABC and we have fTg D BC0\CB0
(Fig. 5.3).



Chapter 6
Conics

It is easy to teach someone, but to show him
an easy way to realize the learned things, this
is something to admire.

St. John Chrysostom (347–407)

6.1 Conics

Definition 6.1 An algebraic plane curve is a curve whose implicit equation is of the
following form

C W F.x; y/ D 0;

where F is a polynomial in variables x and y. The degree of the polynomial is called
the degree of the algebraic curve.

Definition 6.2 A conic is an algebraic plane curve of degree two. The general
equation of a conic is

C W a11x2 C 2a12xy C a22y2 C b1x C b2y C c D 0;

where a11; a12; a22; b1; b2; c 2 R and a2
11 C a2

12 C a2
22 ¤ 0.

When the system of plane coordinates is specially chosen the equation of the
conic has a simple form, called the canonical form. We review the nondegenerate
conics.

The nondegenerate conics

� The ellipse is defined as the set of points M.x; y/ in the plane whose sum of
the distances to two distinct points, F.c; 0/ and F0.�c; 0/, c > 0, called foci, is
constant. Thus, the set E of points M.x; y/ with the property that MFCMF0 D 2a,
a > c is called an ellipse (Fig. 6.1).
Let b2 D a2 � c2. The equations of the ellipse are:

E W x2

a2
C y2

b2
D 1 the implicit equation

© Springer International Publishing AG 2017
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Fig. 6.1 The ellipse x2

a2 C y2

b2 D 1, a; b > 0

E W

8̂<
:̂

y D b

a

p
a2 � x2

y D �b

a

p
a2 � x2

x 2 Œ�a; a� the Cartesian equations

E W
(

x D a cos t

y D b sin t
t 2 Œ0; 2�/ the parametric equations

When a D b D r the ellipse becomes the circle

x2 C y2 D r2 or

(
x D r cos t

y D r sin t
t 2 Œ0; 2�/:

The optical property. The tangent and the normal line at a point on an ellipse are
the bisectors of the angles determined by the focal radii.

� The hyperbola is the set of points M.x; y/ in the plane for which the absolute
value of the difference between the distances from two fixed points, F.c; 0/ and
F0.�c; 0/, c > 0, called foci, is constant. Thus, the set H of points M.x; y/ with
the property that jMF � MF0j D 2a, 0 < a < c is called a hyperbola (Fig. 6.2).
The line determined by F and F0 is called the focal axis, the length of the segment
FF0 D 2c is called the focal distance and the segments MF and MF0 are called
the focal radii. Direct calculations show that the equations of the hyperbola are:
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Fig. 6.2 The hyperbola x2

a2 � y2

b2 D 1, a; b > 0

H W x2

a2
� y2

b2
D 1 the implicit equation

H W

8̂
<
:̂

y D b

a

p
x2 � a2

yD�b

a

p
x2�a2

x 2 .�1; �a� [ Œa; 1/ the Cartesian equations

H W
(

x D ˙a cosh t

y D b sinh t
t 2 R the parametric equations

where

cosh t D et C e�t

2
and sinh t D et � e�t

2
:

The hyperbola is an unbounded curve which has the inclined asymptotes y D b
a x

and y D � b
a x. A hyperbola with perpendicular asymptotes is called equilateral.

The optical property. The tangent and the normal line at a point on a hyperbola
are the bisectors of the angles determined by the focal radii.

� The parabola is defined as the set of points on the plane M.x; y/ whose distances
to a fixed line x D � p

2
, p > 0, called the directrix and a fixed point F

� p
2
; 0
�

called
focus are equal (Fig. 6.3).
Thus, the equations of the parabola are:

P W y2 D 2px the implicit equation



318 6 Conics

Fig. 6.3 The parabola y2 D 2px, p > 0

P W

8̂<
:̂

x D t2

2p
y D t

t 2 R the parametric equations.

A parabola, in general, is also defined as the graph of the functions of the
following form

y D ax2 C bx C c; a ¤ 0 or x D a0y2 C b0y C c0; a0 ¤ 0:

The optical property. The tangent and the normal lines at a point on a parabola
are the bisectors of the angles determined by the focal radius and the parallel line
through the point to the axis of the parabola.

The degenerate conics

The algebraic curves of second degree which are degenerate conics are:

� C : .a1x C b1y C c1/.a2x C b2y C c2/ D 0 (the union of two lines)

� C : ˛.x � x0/2 C ˇ.y � y0/2 D 0, ˛; ˇ > 0 (a point)

� C : ˛.x � x0/2 C ˇ.y � y0/2 C ı D 0, ˛; ˇ; ı > 0 (the void set).

Elementary properties of conics that can be formulated using elementary geom-
etry can be found in [2].
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6.2 The reduction of conics to their canonical form

Let

C W a11x2 C 2a12xy C a22y2 C b1x C b2y C c D 0; (6.1)

where a11; a12; a22; b1; b2; c 2 R and a2
11 C a2

12 C a2
22 ¤ 0 be a conic in the xOy

plane.
To reduce a conic to its canonical form we understand to chose a system of

coordinates x0O0y0 in the plane such that in the new coordinates the conic would have
a simplified equation, the so-called reduced equation. We shall see that any such
change of coordinates consists of two geometrical transformations, a translation
and a rotation (and eventually a reflection across an axis). These transformations are
determined based on a technique involving the Jordan canonical form of symmetric
matrices of order 2.

Let f .x; y/ D a11x2 C2a12xyCa22y2 be the quadratic part from the equation (6.1)
and let Af be the symmetric matrix associated with f

Af D
�

a11 a12

a12 a22

�
:

Nota bene. The coefficients on the second diagonal of the matrix Af are equal to
half of the coefficient of xy in the equation of the conic.

It is known (see Theorem 2.5) that the matrix Af is diagonalizable and the matrix
P 2 M2 .R/ can be chosen to be an orthogonal matrix, i.e., PT D P�1. In fact P is
a rotation matrix. The eigenvalues �1; �2 of Af are real numbers (see Theorem 2.5),
at least one of them being nonzero, since Af ¤ O2.

Let

JAf D
�

�1 0

0 �2

�
D PTAf P;

where P is the matrix formed with the eigenvectors corresponding to the eigenvalues
�1 and �2.

The rotation. We change the coordinate system by making an orthogonal
transformation in the xOy plane, a rotation defined by the matrix P

�
x
y

�
D P

�
x0
y0
�

;

and the coordinate system xOy is changed to x0Oy0.
Using the formula

Œf .x; y/� D
�

x
y

�T

Af

�
x
y

�
;
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we get that

Œf .x; y/� D
�

P

�
x0
y0
��T

Af P

�
x0
y0
�

D
�

x0
y0
�T

JAf

�
x0
y0
�

D �1x02 C �2y02:

Thus, in the new system of coordinates x0Oy0 the equation of the conic becomes

C W �1x02 C �2y02 C b0
1x0 C b0

2y0 C c D 0; (6.2)

where the coefficients b0
1; b0

2 are determined by the formulae

b1x C b2y D b0
1x0 C b0

2y0 , Œb1 b2�

�
x
y

�
D Œb0

1 b0
2�

�
x0
y0
�

which is equivalent to

Œb1 b2�P

�
x0
y0
�

D Œb0
1 b0

2�

�
x0
y0
�

so Œb0
1 b0

2� D Œb1 b2�P:

Nota bene. The purpose of the rotation is to make the term xy disappear.

The translation. We distinguish between the cases when both eigenvalues of Af

are nonzero and one is zero.

Case 1. If �1 ¤ 0 and �2 ¤ 0 we write equation (6.2) in the following form

C W �1

�
x0 C b0

1

2�1

�2

C �2

�
y0 C b0

2

2�2

�2

C c0 D 0;

where

c0 D c � b02
1

4�1

� b02
2

4�2

:

Now we translate the coordinate system x0Oy0 to the coordinate system x00O00y00
and the equations of the translation are

T W

8̂<
:̂

x00 D x0 C b0
1

2�1

y00 D y0 C b0
2

2�2

:

The center of the new system of coordinates is the point O00 whose coordinates
are determined by

x00 D y00 D 0 , x0 D � b0
1

2�1

; y0 D � b0
2

2�2

,
�

x
y

�
D P

�
x0
y0
�

:
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The equation of the conic becomes

C W �1x002 C �2y002 C c0 D 0:

If c0 D 0 we get a degenerate conic which could be a point or a union of two
lines.

If c0 ¤ 0 the conic is either an ellipse or a hyperbola according to whether the
eigenvalues �1; �2 have the same sign or different signs.

Case 2. If one of the eigenvalues is 0, say �2 D 0 and �1 ¤ 0 we have

C W �1

�
x0 C b0

1

2�1

�2

C b0
2y0 C c0 D 0; c0 D c � b02

1

4�1

;

and in this case the equations of the translation are

T W

8̂̂
<
ˆ̂:

x00 D x0 C b0
1

2�1

y00 D y0 C c0

b0
2

:

The conic is a parabola of equation

C W �1x002 C b0
2y00 D 0:

Nota bene. The equations of the translation are determined by completing the
squares (square) in x0 and/or y0.

Remark 6.1 If the conic is nondegenerate, then its nature can be determined only
by analyzing the sign of the eigenvalues of Af . More precisely, if

�1�2 > 0 the conic is an ellipse;

�1�2 < 0 the conic is a hyperbola;

�1�2 D 0 the conic is a parabola.

Now we summarize the technique used above and we give an algorithm for
reducing a conic to its canonical form.

Algorithm for reducing a conic to its canonical form

� Step 1. Write the matrix Af and find its eigenvalues.

� Step 2. Determine the Jordan canonical form JAf and the orthogonal matrix
P, PT D P�1, which verifies the identity

(continued)
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JAf D
�

�1 0

0 �2

�
D PTAf P:

� Step 3. Write the equations of the rotation in the form

X D PY; where X D
�

x
y

�
and Y D

�
x0
y0
�

:

Determine the angle of the rotation by writing P D R˛ . Thus, the
coordinate system xOy is rotated counterclockwise by an angle ˛ and
becomes the system x0Oy0.

� Step 4. Write the equations of the translation by completing both, or
possible one, squares in x0 and y0.

� Step 5. Determine the nature of the conic by inspecting the equation in x00
and y00.

Example 6.1 A hyperbola. We consider the conic

C W 3x2 C 10xy C 3y2 � 2x � 14y � 13 D 0;

which we reduce to its canonical form and determine its nature (Fig. 6.4).

Fig. 6.4 The hyperbola 3x2 C 10xy C 3y2 � 2x � 14y � 13 D 0
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Step 1. The quadratic form associated with our conic is f .x; y/ D 3x2 C 10xy C 3y2

and its corresponding symmetric matrix is

Af D
�

3 5

5 3

�
:

The eigenvalues of Af are obtained by solving the equation det.Af � �I2/ D 0

which implies .3 � �/2 � 25 D 0 ) �1 D 8 and �2 D �2.

Step 2. We determine the eigenvectors corresponding to the eigenvalues �1 D 8 and
�2 D �2. The eigenvector corresponding to �1 D 8 is determined by solving the
system .Af � 8I2/X D 0 and we have

(
�5x1 C 5x2 D 0

5x1 � 5x2 D 0;

which implies that x1 D x2. The solution of the system is

�
˛

˛

�
, ˛ 2 R

�. We let

˛ D 1 and we divide our vector by its norm1 (length) and we get the eigenvector

X1 D
 

1p
2

1p
2

!
:

Similarly, the eigenvectors corresponding to �2 D �2 are determined by solving
the system .Af C 2I2/X D 0 and we obtain the eigenvector

X2 D
 � 1p

2
1p
2

!
:

Thus,

P D
 

1p
2

� 1p
2

1p
2

1p
2

!
D
�

cos �
4

� sin �
4

sin �
4

cos �
4

�
D R �

4
;

which is a rotation matrix of angle �
4

.

Step 3. The equations of the rotation are

�
x
y

�
D P

�
x0
y0
�

or

8<
:

x D 1p
2
x0 � 1p

2
y0

y D 1p
2
x0 C 1p

2
y0:

(6.3)

1Recall the norm or the length of a vector v D
�

a
b

�
2 R

2 is defined by jjvjj D pjaj2 C jbj2.
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We rotate the system of coordinates xOy by an angle of �
4

counterclockwise and
the equation of the conic becomes

C W 8x02 � 2y02 � 2p
2

.x0 � y0/ � 14p
2

.x0 C y0/ � 13 D 0;

which can be written, after completing the squares in x0 and y0, as

C W 8

�
x0 � 1p

2

�2

� 2

�
y0 C 3p

2

�2

� 8 D 0:

Step 4. The equations of the translation are

T W

8̂̂
<
ˆ̂:

x00 D x0 � 1p
2

y00 D y0 C 3p
2

:

Thus, we translate the system x0Oy0 to x00O00y00 and the equation of the conic becomes

C W 8x002 � 2y002 � 8 D 0 , x002 � y002

4
D 1:

Thus, our conic is an ellipse of semi axes a D 1 and b D 2.
Next, we determine the equations of the axes of symmetry and the coordinates of

the center O00.
We have, based on (6.3), that

�
x0
y0
�

D P�1

�
x
y

�
D PT

�
x
y

�
and this implies that

8<
:

x0 D 1p
2
.x C y/

y0 D 1p
2
.�x C y/:

(6.4)

The equation of O00x00. To determine the equation of the O00x00 we set y00 D 0

which in turn implies that y0 D � 3p
2
. The second equation in (6.4) implies that

�x C y D �3.
The equation of O00y00. To determine the equation of the O00y00 we set x00 D 0 and

this implies that x0 D 1p
2
. However, the first equation in (6.4) implies that xCy D 1.

The coordinates of the center of symmetry O00. The coordinates of O00 are the
solutions of the system
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(
x C y D 1

�x C y D �3;

which implies that x D 2 and y D �1. Thus, O00.2; �1/, i.e., the coordinates of O00
with respect to the coordinate system xOy are .2; �1/.

6.3 Problems

6.1 Find the canonical form of the following conics, determine their nature, the
symmetry axes, and the center:

(1) 3x2 � 4xy C 3y2 � 2x � 2y C 1 D 0;

(2) 2x2 � 4xy � y2 C p
5x C p

5y � 1 D 0;

(3) x2 � 2xy C y2 C 2x � 4y C 5 D 0;

(4) 4x2 C 12xy C 9y2 � 64 D 0;

(5) 9x2 C 24xy C 16y2 � 40x C 30y D 0;

(6) 2x2 � 6xy C 10y2 � 8x C 12y C 2 D 0;

(7) 4x2 � 4xy C y2 � 2x � 14y C 7 D 0;

(8) 4xy � 3y2 C 4x � 14y � 7 D 0;

(9) 3x2 � 4xy � 2x C 4y � 3 D 0;

(10) x2 C 2xy C y2 C 2x C 2y � 3 D 0;

(11) x2 � 8xy C 7y2 C 6x � 6y C 9 D 0;

(12) 5x2 C 12xy � 22x � 12y � 19 D 0;

(13) 6x2 � 4xy C 9y2 � 4x � 32y � 6 D 0;

(14) 5x2 C 4xy C 8y2 � 32x � 56y C 80 D 0;

(15) xy � k D 0, k 2 R
�.

6.2 Discuss, according to the values of the parameter a, the nature of the following
conics:

(1) 5x2 C 2axy C 5y2 C 2x C 2y C 2 D 0;

(2) ax2 C 2xy C ay2 � 2x C 2y C 9 D 0;

(3) x2 C 4xy C 4y2 C ax D 0;

(4) 7x2 � 8xy C y2 C a D 0.

6.3 For what value (or values) of c will the graph of the Cartesian equation 2xy �
4x C 6y C c D 0 be a pair of lines?

6.4 An equilateral hyperbola. Prove that the conic .xC2yC1/.2x�yC1/C˛ D 0,
where ˛ ¤ 0, is a hyperbola having the asymptotes xC2yC1 D 0 and 2x�yC1 D 0.
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Remark 6.2 More generally, one can prove that the conic

.a1x C b1y C c1/.a2x C b2y C c2/ C ˛ D 0;

with a1b2 � a2b1 ¤ 0 and ˛ ¤ 0, is a hyperbola having the asymptotes a1x C b1y C
c1 D 0 and a2x C b2y C c2 D 0.

6.5 (a) Find the equation of a hyperbola passing through the points .1; 1/, .2; 1/

and .�1; �2/ which has the asymptote x C y � 1 D 0.
(b) Find the equation of an equilateral hyperbola passing through the points .1; 1/

and .2; 1/ which has the asymptote x � y C 1 D 0.

6.6 A Lamé’s curve and a parabola in disguise.

Let k > 0 be a real number. Prove that the curves C 1
k W p

y � p
x D p

k,
C 2

k W p
x C p

y D p
k and C 3

k W p
x � p

y D p
k form together a parabola,

determine its canonical form, the vertex, and the symmetry axis.

Remark 6.3 A Lamé’s curve has the Cartesian equation x˛

a˛ C y˛

b˛ D 1, where a; b
are positive real numbers and ˛ is a real number. These curves have been studied by
G. Lamé [39] in the 19th century and now they are called Lame’s curves or super
ellipses.

When k D 1 the curve C 2
1 is discussed in [12] where it is shown, in spite the

graph of C 2
1 looks like the arc of a circle, that C 2

1 is part of a parabola and not of a
circle.

6.7 Determine the nature of the conic C W x2 C y2 � 4xy � 1 D 0 and find the lattice
points on C .

6.8 Prove the hyperbola H W x2 � 5y2 D 4 contains infinitely many lattice points.

6.9 (a) Determine the equation of an ellipse which, on the xOy plane, has the foci
F1.

p
3; 2/, F2.3

p
3; 4/ and the large semi axes a D 3.

(b) Find the canonical form of the conic from part (a).

6.10 (a) Find the equation of a hyperbola which has the foci F1.�1; 2/, F2.3; 6/

and the semi axes a D 2.
(b) Find the canonical form of the conic from part (a).

6.11 (a) Find the locus of points M.x; y/ on the xOy plane with the property that the
distance from M to the line D W p

3x � 3y C 2
p

3 D 0 and the distance from M to
the point F.2; 0/ are equal.

(b) Find the canonical form of the conic from part (a).

6.12 An abelian group determined by an ellipse.

Let E be the ellipse x2

a2 C y2

b2 D 1 and let � be the binary operation on E defined by
� W E �E ! E , .M1; M2/ 2 E �E ! M1 �M2 2 E , where M1 �M2 is the point on
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E where the line passing through A.a; 0/ parallel to the segment ŒM1M2� intersects
the ellipse E . Prove that .E ; �/ is an abelian group.

6.13 Find the extreme values of the function f .x; y/ D x2 C xy C y2 C x � y � 1 and
the points where these values are attained.

6.14 Extremum problems with constraints.

(a) Find the minimum and the maximum values of the function f .x; y/ D x C y
subject to the constraint 3x2 � 2xy C 3y2 C 4x C 4y � 4 D 0.

(b) Find the extreme values of the function f .x; y/ D 2x C y subject to the
constraint 3x2 C 10xy C 3y2 � 16x � 16y � 16 D 0.

(c) Find the extreme values of the function f .x; y/ D 2x � y subject to the
constraint 9x2 C 24xy C 16y2 � 40x C 30y D 0.

6.15 Constrained extrema of a quadratic form.

Let f .x; y/ D ax2C2bxyCcy2, a; b; c 2 R with a2Cb2Cc2 ¤ 0. Prove that the
minimum and the maximum values of f , subject to the constraint x2 Cy2 D 1,
are the smallest respectively the largest of the eigenvalues of

Af D
�

a b
b c

�
:

6.16 Find the area of the domain bounded by the curve

5x2 C 6xy C 5y2 � 16x � 16y � 16 D 0:

Double integrals over elliptical domains.

6.17 Calculate:

(a)
Z Z

D1

ex2�xyCy2

dxdy, where D1 D ˚
.x; y/ 2 R

2 W x2 � xy C y2 � 1
�
;

(b)
Z Z

D2

ex2CxyCy2

dxdy, where D2 D ˚
.x; y/ 2 R

2 W x2 C xy C y2 � 1
�
;

(c)
Z Z

D3

e�x2Cxy�y2

dxdy, where D3 D ˚
.x; y/ 2 R

2 W x2 � xy C y2 � 1
�
;

(d)
Z Z

D4

e�x2�xy�y2

dxdy, where D4 D ˚
.x; y/ 2 R

2 W x2 C xy C y2 � 1
�
.

6.18 Let a; b 2 R such that 0 < b < 2a and let ˛ > 0. Calculate:

(a)
Z Z

D1

eax2�bxyCay2

dxdy, where D1 D ˚
.x; y/ 2 R

2 W ax2 � bxy C ay2 � ˛
�
;

(b)
Z Z

D2

eax2CbxyCay2

dxdy, where D2 D ˚
.x; y/ 2 R

2 W ax2 C bxy C ay2 � ˛
�
;
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(c)
Z Z

D3

e�ax2Cbxy�ay2

dxdy, where D3 D ˚
.x; y/ 2 R

2 W ax2 � bxy C ay2 � ˛
�
;

(d)
Z Z

D4

e�ax2�bxy�ay2

dxdy, where D4 D ˚
.x; y/ 2 R

2 W ax2 C bxy C ay2 � ˛
�
.

6.19 Let a; b 2 R such that 0 < b < 2a and let ˛ > 0. Calculate

(a)
Z Z

D˛

xe�ax2�bxy�ay2

dxdy

(b)
Z Z

D˛

xye�ax2�bxy�ay2

dxdy,

where D˛ D ˚
.x; y/ 2 R

2 W ax2 C bxy C ay2 � ˛
�
.

6.20 Quadratic forms and special integrals.

(a) Calculate

Z Z
R2

dxdy

.1 C 3x2 � 4xy C 3y2/3
:

(b) Let A 2 M2 .R/ be a symmetric matrix with positive eigenvalues and
let ˛ > 1 be a real number. Prove that

Z Z
R2

dxdy

.1 C vTAv/˛
D �

.˛ � 1/
p

det A
; where v D

�
x
y

�
:

(c) Let f be an integrable function over Œ0; 1/ and let
Z 1

0

f .x/dx D I.

Prove that if A 2 M2 .R/ is a symmetric matrix with positive eigenvalues,
then

Z Z
R2

f
�
vTAv

�
dxdy D �Ip

det A
; where v D

�
x
y

�
:

6.21 A particular case and a formula.
(a) Calculate

Z Z
R2

e�.3x2�2xyC3y2C2xC2y�1/dxdy:

(continued)
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6.21 (continued)

(b) Let A 2 M2 .R/ be a symmetric matrix with positive eigenvalues, let

b D
�

b1

b2

�
be a vector in R

2, and let c be a real number. Prove that

Z Z
R2

e�.vT AvC2bT vCc/dxdy D �p
det A

ebT A�1b�c; where v D
�

x
y

�
:

6.4 Solutions

6.1. (1) The ellipse x002 C 5y002 D 1, the equation of the axes O00x00 W x � y D 0,
O00y00 W x C y D 2, and the center O00.1; 1/;

(2) the hyperbola 48x002 � 72y002 D 1, the equation of the axes O00x00 W �2x C y Dp
5

6
, O00y00 W x C 2y D 3

p
5

4
, and the center O00

�p
5

12
;

p
5

3

�
;

(3) the parabola x00 � p
2y002 D 0, the equation of the axes O00x00 W �x C y D 3

2
,

O00y00 W x C y D 11
4

, and the vertex O00 � 5
8
; 17

8

�
;

(4) the conic degenerates to a union of two parallel lines .2x C 3y � 8/.2xC
3y C 8/ D 0;

(5) the parabola x02 C 2y0 D 0, the equation of the axes Ox0 W �4x C 3y D 0,
Oy0 W 3x C 4y D 0, and the vertex O.0; 0/;

(6) the ellipse x002 C 11y002 � 6 D 0, the equation of the axes O00x00 W x � 3y D 2,
O00y00 W 3x C y D 6, and the center O00.2; 0/;

(7) the parabola y002 � 6p
5
x00 D 0, the equation of the axes O00x00 W �2x C y D 1,

O00y00 W x C 2y D 1, and the vertex O00 �� 1
5
; 3

5

�
;

(8) the hyperbola �x002 C4y002 �4 D 0, the equation of the axes O00x00 W �xC2y D
�4, O00y00 W 2x C y D 3, and the center O00.2; �1/;

(9) the hyperbola �x002 C 4y002 D 2, the equation of the axes O00x00 W 2x � y D 1,
O00y00 W x C 2y D 3, and the center O00.1; 1/;

(10) the conic degenerates to a union of two parallel lines .xCy�1/.xCyC3/ D
0;

(11) the hyperbola x002

9
� y002 D 1, the equation of axes O00x00 W �x C 2y D 1,

O00y00 W 2x C y D 3, and the center O00.1; 1/;

(12) the hyperbola x002

4
� y002

9
D 1, the equation of axes O00x00 W �2x C 3y D 1,

O00y00 W 3x C 2y D 5, and the center O00.1; 1/;

(13) the ellipse x002

8
C y002

4
D 1, the equation of the axes O00x00 W �x C 2y D 3,

O00y00 W 2x C y D 4, and the center O00.1; 2/;

(14) the ellipse x002

4
C y002

9
D 1, the equation of the axes O00x00 W 2x � y D 1,

O00y00 W x C 2y D 8, and the center O00.2; 3/;
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(15) the equilateral hyperbola x02 � y02 � 2k D 0, which is tangent to the x-axis
and the y-axis. If k > 0 the branches of the hyperbola are located in the first and the
third quadrant and if k < 0 the branches of the hyperbola are located in the second
and the fourth quadrant.

6.2. (1) The matrix associated with our conic is A D
�

5 a
a 5

�
, which has the

eigenvalues �1 D 5 � a and �2 D 5 C a. If a ¤ 0 the eigenvectors corresponding to

the eigenvalues �1 D 5 � a and �2 D 5 C a are X1 D 1p
2

�
1

�1

�
and X2 D 1p

2

�
1

1

�

and P D 1p
2

�
1 1

�1 1

�
D R� �

4
, which is a rotation matrix of angle � �

4
.

� If a D 0 the equation of the conic becomes C W 5x2 C 5y2 C 2x C 2y C 2 D 0

, C W 4x2 C 4y2 C .x C 1/2 C .y C 1/2 D 0 ) C D ;.
� If a D 5 we have C W 5x2 C 10xy C 5y2 C 2x C 2y C 2 D 0 , C W 4.x C y/2 C

.x C y C 1/2 C 1 D 0 ) C D ;.
� If a D �5 the equation of the conic becomes C W 5x2�10xyC5y2C2xC2yC2 D

0 , C W 5.x�y/2 C2.x�y/C4yC2 D 0 , C W 5
�
x � y C 1

5

�2 D �4
�
y C 9

20

�
,

which is a parabola.

We make the rotation

�
x
y

�
D P

�
x0
y0
�

and the equation of the conic becomes

.5 � a/x02 C .5 C a/y02 C 2
p

2y0 C 2 D 0 or

C W .5 � a/x02 C .5 C a/

 
y02 C 2

p
2

5 C a
y0 C 2

.5 C a/2

!
C 2

4 C a

5 C a
D 0:

� If a D �4 the equation of the conic becomes C W 9
2
.x � y/2 C 1

2
.x C y C2/2 D 0,

and the conic reduces to a point C D f.�1; �1/g.
� If a 2 .�5; �4/, we have 5 � a > 0, 5 C a > 0, 4Ca

5Ca < 0, which implies that C
is an ellipse.

� If a 2 .�4; 5/, we have 5 � a > 0, 5 C a > 0, 4Ca
5Ca > 0 ) C D ;.

� If a 2 .�1; �5/ [ .5; 1/, since 5 C a and 5 � a have opposite signs, we get
that C is a hyperbola.

In conclusion:

� If a 2 .�1; �5/ [ .5; 1/ ) C is a hyperbola.
� If a D �5 ) C is a parabola.
� If a 2 .�5; �4/ ) C is an ellipse.
� If a D �4 ) C reduces to a point.
� If a 2 .�4; 5� ) C is the empty set.
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(2) The matrix associated with the conic is A D
�

a 1

1 a

�
with eigenvalues �1 D

a C 1, �2 D a � 1 and eigenvectors X1 D 1p
2

�
1

1

�
, X2 D 1p

2

��1

1

�
and P D

1p
2

�
1 �1

1 1

�
D R �

4
, which is a rotation matrix of angle �

4
.

� If a D 1 we have .xCy/2 �2.xCy/C1 D �4y�8 , .xCy�1/2 D �4.yC2/,
which is a parabola.

� If a D �1 we have C W .x � y C 1/2 D 10 , C W x � y C 1 D ˙p
10 and the

conic reduces to a union of two lines.

� If a 2 R n f˙1g we make the rotation

�
x
y

�
D P

�
x0
y0
�

and the equation of the

conic becomes .a C1/x02 C .a �1/y02 C2
p

2y0 C9 D 0. We complete the square
in y0 and we get that

.a C 1/x02 C .a � 1/

 
y0 C

p
2

a � 1

!2

C 9a � 11

a � 1
D 0:

We distinguish between the following cases:

If a D 11
9

, since a C 1 > 0, a � 1 > 0, the conic reduces to the point
�

9
2
; � 9

2

�
.

If a > 11
9

, since a C 1 > 0, a � 1 > 0, 9a�11
a�1

> 0, the conic reduces to the
empty set.
If a 2 �1; 11

9

�
, then aC1 > 0, a�1 > 0, 9a�11

a�1
< 0 and the conic is an ellipse.

If a 2 .�1; 1/, then a C 1 > 0, a � 1 < 0, 9a�11
a�1

> 0 and the conic is a
hyperbola.
If a 2 .�1; �1/, then a C 1 < 0, a � 1 < 0, 9a�11

a�1
> 0 and the conic is an

ellipse.

In conclusion:

� If a 2 .�1; �1/ [ �
1; 11

9

�
, the conic is an ellipse.

� If a D �1, the conic is a union of two lines.
� If a 2 .�1; 1/, the conic is a hyperbola.
� If a D 1, the conic is a parabola.
� If a D 11

9
, the conic reduces to a point.

� If a 2 � 11
9

; 1�
, the conic is the empty set.

(3) We have x2 C 4xy C 4y2 C ax D 0 , .x C 2y/2 D �ax. If a D 0 the conic
degenerates to the line x C 2y D 0 and if a ¤ 0 the conic is a parabola.

(4) The matrix associated with the conic is A D
�

7 �4

�4 1

�
with eigenvalues

�1 D 9, �2 D �1. Making the rotation X D PY the equation of the conic becomes
9x02 � y02 C a D 0. If a ¤ 0 the conic is a hyperbola and if a D 0 the conic
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degenerates to a union of two lines. This follows since 7x2 � 8xy C y2 D 0 ,
.x � y/.7x � y/ D 0, which implies that x � y D 0 or 7x � y D 0. Thus, when a D 0

we have that C D D1 [ D2, where D1 W x � y D 0 and D2 W 7x � y D 0.

6.3. c D �12.

6.5. (a) We have, based on Remark 6.2, that the equation of the hyperbola which has
x C y � 1 D 0 as an asymptote is .ax C by C c/.x C y � 1/ C ˛ D 0, ˛ ¤ 0. Since
the points .1; 1/, .2; 1/, and .�1; �2/ are on the graph of the hyperbola we have the
system of linear equations

8̂̂
<
ˆ̂:

a C b C c C ˛ D 0

4a C 2b C 2c C ˛ D 0

4a C 8b � 4c C ˛ D 0:

This implies that the equation of the hyperbola is .2x � 3y � 3/.x C y � 1/ C 4 D 0.
(b) Since an equilateral hyperbola has perpendicular asymptotes we obtain that

the equation of the hyperbola is .x C y C c/.x � y C 1/ C ˛ D 0, ˛ ¤ 0. It follows
that .x C y � 4/.x � y C 1/ C 2 D 0.

6.6. We consider the curve C 2
k W p

x C p
y D p

k and observe that x; y 2 Œ0; k�. We
square both sides of this equation and we get xCyC2

p
xy D k , 2

p
xy D k�x�y.

This implies k � x C y and since x; y 2 Œ0; k� we get that our curve is contained in
the triangle having the vertices A.0; k/, B.k; 0/, and O.0; 0/. We square both sides
of the preceding equation and we have x2 � 2xy C y2 � 2kx � 2ky C k2 D 0. Thus,
our curve is a conic, more precisely the arc of a conic contained in 4OAB, i.e.

C 2
k W x2 � 2xy C y2 � 2kx � 2ky C k2 D 0; 0 � x � k; 0 � y � k:

The matrix associated with the quadratic form x2 �2xyCy2 is A D
�

1 �1

�1 1

�
, with

eigenvalues �1 D 0, �2 D 2 and the corresponding eigenvectors

X1 D
 

1p
2

1p
2

!
and X2 D

 � 1p
2

1p
2

!
:

The rotation matrix P is given by P D
 p

2
2

�
p

2
2p

2
2

p
2

2

!
D R �

4
. We make a rotation

which has the equations X D PY ,

8<
:

x D 1p
2
x0 � 1p

2
y0

y D 1p
2
x0 C 1p

2
y0 or

8<
:

x0 D 1p
2
x C 1p

2
y

y0 D � 1p
2
x C 1p

2
y
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Fig. 6.5 Lamé’s parabola

and the equation of the conic with respect to the coordinate system Ox0y0 becomes

y02 � p
2kx0 C k2

2
D 0 , y02 � p

2k
�

x0 � k
2
p

2

�
D 0. The translation of equations

x00 D x0 � k
2
p

2
, y00 D y0, reduces the conic to its canonical form which has, with

respect to the system of coordinates O00x00y00, the equation y002 � p
2kx00 D 0. This

is a parabola, so our curve C 2
k is the arc of this parabola, tangent to the x and the y

axes, which is contained in 4OAB.
The axes of the new system of coordinates are O00x00 W y00 D 0 , y0 D 0 ,

x � y D 0 and O00y00 W x00 D 0 , x0 D k
2
p

2
, x C y D k

2
. The vertex of the

parabola, the point where the two axes intersect, has coordinates
�

k
4
; k

4

�
.

Similarly, one can prove that the other two curves C 1
k and C 3

k are parts of the same
parabola, i.e., C 1

k is the unbounded arc of the parabola, above the line y � x D 0,
which is tangent to the y axis at A.0; k/ and C 3

k is the unbounded arc, below the line
y � x D 0, which is tangent to the x axis at B.k; 0/ (Fig. 6.5).

6.7. The matrix corresponding to the quadratic form of C is A D
�

1 �2

�2 1

�
, which

has the eigenvalues �1 D 3 and �2 D �1. Since �1�2 < 0 the conic is a hyperbola.
We write the equation of the conic as .x�2y/2 �3y2 D 1 and we note this is a Pell’s
equation which has the minimal solution x0 D 4, y0 D 1. The general solution of
this equation is given by xn � 2yn C yn

p
3 D .2 C p

3/n and this implies that

xn�2yn D .2 C p
3/n C .2 � p

3/n

2
and yn D .2 C p

3/n � .2 � p
3/n

2
p

3
; n � 1:

The lattice points on the hyperbola are .˙1; 0/ and .˙xn; ˙yn/, where
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xn D
�

1

2
C 1p

3

�
.2 C p

3/n C
�

1

2
� 1p

3

�
.2 � p

3/n,

yn D 1

2
p

3
.2 C p

3/n � 1

2
p

3
.2 � p

3/n, n � 1.

6.8. A direct computation shows that .2; 0/, .3; 1/ and .7; 3/ are on the hyperbola.
We determine A 2 M2 .Q/ which generates infinitely many lattice points .xn; yn/ 2
H via the recurrence relation

�
xnC1

ynC1

�
D A

�
xn

yn

�
, n � 0. Let

�
x0

y0

�
D

�
2

0

�
,

�
x1

y1

�
D
�

3

1

�
and

�
x2

y2

�
D
�

7

3

�
. We have

�
3

1

�
D A

�
2

0

�
,

�
7

3

�
D A

�
3

1

�
and

it follows that

�
3 7

1 3

�
D A

�
2 3

0 1

�
. This implies that A D 1

2

�
3 5

1 3

�
. The matrix

recurrence relation implies that xnC1 D 1
2
.3xn C 5yn/ and ynC1 D 1

2
.xn C 3yn/,

n � 0. One can check that x2
nC1 � 5y2

nC1 D x2
n � 5y2

n D 4, for all n � 0, so
.xn; yn/ 2 H , for all n � 0.

6.9. (a) The center of the ellipse is the midpoint of the segment ŒF1F2� which is
O00.2

p
3; 3/. The large semi axes of the ellipse is on the line F1F2 which has the

equation O00x00 W y D 1p
3
x C 1. The small semi axes, which passes through O00 and

is perpendicular to O00x00, has equation O00y00 W y D �p
3x C 9. The angle between

Ox and O00x00 is given by the slope of the line O00x00, i.e., m D 1p
3

D tan �
6

, so the

coordinate system O00x00y00 is obtained from the canonical system Oxy by a rotation
of angle �

6
followed by a translation which sends the origin O.0; 0/ to O00.2

p
3; 3/.

The coordinates x00 and y00, with respect to the coordinate system O00x00y00, of a point
M.x; y/ are given by

�
x00
y00
�

D
 p

3
2

1
2

� 1
2

p
3

2

!�
x � 2

p
3

y � 3

�
: (6.5)

The ellipse has the focal distance F1F2 D 4, so c D 2, a D 3, and b2 D a2 �c2 D 5.

The equation of the ellipse with respect to the system O00x00y00 is C W x002

9
C y002

5
�1 D

0. Using equation (6.5), we get that x00 D 1
2
.
p

3x C y � 9/ and y00 D 1
2
.�x Cp

3y � p
3/ and replacing them in the equation of the ellipse we obtain that C W

6x2 C 8y2 � 2
p

3xy � 18
p

3x � 36y C 63 D 0.

(b) The matrix of the quadratic form of the ellipse is A D
�

6 �p
3

�p
3 8

�
which

has the eigenvalues �1 D 5 and �2 D 9. The eigenvectors corresponding to the

two eigenvalues are X1 D
 p

3
2
1
2

!
and X2 D

 
�

p
3

2
1
2

!
. The matrix P, of passing to

the Jordan canonical form of A, is given by P D
 p

3
2

� 1
2

1
2

p
3

2

!
D R �

6
. We make a
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rotation of angle �
6

around the origin and we obtain the coordinate system Ox0y0.
With respect to this system a point on the ellipse C would have the coordinates x0
and y0 which are defined by the system of equations

�
x
y

�
D
 p

3
2

� 1
2

1
2

p
3

2

!�
x0
y0
�

:

Without making the calculations the quadratic form 6x2 C 88y2 � 2
p

3xy, of the
conic, becomes 5x02 C 9y02 and the linear terms from the equation of the conic are
calculated, based on the previous equations and we get that the equation of the conic,
with respect to the system Ox0y0 becomes C W 5x02 C 9y02 � 45x0 � 9

p
3y0 C 63 D 0

or C W 5
�
x0 � 9

2

�2 C 9
�

y0 �
p

3
2

�2 � 45 D 0. We make a translation of equations

x00 D x0 � 9
2

and y00 D y0 �
p

3
2

, we obtain a new system of coordinates O00x00y00, and

the equation of the conic with respect to this system becomes x002

9
C y002

5
� 1 D 0,

which is the same equation we obtained in part (a) of the problem.

The axes of the new system of coordinates are O00x00 W y00 D 0 , y0 D
p

3
2

,
x � p

3y � p
3 D 0 and O00y00 W x00 D 0 , x0 D 9

2
, p

3x C y � 9 D 0. The center
of the ellipse, which is the intersection of these two lines, is O00.2

p
3; 3/. Therefore

the conic is an ellipse of semi axes a D 3 and b D p
5.

6.10. (a) The center of the hyperbola is the midpoint of the segment ŒF1F2�, i.e.,
O00.1; 4/. The focal distance is F1F2 D 4

p
2, so c D 4

p
2, a D 2 and b2 D

c2 � a2 D 4, which implies that the hyperbola is equilateral. We choose the system
of coordinates O00x00y00 such that the x00 axis is the line F1F2 which has the equation
O00x00 W y D x C 3 and the y00 axis, perpendicular to the x00 axis and passing through
O00, has the equation O00y00 W y D �x C 5. With respect to the coordinate system

O00x00y00 the hyperbola has the equation x002

4
� y002

4
� 1 D 0 , x002 � y002 � 4 D 0. The

coordinate system O00x00y00 is obtained by a rotation of angle �
4

, the angle between the
lines O00x00 and Ox, and a translation which sends O to O00. The equations involving
the coordinates .x; y/ and .x00; y00/ of a point M with respect to the coordinate systems
Oxy and O00x00y00 are given by

�
x00
y00
�

D R� �
4

�
x � 1

y � 4

�
D
 p

2
2

p
2

2

�
p

2
2

p
2

2

!�
x � 1

y � 4

�
:

It follows that x00 D
p

2
2

.x C y � 5/ and y00 D
p

2
2

.�x C y � 3/ and replacing them in
x002 �y002 �4 D 0 we get the equation of the hyperbola with respect to the coordinate
system Oxy, xy � 4x � y � 2 D 0.

(b) We write the equation of the conic as C W 2xy � 8x � 2y C 4 D 0 and

we note the matrix corresponding to the quadratic form 2xy is A D
�

0 1

1 0

�
which
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has the eigenvalues �1 D 1 and �2 D �1 and the eigenvectors X1 D
 p

2
2p
2

2

!
and

X2 D
 

�
p

2
2p
2

2

!
. The matrix P, of passing to the Jordan canonical form of A, is given

by P D
 p

2
2

�
p

2
2p

2
2

p
2

2

!
D R �

4
. We change the coordinates by making the rotation

�
x
y

�
D R �

4

�
x0
y0
�

and we get the equation of the conic with respect to the coordinate

system Ox00y0: x02�y02�5
p

2x0�3
p

2y0C4 D 0 ,
�

x0 � 5
p

2
2

�2�
�

y0 � 3
p

2
2

�2�4 D
0. This implies that x002

4
� y002

4
� 1 D 0, where x00 D x0 � 5

p
2

2
and y00 D y0 � 3

p
2

2
.

The axes of the new system of coordinates are O00x00 W y00 D 0 , y D x C 3 and
O00y00 W x00 D 0 , y D �xC5. The center of the hyperbola, which is the intersection
of these two lines, is O00.1; 4/.

6.11. (a) The locus is a parabola with directrix D and focus F. The symmetry axis of
the parabola is the line which passes through F and is perpendicular to D . The slope

of D is m D
p

3
3

and the slope of the symmetry axis is m0 D � 1
m D �p

3. It follows

that the symmetry axis has the equation D 0 W y D �p
3.x � 2/. The projection of

F onto the directrix is the point F0.1;
p

3/, the intersection point of lines D and D 0,
FF0 D 2, so p D 4.

The center of the coordinate system with respect to which the parabola has the

equation P W y002 D 2px00 is the midpoint of the segment ŒFF0�, i.e., O00
�

3
2
;

p
3

2

�
and

the coordinate axes O00x00 D D 0 W y D �p
3.x C 2/ and O00y00 W x � p

3y D 0, a line
parallel to D . With respect to the coordinate system O00x00y00 the equation of parabola
is P W y002 D 8x00. The angle between the axes O00x00 and Ox is given by the slope of
D 0, i.e., m D tan ˛ D �p

3, so ˛ D � �
3

. Thus, the system O00x00y00 is obtained by
a rotation of angle � �

3
followed by a translation of vector OO00. The equations that

relate the coordinates of a point M with respect to the coordinate systems O00x00y00
and Oxy are given by

�
x00
y00
�

D R �
3

 
x � 3

2

y �
p

3
2

!
D
 

1
2

�
p

3
2

�
p

3
2

1
2

! 
x � 3

2

y �
p

3
2

!
:

We obtain the equation of the parabola

P W 3x2 C y2 C 2
p

3xy � 28x C 12
p

3y C 12 D 0:

(b) The matrix corresponding to the quadratic form 3x2 C y2 C 2
p

3xy is A D�
3

p
3p

3 1

�
which has the eigenvalues �1 D 0 and �2 D 4 and the corresponding
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eigenvectors X1 D
 

1
2

�
p

3
2

!
and X2 D

 p
3

2
1
2

!
. The matrix P, of passing to the Jordan

canonical form of A, is given by P D
 

1
2

p
3

2

�
p

3
2

1
2

!
D R� �

3
. We rotate the coordinate

system Oxy by an angle � �
3

and we obtain the coordinate system Ox0y0 and we have
the equations

�
x
y

�
D R� �

3

�
x0
y0
�

or

�
x0
y0
�

D R �
3

�
x
y

�
:

The equation of the conic with respect to the coordinate system Ox0y0 is y02 �
2
p

3y0 C 3 D 8x0 , .y0 � p
3/2 D 8x0 , y002 D 8x00, where x00 D x0 and

y00 D y0 � p
3.

The axes of the system of coordinates are O00x00 W y00 D 0 , y0 D p
3 ,p

3x C y � 2
p

3 D 0 which is line D 0, and O00y00 W x00 D 0 , x0 D 0 , x � p
3y D

0. The center of the system, the intersection of the coordinate axes, is the point

O00
�

3
2
;

p
3

2

�
.

6.12. Let M1.a cos t1; b sin t1/ and M2.a cos t2; b sin t2/ and M1 � M2 D
M.a cos t; b sin t/. The slope of the line M1M2 is given by m D b

a
sin t2�sin t1
cos t2�cos t1

D
� b

a cot t1Ct2
2

. The equation of the line which passes through A parallel to M1M2 is
given by D W y D � b

a cot t1Ct2
2

.x � a/. Intersecting the line with the ellipse we get
the equation b sin t D b

a cot t1Ct2
2

a.cos t � 1/ , sin t
2

cos t
2

D sin2 t
2

cot t1Ct2
2

. When
sin t

2
D 0 we get the point A and when sin t

2
¤ 0 we have that tan t

2
D tan t1Ct2

2
, so

t D t1 C t2.
The binary operation � is associative since M.t1/ � .M.t2/ � M.t3// D .M.t1/ �

M.t2//�M.t3/ D M.t1 C t2 C t3/ and commutative M.t1/�M.t2/ D M.t2/�M.t1/ D
M.t1 C t2/. The identity element of � is A D M.0/ and the inverse element of M.t/
with respect to � is M0.�t/, which is the symmetric point of M with respect to the x
axis.

6.13. The matrix associated with the quadratic term 2x2 C 2xy C 2y2 of the function

2f .x; y/ is A D
�

2 1

1 2

�
which has the eigenvalues �1 D 3 and �2 D 1 and the

corresponding eigenvectors v1 D
 

1p
2

1p
2

!
and v2 D

 � 1p
2

1p
2

!
. It follows that

JA D
�

3 0

0 1

�
and P D

 
1p
2

� 1p
2

1p
2

1p
2

!
:
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We make a rotation of equations

8<
:

x D 1p
2
x0 � 1p

2
y0

y D 1p
2
x0 C 1p

2
y0

and we obtain that the function 2f has, with respect to the coordinate system x0Oy0,
the expression g.x0; y0/ D 3x02 C y02 � 2

p
2y0 � 2 D 3x02 C .y0 � p

2/2 � 4. The
function g has the minimum value �4, when .x0; y0/ D .0;

p
2/. The minimum value

of f is obtained when .x; y/ D .�1; 1/ and is equal to f .�1; 1/ D �2.

6.14. (a) The matrix associated with the quadratic form 3x2 � 2xy C 3y2 is A D�
3 �1

�1 3

�
which has the eigenvalues �1 D 2, �2 D 4 and the corresponding

eigenvectors are v1 D
 

1p
2

1p
2

!
and v2 D

 � 1p
2

1p
2

!
. It follows that

JA D
�

2 0

0 4

�
and P D

 
1p
2

� 1p
2

1p
2

1p
2

!
:

We make the rotation
8<
:

x D 1p
2
x0 � 1p

2
y0

y D 1p
2
x0 C 1p

2
y0

and the equation of the conic becomes x02 C 2y02 C 2
p

2x0 � 2 D 0 , .x0 C p
2/2 C

2y02 D 4. The translation of equations x0 Cp
2 D x00, y0 D y00 shows that our conic is

the ellipse x002 C 2y002 D 4. The parametric equations of this ellipse are x00 D 2 cos t,
y00 D p

2 sin t, t 2 Œ0; 2�/. Using the equations of the rotation and the translation
we get that

(
x D p

2 cos t � sin t � 1

y D p
2 cos t C sin t � 1;

where t 2 Œ0; 2�/. It follows that f .x; y/ D g.t/ D 2
p

2 cos t � 2, t 2 Œ0; 2�/. This
function has the minimum value �2

p
2 � 2, when t D � and the maximum value

2
p

2�2, when t D 0. Thus, the global minimum value of f , subject to the constraint,
is �2

p
2 � 2 obtained at .x; y/ D .�p

2 � 1; �p
2 � 1/ and the global maximum

value of f is 2
p

2 � 2 obtained at .x; y/ D .
p

2 � 1;
p

2 � 1/.
Nota bene. Let E be the ellipse 3x2 � 2xy C 3y2 C 4x C 4y � 4 D 0. It is worth

mentioning that since f is a continuous function and E is a compact set we know,
based on the Weierstrass Theorem, that f jE has a global minimum and a global
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maximum. Using the Lagrange multipliers method one can only need to determine
the constraint critical points of f , in our case there are two such points, and then
to observe that one is a point of global minimum and the other is a point of global
maximum.

(b) The matrix associated with the quadratic form 3x2C10xyC3y2 is A D
�

3 5

5 3

�

which has the eigenvalues �1 D 8 and �2 D �2 and the corresponding eigenvectors

v1 D
 

1p
2

1p
2

!
and v2 D

 � 1p
2

1p
2

!
. It follows that

JA D
�

8 0

0 �2

�
and P D

 
1p
2

� 1p
2

1p
2

1p
2

!
:

The rotation
8<
:

x D 1p
2
x0 � 1p

2
y0

y D 1p
2
x0 C 1p

2
y0

and the translation

(
x0 � p

2 D x00

y0 D y00

show that our conic is the hyperbola 4x002 � y002 D 16.
Let H be this hyperbola and let H1 and H2 be the two branches of H , i.e.,

H D H1 [ H2.
The parametric equation of H1 are x00 D 2 cosh t, y00 D 4 sinh t, t 2 R. We get

from the equations of the rotation and the translation that

(
x D 1 C p

2 cosh t � 2
p

2 sinh t

y D 1 C p
2 cosh t C 2

p
2 sinh t;

t 2 R. Thus, we study the extreme values of the function g.t/ D f .x; y/ D 2x C y D
3C 1

2

�p
2et C 5

p
2e�t

�
, t 2 R. A calculation shows that g has the global minimum

value 3 C p
10 when t D ln

p
5. Thus, the global minimum value of f is 3 C p

10

obtained when x D 1 �
q

2
5

and y D 1 C 7

q
2
5
.

On the other hand, the parametric equations of H2 are x00 D �2 cosh t, y00 D
4 sinh t, t 2 R. This implies that
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(
x D 1 � p

2 cosh t � 2
p

2 sinh t

y D 1 � p
2 cosh t C 2

p
2 sinh t;

t 2 R. Now we study the extreme values of the function h.t/ D f .x; y/ D 2x C y D
3 � 1

2

�
5
p

2et C p
2e�t

�
, t 2 R. This function has the absolute maximum value

3 � p
10 at t D � ln

p
5. Thus, the absolute maximum value of f is 3 � p

10

obtained when x D 1 C
q

2
5

and y D 1 � 7

q
2
5
.

(c) The matrix associated with the quadratic form 9x2 C 24xy C 16y2 is A D�
9 12

12 16

�
which has the eigenvalues �1 D 25 and �2 D 0 and the corresponding

eigenvectors v1 D
�

3
5
4
5

�
and v2 D

�� 4
5

3
5

�
. It follows that

JA D
�

25 0

0 0

�
and P D

�
3
5

� 4
5

4
5

3
5

�
:

The rotation

(
x D 3

5
x0 � 4

5
y0

y D 4
5
x0 C 3

5
y0

shows that the equation of the conic becomes x02 C 2y0 D 0. The parametric
equations of this parabola are x0 D t, y0 D � t2

2
, t 2 R. The equations of the rotation

imply that x D 3
5
t C 2

5
t2 and y D 4

5
t � 3

10
t2. Now we study the extreme values of

the function g.t/ D f .x; y/ D 2x � y D 2
5
t C 11

10
t2, which has a global minimum at

t D � 2
11

. The global minimum value of f is � 2
55

which is obtained when x D � 58
605

and y D � 94
605

.

6.15. Let f .x; y/ D ax2 C 2bxy C cy2 and let L be the Lagrangian L.x; y/ D ax2 C
2bxy C cy2 � �.x2 C y2 � 1/. Then

(
@L
@x D 2ax C 2by � 2�x D 0
@L
@y D 2bx C 2cy � 2�y D 0

,
(

.a � �/x C by D 0

bx C .c � �/y D 0:

Thus, X0 D
�

x0

y0

�
is a constrained critical point of f subject to x2 C y2 D 1 if and

only if Af X0 D �X0, for some �. That is, if and only if � is an eigenvalue of Af

and X0 is its corresponding unit eigenvector. If X0 D
�

x0

y0

�
, with x2

0 C y2
0 D 1, then

f .x0; y0/ D .ax0 C by0/x0 C .bx0 C cy0/y0 D �x2
0 C �y2

0 D �. Therefore, the largest
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and the smallest eigenvalues of A are the maximum and the minimum of f subject
to x2 C y2 D 1.

6.16. The curve is an ellipse whose canonical form is 4x002 C y002 D 16. Since the

area of the domain bounded by the ellipse x2

a2 C y2

b2 D 1 is �ab and, by making a
rotation and a translation the area of a domain is preserved, we get that the area of
the domain bounded by the curve 5x2 C 6xy C 5y2 � 16x � 16y � 16 D 0 is 8� .

6.17. (a)
2�.e � 1/p

3
; (b)

2�.e � 1/p
3

; (c)
2�

e
p

3
; (d)

2�

e
p

3
.

6.18. (a) The matrix associated with the quadratic form ax2 � bxy C ay2 is A D�
a � b

2

� b
2

a

�
which has eigenvalues �1 D a � b

2
and �2 D a C b

2
. We have

JA D
�

a � b
2

0

0 a C b
2

�
and P D 1p

2

�
1 �1

1 1

�
:

We change variables according to the equation X D PY , i.e.

�
x
y

�
D 1p

2

�
1 �1

1 1

��
x0
y0
�

)
8<
:

x D 1p
2

.x0 � y0/
y D 1p

2
.x0 C y0/

and we get that

I1 D
Z Z

D1

eax2�bxyCay2

dxdy D
Z Z

D0

1

e.a� b
2 /x02C.aC b

2 /y02

ˇ̌̌
ˇ D.x; y/

D.x0; y0/

ˇ̌̌
ˇ dx0dy0;

where
D.x; y/

D.x0; y0/
is the Jacobian of the transformation and D0

1 is the elliptical disk

D0
1 D

	
.x0; y0/ 2 R

2 W
�

a � b

2

�
x02 C

�
a C b

2

�
y02 � ˛



:

Passing to polar coordinates x0 D � cos �p
a� b

2

and y0 D � sin �p
aC b

2

, where � 2 Œ0; 2�/ and

� 2 Œ0;
p

˛/ we get that

I D
Z p

˛

0

Z 2�

0

e�2 �q
a2 � b2

4

d�d� D 4�p
4a2 � b2

Z p
˛

0

�e�2

d� D 2� .e˛ � 1/p
4a2 � b2

:

(b) The integral equals
2� .e˛ � 1/p

4a2 � b2
.

(c) The integral equals
2�

e˛
p

4a2 � b2
.
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(d) The matrix associated with the quadratic form ax2 CbxyCay2 is A D
�

a b
2

b
2

a

�

which has eigenvalues �1 D a C b
2

and �2 D a � b
2
. We have

JA D
�

a C b
2

0

0 a � b
2

�
and P D 1p

2

�
1 �1

1 1

�
:

We change variables according to the equation X D PY , i.e.

�
x
y

�
D 1p

2

�
1 �1

1 1

��
x0
y0
�

)
8<
:

x D 1p
2

.x0 � y0/
y D 1p

2
.x0 C y0/

and we get that

I4 D
Z Z

D4

e�ax2�bxy�ay2

dxdy D
Z Z

D0

4

e�.aC b
2 /x02�.a� b

2 /y02

ˇ̌̌
ˇ D.x; y/

D.x0; y0/

ˇ̌̌
ˇ dx0dy0;

where
D.x; y/

D.x0; y0/
is the Jacobian of the transformation and D0

4 is the exterior,

including the boundary, of the elliptical disk

D0
4 D

	
.x0; y0/ 2 R

2 W
�

a C b

2

�
x02 C

�
a � b

2

�
y02 � ˛



:

Passing to polar coordinates x0 D � cos �p
aC b

2

and y0 D � sin �p
a� b

2

, where � 2 Œ0; 2�/ and

� 2 Œ
p

˛; 1/ we get that

I4 D
Z 1

p
˛

Z 2�

0

e��2 �q
a2 � b2

4

d�d� D 4�p
4a2 � b2

Z 1
p

˛

�e��2

d� D 2�

e˛
p

4a2 � b2
:

6.19. (a) The integral equals 0. See the solution of part (b).

(b) The matrix associated with the quadratic form ax2 CbxyCay2 is A D
�

a b
2

b
2

a

�

which has the eigenvalues �1 D a C b
2

and �2 D a � b
2
. A calculation shows that the

Jordan canonical form of A and the invertible matrix P which verifies the equality
A D PJAP�1 are given by

JA D
�

a C b
2

0

0 a � b
2

�
and P D 1p

2

�
1 �1

1 1

�
:
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We change variables according to the equation X D PY , i.e.

�
x
y

�
D 1p

2

�
1 �1

1 1

��
x0
y0
�

)
8<
:

x D 1p
2

.x0 � y0/
y D 1p

2
.x0 C y0/

and we get that

I D
Z Z

D˛

xye�ax2�bxy�ay2

dxdy

D 1

2

Z Z
D0

˛

�
x02 � y02� e�.aC b

2 /x02�.a� b
2 /y02

ˇ̌̌
ˇ D.x; y/

D.x0; y0/

ˇ̌̌
ˇ dx0dy0;

where
D.x; y/

D.x0; y0/
is the Jacobian of the transformation and D0̨ is the exterior,

including the boundary, of the elliptical disk

D0̨ D
	

.x0; y0/ 2 R
2 W

�
a C b

2

�
x02 C

�
a � b

2

�
y02 � ˛



:

Passing to polar coordinates x0 D � cos �p
aC b

2

, y0 D � sin �p
a� b

2

, where � 2 Œ0; 2�/ and

� 2 Œ
p

˛; 1/, we get that

I D 1p
4a2 � b2

Z 1
p

˛

Z 2�

0

 
�2 cos2 �

a C b
2

� �2 sin2 �

a � b
2

!
e��2

�d�d�

D 1p
4a2 � b2

"
1

a C b
2

Z 1
p

˛

�3e��2

d�

Z 2�

0

cos2 �d�

� 1

a � b
2

Z 1
p

˛

�3e��2

d�

Z 2�

0

sin2 �d�

#

D 1p
4a2 � b2

Z 1
p

˛

�3e��2

d�

 
�

a C b
2

� �

a � b
2

!

D � 4b�p
4a2 � b2.4a2 � b2/

�
�1

2
.1 C �2/e��2

� ˇ̌̌
ˇ
1
p

˛

D � 2b�.1 C ˛/p
4a2 � b2.4a2 � b2/e˛

:
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6.21. (a) We have, based on part (b), that the integral equals
�e2

p
8

.

(b) Let �1; �2 be the eigenvalues of A, let JA D
�

�1 0

0 �2

�
be the Jordan canonical

form of A and let P be the orthogonal (rotation) matrix which satisfies A D PJAP�1.

We have that P D .X1 j X2/, where X1 D
�

x1

y1

�
and X2 D

�
x2

y2

�
are the eigenvectors

corresponding to the eigenvalues �1 and �2. Using the substitution v D
�

x
y

�
D

P

�
x0
y0
�

we get that

I D
Z Z

R2

e�.vT AvC2bT vCc/dxdy

D
Z Z

R2

e�.�1x02C�2y02Cb0

1x0Cb0

2y0Cc/

ˇ̌̌
ˇ D.x; y/

D.x0; y0/

ˇ̌̌
ˇ dx0dy0

D
Z Z

R2

e�.�1x02C�2y02Cb0

1x0Cb0

2y0Cc/dx0dy0;

where b0
1 D 2bTX1 and b0

2 D 2bTX2. We make the substitutions x0p�1 D u,
y0p�2 D v and we have that

I D 1p
det A

Z Z
R2

e
�
�

u2Cv2C b0

1
p

�1
uC b0

2
p

�2
vCc

�
dudv

D 1p
det A

Z Z
R2

e
�
�

t2Cw2Cc� b02
1

4�1
� b02

2
4�2

�
dtdw;

where the last equality follows based on the substitutions u C b0

1

2
p

�1
D t,

v C b0

2

2
p

�2
D w.

We have, since X1 D �1A�1X1 and X2 D �2A�1X2, that

�2b02
1 C �1b02

2 D �2

�
2bTX1

� �
2XT

1 b
�C �1

�
2bTX2

� �
2XT

2 b
�

D 4�1�2bTA�1
�
X1XT

1 C X2XT
2

�
b

D 4 det AbTA�1I2b

D 4 det AbTA�1b;
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and this implies that

I D ebT A�1b�c

p
det A

Z Z
R2

e�t2�w2

dtdw

D ebT A�1b�c

p
det A

Z 1

0

Z 2�

0

e��2

�d�d�

D �p
det A

ebT A�1b�c:



Appendix A
Gems of classical analysis and linear algebra

A.1 Series mirabilis

Chance favours only the prepared mind.
Louis Pasteur (1822–1895)

Lemma A.1 [32] A power series with the tail of ln 1
2
.

The convergence set of the power series

1X
nD1

�
ln

1

2
C 1 � 1

2
C � � � C .�1/n�1

n

�
xn

is .�1; 1� and the following equality holds

1X
nD1

 
ln

1

2
C 1 � 1

2
C � � � C .�1/n�1

n

!
xn D

8<
:

ln 2 � 1
2 if x D 1

ln.1 C x/ � x ln 2

1 � x
if x 2 .�1; 1/:

Proof First we show that if n � 1 is an integer, then

ln
1

2
C 1 � 1

2
C � � � C .�1/n�1

n
D .�1/n�1

Z 1

0

xn

1 C x
dx:
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We have

ln
1

2
C 1 � 1

2
C � � � C .�1/n�1

n
D ln

1

2
�

nX
kD1

.�1/k

k

D ln
1

2
�

nX
kD1

.�1/k
Z 1

0

xk�1dx

D ln
1

2
C
Z 1

0

nX
kD1

.�x/k�1dx

D ln
1

2
C
Z 1

0

1 � .�x/n

1 C x
dx

D .�1/n�1

Z 1

0

xn

1 C x
dx:

Let an D ln
1

2
C 1 � 1

2
C � � � C .�1/n�1

n
. The radius of convergence of the power

series
1P

nD1

anxn is given by R D lim
n!1

janj
janC1j . A calculation shows that

anC1

an
D 1 � 1

.n C 1/
R 1

0
xn

1Cx dx
:

On the other hand,

.n C 1/

Z 1

0

xn

1 C x
dx D xnC1

1 C x

ˇ̌
ˇ̌1
0

C
Z 1

0

xnC1

.1 C x/2
dx D 1

2
C
Z 1

0

xnC1

.1 C x/2
dx;

and this implies, since
R 1

0
xnC1

.1Cx/2 dx <
R 1

0
xnC1dx D 1

nC2
, that lim

n!1.n C
1/
R 1

0
xn

1Cx dx D 1
2
. Thus, R D 1 and the series converges on .�1; 1/.

Now we show that the series converges when x D 1 and diverges when x D �1.
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Let x D 1. We prove that the sum of the series equals ln 2 � 1

2
. Let N 2 N. We

calculate the Nth partial sum of the series and we get that

sN D
NX

nD1

�
ln

1

2
C 1 � 1

2
C � � � C .�1/n�1

n

�
D

NX
nD1

.�1/n�1

Z 1

0

tn

1 C t
dt

D �
Z 1

0

1

1 C t

NX
nD1

.�t/ndt D
Z 1

0

t.1 � .�t/N/

.1 C t/2
dt

D
Z 1

0

t

.1 C t/2
dt � .�1/N

Z 1

0

tNC1

.1 C t/2
dt

D ln 2 � 1

2
� .�1/N

Z 1

0

tNC1

.1 C t/2
dt:

This implies, since 0 <

Z 1

0

tNC1

.1 C t/2
dt <

Z 1

0

tNC1dt D 1

N C 2
, that lim

N!1 sN D

ln 2 � 1

2
.

When x D �1 we get that

1X
nD1

.�1/n

�
ln

1

2
C 1 � 1

2
C � � � C .�1/n�1

n

�
D �

1X
nD1

Z 1

0

tn

1 C t
dt

�D �
Z 1

0

1

1 C t

1X
nD1

tndt

D �
Z 1

0

t

1 � t2
dt

D 1

2
ln.1 � t2/

ˇ̌
ˇ̌1�

0

D �1:

We used at step (�) Tonelli’s Theorem for nonnegative functions which allow us to
interchange the summation and the integration signs.
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Let x 2 .�1; 1/ and let N 2 N. We have

sN.x/ D
NX

nD1

�
ln

1

2
C 1 � 1

2
C � � � C .�1/n�1

n

�
xn

D
NX

nD1

.�1/n�1

Z 1

0

xntn

1 C t
dt D �

Z 1

0

1

1 C t

NX
nD1

.�xt/ndt

D
Z 1

0

tx.1 � .�tx/N/

.1 C t/.1 C xt/
dt

D
Z 1

0

tx

.1 C t/.1 C tx/
dt � .�1/N

Z 1

0

.tx/NC1

.1 C t/.1 C xt/
dt:

On the other hand,
ˇ̌
ˇ̌ Z 1

0

.tx/NC1

.1 C t/.1 C xt/
dt

ˇ̌
ˇ̌�
Z 1

0

tNC1

j1 C txjdt � 1

1 � jxj
Z 1

0

tNC1dt D 1

.N C 2/.1 � jxj/ ;

and this implies that

lim
N!1 sN.x/ D

Z 1

0

tx

.1 C t/.1 C tx/
dt:

A calculation shows that

Z 1

0

tx

.1 C t/.1 C tx/
dt D

Z 1

0

x

1 � x

�
� 1

1 C t
C 1

1 C tx

�
dt D ln.1 C x/ � x ln 2

1 � x
:

Lemma A.1 is proved. �

The Polylogarithm function Lin.z/ is defined, for jzj � 1 and n ¤ 1; 2, by

Lin.z/ D
1X

kD1

zk

kn
D
Z z

0

Lin�1.t/

t
dt:

When n D 1, we define Li1.z/ D � ln.1 � z/ and when n D 2, we have that
Li2.z/, also known as the Dilogarithm function, is defined by

Li2.z/ D
1X

nD1

z2

n2
D �

Z z

0

ln.1 � t/

t
dt:

Before we give the proofs of the next two lemmas we collect a result from the
theory of series. Recall that Abel’s summation formula [11, p. 55], [22, p. 258]
states that if .an/n�1 and .bn/n�1 are two sequences of real or complex numbers and

An D
nP

kD1

ak, then
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nX
kD1

akbk D AnbnC1 C
nX

kD1

Ak.bk � bkC1/; n 2 N:

We also use, in our calculations, the infinite version of the preceding formula

1X
kD1

akbk D lim
n!1.AnbnC1/ C

1X
kD1

Ak.bk � bkC1/;

provided the infinite series converges and the limit is finite.

Lemma A.2 The generating function of the tail of �.k/.

Let k � 3 be an integer and let x 2 Œ�1; 1�. The following formula holds

1X
nD1

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

nk

�
xn D

8<
:

x�.k/ � Lik.x/

1 � x
if x 2 Œ�1; 1/

�.k � 1/ � �.k/ if x D 1;

where Lik denotes the polylogarithm function.

Proof If x D 0 we have nothing to prove, so we consider the case when x 2 Œ�1; 1/

and x ¤ 0. We use Abel’s summation formula, with an D xn and bn D �.k/ � 1
1k �

1
2k � � � � � 1

nk . We have

1X
nD1

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

nk

�
xn

D lim
n!1.x C x2 C � � � C xn/

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

.n C 1/k

�

C
1X

nD1

.x C x2 C � � � C xn/
1

.n C 1/k

D x

1 � x

1X
nD1

�
1

.n C 1/k
� xn

.n C 1/k

�

D x

1 � x



�.k/ � 1 � 1

x
.Lik.x/ � x/

�

D x�.k/ � Lik.x/

1 � x
:
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Now we consider the case when x D 1. We use Abel’s summation formula, with
an D 1 and bn D �.k/ � 1

1k � 1
2k � � � � � 1

nk . We have

1X
nD1

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

nk

�
D lim

n!1 n

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

.n C 1/k

�

C
1X

nD1

n

.n C 1/k

D
1X

nD1

�
1

.n C 1/k�1
� 1

.n C 1/k

�

D �.k � 1/ � �.k/;

and the lemma is proved. �

Lemma A.3 The generating function of n times the tail of �.k/.

(a) Let k � 3 be an integer and let x 2 Œ�1; 1/. The following formula holds

1X
nD1

n

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

nk

�
xn�1 D �.k/ � 1�x

x Lik�1.x/ � Lik.x/

.1 � x/2
;

where Lik denotes the polylogarithm function.

(b) Let k > 3 be a real number. Then

1X
nD1

n

�
�.k/ � 1

1k
� 1

2k
� � � � � 1

nk

�
D 1

2
.�.k � 2/ � �.k � 1// :

Proof (a) Differentiate the series in Lemma A.2.
(b) This part of the lemma can be proved by applying Abel’s summation formula

with an D n and bn D �.k/ � 1
1k � 1

2k � � � � � 1
nk . �

A.2 Two quadratic Frullani integrals

In this section we prove a lemma which is used in the solution of problem 4.102.
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Lemma A.4 Frullani in disguise.

Let ˛ be a positive real number. The following equality holds

Z 1

0

Z 1

0

�
e�˛x � e�˛y

x � y

�2

dxdy D
Z 1

0

�
1 � e�x

x

�2

dx D 2 ln 2:

Proof First we calculate the single integral by observing that it is a Frullani integral
[33]. Let f W Œ0; 1/ ! R be the function f .x/ D 1�e�x

x , if x ¤ 0 and f .0/ D 1.
A calculation shows that

�
1 � e�x

x

�2

D 2
f .x/ � f .2x/

x
:

It follows, based on Frullani’s formula, that

Z 1

0

�
1 � e�x

x

�2

dx D 2

Z 1

0

f .x/ � f .2x/

x
dx D 2 .f .0/ � f .1// ln 2 D 2 ln 2;

and the second equality of the lemma is proved.
Now we calculate the double integral by using the substitutions ˛x D u, ˛y D v

and we get that

I D
Z 1

0

Z 1

0

�
e�˛x � e�˛y

x � y

�2

dxdy

D
Z 1

0

Z 1

0

�
e�u � e�v

u � v

�2

dudv

D 2

Z 1

0

 Z u

0

�
e�u � e�v

u � v

�2

dv

!
du:

The substitution u � v D t shows that the inner integral becomes

Z u

0

�
e�u � e�v

u � v

�2

dv D e�2u
Z u

0

�
1 � et

t

�2

dt:

This implies that I D 2

Z 1

0

e�2u

 Z u

0

�
1 � et

t

�2

dt

!
du. We calculate this integral

by parts with

f .u/ D
Z u

0

�
1 � et

t

�2

dt; f 0.u/ D
�

1 � eu

u

�2

; g0.u/ D e�2u; g.u/ D �e�2u

2
;
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and we get that

I D �e�2u
Z u

0

�
1 � et

t

�2

dt

ˇ̌
ˇ̌1
0

C
Z 1

0

�
1 � e�u

u

�2

du

D
Z 1

0

�
1 � e�u

u

�2

du

D 2 ln 2:

The lemma is proved. �

More generally [21] one can prove that if n � 2 is an integer, then

Z 1

0

Z 1

0

�
e�x � e�y

x � y

�n

dxdy D 2.�1/n

n

Z 1

0

�
1 � e�x

x

�n

dx

D 2

nŠ

nX
jD2

 
n

j

!
jn�1.�1/j ln j:

However, the case when n D 2 reduces to the calculation of a Frullani integral.

A.3 Computing eAx

In this section we give a general method for calculating eAx, where A 2 M2 .R/ and
x 2 R. This method is based on a combination of the Cayley–Hamilton Theorem
and the power series expansion of the exponential function.

Theorem A.1 The exponential matrix eAx.

Let A 2 M2 .R/, x 2 R, Tr.A/ D t, and det A D d. Then:

eAx D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

e
tx
2

"
cosh

p

x

2
I2 C 2p



sinh

p

x

2

�
A � t

2
I2

�#
if 
 > 0

e
tx
2

h
I2 C

�
A � t

2
I2

�
x
i

if 
 D 0

e
tx
2

"
cos

p�
x

2
I2 C 2p�


sin

p�
x

2

�
A � t

2
I2

�#
if 
 < 0;

where 
 D t2 � 4d.
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Proof We have, based on the Cayley–Hamilton Theorem, that A2 � tA C dI2 D O2

and it follows that
�
A � t

2
I2

�2 D 

4

I2.

The case 
 > 0. Let b D
p



2

and let B D A � t
2
I2. We have that B2 D b2I2

and this implies that B2k D b2kI2, for all k � 0 and B2k�1 D b2k�2B, for all k � 1.
A calculation shows that

eBx D
1X

kD0

.Bx/2k

.2k/Š
C

1X
kD1

.Bx/2k�1

.2k � 1/Š

D
1X

kD0

.bx/2k

.2k/Š
I2 C

1X
kD1

.bx/2k�1

.2k � 1/Š
� B

b

D cosh.bx/I2 C sinh.bx/

b
B

D cosh

p

x

2
I2 C 2p



sinh

p

x

2
B:

This implies that

eAx D e
tx
2 I2eBx D e

tx
2

"
cosh

p

x

2
I2 C 2p



sinh

p

x

2

�
A � t

2
I2

�#
:

The case 
 D 0. We have that B2 D O2 and this implies that Bk D O2, for all
k � 2. This implies that eBx D I2 C Bx and

eAx D e
tx
2 I2eBx D e

tx
2

h
I2 C

�
A � t

2
I2

�
x
i

:

The case 
 < 0. We have that B2 D 

4

I2 or B2 D �b2I2, where b D
p�


2
. This

implies that B2k D .�1/kb2kI2, for all k � 0 and B2k�1 D .�1/k�1b2k�2B, for all
k � 1. A calculation shows that

eBx D
1X

kD0

.Bx/2k

.2k/Š
C

1X
kD1

.Bx/2k�1

.2k � 1/Š

D
1X

kD0

.�1/k .bx/2k

.2k/Š
I2 C

1X
kD1

.�1/k�1 .bx/2k�1

.2k � 1/Š
� B

b

D cos.bx/I2 C sin.bx/

b
B

D cos

p�
x

2
I2 C 2p�


sin

p�
x

2

�
A � t

2
I2

�
:
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This implies that

eAx D e
tx
2 I2eBx D e

tx
2

"
cos

p�
x

2
I2 C 2p�


sin

p�
x

2

�
A � t

2
I2

�#
:

The theorem is proved. �

Remark A.1 We mention that the hyperbolic functions sinh.Ax/ and cosh.Ax/ can
also be calculated as a consequence of Theorem A.1. We leave these calculations to
the interested reader.

A.4 Computing sin Ax and cos Ax

In this section we give a technique, other than the one involving the Jordan canonical
form of a matrix, for calculating the trigonometric functions sin.Ax/ and cos.Ax/,
where A 2 M2 .R/ and x 2 R.

Theorem A.2 The trigonometric function sin.Ax/.

Let A 2 M2 .R/, x 2 R, Tr.A/ D t and det A D d. Then:

sin.Ax/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

cos

p

x

2
sin

tx

2
I2 C 2p



cos

tx

2
sin

p

x

2

�
A � t

2
I2
�

if 
 > 0

sin
tx

2
I2 C x cos

tx

2

�
A � t

2
I2
�

if 
 D 0

cosh

p�
x

2
sin

tx

2
I2 C 2p�


sinh

p�
x

2
cos

tx

2

�
A � t

2
I2
�

if 
 < 0;

where 
 D t2 � 4d.

Proof The Cayley–Hamilton Theorem implies that A2�tACdI2 D O2 and it follows
that

�
A � t

2
I2

�2 D 

4

I2.

The case 
 > 0. Let b D
p



2

and let B D A � t
2
I2. We have that B2 D b2I2 and

this implies that B2k D b2kI2, for all k � 0 and B2k�1 D b2k�2B, for all k � 1. We
have
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sin.Bx/ D
1X

nD1

.�1/n�1 .Bx/2n�1

.2n � 1/Š

D
1X

nD1

.�1/n�1 .bx/2n�1

.2n � 1/Š
� B

b

D sin.bx/

b
B

D 2p



sin

p

x

2

�
A � t

2
I2

�

and

cos.Bx/ D
1X

nD0

.�1/n .Bx/2n

.2n/Š
D

1X
nD0

.�1/n .bx/2n

.2n/Š
I2 D cos.bx/I2 D cos

p

x

2
I2:

It follows that

sin.Ax/ D sin
�

Bx C tx

2
I2

�

D sin.Bx/ cos
� tx

2
I2

�
C cos.Bx/ sin

� tx

2
I2

�

D sin.Bx/ cos
� tx

2

�
C cos.Bx/ sin

� tx

2

�

D cos

 p

x

2

!
sin

tx

2
I2 C 2p



cos

tx

2
sin

p

x

2

�
A � t

2
I2

�
:

The case 
 D 0. We have that B2 D O2 and this implies that Bk D O2, for all
k � 2. A calculation shows that

sin.Bx/ D Bx D
�

A � t

2
I2

�
x and cos.Bx/ D I2:

Thus

sin.Ax/ D sin
�

Bx C tx

2
I2

�

D sin.Bx/ cos
� tx

2
I2

�
C cos.Bx/ sin

� tx

2
I2

�

D sin
tx

2
I2 C x cos

tx

2

�
A � t

2
I2

�
:
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The case 
 < 0. We have that B2 D 

4

I2 or B2 D �b2I2, where b D
p�


2
. This

implies that B2k D .�1/kb2kI2, for all k � 0 and B2k�1 D .�1/k�1b2k�2B, for all
k � 1. A calculation shows that

sin.Bx/ D
1X

nD1

.�1/n�1 .Bx/2n�1

.2n � 1/Š

D
1X

nD1

.bx/2n�1

.2n � 1/Š
� B

b

D sinh.bx/

b
B

D 2p�

sinh

p�
x

2

�
A � t

2
I2

�

and

cos.Bx/ D
1X

nD0

.�1/n .Bx/2n

.2n/Š
D

1X
nD0

.bx/2n

.2n/Š
I2 D cosh.bx/I2 D cosh

p�
x

2
I2:

It follows that

sin.Ax/ D sin
�

Bx C tx

2
I2

�

D sin.Bx/ cos
� tx

2
I2

�
C cos.Bx/ sin

� tx

2
I2

�

D cosh

p�
x

2
sin

tx

2
I2 C 2p�


sinh

p�
x

2
cos

tx

2

�
A � t

2
I2

�
:

The theorem is proved. �

Theorem A.3 The trigonometric function cos.Ax/.

Let A 2 M2 .R/, x 2 R, Tr.A/ D t, and det A D d. Then:

cos.Ax/ D

8̂
ˆ̂̂̂<
ˆ̂̂̂
:̂

cos

p

x

2
cos

tx

2
I2 � 2p



sin

tx

2
sin

p

x

2

�
A � t

2
I2
�

if 
 > 0

cos
tx

2
I2 � x sin

tx

2

�
A � t

2
I2
�

if 
 D 0

cosh

p�
x

2
cos

tx

2
I2 � 2p�


sinh

p�
x

2
sin

tx

2

�
A � t

2
I2
�

if 
 < 0;

where 
 D t2 � 4d.

Proof The proof of the theorem is similar to the proof of Theorem A.2. �



Appendix B
Trigonometric matrix equations

B.1 Four trigonometric equations

Read to get wise and teach others
when it will be needed.

St. Basil the Great (329–378)

In this appendix we solve the fundamental trigonometric matrix equations. First we
record a lemma which will be used in the proofs of Lemmas B.2 and B.4.

Lemma B.1 Let f be a function which has the Taylor series expansion at 0,

f .z/ D P1
nD0

f .n/.0/

nŠ
zn, jzj < R, where R 2 .0; 1� and let A 2 M2 .C/ be such

that �.A/ < R. Let ˛ 2 C and let B 2 M2 .C/ such that A and B are similar. Then,
f .A/ D ˛I2 if and only if f .B/ D ˛I2.

Proof The proof is left as an exercise to the interested reader. �

Lemma B.2 Let A 2 M2 .R/. The solutions of the equation sin A D O2 are
given by

A D Q

�
k� 0

0 l�

�
Q�1;

where l; k 2 Z and Q 2 M2 .R/ is any invertible matrix.

Proof Let JA be the Jordan canonical form of A. Since A 	 JA we have, based on
Lemma B.1, that it suffices to study the equation sin JA D O2. Let �1; �2 be the
eigenvalues of A. We distinguish here the following two cases.
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A has real eigenvalues. If JA D
�

�1 0

0 �2

�
, then sin JA D

�
sin �1 0

0 sin �2

�
D O2

which implies that sin �1 D 0 and sin �2 D 0. Thus, �1 D k� and �2 D l� , where
k; l 2 Z.

If JA D
�

� 1

0 �

�
, then sin JA D

�
sin � cos �

0 sin �

�
D O2 and this implies sin � D 0

and cos � D 0 which is impossible since sin2 � C cos2 � D 1.
A has complex eigenvalues. Let ˇ 2 R

� and �1 D ˛ C iˇ and �2 D ˛ � iˇ be

the eigenvalues of A. We have, based on Theorem 2.10, that JA D
�

˛ ˇ

�ˇ ˛

�
. The

equation sin A D O2 implies that sin A D P sin JAP�1 D O2 which in turn implies
that sin JA D O2. A calculation, based on Theorem A.2, shows that

sin JA D sinh jˇj cos ˛

jˇj JA C



cosh jˇj sin ˛ � ˛

jˇj sinh jˇj cos ˛

�
I2

D
 

cosh jˇj sin ˛
ˇ

jˇj sinh jˇj cos ˛

� ˇ

jˇj sinh jˇj cos ˛ cosh jˇj sin ˛

!
:

This implies that

(
cosh jˇj sin ˛ D 0
ˇ

jˇj sinh jˇj cos ˛ D 0:

The first equation implies that sin ˛ D 0 and, since ˇ ¤ 0, the second equation
shows that cos ˛ D 0 which contradicts sin2 ˛ C cos2 ˛ D 1. �

Lemma B.3 Let A 2 M2 .R/. The solutions of the equation cos A D O2 are
given by

A D Q

�
�
2

C k� 0

0 �
2

C l�

�
Q�1;

where l; k 2 Z and Q 2 M2 .R/ is any invertible matrix.

Proof Since cos A D sin
�

�
2

I2 � A
�

we have that the equation to solve reads

sin
��

2
I2 � A

�
D O2;

and the result follows based on Lemma B.2. �
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Lemma B.4 Let A 2 M2 .R/. The solutions of the equation sin A D I2 are
given by

A D Q

�
�
2

C 2k� 0

0 �
2

C 2l�

�
Q�1;

where l; k 2 Z and Q 2 M2 .R/ is any invertible matrix or

A D Q

�
�
2

C 2m� 1

0 �
2

C 2m�

�
Q�1;

where m 2 Z and Q 2 M2 .R/ is any invertible matrix.

Proof Let JA be the Jordan canonical form of A. Since A 	 JA we have, based on
Lemma B.1, that it suffices to study the equation sin JA D I2. Let �1; �2 be the
eigenvalues of A. We distinguish here the following two cases.

A has real eigenvalues. If JA D
�

�1 0

0 �2

�
, then sin JA D

�
sin �1 0

0 sin �2

�
D I2

which implies that sin �1 D 1 and sin �2 D 1. Thus, �1 D �
2

C 2k� and �2 D
�
2

C 2l� , where k; l 2 Z.

If JA D
�

� 1

0 �

�
, then sin JA D

�
sin � cos �

0 sin �

�
D I2 and this implies sin � D 1

and cos � D 0 which implies that � D �
2

C 2m� , where m 2 Z.
A has complex eigenvalues. Let ˇ 2 R

� and �1 D ˛ C iˇ and �2 D ˛ � iˇ be

the eigenvalues of A. We have, based on Theorem 2.10, that JA D
�

˛ ˇ

�ˇ ˛

�
. The

equation sin A D I2 implies that sin A D P sin JAP�1 D I2 which in turn implies that
sin JA D I2. A calculation, based on Theorem A.2, shows that

sin JA D sinh jˇj cos ˛

jˇj JA C



cosh jˇj sin ˛ � ˛

jˇj sinh jˇj cos ˛

�
I2

D
 

cosh jˇj sin ˛
ˇ

jˇj sinh jˇj cos ˛

� ˇ

jˇj sinh jˇj cos ˛ cosh jˇj sin ˛

!
:

This implies that

(
cosh jˇj sin ˛ D 1
ˇ

jˇj sinh jˇj cos ˛ D 0:
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The second equation implies, since ˇ ¤ 0, that cos ˛ D 0. This shows that
sin ˛ D ˙1 and we get from the first equation that cosh jˇj D 1. The solution
of this equation is ˇ D 0 which is impossible. �

Lemma B.5 Let A 2 M2 .R/. The solutions of the equation cos A D I2 are
given by

A D Q

�
2k� 0

0 2l�

�
Q�1;

where l; k 2 Z and Q 2 M2 .R/ is any invertible matrix or

A D Q

�
2m� �1

0 2m�

�
Q�1;

where m 2 Z and Q 2 M2 .R/ is any invertible matrix.

Proof Observe that sin
�

�
2

I2 � A
� D cos A and the proof follows based on

Lemma B.4.

Other equations involving trigonometric functions can be solved by reducing
them to these four fundamental matrix equations. We stop our line of investigation
here and invite the reader to study further other matrix equations involving
trigonometric or inverse of trigonometric functions.
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Epilogue

The authors wish you success in solving this collection of problems involving
only matrices of order 2. Why only matrices of order 2? Simply because there
are spectacular results involving 2 � 2 matrices, see for example the determinant
formulae from Chapter 1 that do not hold for matrices other than those of order 2

and even if, in some cases, these results can be extended to matrices of order greater
than 2, these formulae lose splendor and beauty, not to mention the finesse of their
proofs.

Whether the problems turn out to be splendid or not that is for you, the reader, to
decide. We hope that you will enjoy both the problems and the theory. For questions,
generalizations, remarks, observations regarding the improvement of this material
and why not criticism, please do not hesitate to contact us at:

Vasile Pop

Technical University of Cluj-Napoca
Department of Mathematics
Str. Memorandumului Nr. 28, 400114
Cluj-Napoca, Romania
E-mail: Vasile.Pop@math.utcluj.ro

and

Ovidiu Furdui

Technical University of Cluj-Napoca
Department of Mathematics
Str. Memorandumului Nr. 28, 400114
Cluj-Napoca, Romania
E-mail: Ovidiu.Furdui@math.utcluj.ro
E-mail: ofurdui@yahoo.com
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54. Sîntămărian, A.: Some convergent sequences and series. Int. J. Pure Appl. Math. 57(6),

885–902 (2009)
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adjugate of a matrix, 12
affine transformation, 298
alternating bilinear application, 10
Apery’s constant, 231
arithmetic progression, 114
asymptotes, 317

C
Cauchy-d’Alembert’s criteria, 243
characteristic equation, 63
Chebyshev polynomials, 180
circulant matrix, 110
conjugate Pell equation, 178
cyclic group, 18

D
degenerate conics, 318
diagonal matrix, 4
dihedral group, 32, 311
direct sum, 289
distinct pairwise commuting matrices, 31
double stochastic matrix, 113, 211

E
eigenvalues, 63
elementary matrix, 7
elementary transformations, 7
Euclidean space, 112
Euler’s totient function, 31

F
Frobenius norm, 213, 214

G
Gamma function, 208
Gaussian integers, 32
generalized eigenvector, 78
generating function, 257

H
Hermitian adjoint, 9
homographic function, 129

J
Jordan basis, 78
Jordan canonical form, 78
Jordan cell of order 2, 23

K
Klein group, 30

L
left stochastic matrix, 212
Lie’s product formula, 240
Lindemann–Weierstrass Theorem, 248
linear functional, 10
linear groups, 11
linear isometry of the plane, 296
Lucas numbers, 24

M
matrices with blocks, 12
Matrix Hamilton Quaternions, 34
modular group SL2.Z/, 30
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N
nilradical, 59

O
orthogonal basis, 112

P
Pauli matrices, 35
Pell resolvent, 177
Pell’s equation, 174
periodic sequence, 123
permutation matrix, 7
projection of the plane, 286

Q
quadratic Frullani integral, 279

R
rational canonical form, 81
real canonical form, 80
reciprocal matrix, 12

reflection matrix, 14
rotation matrix, 18, 31

S
sine Frullani integral, 279
special linear group, 11
special orthogonal group, 31
spectral radius, 186
spectrum of A, 63, 185
stability, 204
Stirling numbers of the second kind, 227

T
the nth harmonic number, 224
the image of a linear transformation, 282
the kernel of a linear transformation, 282
transition matrix, 211
translation, 297
triangular matrix, 4

V
vector space, 4
vector subspaces, 289
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