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Gold, when multiplied, conspire against his
master; but books, when multiplied, make
great use of those who have them.

—St. John Chrysostom (347-407)

He who neglects learning in his youth loses
the past and is dead for the future.
—Euripides (480 B.C.-406 B.C.)
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Foreword

Mathematics began with the positive integers. Next came fractions, the number zero,
and negative numbers. Attempts to extract the roots of cubic polynomials led to the
imaginary unit i = +/—1, whose name suggests something fictitious and suspect.
Beyond the complex numbers, quaternions enlist a trio of noncommuting units.
Vectors arise from the need to keep track of multiple scalars, such as coordinates
in a plane or three-dimensional space.

Matrices, which represent linear functions on vectors, are of immense practical
importance in science and engineering, and the prosaic matrix-vector equation
Ax = b is possibly the most important equation in all of numerical computation.
The solution of a partial differential equation may entail a matrix A whose order
is in the thousands or millions, and the order of the Google page rank matrix,
which represents the interdependence of web sites, is several billion. Large matrices
represent real problems whose solution requires vast computing resources and
innovative algorithms. Matrices are the bread and butter of modern computation.

In this unique and charming book, Vasile Pop and Ovidiu Furdui eschew large
matrices and instead focus their attention on the simplest possible case, namely,
matrices of size 2 x 2. This raises two questions: Why consider such a special case?
and How much interesting mathematics can there be on 2 x 2 matrices? The second
question has a quick answer: A surprising amount. The first question requires more
discussion.

Since a 2 x 2 matrix has four entries, this book is devoted to the properties of
a mathematical structure specified by a quadruple of real numbers. For example,

the matrix A = ( 12 f) provides a representation of the complex number 1 + 2i.

Moreover, using B = ( 3 4 g) to represent 3 + 44, the sum A + B represents 4 + 6i.

Likewise, AB represents (1 4 2i)(3 + 4i), and A~ represents ﬁ Consequently,
2x 2 matrices can be used to represent and manipulate complex numbers, all without

the need for the imaginary unit i.

ix



X Foreword

As a physical application of 2 x 2 matrices, the vector differential equation

X = AxwithA = ( 0 ) (1)) represents the simple harmonic oscillator with natural

0

frequency w,. The extension A = ( )
—w;, —2{w,

) includes the effect of damping,

where { is the damping ratio. The special case A = (g (1)) models a mass without

a spring or dashpot. Note that A is not zero but satisfies A = 0; A is nilpotent. No
nonzero real, complex, or quaternionic scalar can be nilpotent, and this observation
shows that matrices have properties that are not shared by scalars.

This book is innovative in its concept and scope, and exciting in its content. It
shows that a “simple” setting can illuminate and expose the beauty and intricacies of
arich and useful mathematical construction. The authors of this book, both of whom
are world-renowned for the development and solution of mathematical problems,
have gathered a truly splendid collection of problems, ideas, and techniques. I await
the sequel on n x n matrices. After reading this wonderful book, dear reader, I am
sure that you will share my anticipation.

Ann Arbor, MI, USA Dennis S. Bernstein
August 2016



Preface

This book is the fruit of the authors’ work in the last decade in teaching linear
algebra classes and in preparing the students for university entrance examinations
tests as well as for national and international student competitions like Traian
Lalescu, a Romanian mathematical competition, Seemous, and IMC.

The goal of this book is to discuss completely and in detail all important topics
related to the theory of square matrices of order two and the theory of vector spaces
of dimension two with all of their implications in the study of plane geometry,
the algebraic curves of degree 2, the conics, the extension of elementary functions
from calculus to functions of matrices, and the applications of matrix calculus to
mathematical analysis.

We believe this book, which treats exclusively the applications of the matrix
calculus for square matrices of order 2, is necessary in the literature for the
following reasons:

m this is, perhaps, the first book in the literature that collects, in a single
volume, the theory, the applications, and the problems involving square
matrices of order 2;

m the book is written in a way that is accessible to anyone with a modest
background in mathematics;

m the topics and problems extend naturally to matrices of order n, and the
techniques and the ideas in the book, which are highly original, can be
used in linear algebra;

m the large number of problems of various degrees of difficulty, from easy to
difficult and challenging, offers the reader a valuable source for learning
the basics of linear algebra and matrix theory;

(continued)
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xii Preface

m the ideas and problems in the book are original, many of the
problems being proposed by the authors in journals from Romania
(Gazeta Matematicd Seria B, Gazeta Matematicd Seria A) and abroad
(the American Mathematical Monthly, Mathematics Magazine, the College
Mathematics Journal) and others will see the light of publication for the
first time in the literature.

To whom is this book addressed?

To you, the reader, who likes matrix theory and to those who have not had the
chance of being introduced yet to the fascinating world of matrices. The book is
geared towards high school students who wish to study the basics of matrix theory,
as well as undergraduate students who want to learn the first steps of linear algebra
and matrix theory, a fundamental topic that is taught nowadays in all universities of
the world.

We also address this book to first- and second-year graduate students who wish
to learn more about an application of a certain technique on matrices, to doctoral
students who are preparing for their prelim exams in linear algebra as well as to
anyone who is willing to explore the strategies in this book and savor a splendid
collection of problems involving matrices of order 2.

We also address this book to professionals and nonprofessionals who can find, in
a single volume, everything one needs to know, from the ABCs to the most advanced
topics of matrices of order 2 and their connection to mathematical analysis and
linear algebra.

The book is a must-have for students who take a linear algebra class and
for those who prepare for mathematical competitions like Putnam, Seemous, and
International Mathematical Competition for University Students.

The book can be used by our colleagues who teach elementary matrix theory in
high school, by instructors who teach linear algebra in college or university, and by
those who prepare students for mathematical competitions.

Why a book on matrices of order 2?

m First, because in any linear algebra class the students interact with matrices
and the most simple of them all are those of order 2.

m Second, because there are lots of beautiful results in matrix theory, see the
nice determinant formulae in Chapter 1, that hold only for square matrices
of order 2, their extension to n-dimensional matrices loses the splendor, the
simplicity, and the finesse of their proofs.

m Third, because in mathematics one needs to understand simple things first,
and what is most simple in linear algebra is a matrix of order 2.

(continued)



Preface xiii

m Fourth, because the authors wanted to gather together in a single volume,
for the help of students and instructors, everything that should be known
about matrices of order 2 and their applications. Although many excellent
books on linear algebra have a chapter or special sections devoted to square
matrices of order 2, in this text the reader has all the formulae one needs to
know about the most basic topics of matrix theory.

The book offers an unusual collection of problems specializing on matrices of
order 2 that are rarely seen. The problems vary in difficulty from the easiest ones
involving the calculations of the nth power of a matrix to the most advanced like
those in Chapter 4. Most of the problems in this book are new and original and see
the light of publication for the first time. Others are inspired by several books that
are not found in the western literature [47, 48, 50, 51]. Another important source
of inspiration for some of the problems is the famous Romanian journal Gazeta
Matematicd B, the oldest mathematical publication in Romania, the first issue being
published in 1895, and perhaps the first mathematical journal in the world with a
problem column. We do not claim the originality of all the problems included in
this volume, and we are aware that some exercises and results are either known or
very old.

We solved most of the problems in detail, but there are a few exercises with
no solutions. This is because we want to stimulate the readers not to follow our
techniques for solving a problem but instead to develop their own methods of attack.
A couple of problems are challenge problems. These could be viewed as more
demanding problems that encourage the reader to be creative and stimulate research
and discovery of original solutions for proving known results and establishing new
ones.

The contents of the book

The book has six chapters and two appendices.

In Chapter 1, we go over the basic results and definitions and we give, among
others, the structure of special matrices, such as idempotent, nilpotent, involutory,
skew-involutory, and orthogonal. We also discuss the centralizer of a square matrix.
This chapter contains special problems on the computation of determinants as well
as a section of exercises on the classical algebraic structures such as groups, rings,
fields of matrices and their properties.

Chapter 2 deals with the celebrated Cayley—Hamilton theorem, its reciprocal, the
Jordan canonical form, the real and the rational canonical form of special matrices.
Also, this chapter contains a section called quickies which is about problems that
have an unexpected succinct solution.

In Chapter 3 we give formulae for the calculation of the nth power of a matrix, we
study sequences defined by linear and homographic recurrence relations, we solve
binomial matrix equations, and we review the famous equation of Pell. This chapter
contains a special section devoted to the binomial equation X" = al, a € R*,



Xiv Preface

which we believe appears for the first time in the literature. The problems are new
and original, see the problem about Viéte’s formulae for a quadratic matrix equation,
and challenge the reader to explore the tools discussed throughout the chapter.

Chapter 4, the jewel of this book, is a mixture of matrix theory and mathematical
analysis. This chapter contains sequences and series of matrices, elementary
functions of matrices, and introduces, we believe for the first time in the literature,
the Riemann zeta function as well as the Gamma function of a square matrix.
The problems vary in diversity, from the computations of an exponential function,
the resolution of a system of differential equations to integrals of matrices, single or
double, and the calculation of Frullani matrix integrals.

Chapter 5, unique in the literature, is about the study of special linear appli-
cations of the plane such as projections and reflections and their fundamental
properties. Most of the problems in this chapter, which are gems of linear algebra,
appear for the first time in the literature.

In Chapter 6 we use the Jordan canonical form to reduce the algebraic curves of
degree 2, the conics, to their canonical form. The problems in this chapter are neither
standard nor known: they range from the reduction of a conic to its canonical form
to the study of an extremum problem or even to the calculation of a double integral
over an elliptical domain.

Appendix A contains a bouquet of topics from linear algebra such as the
computation of exponential and trigonometric functions of matrices to topics from
classical analysis like the calculation of nonstandard series and the discussion of
two Frullani integrals that are new in analysis.

In Appendix B, hopefully new in linear algebra, we solve the trigonometric
matrix equations and invite the reader to explore further these topics.

The book is designed to fascinate the novice, puzzle the expert, and trigger the
imaginations of all. It contains an unusual collection of problems in matrix theory
which we think they are splendid. Whether the problems turn out to be splendid or
not, and we believe they are!, that is for you the reader to decide. We hope you will
enjoy both the problems and the theory.
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Thank you all and enjoy the splendid 2 x 2 matrices!!!

Cluj-Napoca, Romania Vasile Pop
June 2016 Ovidiu Furdui
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Notations

*

ﬁ%l%%@@NZ

C*

Ja
(Fn)nz()

(Ln)nZO

the set of natural numbers (N = {1,2,3,...})

the set of integers (Z = {...,—2,—1,0,1,2,...})

the set of rational numbers

the set of nonzero rational numbers (Q* = Q \ {0})

the set of real numbers

the set of nonzero real numbers (R* = R \ {0})

the completed real line (R = R U {—o00, c0})

the set of complex numbers

the set of nonzero complex numbers (C* = C \ {0})

the real part of the complex number z

the imaginary part of the complex number z

the binomial coefficient indexed by n and k is the coefficient
of x* term in the polynomial expansion of the binomial power
(I+x)"

the set of square matrices of order 2 with entries in F €
{7,Q,R,C}

the set of invertible matrices

the special linear group

the transpose of A

the conjugate of A

the trace of A

the determinant of A

the inverse of A

the adjugate of A, also denoted by adj(A)

cosa —sina
sina cosa

the rotation matrix of angle «, i.e., R, = (
the Jordan canonical form of the matrix A
the Fibonacci sequence Fp = 0, F; = land F,1 = F,+F,—1,
n>1

the Lucas sequence Ly = 2,L; = land L,y = L, + L,—1,
n>1

XXi



XXii Notations

AX = AX, X # 0 the eigenvalue-eigenvector equation

p(A) the spectral radius of A
Spec(A) the spectrum of A € ., (C)
ViV, the direct sum of vector (sub)spaces V; and V,
Kerfa the kernel of the linear application fj
Imf, the image of the linear application fj
H, the nth harmonic number
H,=1+1/2+1/34+---+1/n
£@3) Apéry’s constant
£(3) = Y2, 1/n* = 1.2020569031 . ..
e the Riemann zeta function
(@)=Y I =141/22+1/3+ -+ 1/r¢
+---, N >1
Li, the Dilogarithm function
Lix(x) = Y2, /K = — [ 200qr, o] <1
Li, the Polylogarithm function
Li,(2) = Y2, /K = [i %=10dr, |z] < landn # 1,2
r the Gamma function (Euler’s Gamma function)

T(z) = [;°x¥ e *dxr, N(z) >0



Chapter 1
Matrices of order 2

Any work has mistakes. Mistakes are an incentive
to do better. There comes a day when the worker
dies but the world has used his work and the pain
that brought a new work.

Nicolae Iorga (1871-1940)

1.1 Definitions and notations

Definition 1.1 Let F be a set of real or complex numbers. By a square matrix of
order 2 with entries of F' we understand an array having two rows and two columns

a a
A= ( 11 12) ,
azy ax

where a; € F, i,j € {1,2}, are called the elements of the matrix A.

The ordered pair (a1, ax,) is called the main diagonal of A and the ordered pair
(a2, az) is called the secondary diagonal of A.

A matrix of order 2 is denoted by A = (a;;);j=1 and the set of all matrices of
order two with complex entries is denoted by ., (C). In this set we distinguish the
following subsets

M (L) C A (Q) C As(R) C AL (C).

If A = (a;))ij=12 and B = (b;;);ij=12, then we say that A = B if and only if
a;j = b;jforalli,je {1,2}.

Definition 1.2 Addition of matrices. Let A, B € ., (C),

A= (6111 alz) and B = (bll blz).
aj| ann b21 b22

© Springer International Publishing AG 2017 1
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2 1 Matrices of order 2

The sum A + B of matrices A and B is the matrix

A4+ B= (6111 + b1y a12+b12).

a1 + by axn + by

We give below the properties of the addition of two matrices which can be
verified by direct computation.
Lemma 1.1 The following equalities hold:

(a) (commutativity) A+ B =B+ A, VYA,Be . #(C)
(b) (associativity) (A+B)+ C=A+ (B+ C), YA,B,C e . (C);
(c) (the zero element) the zero matrix

00
%=(0)
verifies the following equality A + O, = O, + A=A, V A € 4, (C);

(d) (the opposite element) N A € 4, (C) there is —A € M, (C) such that A +
(=A) = (-A) + A = 02 If A = (ay)ij=12, then —A = (—aj)ij=1,-

Remark 1.1 Lemma 1.1 shows that (A4, (Z), +), (> (Q) ,+), (#> (R), +), and
(., (C), +) are abelian groups.

Definition 1.3 Multiplication of matrices.
LetA,B € 4, ((C),

A= (6111 alz) and B — (bll blz).
ar an by by
The product AB of matrices A and B is the matrix defined by

AB — (011b11 + anby aibp + a12bzz)
ax1biy + axnbs axbiy + anby

In other words, the (i, j) entry of the matrix AB is obtained by adding the products
of the corresponding entries of ith row of A with the corresponding entries of the jth
column of B.

In general, the multiplication of matrices is not commutative, i.e., AB # BA. For

example, if
A= 12 and B = 21 ,
-10 12



1.1 Definitions and notations 3

4 5 1 4
= 3) 4 (1Y) =

Next we give the properties of the multiplication of matrices which can be proved
by direct computation.

then

Lemma 1.2 The following equalities hold:
(a) (associativity) (AB)C = A(BC), VY A,B,C € ., (C);
(b) (distributivity to the left) A(B + C) = AB + AC, Y A,B,C € .4, (C);

(c) (distributivity to the right) (A + B)C = AC + BC, Y A,B,C € .4, (C);
(d) (the unit matrix) the unit matrix
10
I =
=(o1)

verifies the equality Al, = LA = A, Y A € M, (C).

Remark 1.2 Lemma 1.2 shows that (%, (Q),-), (#2 (R),), and (4, (C),-) are
monoids.

Also, Lemma 1.1 and Lemma 1.2 show that (/%> (Q) , +, -), (.#> (R) , +, ), and
(A, (C), +,-) are noncommutative rings with the zero element O, and the unit
element /,.

Since the multiplication of matrices verifies part (a) of Lemma 1.2 we define the
powers of amatrix A € .#, (C) as follows: A° = I, (if A # 0,),A' = A,A? = A-A,
A3 =A%.A,... A"=A"".A neN.

Definition 1.4 Multiplication by scalars.
Leta € CandletA € .#, (C),

ap apn
Az( )
dazl ax

The product of the complex number « and the matrix A is the matrix defined by

A = (aall 0[6112) -
adp; odp
Lemma 1.3 The following equalities hold:
(@ (@+pPA=aA+ A, Va,BcC, VAe (C),
(b) x(A+B)=aA+aB, YaeC, VA Be.#/(C)

(c) a(BA) = (¢B)A, Yo, € C, VAe #(C),
d) 1-A=A4, YAc . (C).



4 1 Matrices of order 2

Remark 1.3 The properties of Lemma 1.3 show that the groups (.7, (Q), +),
(A5 (R),+), and (A, (C), +) are vector spaces over QQ, R, and C respectively.

Definition 1.5 Diagonal and triangular matrices.

(a) A matrix of the form (g 2) € M, (C) is called diagonal.

(b) Matrices of the form (g Z) € #,(C) or (i 2) € M, (C) are called

triangular.
We use notations .#5 ; (C) and .#, » (C) for the set of columns and the set of
rows with complex entries, respectively.

Operations with vectors

IfC, = (xl) and C, = (”), then
Y1 »2

Ci+C = (x1 +x2) and oC, = (axl), o € C.
yi+w»m ay;

One can check that similar properties like those in Lemma 1.3 are verified by
vectors and we have that .#, | (C), .4, (R) and .#> ; (Q) are vector spaces over
C, R, and Q, respectively. Their dimension is 2 with canonical basis = {E, E,},

where E| = ! and E, = 0.
0 1

Definition 1.6 Basis of vector spaces 4> 1 (C), A1 (R), 451 (Q).

The vectors X; = (xl) and X, = (xz) form a basis in .4, (C) if for any

Y1 2
vector X = (x) € >, (C) there exist and are unique oy, € C such that
y
X = Ol1X1 + 0[2X2.

Nota bene. The vectors E; = ((l)) and £, = ((l)) form a basis in .#5; (C)

which is called the canonical basis. Any vector X = (x) € >, (C) can be written
y

uniquely as X = xE| + yE,.

Lemma 1.4 Two vectors X| = (xl) and X, = (xz) form a basis in A, 1 (C) if
2

Y1

and only if the matrix P = (x1 2
yi 2

case P is called the matrix of passing from the canonical basis 3 = {E, E,} to the
basis B = {X1, Xz}

) € M, (C) is invertible (det P # 0) and in this



1.1 Definitions and notations 5

Proof By definition, the vectors X; and X, form a basis in ., ; (C) if and only if for
any vector X = (x) € M, 1 (C) there exist and are unique the scalars o, € C
y

such that o1 X + 0 Xo = X &
o ArXy =

X1 +oxy =x o P(Otl) _ (x)
oyt oy =y o2 y

If P is invertible, i.e., det P # 0, we get the unique solution (al) =p! (x)
(0%) y

If detP = 0, then the system P (al) = (8), in variables «, ay, has infinitely
(%)
many solutions.
Multiplication by vectors

m a row and a matrix
If

v ap a
v:(l) and A=(11 12)’
o) azy ax
then

ap ap

vTA = (v v2) (

) = (viai1 + v2ao1 Viap + V2an);
az; ax

m a matrix and a column
If
a a c
A:(11 12) and C=(1),
azy an 2
ay a c apicy + appc
AC:(]] 12)(1)2(111 122).
az anj) \c2 a| ¢y + axnc;

m arow and a column
IfL= () and C = (C‘), then
(&)

then

LC = (lici + ) and CL= (Cll1 cllz) .

oli b



6 1 Matrices of order 2

Nota bene. We mention that if A € .#, (C), A # O,, then detA = 0 if and only

if A = CL, where C = (cl) # (g) and L = (I; ) # (00), i.e., a nonzero matrix
c

A has rank 1 if and only if A can be written as the product of a nonzero column and
a nonzero row. Thus, any matrix of rank 1 is of the following form

A=CL= cilh ciby .
Czll Czlz

We will be using the notation (C) | C3) for a 2 x 2 matrix having columns C; and
C; and similarly (f—;) for a square matrix of order two with rows L; and L,.

We have the following formulae involving products of special matrices.
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1.2 Matrices and their special properties

Definition 1.7 Elementary transformations.
Let A € ., (C). The following operations performed on the matrix A are called
elementary transformations:
m changing two rows of A;
m multiplying a row of A by a nonzero complex number;
m adding a row to another row.

Similarly, one can define the elementary transformations by performing the
corresponding operations on the columns of A.

Definition 1.8 Elementary matrices.
A matrix A € .4, (C) is called an elementary matrix if A is obtained from I, by
applying an elementary transformation.

Leta € C* and let Ey, and E,, be the following two special elementary matrices

Elaz a0 and Ezaz 10
01 0a

We observe that these two matrices have been obtained from the unit matrix I, by
multiplication of the rows of I, by the complex number a.
Operations with elementary matrices

We have:

m the multiplication of a row of a matrix A by a complex number a is
equivalent to multiplying A to the left by the corresponding elementary
matrix Ey, or Ey,:

Ly al L, L,
Ela — 1=\ or E2a —1=\—1:
Ly L, L, al,
m the multiplication of a column of a matrix A by a complex number a is
equivalent to multiplying A to the right by the corresponding elementary

matrix E;, or E,,:

(C1|C)E, = (aCy | Cy) or (Ci|Cr)Ey = (Cy|aly).

Let E, be the permutation matrix

01
£~ (1)
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Then:

m to change two rows of A means to multiply A to the left by E,

L L
L, L
m to change two columns of A means to multiply A to the right by E,
(Ci1| QE, = (G| C).

Let E|, and E5; be the elementary matrices corresponding to the addition of rows
and columns respectively, i.e.

10 11
E12= (1 1) and Ez] = (0 1)

Then:

m to add the first row (the first column) of A to the second row (the second
column) of A means to multiply to the left (the right) the matrix A by E;
(E21):

Ly Ly
Ep () = d (C1|C)En = (C1 | C) + Cy):
12(L2) (L1+L2) and (Ci|G)Ey = (C1|Cr + G)

m to add the second row (the second column) of A to the first row (the first
column) of A means to multiply to the left (the right) the matrix A by E;;

(Erp):

L L+ L

Ey, (_1) = (%) and (C1|C)Epn = (C1 + G| Gy).
2

Definition 1.9 The transpose of a matrix A € .#, (C),

a a
A= ( 11 12)’

azy ax
AT _ (Clll 6121)

apy ax

is defined by
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Thus, the transpose of a matrix A is obtained by taking the rows (respectively the
columns) of A as the columns (respectively the rows) of A

Property 1.1 IfA,B € #, (C) and « € C, then:

(@ (AN = 4

(b) (A+ BT =AT + BT,
(© (@A)’ =aA”;

(d) (AB)T = BTAT.

The next definition introduces various types of square matrices.
Definition 1.10 Let A € .#, (C).

(a) A is symmetric if AT = A. This implies a1y = ay;. Thus, a symmetric matrix is
of the following form
ab
A= .
;)

(b) A is antisymmetric or skew-symmetric if AT = —A. This implies a; = —aj;,
Vi,j € {1,2}. Thus, a symmetric matrix has the following form

0 »
A= .
(%0)
(c) The conjugate of A = (ay); je(1.2; is the matrix A = (@;); jeq1 23 Where @; is the
complex conjugate of a;;.

(d) The conjugate transpose (sometimes called the adjoint or Hermitian adjoint) of
A is the matrix A* = (A)”. We note that

(A" =A, YAe . (0).

Remark 1.4 One can prove, see problem 1.41, that any matrix M € .#, (C) can be
written uniquely as the sum of a symmetric matrix S = %(M + MT) (the symmetric
part of M) and an antisymmetric matrix A = %(M — MT) (the antisymmetric part
of M).

app a2

Definition 1.11 If A = ( ) € ., (C), then the trace of A is the complex

azr ax
number defined by Tr(A) = aj; + ax. In other words, the trace of a square matrix
is the sum of the entries on the main diagonal.

Property 1.2 1fA,B € .#, (C) and o € C then:
(a) Tr(A + B) = Tr(A) + Tr(B);
(b) Tr(xA) = aTr(A);

(¢c) Tr(AB) = Tr(BA);
(d) Tr(A) = Tr(A).
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Nota bene. In general Tr(AB) # Tr(A)Tr(B).

Remark 1.5 If F € {Q, R, C}, then the application Tr : .#>(F) — F is a linear
functional from the vector space .#,(IF), over F, to IF.

Definition 1.12 IfA = (a” alz) € ., (C), then the determinant of A is defined
az; an
by
detA = din iz = dj11dy —adpds.
ay an

Property 1.3 The following formulae hold:

(a) det(AB) = detAdetB, VA,B € ., (C); L
(b) det(A1A2 .. 'A,,) = detA  detA,---detA,, VA, € .4, ((C), k=1,nneN,;

(c) det(A™) = (detA)", VA € 4, (C)andn € N;

(d) det(A”) = detA, VA € .4, (C);

(e) det(eA) = o> detA, VA € 4, (C)and«a € C;

() det(—A) = detA, VA € .4, (C);

(g) det (A) =detA, VA € .4, (C).

Proposition 1.1 [If Cy, C, are the columns of a matrix A, i.e., A = (C1 | C,), C'isa
new column and a € C, then:

m det(Cy | Cy) = —det(Cy | Cy);

[ ] det(aC] | Cz) = det(C1 |61C2) = adet(C] | Cz);
m det(C) + c | Cy) = det(Cy | Cy) + det(C’ | C).
L,

If Ly, L, are the rows of a matrix A, i.e., A = (L
2

), L' is a new row and a € C,

then:
L L
m det (—1) = —det (—2),
L, L,
L L L
m det ) o det L) = adet i ;
L2 aLz L2
L +L L r
m det =2 + —=det 2 +det| — ).
L, L, L,

Remark 1.6 1t is worth mentioning that the function det : .#5 (C) =~ C> x C?> — C
is an alternating bilinear application.

In general, det(A + B) # detA + det B. However, the following formula for the
determinant of the sum and the difference of two matrices holds true.
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Lemma 1.5 A special determinant formula.
IfA,B € 4, (C), then det(A + B) + det(A — B) = 2detA + 2detB.

Proof The lemma can be proved by direct computation, see the solution of part (a)
of problem 1.31. O

Lemma 1.6 Famous determinant inequalities.

(@) IfA € M, (R), then det(A? + L) > 0.
(d) Ifa, band c are real numbers such that b? — dac < 0, then

det (aA® + bA + cb) >0, VA€ . (R).

Proof (a) We have A2 + I, = (A + i,)(A — il,) and it follows that det(4%> + I,) =
det(A + ily) det(A — ily) = det(A + il)det(A + i) = | det(A + il))|>.

(b) If @ = 0 we have, since b> — 4ac < 0, that b = 0 and this implies that
det(ch) = & > 0. a # 0, then aA2 + bA + ¢l = a [(A +Ln) + %Iz]
and it follows that

b Viac — b2 2
det(aA? + bA + ch) = a* | det [A + — 1, + ile
2a 2a
The lemma is proved. O

Definition 1.13 If A € .#, (C) and detA = 0 we say that the matrix A is singular
and if detA # 0 we say that the matrix A is nonsingular.

We denote by GL, (C) the set of all nonsingular matrices
GL, (C) ={A € 4, (C) : detA # 0}.

A special subset of GL; (C), denoted by SL, (C), and called the special linear
group is the set of all matrices having the determinant equal to 1, i.e.

SL, (C) ={A € 4, (C): detA = 1}.
Remark 1.7 The pairs (GL, (Q) , -), (GL; (R), ), and (GL, (C) , -) are noncommu-

tative groups called linear groups and (SL; (Q),-), (SL, (R),-), and (SL, (C),-)
are subgroups of them which are called special linear groups.
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Definition 1.14 We say the matrix A € .#, (C) is invertible if there exists B €
M, (C) such that AB = BA = [,. The matrix B is unique with this property, is
called the inverse of A and is denoted by A™!.

We have the following implications
A € > (C)is invertible < detA # 0 <& A € GL, (C).

One can prove, by direct calculations, that if A € .4, (C),
A= (a b)
cd

A7l = !
detA

—c a
is the reciprocal matrix also known as the adjugate of A. Sometimes this matrix is
also denoted by adj(A).

is invertible, then

* 5

where

Remark 1.8 We mention that, if A € .#, (C) is invertible, another method for
determining the inverse of A would be to use elementary transformations. More
precisely, we consider the matrix with blocks (A | I) and, by performing a sequence
of elementary transformations we transform it to the matrix (1, | B), in which case
B=A""

Property 1.4 If A, B € .#, (C) are invertible and « € C*, then
(@ AB)~'=B"'ATY;

® @)™ = a7

© (A7) =@

@ @y~ = @

One can also prove, by mathematical induction, that
(AjAy-+-A,) ") :A;lA;_ll ATV

where A; € GL, (C), k = 1,n,n € N.
The next definition introduces some special classes of matrices.
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Definition 1.15 Let A € .#, (C). Then:

(a) A is involutory if A> = I, (see problem 1.12);

(b) A is skew involutory if A> = —I, (see Example 1.2);

(c) Ais idempotent if A> = A (see problem 1.14);

(d) A is nilpotent if and only if A> = O, (see problem 1.8);

(e) Ais Hermitian if A* = A.If A € .#, (R), then A is a symmetric matrix;

(f) A is skew Hermitian if A* = —A. If A € .4, (R), then A is an antisymmetric
matrix;

(g) Aisnormal if AA* = A*A,

(h) A is unitary if A* = A='. If A € ./, (R), then A is an orthogonal matrix (see
Example 1.1).

Lemma 1.7 Let A € .4, (C).

(a) A is Hermitian if and only if iA is skew Hermitian.
(b) A is involutory if and only if iA is skew involutory.

Proof The proof is based on the definition of Hermitian, involutory, skew Hermi-
tian, and skew involutory matrices respectively. |

Example 1.1 Special unitary matrices (real and complex).

If A € 4, (C) is a unitary matrix with detA = 1, then

a b
A= —
(5 2)

where a, b € C with |a|> + |b|? = 1.

To see this, we let A = (a Z), where a, b, c,d € C. Since detA = 1 we get that
c

d —b — ac
ATl = d A*=@A@)"=(-2).
We have A* = A~! and this implies that

d =a, ¢ = —b and since ad — bc = 1 we
get that |a|*> 4 |b|*> = 1. Thus, A = ( “E [f)
—b a
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Similarly, if A € .4, (C) is a unitary matrix with detA = —1, then

a b
A==
G %)

where a, b € C with |a|> + |b|? = 1.

In the particular case of real unitary (orthogonal) matrices we obtain

cosa sina

m rotation matrices A = .
—sina coso

) with detA = 1;
cosa sino

m reflection matrices A = | .
sine —cos«

) with detA = —1.

Nota bene. Let .Z be a line passing through the origin of the coordinate system
which makes an angle o with the x-axis and let M(xy;, yys) be a point in the Cartesian
plane. If N(xy, yy) is the symmetric of M about the line .Z, then one can check that

(xN) _ (cos(2a) sin(2a) ) (xM)
yw)  \sinQRa) —cosRa)) \yu/) "
cos(a) sin(2a)

sin(2a) — cos(2a)
matrix. For the definition of rotation matrices see problem 1.61.

Because of this reason, the matrix ( ) is called a reflection

Definition 1.16 Equivalent matrices.

On the set .#, (C) we define the relation A ~ B if and only if there exist P, Q €
GL; (C) such that B = QAP. Two matrices A and B that satisfy this condition are
called equivalent.

Definition 1.17 Similar matrices.

On the set .#, (C) we define the relation A ~ B if and only if there exists P €
GL, (C) such that B = P~'AP. Two matrices A and B that verify this condition are
called similar.

Remark 1.9 It can be proved that two matrices are equivalent if and only if they
have the same rank and they are similar if and only if they have the same Jordan
canonical form.

Definition 1.18 Commuting matrices.
We say the matrices A, B € .#, (C) commute if AB = BA.

If A € .#, (C), then we denote by €'(A) the set of all matrices that commute
with A, also known as the centralizer of A (see [38, p. 213])
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C(A) = {X € 4 (C) : AX = XA} .

Now we give an important property of the centralizer of a square 2 x 2 matrix.

Theorem 1.1 The centralizer of a matrix A.

Let A € 4, (C) and let €(A) = {X € 4, (C) : AX = XA}.
(@) IfA =kl k € C, then 6(A) = .4, (C);
(b) IfA # kb, k € C, then €(A) = {¢A + BL : o, B € C}.

Proof (a) If A = kI, k € C, we have nothing to prove since any square matrix
commutes with k/,.

(b)LetA = (a Z) and let X = (x ); ) The equation AX = XA implies that
c Z

ax + bz = xa + yc
ay + bt = xb + yd
cx+dz=za+tc
cy+dt=zb+1td

bz =cy
or ya—d) =bx—1)
Zla—d)=clx—1).

—t
Ifa # d, then y = ba, 7 = ca, where o = X—.Wehavet =x—oaa+oad =
B + ad, where B = x — wa. This implies that

aa+ B ba ab 10
X = = .
( co ad—i—,B) Ot(c d)+ﬁ(0 1)
If a = d, then we distinguish between the cases when x # torx = ¢t. If x # t we

get that b = ¢ = 0, which contradicts the fact that A # kI,. Thus, x = t and we also

have that bz = cy. Observe that b and ¢ cannot be both 0 since this would contradict
A # kI.
Ifb=0 = y=0and we have

X = x 0 =« @0 +p 10 , wherea:é, ﬂzx—%.
Z X ca 01 c c

If b # 0 we have 7 = C—Zand

_(x ¥\ _ ab 10 Yy _ ay
X—(% x)_a(c a)—l—ﬂ(o 1), wherea—z, ﬂ—x—?.

The theorem is proved. O
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Remark 1.10 Theorem 1.1 also holds for matrices in .#> (Z,,), where p > 2 is a
prime number.

Corollary 1.1 IfA € .#,(C) and P € Clx], then there exist a,b € C such that
P(A) = al, + bA.

Proof If A = kI, for some k € C, then P(A) = P(k)l,,soa = P(k) and b = 0.
If A # kI, for any k € C, then since the matrices A and P(A) commute the result
follows based on part (b) of Theorem 1.1. O

Corollary 1.2 Where do two centralizers intersect?
Let X, Y € 4, (C) such that XY # YX. Then

CX)NEY) = {ah:a c C}.

Proof Since XY # YX we get that X # xl,, Vx € Cand Y # yh, Vy € C. If
Z € €(X) NE(Y) we get, based on Theorem 1.1, that there exist a, b, ¢,d € C such
that Z = aX + bl and Z = cY +dl,. This implies aX + bl, = cY +dL. If a # 0 or
¢ # 0 the previous equality would imply that XY = YX which is impossible. Thus,
a =c = 0and b =d = o, which in turns implies that Z = al,. O

Remark 1.11 Corollary 1.2 states that if a matrix A € .#, (C) commutes with two
noncommuting matrices, then A is of the form al,, o € C.

Corollary 1.3 A € ., (C) commutes with all

(a) nilpotent
(b) idempotent
(c) involutory

matrices if and only if A is of the form al,, o € C.
Proof Use Remark 1.11. O

We mention that the basic algebraic formulae involving complex numbers also
hold for commuting matrices.

Property 1.5 1f A, B € .#, (C) such that AB = BA, then:

(a) A"B" = B"A™, Vm,n € N;

(b) A" —B" = (A—B)(A" ' + A" 2B+ ...+ AB" 2 + B"!);

(C) A2n+1 + BZn+1 — (A + B)(A2n _A2nle 4o _ABanl +an).
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Theorem 1.2 The binomial theorem for matrices.
Let n > 1 be an integer. If A, B € .#> (C) such that AB = BA, then

(A+B)" = Z (Z)A"B”_k.

k=0

Proof The theorem can be proved by mathematical induction and by using the fact
that AXBP = BPA*, for all k,p € N. O

1.3 The set of complex numbers and matrices of order 2

In this section we establish an isomorphism between the field of complex numbers
C and a special field of matrices of order 2. Let

(C:{x—i—iy:x,ye]R, i2=—1}

and let
M = Ae(//lz(R):Az(x _y)}.
y X

Theorem 1.3 An isomorphism between two special fields.

The following properties hold:

(a) ifA,B e M, thenA + B € Ac;
(b) ifA,B € Me, then AB € M

(c) the matrix
0 —1
J= ,

verifies the equalities J*> = —I, and J* = I;

Let

X

f:C— A, f(x—i—iy):(; —y).

(continued)
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1.3 The set of complex numbers and matrices of order 2

Proof The theorem which can be proved by straightforward calculations is left as
O

an exercise to the interested reader.

The following formula is worth being mentioned

a —b > cosa —sino

= Va? + 2

(b a) @+ (sinot Cosa)’
b

a
where cosd = —— and sinoe = ——.
va* + b’ va* + b’

Example 1.2 Skew involutory real matrices.
We determine all skew involutory real matrices, i.e., matrices A € ., (R) such

that A2 = —Iz.
IfA = (a b) € ., (R), we have, based on the matrix equation A% = —[,, that

a* + be = —1 a* + bc = —1
bla+d)=0 or b(a+d) =0
cla+d) =0 cla+d)=0
d* + bc = —1 (a—d)(a+d) =0.

We distinguish between the cases whena + d # Oanda +d =0
When a +d # O we getthatb = ¢ = 0,a = d, and a*> = —1, so there are no

real matrices that verify the equation A2 = —I,
When a + d = 0, we get, from our system of equations, that a> + bc = —1 and

we obtain the matrices
a b
1 + a2 )
—a
b

In particular, for a = 0, b = —1 we get the skew involutory real matrix
0 -1
J= ,
(i)
and for a = b = 1 we obtain another skew involutory real matrix

K:(_12 _11).

a€R, beR*.
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Remark 1.12 (1) For any fixed skew involutory real matrix B € .#, (R), i.e., B> =
—I,, the centralizer of B

€(B) = {al, +bB : a,b e R},

together with the addition and the multiplication of matrices is a commutative field
(check it!) and the following fields are isomorphic

(€(B).+.) = (C.+,") = (A, +.).
The function f : C — € (B), f(a + ib) = al, + bB is a field isomorphism (prove
it!).

(2) All skew involutory real matrices A € .#, (R), i.e., A2 = —I, are similar to
each other and also similar to the matrix

J:((l) ‘01).

P=( ab _b), acR, beR*,

If we consider

—(@®+1) 0
then
P 1 0 b
T ob@+ 1)\ +1 ab
and
a b
P'AP=P'"| 14+ P=J
— —a
b

1.4 Problems

1.1 LetA = 2,1 , where i = —1. Prove that A" = n—}—.l " , n€N.
i 0 ni l—n

1.2 If A € .#, (R) what is the possible number of negative entries of A??
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1.3 LetA = (a Z) € > (R) be such that bc # 0 and there exists n > 2 an
c

a, b,

integer such that b,c, = 0, where A" = (
Cn dl’l

), n € N. Prove that a,, = d,,.

1.4 Determine all matrices in .#, (C) which commute with the matrix A = (; i)

1.5 (a) Prove that A € .#, (C) commutes with all symmetric matrices if and only
ifA=ab,acC.

(b) Prove that A € .#, (C) commutes with all circulant matrices if and only if A
is a circulant matrix.

1.6 Involutory and nilpotent matrices do not commute.
LetA € .#, (C),A # tI,, be an involutory matrix and let B € .#, (C), B # O,

be a nilpotent matrix. Prove that AB # BA.
Moreover, if C € .#, (C) commutes with both A and B, then C = al,, a € C.

1.7 Normal real matrices. Prove that A € .#, (R) commutes with its
transpose if and only if A is symmetric or A is a scalar multiple of a rotation
matrix.

1.8 Find all matrices A € .# (C) such that A> = 0,.

1.9 Nilpotent real matrices. Let A € .#, (R). Prove that A> = 0,
if and only if there exist @ € R and o« € [0,27) such that A =
a( cos o 1+Sina)
—1+sinae —cosa /)’
cosa sino

Observe B = | .
sina —cosa

) is a reflection matrix and C = ( 01 (1)) is

a rotation matrix of angle 37” So any nilpotent real matrix A can be written as
A = a(B + C). Moreover, this writing is unique (see problem 1.43).

1.10 Determine the number of nilpotent matrices in .# (Z,), where p > 2
is a prime number.

1.11 Find all matrices A € .45 (R) such that (I, + iA)~' = I, — iA.
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Remark 1.13 The reader may prove thatif A, B € .4 (R), then (A+iB)~! = A—iB
if and only if AB = BA and A”> + B> = I,. This is equivalent to finding matrices
A € 4, (C)suchthat A~! = A,

1.12 Find all matrices A € .# (C) such that A> = I.

1.13 Determine the number of involutory matrices in .#, (Zp), where p > 2
is a prime number.

1.14 Find all matrices A € .#- (C) such that A> = A.

1.15 Determine the number of idempotent matrices in .7, (Zp), where p > 2
is a prime number.

1.16 Prove that any matrix X € .#, (R) can be written as a linear combination of
four orthogonal real matrices.

1.17 Complex orthogonal and skew orthogonal matrices.

(a) Find all matrices A € .#, (C) such that AAT = I,.
(b) Find all matrices A € .#, (C) such that AAT = —I,.

1.18 LetA € .#, (C). Prove that A = A if and only if (24 — I,)?> = L.

Remark 1.14 Problem 1.18 states that A is idempotent if and only if 24 — I, is
involutory.

1.19 Let A,B € .#,(C) be nonzero idempotent matrices. Prove that if A 4+ B is
idempotent, then A + B = I, (see also problem 5.10).

1.20 Let A,B € .#,(C) be nonzero idempotent matrices. Prove that if A 4+ B is
involutory, then A + B = I, (see also problem 5.11).

1.21 Let A,B € #,(C) be such that A is idempotent and B is involutory. Prove
that if A 4 B is involutory, then A = O,.

1.22 A trace equality on special classes of matrices.

(a) Prove that Tr(AB) = Tr(A)Tr(B) for all involutory matrices B € .#, (C) if and
only if A = O;.

(b) Prove that Tr(AB) = Tr(A)Tr(B) for all skew involutory matrices B € .4, (C)
if and only if A = 0.
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(c) Prove that Tr(AB) = Tr(A)Tr(B) for all idempotent matrices B € .#, (C) if and
only if A = O,.

1.23 Proving that two matrices are equal.

(a) Let X € .#, (C) such that X*> = X. Prove the matrix I, + X is invertible
and (L +X)"' =L - 1x.

(b) LetA,B € .#, (C) such that A — AB = B? and B — BA = A”. Prove that
A =B.

1.24 Inverses of various matrices. Let A € ., (C).

(a) IfA2=Aanda € C,a # —1, then (I, + aA)™! =12—QL+1A.
(b) IfA2=—-Aanda € C, « # 1, then (I + ad)' =1 + a“TlA.
(c) IfA2=0,anda € C,then (I, + ¢A)™' = I, — aA.

1.25 LetA = G (1)) Calculate A", n > 1.

1.26 Letn € NandletA € .4 (C) such that A + A~! = —I,. Calculate A" + A™".
1.27 Let A € C and let J>(A) be the Jordan cell of order 2 corresponding to A

() = (g i) .

n n—1
Prove that J5 (1) = (AO n);n ), neN.

1.28 Two rotation matrices in disguise.

(a) Calculate (l\/—i—; :/f : _T_ g) ,neN.
(b) Leta,b € R. Calculate (Z _b) ,neN.
a

1.29 A Fibonacci matrix and Lucas numbers.

Let (F,,).>0 be the Fibonacci sequence defined by the recurrence relation

Fo=0,Fi=1andF,41 =F,+ F,—1,Vn>1andletA = (i (1))

(continued)
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1.30 [23] LetB(x) = ()lc 1) and let n > 2 be an integer. Calculate the product
X

B(2)B(3) -+ B(n).

Splendid determinant formulae

(continued)
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1.36 Prove thatif A, B, C € .#, (C) are such that det(A+B) = det C, det(B+C) =
det A and det(C + A) = detB, then det(A + B+ C) = 0.

1.37 LetA € .#, (R) be a matrix such that det(A+A”) = 8 and det(A+2A47) = 27.
Calculate det A.
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1.38 LetA, B € .#, (C) such that A2+B?42AB = 0, and detA = det B. Calculate
det(A? — B?).

1.39 LetA € #, (C), A # O,, be adiagonal matrix with different diagonal entries.
Prove that if B € .4, (C) commutes with A, then B is also diagonal.

1 o

140 Letx € RandletA, = ( 7) . Prove that:

_a
n

(a) there exist two sequences (a,),>1 and (b,),>; such that A, = ( a; b");
—by ay

(b) lim a, = cosa and
n— 00

T

lim b, = sinc.
n—>oo

Remark 1.15 A simplified version of this problem can be found in [18, p. 76].

1.41 A unique decomposition of real matrices.

Let
SHR)y={Aer(R): A=A"}
and
hR)={Aec.rR): A=—-A"}.
Prove that:

(a) ifA,Be S (R),then A+ B e % (R)andif A,B € o (R),then A + B €
 (R);

(b) A [R) N hH(R) = {0,} (if a matrix is both symmetric and antisymmetric,
then it is the zero matrix);

(¢) VM e 4, (R) there are S € .3 (R) and A € 2% (R), both unique, such that
M = S + A (any matrix M € .#, (R) can be written uniquely as the sum of a
symmetric and an antisymmetric, skew-symmetric, matrix).

1.42 Two matrix decompositions of complex matrices.
Prove that:

(a) Any matrix A € .#, (C) can be written in exactly one way as A = B + iC,
B, C € ., (R) (B is called the real part of A and C is the imaginary part of A);

(b) Any matrix A € .#, (C) can be written in exactly one way as A = H(A) +
iK(A), in which both H(A) and K(A) are Hermitian; the representation A =
H(A) +iK(A) of a complex or a real matrix is called the Toeplitz decomposition
[38, p. 227].
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1.43 Rotation and reflection matrices and a direct sum.

Let U(a, b) = (“ _b),a,b € Candlet V(a, f) = (“ B ),a,ﬂ eC.
b a p —«

The following properties hold.

(1) U(a,b)U(d,b') = U(ad’ — bb',d'b + ab').
_ a b

@ U ab)=U(= T +b2),a2 +b #0.
3) U(a,b)V(a, ) = V(ax — bf, aff + ba).
4 V(a,B)U(a,b) = V(xa + Bb, Ba — ab).
6) Ula,p)vV(1,0) = V(a, B).
(6) V(Ol’ IB)V(O[,’ ﬁ,) = U(OCOl/ + :3:3/’05/:3 - 05,3,).

=i _ o 2 2
7 Ve p)=V a2+ﬁ2’a2+ﬁ2)’°‘ + B2 #0.

=i o p o B
® Vv s =V ; 5
vl +p2 ol + Ve + 7 ol + B
where o + 8% # 0.
) % ={U(a,b) : a,beC}and ¥ = {V(a,B) : a,p € C} are vector
spaces over C.
(10) A direct sum. .7, (C) = % & 7. Any matrix A = (a Z
c
has a unique writing as A = U (434, S2) + v (454, <£2).
(11) Orthogonality. The function (-, -) : ///2 (C) x //[2 (C) — C defined by
(A, B) = Tr(AB*) is an inner product on .#, (C) and (.#, (C), (-, -)) is
an Euclidean space. If U(a,b) € % and V(«, B) € ¥, then V*(, B) =
\% (&, E) and (U(a, b), V(«, B)) = 0. Thus, the subspaces % and ¥ are
orthogonal and 7% is the orthogonal complement of ¥V in .#, (C), i.e.,
U =Y+tand ¥ = Ut
(12) The geometric interpretation. If ¢, b € R, then

U(a,b) = \/m(0980 —sin@)’

sinf cos6

) e M (©)

where cos 0 =

= o W,@ € [0,2r), so U(a, b) is the
matrix corresponding to the composition of the uniform scaling of factor
v/a% + b?* with the rotation of angle 6.

Ifa, B € R, then

RN (L

SiInt —cost

(continued)
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1.43 (continued)
where cost = JOETW’ sint = \/af%ﬂz’ t € [0,27), so V(a, B) is

the matrix corresponding to the composition of the uniform scaling of
factor /a2 + B2 with the reflection across a line passing through the
origin which makes an angle % with the x-axis.

Nota bene. Any square 2 x 2 real matrix A can be written uniquely as
the linear combination of a rotation matrix and a reflection matrix, i.e.,
A = AU(cos 0, sin ) + uV(cost,sint), where A, u € R.

1.44 LetA, B, C € ./, (C) such that A> = BC, B> = CA, C?* = AB. Prove that:

(a) A* =B =3

(b) Give an example of three distinct matrices that satisfy the conditions of the
problem.

145 LetA = ( ab b) € > (R). The following statements are equivalent:
a

(a) there exists n € N such that A" = I;
(b) there exists ¢ € Q* such that a = cos gz and b = singn.

1.46 Let A,B € .#, (Z) such that AB = BA and detA = detB = 0. Prove that,
there exists a € Z such that for any n € N we have

det(A" —B") = —d" and det(A" + B") = a".

1.47 Prove that, if A, B,C € .#; (R) verify the conditions AB = BA, BC = CB,
CA = AC, and det(A? + B> + C?> — AB — BC — CA) = 0, then det(2A — B — C) =
3det(B — C).

1.48 [60] Determine all pairs (a, b) of real numbers for which there exists a unique
2 x 2 symmetric matrix M with real entries satisfying Tr(M) = a and detM = b.

1.5 A bouquet of group, ring, and field theory problems

The next problems establish a connection between various algebraic structures and
square matrices. For a thorough exposition of the classical algebraic structures such
as groups, rings, and fields as well as other related topics in abstract algebra the
reader may wish to refer to the excellent book [17].
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2—a a-1
2(1 —a) 2a—1
the multiplication of matrices is an abelian group.

(b) Prove that (., -) is isomorphic to the multiplicative group (R*, -).

1.49 (a) Prove that the set .Z = % ( ) Tae R*} together with

1.50 Prove that the set .#Z = { (x Zy) cx,yeQ, x#0Oory # O} together with
y x
the multiplication of matrices is an abelian group.

cosa sina

1.51 Prove that the set .Z = %( ) S R} together with the

—sino coso
multiplication of matrices is a group which is isomorphic to the multiplicative group
of complex numbers of absolute value 1.

1.52 Prove that the set .7 = { ( clos.oz 3sino
sina cosa

3
multiplication of matrices is a group which is isomorphic to the multiplicative group
of complex numbers of absolute value 1.

) S R} together with the

1.53 (a) Prove that the set ¥ = {x +yV/5:x€Q, yeQ, 2 —52 = 1} together
with the multiplication of numbers is an abelian group.

(b) Prove that the set .Z = { (Sx Zy) cx,y€Qandx® —5y* = 1} together with
y x

the multiplication of matrices iszan abelian group.

(c) Prove that the function f : &4 — ., f(x + yv/5) = (éx 2xy) is a group
isomorphism, i.e., (¥,-) = (A, -). >
a db

1.54 Letd € Randlet #Z; = { (b
a

):a,beR,az—de;éO}.

(a) Prove that the set .#; together with the multiplication of matrices is a group.

(b) Determine the values of d for which the group (.#y, -) is isomorphic to (C*, -).
1.55 Generators of the modular group SL,(Z).

11 0 -1 10 0 —1 5
et U (O 1), Vv (1 0), w (1 1) and (1 1), (0]

-1 -1
( 1 o ) Check that:

(a) Ut = ((1) ’1‘) keZ:

by V2=—DL, V'!=—V, V' =1;
(c) Wk= (]1( (1)) keZ, W=UVU,
d P=VU=VQ* P =—I;
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0 1
-1 -1
() U=V-'P=—VP=VpP*=VQ>

(e)Q=VUVU=VW,Q2=( ),Q3=Iz;

These properties, which may be of independent interest for the reader, are used
for proving that, a result far beyond the purpose of this book, the modular group
SL,(Z) is generated by matrices U and V (see [43, Chapter 5]).

1.56 The Klein 4-group. Prove that the set K4 = {L, S, Sy, So} where

—10 1 0 -1 0
s=(31) s=(2) = s=(3 2)

together with the multiplication of matrices is an abelian group of four
elements called the Klein 4-group. Also, (K4, -) is not isomorphic to (Z%y, -),
the group of the rotations of a square.

Nota bene. Geometrically, in 2D the Klein 4-group is the symmetry group
of a rhombus and of a rectangle which are not squares, the four elements being
the identity />, the horizontal reflection Sy, the vertical reflection Sy, and a 180
degree rotation (the reflection through the origin) So.

1.57 Let

///:{(a—i—b b ):a,b,CER}.

c a+c

Determine the set ¢ of all orthogonal matrices from .# and show that (¢,-) is
isomorphic to the Klein 4-group (Viergruppe).

1.58 A group characterization of idempotent matrices.

Let n ¢ N, A € #(C), A # O, and let 4, =
{X € #4,(C) : X" = A}. Prove the following statements are equivalent:

(a) (A,,-)is a group;
(b) A% = A;
(c) A, =1{sA, s C, s" =1} = UA,ie., (M, ") = (U,-).

1.59 Two nonisomorphic groups.

Let G = {A€ #,(C): detA==x1} and let S = {A € .#,(C): detA = 1}.
Prove that G and S together with the multiplication of matrices are nonisomorphic
groups. Note that S is the special linear group SL, (C).



1.5 A bouquet of group, ring, and field theory problems 31

1.60 Let ¢ be a group of matrices from (.75 (C) ,-) whose identity element
is different from I,. Prove that ¢ is isomorphic to a subgroup of (C*, -).

1.61 The rotation matrix R, .

Let @« € R and M(xy, yy) be a point in the Cartesian plane. If we rotate
counterclockwise the segment [OM] by an angle o around the origin we get
the segment [ON]. If N(xy, yn), then one can check that

xy\ _ [cosa —sina) [xy
yv) \sina cosa ) \yu/)’

cosa —sina

. ) is called the
sino  coso

Because of this reason, the matrix R, = (
rotation matrix of angle «.

Properties of the rotation matrix
(a) Prove that, for any @ € R the matrix R, is orthogonal.

(b) Let SO, be the set

sy (e )
SiIn@ COoS

Prove that SO, together with the multiplication of matrices is an
abelian group. Thus, SO,, which is called the special orthogonal group
consists of the orthogonal matrices whose determinant is 1.

(c) Prove that RyRg = Ry 5.
(d) Prove that R;l =R_,.
(e) Calculate R}, n > 1.

Nota bene. Recall that Euler’s totient function ¢ counts the positive
integers up to a given integer n that are relatively prime to n. If n > 2
is an integer, there are ¢(n) real distinct pairwise commuting matrices
having the same order n. For example if n = §, R%, R%, R%, and R%r
are distinct pairwise commuting matrices of order 8.



32 1 Matrices of order 2

1.62 Two special subgroups of .7, (C).

LetA € 4, (C),let G(A) = {X € 4, (C) : det(A + X) = detA + det X},
and let H(A) = {X € ., (C) : Tr(AX) = Tr(A)Tr(X)}. Prove that (G(A), +)
and (H(A), +) are subgroups of (.5 (C) , +).

Challenge problem. Prove that if A,B € .#,(C) are two nonzero
matrices, then the subgroups (G(A), +) and (H(B), +) are isomorphic.

coshf sinh6

1.63 Letf € Randlet M(0) = (sinh9 cosh 6

). Prove that:

(a) detM(0) = 1;

(b) M(61)M(0>) = M(6 + 65);

(¢) M"(0) =M(nb),neN;

(d) The hyperbolic group. The set /2 = {M(0):6 € R} together with the
multiplication of matrices is an abelian group.

1.64 The dihedral group D,,. Let n > 3 be an integer. Prove that the set

Dy — %(COS@ —sm@)’(—cosé sm9) P 20’2_7!,._.,2(’1—1)”

sinf cos 6 sinf cosf n n

together with the multiplication of matrices is a group of 2n elements called
the dihedral group, also known as the set of the symmetries of a regular n gon.

Nota bene. (D, -) is not isomorphic to (%5,, -), the group of the rotations
of a regular 2n-gon.

A lovely presentation of dihedral groups can be found in [17, p. 23].

1.65 Prove that the ring .#, (R) contains a subring that is isomorphic to C.

Xy
—y x
and multiplication of matrices is a ring.

(b) Prove that (A#,+,-) =~ (Z[i].+,-), where Z[i] is the ring of Gaussian
integers, i.e., the set of complex numbers x + iy with x,y € Z.

1.66 (a) Prove that the set .# = { ( ) DX,y € Z} together with the addition
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1.67 Determine all functions f, g : Z x Z — Z such that (.#, +, -), where

_ x oy ).
= {(/(x,y) g(x,y)) P RYE Z} ’

is a subring of (4, (Z) ,+,-) and I, € A .

1.68 [17,p.251] Prove that the elements (8 (1)) and ((1) 8) are nilpotent elements

of .#,(Z) whose sum is not nilpotent (note that these two matrices do not
commute). Deduce that the set of nilpotent elements in the noncommutative ring
M5 (Z) is not an ideal.

1.69 Determine all functions f, g : Z x Z — Z such that the set

_ x o fey)Y .
%_{(g(x,y) y ).x,yeZ}

together with the addition and the multiplication of matrices is a ring and

126///.

X
-y
and multiplication of matrices is a ring which is isomorphic to the ring

1.70 Prove that the set # = { ( —3y ) DX,y € Z} together with the addition
X

gzi/:{x+y\/§:x,yeZ}.

The ring isomorphism is of the form x + y+/3 — ( * —3y)'
-y x
1.71 Prove that the set #Z = % ( lx 4y) X,y € Q} together with the addition
2y X
and multiplication of matrices is a field which is isomorphic to the field

d={x+y«/§:x,y€@}.

The field isomorphism is of the form x + y~/2 — (lx 4y )
2y X
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1.72 Determine all functions f, g : Q x Q — Q such that the set

o= {( x f(x,y)) : xwe@}
gxy) y

together with the addition and the multiplication of matrices is a field.

1.73 Matrix Hamilton Quaternions.
Let . be the set of square matrices of the following form

M ={m=aE+bl+cJ+dK: ab,c,deR},

E=10,1=i0,,J=01andK=Qi.
01 0 —i -1 0 i 0

(a) Calculate mm and mm where m = aE — bl — cJ — dK.

(b) Prove that .# together with the addition and multiplication of matrices
is a noncommutative field (Matrix Hamilton Quaternions). Historically,
one of the first noncommutative rings was discovered in 1843 by Sir
William Rowell Hamilton (1805-1865). A nice paper about quaternions
describing what led Hamilton to his discovery is [7]. Quaternions,
matrices of quaternions, and their properties as well as related problems
are given in [62].

(c) Prove that the property”’a polynomial of degree n has at most n roots”
which holds when the coefficients of the polynomial function belong
to a commutative field, fails to hold in .#Z. To show this, consider the
polynomial function x> + E.

A challenging problem would be to solve in .# the equation x> + E =
0;.

1.74 Hermitian and Pauli matrices.

(a) Prove the set of 2 x 2 Hermitian matrices is given by

%z{(a E) ca,deR, ceCy .
cd

(continued)
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1.74 (continued)

(b) The famous Pauli matrices o, 0, and o3 are defined as follows

6_01 U_O—i anda—lo
o)t P oo >~ \o 1)
Prove the set of Pauli matrices together with the identity matrix I, form
a basis for the real vector space ¢ of 2 x 2 Hermitian matrices, so .77 is a

vector space of dimension 4 over R.
Observe that if A € 77, then

a x—1iy a+d a—d
A= = I , ,d,x,y € R.
(x+iy d ) D) >+ 3 03 + x01 + yoz, a,d,x,y

(c) Prove the real linear span of {I,, ioy, io3, io3} is isomorphic to the set .Z,
the Matrix Hamilton Quaternions, defined in problem 1.73.

1.6 Solutions

1.1. Use mathematical induction.

1.2. A? can have one, two, or three negative entries. For example, A? can have one

negative entry for A = ( 21 ;), two negative entries for A = ( 21 _31), and three

1
3 -1
1.3. Using the equality AA" = A"A we get the relations

negative entries for A = (_ ) . It is not possible to have four negative entries!

aa, + bc, = a,a + b,c
ab, + bd, = a,b + b,d
ca, + dc, = c,a + d,c
cb, +dd, = c,b+d,d

which can be written as bc,, = b,,c, (a —d)b, = (a, — d,)b, (a —d)c, = (a, —d,)c,
cb, = ¢c,b. If b, = 0 or ¢, = 0 we get, since b # 0, ¢ # 0, thata,, — d, = 0 and
this implies that a,, = d,.
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14.Let X = (a Z) be such that AX = XA. We have
c

12\ [fa b\ (ab)(12
34)\cd) \cd)\34)’
and this implies that

a+2c=a+3b
b+ 2d =2a+ 4b
3a+4c=c+3d
3b+4d = 2c + 4d.

We obtain the system

2¢=3b
2(d — a) = 3b,

which has the solutions a = x, b = 2y, ¢ = 3y, d = x 4+ 3y, where x, y € C. Thus,

x 2y
X = =yA — .
(3yx+3y) YA+ (x=y)h

1.8.LetA = (a Z) The equation A?> = O, implies that
c

a*+bc=0
bla+d)=0
cla+d)=0
bc+d* = 0.

Ifa+d#0,thenb = ¢ = 0, a> = d*> = 0 and this implies a = d = 0, which
contradicts @ + d # 0. Thus, a + d = 0 and we get that a = —d. We look at the
equation a> 4+ bc = 0 and we consider the following two cases:

m ifb=0wehavethata =0and A = (O 8),wherec e C;
c

) a? a b
m ifb# 0Owehavethatc = —— and A = 2 ,a,beC,b#0.
b %
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1.10. Like in the solution of problem 1.8 from the equation A% = 0,, with A =
(fl\ g), we get that @ + d = 0and @ + bc = 0. It follows that d = —a and
b= —a*._

If b =0, thena = 0 and ¢ € Z, is arbitrary taken. Thus, we have p matrices of

the form (E)\ 9\)
c 0

Ifb # 0, then @ = —b a2, where b can be chosen in p — 1 ways and @ in p ways

b

so that we have p(p — 1) matrices of the form —32152 = a ey, be Zp\ {6}

Therefore, we have p + p> — p = p? nilpotent matrices in ./, (Z,,).
1.11. From (I + iA)(I, — iA) = I, we get that A> = O,. It follows, based on the
solution of problem 1.8, that A is of the following form A = (0 8), where ¢ € R,
C
a

0rA=( ) b),a,beR,b;ﬁO.
b

112. LetA = (a Z) The equation A2 = I, implies that
c

a*+bc=1
bla+d)=0
cla+d) =0
bc+d* = 1.

Ifa+d # 0,thenb =c =0, a®> = d? = 1 and it follows thata = +1 andd = +1.
Since a + d # 0 we getthata = 1,d = 1 ora = —1,d = —1. It follows that

10 -1 0

Ifa+d=0,thend = —a. If b = 0 we get that a> = d* = 1 and this implies
a=-1,d=1ora=1,d = —1. Thus,

A= -1 or A= Lo , ceC.
c 1 c —1

)
and A has the form

If b # 0 we have that ¢ =
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A= l_az ,ae@,be(c*.
—a
b

1.13. If p # 2, then a matrix B € .4, (Zp) is idempotent (B> = B) if and only if
the matrix A = 2B — I, is involutory (A?> = I,) which implies that, in this case, the
number of involutory matrices is the same as the number of idempotent matrices,
which is p> + p + 2 (see problem 1.15).

When p = 2 we solve in .#, (Z,) the matrix equation A> = I,. If A = (A ,

then we have that @2 + be = /I\,Z(E—i-g) = 6,?(ﬁ+2> =02 +bc=

these equations imply that d=—a.
Ifa = 1 and bc = 0, then we get the matrices

is different than p? + p + 2 which is the number of involutory matrices when p # 2.

1.14. LetA = (a Z) The equation A?> = A implies that
c

a*+bc=a a*+bc=a
bla+d)=0»b or bla+d—-1)=0
cla+d) =c cla+d—-1)=0
bc+d*=d (a—d)a+d—1)=0.

Ifa+d—1+#0,thenb=c=0,a=d e {0,1}. It follows that A = O, or A = .
If a+d—1 = 0, the system reduces to the equation a®> 4+ bc = a. When b # 0, then

2 a b
a4 and A=|a—4? ,a,beC, b#0.

l1—a

Cc =

When b = 0, then either a = 0 or a = 1 and this implies that

A= 00 or A= 1o , ceC.
c 1 c 0
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1.15. Like in the solution of problem 1.14 we get matrices A = O,, A = I, and then

matrices A = ) hich satisfy the conditions @ + d=Tanda*+ bec = a.
Ifa =0, th ZI\ =1,5¢ = 0,50b = 0 or ¢ = 0. Thus, we have p matrices of
the form A, = (% /];\) — 1 matrices of the form A, = (2 El)\) Therefore, we
c

—_ (00
have 2p — 1 matrices since we have counted the matrix (6 T) once.

~

Ifa = 1,thend = 0 and b¢ = 0. In the same way as above we get 2p — 1

matrices of the form A; = Th orAs = /1\ 9 .
00 c 0

Ifa # 0,1, then@® — @ # 0 and we get, from the two equations, thatd = 1 — 4,

bc=a

a—a* so¢=b""(a—a%). We obtain the matrices

a b\ S
As = (Z—l o) T—ﬁ)’ aez,\{0.1}.

Observe that a is chosen in p — 2 ways and b #+ 0is taken in p — 1 ways, so we have
(» — 1)(p — 2) matrices of the form As.
In conclusion the number of idempotent matrices in .# (Z,) is p* + p + 2.

_faby , _ (11 (11 (01
et = (*2a = 5 (1 s = (0 wmac = (01)

then X = oA + BB + yC + 61, where o = %ﬁ = ad y = %and
§ = u+c-§d—b.

1.17.(a) A = a —b orA = —ab ,a,beC,witha® + b* = 1.
b a b a

(b)A = (Z _ab) orA = (_b“ 2),a,b € C, witha® + b = —1

1.19. We have A> = A, B> = B. The equality (A + B)?> = A + B implies that
AB+BA = O,. We multiply this equality by A to the left respectively to the right and
we get that AB + ABA = O, and ABA + BA = O,. It follows that AB = BA = O,.

IfA = al, o € C*, we get,since A> = A, thata’> =a = a=1 = A=
I, = B = BA = 0,, which is impossible.

If A # al,, a € C, then we have, based on Theorem 1.1, that B = aA + bl,, for
some a, b € C. Since B> = B we get that (aA + bl,)? = aA + bl, = (a* + 2ab —
a)A = (b — b*)I,. It follows that a> 4+ 2ab —a = 0 and b — b> = 0. If b = 0, then
a =0ora = 1. The case a = b = 0 implies that B = O,, which is impossible. If
b=0anda = 1,thenA =B = 0, = AB = A?> = A, which is impossible. If
b=1,thena=0ora=—-1.Ifb=1anda=0,thenB=1, = A =AB = 0,,
which is impossible. If b = 1 anda = —1, then A + B = I,.
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1.23. (a) We have (I, + X)(Ib — 3X) = L+ 3X — 1X* = P,

(b)A = AB + B? and B = BA + A? and these imply A + B = (A + B)? and
(A —B)(I + A 4+ B) = 0,. Since the matrix I, + A + B is invertible, see part (a),
the equality (A — B)(I; + A + B) = O, implies that A = B.

10

1), n > 1 and prove it by induction.

1.25. Solution 1. Observe that A" = (
n

Solution 2. We note that A = I, + B, where B = ((1) g) Since B? = O, we have,

based on the Binomial Theorem, that

n n ny\ . ny\ -1 n\ -2 n n
A= LBy = |5+ )ET B ) ETE )
n 1

1.27. The problem can be solved by mathematical induction.

1.28. (a) Observe that 1 + /3 = 2+4/2 cos 15 and V3—1=22sin 15- It follows
that

nmw . nmw
n cos — —sin —
1++/3 1-43 _ vy 12 12
V3—11+43) . nmw nmw
sin —  coS —
12 12
(b) We have that

(a _b)” _ ( \/m)" (cos(na) —sin(noz))’

b a sin(na) cos(na)
. b
where cosa¢ = —~— and sina = .
Va2 +b? Va2 +b?

11 21
1.29. have A = , A% =
9. (a) We have (1 O) (1 )

multiply both sides of this equality by A”~', n > 1, and we get the Fibonacci matrix
recurrence formula A"t = A" 4 A",

(b) The formula A" = (Fn+1 F,
F, F,

) and it follows that A2 = A + I,. We

), n > 1, can be proved by mathematical

induction.

an by
Cn dn
formula A"*! = A" 4+ A", from part (a) of the problem, implies that

We give here a different approach. Let A" = ( ), n > 1. The recurrence
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a1 =ay+ay—, a; =1, a=2, n>1
bpy1 =by+by—1, by =1, by=1, n>1
Cht1 =Cp+Cum1, c1=1, =1, n>1
dyyy=d,+d—, d=0,dy=1, n>1.

These recurrence relations imply a, = F,+1, b, = F,, ¢, = F,, d, = F,—; and it
follows that A" = (F"+1 Fy ), n>1.
Fn Fn—l

(c) The matrix identity A"t = A"A™ implies that

(Fn+m+l Fn+m ) — (Fn—H Fn ) (Fm+l Fm )

Fn+m Fn+m—l Fn Fp M

We look at entry (1,2) of this identity and we get that F\,4+,, = F+1Fy + FuF—1,
n,m e N,

(d) Since det(A") = (detA)" we get that

F F 1 1\\"
Fpp1Foog —F2 =det| " 77 ) = ( det = (=1)".
+1 1 n € ( F, F,_ € 10 (=D

On the other hand, we have based on part (c) with m = n, that

Fon = Fyp1 Fy + FuFyum
= Fy(Foy1 + Fum1)
= (Fut1 — Fum1) (Fu1 + Fu—1)
= F§+1 ~F,

n—1

and similarly one can also prove that Fa, 4 = Fa, | + F2,n > 0.
We have, based on the previous quadratic formulae, that

Fzy = Foppn = Fop1 By + FopFq
= Fu(Fopy + F) + (Frpy — Fo_)Fum
= FuFopy +Fy + Foy Fai = Fy

=F \(Fy+F,1) + F, —F>_,

=Fo +F—Fo .
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(e) We have, based on part (b) that Tr(A") = F,+; + F,—;. A calculation shows

the eigenvalues of A are ¢ = # and 8 = %g Since the eigenvalues of A" are

a™ and B" we get that Tr(A") = o" + " =L, = Fpq1 + Fp1.
The equation X,,+; = AX,, implies that X,, = A"Xj. Thus

X = Fn+1 Fn 3 _ 3Fn+l+Fn
"\ F F)\1) \3F,+F)’
It remains to prove that Ly, = 3F,y| + F,,n > 0,and L, = 3F, + F—,

n > 1. These recurrence formulae can be proved easily by observing that the Lucas
and Fibonacci sequences verify the formula L, = F, 4, + F,,, foralln > 0.

1.30. Solution 1. Let A(n) = B(2)B(3)---B(n), n > 2, and we consider the
sequences (ay,),>2 and (b,),>» such that

a, b
An)y=(""].
= (5"
Since A(n + 1) = A(n)B(n + 1) we get that

a, b\ (n+1 1 a,(n+ 1)+ b, a, +b,(n+1)
(n+1) (bn an) ( 1 n+ 1) (a,, +b,(n+1) a,(n+ 1)+ b,

This implies that

ap+1 = an(n + 1) + bn
bn-H =ay + bn(n + 1)5

for all n > 2. Adding and subtracting these two recurrence relations we get that

ant1 — by = n(a, — bn)
ant1 + b1 = (n+ 2)(a, + by),

for all n > 2. This implies that

n et2)!
apt1 = —
=5 1
oo (42
Ty 4

In conclusion
=1 (+1)! (-1 @+1)!
> Tt Tt
BB Bm =1 =1 ! -1 @+ |22
2 4 2 4
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Solution 2. We prove that

B(2)B(3)---B(n) =

m—D! (P +n+2n+n-2
4 n4+n—2n+n+2)"

A calculation shows that the eigenvalues of the matrix B(x) are x + 1 and x — 1
with the corresponding eigenvectors (« )’ and (—f B)”. Thus B(x) = PJz(x)P~",
where Jp(x) denotes the Jordan canonical form of the matrix B(x) and P is the
invertible matrix given below

I+x 0 1-1 o111
Js(x) = . P= d Pl== .
5() ( 0 x—l) (1 1) an 2(—1 1)

Thus,

(n+ 1)!
1-1 0 111
(2)BG) - B(n) (1 1) 2 2(_11)

(=D +n+2n+n-2
- 4 w4+n=2n+n+2)’

Another solution of this problem can be found in [40].
1.31. (a) Let Ay, A, be the columns of A and By, B, be the columns of B. We have,

based on Proposition 1.1, that
det(A + B) = det(A1 + Bl | A2 + Bz)
= det(A{| Ay + B,) + det(By| Az + B»)
= det(A;| A2) + det(A;| B2) + det(B;| Az) + det(B,| Bz)
= detA + det(A,| By) + det(B;| Az) + det B

and
det(A — B) = det(A; — B1|A; — By)
= det(A;| Ay — By) — det(B1| Ay — By)
= det(A]|Ay) — det(A| By) — det(By| As) + det(B;| B,)
= detA — det(A,| B,) — det(B;| A,) + detB.
Adding the previous equalities we get that part (a) of the problem is solved.

(b) We solve this part of the problem by mathematical induction. When n = 1
we need to prove that detA; + det(—A;) = detA; + (—1)>detA; = 2detA;, which



44 1 Matrices of order 2

holds trivially. Now we assume the formula holds forn = 1, p, p € N and we prove
it forn = p + 1. We have

Zdet(:l:Al :|:A2 +--- ﬂ:Al,_H) = Zdet[(:&:A] :bAz +---. :|:Ap) +Ap+|]
+ ) det[(HA; £ Ay £ A) —Apy]

paré(a) 22 [det(iAliAzi N j:Ap)+ detAp—‘,-l]

p
=2 (zp > detA + 27 detA,,+1)

k=1

p+1
= o+l ZdetAk.
k=1

1.32. Let A, A, be the columns of A, By, B, be the columns of B and C;, C, be the
columns of C respectively.
We have

det(A + B + C) = det(A; + By + Ci| Ay + B, + C5)
= det(4;]A) + det(A,| B,) + det(A;| Cs)
+ det(By| A2) + det(B) | By) + det(By| C2)
+ det(C1| Ay) + det(C| By) + det(Cy| Ca).

On the other hand,

det(A + B) = det(A; + B1| Az + By)
= det(A| Ay) + det(A;| By) + det(B;| Ay) + det(B,| B,),

det(B + C) = det(B; + C1| B> + C3)
= det(B;| By) + det(B;| C3) + det(Cy| By) + det(Cy| C,)

and
det(A + C) = det(A; + C1| Ay + Cr)
= det(A;|Az) + det(A,]| C2) + det(C|Az) + det(Cy| Cy).

Putting all these together we get, since det A = det(A;|A;), det B = det(B| B,) and
det C = det(C,| C,), that the problem is solved.

1.33.Let S = det(A+ B+ C)+det(—A+ B+ C) +det(A—B+ C) +det(A+B—C).
We have, based on part (a) of problem 1.31, that
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det(A + B+ C) +det(A + B—C) = 2det(A + B) + 2detC
det(A + B+ C) +det(A— B+ C) = 2det(A + C) + 2detB
det(A + B+ C) + det(—A + B+ C) = 2det(B + C) + 2 detA.

Adding the previous equalities we get that
S+ 2det(A+ B+ C) = 2det(A + B) 4+ 2det(B + C) + 2det(C + A)
+ 2detA + 2detB 4 2detC,

and the result follows based on problem 1.32.

1.34. We solve the problem by mathematical induction. Let P(#) be the proposition

P(n): det (iA,.) = ) det(d; +4)—(n—2) Xn:detA,-.
i=1

I<i<j<n i=1

When n = 2 we have det(A; + A;) = det(A; + A), so there is nothing to prove.
When n = 3 we need to prove that

P(3): det(A; + A; + A3) = det(A; + Ay) + det(A; + A3) + det(A; + A3)
—detA; — detA, — detAs,

which holds based on problem 1.32.
Now we consider that P(k) is true, for k = 2,3, ..., n and we prove that P(n+ 1)
is true. We have

det(A; + Ay + -+ Aymy + Ay + Apt1) = det(B+ A, + Auy1)

PO 4et(B + Ay)+ det(B + Ansr)+ det(A, + Aps1)— det B— det A,— det A4,

= Y det(A;+A4)— (n—2)Y detA;+ Y det(4; +4))

1<i<j<n i=1 1<i<j<n+1
ijF#n
n+1
—(n—2)) detA; +det(A, + A1) — Y det(A; + A)
;;rlz 1<i<j<n—1

n—1
+ (n—3) Z detA; —detA, — detA, 4+
i=1
n
= Y det(Ai+A)—(2n—4—n+3) Y detA; — (n — 2) detA, 41 — detA,
1<i<j<n+1 i=1
n+1
= > det(A+A4)—(n—1))  detA;.

1<i<j<n+1 i=1
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1.35. We have, based on problem 1.34, that

det(S—Ap) = Y det(Ai+Ay) — (n—3) Y _ detA;.

2<i<j<n i=2

The other n — 1 similar equalities also hold. Adding all these equalities we get that

Y det(S—A)=(n—2) Y det(di+4)—(n—1D@n-3)) detA,

i=1 1<i<j<n i=1

On the other hand,

detS= ) det(d; +A)—(n—2) ) detA;.

1<i<j<n i=1

Thus, we need to check that

(n—2) Y det(d; +Ay) — (n—1)(n—3) ) detA;

I<i<j<n i=1

=(n-2) Y det(Ai+A)—(n—2)") detd; + ) detA,

1<i<j<n i=1 i=1

which holds since (n — 1)(n—3) =n> —4n+3 = (n—2)> — 1.
1.36. We have, based on problem 1.32, that

det(A+B+C)=det(A+B)+ det(B+C)+ det(C+A) — det A — det B — det C=0.

1.37. We have, based on part (a) of problem 1.31, that for X, Y € .#, (C) one has
that det(X +Y) +det(X —Y) = 2detX +2det Y. If X = A+ AT and Y = AT we get
that det(A 4 2A7T) +det A = 2 det(A +AT) +2det AT. This implies that detA = 11.

1.38. We have, based on part (a) of problem 1.31, that det(A% + B?) +det(A2—B?) =
2det(A?) + 2det(B?). This implies, since A> + B> = —2AB, that det(—2AB) +
det(A? — B?) = 4det’ A. Thus 4det’ A + det(A> — B?) = 4det’ A, which implies
that det(A%? — B?) = 0.

1.39. Use Theorem 1.1.

1.40. (a) Observe that
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L= _ Nt 1o’ ¢n2n+ o2
-2 1 n —
n Vnt4+a? Jn?4a?
Let 6, € [0, 7] be such that cos 6, = W and sin 6, = Wrerwmt This implies

that

A= (14 90) (costwbn) sin(6))
n? —sin(nf,) cos(nb,)

soa, = (1 + ‘:l‘—j)i cos(nb,) and b, = (1 + Z‘—j)i sin(n6,).

(b) Since tan 6, = - we get that 6, = arctan 7. A calculation shows that

n—>»o0 n—>oo

' a2\ 2 ' o
Iim (1+ - =1 and lim narctan — = «,
n n

which imply that lim a, = cos« and lim b, = sinc.
n—oo n—>oQ

1.41. (a) If A and B are symmetric matrices, then (A + B)T = AT + BT = A + B,
which implies that A + B is a symmetric matrix.

On the other hand, if A and B are antisymmetric matrices, then (A + B)T =
AT + BT = —A — B = —(A + B) and this implies that A + B is an antisymmetric
matrix.

(b) Let A € #(R) N @A (R). This implies that AT = A and AT = —A. Thus
2A =0, = A= 0,.

(c) We have M = M + M _2M " Now, one can prove that I%MT € % (R) and
MM ¢ o (R).

To prove the uniqueness assertion, observe that if M = C 4 D, with C € .%,(R)
and D € @4(R), then

_M+M'  C+D+(C+D)'  CH+CT+D+D"
2 2 B 2 B

S

C

and

a_M-M _(C+D)-(C+D" _C-C"+D-D"
2 2 B 2 -

1.42. (a) Each A € .#, (C) is written uniquely as A = B 4 iC, where B = %(A +A)
is the real part of A and C = %(A — A) is the imaginary part of A.

To prove the writing is unique, observe that if A = E + iF, with both E, F €
> (R), then
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_A+A E+iF+E+iF E+iF+E—iF _
2 2 B 2 B

B E

and

A—Z_E+iF—E+iF_E+iF—E+iF_F

C =
2i 2i 2i

(b) Each A € ., (C) is written in exactly one way as A = H(A) + iK(A),
where H(A) = 1(A + A*) is the Hermitian part of A and iK(A) = 1(A — A*) is
the skew-Hermitian part of A. One can check that both matrices H(A) and K(A) are
Hermitian matrices.

To prove the uniqueness assertion, observe that if A = E + iF, with both E and
F Hermitian, then

2HA) =A+A*=(E+iF)+ (E+iF)* =E+iF +E* —iF* =2FE
and
2iK(A) =A—A*=(E+iF)— (E+iF)* = E+iF —E* +iF* = 2iF.

1.44. (a) We have A> = A-A> = A(BC) = (AB)C = C*>-C = C*and B> = B-B*> =
B(CA) = (BC)A = A - A = A3, Tt follows that A3 = B3 = C3.

(b) Let € # 1 be a cubic root of unity, i.e., €2 + € + 1 = 0. Matrices A, €A, and
€2A are distinct matrices which verify the conditions of the problem.
1.45. (a) = (b) We assume that there exists n € N such that A” = I,. Passing
to determinants we get that det’A = 1 and since detA = a® + b*> we get that
detA = a®> + b* = 1. This implies there exists € R such that ¢ = cos? and
b = sint. Thus

t sint kt sinkt
A= CO_S sin o Ak = CO_S sin kel
—sint cost —sin kt cos kt

The equation A" = I, implies that

cosnt sinnt (10

—sinnt cosnt)  \0 1)’
It follows that cos nt = 1 and sinnt = 0 which implies that nt = 2pmw, p € Z. Thus
t= %n = g, where g = 2—5 € Q and consequently a = cos g and b = singr.

(b) = (a) Leta = cos gm and b = singm, where ¢ € Q*,i.e.,q = ,u € Z and
v € N. Since g = ;—Z, we have that
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and it follows that A% = [,.
1.46. Let f € Z|x] be the polynomial

f(x) = det(A — xB) = detA + ax + (det B)x* = ax,

ae’Z
Since AB = BA we have
n—1
A'—B' =[]A-eB). =1 k=01....n-1
k=0
and
n—1
A"+ B =[]A-mB). pi=-1. k=0.1..n—1
k=0
Passing to determinants we get that
n—1 n—1
det(A" = B") = [ [ fler) = [ [(wer) = " (=1)""" = —(—)"
k=0 k=0
and
n—1 n—1
det(A" + B") = [ [£(wo) = [ (@) = a"(=1)" = (=a)".
k=0 k=0
soa = —a.
1.47. We have

1 3
M:A2+BZ+C2—AB—BC—CA:AZ—A(B—i-C)—i-Z(B+C)2+Z(B—C)2

- % [(2A—B—C)2 + (ﬁ(B—C))Z].

Thus, det M = 0 if and only if det [(2A —B—C2+ (V3B - C))Z] -0
LetP =2A—B—Cand Q = V3(B—C), P,Q € ./ (R).

We prove that if det(P> + Q%) = 0 and PQ = QP, then det P = det Q. We have,
since P2 + Q? = (P + iQ)(P — iQ), that det(P? + Q?) = det(P + iQ) det(P — iQ).
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On the other hand, det(P 4 iQ) = detP + ai + i*detQ = detP — detQ + «i
and det(P — iQ) = det(P + iQ) = detP — detQ — «i. Thus, det(P> + Q%) =
(detP — detQ)? + o> = 0 implies that @ = 0 and detP = det Q. Therefore,
det(2A — B — C) = det((+/3(B — C)) which in turn implies that det(2A — B — C) =
3det(B — C).

Xz

1.48. We prove that a®> = 4b. Let M = (
zy

and xy — z> = b. Since these equations are symmetric in x and y, the matrix can be
unique if x = y. This implies that 2x = a and x> — z> = b. Moreover, if (x,y,z) is a
solution of this system of equations, then (x, y, —z) is also a solution, so M can only
be unique if z = 0. This means that 2x = a and x> = b, so a> = 4b.

If this is the case, then we prove that M is unique with the properties that Tr(M) =
aanddetM = b. If x + y = a and xy — 2> = b, then

). The two conditions giveus x+y = a

(=) 442 = (x+y) > +42 —dxy=a>—4b =0,

so we must have x = y and z = 0, which implies that M = (aé 2 (/)2)
a

The second solution is based on a technique involving the eigenvalues of M (see
[60D).

1.49. (a) Let J; = @ j) and J, = (

and J]Jg = J2J1 = 02.

First we prove that ./ is closed under the multiplication of matrices. If A,,Ap €
M, then A, = J; + aJ, and A, = J; + bJ,. A calculation shows that A,A;, =
(1 + ala)(J1 + bly) = J? + b\Jy + alaJy + abJ? = Jy + abl, = Ay, € M .

Now we prove that .# together with the multiplication of matrices is an abelian

group.
associativity (A4Ap)Ac = Ay(ApAc) = Aupe, Ya, b, c € R¥;

the ldentlty SinceLb =J,+J,=A) = A, =LA, =A, VYac< R*;

the inverse element AA1/s = Ay = I, = A1/,Aq, Ya e R* = Aa_1 =Ai/a;
commutativity A A, = ApA, = A, Ya, b € R*,

(b) Let f : .# — R* be the function defined by f(A,) = a. First, we observe
that f is onto by definition. Now we prove that f is a one to one function. If f(4,) =
f(Ap), then a = b and this implies that A, = J, + aJ, = J| + bJ, = A,,.

On the other hand f(A,A,) = f(Aw) = ab = f(A))f(Ap), Ya,b € R*, which
implies that f is an isomorphism.

—11

L 2) and observe that J? = Jy, J3 = J,

1.50. First we prove that .# is closed under the multiplication of matrices. Let

A= (Z 20'{3) and B = (mzn),wherea,ﬁ,m,ne(@,a#Oorﬂgéo,m;ﬁOor

nm
n # 0. A calculation shows that
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AB = (otm +28n 2(an + ﬂm)) _ (x Zy)
“\Nan+Bm am+28n ) \yx)’

where x = am + 2Bnand y = an + Bm.
We prove that x and y cannot be both 0. If x = y = 0 we get that

am~+2n=0
an+ Bm=0.

This is a homogeneous system of equations, in variables m and n, whose determinant
isa?—2B2#£0.Ifa?2—2B2=0 & (a—V2B)(@+V2) =0 <& a=B=0
which contradicts the fact that « and B cannot be both 0. Thus, > — 28% # 0 and
this implies that the system has the unique solution m = n = 0 which contradicts
the hypothesis that m and n cannot be both 0. Therefore x and y cannot be both 0
and this implies that .# is closed under the multiplication of matrices.

The reader should check that (., -) is an abelian group.

associativity (AB)C = A(BC),VA,B,C € ./,
the identity I, € # and A, = LA = A, VA € .4,

m the inverse element observe that

1 x 2y
x 2y 2_ 92 2 _ 22 )
() -(7F 7 e

y X -
X222 x2—2y2

m commutativity AB = BA,VA,B € /.

1.51. To prove that (.#, -) is an abelian group can be done by direct computations.
Let U = {zeC: |zl =1} = {cosa +isina:a € R}, be the set of complex
numbers of absolute value 1. This set together with the multiplication of complex
numbers is an abelian group (check it!).

The function f : U — .# defined by

f(cosa +isina) = ( )
—sina cosa

cosa sin oc)

is a group isomorphism.

1.52. The solution of this problem is similar to the solution of problem 1.51.

1.53. (a) Letz,7 € 4,z = x + y/5Sand 7 = X' + y/+/5, where x,y,x,y € Q
with x> — 5y2 = 1, x> — 552 = 1. A calculation shows that zz’ = (x + y/3)(x' +

V/5) = xx' + 5yy + (xy +x'y)V5 = X 4+ Y+/5, where X = xx’ + 5yy’ € Q and
Y =xy + Xy e Q. Also
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X? =572 = (e’ 4 5y)% — 5(xy + x'y)?
— x2x12 + 25y2y/2 _ 5x2y/2 _ 5x/2y2

— x2 (x/2 _ 5y/2) _ 5y2 (x/2 _ 5)7,2)

This implies that ¢ is closed under the multiplication of numbers.

One can check that the multiplication of numbers is both associative and
commutative. Since I = 1 + 0+/5 and 12 — 5- 0% = 1 we get that the identity
of is 1. If z = x + yv/5 € 4, with x, y € Q and x> — 5y = 1, then

Z_x+y«/§_x2—5y2

1 1 — 5
_* yf:x—y«/i

which implies, since x, —y € Q and x> —5(=y)* = 1, that % € 4. Thus, the inverse
of zis % Putting all these together we get that (¢, -) is an abelian group.
O Ifx,y,x,y € Qx> =5y =1,x¥* —5y? =1, then

(x Zy) (x’ 2y’) _ (xx’ +5yy 2(xy ~|—y’x)) . (X 2Y)

%y X %y’ x %(x’y—i—y/x) xx' + 5yy %Y X)’
where X = xx’ + 5yy e Qand Y = xy' + x'y € Q. Also, X?> — 5Y? = 1 (see the
calculations from part (a)). This implies that .# is closed under the multiplication
of matrices.

The multiplication of matrices is both associative and commutative. The unit
matrix I, is the identity of .# and the inverse of a matrix in ./ is given by

x 2y x -2y
5 = 5 e .
277 20 !

Thus, (.#,-) is an abelian group.
(¢) The function f : ¢ — .# defined by

x 2y

fa+yV5) =15
Zy x
2
is a group isomorphism. We observe that f is onto by definition and that f is a one
to one function is easy to check. To shows that f is a homomorphism we have
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xx' 4+ 5yy 2(xy' + Xy)
x+ VX +YV) =15
FEArDE VD=3 ) o

and

2y ' 2y xx +5yy 2(xy +xy)

fa+yVaIW +yV5) = vel= g () 4 2y) x4 Sy

X
5
27
50 f((x + yV/3) (¥ +¥'V3) = fx + 35 (¥ + ' V5).

1.54. (b) First, we observe the identity of (#,,-) is L. If f : C* — .#, is an

isomorphism, then f(1) = L. If f(i) = A = (Z ib), then f(i?) = f(=1) # f(1) =

I, so A2 # I,. On the other hand, f(i*) = f(1) = I, so A* = I,. A calculation
shows that

, (d>+db* d(2ab) 4 ((@+db*)?>+4a*b*d  4abd(a*+db*)
A'= 2 ) A= 2 2 2 2\2 2127
2ab  a*+db 4ab(a*+db”)  (a*+db*)*+4a°b*d

The equation A* = I, implies that

(a* + db*)? + 4a*b*d = 1
ab(a® + db*) = 0.

m Ifa®> +db®> = 0wegetthat 4a’b’d = 1 & 4d*(—a®) =1 & 4a* = -1,
which does not have real solutions.

m Ifb =0Owegetthata* = 1 = a = £1and A = +I,. This contradicts
A’ =D,

m Ifa = 0 we getthat (db*)> = 1 = db*> = %1. This equation also implies that

d # 0. We have
0 db ,  (db? 0
A= d A= I
(b o) an (0 dbz) #h

1
which implies that db*> = —1,s0d < 0and b = £+ ——.
P v —d
We obtained the condition d < 0 is necessary.
To prove this condition is also sufficient we observe the function f : C* — %

defined by
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Fltiy) = (x "“y),

ay x

where x,y e Rando = £ , is a group isomorphism.

1
v —=d
1.55. The problem can be solved by direct computations.
1.56. Cayley’s table for K is given below

L S5 S S
V63 I, S, S y So
Se | S Lo Sy S,
S, 1S S L S
So| S S S I

Cayley’s table for K4

a+b b
c a+c
We have 1 = det/, = det(AAT) = det® A which implies that detA = 1.

m IfdetA = 1,thenA” = A7! = A,, s0

a+b c _fa+c —b
b a+c) \ — a+b)’
from which it follows that » = ¢ and —b = c. This implies that > = ¢ = 0 and
since detA = a® we get that @ = +1. Therefore A = +1>.

m IfdetA = —1,then AT = A~ = —A,, s0

a+b ¢ _(—a—c b
b a+c) ¢ —a-b)’

from which it follows that > = ¢ and a + b = —a — c. This implies that b = ¢

and a + b = 0. Therefore A = ( 0 _Oa
—a

1.57.Leta,b,c e RandletA = ( ) be an orthogonal matrix.

) and since detA = —a®> = —1 we get

that a = +1. It follows that A = +U, where U = ((1) (1))

We obtained ¢ = {I,, —I,, U,—U} and this group is isomorphic to the Klein
4-group Ky.
1.58. (a) = (b) If E is the identity element of ./, and X € .#,,, then A = (EX)" =
E"X" = AA = A%

(b) = (c) Since A2 = A and A # I, we get that detA = 0 and from X" = A we
have thatdet X = 0, forall X € .#,. The Cayley—Hamilton Theorem implies that for
all X € .#, there exists t € C such that X?> = ¢X. This implies that A = X" = "~ !X
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and, since A # O, we get that t # 0, X = sA with s = '™, The equation X" = A
implies that s = 1 and it follows that .#, C {sA :s" = 1}. To prove the other
inclusion, if X € {sA : 5" = 1},then X" = s"A = A,s0 4, C{sA:s" =1} = %A
and f : %, — M, f(z) = zA is the isomorphism.

(c) = (a) This implication holds by triviality.
1.59. It is easy to check that G and S together with the multiplication of matrices
are groups. We assume that G is isomorphic to S. This implies, since any group
isomorphism sends elements of G to elements of S of the same order and vice versa,
that both groups have the same number of elements of order less than or equal to 2.
Therefore, the equation X> = I, has the same number of solutions in both groups.

Let X € S such that X2 = I,. We have, based on the Cayley—Hamilton Theorem,
that X> —tX +1, = O,, where t = Tr(X). It follows that tX = 2I,,s0¢ # 0 and X =
2L,. This implies that # = Tr(X) = Tr (3) = ¥ = 1= £2. Thus, X € {—5.b}.

10
1.60. If G = {05}, then G = {1}, the unit subgroup of (C*,-). If G # {0,} we
have that, if O, € G, then AO, = O, and hence G = {0,}. Thus, if G # {0,}, then
0, ¢ G.

Let A € G. Since AE = A and A’E = A? we get based on the Cayley—Hamilton
Theorem that (tA — dI,)E = tA — dl,, where t = Tr(A) and d = detA. It follows
that tA — dE = tA — dI, and this implies that d(E — I,) = O,. Since E # I, one
has that detA = 0. Thus, detA = 0, for all A € G, and we have based on the
Cayley—Hamilton Theorem that A% = tA.

Let A’ be the symmetric element of A in group G. We have

However, in G the equation X? = [, has also the solutions X, = (0 a), a € C*.

A’A' =1AA' =1E & AWMA)=tE & AE=1E <& A=I(E=Tr(AE.

This implies that G C {¢E,« € C*}. Letf : G — C* be the function defined by
f(A) = a (= Tr(A)). First, we note that f is well defined since if A = «FE = BE,
from E # O,, we get that @ = f5.

If A,B € G such that A = oF and B = BE we have

f(AB) = f(aBE®) = f(@BE) = af = f(A)f (B),

which implies that f is a group homomorphism. Since f is injective (check it!) we
get that G = f(G) < (C*,-).

1.61. (a) One can check, see part (d) of the problem, that R;l = ( cossm ot)

—sino cosa )’
However, this implies that R7 = R_! which means that R, is an orthogonal matrix.

(b) One should check that the following conditions hold:
m associativity (RuRg)R, = Ry(RgR,), Yo, B,y € R;
m the identity Ryl, = LR, = Ry, Ya € R (note that I, = Ry);
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m the inverse element RyR_, = R_,R, = I, which implies that R;‘ =R_,;
m commutativity RyRg = RgRy, Vo, B € R.

We leave these calculations to the interested reader.

(c) We have
R.Ra = (cosa —sinoe) (cos,B —sinﬂ) _ (cos((x +B) —sin(x —|—,3))
“F = \sina  cosa sinf cosp ) \sin(a+ B) cos(a + fB)

and

RsRy = (cosﬂ —sin ﬂ) (cosa —sina) _ (cos(ﬂ + o) —sin(B + a))

sinf cosp sine  cosa sin(B + «) cos(B + «)

and this implies that R,Rg = RgR, = Ry 5.

(d) We have, based on part (c), that R,R_, = R_yR, = Ry = I, and this implies
that ;! = R_,,.

(e) Observe that

R — (cos(noe) —sin(noz)), n> 1

« sin(na)  cos(na)

and prove this formula by mathematical induction.

1.62. Clearly O, € G(A). We prove that if X € G(A), then —X € G(A). Since
det(A + X) + det(A — X) = 2detA + 2det X and det(A + X) = detA + detX, we
get that det(A — X) = detA + detX = detA + det(—X).

If X,Y € G(A) we prove that X + Y € G(A). Let X, Y € G(A). We have, based
on problem 1.32, that

det(A+X+Y) =det(A + X) +det(A + V) +det(X + Y) —detA —detX —detY
= detA + detX + detA + detY + det(X + ¥) — detA — detX — detY
= detA + det(X + Y),
and this implies that X + Y € G(A).
Now we prove that (H(A), +) is a subgroup of (.#,(C), +). First, we observe
that O, € H(A). Second, we show that if X, Y € H(A), then X —Y € H(A). We have
Tr(A(X — Y)) = Tr(AX — AY)
= Tr(AX) — Tr(AY)
= Tr(A)Tr(X) — Tr(A)Tr(Y)
= Tr(A) (Tr(X) — Tr(Y))
= Tr(A)Tr(X — Y).
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Remark 1.16 One can also prove that (G'(A), +) is a subgroup of (.#,(C), +),
where G'(A) = {X € .4, (C) : det(A — X) = detA + det X}.
1.63. (a) det M(6) = cosh?# —sinh?> 6 = 1.

(b) We have

cosh @, sinh 6, ) (cosh 6, sinh 92)

M(©)M () = (sinh 6, cosh 0, sinh 6, cosh 6,

__(cosh 6 cosh 6, + sinh 8, sinh 6, cosh 6, sinh 6, + sinh 8, cosh 6,
" \sinh 6, cosh 6, + cosh 6; sinh 6, sinh 6, sinh 6, + cosh 6, cosh 6,

__ (cosh(6; + 6,) sinh(0; + 6,)
~ \sinh(6;, + 6,) cosh(6; + 6,)

= M(6; + 6).

(c) This follows based on part (b) combined to mathematical induction.
(d) The multiplication of matrices in # is both associative and commutative.
The identity element is M(0) = I, and the inverse of M(6) is the matrix M(—6).

-10

1.64. Observe that D,, = %Rg,SRg 'S = ( 0 1

) ,Rp € %’n}, where %, is the

group of rotations introduced in Theorem 1.3.
We have the following relations:

m Ry (SRy,) = SRp,—g,;
u (SRQI)RQZ = SR@IJ,_QZ;
m (SRy,)(SRs,) = Ro,—p,-

1.65. The set

M = {Ae%(ﬂ@;A: C _y)}

X

is a subring of (.#, (R), +, ) which is isomorphic to C (see Theorem 1.3).

1.66. (a) This part of the problem can be solved by direct computations.
(b) Let f : Z[i] — .# be the function defined by

f(X+iy)=(x y).
o

It is easy to see that f is a bijection. To prove that f is a ring homomorphism we
check that
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and

1.67. Let A(x,y)

1
F(x4iy) + & + i) =fa+x +ily +)))
_( x+x y+y/)

-0+ Y) x+x
()-(5)

—y x _y/ ¥

=flx+iy) + (' + i)

F(x+ )+ i) =fFax' —yy + iy +yx))

_ xx/ _ yy/ xy/ + yx/
—(y" +yx') xx' —yy

B Xy X y/
- —y x _y/ x/

=flx+y)f (X +iy).

Matrices of order 2

= (/ x Y ) We have, since .# is closed under addition,
(x,y) g(x,y)

that for x1, y1,x2,y2 € Z there exist x3,y3 € Z such that A(xy,y;) + A(xz,y2) =
A(x3,y3). This implies that

gf(xl +x2, 51 +y2) = f(x1,y1) +f(x2,¥2)
g(x1 + x2,y1 +y2) = g(x1,y1) + g(x2,¥2).

(1.1)

Ifx; =x; =y =y, =0we get thatf(0,0) = g(O, 0) =0.Ifx; =y, =0and
X, = x,y; =y we get that

{f(x, ) =F£(x,0) +£(0,y) = fi(x) + ()
g(x,y) = g(x,0) + g(0,y) = g1(x) + g2(),

where f1 (x) = f(x.0), 2(x) = (0, x), g1(x) = g(x.,0), g2(x) = £(0. x).
Letting y; = y; = 01in (1.1), we get that

Vxi,x €7,

{fl (x1 + x2) = fi(x1) + fi(x2)
g1(x1 +x2) = g1 (x1) + g1(x2)

and by letting x; = x, = 01in (1.1) we get the same relations hold for the functions
f> and g7, so f1, />, g1, & are additive functions.
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Let h : Z — 7Z be an additive function, i.e., h(x + y) = h(x) + h(y), Vx,y €
Z. Then, h(0) = 0, h(n) = nh(1), h(—n) = —h(n), so h(x) = xh(1l), Vx € Z.
Therefore fi (x) = xf1(1), 2(x) = x£2(1), g1(x) = xg1(1) and g,(x) = xg>(1). Since
I, € A we get that

1 0 10
het = (f(LO) g(l,O)) = (0 1)’

which implies that f(1,0) = 0 and g(1,0) = 1. This in turn implies that f; (1) = 0
and g;(1) = 1,s0f1(x) = 0,Vx € Z and g, (x) = x, Vx € Z.
Letf,(1) = a € Z, g2(1) = b € Z and we have that

f(x,y) =ay and g(x,y) =x+by, V(x,y) €ZXxZ.

Now it is easy to check that these conditions are also sufficient.

1.68. Let A = (8 (1)) and B = (? 8) Then A2 = B2 = 0, so both A and B are

nilpotent elements.

On the other hand, A+ B = ((1) (1)
there is no k € N such that (A 4+ B)* = 05, so A + B is not a nilpotent matrix. This
also proves that the set of nilpotent matrices in the noncommutative ring .#,(Z) is
not an ideal.

Nota bene. The problem states that the set of nilpotent elements in a noncommu-
tative ring need not be an ideal. However, one can prove that if R is a commutative
ring, then the set of nilpotent elements form an ideal called the nilradical of R and
denoted by .4 (R).

) and we have (A + B)? = I,. This implies that

1.69. Let A(x,y) = ( * fxy) ) We have, since . is closed under addition,
glx.y)
that

fGr 4+ x2, 31 +y2) = f(x1,y1) + (2, y2)
gl + x2,y1 +y2) = g(x1,y1) + glx2,¥2).

If yi = y, = 0 we get that f(x; 4+ x2,0) = f(x1,0) + f(x2,0). This implies that
f(n,0) =nf(1,0) and f(—n,0) = —nf(1,0), Vn € N. Since f(0,0) = 0 we get that
f(k,0) = ak, Vk € Z, where a = f(1,0) € Z. Similarly we get that (0, k) = bk,
Vk € Z, where b = f(0,1) € Z. Thus, the functions f and g are of the following
form

gf(x’y):“xJ’by V(x,y) € Z x Z.

glx,y) = cx +dy
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Since I € .# we get that

10 _( 1 f(1.1)
(0= (e ™"):

and this implies that f(1,1) = g(1,1) =0 = a+b=c+d =0.
Now one can check that the set

///Z%( . a(x_y)):x,yEZ%
cx=y)

together with the addition and the multiplication of matrices is a ring with unity.
In conclusion, the functions f and g are f(x,y) = a(x — y), V(x,y) € Z x Z and
gx,y) = c(x—y), V(x,y) € Z x Z, where a, c € Z are arbitrary constants.

1.70 and 1.71. These two problems can be solved by direct computations.

1.72. Let A(x,y) = ( x o fley )). Since . is closed under addition, we get
glx.y) vy
that

S +x2, 51 +y2) = f(x1,y1) +f(x2,y2)
gl + x2,y1 +y2) = g(x1,y1) + glx2, ¥2).

If yy = y, = 0 we get that f(x; + x2,0) = f(x1,0) + f(x2,0). This implies the
function fi (x) = f(x, 0), Vx € Q is an additive function, i.e., there exists a € QQ such
that f(x) = ax, Yx € Q. Similarly, we obtain that f>(y) = f(0,y), g1(x) = g(x,0)
and g>(y) = g2(0,y) are additive functions on Q, so f>(y) = by, g»(x) = cx and
g2 (y) = dy, Vx,y € Q. These imply that f(x,y) = ax 4+ by and g(x,y) = cx + dy,
Vx,y € Q, where a, b, c,d € Q are fixed constants.

The unit matrix 7, should belong to .# and this implies that there exist x,y € Q
suchthatA(x,y) =L < f(1,1) =¢g(1,1) =0 = a+b=c+d=0.

Now one can check that the set

_{( x aw-p)
=y ") ey

together with the addition and the multiplication of matrices is a ring. This ring is a
field provided that every nonzero matrix in .# has an inverse, i.e., detA(x,y) # O,
when (x,y) # (0, 0). This implies that xy — ac(x — y)?> # 0, Y(x,y) # (0,0).

Let (x,y) # (0,0) and consider the equation acx? — (2ac + 1)xy + acy®> = 0.
The condition ac # 0 is necessary. Otherwise, (1,0) # (0,0) but detA(1,0) = 0.
If y = 0 the previous equation implies that x = 0, which contradicts the fact that
(x,y) # (0,0). If y ## 0 we consider the equation
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x\? X
ac (—) —QRac+1)- +ac =0,
y y

which should not have rational solutions, so A = 4ac +1 < 0Oor A > 0 and

Vac+1 ¢ Q.

In conclusion, f(x, y) = a(x—y) and g(x,y) = c(x—y), Vx,y € Q, wherea,c € Q
are constants such that either 4ac + 1 < 0 or 4ac + 1 > 0 and v/4ac + 1 ¢ Q.

1.73. (@) If m = aE + bl +cJ +dK andm/ = d'E + b'I + ¢'J + d'K, then
m+m=@+d)E+OG+b)+(c+)+{d+d)K e A
and
mm' = (ad' — bb' — cc’ —ddE + (ab' + bd’ + cd' — dc))I
+ (ac’ + cd' + db' — bd')J + (ad' + da’ + b’ — cb)K € A .
We have mm = (a*> + b + ¢? + d*)E = mm.
(b) One can check that .# together with the addition and the multiplication of

matrices is a ring with unity £ € .#, E = 1E 4+ 0l + 0J + OK. If m # O, i.e., at
least one of the coefficients a, b, ¢ or d is not zero, then a® + b* + ¢* + d> # 0 and

1 _ 1 ~

= ~E.
I Ry ey R Pt

Hence

1
-1
= e M.
" az+b2+C2+d2m

Therefore (.4, +, -) is a field. This is a noncommutative field since 1J # JI.

(c) The polynomial p(x) = x? + E has the roots I, J, K, —I, —J, and —K, so it has
at least six roots. In fact, it can be shown that p has an infinite number of roots. To
prove this observe that an element in ./ is a matrix which has the following form

(a+bi c+di

, a,b,c,deR.
—c+dia—bi) “oede

Thus, to solve the equation x> + E = O, one has to determine the real numbers

a, b, ¢, d such that
. N
a+bi c+diy (-1 0
—c+di a—-bi) \0 —-1)°
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A calculation shows that the solutions of this equation are of the following form

( bi c+di

= bl + ¢J + dK,
—c+di —bi) ol

where b, c,d € R with b2 + 2 + d% = 1.



Chapter 2
The Cayley—Hamilton Theorem

IfA € M, (C), then A2 — Tr(A)A + (detA)l, = O,.
Cayley—Hamilton

2.1 The Cayley—Hamilton Theorem

IfA = (“ b) € > (C), then:
cd

m the characteristic polynomial of A is defined by
fa(x) = det(A — xb) = x* — (a + d)x + ad — bc = x* — Tr(A)x + detA € C[x];
m the equation
fi(l) =0 & A2 —Tr(A)A + detA =0

is called the characteristic equation of A;

m the solutions A, A, of the characteristic equation are called the eigenvalues of A
and the set {11, A,} is called the spectrum of A and is denoted by Spec(A).
It follows, based on Viete’s formulae, that

A+ Ay = Tr(A) and A;A, = detA.

Next we give some properties of the eigenvalues of a matrix which can be proved
by direct computation.

© Springer International Publishing AG 2017 63
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Let A € C. Then:

m if A is not an eigenvalue of A, then the system

(a—A)x+by=0

& AX = AX, where X = (x)
ex+(d—A)y=0

Y

has only the trivial solution (x,y) = (0, 0);

m if A is an eigenvalue of A, then the system AX = AX has at least a
nontrivial solution X # 0; such a solution is called an eigenvector of A
corresponding to the eigenvalue A;

m A € Cis an eigenvalue of A if and only if there exists

X = (x) = (g) such that AX = AX;
y

If A1, A, are the eigenvalues of A, then:

m A}, A} are the eigenvalues of A", n € N;

m  P(X;), P(A,) are the eigenvalues of the matrix P(A), for any polynomial
function P € Clx];

n )Tll’ % are the eigenvalues of A~! if A is invertible detA = det(A —01>) =
0, so 0 is not an eigenvalue of A.

The next theorem gives the eigenvalues of the sum and the product of two
commuting matrices.

Theorem 2.1 The eigenvalues of the sum and the product of two com-
muting matrices.

IfA, B € ., (C) are commuting matrices, then the eigenvalues of matrices
A + B and AB are of the following form

A = Aa +Ap and Aap = Ashp.

Proof If B = al, then A+ B = A + al, which has eigenvalues A; + « and A, + «,
where A, A, are the eigenvalues of A and « is the eigenvalue of B. On the other
hand, AB = @A which has eigenvalues oA and aA,.

If B # alh, x € C, then B € ¥ (A) and we have, based on part (b) of
Theorem 1.1, that B = al, + BA, for some «, 8 € C. We have that Ap = o + SA4,
A+B = al,+(B+1)A and AB = aA+BA%. Itfollows that Ay, 3 = a+(B+1)As =
A.A + AB and AA)LB = oz)tA + ﬂki = A,AAB. O
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Remark 2.1 Ifa,B € C,i,k € Nand A, B € .4, (C) are commuting matrices, then
the eigenvalues of matrices @A + BB and A'B¥ are of the following form

AaA-l—ﬁB = OCA,A + ,BAB and AAin = AA)LIE

Now we are ready to discuss the celebrated Cayley—Hamilton Theorem which
states that any square matrix cancels its characteristic polynomial.

Theorem 2.2 The Cayley—Hamilton Theorem.
IfA € M, (C), then A2 — Tr(A)A + (detA)l, = O,.

Proof We prove the theorem by direct computation. Let A = (a Z)
c

A calculation shows that

A2 — a*>+bc bla+d)
" \cla+d) d*+bc)’

If x = Tr(A) = a + d, then

2
+ bc b(a+d) ax bx
A2 —Tr(A)A + (detA), = (¢ -
TAA + (det )Lz (c(a+d) d2+bc) (cx dx)

n ad — bc 0
0 ad — bc

_ (@ +ad —ax 0
N 0 d* + ad — dx

= 0,
and the theorem is proved. |

Historical note. The Cayley—Hamilton Theorem was first proved in 1853 in terms
of linear functions of quaternions by Hamilton [36]. This corresponds to the special
case of certain 4 x 4 real or 2 x 2 complex matrices. In 1858 Cayley stated it for
3 x 3 matrices and published a proof only for the 2 x 2 case [14]. “Not generally
an excitable person, at the point of discovery Cayley declared the Cayley—Hamilton
Theorem as “very remarkable” and generations of mathematicians have shared his
delight” [35, p. 772]. However, it was Frobenius who proved the general case in
1878 [19].

Next we give some applications of the Cayley—Hamilton Theorem.

Lemma 2.1 IfA € ., (C) is invertible, then

Te4)

1
A7l = — (Tr(A)L, — A d Tr(A™"Y) = )
(Tr(A)l; —A) an (A7) TotA

detA
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Proof We have, based on the Cayley—Hamilton Theorem, that A> — Tr(A)A +
(detA)l, = O,. We multiply this equality by A~' and we get that A — Tr(A)I, +

(detA)A™' = 0, = A™' = L (Tr(A)L, — A). The second part of the lemma

follows by passing to trace in the first formula. O

The next lemma is about calculating powers of a square matrix of order 2 for the
special cases when the determinant or the trace of the matrix are 0.

Lemma 2.2 The nth power of two special matrices.
(a) IfA € A, (C) such that detA = 0, then

A" = (Tr(A))"'A, VneN.
(b) IfA € A5 (C) such that Tr(A) = 0, then

_ {(~detA)r,, n=2, keN
(—detAY"'A, n=2k—1, keN.

n

Proof (a) We have, based on Theorem 2.2, that A = Tr(A)A. This implies
A3 = A%A = (TrA)AA = Tr(A)Tr(A)A = T’ (A)A.

Using mathematical induction we have that A" = (Tr(A))"~'A, Vn € N.

(b) Since Tr(A) = 0 we get based on Theorem 2.2 that A% + (det A)I, = O-. This
implies that A> = —(det A)I, and the proof is completed by mathematical induction
according to the cases when n is an even or an odd integer. |

Lemma 2.3 Let A € .#, (C). The following statements are equivalent:

(@) A% =0y
(b) Thereisn € N, n > 2 such that A" = O,.

Proof The implication (a) = (b) is clear. To prove that (b) = (a) we observe that
the eigenvalues of A are all equal to 0 and hence the characteristic polynomial of A
is fa(x) = x2. This implies, based on Theorem 2.2, that A% = 0, and the lemma is
proved. O

As a consequence of Lemma 2.3 we have that if A% # O,, then no power of A
can be zero. We record it as a lemma.

Lemma 2.4 IfA € .#, (C) such that A> # O,, then A" # O, for any n € N.

Lemma 2.5 A fact on nilpotent matrices.

Let A,B € ., (C). If A and B are nilpotent matrices and AB = BA, then both
A + B and A — B are nilpotent matrices.

Proof The proof of the lemma is equivalent to proving that if A and B are
commuting matrices such that A% = 0, and B> = 0,, then (A +B)? = 0,. We have
(A£B)?> = A2 £2AB + B?> = £2AB and this implies that (A + B)* = 442B% = 0,.
Now the result follows based on Lemma 2.3. O
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Now we turn our attention to the applications of Theorem 2.2 related to
determinants of special matrices of order 2.

Lemma 2.6 The determinant in terms of traces.
IfA € A, (C), then

detA = % [(Tr(A))* — Tr(A%)]. .1

Proof We have, based on Theorem 2.2, that A2 — Tr(A)A + (detA)I, = O,. Passing
to trace on both sides of the previous equality we get that

Tr(A%) — Tr(A)Tr(A) + 2detA = 0,
and the lemma is proved. O

Remark 2.2 Another version of the Cayley—Hamilton Theorem, based on iden-
tity (2.1), has the following formulation

A? —Tr(A)A + % [(Tr(A))> — Tr(A*) |, = 0., VA € 4, (C).

Lemma 2.7 [45] A master determinant formula.
IfA,B € #,(C) and x € C, then

det(A + xB) = detA + (Tr(A)Tr(B) — Tr(AB))x + (det B)x*. (2.2)

Proof We have, based on formula (2.1), that

det(A + xB) % [(Tr(A + xB))> — Tr((A + xB)*)]

% [(Tr(A) + xTr(B))> — Tr(A”> + xAB + xBA + B*x%)|

% [(Tr(A))* + 2Tr(A) Tr(B)x + (Tr(B))*x* — Tr(A?)

—2Tr(AB)x — Tr(B*)x]

% [(Tr(A))* — Tr(A%)] + (Tr(A)Tr(B) — Tr(AB)) x
+ % [(Tr(B))* — Tr(B*)] x>
= detA + (Tr(A)Tr(B) — Tr(AB))x + (det B)x?,

and the lemma is proved. O
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Corollary 2.1 IfA,B € .#, (C), then

det(A + B) + det(A — B) = 2detA + 2detB.

Proof This follows based on formula (2.2) with x = 1 respectively x = —1 and
then by adding the two equalities. See also the solution of part (a) of problem 1.31
for a different approach. |

Corollary 2.2 Determinant and trace identities.
IfA,B € #, (C), then:

(a) det(A + B) —detA — det B = Tr(A)Tr(B) — Tr(AB);
(b) det(A — B) — detA — det B = Tr(AB) — Tr(A)Tr(B);
(c) det(A + B) — det(A — B) = 2 (Tr(A)Tr(B) — Tr(AB)).

Proof Parts (a) and (b) follow in view of formula (2.2) by takingx = 1 and x = —1
and part (c) follows by subtracting the equalities from parts (a) and (b). O

Theorem 2.3 The polarized Cayley—Hamilton Theorem.
IfA,B € #, (C), then

AB + BA — Tr(A)B — Tr(B)A + [Tr(A)Tr(B) — Tr(AB)] I, = O;.
Proof Let x € R. We apply the Cayley—Hamilton Theorem to the matrix A + xB
and we have
(A + xB)> — Tr(A + xB)(A + xB) + det(A + xB), = O,.
Since (A + xB)? = A? + B%x> + x(AB + BA) we have, based on Lemma 2.7, that

A + Bx* + (AB + BA)x — [Tr(A)A + x (Tr(B)A + Tr(A)B) + x*Tr(B)B]
+ [detA + (Tr(A)Tr(B) — Tr(AB)) x + x> det B| I, = 0,.

Letting x = 1 in the previous equality the theorem is proved. O
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Corollary 2.3 LetA,B, C € 4, (C). Then:

(a) Another polarized version of the Cayley—Hamilton Theorem

2ABC = Tr(A)BC + Tr(B)AC + Tr(C)AB — Tr(AC)B
+ [Tr(AB) — Tr(A)Tr(B)] C + [Tr(BC) — Tr(B)Tr(C)] A
— [Tr(ACB) — Tr(AC)Tr(B)] I»;

(b) A trace identity

Tr(ABC) = Tr(A)Tr(BC) + Tr(B)Tr(AC) + Tr(C)Tr(AB)
— Tr(ACB) — Tr(A)Tr(B)Tr(C).

Proof (a) We have, based on Theorem 2.3, that

2ABC = A(BC + CB) + (AB + BA)C — [B(AC) + (AC)B]
= A [Tr(B)C + Tr(C)B — (Tr(B)Tr(C) — Tr(BC)) I5]
+ [Tr(A)B + Tr(B)A — (Tr(A)Tr(B) — Tr(AB)) ] C
— [Tr(AC)B + Tr(B)AC — (Tt(B)Tr(AC) — Tr(ACB)) I»]
= Tr(A)BC + Tr(B)AC + Tr(C)AB — Tr(AC)B
+ [Tr(AB) — Tr(A)Tr(B)] C + [Tr(BC) — Tr(B)Tr(C)] A
— [Tr(ACB) — Tr(AC)Tr(B)] L.

(b) This part of the corollary follows by applying the trace function to the equality
in part (a). O

Corollary 2.4 A polynomial with special coefficients.
IfA,B € 4, (C) and x,y € C, then

det(xA + yB) = x> detA + y* det B + xy [det(A + B) — detA — det B] .
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Proof If x = 0 we have nothing to prove. If x £ 0 we let o« = JXC We have,

det(xA + yB) = x*det (A + aB)
bemm 27 2 [det A + (Tr(A)Tr(B) — Tr(AB))a + o det B]
= x*>detA + xy(Tr(A)Tr(B) — Tr(AB)) + y* det B
= x*>detA + xy[det(A + B) — detA — det B] + y* det B,

where the last equality follows from part (a) of Corollary 2.2. O
Corollary 2.5 IfA € .#, (C) and x € C, then det(A + xI,) = detA + Tr(A)x + x°.
Proof This follows from Lemma 2.7 by taking B = 1. O

Lemma 2.8 IfA € #, (C), then A + Ax = Tr(A),.
Proof The lemma can be proved by direct calculations. O

Lemma 2.9 IfA,B € .#, (C), then
Tr(A«B) = Tr(ABy) = Tr(A)Tr(B) — Tr(AB).
Proof We have, based on Lemma 2.8, that
Ay =Tr(A), —A = Tr(A«B) = Tr(Tr(A)B — AB) = Tr(A)Tr(B) — Tr(AB)

and similarly Tr(ABx) = Tr(A)Tr(B) — Tr(AB). |
The next corollary is a consequence of Lemma 2.7 and Lemma 2.9.

Corollary 2.6 IfA,B € .#, (C) and x € C, then
det(A + xB) = detA + Tr(ABy)x + (det B)x>.

Lemma 2.10 IfA,B € .#, (C), then det(AB — BA) = Tr(A2B*) — Tr((AB)?).
Proof We have, based on formula (2.2), that

det(AB — BA) = det(AB) — (Tr(AB)Tr(BA) — Tr(AB*A)) + det(BA).

We note that det(AB) = det(BA), Tr(AB) = Tr(BA) and Tr(AB’A) = Tr(A%B?).
It follows that

det(AB — BA) = 2det(AB) — (Tr(AB))* + Tr(A>B?)

which combined to formula (2.1) proves the lemma. O
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Lemma 2.11 IfA,B € .#, (C), then
det(A — B) det(A + B) = det(A> — B?) + det(AB — BA).
Proof We have, based on Corollary 2.1, that

det[(A* — B?) + (AB — BA)] + det[(A> — B*) — (AB — BA)]
= 2 [det(A> — B?) + det(AB — BA)] .

However
det[(A? — B*) 4+ (AB — BA)] = det[(A — B)(A + B)] = det(A — B) det(A + B)
and
det[(A*> — B?) — (AB — BA)] = det[(A + B)(A — B)] = det(A + B) det(A — B)

and the lemma is proved. O

Lemma 2.12 IfA,B € .#, (C), then
det(A? + B?) = det(AB — BA) + (detA — det B)? + (det(A + B) — detA — det B).
Proof We apply Lemma 2.11 with B replaced by iB and we get that
det(A — iB) det(A + iB) = det(A% + B?) + det[i(AB — BA)].
This implies that
det(A? 4+ B?) = det(AB — BA) + det(A — iB) det(A + iB). (2.3)
On the other hand, we have based on formula (2.2) that

det(A + iB) = detA — det B + (Tr(A)Tr(B) — Tr(AB)) i
and

det(A — iB) = detA — det B — (Tr(A)Tr(B) — Tr(AB)) i.
It follows that

det(A — iB) det(A + iB) = (detA — det B)> + (Tr(A)Tr(B) — Tr(AB))?



72 2 The Cayley—Hamilton Theorem

which combined to part (a) of Corollary 2.2 shows that
det(A —iB) det(A +iB) = (detA—det B)> + (det(A + B) —detA—det B)>.  (2.4)

Combining (2.3) and (2.4) the lemma is proved. O

Theorem 2.4 Power matrix identities.

Let Ay, Ay be the eigenvalues of A € ., (C). The following identities
hold:

@ A-MDL)"+A—-:0)" =R —A)"h, n>1;
(b) (A — )L]Iz)zn_l — (A — Az]z)zn_l = (Az — A.])zn_llz, n 2 1

Proof (a) We prove part (a) of the theorem by induction on n. Let P(n) be the
proposition

P(n): (A—MDb)™ + (A—ADh)" = (A — A1) "D,
First, we prove that P(1) is true. We need to check the equality
A—MD) 4+ (A= b)) = (A — ML
holds true. We have
(A—2h)? + (A= Ah)? = A2 = 20A + A2 + A* — 20,A + A3,
=2[A% — (A1 + A)A + L oh] + (AT — 2014, + AD)D
= (k2 —A)’h,

where the last equality follows based on the Cayley—Hamilton Theorem.
Now we assume that P(k) is true for k = 1,2, ..., n and we prove that P(n + 1)
is true. We have, since P(1) and P(n) hold true, that

(A= D)2 4 (A — Ayl

=[(A=2DL)" 4+ (A= L) [(A— 2ih) + (A — A1)’
— (A= D) A = AD) — (A= b)) (A= ML)’

= (A2 —A)" (A2 — A)’h

= (A2 — 1)L,

since (A — A]Iz)(A - Azlz) = (A - Az[z)(A - 11[2) = 02.
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(b) When n = 1 there is nothing to prove. Let X = A — AL, and Y = A — A,
We have

X21‘1—1 _ Y2n—1 — (in—z + Y2]1—2)(X _ Y) + X2n—2Y _ Y2n—2X
@ 202
= (A =A)" (A = ADDL
=2 — A" 'L,

since XY = YX = O,. The theorem is proved. O

2.2 The eigenvalues of symmetric matrices

In this section we show that a real 2 x 2 symmetric matrix is diagonalizable and
the invertible matrix P € .#, (R) which diagonalizes A can be chosen to be an
orthogonal matrix, i.e., P = P~!. In fact P is a rotation matrix. This idea is used
frequently in Chapters 4 and 6 for calculating double integrals over various domains
and it is also used in Chapter 6 for reducing a conic to its canonical form.

Theorem 2.5 Symmetric matrices and their eigenvalues.

ab
Let A = (b d) e /) (R).

(a) A has real eigenvalues

a+d+ +/(a—d)?+ 4b? a+d—+/(a—d)?+ 4b?
A= 5 and A, = )

and Ay = Ay = A ifand only if A = AL,
(b) A is diagonalizable and the invertible matrix P € ., (R) which
diagonalizes A can be chosen to be a rotation matrix. We have

, b£0.

d—a+/(a—d) >+ 4b>
PlAP= ()“ 0), where P=Ry. tan f=2—%" (Zb i

0 A

Proof (a) This part follows by direct computation.

(b) The invertible matrix P has as columns the eigenvectors corresponding to the
eigenvalues A; and A,. If v;, i = 1,2, are the eigenvectors corresponding to the
eigenvalues A;, i = 1, 2, then the systems (A — A;[;)v; = 0, i = 1, 2, imply that
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1 a—d—~/ (a—d)?+4b>
VI =\ d—at/a—ap+40? and vy = 21b .
2b

We divide these two vectors by their length

2
d—a+ /(a—d)?+ 4b?
= = 1
ol = lleal +( =
and we take
d— —d)? + 42
P=(v1 ‘ v2)=R9, where tanf = at yla—dr+ , b#0.
vl | o2l 2b

The theorem is proved. |

2.3 The reciprocal of the Cayley-Hamilton Theorem

In this section we discuss the reciprocal of the Cayley—Hamilton Theorem.

Theorem 2.6 The reciprocal of the Cayley—-Hamilton Theorem.

Let A € M, (C) and let a,b € C be such that A> — aA + bl, = 0,. If
A ¢ {al, : a € C}, then Tr(A) = a and detA = b.

Proof We have, based on the Cayley—Hamilton Theorem, that
Az—aA—f‘bIz = 02
A? —Tr(A)A + (detA)l, = O,

and it follows that [a — Tr(A)]A = (b — detA)L,.
If a — Tr(A) # 0 we get that

 b—detA
T a—Tr(a) ”

which is a contradiction to A ¢ {al, : @ € C}.
If a — Tr(A) = 0 we get that b — detA = 0 and the theorem is proved. O
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Remark 2.3 Tt is worth mentioning that there do exist matrices A € .#, (C) such
that A2 —aA 4 bl, = O,, with a # Tr(A) and b # detA. To see this we let A = al,,
where a € C verifies the equation a? — ao + b = 0. Then, Tr(A) = 2, detA = o
and if @ and b are such that a> —4b # 0 and b # 0 one has a # Tr(A) and b # detA.

2.4 The characteristic polynomial of matrices XY and YX

In this section we prove two fundamental results in matrix theory concerning the
characteristic polynomial of matrices XY and YX.

Theorem 2.7 The characteristic polynomial of matrices XY and YX.

If X,Y € ., (C), then matrices XY and YX have the same characteristic
polynomials, i.e., fxy = fyx.

Proof We have, since Tr(XY) = Tr(YX) and det(XY) = det(YX), that
frr(x) = 2% — Tr(XY)x + det(XY) = x> — Tr(YX)x + det(YX) = fyx(x).
Nota bene. Theorem 2.7 implies the following equality holds
det(XY — AL) = det(YX — AL), VX, Y e #,(C), VA eC.

The theorem also implies that matrices XY and YX have the same eigenvalues. [
The next theorem is the reciprocal of Theorem 2.7.

Theorem 2.8 IfA € .#, (C) verifies
det(XY — A) = det(YX —A), VX,Y € .4,(C),

then there exists a € C such that A = al.

Proof Let E;; be the matrix having the (i, j) entry equal to 1 and all the other entries

equaltoOandletA = (a 2) e , (C).
c

IfX =FE;and Y = E,,, then XY = E|,, YX = O, and the equality from the
hypothesis of the theorem becomes

which implies that ¢ = 0.
IfX =E,,,Y = E;, then XY = E;; and YX = O;. In this case the equality
from the hypothesis of the theorem becomes
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—a —b —a —b
det(l—c —d) —det(_c —d)’

which implies that » = 0. Thus, A = (g 2).

IfX =E, Y =E,; wegetthat XY = E| | and YX = E,, and the condition

l1—a O —a 0
det( 0 _d)—det(o l—d)

implies that a = d. Thus, A = al, and the theorem is proved. O
Now we give an application of the previous theorem.

Corollary 2.7 IfA, B € .#, (C) are two invertible matrices such that
det(XAY 4+ B) = det(YBX + A), VX.,Y € ., (C), (2.5)

then, there exists a € C* such that A> = B?> = al,.

Proof If Y = O, we get that detA = detB. If Y = I, we get that det(XA + B) =
det(BX + A), VX € ., (C). We multiply, since det A = det B, the left-hand side of
the previous equality to the left by det B and the right-hand side of the same equality
to the right by det A and we get that

det(BXA + B*) = det(BXA + A%), VX e .4, (C). (2.6)

Since matrices A and B are invertible, the functionf : ., (C) — .#, (C) defined
by f(X) = BXA is onto and equality (2.6) implies that

det(Z 4+ B?) = det(Z + A%, Y Ze .# (C). (2.7
Taking Z be equal to Oy, E| 1, E1 5, E» 1, E2 5 in (2.7) we get that B> = A%, Now we
multiply the left-hand side of equality (2.5) to the right by det B and the right-hand
side to the right by det A and we get that
det(XAYB + B?) = det(YBXA + A%), V X.,Y € .4, (C),
or

d€t(X1Y1 +C) ZdCt(lel +C), VXl,Yl 6%2 (C),

where C = A2 = B2. It follows, based on Theorem 2.8, that there exists a € C*
such that C = al,. Thus, A> = B?> = al, and the corollary is proved. |
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2.5 The Jordan canonical form

Theorem 2.9 The complex Jordan canonical form.
Let A € A, (C) and let Ay, A, be the eigenvalues of A. Then:

@) if A # Ay or A = aly, for some a € C, there exists an invertible matrix
P € #, (C) such that
A 0
A=P P
(0 )&2)
(b) if A1 = Ay = A and A # AL, there exists an invertible matrix P €

M5 (C) such that
Y /W O
amr(} 1)

Proof (a) Let Ay # A, be the eigenvalues of A = (a b

) . We have, since the
c d

eigenvalues are distinct, that (a — d)?> + 4bc # 0. Also, there exists X| = (xl) #*

Y1
(0) such that
0

AX) = LX) 2.8)

and there exists X, = (xz) #* (8) such that
Y2

AX, = X, 2.9

Now, we note that X, # aXj, for all « € C, i.e., the eigenvectors associated with
the eigenvalues A and A, are not proportional. Otherwise, if X, = aX; for some
a € C this would imply that AX, = aAX; which in turn implies that 1, X, = oA X;.
Thus, a(A, — A1)X; = 0 and since X; # 0 we get that A = A,, which contradicts
A1 # A,. Therefore the eigenvectors X; and X, are not proportional and this implies
that the matrix P = (X; | X») is invertible.

Equalities (2.8) and (2.9) can be written as follows A(X; | X3) = (11X | A2X3) or

A1 0 —1 A] 0
AP =P A=PILP" where J,= .
(0 Az) g AT WhEE (0 s
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(b) Now we consider the case when the eigenvalues of A are equal, i.e., A} =

Ay = A and A # AL. We choose the vector X; = (xl) #* (g) such that
V1

/
AX) = AX; and X| = (x}) such that AX| = AX/| + X;. We mention that while the
1
vector X is the eigenvector associated with A, the vector X{ is called the generalized

eigenvector associated with the eigenvalue A. Let P = (X, | X]) and we have

AP = A(X; | X}) = (AX) | AX;] + X))

or
AP = P(é /1\) & A=P/P" where J,= (3 i) :
The theorem is proved. |

Remark 2.4 The matrices

A O Al
Ja = Ja = ,
! (o Az) o (o A)
are called the Jordan canonical forms of A. The columns X;, X, or X;, X| of P
form a basis in .#, (C) called the Jordan basis corresponding to the matrix

A and the matrix P is, according to Lemma 1.4, the matrix of passing from the
canonical basis 8 = {E|, E;} to the Jordan basis.

Corollary 2.8 The Jordan canonical form of special matrices.

m  All nilpotent matrices A € M, (C) with A # O, are of the following form

01\,
A=P P,

where P is any invertible matrix.
m  All idempotent matrices A € M, (C) are A = 05, A =1, or

a=p(L0 P,
00

(continued)
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Corollary 2.8 (continued)

where P is any invertible matrix.
m  All involutory matrices A € M, (C) are A = £1, or

A=P 10 Pl
0 —1

where P is any invertible matrix.

m Al skew involutory matrices A € M, (C) are A = i -1, or

a=p(? 1 Pl
1 0

where P is any invertible matrix.

Now we discuss the real canonical form of a matrix A € .#, (R). We have the
following theorem.

Theorem 2.10 The real canonical form of a real matrix.

(@) IfA € A, (R) and Ay, A, are the real eigenvalues of A, then there exists
P € ), (R) such that

A 0 A1
(o xz) o (o A) ’

according to whether the eigenvalues of A are distinct or not.

(b) IfA € A, (R) and the eigenvalues of A are Ay = o +if and A, = a—ip,
o € R and B € R*, then there exists an invertible matrix P € ./, (R)

such that
a=p(% B)p.

Proof (a) The proof of part (a) is similar to the proof of Theorem 2.9.
(b) We mention that, in this case, the Jordan canonical form of A is given by

_(a+iB O
JA_( 0 a—iﬂ)’
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and if AZ = MZ, Z # 0, then AZ = m = )&2_2 and the invertible matrix Pc,
which verifies A = P(CJAPF, would be Pc = (Z | Z).
If Z = X + iY, with X and Y real vectors, we have

AZ=1Z & AX+iY)=(a+if)X+iY)
and we obtain the following equalities AX = «X — Y and AY = BX + aY.

We define the matrix P = (X | Y) and we have that

AP = A(X|Y) = (AX |AY) =((xX—ﬁY|,3X+aY)=P(_aﬂ 5)

orA = PJ/DfP_1 , where the matrix

A= (%)

is called the real canonical form of A. The theorem is proved. |

Now we give the rational canonical form of a matrix A € .#, (Q). We have the
following theorem.

Theorem 2.11 The rational canonical form of a rational matrix.

(@) IfA € A, (Q) and Ay, A, are the rational eigenvalues of A, then there
exists P € M, (Q) such that

_ At O 1 _ A1)
A—P(O AZ)P or A—P(O A)P ,

according to whether the eigenvalues of A are distinct or not.

(b) IfA € A, (Q) and the distinct eigenvalues of A are A1, A, € C\ Q, then
A =oa+ \/Eand/lz = o — \/B,a € Q, B € Q* and there exists an
invertible matrix P € ., (Q) such that

A=P(g ;)P‘l.

Proof (a) The proof of part (a) is similar to the proof of Theorem 2.9.
(b) In this case the Jordan canonical form of A is given by

w=("" )
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If Z # 0 is the eigenvector associated with the eigenvalue A, = o + \/,E , then
AZ = MZ. LetZ =X+ \/B Y, where X and Y are rational vectors. A calculation

shows that A(X + \/EY) = (o + \/B)(X + \/BY) implies

AX =aX+ BY and AY =X+ Y.
This in turn implies that A(X — /BY) = (@ — /B)(X — /BY), or AZ' = 1,7/,
where Z/ = X — \/E Y. The invertible matrix Pc which verifies A = PcJoPg! is

givenby Pc = (Z|Z)).
LetP = (X|Y) € #4,(Q). We have

AP:(AX|AY)=(aX+,3Y|X—|—aY)=(X|Y)(O‘ 1):,3(06 1)
B « B «

orA = PJ;‘QP_1 , where the matrix

#=(5.)

is called the rational canonical form of A. The theorem is proved. O

2.6 Problems

2.1 LetA € .#, (C) withdetA = 1. Prove that det(A> +A—1I,) +det(A%> + ) = 5.
2.2 LetA € .4, (7Z) with detA = 1. Find Tr(A) if
det(A> — 34 + I,) + det(A> + A — ) = —4.
2.3 LetA € ., (C) with Tr(A) = —1. Prove that
det(A% + 34 + 35,) — det(A® + A) = 3.

24 leta€Z,a# +1andletA € .#, (Z). Prove the matrices aA + (a + 1)1, and
aA — (a + 1)1, are invertible.

2.5 Prove that any matrix A € .#; (C) is the sum of two invertible matrices.

2.6 ' Let A € .#, (C) with detA = 0. Prove that there is a sequence of matrices
(Ap)nen such that detA, # 0 and lim A, = A.
n—>oQo

The problem states that any singular matrix is the limit of a sequence of nonsingular matrices.
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Remark 2.5 The density of invertible matrices. Problem 2.6 is used for proving
that the set of invertible matrices is dense in the set of all matrices.

2.7 LetA € .4, (C). Prove that A and A, have the same characteristic polynomials
(the same eigenvalues).

2.8 A right stochastic matrix is a square matrix with nonnegative real numbers with
each row summing to 1. Prove that the eigenvalues of A € ., (C) are 1, the largest,
and Tr(A) — 1, the smallest, and determine the corresponding eigenvectors.

2.9 Prove that if A € .#, (C) has all its eigenvalues equal to 1, then A is similar to
AF for every positive integer k.

2.10 Letn € N. Prove that if A, B € .#, (C) are similar matrices, then A" and B"
are similar matrices. Does the reverse implication hold?

211 LetA = 00 .
10

(a) Determine all matrices B € .#, (R) which are similar to A.
(b) Prove that A and O, have the same characteristic polynomial but the matrices
are not similar.

2.12 Two classes of special similar matrices.

(a) Prove that any matrix A € .#, (C) is similar to its transpose.
(b) Prove that any matrix A € .#, (C) is similar to a symmetric matrix.

Nota bene. Part (b) of the problem reduces to the case of proving that any

. 1 .. . .
matrix of the form (g /\)’ A € C, is similar to a complex symmetric matrix.

2.13 The transpose and the adjugate matrices are similar.

Prove that there exists P € .#, (C) such that A, = PATP~! forall A €
M5 (C). Determine all matrices P with this property.

2.14 Any matrix A € .#, (C) is the product of two symmetric matrices.

215 Letn € N,n > 2and let A € .4, (R). Prove that if A” is a symmetric matrix
which is not of the form al», @ € R, then A is a symmetric matrix.
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2.16 Let .# be the set of matrices in .#, (C) which have the property that the
absolute values of their eigenvalues is less than or equal to 1. Prove thatif A, B € .#
and AB = BA, then AB € ./ .

217 LetA = 203 and let B = 3 -2 . Prove that
-3 10 4 9

Jn _ 5n
2

A" —B" = (A—B), VneN.

2.18 LetA,B € ./, (R) such that AB = (g i) Prove that BA + A™'B~! = 8I,.

2.19 LetA = (; 130) and let (a,),>0 be the sequence defined by the recurrence

relation a,,+; = 3a, + a,—1,n>1,a0 =0,a; = 1.

Qom—1 a
(a) Prove that A" = ( =l Con ),n > 1.
Qn A1

(b) If the sequences (x,),>0 and (y,)n>o verify the recurrence relation (x”+l) =
Yn+1

A (x,,)’ n > 0, and (xo) = ((1)), prove that xﬁ+1 + Xk 1Vnt1 — )’ﬁ+1 =
n Yo

X2 + 3x,y, — y2, forall n > 0.

(c) Prove that if the natural numbers x, y € N verify the equation x> + 3xy—y? = 1,
then there exists n € N such that (x, y) = (a2,—1, a2,).

2.20 Let A, B € .#> (R) such that there exists n € N with (AB — BA)" = I,. Prove
that (AB — BA)* = I, and n is an even integer.

2.21 Let n > 2 be an integer and let A,B € .#,(C) such that AB # BA and
(AB)" = (BA)". Prove that (AB)" = bl,, for some b € C.

2.22 Let A € .#; (R) such that det(A> — A + I,) = 0.

(a) Prove that A> —A + 1, = O,.
(b) Calculate det(A%> + aA + BI,), where a, B € R.

2.23 Prove that any matrix A € .#5 (R) can be written A = B> + C?, with B, C €
> (R). Does the result hold if we add the supplementary condition BC = CB?

2.24 Let A € ., (C). Prove that:

(@) N(detA) = detR(A) — det I(A);
(b) N(detA) = det (R(A) + J(A)) — det R (A) — det J(A).
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2.25 An extremum problem.

Let.# = {A = (a;j) € #> (R) : =1 <a;; <1, Vi,j = 1,2}. Prove that
maxy ge.» det(AB — BA) = 16.

2.26 LetA,B € .#, (C). Prove thatif det(A+X) = det(B+X), forall X € .#, (C),
then A = B.

2.27 LetA, B € ./, (R). Prove that
det(A? + B? + AB — BA) = det(A® + B%) + det(AB — BA).

2.28 Let A, B € .#, (R). Prove that det(A? + B?) > det(AB — BA).
2.29 LetA,B € .#> (R). Prove that if det(AB + BA) < 0, then det(A? + B?) > 0.

2.30 LetA, B € .#, (R) such that A> + B2 = O, and AB = BA. Prove that det(A +
B) = detA + detB.

2.31 Prove thatif A, B € .45 (R) such that det(A>+B%) = 0 and AB = BA, then:

(a) detA = detB;
(b) if detA # 0, then A + B?> = 0,.

Nota bene. If A, B € .#, (R) are such that det(A%> + B?) = 0 and AB = BA, then
it does not follow that A2 + B = O,.

2.32 Let A, B € .#, (R). Prove that if AB = BA and det(2A> — 3AB + 2B%) = 0,
then detA = det B and det(A + B) = 1 detA.

2.33 Let A,B € .#,(Q) be two commuting matrices such that detA = 10 and
det(A 4+ +/5B) = 0. Calculate det(A2 — AB + B?).

2.34 Provethat VA, B € .#, (C) and V a, b, ¢ € C one has
det(aAB + bBA + cl,) = det(aBA + bAB + cl).
2.35 LetA € #, (R) and let
faidhr R) > R, fi(X) = det(X + A) — det(X — A).

Prove that:

(a) faA = afA, ae R;
(b) fat+s =fa + [, B € M (R);
(c) there exist sequences (x,)n>1 and (y,),>1 such that fan = x,fa + yuft,.

2.36 Prove that the unique function f : .#,(C) — C which verifies the
conditions
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(@) fXY) =fX)f(Y), YX,Y € 4,(C)
(b) fX+ D) =f(X)+f(,) + Tr(X), VX € .4, (C),

is the determinant function f(X) = detX.
237 LetA € 4, (R)and letf : 45, (R) — 45, (R) be the function defined by

1)) )

Prove the following statements are equivalent:

(a) f4 is injective;
(b) fa is surjective;
(c) detA # 0.

238 LetA € A, (Z) and letf : 4> (Z) — 451 (Z) be the function defined by
Ja (x) =A (x) . (x) € My (2).
y y y

(a) fa is injective if and only if detA # 0;
(b) fa is surjective if and only if detA € {—1, 1}.

Prove that:

2.39 The power function.

Prove the function f : .4, (C) — ., (C), f(X) = X" is neither injective nor
surjective for any n € N, n > 2.

2.40 Non-surjective functions.

(a) Prove the function f : %, (R) — ., (R), f(X) = X?"1¢ 4+ X215 i5 not
surjective.

(b) Prove the function f : .#, (R) — ., (R), f(X) = I, + X + X> + --- + X016
is not surjective.

241 Let a,b.c.d € (0,00) such that ad —be > 0 and let A = (a _db) ©
—C

> (R). We say that a matrix X € .#5 (R) is positive if all of its entries are positive
real numbers and we use the notation X > 0. Prove that:

(a) for any positive matrix X’ there is a positive matrix X such that AX = X’;
(b) thereis X > 0 such that X’ = AX > 0.

2.42 [58] LetA = (“ Z) e M (R) witha > 0,b > 0,c > 0,d > 0. Prove that
C

A has an eigenvector X = (x) withx > Oandy > 0.

y
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243 Let A,B € .#,(R) be matrices with strictly positive entries. Prove that
(AB)? = (BA)? if and only if AB = BA.

244 Let A € 4, (C) such that Tr(A) = —1 and detA = 1. How many elements
does the set {A” : n € N} have?

2.45 A 2016 Seemous problem.

Let n > 2 be an integer and let &2, = {X" : X € .#, (C)}. Prove that
Py =P, ¥Yn>2.

The problem generalizes part (a) of Problem 2 of Seemous 2016, Protaras,
Cyprus.

2.46 LetA,B € ., (R) such that detA = det B = 1. Prove that:

(a) Tr(AB) + Tr(A~'B) = Tr(A)Tr(B);
(b) Tr(BAB) + Tr(A) = Tr(B)Tr(AB).

2.47 (a)LetA € .#, (R) be such that Tr(A) > 2. Prove that forany n € N, A" # L.

(b) Let r > O and let A € ., (R) be such that Tr(A) > 2r. Prove that for any n € N,
A" £ 'L,
248 LetA € 4, (R) withdetA = 1 and |Tr(A)| < 2. Prove that for any n > 2 we

have |Tr(A")| < 2 and there exists B, € .#, (R) such that detB,, = 1, |Tr(B,)| < 2
and |Tr(B})| = 2.

249 Let A,B € #,(C) with A # B and let C = AB — BA. Prove that C
commutes with both A and B if and only if C = O,, that is, if and only if A
commutes with B.

2.50 Let A € ., (C) such that det(A — I) € R and there exists n € N such that
A" = [,. Prove that det(A — xI;) € R, for any x € R.

2.51 LetA,B € ., (C) and let n > 2 be a fixed integer. Prove that:

(a) If (AB)" = O,, then (BA)" = O,;

(b) If (AB)" = I, then (BA)" = L;

(c) If AB # BA, find the matrix C € .#, (C) for which the following implication
holds (AB)" = C = (BA)" =C.

2.52 LetA,B € GL, (C) and , B € C with || # |B]| such that tAB + BBA = .
Prove that det(AB — BA) = 0.
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2.53 Let A, B, C € .#, (R) be matrices which commute one another with det C =
0. Prove that det(A? + B2 + C?) > 0.

2.54 Let Ag,Aq,...,A, € A, (R), n > 2, be nonzero matrices which verify the
conditions Ay # al,, Ya € R and AgAy = AyAg, Yk = 1,2, ..., n. Prove that:

(a) det (Xn: A,%) >0;
k=1

(b) If det (Z Ai) = 0and A, # aA,, forall a € R, then }_ A7 = 0,.
=1 =1

2.55 Leta € (—1,1) and let A € .#, (R) be such that det(A* —aA3 —aA +1,) = 0.
Prove that detA = 1.

2.56 Let B € .#, (C) be a nilpotent matrix. Prove that if A € .#, (C) commutes
with B, then det(A + B) = detA.

2.57 Let A,B € ./, (C) be such that AB = BA. Prove that if there exist integers
m,n € N such that A" = O, and B" = O,, then AB = O,. The problem states that
if two nilpotent matrices commute their product is zero.

2.58 When is the sum (difference) of two nilpotent matrices a nilpotent matrix?

Let A,B € .#,(C) be two nonzero nilpotent matrices. Prove that A & B is a
nilpotent matrix if and only if both AB and BA are nilpotent matrices.

2.59 LetA,B € .#, (C). Prove that Tr((AB)?) = Tr(A%2B?) < (AB—BA)? = 0,.
2.60 When is the matrix AB — BA nilpotent?

(a) [28]If A, B € .#, (C) are such that 2015AB — 2016BA = 20171, then (AB —
BA)? = 0.

(b) More generally, let m,n,p € R, m # n and let A, B € .#, (C) such that mAB —
nBA = pl,. Prove that (AB — BA)? = 0.

2.61 LetA,B € .#,(C). Prove that (AB)> = AB’A < (BA)?> = BA’B.
2.62 Let A, B € ., (C). Prove that

det(A — B)det(A + B) = det(A> —B*) & (AB—BA)> = 0,.
2.63 Let A, B € ./, (R). Prove that any two of the following statements imply the

third one:

(a) det(A?> + B%) = 0;

(b) det(AB — BA) = 0;

(c) detA = detB = } det(A + B).

2.64 If A, B € ., (R) such that det(AB + BA) = det(AB — BA), then
det(A? + B?) > 0.

2.65 IfA,B € .4 (C) and n € N, then det(A" + B" & AB) = det(A" + B" £ BA).
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2.66 If A, B € .#, (C) and A2 + B> = AB, then (AB — BA)?> = 0,.

2.67 IfA,B € .#,(C) and A?> = O,, then det(AB — BA) = 0 < det(A + B) =
detB.

2.68 Let A € .#, (R) such that A2 = O,. Prove that V B € .#, (R) the following
inequalities hold det(AB — BA) < 0 < det(AB + BA).

2.69 LetA,B € #,(C)\ {O,} be such that AB + BA = O,. Prove that if det(A —
B) = 0, then Tr(A) = Tr(B) = 0.

2.70 If A, B € .4, (C) such that Tr(A)Tr(B) = Tr(AB), then

det(A% + B> + AB) = det(A? + B*) + det(AB).

2.71 The centralizer of a nilpotent matrix.
LetA € 4, (C) and let €(A) = {X € 4, (C) : AX = XA}. Prove that

A’=0, & |det(A+X)|>|detX|, VXe%WA).

2.72 (a) If A, B € .#, (R) are matrices such that (A — B)™! = A~! — B™!,
then detA = det B = det(A — B).
(b) Does the result hold if A, B € ., (C)?

2.73 Let P be a polynomial function with real coefficients which does not
have real roots and let A € .4, (R) be such that det P(A) = 0. Prove that
P(A) = 0,.

2.74 [58, p. 145] Let A,B € .#> (R) be matrices such that A> = B> = I, and
AB + BA = 0,. Prove that there exists an invertible matrix Q € ., (R) such that

1 (1 0 1 (01
(0] AQ—(O _1) and Q BQ—(1 0).

2.75 Let A, B € .#, (C) be such that AB = O;. Prove that

det(A + B)" = det(A" + B"), Vn> 1.
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2.76 (a) Prove that there exist matrices A, B € .#, (R) such that
det(xA +yB) = x> +y>, Vx,yeR.
(b) Prove that there do not exist matrices A, B, C € .4, (R) such that

det(xA +yB+zC) = > +y* + 7%, Vxy.zeR.

2.7 Solutions

2.1. Let f; (x) = det(A — xI,) = x> — tx + 1, where t = Tr(A). We have, based on
Theorem 2.2, that A2 = tA — I, and this implies that A2+ A—© = (t+ DA -2,
and A2 + I, = tA. A calculation shows that

2
det(A2 + A — b)) + det(A% + L) = (t + 1)*fy (t+_1) + 7

2 \* 2
=+ (=) - = 41|+
(+)|:(t+l) t+1+:|+

=5.

2.2. Tr(A) = 3. See the solution of problem 2.1.

2.3. Let f4(x) = det(A—xI,) = x> +x+d, where d = det A. Theorem 2.2 shows that
A? = —A —dI, and this implies A2+ 3A43L =24— (d—3)I and A2+ A = —db.
It follows that

d-3
det(A% + 3A + 31,) — det(A* + A) = 4f, (T) —d?

d—3\> d-3
=4|(—= —+d|-d
(5) +55+4]

= 3.

2.4. We have, based on Corollary 2.4, that det(aA + (a + 1)I,) = a*> detA + a(a +
Da + (a + 1)?, for some a € Z. If det(aA + (a + 1)I5) = 0, then a* detA + a(a +
Da+ (a+1)> =0 = al(a+ 1)% It follows that a*> + 2a + 1 = ab, for some
b € 7. However, the last equality implies that a |1, which contradicts a # +£1.

2.5.Let A ¢ Spec(A), A #OandletB=A — A, and C = Al,.
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2.6. Since detA = 0 we get that 0 € Spec(A). Let A, be a sequence of real or
complex numbers such that lim A, = 0 and A, & Spec(A). LetA, = A —A,l,. We
n—>oo

have l_i)m A, = A and det(A,) = det(A — A,I5) # 0, since A, ¢ Spec(A).
n—>oo
2.7. We have

= x> — (a + d)x + ad — bc = fy(x).

S, (x) = det(Ayx — xIp) =’ d_—x —b

cC a—x

2.9. Let J4 be the Jordan canonical form of A and let P be the invertible matrix

such that A = PJ4,P~'. If J4, = I, there is nothing to prove. If J4 = ((1) i) then

1 k
01

1 k

AF =PJiPT =P
4 ( 01

)P‘l. A calculation shows that ( ) =Jk =070,

10

where Q = (O r

). This implies that

A* = PO '1,0P7" = (POP~") " PI,PT (POPT) = (POPTY) A (POPTY),

which implies that A¥ ~ A.

210.A ~ B = 3P € GL,(C) such that B = P~'AP. This implies that B" =
P~'A"P, which shows that A” ~ B".

The reverse implication does not hold. Let n = 2 and let A = ((1) g) and
B = 0,. Then, A> = B> = 0, so A> ~ B?. However, A and B are not similar
matrices.

2.12. (a) It suffices to solve the problem for Jordan canonical forms. If J4 =

('Bl /{)2) there is nothing to prove. If J, = (?) i)’ then we let P = ((1) (1))

and we have that P~'J,P = J1.
(b) It suffices to solve the problem for Jordan canonical forms. If J4 = (AO] AO )
2
Al
0 A
Q € ., (C) and a symmetric matrix B € .# (C) such that 07'J,Q = B. Let

0= (a fl) and let A = ad — bc # 0. A calculation shows that
c

there is nothing to prove. If J4, = ( ), then we need to find an invertible matrix

1 (cd+ 1A d?
A ;

B=—
—c? —cd + 1A
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and since B is a symmetric matrix we get that ¢> + d> = 0. Observe that B cannot
be areal matrix. Letd = i,c = 1, a = i, b = 0 and we have that

i0 A—i 1
Q_(l i) and B_( 1 A—i—i)'

213 LetA= (¢ P anda, = (¢ PV aep = (© 7). then PATP! = 4,
c d —Cc a 1 0

If Q is another matrix such that QATQ™! = A,, VA € .#, (C), then PATP™! =
QATO™' = (Q7'P)AT = AT(Q'P), VA € .#,(C). This implies that Q~'P
commutes with all matrices in .#, (C). It follows, based on Theorem 1.1, that
g _Oﬁ),whereﬁ e C*.
2.14. Let J4 be the Jordan canonical form of A and let P be the invertible matrix

such that A = PP~ L. If J, = (AOI f) then J4, = BC, where
2

(MO (10
B_(O 1) and C—(O )tz)'

We have A = PJ,P~! = [PBPT|[(P~")"CP~!'], where PBP" and (P~')"CP~" are
symmetric matrices.

Q~'P = al,, for some « € C. This implies that Q = (

IfJ, = (g i), then J, = BC, where

11 0 A
B = d C= .
(1 0) a ()L - A)
We have A = PJ,P~! = [PBPT|[(P~")"CP~"], where PBP” and (P~')"CP™! are
symmetric matrices.
2.16.Let A,B € .# . If 1, is an eigenvalue of A and Ap is an eigenvalue of B, then
since AB = BA we get, based on Theorem 2.1, that Ay = AsAp. It follows that
[Aan| = [AallAp| < 1.
2.17. The eigenvalues of A and B are 7 and 5. We have, based on Theorem 3.1, that
A" = 7"D + 5"C, where D = f% and C = % and B" = 7"U + 5"V, where
_ B-5I _ 1h—B n n _ 1l/n n

U= >2and V = == It follows that A" — B" = 3(7" — 5")(A — B).
2.18. The characteristic polynomial of the matrix BA is fs (x) = fup(x) = x> —8x+
1. It follows, based on Theorem 2.2, that (BA)> — 8BA + I, = 0,. We multiply this
identity by (BA)~! = A7'B~! and we get that BA + A~'B~! = 8I,.
2.20. We have that Tr(AB — BA) = 0 and det"(AB — BA) = 1 = det(AB— BA) =
+1. We apply the Cayley—Hamilton Theorem for the matrix AB — BA and we get
that (AB — BA)? = +1, which implies that (AB — BA)* = I,.
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By contradiction, we assume that n = 2k + 1. We have, since (AB — BA)" = I,
that det(AB—BA) = —1 and it follows based on the Cayley—Hamilton Theorem that
(AB—BA)? = —I,. Thus, I, = (AB — BA)**! = (—1,)(AB — BA) and this implies
that AB — BA = (—1)*I,. This contradicts the fact that Tr(AB — BA) = 0.

2.21. Letf € CJx] be the characteristic polynomial of matrices AB and BA. Dividing
the polynomial x" by f we get that there exist Q € C[x] and a,b € C such that
X" = f(x)Q(x) 4+ ax + b. Replacing x by AB and BA we get that (AB)" = aAB + b,
and (BA)" = aBA + bl,. Since (AB)" = (BA)" and AB # BA we get thata = 0 and
this in turn implies that (AB)" = (BA)" = bl,.

2.22. (a) Observe that A2 — A + I, = (A — el,)(A — €l,), where €2 — ¢ + 1 = 0,
€ € C\ R. Since det(A> — A + I,) = 0 we have that either det(A — el,) = 0 or
det(A —€l,) = 0. Let f(x) = det(A — xI,) € R[x] be the characteristic polynomial
of A. If € or € is a root of f, then since f has real coefficients we get that both €
and € are roots of f. This implies that f(x) = (x — €)(x —€) = x> —x + 1 and the
Cayley—Hamilton Theorem implies that A> — A + I, = O,.

(b) We have det(A? 4+ @A + BL) = det[(a + 1)A + (B — 1)I,]. We distinguish
between the cases when @« = —1 and @ # —1.

If « = —1, we have, based on part (a), that A> — A + BI, = (8 — 1)1, and this
implies that det(A> — A + BL) = (B — 1)2.

If « # —1, we have that

det(A® + @A + BL) = (o + 1)* det (A - ;_ p 12)

+1
2 (1—B
_(a+1)f(ot+1)

_ | (1=BY 1-8
=@+l |:(oe+1) a+1+li|

=+ +af+a—B+1.

0 1
2.23.(a) Let A = al,, whereax € R. If ¢« < 0,then B = C = ,/—% (_1 0)' If
a=0,thenB=C=0,.Ifa>0,thenB=C= /5.

Now we consider the case when A # «al,, foralla € R. Lett = Tr(A), d = detA
and we have that A2 — tA 4+ dI, = 0,. We determine o, 8,y € R such that A =
(@A + B1,)* + yI. A calculation shows that A = (a%t 4+ 2aB)A + (B + y —a?d)1>.
This implies that ¢ + 2 = 1 and B>+ y —a*d = 0. We choose o = 1, B = 1!
andy =d— #.

m Ify>0,then B=aA+ B and C = /y].
m Ify=0,thenB=C= %(aA + BL).

] If)/<0,thenB:aA+’3123ndC:\/__y(Ol (1))
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(b) If BC = CB, then B> + C> = (B + iC)(B — iC) and det(B*> + C?) =
| det(B + iC)|?> > 0, so there is no matrix A with detA < 0 such that A = B? + C?
with BC = CB.
2.24. Observe that A = 9 (A) + iJ(A) and use Corollary 2.4 withx = 1 and y = i.
2.25. Using Lemma 2.10 we have that det(AB — BA) = Tr(A’B?) — Tr((AB)?).
A calculation based on Theorem 2.2 shows that Tr(A2B?) — Tr((AB)?) = —1f3; +

tatptap — t;f; dp—d, tlzg + 4ddp, which is a quadratic function in #45. The discriminant
of this function is A = (4 — 4d4) (13 — 4dp) and its maximum value is 4 = l(ti —

4 i
4dy) (2 — 4dp). IF A = (“ Z) € M, (R), then £2 — 4dy = (a — d)* + 4bc < 8,
C

since a, b, ¢, d € [—1, 1]. It follows that maxx pe_» det(AB—BA) = 16, with equality

1 -1 -1 -1
atenn= (1 )awan= (1)
2.26. Let E;j, i,j = 1,2 be the matrix having the (i, j) entry equal to 1 and all the

other entries equal to O and let X = O,, E| 1, E 2, E> 1 and Ej 5.
2.27. and 2.28. We have

| det(A + iB)|* = det(A + iB) det(A — iB) = det[A> + B> — i(AB — BA)].
It follows, based on Corollary 2.4 with x = 1 and y = —i, that

det[A* + B* — i(AB — BA)| = det(A” + B*) — det(AB — BA)
— i[det(A? + B? + AB — BA) — det(A> + B?) — det(AB — BA)].

Since det [AZ + B*> — i(AB — BA)| = | det(A+iB)|* > 0 we get that det(A* + B?) >
det(AB — BA) and det(A% + B> + AB — BA) — det(A? 4 B?) — det(AB — BA) = 0.
2.29. Let f(x) = det [A2 + B> + x(AB + BA)] € R[x]. We have

f(1) = det(A 4+ B)?> = det*(A + B) > 0,
f(—1) = det(A — B)? = det?(A — B) > 0,
f(x) = det(A% + B?) + ax + x> det(AB + BA), where « € R.

If det(AB + BA) = 0, then f is a linear monotonic function (or the constant
function) and since f(0) is between f(—1) and f(1) we get that f(0) > 0.

If det(AB + BA) < 0, then f is a quadratic function which has a maximum. Since
f(=1) = 0and f(1) > 0 we get that —1 and 1 are between the roots of the equation
f(x) = 0 and, since 0 is between —1 and 1, we get that f(0) > 0.

2.30. We have 0 = det(A? + B?) = det(A + iB)(A — iB) = det(A + iB) det(A — iB)
and it follows that either det(A + iB) = 0 or det(A — iB) = 0. Using Corollary 2.4
we get that

det(A £ iB) = detA — detB & i [det(A + B) — detA — detB].

We have, since det(A = iB) = 0, that detA = det B and det(A + B) = detA + det B.
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2.31. (a) For this part of the problem see the solution of problem 2.30.

(b) If detA # 0, then A% + B2 = A% (I, + C?), where C = A™'B € ./, (R). We
have det(A?> +B%) =0 & det(l, + C?) =0 & det(C +il,)(C —il) = 0. Using
a technique as in the solution of problem 2.30 we get that det C = 1 and det(C +
I) = det C + 1. The last equality implies, since det(C + I,) = det C + Tr(C) + 1,
that Tr(C) = 0. The Cayley—Hamilton Theorem applied to matrix C shows that
C? + I, = O, which implies A> + B> = A% (I, + C?) = 0,.

232. Leta = %ﬁ and observe that 242 — 3AB + 2B?> = 2(A — aB)(A — @B).
We have 0 = det(2A%>—3AB+2B?) = 4| det(A—aB)|*> which implies det(A—aB) =
0. We have, based on Corollary 2.4, that

det(A — aB) = detA + o det B — « [det(A + B) — detA — det B]

and it follows, since a2 = %(x — 1, that
5
det(A — aB) = detA —detB + « |:detA + > det B — det(A + B):| = 0.

Since o ¢ R we have that detA + 2 det B — det(A + B) = 0 and detA = det B.
However, this implies that det(A 4+ B) = % detA.

Remark 2.6 If A, B € ./, (R) are commuting matrices with detA # 0 or detB # 0
and det(24% — 3AB + 2B?) = 0, then 2A? — 3AB + 2B = O, (for a proof see the
solution of problem 2.31).

2.33. det(A%> — AB + B?) = 124.

2.34. Let f(x,y) = det(xAB + yBA + cI,) and g(x,y) = det(xBA + yAB + cl;). We
note that both f and g are polynomials of degree less than or equal to 2 in variables
x and y of the following form

Fx,y) = anx® + apxy + any® + aix + ary + a3
g(x, y) = b11X2 + b[zxy + b22y2 + bix + bzy + bs.

Sincef(x,y) = g(y,x) we get that ayg = bzz, ap = b12, ay = b]], ay = bz,
a, = by, and a3 = bs. It follows that

fxy) = anx® + apxy + any? + aix + azy + a3
g(x.y) = anx® + apxy + any* + axx + ary + a.

We have

f(x,0) = det(xAB + cl,) = x*> det(AB) + cxTr(AB) + ¢?
g(x,0) = det(xBA + cl,) = x*det(BA) + cxTr(BA) + 2,

s0 f(x,0) = g(x,0), Vx € C and it follows that a;; = as; and a; = a,. Thus,

fly) =gy =an(®+y?) +apxy+aj(x+y)+a, VxyeC.
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2.35. Let A, A, be the columns of A and let X;, X, be the columns of X, i.e.,
A= (A1]A) and X = (X1 | X3). A calculation shows that

fa(X) =det(A; + X1 | Az + Xp) —det(X; — A1 | X2 —Aj)
= det(A; |Az) + det(A; | X2) + det(X; |Az) + det(X, | X2)
— det(X; | X») + det(X; |A) + det(A; | X2) — det(A; | A»)
= 2[det(A; | X») + det(X; |A2)].

(a) We have
Jfaa(X) = 2[det(aA | X2) + det(X, | aA,)]
= 2a[det(A; | X») + det(X; | Ay)]
= afa(X).
(b) We have

Sa+(X) = 2[det(A; + By | X3) + det(X; | Az + By)]
=2 [det(Al |X2) + det(Xl |A2)] +2 [det(Bl |X2) + det(X1 |Bz)]
= fu(X) + fp(X).

(c) We have based on Theorem 3.2 that there exist sequences (x,),>1 and (V,)us>1
such that A" = x,A + y,l», V n > 1. It follows, based on parts (a) and (b), that

Jan = foatyaty = foa + Fyn = Xafa + Yufb-

We mention that f7,(X) = 2Tr(X).
2.37. We prove that (a) < (c) and (b) < (c). We have

X X X —x 0
1()=a() e 202 =0)
Aj »2 Y=y 0
which is a homogeneous system of two equations and two variables. The system has
only the zero solution x; —x, = 0, y; — y, = 0 if and only if detA ## 0. Thus,

ware e (1)=()

u

Now we consider the system A (x) = (
y v

), which has a solution for any u, v €

(1)

R if and only if detA # 0 in which case (x)
y

2.38. (a) See the solution of problem 2.37.
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(b) If detA = =1, then fj is surjective (for a proof of this implication see the
solution of problem 2.37). Now we prove that if f; is surjective, then detA = +£1.

We have, based on the surjectivity of f3, that there exists (xl) € M1 (Z) such that
V1

fa (xl) = (1) and there exists (xz) € > (Z) such that fy (xz) = (0) It
A 0 V2 V2 1

follows that
X1 X2 1 O)
A = b
(yl )’2) (0 1

so A is invertible and A™! = (xl 2
Y1 Y2

AA™! = I, we have that det A det (A‘l) = 1 which implies detA = £1.

) € > (Z). Since A,A™" € .#,(Z) and

2.39.LetA = ((1) 8) Since A" = O, = O} we get that f is not injective.

To prove that f is not surjective we let B = (8 (1)) and we prove the equation

X" = B does not have solutions in .#; (C). If a solution X € .#, (C) would exist,
then det X = 0 and we have based on the Cayley—Hamilton Theorem that X> — X =
O, where t = Tr(X). This implies that X* = "X = ""!X = B. Passing to
trace in this equality we getthat " = 0 = t =0 = X’ =0, = X" = 0,,
which contradicts the fact that X" = B.

240. (a)Let g : R = R, g(x) = x4+ x*B and let Y = (y 0), where y <

00
g (—%8—}2). The equation f(X) = Y does not have solutions in .#, (R).
(b)LetY = (_() 8) The equation f(X) = Y does not have solutions in .7, (R).
U —1y/ —1 1 db -1
241. (@ AX =X & X=A"X, AW = — > 0. Thus, A7 > 0,
ad —bc \c a

X’ > 0 and these imply that A~'X’ > 0.
(b) Let X;, X, be the columns of X and X/, X} be the columns of X’. We have

ax — by

X
X| = AX; and X; = AX,. If X; = (y) then X; = (—cx+dy

) and the conditions

X >0,X > 0give

ax—by >0
—cx+dy>0
x>0

y> 0.
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Each of these inequalities are, from a geometrical point of view, semiplans which
we need to prove they intersect. The frontier of the first semiplan is a line of slope
my = 3 and the frontier of the second semiplan has slope my = 7. These two
semiplans intersect in the first quadrant if we have that m; > m, < ad — bc > 0,
which holds. We can choose X| = X, with x and y a solution of the previous system
of inequalities.

2.43. We have, based on the Cayley—Hamilton Theorem for matrices AB and BA,

that

(AB)? — Tr(AB)AB + det(AB), = O,
(BA)? — Tr(BA)BA + det(BA), = O;.

Since Tr(AB) = Tr(BA) and det(AB) = det(BA) we get that Tr(AB)(AB—BA) = O,.
This implies, since Tr(AB) > 0, that AB = BA.
2.44. {1, A A%}
2.45. Let n > 2. To prove that &, € &7, we need to prove that for any X € .#, (C)
there exists Y € .#5 (C) such that X" = Y2 Let Jx be the Jordan canonical form of
X, let P be the invertible matrix such that X = PJxP~!, and let Y = PY,;P~!. The
equation X" = Y2 becomes Jy = Y?. We distinguish the following two cases.

IfJy = (/t)l /{)2), then Jy = ():)1 fg) and we choose Y| = (lg /?2)’ with
U1, o € C such that p,% = A} and p,% = A5

n n—1
If Jy = (?) i) then Jy = ()5 nan ) Ify = (g b), then we have

a
) a* 2ab .
Y; = 0 2 and we get the equations @> = A" and 2ab = nA"" ' If L = 0
a

we take a = b = 0. If A # 0, then we take @ € C* such that > = A" and
b=
2a

To prove the inclusion &, € &, we need to prove that for any X € .4, (C)
there exists Y € .#, (C) such that X> = Y". Exactly as in the proof of the previous
inclusion we pass to Jordan canonical form and we need to solve the equation
Jy =Y.

/‘\«1 0 1 0 : n n
IfJx = (0 /\2) we take Y| = (0 s , with u = A% and pi = A3.

Al 2 A2 20 ab
Jx (O A), then Jy (O )LZ) and we take Y (0 a)’

n n—1
Y? = (a na b). We get the system of equations @" = A? and na"~'b = 2).

0 da
IfA=0weleta=b=0.IfA #0weleta e C* witha" = A2 and b = 22

na"—1"
2.46. (a) We have, based on the Cayley—Hamilton Theorem, that A? — Tr(A)A +
I, = O, and it follows that A + A~! = Tr(A)L. This implies that AB + A"lB =
Tr(A)B which in turn implies, by passing to trace, that Tr(AB + A~'B) = Tr(AB) +
Tr(A~'B) = Tr (Tr(A)B) = Tr(A)Tr(B).
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(b) B+ B! = Tr(B)l, = BAB+ BAB~! = Tr(B)BA. This implies, by passing
to trace, that Tr (BAB + BAB™') = Tr(Tr(B)BA) = Tr(BAB) + Tr(BAB™') =
Tr(B)Tr(BA). Since Tr(BAB™') = Tr(A) and Tr(BA) = Tr(AB) we obtain that
Tr(BAB) + Tr(A) = Tr(B)Tr(AB).

2.47. (a) By way of contradiction we assume that there exists n € N such that

A" = I,. This implies that det(A") = det"A = 1. If A1, A, are the eigenvalues of A,

then A; + A, = Tr(A) > 2, 1A, = detA = 1 and it follows that AfA} = 1 and

A+ AL = Tr(A") = Tr(l>) = 2. This implies that AT = A} =1 = |A1| = [A2] =

1. We have 2 = |A{| + |A2] = |A1 4+ A2| = Tr(A) > 2, which is a contradiction.
(b) Let A = rB and observe the problem reduces to part (a).

2.48. Let A1, A, be the eigenvalues of A, i.e., the solutions of the equation X -

Tr(A)x +detA = 0. Since A = Tr’(A) —4detA < 0 we get that A1, A, € C\ R and
A> = A;. On the other hand, A;1, = 1 which implies that A;, = cosa + isina,
with sina # 0. We have |Tr(A")| = |2 cos(na)| < 2.

The matrix

verifies the conditions of the problem.

2.49. One implication is trivial. We prove that if C commutes with both A and B,
then C = O,. If A or B are of the form a/,, @ € C, then there is nothing to prove. So
we assume that both A and B are not of the form al,, o € C. Since AC = CA and
CB = BC we have, based on Theorem 1.1, that C = «jA+ 11 and C = oy, B+ 11,
for some a1, a0y, B1, B2 € C. It follows that oA + B11, = @B + Bo1.

If oy = 0 we get that 811, = axB + B2 If @y # 0 we get that B = ﬂ‘a;fblz
which is impossible. Therefore &, = 0 and 8, = B,. Since a; = 0 we get that
C= ,Bllz.AISOTI'(C) =0 = ,3] =0= C= 02.

If @ # 0 we get that A = Z—TB + ﬂza;lmlz = 6B + ylp, where § = g—? and
y = £ Tt follows that C = AB — BA = (8B + yh) B— B (8B + yL,) = Oa.

2.50. Let f4 (x) = det(A—xI,) = x*>—Tr(A)x+det A be the characteristic polynomial
of Aandlet A1, A, beits roots. Since A" = I, we getthat A} = A5 =1 = |4] =
|[A2] = 1 and the condition det(A — I;) € R implies that f4(1) = 1 — (A; + A7) +
A.]/’\.z e R.

We have

M- +A)eR & A-A—A +1)eR
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Let A, + A, = LAy +a,a € R and % = b € R. These imply that
A1z € Rand A + A, € R and hence f4 € R[x].
2.51. (a) We have (AB)" = 0, = (AB)> = 0, = B(AB)’A =0, = (BA)’ =
0, = (BA)? =0, = (BA)" = 0,.

(b) Let f = fap = fpa be the characteristic polynomial of AB and BA. We have
X" = Q)f(x) + ax + b, where Q € R[x] and a,b € R. Thus, (AB)" = I, &
QAB)f(AB) + aAB+ bl =1, & aAB+ (b— 1), = O,.

If a = 0, then b = 1 and these imply that (BA)" = Q(BA)f(BA) + I, = L.

If a # 0, then AB = %12, with la;b = 0, which implies, since A and B are
invertible, that AB = BA.

(¢) AB)" = C < aAB + bl, = C. On the other hand, (BA)" = C <
aBA + bl, = C and, since AB # BA, we geta = 0 and C = bl,.
2.52. 0AB+ BBA =1, = «o(AB—BA) =1, — (0 + B)BA and B(BA — AB) =
I, — (e 4+ B)AB. Also,

det(l, — xBA) = det(A~'LA — A"'xABA)

= det(A™") det(I, — xAB) detA
= det(l, — xAB).

It follows, by passing to determinants in the previous equalities, that
o’ det(AB — BA) = p>det(BA —AB) & (a®> — B%) det(AB — BA) = 0,

which implies, since « # +f, that det(AB — BA) = 0.

2.53. Let f(x) = det(A% 4+ B?> 4 C? +xBC) € R[x]. We have f(—2) = det(A? + (B—
C)?) > 0and f(2) = det(A%Z+ (B+ C)?) > 0. A calculation, based on Corollary 2.4,
shows that f(x) = det(A%4+B?+ C?) 4+ ax+x* det Bdet C = det(A>+ B>+ C?) +ax,
for some o« € R. Thus, f is a monotonic function being a polynomial of degree 1
and since 0 is between —2 and 2 we get that £(0) = det(A? + B> + C?) > 0.

2.55. We have z* —az’ —az + 1 = (22 — oz + 1)(22 — apz + 1), where a5, =
atvai+8 V2”2+8 Since a € (—1,1) we get that |a;»| < 2 which implies the equations

?—oaz+ 1 = 0and z> — apz + 1 = 0 have only complex solutions. Their
solutions are z1,z, and z3, z4 such that zjzo = z3z4 = 1. This implies, since zi, z»
and z3,z4 are complex conjugates, that |z1] = |z2] = |z3] = |z4] = 1. We have

det[(A2 —ajA + D)(A2 —aA + )| = 0 = det(A? — 1A + 1) = 0 or det(A? —
awA+L)=0.1If det(A2 —ajA+5L) =0 & det(A—z711L)(A — 2215) = | det(A —
z11)|* = 0. This implies det(A — z;I;) = 0. It follows, based on Corollary 2.5, that
0 = det(A — z1) = detA — Tr(A)z; + z} = detA — 1 + z; (o1 — Tr(A)) and this
implies detA = 1.

2.56. Since B is nilpotent we get that its eigenvalues are equal to 0. It follows, based
on Theorem 2.1, that Aq4p = A4 + Ap = A4 and ppayp = pa + up = pa. This
implies det(A + B) = A’A+B/1'A+B = )LA,LLA = detA.
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2.57.1f m = 1 or n = 1 the problem is trivial, so we assume that both m and n are
greater than or equal to 2. Observe that A> = B> = O, and use problem 1.8.

2.58. First we prove that if AB and BA are nilpotent matrices, then A+ B is a nilpotent
matrix. We have (A + B)> = A> + B> + AB + BA = AB + BA and (A + B)* =
(AB + BA)?> = (AB)? 4+ AB?A + BA’B + (BA)?> = 0, and this implies, based on
Lemma 2.3, that (A + B)?> = 0.

Now we prove that if A 4+ B is a nilpotent matrix, then both AB and BA are
nilpotent matrices. We have (A + B)> = 0, = A’ +AB+BA+ B> =0, =
AB = —BA. This implies that (AB)> = ABAB = A(—AB)B = —A’B?> = 0, and
(BA)?> = BABA = B(—BA)A = —B?’A? = 0.

2.59. We apply the Cayley—Hamilton Theorem for the matrix AB — BA and we get
that

(AB — BA)> — Tr(AB — BA)(AB — BA) + det(AB — BA)I, = 0.

It follows, since Tr(AB — BA) = 0, that (AB — BA)? + det(AB — BA)l, = 0.
This implies that det(AB — BA) = 0 < (AB — BA)> = 0,. We have, based on
Lemma 2.10, that det(AB — BA) = 0 < Tr(A?B?) = Tr((AB)?).

2.61. We have (AB)?> = AB’A = Tr((AB)?) = Tr(AB*>A) = Tr(A?B?) and we get,
based on problem 2.59, that (AB — BA)?> = 0,. This implies that (AB)> — AB*A +
(BA)? — BA’B = 0,. Since (AB)?> = AB?A we get that (BA)> = BA’B. The other
implication is solved similarly.

2.62. We have, based on Lemma 2.11, that

det(A — B) det(A + B) = det(A> —B*) & det(AB— BA) = 0.

However, (AB — BA)?> = —det(AB — BA)L, and we have (AB — BA)> = 0, &
det(AB — BA) = 0.
2.63. Use Lemma 2.12.

2.64. If det(AB — BA) > 0 we have, based on Lemma 2.12, that det(4*> + B*) > 0.
If det(AB — BA) < 0, then det(AB + BA) < 0. We have, based on Corollary 2.1,
that

det((A% + B?) + (AB + BA))+ det((A> + B®) — (AB + BA))
= 2det(A? + B?) 4 2det(AB + BA).
However, det(A%2 + B> + AB + BA) = det((A + B)?) = det’(A + B) and det((A2 +

B%) — (AB + BA)) = det*(A — B). It follows that det’(A + B) + det’(A — B) =
2det(A2+B?)+2det(AB+BA). Since det(AB+BA) < 0 we have det(A%+B?) > 0.
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2.65. We have, based on problem 1.32, that

det(A" + B" + AB) = det(A" 4+ B") + det(A" 4+ AB) + det(B" + AB)

— det(A") — det(B") — det(AB)

= det(A" + B") + detAdet(A""" + B) + det(B""! + A)detB
— det(A") — det(B") — det(BA)

= det(A" + B") + det(A""! + B) detA + det Bdet(B"! + A)
— det(A") — det(B") — det(BA)

= det(A" + B") + det(A" + BA) + det(B" + BA)
— det(A") — det(B") — det(BA)

= det(A" + B" + BA).

Similarly one can prove that det(A” + B" — AB) = det(A” + B" — BA).
2.66. We have, based on problem 2.65 with n = 2, that

det(A% + B> — AB) = det(A® + B*> — BA).

Since A2+ B> —AB = 0, and A®> + B> — BA = AB— BA we get that det(AB—BA) =
0 & (AB—BA)? = 0,.
2.67. Since A2 = 0, we get that detA = 0. We have, based on Lemma 2.12, that

det(B?) = det(AB — BA) + (det B)?> + (det(A + B) — det B)*,

which implies that 0 = det(AB — BA) + (det(A + B) — det B)2. Now the equivalence
to prove follows easily.

2.68. Since A2 = 0, we get that detA = 0 and det(AB) = 0, VB € .#, (R). Using
Lemma 2.7 we get that

det(AB — BA) = det(AB) — Tr(AB)Tr(BA) + Tr(ABA) + det(BA)
= 2det(AB) — (Tr(AB))? + Tr(A’B?)
= — (Tr(AB))’
<o.

Similarly one can prove that det(AB + BA) = (Tr(AB))* > 0.

2.71. Let A € .#, (C) with A> = 0, and let X € .#, (C) such that AX = XA. Then,
det(AX — XA) = 0 and we have, based on problem 2.67, that det(A + X) = det X.
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To prove the other implication we let x;,x, be the solutions of the equation
det(A + xI;) = x> + Tr(A)x + detA = 0. Since x;I,,x,I, € € (A) we get that
0 = |det(A + x;I,)| > |xi|>, i = 1,2, which implies that x; = x, = 0. Thus,
Tr(A) = detA =0 = A% = 0,.

272.) A—=B)A' =B )Y=5L = AB'+BA' =1, = A-B=AB"'A
and B — A = BA™'B. It follows that

(det B)?
detA

and this implies that det A = det B and det(A — B) = detA.
We give below two matrices A, B € .#, (R) which verify the condition of the
problem. Let o, u, x € R with «, x # 0 and let

(detA)?

= det(BA™'B) = det(B — A) = det(A — B) = det(AB™'A) =
detB

ax —a? —x? ax —a? —x?
X — xX—o ——
A= u and B = u
u o —Xx u —X
Then
1 2+ o?—ax 1 24 a?—ax
A_l_ o6—X —— d B—l_ X
-2 u an -2 u
o o
—u X —u X—«o

We have detA = det B = det(A — B) = o?.
(b) The result does not hold. Let € = # and let

€0 10
A—(O 1) and B—(O E)'

ThenA™' —B~! = (A — B)~! but detA # detB.
2.73. It suffices to consider that P is a polynomial of degree 2.

2.75.If A or B is invertible, then B = O, or A = O, so there is nothing to prove.
Now we assume that neither A nor B are invertible. Since AB = O, we get that

(A+B)"=A"+B"+B(A" > +BA" > +---+B"?)A=A"+B"+C.

All the factors which contain AB are equal to O,. We have, based on problem 1.32,
that

det(A + B)" = det(A" + B" + C)
= det(A" + B") + det(A" + C) + det(B" + C)
— det(A") — det(B") — det C
= det(A" + B"),

since det(A") = det(B") = det C = det(A" + C) = det(B" + C) = 0.
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01 . Then det(xA + yB) = =x2 42
10 X

2.76. (a) Let A =L, and B = (

Xy ‘
-y

(b) For any matrices A, B, C € .#, (R) we can choose the real numbers xo, o, zo
not all equal to O such that the first row of the matrix xoA + yoB + z9C is zero. If

the first row of the matrices A, B and C are [ay, a;], [b1, by], and [cy, 5] respectively,
then the system

aix+byy+cz=0
axx + byy + 2z =0,

has the nontrivial solution (xo, ¥, 20) # (0,0, 0). Then det(xoA + yoB + z0C) = 0
and x2 +y2 + 22 # 0.

2.8 Quickies

2.77 Let A, B € .#, (C) such that ABAB = O,. Does it follow that BABA = O,?

2.78 Let A € .#, (R) be a matrix such that A* # AI,,k € N. Prove that if the
matrix A® has its (1, 2) entry equal to 0, then the same property have all the matrices
A", foralln € N.

2.79 Do there exist matrices A, B € .#/, (Z) such that det(A +2B) = 3 and det(A +
5B) =177

2.80 Let A, B € .#, (Q) such that detA = 0 and det(A + +/2B) = 2. Prove that
detB = 1 and det(A + ,/pB) = p, for any prime number p.

2.81 Let A, B € .#, (Q) such that detA = 1 and det(A + +/3B) = 4. Prove that
detB = 1 and det(A + +/5B) = 6.

2.82 LetA, B € .4, (Q) such that det(A 4+ ~/3B) = 3. Prove that det(A + +/2B) =
3.

2.83 Let A, B € .#, (C) such that Tr(AB) = 0. Prove that (AB)?> = (BA)>.

2.84 Let A, B € ., (R) such that A2 + B> + 2AB = O, and det(A> — B?) = 0.
Prove that det (Tr(A)A — Tr(B)B) = 0.

2.85 Letn € N. Prove thatif A € .#, (C) such that Tr(A) = 0, then Tr(A?>"*!) = 0.
2.86 LetA € .4, (C) such that AK = A**! for some positive integer k. Prove that

Tr(A) = Tr(A?) = Tr(A%) = --- = Tr(4") = ...

2.87 Let A € .#, (C) such that there exists n € N with Tr(A") = Tr(A"*!) = 0.
Prove that A2 = 0.
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2.88 A, B € ., (C) have the same characteristic polynomials, and hence the same
eigenvalues, if and only if Tr(4%) = Tr(B), for all k = 1,2. Deduce that A is
nilpotent if and only if Tr(A¥) = 0, for all k = 1, 2.

2.89 Jacobson’s lemma.

Let A,B € .#, (C) and let C = AB — BA. Prove that C is nilpotent if it
commutes with either A or B.

2.90 Are the matrices equal?

Let A, B € .#, (C) such that Tr(A) = Tr(B) and detA = det B. Does it follow
that A = B?

291 IfA,B € ., (C) such that Tr(A) = Tr(B), then A(A — B)B = B(A — B)A.

2.92 Let A € .#, (C) such that A¥ = O0,, k € N. Prove that (I, — A)~! =
I, + A.

2.93 Forany A, B € .#, (R) there exists & € R such that (AB — BA)?> = al,.

2.94 (a) Find two matrices A, B € .#, (R) such that A> + B> = (; f)

(b) Prove that any two matrices that verify the equality A> + B> = (; ?) do not

commute.

2.9 Solutions

2.77. The answer is yes. Since ABAB = O, = BABABA = 0, = (BA)’ =
0, = (BA)2 = 0,.

2.78. We have, based on Theorem 3.2, that there exist sequences (x,,),en and (y,)nen
such that A" = x,A + y,I», for all n € N. When n = k one has that A* = x,A + v >

which implies A = Xik(Ak — ) = (* O). Thus, if n € N we get A” = x,A +
* %

*x 0
WAy = .
Ynl2 (**)

2.79. Such matrices do not exist. We have, based on Lemma 2.7, that det(A + xB) =
detA + ax + x> det B, where « € Z. If k € Z we have det(A + kB) = det A + mk, for
some m € Z. Thus 7 = det(A + 5B) = det((A+2B) +3B) = det(A+2B) +3m’ =
3(1 + m’), for some m’ € Z, which is impossible.
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2.80. Let f(x) = det(A + xB) = ax + x*>det B, where a € Q and detB € Q. Since
f(~/2) = 2 we get that @ ++/2 det B = +/2 which implies that @ = 0 and detB = 1.
It follows that det(A + /pB) = f(\/p) = pdetB = p.

2.81. Let f(x) = det(A +xB) = 1 +ax+x>det B € Q[x], @ € Q. Since f(+/3) = 4
we get that 1 + a+/3 + 3det B = 4 which implies, since det B € Q, that @ = 0 and
detB = 1. Thus f(x) = 1 + x? and det(A + v/5B) = f(+/5) = 6.

2.82. Let f(x) = det(A + xB) = detA + ax + x*detB € Q[x], « € Q. Since
F(v/3) = 3 we get that det A + a~/3 + +/9det B = 3. It follows that detA = 3 and
o = det B = 0. Therefore f(x) = 3 and det(A + +/2B) = f(v/2) = 3.

2.83. Since Tr(AB) = Tr(BA) = 0 we get, based on the Cayley—Hamilton Theorem,
that (AB)? = — det(AB)I, = —det(BA)Il, = (BA)>.

2.85. Let A1, A, be the eigenvalues of A. The eigenvalues of A>'*! are
and we have, since Tr(A) = A; + A, = 0, that Tr(A>T!) = A7t 4 A7+ =
_A%n+l 4 A%’H—l —0.

2.87. Let A1, A, be the eigenvalues of A. We have Tr(A") = A} + A5 = 0 and
Tr(A"T) = )L’f‘“ + )LZ‘H = 0. A calculation shows that A; = A, = 0 and
Theorem 2.2 implies that A% = O,.

2.88. Only one implication needs to be proved. Let A, A, be the eigenvalues of A
and w1, iy be the eigenvalues of B. An easy calculation shows that the system

2n+1 q2n+1
AT A

A+ A=+ o
A+ 23 = ud +

implies that Ay = p; and A, = uy or Ay = py and A, = . In both cases one has
that A and B have the same characteristic polynomials.

To prove the second part of the problem observe that a matrix A is nilpotent if and
only if A> = 0, if and only if A and O, have the same characteristic polynomials.

2.89. We assume that C = AB — BA commutes with A and we prove that C is
nilpotent. We have Tr(C) = Tr(AB — BA) = 0 and Tr(C?) = Tr(C(AB — BA)) =
Tr(CAB) —Tr(CBA) = Tr(ACB) —Tr(CBA) = 0. It follows, based on problem 2.88,
that C is nilpotent.

2.90. The matrices are not equal. Let A = (i 2) and B = (‘1l 146)'

2.91. Theorem 2.2 implies that A> = (Tr(A))A — (detA)l, and B> = (Tr(B))B —
(det B)I,. We have, since Tr(A) = Tr(B), that

A(A—B)B = A’B— AB?
= [(Tr(A))A — (detA),] B — A [(Tr(B))B — (det B)I5]
= AdetB — BdetA.

Similarly one can prove that B(A — B)A = Adet B — BdetA.
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2.92. If k = 1 we get that A = O, and we have nothing to prove. Let k > 2. If A
is an eigenvalue of A we get that A¥ = 0 which implies that A = 0. Thus, all the
eigenvalues of A are 0. This in turn implies, based on Theorem 2.2, that A% = 0,.
Wehave (L —A)(L +A) =L —-A*=15 = (L—-A)"' =L +A.

2.93. Let X = AB — BA. Since Tr(X) = 0 we have, based on Theorem 2.2, that
X?> = al,, where o = —det(AB — BA).

11 01
294. (a) A = (1 1) and B = (_1 O)'

(b) If two such matrices commute, then det(A? + B%) = | det(A + iB)| > 0 which

2 =-3<0.

contradicts det(A? + B?) = -




Chapter 3
Applications of Cayley—Hamilton Theorem

The greatest mathematicians like Archimedes,

Newton, and Gauss have always been able

to combine theory and applications into one.
Felix Klein (1849-1925)

3.1 The nth power of a square matrix of order 2

In this section we prove a theorem which is about calculating the nth power of a
matrix A in terms of both the entry values of A and the eigenvalues of A.

Theorem 3.1 Let A € .#, (C) and let Ay, A, be the eigenvalues of A.
(a) If A1 # Ao, then for alln > 1 we have A" = A{B + A} C, where

A— Aol A=Al
B="""22 and C= 172

Al — Ay A=A

(b) If A1 = Ay = A, then for all n > 1 we have A" = A"B + nA"~'C, where

B=12 and C=A—)L12.

a Z) and we have A2 — Tr(A)A + (detA)l, = O, where Tr(A) =

Proof LetA = (
c

a+ d and detA = ad — bc. We multiply the preceding identity by A"~! and we get
A" —Tr(A)A" + (detA)A"! = 0,
which implies that

A" = Tr(A)A" — (detA)A™ . (3.1

© Springer International Publishing AG 2017 107
V. Pop, O. Furdui, Square Matrices of Order 2, DOI 10.1007/978-3-319-54939-2_3



108 3 Applications of Cayley—Hamilton Theorem

Let A" = (a” Z") Using (3.1) we get that the following recurrence formulae
hold:

ap+1 = Tr(A)a, — (detA)a,—
bpt1 = Tr(A)bn - (detA)bn—l
cnt1 = Tr(A)c, — (detA)c,—1
dy+1 = Tr(A)d, — (detA)d,—, n > 2.

Thus, the sequences (@n)n>1, (bn)us1, (cn)n>1, and (dn)n>1 verify the same
recurrence relation

Xnt1 = Tr(A)x, — (detA)x,—1, n>2

which has the characteristic equation A> — Tr(A)A + detA = 0.
We distinguish the following two cases.
m If A # A, we get that x, = o, AT + B A, where oy, B, € C. Thus

an = A + BaA)
b, = apAl + BpA}
Cp = QA + B

d, = Otdkrll + ﬂd/‘{g

These imply there exist matrices B, C € .#, (C),

B — (% Olb) and C = (,Bu ﬂb)’
Q. Og ﬂc ﬂd
such that A” = A1B + A5C.
m IfA; = A, = A we get that x,, = a, A" + BnA"~!, where a,, B, € C. Thus

4y = A + BanAn=!
by = apA" + BynAn=!
Cn = QA" + BnAn~!

d, = aA" + ﬂdn)tn_l.

These imply there exist matrices B, C € .#; (C),

B (aa ab) and C = (ﬂa ﬂb),
Q. g Be Ba
such that A" = A"B + A" nC.

Matrices B and C are determined by solving a system of linear matrix equations
obtained by giving to n the values 0 and 1 and by considering that A® = I.
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Remark 3.1 Theorem 3.1 has an equivalent statement.

IfneN,A e #,(C), and Ay, A, are the eigenvalues of A, then

An—)n An—l_kn—l X
A = li—)L;A = dCtA#IZ if Aq §é A

A — (n= DAL if A=Ay = A

Theorem 3.2 IfA € .4, (C) there exist sequences (x,)n>1 and (yn)n>1 such that
A" =x,A+ y,I,, forall neN,

where the sequences (x,)u>1 and (y,)u>1 verify the recurrence relations:

X1 = Tr(A)x, — (detA)x,—, neN
Yn+1 = Tr(A)y, — (detA)y,—1, n€N.
Proof If A = al, then A" = oI, Tr(A) = 20, detA = o and we take x, = "
and y, = 0.
If A # al,, we apply Theorem 1.1 and we have, since A"A = AA", that A" =
X”A + anZ, neN. FI'OIIlAn-’_1 = )C,H_]A + yn-HIZ and

A" = A"A = x,A% + y,A = x, [Tr(A)A — (detA)L] + y,A

we obtain x,+1 = x,Tr(A) + y, and y,+1 = —x, detA. Since y, = —x,—; detA we
have x,+1 = x,Tr(A) — x,—; detA and similarly, we get that the same recurrence
relation is verified by the sequence (v,),>1.

Remark 3.2 The characteristic equation of the sequences (x,,)n>1 and (y,),>1 is the
characteristic equation of the matrix A

A2 —Tr(A)A 4+ detA =0

having the solutions A, A,, the eigenvalues of A.

m If A; # A, a calculation shows that

_AM—A

A”_l _qn—1
X, = 1 A2
Al — Ay

A=Ay

n>1.

and y, = —detA

m IfA;, =1, =1, wehavethatx, =nA" landy, = —(n— D)A*, n > 1.
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3.1.1 Problems

3.1 LetA = (_5 i) Calculate A", n € N.
1 3
3.2 LetA = 3 _5) Calculate A", n € N.
1 3
3.3 LetA = | o) Calculate A", n € N.
; _?) Calculate A", n € N.

3.5 LetA = i) Calculate A", n € N.

3.6 LetA =

(
(
(
(

i2—i

L+ . . Calculate A", n € N.
240 1—i

3.7 LetA = (

1 -1
3.8 LetA = :

(a) Provethat A" = 2""'A, VneN.
(b) Calculate the sum A + A% + --- + A"

39 LetA = (g 1), a € R. Calculate det(A + A% +--- + A"), n € N.

(VA =60

3.11 An invitation to circulant matrices.

3.10 Prove that

12

m A matrix of the form C(a,b) = (Z b), a,b € C, is called a circulant
a
matrix. Let € = {C(a, D) : a,b € €} be the set of circulant matrices.
Then:

(continued)



3.1 The nth power of a square matrix of order 2 111

3.11 (continued)

(a) C(1,0) =5, CO0,1) = ((1) (1)

and C(a,b) = al, + bC, a,b € C.

(b) ¥ isclosed under addition and multiplication of matrices, i.e.,if A, B €
%,then A + B € €, AB € ¥ and the following formulae hold

C(a,b) + C(c,d)y =C(a+c,b+d)
C(a,b)C(c,d) = C(ac + bd, ad + bc).

)=c,c2n:l2,c2"+1 =CneN

(c) The nth power of a circulant matrix. We have

b)" A b)" — A
cﬂ(a,b)zc((“+)+(“ ),(a+) (a )),neN.
2 2
(d) The eigenvalues of C are A; = 1 and A, = —1 and the eigenvalues of
the matrix C(a, b) are 4y = a+b and u, = a—b. The Jordan canonical

a+b 0
0 a-—-b>b
invertible matrix P which verifies the equality Je(.») = P~'C(a, b)P is

given by P = G _11)

(e) If n € N and A” is a circulant matrix which is not of the form al,,
o € C, then A is also a circulant matrix.

(f) The matrix C(a, b) is invertible if and only if a> # b* and

c—l(a,b)zc( a b )

form of the matrix C(a, b) is given by Je(p) = ( ) and the

P
a2 — b2 a2 — b2

(g) (¥, +,-)is acommutative ring with unity, a subring of (.#; (C) , +, ),
in which the group of invertible elements (U(%), -) consists of invert-
ible circulant matrices.

(h)y If X,Y € .4 (C) are such that XY = C(a,b), a® = b?, then X
commutes with Y if and only if both X and Y are circulant matrices.

(i) The group (%, +) is a vector space over C of dimension 2 with
canonical base By = {L,, C}.

a

m Leta b € Candlet D(a,b) = (—b

L ) = aDy + bD,, where D; =
—a

1 0 0 1
(0 _1),D2—(_1 O) and let Z = {D(a,b) : a,b € C}.

(continued)



112 3 Applications of Cayley—Hamilton Theorem

3.11 (continued)
Then:

() D? =1, D} = I, D\D, = C,D,D; = —C, CD; = —Dy, D,C =
D,, CD, = —D;, D,C = D;.

(&) D" = b, Di""" = Dy, D}* = b, D" = Dy, DY = —I,
Dy = -Dy,neN.

(1) The matrix D(a, b) is invertible if and only if a*> # b* and

—1 _ a b
b W’)—D(m’m)-

(m) (Z,+) is a vector space over C of dimension 2 with canonical basis
Bg = {D\, Dy}.

(n) IfA,B€ 9,thenAB € €.

(0) IfA€ % and B € 2,then AB € & and BA € 9.

() A direct sum. . (C) = € ® 2. Any matrix A = (‘CI Z) € ., (C)

has a unique writingas A = C(x, y)+D(z, t), where x = “;d,y = %,

z=%%andt = 5.
Nota bene. Any matrix A € .#, (C) can be written uniquely as the

sum of a circulant and a zero trace matrix.

(q) Orthogonality. The function (-, -) : .4, (C)x.#, (C) — C defined by
(A, B) = Tr(AB*) is an inner product on .#, (C) and (., (C), (-,-))
is an Euclidean space.

If C(a,b) € € and D(c,d) € 2, then D*(c,d) = D (¢, —d) and
(C(a,b),D(c,d)) = 0. Thus, the subspaces ¢ and Z are orthogonal.
Property (o) implies that & is the orthogonal complement of 9 in
M (C),ie., € = 2+ and 2 = 6.

We also have

¢ ={C e .# (C):Tr(CD*) =0, VD € Z}
and
92 ={D € M, (C) : Tr(CD*) =0, VC € €} .

Nota bene. 2 ,,c) = {bL.C,D;,D,} is an orthogonal basis of
Ay (C) with ||L]] = [|C|| = ||D:]] = [|D2]] = V2.
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3.12 Double stochastic matrices.

(a) Prove that

a l—an_l 1+(2a_l)n 1_(2d—l)n
(l—a a ) _5(1_(2a_1)n1+(2a+1)n), a€[0,1].

(b) Let 8 € R. Prove that

)

cos20 sin26)" _ L (1 +cos"(20) 1—cos"(20)
sin> @ cos? @ 1 —cos™(20) 1+ cos*(20)) "

Remark 3.3 The matrices in parts (a) and (b) of problem 3.12 are called double
stochastic matrices. A double stochastic matrix is a square matrix with nonnegative
entries (representing a probability) with each row and column summing to 1.

3.13 Calculate A", where

A= (1j_ba 1_—i—ab)’ a,beR, neN.

3.14 Leta € R*. Calculate

3.15 Leta € C. Calculate

—2\"
2a —a , neN.
1 0
3.16 The nth power of an L. matrix.

Leta,b € R with a # b and ab > 0. Calculate (“ b ) .
a a

3.17 Leta,b € R such that ab > 0. Prove that
(1 + ~ab)" + (1 — /ab)" a(l + +/ab)" — a(l — +/ab)"

(1 a) _ 2 2/ab
b1 b(1 4+ vab)" — b(1 — /ab)" (1 + /ab)* + (1 — «/ab)"
2+/ab 2
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3.18 LetA = (i Z) € M (R)besuchthata #d,b#c,b#0,c#0.

bn n n_dn
IfA" = (% bn ,n € N, prove that — = o _ 4 .
Cn dn b C a—d

a b
—b a
n € N, is of the following form

319 LetA = ( ) € > (R) such that a> + b> < 1. Prove the matrix A”,

a, b,
—b, a,)’

where (a,),>1 and (b,),>1 are sequences which converge to 0.

3.20 A Pythagorean triple' consists of three positive integers a, b and ¢ such that
a’> + b*> = 2. Let (a, b, ) be a Pythagorean triple and let

A= (‘b‘ _ab) e (7).

Let (ay)n>1 and (b,),>1 be the sequences defined by A" = (a” _b”), n>1.
Prove that b, # 0, forall n > 1.

3.21 Forae R, weletX, = ( al ]) and let
a

Prove there exists a € R such that
by <ai, by <ay, by <az, ..., byis < axie and b7 > axi7.

3.22 Leta,b,c,d be real numbers in arithmetic progression. If

A:(Ccl Z) and A”:(Z‘ Z:) neN,

prove the real numbers b, — a,, ¢, — d,, and d, — ¢, are in arithmetic progression.

'A fundamental formula for generating Pythagorean triples given an arbitrary pair of positive

integers m and n with m > n is Euclid’s formula. The formula states that the integers a = m?> — n?,

b = 2mn, and ¢ = m? + n? form a Pythagorean triple [15, p. 165].
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3.23 Let A € .#, (Z) be an invertible matrix such that A=! € .#, (Z). Let

a, b
A = n Un : > 1.
(Cn dn) "=

Prove that (a,, b,) = (an, c,) = (by,d,) = (cn,d,) = 1, where (x, y) denotes
the greatest common divisor of integers x and y.

3.24 Another Fibonacci matrix.

Let (F,,)»>0 be the Fibonacci sequence defined by the recurrence relation

Fo=0,Ff=1andF,,, =F,+F,_;, YVn>landletA = ((1) i)

Prove that:

Fn—l Fn
(a) A"=( ), Vn>1.
F, F.

(b) Two properties of the Fibonacci sequence.

Fn+m—1 =F,F,+F,—1Fn,—1, YVmn=>1
Fn—an+l —Fﬁ = (—l)n, n = 1.

(c) The nth term of the Fibonacci sequence.
L [(1+v5) (1-+5)
F,=— — , Yn>0.
V5 [( 2 ) ( 2 ) }

3.25 LetA = (i ;) and let (F,),>1 be the Fibonacci sequence defined by F; = 1,

F2:lanan+l=Fn+Fn—l’n22~

F— an)
Fo Foql)’

n>1.

(a) Prove that A" = (

(b) If the sequences (x,)n>1 and (y,)a>1 verify the recurrence relation (X”H) =
Yn+1

1
A (x,,), n > 1, and (xl) = (1), prove that x| + Xyt 1Ynt1 — Yoy =
n Y1
xﬁ + X Vn —yﬁ, foralln > 1.
(c) Prove that if the natural numbers x, y € N verify the equation x*> + xy —y? = 1,
then there exists n € N such that (x, y) = (Fa,—1, F2,).
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3.26 LetA = ((1) 1) Determine the sequences (x,),>1 and (y,),>1 such that A" =

X,
x,A + yulr, n € N and calculate lim =,
n—>oo yl’l

ab

327 Let A =
© (cd

) € ., (R) be a matrix such that |detA| > 1 and let

A" = (a,, Z”), n > 1. Prove the sequences (a,)n>1, (bn)nz>1, (Cp)n>1, and (dy)n>1

Cn n
converge if and only if A = I,.

3.1.2 Solutions

3.1. The characteristic equation of A is A2 — 51 + 6 = 0, which implies that 1; = 2
and A, = 3. It follows that A” = 2"B + 3"C, where B, C € .#, (R). We determine
matrices B and C by letting n = 0 and n = 1 and it follows that

B=5_4 and C = _44.
5 —4 -55

An:(s-z —4.3" 4.3 —4-2)’ e

Thus,

5.-2"=-5.3"5.3"—4.2"

—-3n —-3n-2

3.3. The characteristic equation of Ais A2 + 1 +1=0,50A> + A+ I, = 0,. We
multiply this equality by A — I, and we get that A> = I,. Thus, A" = I, if n = 3k,
A" =Aifn=3k+1,and A" = A% if n = 3k + 2.

3.4.A”=(2n+1 —on ) neN,

324" = (=2 (3” -2 ) nen.

2n  —2n+1
3.5. The characteristic equation of A is (A — 2)? = 0, so we have (A — 21,)? = O,.

-1 -1
the Binomial Theorem, that

LetB=A-2], = ( b ) and we observe that B> = 0,. We have, based on

n n—1 n—1
A" = (2L + B)' = 2L, + n2"" 1B = (2 T2 n2 ) .

_nzn—l omn _ n2n—1
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I
2+1
if k > 1 is an integer, then B*~! = 4*~1B and B?* = 4*I,. We have

3.6.A =1, + Bwhere B = ( 2 _, l) and B> = 4I,. A calculation shows that
—1i

2n
k

2n
B2l BZl 1
)3 ()
2ny\ . " 2n .
4' 4B
o \2 2+;(2i_1)

32n +1 3211 -1
= I B
; ht

Bk

My

A2n —

Il
i =
(=]

=

and A2 = AZ24 pn > 1.

37.an = (DY 4y )y
2n3"1 (4n 4 3)3"7!
3.8. (a) This part of the problem can be solved either by mathematical induction or

by direct computation.
(b) We have

A+A 4+ FA"=A+2A+2°A+ - +2"4
=(1+2+22+---+2""HA
= (2" — DA.

a' na"

1
0 o ).Ifa: 1, then

Be-$60-677)

which implies det(A + A% + --- + A") = n?.

3.9. We have A" = (

If a # 1, then
. ai ; iCli ! a(l—a
ZA’—Z(IW 1)= 2 i; _ (_a)zlal
=1 a 0 Xn:ai 0 a(l—a”)
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n

which implies det(A + A% + - + A") = a? (1—_u)2

l—a

3.10. We have (\{3 1) -2 (COS 6 —SIn 6).

s e b
\/5 sin ¢ COS %

V3 -1 2 12 {cos2mw —sin2w 12
Th =2 =2"I.
o ( 1 V3 sin2w  cos 2w 2

3.11. These properties of the circulant matrices can be checked by direct computa-
tion.

3.12. The matrix in part (a) is a circulant matrix and part (b) follows from part (a)
by setting a = cos? 6.

3.13. We note that A = I, + B, where B = ( ab _ba)' We have B> = (a + b)B and

BY = (a + b)*"'B, Yk > 1. Thus,

A" = (I, + B)"

b+1)"—1
(a+b+1) B

=1
2+ ath

)

ifa+b#0.1fa+ b= 0wehave that A" = I, + nB.

3.14. We have
1 o? n_(l+0€)"+(1—0€)"1+(1+Ol)n—(1—06)" 0 o2
1 1)~ 2 2 2a 10)

2a —a?\" i fa(n+1) —nd®
15. =d" .
3 (1 0) . ( n a(-n+1) yneN

a b 1 0[2 ) b
3.16. Observe that =a 1) where o = : and use problem 3.14.
a a

1
__(a b\ (a, b,
“\cd)\c, d,)°

3.18. Since A”A = AA" we have that

a, b,\ (a b
¢, d,) \c d

and this implies
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aa, + b,c = aa, + bc,
a,b + b,d = ab, + bd,
c,a+ d,c = ca, + dc,
c,b+d,d = cb, + dd,,

for all n > 1. From the first or the fourth equation we get that b,c = bc,, which
implies that % = <, Vn > 1. The second equation implies that “Z%fl” = %, Vn > 1.

3.19. Observe that A = /a2 + b? (_C(S)isfg CS;I;Z), where cos 0 = \/ﬁ and
b
sin = ———. It follows, proved it by mathematical induction, that

A" = (& + b))} co§ nf sinnf 7
—sinnf cosnf

Thus, a, = (a*+b*)? cosnb and b, = (a* + b?)? sinnb and, since a® + b* < 1,
we have that lim a, = lim b, = 0.
n—>o00 n—>o0o0

1 —

3.20.LetB = -A = (x y)’ where x = ¢ and y = g Since a® + b* = ¢? there
c y x

exists 1 € [0,27) such that x = cost € Q and y = sint € Q. This implies that

AT o (COS nt —sin nt)

sinnt cosnt

so a, = c¢"cosnt and b,, = ¢" sinnt.

By contradiction, we assume that b, = 0. This implies sinnt = 0 and cosnt =
+1,s0 cos2nt = 2cos?nt—1 = 1. We prove that if cost € Q and cos2nt = 1,
then cost € {O, +1, j:%} We need the following lemma.

Lemma 3.1 There exists a monic polynomial of degree n, P,, € Z|x] such that
2cosnt = P,(2cost), t € R, neN.

Proof We prove the lemma by induction on n. If n = 1 we let P;(x) = x. If
n = 2, then Py(x) = x> — 2. Using the formula 2 cos(n + 1)t + 2cos(n — 1)t =
(2cost)(2 cos nt) we get that P,41(x) + P,—1(x) = xP,(x) and this implies that if
both P, and P,_; are monic polynomials, then P, is a monic polynomial as well.
This proves the lemma. O
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The equation cos(2nt) = 1 implies, based on the previous lemma, that
2cos(2nt) = 2cost)" +---=2 & X" 4...=0,

where x = 2cost € Q. Since the rational roots of a monic polynomial with integer
coefficients are integer roots we get that 2cost € Z. This implies that 2cost €
{0, £1,£2} & cost e {0, £1, £}

m ifcost = ¢ = 0 we geta = 0 which is a contradiction with a # 0.

m ifcost= :I:% we get that sint = :I:“/TE ¢ Q, which contradicts sint € Q.

m if cost = £1 we have sint = 0 and, since sint = %, we get that b = 0 which
contradicts b # 0.

Thus, our assumption that b, = 0 is false and the problem is solved.

3.21. We write X, = +/1+a? ( cost Smt), where 1 € [0,27) and cost =

—sint cost
a . _ 1 . . .
T sint = NiEwt This implies
n ( cosnt sinnt
X, =vV1+a .
—sinnt cosnt
and the conditions of the problem become cosnt > sinnt, forn = 1,2,...,2016
and cos 2017t < sin 2017t.
o 22 . . . . _ 1
We choose t = T06E and we let b = sin T06e This implies, since sint = T

_  [1=b
that a = > -

3.22. Let r be the ratio of the arithmetic progression a, b, ¢, d.
There exist sequences of real numbers (¢,),en and (8,),en such that A" = o, A+
B.I>. This implies

a, = aya+ B,
b, = a,b
Chn = O, C
dy = oyd + B,.

Thus, b, —a, +d, —c, = (b, + d,) — (a, + ¢,) = ay(b—a+d—c) = 2ra, and
2(c, — by) = 2a,(c — b) = 2ra,, Vn > 1.

3.23. The equality AA~! = I, implies det A det (Afl) = 1. Since det A, det (A*I) €
Z we get that detA = det (A’l) € {—1,1}. We have det(A") = det"A € {—1,1}
& ayd,—byc, € {—1,1}.1f (a,, b,) = «, then « divides a,d,, — byc,, s0 o divides 1
or —1 and this implies « = 1. Similarly, we have (a,, ¢,) = (b,,d,) = (c,,d,) = 1.
3.24. (a) This part of the problem can be solved either by mathematical induction or
by direct computation (the eigenvalue technique).
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(b) Since A"t = A"A™ we have that

(Fn-l-m—l Fn+m ) _ (Fn—l Fn ) (Fm—l Fm )
Fusm Faogm+1)  \ Fu Fupi Fn Fuy1)’
We look at (1, 1) entry of this identity and we have F,4,,—; = F,F,, + Fp—1Fp—1,
¥ m,n > 1. On the other hand, det(A") = det’A = F,_1Fpp1 — F2 = (=1)",
n>1.

(c) A calculation shows that the eigenvalues of A are o = H'T“[S and § = I_T“[S
It follows, based on Remark 3.1, that

n n__ pn n—1 _ pgn—1
Foot F, ) _ (0 1) _o"—p A p L. n> L.
F, Fu+1 11 Ol—ﬂ Ol—ﬂ

Looking at (1, 2) entry of this equality part (c) of the problem is solved.

3.25. The problem is about solving the diophantine equation x*> + xy — y*> = 1. This
equation can be written equivalently as (2x + y)?> — 5y> = 4 which is a Pell equation
of the form x* — dy?> = k.

3.26. Since A = 1A + 0, we have x; = 1 and y; = 0. Also, A2 =24 + 1, = O,
which implies A> = 24 — I,. Let A" = x,A + y,I,. We have

AT = A"A = (x,A 4 y,[)A = x,A% + y,A = x,(2A — 1) + y,A
= (zxn + ))n)A — Xl = xy41A + Yn+1lo.

This implies x,+1 = 2x;, + Yus Yu+1 = —Xn, ¥ > 1. It follows that x,4; — 2x, —
Xp—1 = 0, Vn > 1. The characteristic equation P?—-2r+1=0 implies r = 1.
Therefore, x, = o + fBn, where @, 8 € R. Since x; = 1 and x, = 2 we get that
a = 0, B = 1 which implies that x, = nand y, = —n + 1. Thus, nll)lgo ;‘—: = —1.

3.27. If the sequences (an)n>1, (bn)n>1, (Cn)n>1, and (d,)n>1 converge, then the
sequence with the general term a,d, — b,c, = det"A converges. This implies
that detA € (—1,1] and since |detA| > 1 we get that detA = 1. Clearly, A
verifies the equation A> — (a + d)A + (detA)l, = O,. We multiply this equation
by A" and we get that A"*' — (a + d)A" + (detA)A""! = 0,. This implies
that sequences (a,)n>1, (bn)n>1, (cn)a>1 and (d,),>1 verify the recurrence relation
Xpt1 — (@ + d)x, + (detA)x,—; = 0. Passing to the limit in the preceding equality
we getthat [ (1 —a—d + detA) =0 & [ (2—a—d) =0, where [, = nl_i)noloxn.

If a + d # 2 we get that [, = 0 and this implies that sequences (a,)n>1, (bn)n>1,
(cn)nz>1 and (dy,)n>1 converge to 0, which contradicts

lim (a,d, — bac,) = lim (detA)" = 1.
r—>00 n—00
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Therefore, we must have a + d = 2 and we have A" 7! —24" + A" ! = 0,, Vn > 1.
Equivalently, A"*! — A" = A" — A"~! ¥n > 1, which implies A" = I, + n(A — I,),
Vn > 1. Hence,a, = 1 +n(a—1), b, = nb,c, = ncandd, = 1 +n(d—1). These
sequences converge if and only ifa = 1,b =0,c =0andd = 1,50 A = I,.

3.2 Sequences defined by systems of linear recurrence
relations

In this section we bring into light a method for determining the general term of
sequences defined by systems of linear recurrence relations.

Theorem 3.3 Let
A= (“ ”) WA
cd

and let (xp)n>0 and (yn)n>0 be the sequences defined by the system of linear
recurrence relations

%xn-i-l = ax, + byn (3.2)

Ynt+1 = CXy + dym n>0.

Then

(x") = A" (xO) , Vn>o.
n Yo
Let Ay, A, be the eigenvalues of A.

m [fA] # Ay, then

Xy = Al + A
Yn = YA + 843,

for some o, B,y,68 € C.
m IfA = A, = A, then

Xp = An(a + IBn)
Yo = A"(y +8n),

for some o, B,y,8 € C.
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Proof The system (3.2) can be written in the following form

() =CaG) o Go)=al) vz
Yn+1 cd Yn Yn+1 Yn ' -

It follows that

(—xn-i-l) —A (xn) — AZ (xn) — .= An+l (XO) )
Yn+1 Yn Yn Yo
()= ()
n Yo

and the problem reduces to the computation of A”.
The second part of the theorem follows based on Theorem 3.1. O

Thus

3.2.1 Problems

3.28 Find the general terms of the sequences (x;).en and (y,)nen defined by the
system of linear recurrence relations

Xp4+1 = 3x, + Yn
Y+l = —Xp + Yn, = I,

where x; = 1 and y; = —2.

3.29 Find the general terms of the sequences (x,),>0 and (¥,),>0 defined by the
system of linear recurrence relations

Xnt1 = Xy + 2yn
Yntr1 = —=2X; + Sy, n =0,

where xop = 1 and yp = 2.

3.30 Prove the sequences (x,),>0 and (y,),>o defined by the system

2x, = \/gxn—l + Yn—1
2y = —Xp—1 + \/§yn—17 n=>1,

are periodic and have the same period.
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3.31 (a) Find the general terms of sequences (x,),>0 and (y,),>0 defined by the
system of linear recurrence relations

Xn + 3yn
Xppl] = ————
4
3%u + 2y
Yn+1 = 5 B

where xp, yo € R.
(b) Find lim x, and lim y,.
n—>oo n—>o00

3.32 Let (an)n>0 and (by)s>0 be the sequences defined by

n 2b, n 3b,
Cl():l, b0:47 Ap+1 :%» n+1 :%» VVlZO

Prove that:

(a) the sequence (cy),en defined by ¢, = b, — a, is a geometric progression;
(b) the sequence (d,),en defined by d, = 3a, + 8b, is constant;
(c) calculate lim a, and lim b,.

n—>00 n—>o00

3.33 A geometric progression. Let A = (Z Z) € M, (C) and let (x,)nen
and (y,),en be the sequences defined by

Xn1 = aXp + byn

Ynt+1 = CXy + dyn’

n € N. Prove that if 1 € C is an eigenvalue for AT and Z = (;) is the

corresponding eigenvector, then the sequence (u,),en defined by u, = ax, +
By, is a geometric progression.

3.34 Let (x,),>1 and (y,)n>1 be the sequences defined by
Xy = —3X,—1 —Yn—1tn
Yn = Xp—1 + Yn—1— 2,

for all » > 2 and x; = y; = 1. Find the general terms of the sequences (x,),>; and
(yn)nZlo
3.35 Let (x,)n>0 and (y,)n>0 be the sequences defined by the system
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Xpn+1 = (1 - a)xn + ayn
yn+1 = bxn + (1 - b)yns n Z 05
where a, b € (0, 1) and xg, yo € R. Calculate lim x, and lim y,.
n—>o00 n—>o00

3.36 Study the convergence of the sequences (x,).>0 and (v,),>0 defined by the
system of linear recurrence relations

Xp4+1 = aXp — byn

Yut+1 = bx, + ayn,

where a, b, xo,yo € R and a> + b> < 1.

3.37 Let (t,)n>0 be a sequence of real numbers such that #, € (0,1), Vn > 0 and
there exists lim ¢, € (0, 1). Prove the sequences (x,),>0 and (y,),>0 defined by the
n—>oo = fl

recurrence relations

Xnt1 = tpXp + (1 - tn)yn
Y1 = (1 = t)x, + tyyn, Yn >0,

are convergent and calculate their limits.

3.38 An IMO 2013 shortlist problem.

Let n be a positive integer and let aj, ay, ..., a,—; be arbitrary real numbers.
Define the sequences ug, uy, . .., u, and vy, vy,..., v, inductively by uy = u; =
vo = v; = 1 and ug4+1 = up + arg—1, Ve+1 = Vg + Ap—gVp—1,fork =1,...,n—1.

Prove that u,, = v,.

3.2.2 Solutions

328.x, =2"1—(n—12"2, y,=(n—12""2-2", Vn>1.
3.29.x, =3"'2n+3), y,=3"'2n+6), Yn>0.

nw . nmw . nm nm
3.30. x, = (cos ?) Xo + (sm ?) Yo, Yn — (sm ?) X0 + (cos ?) Y0,
n > 0. Since x,+12 = x, and y,4+12 = y», Yr > 0, the sequences are periodic of
period 12.

3.31. (a) A calculation shows that
4 7\"5 5 7\"5
=[5+ (o) s+ [5-(30) 5]
4 7\" 4 5 7\" 4
=[5 (z5) 5l [5+ (x0) 5]

v
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4xo + 5
(b) lim x, = lim y, = 020
n—00 n—00 9

1
3.32. Solution 1. Let A = ? . We have
4

()= () == () =)

YOV IS )

The eigenvalues of Aare Ay = 1,1, = 11—2 and we have, based on Theorem 3.1, that
1
A" =B+ EC,n € N, where
1 1 _
B=—38 and C= — 8 8.
11 \3 8 11\-3 3
1 24 1 9
It follows that a, = — [ 35 — and b, = — | 35+ .
11 127 11 127
3 L. . . .
(@ b,—a, = Pk n > 0, which is a geometric progression of ratio 5.
(b) 3a,+8b, =35,n>0.
35
(¢) lim g, = lim b, = —.
n—00 n—00 11
Solution 2. (a) We have
Cott _ butt —Gurt g+ 30— 30— 3by  f5ba—an 1
Cn b, — ay, b, — ay, b, — ay, 12°

®) dy+1 = 3ay41 + 8byy1 = a, + 2b, + 2a, + 6b, = 3a, + 8b, = d,, Yn > 0.
This implies d,, = dy = 3ap + 8by = 35, Vn > 0.

3
(c) We have, based on part (a), that ¢, = b, —a, = - and it follows that
lim a, = lim b,. Using part (b) of the problem we get that 3 lim a,+8 lim b, =
n—00 n—00 n—00 n—00
35
35 and we have lim a, = lim b, = —.
n—00 n—00 11

3.33. We have A7Z = AZ which implies that

ae + cf = Aa
ba +dp = AB.
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We calculate

U1 OXnt1 + Byt
Uy ax, + By
a(ax, + by,) + B(cx, + dy,)
axy, + By
(aa + Be)xy, + (ab + Bd)y,
- ax, + By
_Aax, + AByy
Cax + By
=

Thus, the sequence (u,),en is a geometric progression of ratio A which is also an
eigenvalue of A.

334.Letx, = u, +an+bandy, = v, + cn+ d,n > 1. A calculation shows
a=0,b=3,c=1,andd = —1l,s0x, =u, +3andy, =v,+n—11,n> 1.
The system of recurrence relations becomes

Uy = —3Up—1 — VUy—|

Uy, = Up—1 + Up—1,
for n > 2. Solving the system we obtain, after some calculations, that

m X, = 23 - 7(\/3—1)"1 - N_ V3 43

sz 2:;_5
20+ 11 e, UWB-20 0 o
"= (V3-1) +—2\/§ (=1 =34 n—11.

3.35. We write the system in the matrix form

Yn+1 b 1-b)\yu Ynt1 Vn
l—a a
A= .
( b l—b)

It follows that (x,,) =A" (xo). We calculate A". The eigenvalues of A are A} = 1,
Yn Yo

where

Ay = 1 —a— b and we note that A; # A, since a + b # 0. It follows that
A" =B+ (1 —a—b)"C, where
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1 b a 1 a —a
B = d C=—— .
a+b(b a) an a+b(—b b)

Thus

A" =

1 b+a(l—a—>b)" a—a(l —a—b)"
a+b\b—b(1—a—b)" a+b(l—a-b)")’

which implies
1
xp = ——A{[b+a(l —a—b)"lxo + [a —a(l —a—b)"]yo}
a -{- b
yn = —A[b—b(1 —a—b)"Ixo + [a+ b(1 —a—b)"]yo}.
a+b

. . . . bxo + a
A calculation shows, since |1 —a — b| < 1, that lim x, = lim y, = o—yo'
n—00 n—00 a+b

3.36. Let U, = (x") and let A = (Z _b). Since U,+1 = AU, we get that
Yn a

U, = A"Uy. Let r = +/a?> + b2 and let ¢ € [0,27) such that a = rcost and
b = rsint. It follows that
An — (€08 nt —sinnt
sinnt cosnt )’

which implies that x, = " (xq cos nt —yq sinnt) and y, = r"(xo sin nt 4y, cos nt).
m Ifre]0,1), then (x,),>0 and (y,),>0 converge and lim x, = lim y, = 0.
- - n—>»o0o n—o0o

m Ifr=1and7e 7Q, then (x,)n=0 and (yn)n=o are periodic. If t = C, (p.q) =
1, the sequences (x,)n>0 and (¥,),>0 have the same period 2q.
m Ifr=1ands € 7(R\ Q), then (x,),>0 and (y,),>0 are dense in the interval

|:—\/x§ + 2, \/xg +y§i|.

3.37.Let U, = (x") andletA, = (1 t”t ! t_t”). Since U,y = A,U,,n > 0, we
have that U,+; = A,A,—1 - AgUy. We calculate the matrix product A,A,—1 - - Ao.
The eigenvalues of A, are Ay = 1 and A, = 2t, — 1 and the corresponding

eigenvectors are X| = G) and X, = (_11) (they are the same for all n). If

1 -1 1 0 »
— A, =P J
(1 1) = (0 2z,,—1)
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This implies that

Ay Ao = P (1 0) P

0 s,

where s, = H(2tk —1).
k=0

If one of the terms of the sequence (7,),>0 is %, ie., ty, = %, thens, =0, Vn >

no. If all of the terms of (¢,),>o are different from % we obtain, since lim é”si =
- n—o00 Sn
lim (2t,41 — 1) € (—1, 1), that lim s, = 0 and this implies that
n—>o0 n—oo
. L O\ i (X0

lim U,41 =P P .

i v =2 (g 0) 7 (1)
Thus, Tim x, = 2% — Jim y,.

n—00 2 n—00
338. Fork = 1,2,...,n—1, let Xk4+1 = Uk+1 — Uk, Yi+1 = Vg1 — Vi and let
Ap = (1 t % _ak). The following relations hold
ay —ay

( 1 ) ¢ ( ) ( 1 ) " ( )
Xk+1 Xk Yik+1 Vi
and it follows that

L] (u") =Ap—1Ap—2 A (ul) = Ap—1An—2 -+ Ay (1)
Xn X1 0
- (U”) —AAy A, (Ul) —AAy A, (1)
Yn Y1 0

This implies u,, = v,,.

Remark 3.4 Ifa; =a, =--- = a,—; = 1, then we have u, = v, = F41.

3.3 Sequences defined by homographic recurrence relations

In this section we discuss sequences defined by homographic recurrence relations.

d b
Definition 3.1 The function f : R \ {—-% SR fe) =T ibcdeRis
c cx+d

called a homographic function and
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ab
M, =

m If D C Rand f,g : D — R are homographic functions, then f o g and
ft=fofo---of,neN,are homographic functions and we have the following
~—————

is the matrix associated with f.

n functions
relations involving their associated matrices

Mng = MfMg and an = M;, ne N

Definition 3.2 A sequence defined by a recurrence relation x,+; = f(x,), where f
is a homographic function is called a homographic sequence. Thus, a homographic
sequence is defined by the recurrence formula

ax, + b
ntl = , n>0, ab,c,deR.
Xn+1 an+d n = a (&

m The sequence (x,),en is well defined if ¢cx,, + d # 0, for all n > 0.

m Ifx,1 =f(x,), Vn>0,thenx, = f"(xo), where

f'(x0) =fofo--of(xo).
—— ————

n functions

m If
ax+b a b\" a, b
— d — n n ,
f cx+d an (c d) (cn dn)
then
nyon  GnX T+ b,
[ = cxtd
m Ifx,1 =f(x,),n >0, then
_ apXo + bn
B CnXo + dn ’

m The sequence (x,),>o is well defined, if some conditions are imposed upon its
initial term xy. More precisely, we determine the existence conditions of the
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sequence (x,),>o from the expression of A", i.e., c,xo + d, 7 0, Vn > 0. This

d,
implies that xy # —=2 forall n > 0. Thus, we need to determine the set
n

dy
S={——:n20§

Cn

and the condition, the sequence (x,).>0 is well defined, is that xo € R \ S.

m To determine the general term of a sequence defined by a homographic recur-
rence relation one has to calculate the nth power of the matrix associated with
the homographic function which defines the recurrence relation.

3.3.1 Problems

4x + 1

3.39 Letf(x) = ——, x € R, be such that the function
2x+3
Jax) =fofo---of(x), VneN,
—————
n functions
is well defined. Determine f;.
2x+1

3.40 Letf:(0,00) — R, f(x) = ——. Calculate
x+2

fo=fofo--of, VneN.
~——————
n functions
3.41 Let (x,),>1 be the sequence defined by

2+ x,
1+x,

)C1=1, Xp+1 = Vnzl

Prove the sequence (x,),>1 converges and find its limit.
3.42 Let (x,),>0 be the sequence defined by

2x, + 1
o + , Yn>
2x, + 3

xo=a>0, Xp4+1 =

Determine the general term of the sequence (x,),>o and calculate lim x,.
- n—>odo

3.43 Leta,xo € R and let (x,),>0 be the sequence defined by

2ax,

Vn=>0.

Xp+1 =
X, + a

Study the convergence of the sequence (x,,),>0, Wwhen a > 0 and xo > 0.



132 3 Applications of Cayley—Hamilton Theorem

3.44 Let (x,),>0 be the sequence defined by

4

—— Vn=>0.
X, +3

X0 > 0, Xn4+1 =

Determine the general term of the sequence (x,),>o and calculate lim x,.
- n—oo

3.45 Calculate the limit of the sequence defined by

1 n2x,

—, Xpp1 = ——, Vn>1.
m? X, + n?

X =
3.46 Study the convergence of the sequence

1
X €eR\Q, xy1=14—, Vn>0.
X,

n

3.47 Leta € R. Study the convergence of the sequence defined by
xo=1, xpp1%, +alxy+1 —x,) +1=0, Vn>0.
3.48 Let (x,),>0 be the sequence defined by

2x, + 1
Xxo =2 and xn+1=i, Vn>0
X, + 2

Prove the sequences (x,),>0 and (xo + x; + -+ + x, — n),>0 converge.

3.49 Let (a,),>1 be the sequence of real numbers which verifies the recurrence
relation

al1+lan+3an+l +a,+4=0, Vn>1L

Determine all possible values of a; such that ag16 < a,, foralln > 1.

ab

350 LetA =
¢ (c d

) € ., (Q) with the property that bc # 0 and there exists
a"l bn
neN,n22suchthatbncn=0,WhereA”=( d),neN.
Cn n
(a) Prove that a, = d,,.

(b) Study the convergence of the sequence (x,),>0 defined by the recurrence
relation

ax, +b
eR 5 n = 5 ZO
X0 \Q Xn+1 ox, +d n
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3.51 A special sequence with arctangent sums.
Let (x,),>1 be the sequence defined by

Prove that:

n
(a) x, = tan Z arctan k;
k=1

(b) Conjecture. For n > 5, the value x, is not an integer [3, Conjecture 1.2].

Remark 3.5 This sequence was studied in [3] where it was proved that 1—nx,—; # 0
forn > 1, 50 (x,)x>1 is well defined. Other special properties of this sequence, which
are far beyond the goal of this book, are that x,, vanishes only when n = 3 and, for
n > 4, the terms x,—; and x, cannot both be integers.

3.3.2 Solutions

(2}1 +2. Sn)x 4 5n —n

3.39.1,(x) = , neN.
Jn) (25" —ontlyy g ontl 5 "
3"+ 1 3 —1
340,500 = S DX+ . neN.
B"—Dx+3"+1
2+ 4" 4" — 1
3.42.x, = (2 + 4)xo + and lim x, = %
204" —1)xg +2-4" + 1 n—00
2" ax
343. x, = —  , Vn € N. The sequence (x,),>o converges and
2"—Dxo+a =
lim x, = a.
n—oo
4" 4+ 4(-1)" 4l 4(=1)"
344, 5, = HACD % + CU" ond tim x, = 1.

[411 _ (_l)n] X0 + 4qntl 4 (_1)n n—>00

1 1
3.45. Solution 1. If y, = —, then y,4| = = + W Vn > 1, and it follows that
X n

n

1 1 1

el = 1+ — + -+« + — + 7% Thus, x, = and
Yn+1 22 l’l2 1+%+'+ﬁ+”2

. 6

lim x, = —.
n—>00 T2

Solution 2. X, 41 = fu(xn) = fu o fum1(Xn—1) = -++ = fu o fu—1 0--- 0 fi(x1), where
_onx _(n* 0

fulx) = T LetA, = L2 . We have
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ax; +b
Soofu—r 00 fi(x1) = o 1 d
where
b 1 0
a =AA— A = (n|)2 - 1
c d —2 1
k
k=1
This implies that
X1 . X1
Xn+1 = T E— and lim Xn+l = 53— = ﬁ
n—>o0o T
X1 Z klz + 1 TN 1 T
k=1
n 1 Fn Fn
3.46. x,4+1 = o , Vn > 0. It follows that x, = ﬂ, Vn > 1, where
Xn Fuxo + Fr—
(F,)n>0 denotes the Fibonacci sequence. A calculation shows that lim x, = 1+2«/§_
- n—>o0
We used that
1 [(1+v5) (1-5)
F,=— — , n>0.
VAL 2
n - 1 n bn
3.47. x,41 = o = x, = m, where
X, +a cpxo + d,
a, b, _ (@ -1 _ <\/1+—az)n C?snt —sinnt
c, d, 1 a sinnt cosnt
with tant = %, a # 0. If a = 0 the sequence is periodic of period 2, x3,4+1 = —1

and x,, = 1, for all n > 0. It follows that

cos nt — sin nt 1 —tannt

cosnt+ sinnt 1+ tannt’

t
If — ¢ Q, the set {tanns : n € N} is dense in R and the range of the function
i

1—
flx) = 0 +x is R \ {—1}, so the sequence (x,),en is dense in R.
X
. ax, — 1 . .
The expression x,+; = n is well defined since x, # —a, Vn > 0.
X, +a
Otherwise, if x, = —a, for some n, then —ax,+; + a(x,+1 +a) +1 =0 =

a®> + 1 = 0, which is impossible since a € R.
3.50. (a) See the solution of problem 1.3.
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(b) Since a,b,c,d € Q and xyp € R\ Q we get that x; € R\ Q, Vk > 0, and
b
exp+d #0.Letf : R\ Q — R\ Q be the function defined by f(x) = axid' The
cx
recurrence relation x;.; = f(x;) implies that x; = f*(xo), where f* = fo---of.
When k£ = n we have, based on part (a), that a, = d, and we also know that
b,c, = 0 which implies (see the solution of problem 1.3) that b, = ¢, = 0. We

. AanpXo
obtain x, = —— = xy. It follows that
ay
ax, + b axo + b ax,+1 + b ax; +b
Xnt1 = = X1, Xpg2 = = = X2,

cx,,+d_cx0+d: cx,,+1+d_cx1+d_

and x,; = x,, Yk € N. Such a sequence converges provided it is constant, so

axo + b
Xo = f(Xo) < Xo =
0 = f(x0) 0=t d
This equation has the solutions

& axo+b = cx(z]—i—dxo & cx%+(d—a)x0—b = 0.

—d=+\/(d—a)*+4b
x0=a (2c a)” + C, (d — a)* + 4bc > 0.

Thus, the sequence converges provided that (d — a)? + 4bc > 0 and (d — a)? + 4bc
is not of the form ¢?, where ¢ € Q.

3.51. (a) We prove this part of the problem by mathematical induction. Let P(n)

be the statement x, = tan (Z arctank). When n = 1 we get that x; =
k=1
tan(arctan 1) = 1, so P(1) is true. We prove that P(n) = P(n + 1). We have
X, +n+1
Xpp] = ———————
- (n+ Dx,
tan (Z arctank) +n+1
k=1

I—(n+ 1)tan (Z arctank)

k=1

tan (Z arctan k) + tan(arctan(n + 1))
k=1

1 — tan(arctan(n + 1)) tan (Z arctan k)
k=1

tan (Z arctan k + arctan(n + 1))

k=1

n+1
= tan (Z arctan k) .

k=1
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Remarks and further comments. We mention that x,, can be expressed in terms of
the Stirling numbers of the first kind. We have

Xy = fu(Xp—1) = - =fuofum1 0 0fa(x1) = fyofum1 00 fo(1),
where f,,(x) = xtn .LetA, = bon . It follows that
—nx+1 -1
anx + b, a, + by
O fy O 7 d f,0f_j0--- 1) =
frofu—10---0fr(x) cxtd and f,of,—10---0fr(1) s
where
a, b
AA—1 Ay ="""").

A calculation shows the eigenvalues of A, are 1 & ni and it follows that

A_l 1i\{14+n O 1 —i
"o\l 0 1—-ni/J\—i 1)’
1(1 i\[{a O\[(1 —i
AnAn—"'A—_ . .
=3 (1) 68 ()

_l(a+,3 —ai+,3i)
" 2\ai—-Bi a+p )’

which implies

where
a=[J+k) and B=]]01- k.
k=2 k=2

It follows that

x:a(l—i)+ﬁ(1+i):ﬂ1—all.
"Ta(l4+i)+ B =i Br4oa

where

n

ar =[[(1+k) and By =]](1—k.
k=1

k=1

The Stirling numbers s(n, k) of the first kind [59, p. 56] are defined by the formula
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n n+1
[T +ko) =D (0" s + 1.4,
k=1 k=1
and this implies that
n+1 n+1
ar =) ()" + 1.k and By =D i s+ 1.4).
k=1 k=1

We consider the cases when 7 is an even, respectively an odd integer.

S (=D Ts2p + 1,2))

P Dt s2p + 1,21 - 1)
S (=DP T s(2p, 2 — 1)

P (—1)rs(2p.2)

m Casen = 2p. We have x,, =

m Casen=2p—1. Wehave x5, | =

3.4 Binomial matrix equations

In this section we solve the binomial equation X" = A, where A € .#, (C) and
n > 2 1is an integer.

Definition 3.3 Let A € .#, (C) and let n > 2 be an integer. The equation X" = A,
where X € ., (C), is called the binomial matrix equation.

In general, for solving binomial matrix equations we need some simple properties
which we record in the next lemma.

Lemma 3.2 The following statements hold.
(@) IfX € M, (C)anddetX =0, then X" = TP (X)X, n > 1.
(b) If X" = A, then matrices A and X commute, AX = AA" = A"l = A"A = XA.

(¢c) IfA € #,(C), A # al,, a € C, then matrix X which commutes with A has the
following form X = aA + BL.

ab

(d) UXe///z(C>,X=(
cd

), then X*> — (a + d)X + (ad — bc)l, = 0.

(e) IfX € > (C) and if there exists n > 2 such that X" = O, then X*> = 0.

(f) If the eigenvalues of A € 4, (C) are distinct A\ # Ay, then there exists a
nonsingular matrix P such that

A0
plap=("! :
(0 )tz)
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Proof These properties are elementary and left as an exercise to the interested
reader. o

Theorem 3.4 The equation X" = A, n > 2, A € .4, (C) with detA = 0.
Let A € #, (C) be such that detA = 0 and let n > 2 be an integer.

(1) IfTr(A) # O the equation X" = A has n solutions in 4, (C) given by

Zk
= A,
Tr(A)

k

where zi, k = 1, n, are the solutions of the equation 7' = Tr(A).
) IfTr(A) = 0, then:

(@) IfA # 0, and A’ = O, the equation X" = A has no solutions in .#> (C),
forn>2;

(b) IfA = O, the solutions of the equation X" = A are

a b 00
X.p = a2 ,aeC,beC* and Xcz( ),ce(C.
) _E —a CO

Proof Since X" = A, we get that det” X = detA = 0 = detX = 0. It follows,
based on part (a) of Lemma 3.2, that X" = Tr"~!(X)X. We obtain TP ' (X)X = A
which implies Tr" (X) = Tr(A).

We distinguish between the following cases.

(1) If Tr(A) # 0, we get based on part (d) of Lemma 3.2, that A> # 0,, and the
equation Tr"(X) = Tr(A) implies that Tr(X) € {t1,1,...,t,}, where t;, i = 1.n
are the solutions of the equation 7" = Tr(A).

Thus, for A € .#, (C), A? # 0, and detA = 0, the solutions of the matrix
equation X" = A are

2k
= A,
Tr(A)

k

where 7, k = 1, n, are the solutions of the equation 7" = Tr(A).
(2) If Tr(A) = 0, then A> = O, and the equation X" = A implies that X*" = A% =
O, which combined to part (¢) of Lemma 3.2 shows that X> = O.

(a) Thus, if A # O, and A?> = O, the equation X" = A has no solutions in .#, (C),
forn > 2.

(b) If A = O,,then X" = O, implies X? = 0, which has the solutions (see problem
1.8)
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X,p = a2 ,aeC,beC* and Xcz(oo),ce(c
- _a c0
b
The theorem is proved. O

Example 3.1 We solve the equation X* = (_11 _22)

LetA = (_11 _22) Then, detA = 0, Tr(A) = 1 and the equation z* = 1 has

the following solutions, the fourth roots of unity, {1, —1, i, —i}. Thus, the solutions
of X* = A are matrices +A, +iA.

01
00
Squaring both sides of the equation we have X** = 0, = X? = O, and, since

n > 2, we obtain
01
X'"=0 .
% (g o)

a b
—c —d

Example 3.2 Now we prove the equation X" = ( ) has no solutions for n > 2.

Example 3.3 We determine the matrices X = ( ) € M, (Z),wherea, b, c,d

are prime numbers, such that X2 = 0,.
From the general solution of the equation X> = O, we get that

a b
Xap = a’
-

.. 2. . . .
and the condition 9- is a prime number implies that a = b.

Thus, the solutions of our equation are

= 5) = (5 h)

where p is a prime number.

Theorem 3.5 The equation X" = al,, a € C*, n > 2.

Let a € C* and let n > 2 be an integer. The solutions of the equation X" = al,

are given by
X = P(““ O)P—‘,
0 aj
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where P is any invertible matrix and a;, i = 1,n, are the solutions of the equation
' =a.
Proof We start by observing that if X € .#, (C) is a solution of the equation X" =

al,, then the matrix Xp = P~1XP is also a solution, for any invertible matrix P. This
can be proved as follows

Xp = (P~'xP) (P~'XP)--- (P~'XP) = P7'X"P = P~ (ah) P = al.

We distinguish between the cases when the eigenvalues of X are distinct or not.

m If the eigenvalues of X are distinct, we have, based on part (f) of Lemma 3.2, that

A 0O
Xpr =
P (0 Az)

and the matrix equation becomes

A0 (a0
0 ) \0a)’
This implies A1, A, € {ay, a2, ...,a,}, where a;, i = 1, n, are the solutions of the

equation 7" = a.
Thus, some of the solutions of the matrix equation X" = al, are given by

X = P(“" O)Pl,
0 a;

where a; # a; are the arbitrary solutions of the equation 7" = «a and P is any
invertible matrix.

m If the eigenvalues of X are equal A; = A, = A, we have based on part (d) of
Lemma 3.2 that (X — ALL)? = O,. If Y = X — Al, then X = AL, + Y with
Y2 = 0,. We have X" = AL, + nA*~ 'Y and the equation X" = al, becomes
AL, + nA"™'Y = al, which implies that 2A"™'Y = (a — A") L.

a— A"

Since @ # 0 we obtain that A # 0 and Y> = O, combined to ¥ = T

implies that « = A" and Y = O,. Therefore X = a;I,, where a;, i = 1, n, are the
solutions of the equation A" = a.

L
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In conclusion, the solutions of the equation X" = al, are

X = P(“" O)Pl,
0 a;

where a;, a; are the arbitrary solutions of the equation 7" = a and P is any
invertible matrix. |

Lemma 3.3 The nth roots of a special diagonal matrix.
Let a,f € C with o # B and let n > 2 be an integer. The solutions of the

) are given by X = (a O), where a,d € C with a # d and

o
tion X" =
equation (O 0d

0
p
a'=aandd" = p.
ab a 0 . .
Proof LetX = J € M, (C) such that X" = 0p) Since X commutes with
c

(O(l) g) we get that (¢« — )b = 0 and (o — B)c = 0. These imply, since @ # S,
that b = ¢ = 0. It follows that

n_aon_ a 0 _ a0
v=02) = ()= (05)

and the lemma is proved. O

Nota bene. Lemma 3.3 states that, under certain conditions, the nth roots of a
diagonal matrix are diagonal matrices.
Theorem 3.6 The equation X" = A, when A has distinct eigenvalues.

Let A € ., (C) be a matrix which has distinct eigenvalues. The solutions of the
equation X" = A are given by

0[0 —1
X=P P
A(o ﬁ) A

where Py is the invertible matrix which verifies Py' APy = ( A0 ) and o = A4,

0 A
B" = Ay, where Ay # A are the eigenvalues of A.

Proof Let A; # A, be the eigenvalues of A and let P4 be the invertible matrix which

verifies
_ A O
PlAP, = )
4 704 (0 /\2)



142 3 Applications of Cayley—Hamilton Theorem

We have

(Py'XP4y)" = Py'X"Py = P;'APy = ()g f) :
2

This implies, based on Lemma 3.3, that P21XPA is a diagonal matrix, i.e.

P;'XP, = (g g)

@ 0\ (A 0
op) \o A
and this implies that ¢” = A; and " = A,.
Thus, the solutions of the equation are

PR

It follows that

where P, is the invertible matrix which verifies P;lAPA =Jyand ¢" = Ay, "

A>. The theorem is proved.

Another method for proving Theorem 3.6 is based on parts (b) and (c)

Lemma 3.2.

Corollary 3.1 The nth roots of an antidiagonal matrix.

Let a,b € R such that ab > 0 and let n > 2 be an integer. The solutions,

in A, (C), of the equation
0a
X" =
(-4)

Vab (@t = (a—w)
kj = —F=— )
’ 2 \L2(a—p)  a+u

are given by

where €, = exp (2]‘7”1'), k = 0,n— 1, are the nth roots of unity and p; =

exp (@i),j = 0,n — 1, are the nth roots of —1.

o |l
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Theorem 3.7 The equation X" = A, where A # al,, a € C.

Let A € M, (C) be such that A # aly, a € C, and let n > 2 be an integer. Let
A1 # A, be the eigenvalues of A and let 1, b, € C be fixed such that p'f = Ay and
W5 = Ay. The solutions of the equation X" = A are given by

X = OlA + ,3]2,
with
1€k — Ha€p Ho€phi — (L1€kA2
= BTG ha p= BRI T RIS,
1 and B PR 1 F# A2

where €, €, are the nth roots of unity.

Proof We have, since A # al, a € C, that the matrix X which verifies the equation
X" = A commutes with A. This implies, based on Theorem 1.1, that X = aA + B1,,
for some «, f € C. If A1, A, are the eigenvalues of A, then the eigenvalues of X are
at; + B and oA, 4+ B and the eigenvalues of X" are (¢A; 4+ B)" and (wA; + B)".
The equation X" = A implies that (eA; + B)" = Ay and (@A, + B)" = A,

Let ;11 € C such that uf = Ay and let u, € C such that u = A,. The last two
equations imply that

aAi + B = i€
akr + B = e,
where €, €, are the nth roots of unity. Solving this system of equations we obtain

the values of « and B as given above. The theorem is proved. O

Lemma 3.4 The nth roots of a Jordan cell.

Let A € C* and let n > 2 be an integer. The solutions of the equation X" =

(A l) € M, (C) are given by

0 A
1
X = a na—1 1,
0 a

where a € C with a" = A.

Proof Let X = (a fl) Since X commutes with ((); i) we obtain, after simple
C

calculations, that a = d and ¢ = 0. It follows that X = (g b) and the equation
a
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X — a* na"'b _ Al
0 a’ 0 A
implies that " = A and na™'b = 1. O

Nota bene. Lemma 3.4 states that, under certain conditions, the nth roots of a
triangular matrix are triangular.

Theorem 3.8 The equation X" = A, when A has equal nonzero eigenvalues.

Let A € > (C) be a matrix which has equal nonzero eigenvalues such that
A # aby, a € C, and let n > 2 be an integer. The solutions of the equation X" = A
are given by

1
X =Py a1 | PY,
0 a

where Py is the invertible matrix which verifies P;lAPA = Jy and a € C with
a’ = A.

Proof The theorem can be proved by using the same ideas as in the proof of
Theorem 3.6 combined with Lemma 3.4. O

Theorem 3.9 A special quadratic equation.
Leta,b,c € C, a # 0 and let A € #, (C). The quadratic equation

aX*+bX+ch =A

reduces to an equation of the form Y?> = B, for some B € .4 (C).

Proof The equation aX?> 4+ bX + cI, = A implies that

, b, ¢ 1 b \* 1 ¢
X+ -X+-L=-A & (X+—L)| =-A+|——- L.
a a a 2a a 4a>  a
If Y and B are the matrices
b 1 b* — 4dac
Y=X+—, and B=-A+ ———0D,
2a a 4q?
the equation to solve becomes Y? = B. O

The next theorem shows which real matrices admit real square roots.

Theorem 3.10 [4] Let A € 4, (R) be a given matrix. There are matrices S €
M (R) such that S* = A if and only if detA > 0 and, either A = —+/detA L or
Tr(A) 4+ 2+/detA > 0. Obviously, in the latter case, Tr(A) 4+ 2+/detA = 0.
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3.4.1 An artistry of binomial equations. The nth real roots
of al, a € R*

In this section we solve in .#, (R) the equation X" = al,, where a € R* and n € N.
Let X € .#, (R) be a solution of the equation X" = al,.

m First we consider the case when the eigenvalues of X are real.

(a) Ifnisodd, then X = /al,, since the Jordan canonical form of a matrix X
which verifies the equation X" = al, is a diagonal matrix and its eigenvalues
verify the equation A" = a, which has the unique real solution A = /a.

(b) Ifnisevenanda > 0, then

X, = Val,, X, =—al, and X3 = VaP ((1) 01) P,

where P is any arbitrary invertible matrix. We observe that X3 = {/aA, with
A? = I,. The solution X, corresponds to the case when the eigenvalues of X
are A\ = Ay = /a, X, when A; = A, = —/a and X3 when A1 = /a and
Ay = —.{/a respectively.

m Now we consider the case when 41,4, € C\ R.
In this case A = A5 = a and A, = A;. The complex canonical form of X

is the matrix ()é)l %), where Ay = a + i, a,8 € R, f # 0, and the real
1
canonical form of X is given by (Z =P ) It follows that X = P! (g —p ) P,
a o

where P € ., (R) is an invertible matrix. We obtain X = «al, + BB, where
B € ., (R) verifies the equation B> = —1I,.

LetP = (“ Z) and let A = ad — be # 0. Then
C

P! (a _(f) P=al+ Ll (—(ab +od) —(0F + dz)) =al, + BB,

B A a’ + ¢ ab + cd
1 (—(ab + cd) —(b* + d°) 5
here B = — d B° = —I,.
whete A ( a +c? ab + cd an >

It follows that the solutions of the equation X" = al,, which have eigenvalues
in C \ R, are of the following form:

2k 2k
i X = {’/E(cos—nlz—i—sin—nB),k e {1,2,....n—1}, B € ., (R)
n n

with B2 = —I,, for n odd or n even and a > 0.
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2% + 1 2% + 1
(i) X = & —a(cosulz—i—sinuB),k € {0,1,...,n—1},
n n

B € .#> (R) with B> = —I,, for n even and a < 0.
Conversely we prove that matrices in (i) and (ii) verify the equation X" = al,.

(i) We have

2k C 2kn \"
X" =a|cos—1I, + sin—B
n n

‘ 2km 2k
=a Z (n) siry —nB’ cos"™ —jTIZ
=\ n n

n 2k 2k
= E iy ——(—1)' cos" ——1I
a (J) si " (—=1)"cos b

j=21
2k 2k
+a Z (n) sin/ —ﬂ(—l)l_lB cos"/ —”12
. Jj n n
j=21—1
2k . 2kx\" 2k . 2km\"
=af || cos — +isin — L+a3 || cos — +isin — B
n n n n

=al, + 0B
= alz.

(i) As in the previous case

2k + 1 2k + 1 "
X" = —afi |:(cos u + isin u) :|12
n n

2k + 1 2k + 1 "

n n
= —a[(-1)], + 0B]
= alz.

When a = 1 we have the following corollary.
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Corollary 3.2 The nth real roots of I,.
The solutions, in A, (R), of the equation X" = I, are of the following form

2k . 2km
X =cos—DL +sin—B, ke{0,1,...,n—1},
n n

where B € ./, (R) with B> = —1I, and if n is even we also have the matrices

—L, and
1 0 _1
X=P P,

where P is any arbitrary invertible matrix.

1 0
0 —1
involutory. Conversely, if n is even, any involutory matrix X verifies the equation
X" = I,. It follows that the solutions of the equation X" = I, are

Remark 3.6 Observe that if X = P( )P_l, then X2 = L, so X is

2k . 2km
X=cos—1ID +sin—B, k=0,1,...,n—1,
n n
where B € .#, (R) with B> = —I,, for any n, and if n is even we also have the

solutions X = A, A € .#, (R), with A? = L. It follow from Example 1.2 that B
is of the following form

a b
B= 1+ad? , a€R, beR"
— —a
b

We collect these calculations and state the following theorem.

Theorem 3.11 The nth real roots of al,.

The matrix X € 4 (R) verifies the equation X" = aly, a € R* if and only
if X is of the following form:

m whennis odd or n is even and a > 0

2k 2k
X=(‘/E(cos—n12+sin—n3), ke{0,1,...,n—1},

n n

(continued)
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Theorem 3.11 (continued)

B € > (R) with B> = —I,. When n is even and a > 0 we also have the
solutions

X = YaA, Ae . #(R) with A*=1D.

m whennisevenanda < 0

2k + 1 2k + 1
X = «”/—a(cosulz+sinuB), ke{0,1,...,n—1},
n n

B € ., (R) with B> = —0.
The next corollary gives the nth real roots of —1.

Corollary 3.3 The nth real roots of —/5.
The solutions, in #, (R), of the equation X" = —I, are of the following
form:

m fornodd

2k 2k
X:—cos—nb—sin—ﬂB, ke{0,1,...,n—1},
n n

where B € ., (R) with B> = —1I,.
m forneven

X=c

2k + 1 2k +1
os( + )n12+sinu3, ke{0,1,....n—1},
n n

where B € ., (R) with B =—L,.

Example 3.4 The product is zero and the sum of their nth power is /.
Let n € N. We determine matrices A, B € ., (R) such that

AB=0, and A"+ B" = 1.

Wehave A" =, —B" = 0, =A"B=B-B'"' = Bt —_B=0, =
detB = 0 ordet” B = 1. Similarly, A" = A = detA = Oordet"A = 1.

IfdetA #0 = Aisinvertible = B=0, = A" =1,.

IfdetB #0 = Bisinvertible = A =0, = B"'=1,.
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If detA = detB = 0, then A> = 1A and B> = 1B, where t4 = Tr(A) and
tp = Tr(B). The equation A" + B" = I, implies that i 'A + £47'B = L.

Since A"t! = A we get that (7§ —1)A = 0,.1f #; # 1, thenA = O, = B" =
I, which contradicts detB = 0. Thus, #{ = 1 = 14 = £1. Similarly, we have
tg = £1.

If 14 = tz = 1 we obtain the matrices A> = A and B = I, — A.

If 14 = 1 and tz = —1 (this implies 7 is even), then A2 = A and B> = —B and
we obtain the matrices A> = Aand B = A — L.

If 14 = —1 and tz = 1 (this implies 7 is even), then A> = —A and B> = B and
we obtain the matrices B> = Band A = B — L.

If 14, = tg = —1 (this implies n is even) we obtain the matrices A> = —A and
B=-A-1.

3.4.2 Problems

3.52 Quadratic binomial equations.

(a) LetNy = {0}UN. Find all matrices A € .#, (Ny) such that A>—6A+5I, = O,.
(b) Leta,b € Ny with a*> — 4b < 0. Prove the equation A% — aA + bl, = O, does
not have solutions in .#; (Ny).

3.53 Give an example of a matrix A € .#, (C) that has exactly two square roots in

A (C).

3.54 Find all X € .# (R) such that X> = (160 151)'

3.55 (a) Find all matrices A € ., (R) such that A> = Cl (2)), where d = detA.

(b) Find all matrices A € .#, (R) such that A> = C g), where t = Tr(A).

3.56 Is there areal 2 x 2 matrix A such that

Azz(_ol 10 ) €>0?
—1—€

3.57 [58, p. 140] For which positive integer n is there a matrix A € .#; (Z) such
that A” = I, and AF # I, for 0 < k < n?

3.58 Determine all matrices A € .#, (R) such that AAT = G i)

3.59 Find all matrices A € .#, (R) such that AATA = (a a)’ where o € R.

o o
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3.60 [27] Let A € ., (R) such that AA” = (Z b), where a > b > 0. Prove that
a

AAT = ATA if and only if A = @ p orA = pa , where
B «a a B

+tvVa+bta—>b d B +va+bF NJa—b
o = an = .
2 2

3.61 If A € .#, (Z) is such that A* = I, then either A2 = I, or A = —I,.

3.62 If A € ./, (Z) and there exists n € N with (n,6) = 1 such that A" = I, then
A=1.

3.63 Let A € ., (Q) be such that there exists n € N with A* = —I,. Prove
that either A> = —, or A®> = —I,.

3.64 The order of an element in .7, (Q).

Let A € .#, (Q) be such that there exists n € N with A” = I,. Prove that
A =1,

3.65 Determine all matrices A € ./, (Z) such that A> = (g 183).

3.66 Solve in .# (R) the equation X° = (; _i)

3.67 The real cubic roots of /.

(a) Determine all matrices X € .#5 (R) such that X3 = I,.
(b) Let € # 1 be a cubic root of unity. Determine all matrices X € .5 (R)
such that X2 + €X + €2, = O,.

3.68 Find all A € .#, (R) such that AATA = .

3.69 Prove that there is no A € .# (Q) such that A* + 15A% 4 21, = O,.
3.70 LetSLy (Z) = {X € 4 (Z) : detX = 1.
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(a) Prove that the equation X? + X2 = I, has no solutions in SL; (Z).

(b) Prove that the equation X?>+ X2 = —I, has solutions in SL; (Z) and determine
theset {X" +X™": X>+X2=—h, neN}.

3.71 A quintic equation with a unique solution.

Prove that for any a € R the equation

X5 = a l—a
14+a —a
has a unique solution in .#; (R).

cosa sino

3.72 Letn > 1 be an integer and let A = ( .
—sina cos«

A" =1,

) . Find o € R such that

3.73 The nth real roots of the rotation matrix.
Let ¢ € (0, ) be fixed. Find all solutions X € .#5 (R) of the equation

¥ — (CF)S[ — sint) .
sint cost
3.74 Letn > 2 be an integer. Solve in .#, (C) the equation
X" = 2 .
2 4
3.75 Solve in ., (C) the equation X" = ((1) ?), aeC*.

3.76 Let A € #,(C), A # O, and detA = 0. Prove that the equation X" = A,
n > 2, has solutions if and only if A> # O,.

3.77 Letn > 2 be an integer. Solve in .#, (C) the equation

X”:(“ b), a,beC, b+£0.
b a

378 Letne N,n>2,a € R,and b € R*. Solve in ., (R) the equation

X”:(“ b).
—b a
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3.79 Prove that the equation

X":(g _01), neN, n>2,

has no solutions in ., (Q).

3.80 Solve in . (Z) the equation X* — 3X = (_37 _29)

3.81 Solve in . (R) the equation X° + X* = (i i)

3.82 Two special equations with no solutions.

(a) Prove that the equation A> — A — I, = O, has no solutions in .5 (Q).
(b) Let n € N, n > 2. Prove that the equation A” —AC(0, 1) — I, = O, has

no solutions in .#, (Q), where C(0, 1) = ((1) (1))

3.83 A jewel of binomial matrix theory.
Let n, k > 2 be integers. Prove that the equation A” — A C(a,b)—L = 0,

has no solutions in .7, (Q), where C(a, b) = (Z Z) witha > 0and b > 1

integers. (C(a, b) is the circulant matrix defined in problem 3.11).

3.84 A matrix equation with determinants and traces.

(a) Solve in .#, (Z) the equation
X +X= 20 , where t=Tr(X).
32
(b) Solve in .#, (Z) the equation

X+ x= (§ g) , where d = detX.
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3.85 Letn > 3 be an integer. Find X € ., (R) such that

_ 1 -1
X'+ X2 = :

3.86 Two matrix equations over .7, (7).

(a) Letn € N. Solve in ., (Z) the equation X" + X = I,.
(b) Letn € N. Solve in .#, (Z) the equation X*"*! — X = I,.

3.87 [41] Find all prime numbers p such that there exists a 2 x 2 matrix A with
integer entries, other than the identity matrix I, for which A? + AP~ ... 4+ A = pl,.

3.88 Letn € N. Solve in ., (R) the equation

A+A3+"-+A2n_l — (n n2).
0 n

3.89 Two cousin equations.

Let m,n > 2 be integers and let A € .4, (C) be a given matrix. Prove
that the equation X" = A has solutions in .#, (C) if and only if the equation
Y" = A has solutions in ., (C).

3.90 Viete’s formulae for a quadratic matrix equation.

Let A,B € .#,(C) be two given matrices and consider the quadratic
equation in .7, (C)

X?>—AX+ B = 0,.

Prove that if X, X, are two solutions of this equation and if the matrix
X; — X, is invertible, then

Tr(X; + X5) = Tr(A) and det(X;X,) = detB.
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3.91 Matrix delights in .7, (Zp).

Let p be a prime number. Prove that:

a5\ (ao)
a a ~
@ (oa) (ba) an

~\ P A

ab ab

b) Ifp > 3, th ~ | =1~ ).
®) b et ba) ba)

(¢) Ifa+b+#0,then X = i,b\ if and only if X = 51\2
ab ab

has no solutions in

d Ifa+ b=073 = 0, the equation X¥ = a
a

SHASY)
~—~——

M5 (Z,).
(e) If X € 4, (Zp) such that detX = 0 and Tr(X) # 0, then X? = X.

~_\P ~ it

0a 0 a2 b2

2| = i ~ , p=3.
® (bO) (apz'b”il ) &

0
~ P ~ ~p—l~ptl
ab a az bz
o~ o~ = ~pD— b 2 3‘
@ (a D (apzlbpzl @ ) P

(h) If p > 5is a prime number, there are exactly p?> matrices in ./, (Zp)
which commute with (,;\ i\)

(i) The number of invertible matrices in .4, (Z,) is (p* — 1)(p* — p).

3.92 (a) Solve in .#, (Zs) the equation X° = (g\ %)

(b) Let p > 3 be a prime number. Prove that the equation X¥ = has

o
) O©)
) Q)

the unique solution

0 p= o
X = (A pf’) ifand only if (@ '5)"z = —1.
0
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3.93 Splendid binomial equations.
(a) [49] Solve in .#, (Z5) the equation

XS_Z?
“\a 1)

(b) Letp > 3 be a prime number. Solve in .# (Z,) the equation
XP = }:\1 ,2\ .
p—11

3.94 Let A € .#,(C). Prove that the equation AX — XA = A has a solution in
M (C) if and only if A2 = 0,.

3.95 Two binomial equations with symmetric terms.

(a) LetA € ., (C). Prove that the equation AX — XA = I, does not have solutions
in ., (C).

(b) Prove that if the equation AX + XA = I, has solutions in .#, (C), then either
A is invertible or A2 = O,.
Conversely, show that if A is invertible or A> = 0, and A # O,, then the
equation AX + XA = I, has solutions in ., (C).

3.96 Let P € C[x] be a polynomial of degree n. Prove that the following statements
are equivalent:

(a) the equation P(X) = ((1) 1) has n distinct solutions in .#; (C);

(b) the equation P(x) = 1 has n distinct solutions.

Is the problem true if the solutions of the equation P(x) = 1 are not distinct?

3.97 LetA = (a Z) € > (R) with a+d # 0. Prove that the matrix B € ., (R)
c
commutes with A if and only if B commutes with A2

3.98 Letm,n € Nandlet A, B € ., (R) be such that A”B" = B"A™. Prove that if
A™ and B" are not of the form AL, for some A € R, then AB = BA.

3.99 LetA,B € ., (R) be such that A”B = A™ + B, m € N. Prove that AB = BA.
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3.4.3 Solutions

352. (a)IfA=alhbwegeta =lora =5 = A=LorA=5L.1fA # al, we
have, based on Theorem 2.6, that Tr(A) = 6 and detA = 5.

IfA = (a Z) € #> (Np), then a + d = 6 and ad — bc = 5. It follows that
c

(09680 (1) v
el (12 G3)- G0 62)- G2 G- G

(b) Use Theorem 2.6.

10
3.53.A = .

3.54. Solution 1. The problem can be solved by direct computation.

Solution 2. Since det? X = det (Xz) = 16 we get that det X = +4.

Case 1. If detX = 4 we have, based on Cayley—Hamilton Theorem, that X> —
Tr(X)X + 41, = O, and this implies, passing to trace, that Tr(X?) — (Tr(X))? +
4Tr(I,) = 0. We obtain Tr(X) = £5 and £5X = X? + 4I,. Thus

21
va=s (1),

Case 2. If det X = —4 we obtain, after some calculations similar to those in Case 1,

that
1(25
X34 = %= :
M3 (10 7)

sssws(, 1y Dwis(,, %)

AT A YA

-1 0
0 —1—¢

and

3.56. Let B = ( ) and let A € ., (R) be such that A> = B. Since A

a0

and B commute we get that A = ( 0d

2
). This implies, since A% = (cz) 52), that
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a> = —1 and d> = —1 —e. Since these equations do not have real solutions we have
that there is no A € .# (R) such that A2 = B.

3.57. The possible values of n are 2, 3, 4, and 6 (see [58, 528-529]).

cosf sin6

3.58.A =
(cos 0 sin6

), where 6 € R.

3.60. One implication is easy to prove. If A = (g g ) orA = (/3 ;), with

+va+bxta—>b +va+bF Ja—>b
o= > and 8 = 5 , then

T _ ATx _ Ol2+,32 20{ﬂ _ Clb
- 209

Now we prove the other implication. First we note, since det(AA”) = det? A =

a* — b*> > 0, that A is invertible. The equation AAT = (Z b) implies that AT =
a

b a
that AAT = al, +bJ = (aA~'+bA™'J)A = ATA, and this in turn implies bA™'JA =

Al (“ b) = A~V (al, +bJ), where J = ((1) (1)) The equation AA™ = ATA implies

bJ and, since b # 0, we get that JA = AJ. Let A = (x y). Since JA = AJ we get
u v

thatu = yand v = x,50A = (x y).Wehave
y X

AAT — 24y 2y _fa b
N 2y 2+y) \ba
and this implies that x> + y?> = a and 2xy = b. Since we have a symmetric system

it is clear that the values of x and y could be interchanged. Adding and subtracting
these equations we get that (x + y)?> = a + b and (x — y)> = a — b, and we have

tVaFb+Ja—b
X+y=4vatbandx—y = +va—b. Thus, x = a+2 72 and

+Va+bF Ja—>b
y= -
2
3.61. If A is an eigenvalue of A we have, since A* = I, that A* = 1 which implies
that A € {1, +i}. Let A1, A, be the eigenvalues of A.
If A, = £1,then A, = £1 or 1, = F1 and in all cases we have that A2 = [,.
If A, = i, then A, = —i and we have that A2 = —I,.

3.62. First observe that n = 6/ + 1 orn = 6/ + 5, where I > 0 is

an integer. If A is an eigenvalue of A we have that A" = 1 = A1 €
{cos 2% 4 jsin 2% : k = 0,1,...,n — 1}. Since the characteristic polynomial of A
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has integer coefficients, then either the eigenvalues of A are equal to 1 or they are
complex conjugate.

If Ay = A, = 1 we have, based on the Cayley—Hamilton Theorem, that (A —
12)2 O,. Itfollowsthat, =A"= (L +A—L)'=L+nA—L) = A=1.

If the eigenvalues of A are complex conjugate, then we let A; = cos =% 2k” ~+isin =% 2k”
and A, = cosﬂ — zsm”—” for some k € {1,2,...,n— 1}. Since Tr(A) = 1 +
Ay = 2cos 2Z € 7 we have that 2 cos &£ Zk” e {£1,0,+£2}.

If 2 cos 2’; —1 = cos=% 2"” = cos = 2” = 2]‘7” = 27” = n = 3k, which
contradicts (n, 6) = 1.

If200s2’l‘—1” =1 = cos”‘T” =cos§ = 2"7” = % = n = 6k,
which contradicts (n, 6) = 1.

If2cos”‘” 0 = cos=& 2"” =cosy = 2],‘—1” = 7 = n = 4k, which

contradicts (n 6) = 1.

If 2cos =& 2]‘” =2 = cos 2"7” = 1, which is impossible since 1 <k <n—1.

IfZCosn = -2 = cosy‘T”:—l = 2]‘7”=71 = n = 2k, which

contradicts (n, 6) = 1.
3.63. Let f1(x) = det(A — xI) € Q[x] be the characteristic polynomial of A and let
A1, A, be the eigenvalues of A. If A is an eigenvalue of A we have, since A" = —I,
that A" = —1. It follows, since f4 € Q[x], that either both eigenvalues of A are equal
to —1 and n is odd or they are complex conjugate.

If A\, = Ay = —1 we have that (A + ,)> = 0,. It follows that —[, = A" =
A+L-bL)'=nA+hL)—, = A=—-1, = A’ =—D.

If the eigenvalues of A are complex conjugate, then we let A} = cos ¢+ isinz and
Ay =cost—isint, A1, A, € C\ R. Since A] = —1 we have that cos(nt) = —1.

On the other hand, A; + A, = 2cost = s € Q. Using Lemma 3.1 we
have that there exists a monic polynomial P, € Z[x] such that 2cos(nf)
P,(2cosr). It follows that 2cost = s is a rational root of a monic polynomial
with integer coefficients, hence s must be an integer. Since, s € [—2, 2], we get that

s € {£1,0,+2}.
If2cost =2 = A; = A, = 1, which is impossible since 1" # —1.
If2cost = —2 = A; = A, = —1 and this case was studied above.

If2cost=0 = A2+, =0, = A*=—1,.

If2cost =1 = Tr(A) =2cost=landdetA = A A, =1 = A?—A+], =
0, = A+L)A*—A+DL)=0, = A>=—1,.

If2cost = —1 = A’4+A+DL = 0, = (A—L)A*4+A+DL) =0, = A’ =1,
so A" € {,A,A%}. Since A" = —I, we get that either A = —I, or A*> = —I,, which
implies that either A3 = —I, or A> = —1,.

3.64. Let f4 (x) = det(A — xI>) € Q[x] be the characteristic polynomial of A and let
A1, A, be the eigenvalues of A. We have, since A" = I, that A7 = A} = 1. It follows
that either A, A, are real or they are complex conjugate.

If the eigenvalues of A are real, then A1, A, € {—1,1}.

IfA; = A, = 1, then we have that (A—L)> = 0, = I, = A" = (L+A-DL)" =
I +Vl(A—12) = A=5L = Al2 =1.
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If A\, = A, = —1,thenniseven and (A + I,)> = O,. It follows that [, = A" =
L+ A+DL)'=hL—-—nA+L) = A=—-1, = A2=1,.

IfA\, =1land A, = —1,thenA> - L =0, = A’=1, = A2 =1,.

If the eigenvalues of A are complex conjugate we let A1, = cosa =+ isinw and
we have that Tr(A) = 2cosa = s € Q, cos(na) = 1 and detA = A A, = 1.

We have based on Lemma 3.1 that there exists a monic polynomial P, € Z[x]
such that 2cos(ne) = P,(2cosc). Thus, s = 2cosw is a root of a monic
polynomial with integer coefficients, i.e., it is a solution of the equation P,(x) —2 =
0. Thus, s must be an integer and since s € [—2, 2] we have that s € {£2, &1, 0}.

The cases when s = —2ors = 2 imply that A} = A, = —lori; = A, =1
which have been discussed above.

Ifs=—1,thenA’ +A+L =0, = A-L)A’+A+5L)=0, = A’ =
L, = A2 = I.

Ifs=1,thenA>—A+5L =0, = A+L)A>—A+DL) =0, = A’ =
-, = A?2 = L.

Ifs=0,thenA>’+ L =0, = A>=—-1, = A? =1,

The previous calculations show that the order of matrices in .5 (Q) could be
1, 2, 3, 4, and 6 respectively. Examples of matrices of such orders are given by

A} = b, with Al = L, Ay = —D, with A2 = [,, A; = (_i (1)) with A3 = I,

A= ((1) _01)’ with A} = I, and As = ( 11 (1)), with Ag’ = I, which prove the

order of matrices in GL, (Q) are 1, 2, 3, 4, and 6 respectively.

For the case when A is a matrix with integer entries which verifies the conditions
of the problem see [58, Problem 7.7.7, p. 145].
3.65. Since det’ A = det(4%) = 1 we get that detA = 1. On the other hand, the
Cayley—Hamilton Theorem implies that A> = Tr(A)A — I, and it follows that A3 =
Tr(A)A?> — A = (Tr*(A) — 1) A — Tr(A)L,. Passing to trace in the previous equality
we have 18 = Tr(4%) = Tr*(4) — 3Tr(A). Thus, Tr(A) = 3and A = G ;)
3.66. Since det’ X = 1 we get that detX = 1. If = Tr(A), then the Cayley-
Hamilton Theorem implies X> —tX + 1, = Oy and X* = tX?> — X = (1> — )X — th>.
Passing to trace in this equality we have > — 3t + 2 = 0, which implies that t €
{—2,1}.

If t = 1 we get X> = —I, which is impossible since X* = (; _i)

_ 1 /-1 —
If 1 = —2 we get, since 3X + 2, = X> = G _i)’thatx ) ( 21 —z)

3.67. (a) Let X = (a Z). Since X* = I, we get, by passing to determinants, that
c

det X = 1. We have, based on the Cayley—Hamilton Theorem, that X’ = (a+d)X—
I, and this implies X = (a + d)X> — X = (a + d)’X — (a + d)I, — X = I,. Thus
[(a + d)* — 11X = (1 + a + d)I, which in turn implies that
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[@+d)?=1la=14+a+d
[(a+d)?—1]b=0
[(@a+d)?—1]c=0
[(@a+d)?*—1ld=1+a+d.

Adding the first and the last equation we get > — 3¢t — 2 = 0, where t = a + d, with
solutions t; =, = —1 and t; = 2.
Ifa+d = —1, then

X:(a b ) acR, bc=—-1—a—d.
c —1—a

Ifa4+d=2,thena=d=1,b = c =0 which implies that X = I,.

(b) We get, since X> 4+ €X + €2I, = 0,, that X3 = I, and it follows, based on
part (a), that X = I,.
3.68. We have that A~! = AAT and, since AAT is a symmetric matrix, we get that A
is also a symmetric matrix. The equation to solve becomes A® = I, and, since A is
symmetric, we get that A = 1.

a
14+a
t = Tr(X). We have, based on Cayley—Hamilton Theorem, that X> —tX — I, = O»,
X =tX>+X=F+ DX +1th,and X° = X?X3 = (t* + 32 + DX + (£ + 20)],.
Passing to trace in the last equality and using that X° = A we get that (t* + 31> +
Dt +2( +2t) =0 & £ + 5 + 5t = 0, which has the unique real solution
t = 0. This implies that X> = I and X = X° = A.

37LIFA = ( 1_“), then det® X = detA = —1, so detX = —1. Let
—a

cosno  sinno

3.72. Since A" = ( ), we get that cosna = 1 and sinno = 0. This

2k
implies that noe = 2k, k € Z and no = mmw, m € Z. Thus 2k = mand o = —n,

n
kelZ.
3.73. Let

—sinno cosno

AZ(CF)SI —smt) and Xz(a b).
sint cost cd
We have X"T! = AX = XA and this implies

bsint = —csint sin 1740
<~

—asint = —dsint
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b
detX € {£1} & a*>+ b* € {£1}, 50 a*> + b* = 1. There exists x € R such that
a = cosx and y = sinx and this implies that

cosx —sinx cosnx —sinnx cost —sint
X=1_ and X" =", =" .
sinx cosx sinnx cosnx sint cost

Therefore nx = t 4+ 2km, k € 7Z. The equation has n solutions

soX = (a _b). Since X" = A we get that det” X = detA = 1, which implies that
a

s =0,n—1.

COS X; — Sinxy t+ 2kr
Xk = . N _Xk =
sinx;  COS Xy n

3.74. Let A = (; i) The equation X" = A implies that detX = 0 and this in

turn implies #"~'X = A, where t = Tr(A). Passing to trace in this equation we get

. . . u 2k . 2k
that ' = 5. The solutions of this equation are #;, = \/g coS — +isin— ),
n n

k=0,1,...,n— 1. Thus, X; = tn—_lA,k =0,1,...,n— 1, are the n solutions of
k
the matrix equation.

375.1fA = (1 a) we get, since AX = XA, that X = (g ’B) and this implies that
o

01
X" — a na"'p _(la ’
0 o 01

soa” = 1 and na" "' B = a. It follows that

2k k € I
oz:ekzcos—”—i—isin—jr and ﬁkzﬂ, k=0,n—1.
n n n

The equation has n solutions

3.76. First we prove the implication “=." We have X" = A = detX = 0 =
X" = "X, where t = Tr(X). Thus, "X = A. If, by way of contradiction,
A% = 0,,thent = 0 and /"' X = A = O,, which contradicts A # O,.

Now we prove the implication “<.” Solving the equation X" = A we getdetX =
0 = X" =¢"'X, where t = Tr(X) and we have ¢t # 0 since X> # O,. It follows
"~1X = A and, by passing to trace, we get that ' = Tr(A) and observe Tr(4) # 0
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since A2 # 0,. We obtain the solutions X; = ~%-A, k = 0,n — 1, where #, are the
Tr(A)

solutions of the equation " = Tr(A).

3.77. Let A = (Z b). Since X"*! = X"X = XX" we get that AX = XA and this
a

implies, since b # 0, that X = (x Y ) A calculation shows that
y X

G+Y"+Ex=y)" +y)" ==y

X=1 ) 2 ey G4y Ty

2 2

The equation X" = A implies that

(x+"'+ @—y)" =2a N x+y)"'=a+b
(x+y"'—(x—y)"=2b (x—y)"=a—b.

The solutions of this system are x = a;ﬂ and y = #, where «, B € C with

a" =a+ band " = a— b. Thus,

a+pB a-—

_ 2 2
X= a—pB a+p
2 2

=

The matrix equation has n? solutions in .# (C).

3.78. Observe that A = ( a b) = va? + b? ( CO,St s%n t) and see the solution
—b a —sint sint

of problem 3.73.

3.79. Let A = (8 _01) We assume, by way of contradiction, that there is

X € M, (Q) such that X" = A, n > 2. This implies that detX = 0 = X" = !X,

where ¢ = Tr(X). The matrix equation becomes "X = A and, by passing to trace

in this equation, we get that ' = 3. However, this equation does not have rational

solutions.

3.80. Let A = (_7 N
3 2

Hamilton Theorem implies that X> —tX +dl, = O, and X3 —3X = (» —d —

3)X — tdl,. Thus, A = (> — d — 3)X — tdl,. Passing to trace in this equation we

get that (> —d — 3)t — 2td = —5 & (> — 3d — 3) = —5 which implies that

te{-5-1,1,5}.

), t = Tr(X) € Z and let d = detX € Z. The Cayley—
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If r = —5 we get that d = 7 and these imply that X ¢ .#, (Z).
Ift=1wehavethatd = 1 and X = ( 21 31) € M, (Z).
The cases whent = —1 ort = 5leadtod ¢ Z.

Hence, the only solution of the cubic matrix equation is X = ( 2 ] 3 1).

381. LetA = G i) and let X € ., (R) be such that X3 + X?> = A. We have

AX = XA = X* 4+ X? and it follows that X = (x y)’ x,y € R. Straightforward
y X

calculations imply that

43y 4y =1
3%y + 33 + 20y = 1.

Subtracting these equations we obtain that (x — y)>(x —y 4+ 1) = 0 and it follows
that x = y or x = y — 1. We obtain the solutions

1(11 01
X = — X - .
) (1 1) and X (1 o)

3.82. (a) Let Ay, A, be the eigenvalues of A. We apply Theorem 2.11. First we
consider the case when A1, A, € Q.
IfJ, = (/t)l )t)) then A’ —A—©L = 0, implies that Jf1 —Ja—05L =0, =
2
A} — X —1=0,i = 1,2. However, the equation x

rational solutions.

IfJ, = (A ]),)L € Q,then]j—JA—Iz = 0, implies that A*> — 1 — 1 = 0 and

3 — x —1 = 0 does not have

0 A

312 — 1 = 0. These equations do not have rational solutions.

Now we consider the case when A1, A, € C\Q, A = a+/Band A, = a— \/B,
aeQ,peQ* LetJy = (; 1) be the rational canonical form of A. The equation

o
J3 —Js— L = O, implies that® + 3¢ —a —1 = 0and 3a> + B —1 = 0. It
follows that 8a® — 2ox + 1 = 0, which does not have rational solutions.

(b) See the solution of problem 3.83.
3.83. Without loosing the generality we consider that n > k. We have A¥(A"* —
C(a.b)) = I,, which implies that A* and A"~* — C(a, b) are inverses one another,
hence they commute. It follows that (A" % — C(a, b))A* = I, and this implies that

A*C(a,b) = C(a, b)A*. A calculation shows that A* = (x y)’ x,y € Q. We have
y X

AR = oA + Bily, o, Br € Q. We distinguish between the cases when o, = 0 and
(0773 7é 0.
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The case oy = 0. If oy = 0, then A¥ = B, = C(x,y) = PBi = x and
y = 0, so A% = xI,. Observe that x # 0, otherwise A*¥ = 0, which contradicts
the fact that A is invertible. The equation A" — AC(a,b) — L = 0, implies, since
A¥ = xI,, that A"™* = C (a + 1,b). Since A commutes with C (a + 1,b) and b # 0
we get that A is also a circulant matrix. Let A = C(u, v). The equation A* = xI,
implies that (z + v)* + (u —v)¥ = 2xand (u + vV)* — (w—v)f =0.fu +v =0
we get that A = C(u, —u) which is not invertible. Thus, u + v # 0 and the equation
(u + v)* — (u — v)* = 0 implies that u — v = £ (u + v).

Ifu—v=u+vthenv=0 = A=ulh = A" =uw*=C(a+1,b),
which contradicts b # 0.

Ifu—v=-u—v,thenu =0 = A = C(0,v) and the equation Ak = xI,
implies that k is even and x = v¥ > 0. On the other hand,

1 n—k
Cla+-,b)=A =
X
1

If n is an odd integer, then we have a + % =0 = x = - < 0, which
contradicts x > 0.

If n is an even integer, then b = 0 which is impossible.

The case a; # 0. We have A = - (A¥ — Bily) = ;- (C(x,y) — fl). Thus, A is
a circulant matrix. Let A = C(6,6), 0,6 € Q. Let

v"kC(0,1) if n isodd

vk, if n iseven.

O+ 8+ (0 -8 0+ 8k — (8 — )
= and wy = .

1
k 2 2

The equation A" — A*C(a, b) — I, = O, implies that t,, — aty — bwy — 1 = 0 and
wy, — bty —aw, = 0. Adding these two equations we get that (6 + 8)" — (a+ b)(0 +
8)F — 1 = 0. However, this equation does not have rational solutions.

3.84. (a) LetA = (i g) and let X € .#, (Z) be a solution of the matrix equation

X' 4+ X = A, where t = Tr(X). Since X commutes with A, a calculation shows that

X = (x O),x,ueZ.
u x

k
On the other hand, X* = ( 0

kxk—l u )Ck

T+ x 0 20
X+x=( = :
+ (tx’_lu +u x +x) (3 2)

We obtain the equations x' + x = 2 and &x'~'u + u = 3 where t = Tr(X) = 2x.

), k € Z, and this implies that

A calculation shows that x = ¥ = 1 and hence X = (i (1))
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(b) Exactly as in part (a) we get the equations x? + x = 2 and dx*'u + u = 3,
where d = x?, and these imply that the equation X?4X = A does not have solutions.

3.85. LetX = (a Z) be a solution of our equation. We have
C

X"+ X2 = XXX + ib)(X — i)

and it follows that detX = 0 or det(X + il;) = 0 or det(X — il;) = 0.
If det(X + il,) = 0 we get that (@ +i)(d +i) —bc =0 = ad—bc—1 = 0and
a+d=0.Wehave d = —a, bc = —1 — a* and a calculation shows that

2o (@ +be bla+d) _ (-1 0\ _ ,
“\eta+d) #+bc) o -1) *
and this implies X"~2(X? + I,) = O,, which is a contradiction.
By a similar analysis we get that the case det(X—il,) = 0 leads to a contradiction.

Now we study the case detX = 0. The Cayley—Hamilton Theorem implies that
X’ =(a+dX = X=(a+d)"'X, Yk > 1. Thus,

Xn +Xn—2 — [(a +d)n—1 + (a+d)n—3]x — (_11 —11) .

Let a + d = t and it follows, from the previous equation, that

a(' + %) =1

b +13) = -1
c@ '+ = -1
A" + 1) = 1.

Adding the first and the last equation we have 1" + "2 — 2 = 0.
Letf : R — R, f(x) = x" + x"~2 —2 and we note that f'(x) = x"3(nx> + n—2).
We study the cases when r is an even or an odd integer.

m 7 is an even integer. In this case we have that f’(x) > 0 on (0, co) and f/(x) < 0
on (—00,0). Since f(—1) = f(1) = 0 we get that —1 and 1 are the unique real
solutions of the equation f(x) = 0. A calculation shows that

11 -1
r=1 X ==
- oA 2(—1 1)

and

11 -1
t=-1 X, =—= .
- 2(—1 1)
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m 1 is an odd integer. We have f'(x) > 0 for x # 0 and 1 is the unique real
solution of the equation f(x) = 0, which implies the unique solution of the matrix

equation is
/1 -1
X== .
2 (—1 1 )

3.86. (a) The equation has solutions if and only if n = 3k + 2, k > 0. In this case
the equation is equivalent to X> — X + I, = O,.
(b) The equation has no solutions in ., (Z).

3.87. The only primes that qualify are 2 and 3 (see [46]).

11
3.88.4 = .

3.89. We prove that the equation X = A has solution in .#, (C) if and only if
A% #£ 0, or A = O, (the same conditions hold for the equation Y* = A). Let J4
be the Jordan canonical form of A and let P € .#, (C) be the invertible matrix such
that A = PJ4,P~'. Let X € .#, (C) be a solution of the equation X" = A and let
X; = P7'XP. The matrix equation X" = A becomes X|" = J,.

If the matrix J4 is diagonal, ie., J4 = (/})1 )? ) clearly a solution is
2
Xi = (“‘ 0 ) with 47" = A, and @2 = .
0w
If J, = Al then X; commutes with J4, so X; = ab and
0 A 0 a

m m—1
X = (aO md . b). We obtain the equations a” = A and ma™'b = 1, which
a

have solutions if and only if A # 0 and when A = 0 they do not have solutions.
Thus, the only case when the equation X™ = A does not have solutions is the case

when the Jordan canonical form of A is J4 = (8 (1)) which corresponds to the case

when A> = 0, and A # 0.

3.90. Since X, and X, are solutions we get that Xf —AX{+B = 0,, X% —AX,+B =
0, and by subtracting these equations we get that X; — X3 = A(X; — X»). Let
Y = X; — X, and we obtain that A = (X} — X3)Y~'. Let Z = YX,Y~!. Since
Tr(X;) = Tr(Z) we have
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Tr(X; + Xz) = Tr(Xy) + Tr(X»)
= Tr(Xy) + Tr(Z)
= Tr(X, + 2)
=Tr[(X1Y + YXo)Y ']
=Tr[(X] — X1 X2 + X1 X, — X))V ']
= e[ - X)r]
= Tr(A).

On the other hand,

B = AX, — X}
= (XP - X)Y'Xi - X}
=X X -X\n)r'x
=X -X2 - X} + X X)Y X,
= (X1 — X)XV~ 'X
=YX, Y7'X,

and by passing to determinants we get det B = det(X;X>).

3.91.(a) Let B = (% fl)\) and observe that B> = O,. We have

=\ P
(% f) = @I, + bBY = @5 + B’ =ab.
a

o A

) Letp =2k+ 1,k > 1landletJ = (El)\ /(1)\) Observe that J> = I, and

Jr = J*J = J. We have

- N\ P
(% f) = @h +blY =aL + VJ’ =3l + bJ.
a
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~

(c) The equation X = (f g implies that det’ X = 0 = detX =0.1It follows,
a

based on Cayley—Hamilton Theorem that X*> = 7X, where 7 = Tr(X). This implies

that X? =77 1XxX =X = X = (ﬁ %)
a

Conversely, if X = (ﬁ g\), then detX = 0 and Tr(X) =a+ b #* 0. It follows
a

that X2 =7X = XP =7P"X =X.

~

(d) The equation X¥ = (ﬁ E[Z\) implies that det’ X = 0 = detX = 0. Since
a

Tr(X) =a+ b=0we get, based on the Cayley—Hamilton Theorem, that X? = 0,.
It follows that X? = O,, which contradicts a # 0.
(e) Let?7 = Tr(X). If X € //2( ) such that detX = 0 and Tr(X) # 0, then
=1X. This implies that X? =/t7’_1X =X.

(f)LetX = (g %) and observe that X> = abl,. Then

g g 0 A
XP = (XZ) 2 X = (ab) X = p—l~ptl .
azb
(g)LetY = (9 g) . We have, based on part (f), that
a

a g N ~p—loptl
(f5 =(Zz‘Iz+Y)p=af’12+Y1’=zz‘12+( +0A ‘”bz),
a da )

(i) There are exactly p? — 1 ways to choose the first line of the matrix such that it
is nonzero, then the second line can be chosen in any way except for the cases when
the second line is proportional to the first line, so there are p? — p such possibilities.
It follows that there are (p> — 1)(p* — p) invertible matrices in .2, (Z,).

a

3.92. (a) Let A = 9 ,1\ . Since X commutes with A we get that X = 4 E =
20 2b a

Al +DA. A calculation shows that A° = (,3\ 6) =7A. Using the Binomial Theorem

we get that

X5 = (512 +EA) =3 4+ DAS =Gl + 4bA = (3“b ‘g’) (g (1))
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It follows that @ = 0 and b = 4. Thus, X = A = (0 4).

(b) LetA = (9 9\) Since X commutes with A we have that

). A calculation shows that B2 = al,, where o = a'b.

p—1
Letp =2k + 1,k > 1. Then B® = B%*B = o*B = (zrl’z;) * B.
We have

p—1

XP = (I, +3B) =L + 7B =3 +37<’a\_1?9\)7 B

and it follows that

=

<)
Il
Q)

ot ~
we get that (2?@) " =TandX =GaB = (,g %)

p—1
~

Ify = —a we get that (?frl;) * = _Tand

x=_ap=[% =4 = 9 PZa).
—b 0 p—b O

The reverse implication is easy to check.

3.93. (a) Solution 1. Let A = (% /21\> Since X commutes with A a calculation shows

that
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o~ A

where B = /(21 /} . One can check that B> = B and we have, based on the Binomial

Theorem, that

o \5 - - @b a b
X5:<A1 +bB) =L+b°B’ =3 L+b°B = | A~ ~]=ls=~ =]
ah 2 2 25 B+ 2b a+b

Thus, a = Z, b= 5, and X = A is the unique solution of the equation.

Solution 2. Let A = (g: %) Since, Tr(A) = 0 and detA = 1, we have based on

the Cayley—Hamilton Theorem that A? +1L = 0, = A? = 4l,. This implies that
AS = A.

LetY € ., (Zs) such that X = Y + A. First we observe that ¥ commutes with A.
Wehave X6 = AX =AY +A) =AY + A2 and X° = XA = (Y + A)A = YA + A>.
It follows that AY = YA. Using the Binomial Theorem we have

X=Y4+A’ =YV 4+A =Y +A=A = Y =0, = Y =0,

Since matrices which commute with A are of the following form

a b
2 a+b

and Y commutes with A we get that there are abe Zs such that

y=(2 ).
2b a+b

The equation Y2 = O, implies that
@242 b (3 + ia)
PO ‘2| = 0s.
% (b+2a) 3+ (a+5)

A calculation shows that @ = b = 0 which implies that Y = O,. Thus, the only

solution of the matrix equation X° = AisX = A. N
__ Solution 3. LetT = Tr(X) and let d = detX. Since X° = Awe getd® =1 =
d = 1. We distinguish between the following two cases.

m Tr(X) = 0. WE have, based on the Cayley—Hamilton Theorem, that X Z 4 TIZ =
0, = X*=4I, = X* =1, = X° = X.Thus, X = A is the solution of our
equation.
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m Tr(X) # 0. The Cayley-Hamilton Theorem implies that X?> = 7X + i =
X = F+3)x+ (@ +T)k = X = (F+7+7)x+ (@ +5) L.
This implies that (74 + 72 + T) X+ (Zig + /27) I, = A. Passing to trace in this

equation we get that
(F+7+1)7+2(F +3) =0 = 7=0.

This implies that 7 = 0, which is impossible.

Thus, the only solution of the equation X =AisX = A.
(b) The equation has a unique solution given by

LetA = (p/_\i %) Since Tr(A) = 0 and detA = 1 we have, based on the

Cayley—Hamilton Theorem, that A? = —TIZ = p/—\llz. Letp =2k+ 1,k > 1. We
have

A =A%A = p—TFA=p—17A=GA,
where & = p/—\l ”3* _On the other hand,
@AY = GPAP = QAP =@*A =p — I"'A = A.

Since X commutes with A a calculation shows that

a b
pr a+b

LetY € .4, (Z,,) be such that X = Y + aA. First we observe that Y commutes
with A. We have X! = XPX = AX = A(Y + @A) = AY + @A? and XP*T! =
XXP = XA = (Y + @A)A = YA + @A”. These imply that AY = YA.

We apply the Binomial Theorem and we have that

X = (Y4+aAY =Y+ @A =Y +A=A = Y =0, = Y'=0,
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-~

a
Since Y commutes with A we let Y = (A ) A calculation shows that

b
‘b a+b
, [ #+5%  b(3a+h)
=" = R
255 (2a+5) 5B + @+ by

~ ~

Since Y? = O, we get that a> + ;%\l/b\z = 0 and 3(,2\21\—{—3) = 0. The equation
Z(§E+Z) = 0 implies thath = 0 or 24 + b = 0.

Ifh =0 we get from the first equation that @ = 0,s0Y = 0,.

Ifb = 24 = p/—\Zﬁ, the first equation implies that @> (T+ ;;/%\11)/;\22) =

0:>p 2=0=>a=0 = Y= 0,.
Thus, the solutlon of the matrix equation is X = p/—\l A lfp =4i+ 1 we

—_— ],_

havethatp—lz =1, soX =Aandifp = 4i+3,thenp—12

X=p— 1A= (1’7_?)
=

3.94. First we prove that if the equation AX — XA = A has a solution, then A> = O,.
We have, Tr(A) = Tr(AX — XA) = 0 and Tr(A?) = Tr[A(AX — XA)] = Tr(A%X) —
Tr(AXA) = Tr(AXA) — Tr(AXA) = 0. It follows, based on problem 2.88, that A is
nilpotent and the implication is proved.

Now we prove that if A> = O,, then the equation AX — XA = A has a solution

in #, (C). Let A = (a Z) with A2 = O,. A calculation shows (see problem 1.8)
c

—p—l,so

b

b
that A, = (0 0),c€ C,or Ay = ( “ ),a,b €C, b 0.
c 0 —a
If A = A, the equation AX — XA = A has the solution X| = ((1) 8) and if

A = A, the equation has the solution X, = (8 (l))
b
3.96. (a) = (b) Let P(x) = a,x" + a,_ X" ' + -+ + aix + agp, a, # 0 and let X be

a solution of the equation P(X) = A, where A = ((1) i) Since X and A commute

we get that X = (g b), a,b € C. A calculation shows that, for k > 1, we have
a

_(d kd b _(P(a) bP'(@)\ _ (11
X = (G 1) e o= (TR = (01).
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which implies that P(a) = 1 and bP'(a) = 1. Observe that since the equation
P(x) = 1 has n distinct solutions we cannot have the situation that there exists
a € C such that P(@) = 1 and P'(«) = 0. Therefore, the equation P(x) = 1 has n
distinct solutions.

(b) = (a) If the solutions of the equation P(x) = 1 are xi,x,, ...,x,, then the

1
solutions of the matrix equation P(X) = A are T Py |.k=1,2,...,n.
0 Xk

If the solutions of the equation P(x) = 1 are not distinct, then the statement of
the problem is no longer valid. Let P(x) = (x — 1)2 + 1 = x> — 2x + 2 and we
note that the equation P(x) = 1 has the double solution 1. However, there is no

matrix X = (g b) € > (C) such that P(X) = A, since this would imply that
a

a*—2a+2=1and2b(a—1) =1.
3.97. The Cayley-Hamilton Theorem implies that A> — tA + dI, = O,, where
t = Tr(A) and d = det A. Therefore

BA? = tBA — dB
A%B = tAB — dB,

and this implies, since ¢ # 0, that BA2 = A’B & tBA = tAB < BA = AB.

3.98. There are real numbers o, B, Uy, v, € R, iy # 0, u,, # 0, such that A” =
anA + Bl and B" = u,B + v,I,. We have

A"B" = apu,AB + o v,A + BB 4+ Bnvnly
B'"A" = MnOlmBA + unﬁmB + vnamA + v"’BmIZ’

Un m?éo
and this implies that A”B" = B"A" < upAB = upamBA b AB = BA.
3.99.A"B =A"+B < (A" —1L)(B—1) = I,. This implies that matrices A — I,
and B — I, are inverses one another, hence they commute. Therefore (B — I,)(A™ —
L) =1, & BA™ = B+ A™. This implies A”"B = BA". If A" = «,,l,, for some
a,; € R, then the matrix equality A”B = A" + B implies that («,, — 1)B = o[-

O
1 I, and

O
this clearly implies AB = BA. If A" = «,,A + B>, with a,,, B, € R, o, £ 0, then
since A"B = BA™, we have «,,AB = «,,BA and since ¢, # 0 we get that AB = BA.

Observe that «,, # 1, otherwise we get a contradiction. Thus, B =

3.5 Pell’s diophantine equation

Let d > 2 be an integer which is not a perfect square.
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Definition 3.4 The diophantine equation
X—dy?=1, x,yeZ, (3.3)

is called Pell’s equation’.

In what follows we are going to solve, in integers, Pell’s equation. First, we
observe that the pairs (—1,0) and (1, 0) are solutions of equation (3.3) which are
called the trivial solutions. On the other hand, if (x,y) is a solution of equation
(3.3), then (—x,y), (x,—y), and (—x, —y) are also solutions of the same equation.
Thus, to solve Pell’s equation it suffices to find its solutions in positive integers, i.e.,
the solutions of the following form (x,y) € N x N.

Let (x,y) € N x N and let
x dy
Ay = s
o (y X)

where x and y are such that detA(, ;) = P —dy? =1.

Let Sp be the set of the solutions of the equation (3.3). We note that (x, y) € Sp if
and only if detA(,,) = 1 and (x,y) # (1, 0) if and only if A(y) # b.

If (x0,¥0) € Sp, (x0,¥0) # (1,0), then det Ay, ,,) = 1 and it follows that

detA?xo,yO) = 1.

Let
n _ Xn dyn . 2 2
Alyyye) = (yn xn) with x, —dy, = 1.
If
A+l (xn+1 dyn-H)
(x0.y0) Vntl Xnil ’
then
n+1 :An

A = Xn dyn X0 dyO
(x0,y0) (x0.y0) W Xn Yo Xo

— (xoxn + d)’o}’n d(yoxn + x()yn))
YoXp + Xoyn  XoXn + dyoYa

(x0.y0)

2This equation which bears the name of Pell, due to a confusion originating with Euler, should
have been designated as Fermat’s equation [15, p. 341].
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and

detA"™! = det (A’;WO)A(MO)) = detA”

(x0.y0) (x0.y0

)detA(xO_yO) =1.

It follows that

{xn-f-l = XoX, + dyoyn or {xn = XoXn—1 + dyoyn—l

Yn+1 = YoXn + XoYn Yn = YoXn—1 + XoYn—1

for n > 1, where xo, yo are given such that (xo, yo) # (1,0).
We note that if (x,y9) € N x N, then we also have that (x,,y,) € N x N. In

other words, if (xo, yo) is a solution of equation (3.3), then (x,, y,) is also a solution
of equation (3.3).

The previous recurrence relations can be written as follows

n yO '{0 yl’l 1 ’
n Yo Xo y() ’

X, = % |:(x0 +yo~/3)n+l + (xo —yox/g)n+l:|
! [(xo + yox/ﬁ)nJrl —~ (xO —yox/Zl)nH} , n>0.

and this implies that

Thus,

(3.4
Yn = m

By a fundamental solution of Pell’s equation we understand the pair (xo, yo), with
X0, Yo € N, and xé —dy% = 1 such that x is minimal if and only if y, is minimal, i.e.,
X0+ ~/dyo is minimal among x+ +/dy, where (x, y) is a solution, in positive integers,
of Pell’s equation. We mention that the existence of the fundamental solution of
Pell’s equation can be proved.

Now, if we consider that (xg, yo) is the fundamental solution of Pell’s equation
we get that

SP g {(_1?0)v (1’0)7 (xn,yn)’ (_xn’yn)v (xnﬁ_yn) L ne N} =S.

Next we prove that § € Sp. If (x,y) € SN (N x N), we define B = A, and
B; = A™!B, where
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and (xo, yo) is the fundamental solution. It follows that det By = 1 and

’ /
Bl = ()C/ d)/)) with
y X

X' = xox — dyoy

Y = X0y — YoX.

It follows that ' < x,y’ < y, and (x/,y’) € N x N. We continue this algorithm and

we get that B, = A™'B|, B3 = A™'B,, ..., By = A~'B;_, = I,. We have, by going

backwards, that A, ) = A’(‘xo’w)) which implies, based on (3.4), that (x, y) € Sp.
Thus, we have proved the following theorem.

Theorem 3.12 The diophantine equation x> — dy*> = 1, where d > 2 is an integer
which is not a perfect square, has the following solutions in positive integers

Xn

1 [(xo + yox/Zl)nJr1 + (xo —yo\/ﬁ)m}

2
1 ntl a1
= —_— — — >
Vn W |:<X0 +y0\/6—1) (Xo yO\/C_l> :| , n=0,
where (xo, yo) is the fundamental solution.

Example 3.5 We solve in Z x Z the equation x> — 2y* = 1.
Since the fundamental solution of this equation is (3,2) we have, based on
Theorem 3.12, that the equation has infinitely many solutions which are given by

% [(3 n 2\/5)"+l +(3- 2@)““]

Y = % [(3 n 2«/5)"Jrl _ (3 _ 2\/5)"“} . >0,

Xn

and hence Sp = {(%x,, £y,) : n € N}U{(£1,0)}.

Remark 3.7 The solutions of Pell’s equation can be used to approximate the square
roots of natural numbers which are not perfect square. If (x,, y,), n > 1, are positive
solutions of Pell’s equation x> — dy? = 1, then

1 X 1
Xy =Ny, = ——— = L Vd= —
Xn + \/C_Z'Yn Yn Yn(xn + \/c_iyn)
which implies that
lim ™ = Vd.

n=>00 y,
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X 1
Thus, the fractions — approximate /d by an error less than -
n Y

Now we study the diophantine equation
ax* —by> =1, where a, b eN. (3.5)
Lemma3.5 Ifab = k>, k € N, k > 2, then the equation ax*> — by> = 1 has no

solutions in N x N,

Proof We prove the lemma by contradiction. We assume that the equation has a
solution (xo,y9) € N x N. It follows that ax3 — by? = 1 and this implies that a
and b are relatively prime. The identity ab = k? implies that a = k3 and b = k3,
with k1ky = k, ki, k> € N. In this case, the equation becomes k3x3 — k3yj = 1 or
(kixo—kpyo) (k1 xo+kyyo) = 1 and this implies that 1 = k1 xo+kyyo = kixo—kayo =
yo = 0, which contradicts yy € N. O

We define the Pell resolvent of ax> — by* = 1 the following diophantine equation
u? —abv® = 1. (3.6)
Lemma 3.6 Ifequation (3.5) has a nontrivial solution in NxN, then it has infinitely

many solutions.

Proof Let (xo, yo) be a solution of equation (3.5). Since ab is not a perfect square,
see Lemma 3.5, we get that equation (3.6) has infinitely many solutions in positive
integers which are given by the formulae in Theorem 3.12.

We denote by (u,, v,), n € N, the general solution of equation (3.6). Let (x,, y,),
n € N, where x, = xou, + byov, and y, = you, + axov,, and we observe that (x,, y,)
are solutions of the equation ax?> — by*> = 1, since

2 2 _ 2 2
ax;, — by, = a(xoutn + byovn)” — b(you, + axov,)
= (axg - byé)(u,% — abv,zl)

=1

The lemma is proved. O

Theorem 3.13 Let (A, B) be the minimal solution of equation (3.5). The general
solution of equation (3.5) is given by (x,,y,), n € N, with

x, = Au, + bBv,
Yu = Bu, + aAv,,

where (u,, v,), n € N, is the general solution of equation (3.6).
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Proof We showed in the proof of Lemma 3.6 that if (u,, v,,), n € N, are the solutions
of equation (3.6), then (x,, y,), n € N, are the solutions of equation (3.5).

To prove the other implication, we show that if (x,,y,), n € N, are the solutions
of equation (3.5), then (u,, v,), n € N, with

u, = aAx, — bBy,
Uy = Bx; — Ay,

are solutions of equation (3.6).

We have,
ui - abv,zl = (aAx, — bBy,)* — ab(Bx, — Ay,)?
= (aA® — bB*)(ax; — by;)
=1,
and the theorem is proved. O

In the particular case when b = 1, the technique given in the previous results can
be used to solve the diophantine equation

d* —y? =1, (3.7)

which is called the conjugate Pell equation.
The general solution of equation (3.7) is given by

n = Auy, Bv,
{x u, + Bv 3.8)

Yn = Bu, + dAv,,

where (A, B) is the fundamental solution of equation (3.7) and (u,, v,), n € N, are
the solutions of Pell’s equation u> — dv? = 1.

Remark 3.8 The sequences (x,),>1 and (y,),>1 defined recursively by (3.8) verify
the interesting identity

Yo = L\/Z'an, neN,

where |x] denotes the floor of x.
To see this, we note that since (x,, y,) is the solution of Pell’s conjugate equation
dx*> —y* = 1 we have that

(\/‘_l'xn + Yn)(\/axn _yn) =1L
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However, x,,, v, € N and it follows that \/Exn + y, > 1. Therefore, 0 < \/c—lxn —
Vo <1 = yu < +/dx, < yn + 1, which implies that y, = L\/c_ix,,J, neN.

Example 3.6 We solve in N x N the equation 6x*> — 5y = 1.

First, we observe that the fundamental solution of this equation is (1, 1). Also,
Pell’s resolvent equation becomes u? — 30v? = 1, which has the fundamental
solution (11, 2). It follows that the general solution of Pell’s resolvent equation is
(un, v,), Where

Up+1 = llun + 60Un
Up+1 = 21/!,, + llvna ne N,

with u; = 11 and v{ = 2.
Thus, the general solution of our equation is

x,1=6+‘/—(11+2\/_)" _‘/_(11—2\/_)"

yn=5+‘/_(11+2\/_" _*/_(11—2¢_)"

3.5.1 Problems

3.100 Find all right angle triangles ABC with integer side lengths a, b, ¢, with a >
b, a > c such that the triangle with sidesa’ =a+ 4,6’ = b+ 3,and ¢/ = ¢ + 3 is
a right angle triangle.

3.101 Solve in Z x Z the equation x> — 8y = 1.
3.102 Solve in Z x Z the equation 2x> — 6xy 4+ 3y +1 = 0.

3.103 Prove that for any nonzero integer k the equation x> — 2kxy 4+ y?> = 1 has an
infinite number of solutions in Z x Z.

3.104 3 Find all positive integers n such that . =2 " + " for
k—1 k k+1

some natural numbers k < n.

3.105 Prove thatif m = 2 4+ 2+/28n2 + 1 is an integer for some n € N, then m is a
perfect square.

3Problems 3.104, 3.105 and 3.106 are taken from [16].
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3.106 Prove that if # is an integer such that 3n + 1 and 4n 4 1 are both perfect
squares, then n is divisible by 56.

Chebyshev polynomials. For —1 < ¢ < 1, let 8 be such that 0 < 6 < 7 and
t =cosf (i.e., 0 = arccost). Let T, and U, be the polynomials defined by

T,(t) = cosnf = cos(narccost)

and

sinnf  sin (narccos )

sinf J/1-22

While these functions are initially defined on a restricted domain, they turn
out to be polynomials in ¢ and so they have meanings for all real values of .

The polynomials 7, are called Chebyshev polynomials of the first kind
and the U, are called Chebyshev polynomials of the second kind. These
polynomials are widely used in a variety of mathematical contexts and they
have a number of remarkable properties (see [8, Section 3.4]).

Un(1) =

3.107 [8, p. 39] Chebyshev polynomials and Pell’s equation.

Prove the solution of the equation x>—(>*—1)y? = 1, where ¢ is a parameter,
is of the form (x,,, y,) = (Tn(?), U, (2)).

3.5.2 Solutions

3.100. Since a, b, and c are Pythagorean numbers, let a = m? + n?, b = 2mn, and
¢ = m>—n?, where m,n € Nand m > n. The equation (a+4)? = (b+3)>+(c+3)?
implies that 4a = 3b + 3¢ + 1 = m? + Tn*> — 6mn = 1 or (m —3n)*> — 2n°> = 1.
Using the substitutions m — 3n = x and n = y we get the equation x> — 2y> = 1.
This equation, which has the minimal solution (3, 2), is solved in Example 3.5 and
the general solution (xg, y), k € N, implies that my = x; + 3y, and ny = y, k € N.

3.101. Since the minimal solution of the equation is (3, 1) we get that

An

%[(3+2ﬁ)n+1 +(3_2ﬁ)n+1]

1 n n
yn=4—ﬁ[(3+2\/§) +1 4 3-2v2) “], n>0.

The solution of Pell’s equation is given by {(+£x,, £y,) : n € N} U {(—1,0), (1, 0)}.
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3.102. The equation can be written in the following form x> — 3(y — x)?> = 1. Using
the substitutions X = x, ¥ = y — x we get that X*> — 3Y? = 1. The minimal solution
of this equation is (2, 1) and we get that

X, =1 [(2 + V3 42— «/3)"“]

2f[(2+f)"+1 (2—«/5)"“], n>0,

andx, = X, andy, = x, + Y, = X,, + Y,,, n > 0. The solution of the equation is
{(£x,, £y,) :ne N} U{(1,1), (-1, -1}
3.103. The equation can be written in the following form (x — ky)? — (k*> — l)y 1.
Using the substitutions x — ky = u and y = v the equation becomes u> — dv? = 1,
where d = k> — 1. If k # 0 or k # =1, then d is a positive integer which is not a
perfect square.

If k = 1 the equation becomes (x — y)> = 1 which has an infinite numbers of
solutions given by (p = 1,p), p € Z.

If k = —1 we get that (x + y)> = 1 with solutions (—p %+ 1, p), p € Z.

2 _
llc k r 1) which has detA = 1. We

Y, =

3

If |k| > 2 we consider the matrix A = (

u, dv,

have det(4") = 1, A" = ( ) and det(A") = u? — dv? = 1. Since uy = k,

vﬂ un
vo = 1 the equation u?>—dv? = 1 has an infinite number of solutlons (U, vy), n eN,
which generate an infinite number of solutions for the equation x> — 2kxy + y* = 1,
which are given by x, = u, + kv, and y, = v,, n € N,

3.104.-3.106. See [16].

3.107.If r = £1, then x = %1, so the solutions of our equation are (£1, ), @ € R.
Let |#| < 1. An obvious solution is (¢, 1). Other solutions can be obtained from

X+ NE—=ly, =@+ V2E=-1)"=@+iv1->)"
Using the substitution t = cos 6 we get that
X, +isin Oy, = (cos @ + isin6)" = cos(nd) + isin(nd),

sin(nf)
sin 6

and it follows that x, = cos(nf) = T,(¢) and y, = = U,(1).

If |¢| > 1, then

Xy +VE—1y, = (t+~2-1)
— Ve =1y, =(@—~v2-1)
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and it follows that

S+ VE=Ty + - V=]
[(x+ VEZI) — (1= NP 1)"] . n>0.

Xn

1
Yn = ——
2/ -1

The reader should check that (x,,y,) = (T,,(¢), U,(¢)), n > 0.



Chapter 4
Functions of matrices. Matrix calculus

Sleepiness and fatigue are the enemies of learning.
Platon (427 B.C.-347 B.C.)

4.1 Sequences and series of matrices

Let A € .4, (C) and let f € C[x] be the polynomial function
fx) =ao +a1x+a2x2 + e+ a.

The matrix f(A) = aol, + 1A + aA*> + -+ + a,A" is called the polynomial
function f evaluated at A. For any matrix A and any polynomial function f we can
define the matrix f(A).

We extend this definition to other functions, non-polynomial ones, extension
which turns out to have applications to other branches of mathematics such as
solving systems of differential equations and studying the stability of various
phenomena modeled by systems of differential equations. The difficulty of this
extension stands in the fact that if a numerical function f, defined on a set D, is
given and A is a matrix, then to define the matrix f(A) one needs some conditions
that the matrix A should satisfy.

It turns out to be very useful to study limits of polynomial functions, so it is
necessary to define the limit of a sequence of matrices.

Let (A,),en be a sequence of matrices, A, = (a??) . e #,(C).
J ) ij=1,

Definition 4.1 We say that the sequence (A,),en is convergent if the sequences
m ", then the matrix

(af_';))neN are convergent for all i,j = 1,2. If a;; = nl_i)Oo i
A = (a;;)ij=12 is called the limit of the sequence (A,),en and we write A = lim A,.
n—>oo

Sometimes the notation Ao = lim A, is used.
n—>o00

The next proposition, whose proof is straightforward, gives the most elementary
properties of limits of sequences of matrices.

© Springer International Publishing AG 2017 183
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Proposition4.1 I[fA = lim A,, B = lim B, and P € .#, (C) is an invertible
n—>o0 n—>oo
matrix, then:
(a) lim (¢A, + BB,) = xA+ BB, o,B € C;
n—0o0
(b) lim (A,B,) = AB;
n—oo
(c) lim (P7'A,P) = PT'AP.
n—>oo
Remark 4.1 We mention that the limit of a sequence of invertible matrices need not

be invertible, i.e., if (A,).en is a sequence of invertible matrices and A = lim A,
n—>o00

then, the matrix A need not be invertible (see the case of lim %Iz = 0,).
n—>o00

Let (f,).en be a sequence of polynomials, f, € C[x] and let A € ., (C).
Theorem 4.1 If J4 is the Jordan canonical form of A, then l_i)m Jfu(A) exists if and
n—>oo
only if lim f,(Ja) exists. In this case if P is the invertible matrix such that J4 =
n—oo

P7lAP, then
lim f,(A) = P< lim fn(JA)) P
n—>oo n—>o00

Proof For any polynomial function f € C[x] we have f(J4) = P~'f(A)P. This
follows based on the formula J4, = P~'AP which implies that J; = P~'A"P.
Now we apply part (c) of Proposition 4.1 to the equalities f,(J4) = P~'f,(A)P
and f,(A) = Pf,(J4)P~' and we obtain the simultaneous existence or nonexistence
of the limits 1_1>r101o f:(A) and nll)n;o f2(Ja) and the relation between them. O

Remark 4.2 Theorem 4.1 reduces the calculation of the limit of a sequence of
polynomial functions of a given matrix A to the study of the limit of the polynomial
function of the corresponding Jordan canonical form Jy.

We mention that a 2 x 2 matrix can have two Jordan cells of order 1, i.e., these

are matrices of the form J, = [A] or a Jordan cell of order 2, J, = (A 1).

0 A
Al
’*‘(ox)

be a Jordan cell of order 2. Then, for any polynomial function f € C[x] we have

_(r) 7
o= (5560

Theorem 4.2 Let A € C and let
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Proof Letg,(A) = A" and letJy, = (g (1)) First we note that J2 = O, and we have

= G+ do)' = M+ (’f)xn—‘fo = &M + &),

Thus, the theorem is valid for any polynomial of the form f(x) = x" and based on
linearity it is also valid for any polynomial function f € C[x]. O

Theorem 4.3 The sequence of matrices (f,(J1)),ey converges if and only if the
numerical sequences (f;,(A))nen and (f' (1)) uen converge. If lim f,(1) = f(A) and
n—>od

lim ',(A) = '(3). then
- _ (f0 £ o
fU) = Jim f,(13) = ( . m)).

Proof We apply theorem 4.2. O

Recall that for a matrix A its spectrum, denoted by Spec(A) is the set of all
eigenvalues of A. In our case Spec(A) = {A;,A,} C C.

Definition 4.2 We say that the sequence (f;),en is convergent on the spectrum of
A if for any A; € Spec(A), i = 1,2, the limits lim f,(A;), i = 1,2 and lim f/,(A;),
n—>o00 n—>o00
i = 1, 2 exist and are finite. Moreover, if there exists a function f defined on a subset
of C which contains Spec(A) and lim f,(1;,) = f(A;) and lim f/,(A;) = f'(L),
n—>o0 n—>o00
for i = 1,2, then the function f is called the limit of the sequence (f,),en On the
spectrum of A and we write lim f, = f.
Spec(A)

Theorem 4.4 The sequence of matrices (f,(A)),en converges if and only if the
sequence of polynomials (f,,),en is convergent on the spectrum of A. If

lim fi =f then lim f,(A) = f(A).
Spec(A) n—>00

Proof This follows based on theorems 4.1, 4.2, and 4.3 O

Definition 4.3 If the sequence (f,),en is convergent on the spectrum of A and

lim f, = f, then the matrix f(A) = lim f,(A) is called the function f of the
Spec(A) n—00

matrix A.
Remark 4.3 We have lim f,(A) = ( lim fn) A).
n—o0 Spec(A)

Remark 4.4 Let D C C, letf : D — C be the function which is the limit of the
sequence of polynomials (f,),en, and let A be a matrix. Then, in order to define
the matrix f(A) it is necessary to verify the conditions Spec(A) C D and the
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convergence of the sequence (f,,),en on the spectrum of A. A possible algorithm
for calculating the matrix f(A) has, based on the previous theorems, the following
steps:

(1) Determine the spectrum of A and check the convergence on the spectrum of A
of the sequence (f;,),en to the function f;

(2) Determine the matrix P and the Jordan canonical form J4 of the matrix A;

(3) Determine f(J4);

(4) Write f(A) = Pf(J4)P~\.

Sometimes it is not necessary to use the Jordan canonical form in order to find

lim f,(A). Next, we consider the case when f is an analytic function, these are
n—>00

functions that can be written as power series.
o0

Let > a,Z" be a power series having the radius of convergence R, let f,,(z) =
m=0

> a,z™ and let f(z) be the sum of the power series. We have
m=0

nl_i)fgofn(z) =f(z) for zeDr=1{z€C:|zl <R}
: : @.1)
lim £7(z) = f?(z), i€N. z€Dg

and for |z| > R the preceding limits do not exist, so the function f is defined only on
Dg and eventually at some points on the circle 6 = 0Dg = {z € C : |z| = R}.

Definition 4.4 Let A € .#, (C). The spectral radius of A is the real number
defined by

p(A) = max {|A], |A2]}.

We try to determine the conditions on which one could define the matrix f(A).

Clearly f,(z) = >_ anz™ are polynomials and we have, based on Theorem 4.4,
m=0
that the matrix f(A) = lim f,(A) exists if and only if the sequence of polynomials
n—>oo

(fn)nen converges, on the spectrum of A, to f.
Theorem 4.5 Let R be the radius of convergence of the power series f(z) =

o
> an?™ and let A € M, (C). Then:

m=0



4.1 Sequences and series of matrices 187

(@) Ifp(A) <R, i.e., all the eigenvalues of A belong to the disk Dg, then the series
o0

of matrices Y a,A™ converges and the matrix f(A) exists and is defined by

m=0
(A) Z am ’
(b) IfpA) = R i.e., there are eigenvalues of A on the circle G, then the series of

matrices Z a,A™ converges if for any eigenvalue A, with |A| = R, the series
m=0

Za A" and Zma Al 4.2)

m=0

converge.
Proof (a) Since any eigenvalue of A belongs to Dg we have, based on (4.1), that
o0
the sequence (f,,)en, of the partial sums of the power series, Y a,,z" converges on

m=0
the spectrum of A to f and this implies in view of Theorem 4.4 that f(A) exists and
o0

f@) = > a,A™.
m=0
(b) The convergence of the sequence (f;,),en, of the partial sums, on the spectrum
of A reduces to the conditions (4.2). We have, based on (4.1), that these conditions
hold for the eigenvalues of A in the convergence disk and they need to be studied

for the eigenvalues of A on k. O

Theorem 4.6 Let f be a function which has the Taylor series expansion at 2,

X £(n)
f@) = an—(f‘))@—z(,)", |z — 20l <R,
n=0 .

where R € (0,00]. If A € ., (C) has eigenvalues A1, A, € C such that
|Ai — 20l < R, i = 1,2, then the matrix f(A) has the eigenvalues f(A,) and

fA2).

Proof Since similar matrices have the same eigenvalues and f(A) is similar to f(J4)
the theorem follows based on Theorems 4.2 and 4.3.

Another “proof” is based on a formal computation. Let X # 0 be the eigenvector
corresponding to the eigenvalue A, i.e., AX = AX. We have

() X )
fx = (Zf 0 4 zOzz)") x=3T 06 ayx = rox

n=0 n=0

and the theorem is proved. O
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4.2 FElementary functions of matrices

In this section we introduce the elementary functions of matrices that are used
throughout this book.

(continued)
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m The Neumann (geometric) series

(L—A)"'=) A" Ac.ur(C). p(A)<L.

n=0

m The binomial series

— T+« "
(Iz—A) ZZWA, AG%Q(C), p(A)<1, o >0,
n=0

where I' denotes the Gamma function.
m  The logarithmic functions

In(h, +A4) =) %A", Ae ., (C), pA) < 1.

In(l, — A) = —ng, Ae . (C), pA) < 1.

n=1

m  The power function
If z € C*, then

oo
1 n
A=eli =3 TE4 Ae s (C).
n:

n=0

Nota bene. If a formula of the form @(fi(z1),f2(z2), - - . . f»(z,)) = 0 holds on
C,wheref,,i = 1,p , p, are some functions and z; € C,i= 1 , P, then if the matrices
A; € #>(C), i =1,p, commute and f;(4;), i = 1, p, exist we also have the matrix
formula @(fi (A1), /2(A2), ....[,(Ap)) = 0.

Lemma 4.1 Properties of the exponential function.
The following statements hold:
(@) Ifa € C, then e = ey,
(b) Euler’s matrix formula. IfA € .#, (C), then e = cosA + isinA;
(c) IfA,B e > (C) commute, then e’e® = efe? = &5,
Proof (a) We have

il Z (012-)" (Z Z_') L = ¢l

n=0 n=0
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(b) We calculate

o .
i (iA)"
¢ = Z n!

n=0

B (ZA)Zk (l-A)Zk—l
N Z (2k)' — (2k—1)!

k=0
00 A2k 00 AZk—l
_ 1)k . 1)k
_;( b (2k)! ;( D 2k — 1)!

= CcoSA + isinA.

(c) We have

n

A"°°
Z

AﬂBm
- Z Z n!m!

n=0 m=0

n+my\ , .
:Zz(n+m)'( n )AB

n=0 m=0

k=0 .n+mk

2. (A + B)
DT

k=0

and the lemma is proved. O

Lemma 4.2 Properties of the trigonometric functions sine and cosine.
Let A € M, (C). The following statements hold:

A _ g—iA
a) SsinA = ——;
@ si 2

iA —iA
(b) cosA = %;

(c) The fundamental identity of matrix trigonometry

sinA + cos’A = bL;
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(d) Double trigonometric matrix formulae

sin(24) = 2sinAcosA and cos(2A) = 2cos’A — I, = I, — 2sin’ A;

(e) IfA,B e ., (C) commute, then sin(A + B) = sinA cos B + cos A sin B;
() IfA € > (C) is involutory and k € Z, then cos(knwA) = (—1)*I.

Proof (a) and (b) First we prove that if A € .#, (C), then sin(—A) = —sinA and
cos(—A) = cosA. We have

sin(—A) = Z‘( 1"~ 1( )2" :

n=1

—Z( 1)"— Azn l) = —sinA

B o0 n(_A)2n 3 0 nAZn B
cos(—A) = ,;(_1) ol ;(—1) ol COSA.

It follows, based on part (b) of Lemma 4.1, that
e = cosA +isinA
e = cos(—A) + isin(—A) = cosA — isinA.
Solving the system for cos A and sin A we get that parts (a) and (b) of the lemma are

proved.
(c) We have, based on parts (a) and (b), that

A —iAN 2 iA —iAN 2
sin2A—+—coszA=(e © )—}—(e te )

2i 2
eZtA _ 212 + eZiA eZiA + 2[2 + eZiA
4 + 4

(d) We have, based on parts (a) and (b), that

A _gmid gid | omiA  Q2iA _ o=2iA
2sinAcosA =2 - . = - = sin(24)
2i 2 2i
iA —iAN 2 2iA —2iA
2cos’A — I =2(¥) -bL= % = cos(24).

The identity cos(24) = I, — 2sin® A is proved similarly.
(e) Since the matrices A and B commute, we have in view of part (c) of
Lemma 4.1 that
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eih _e=iA @B | o=iB  giA 4 o—id GiB _ o—iB
sinA cosB + cosAsinB = - . : ;
2i 2 2 21
gi(A+B) _ o—i(A+B)
N 2i
= sin(A + B).

(f) We have, since A% = I, for any integer n > 0, that

cos(krA) = > (=1)" (kzA)™ (Z(—l)" (k”)2”> L = cos(km)l, = (=)D,
n=0

(2n)! (2n)!

n=0

and the lemma is proved.

Lemma 4.3 Limits and derivatives. Let A € .#, (C). Then:

e — I
(a) lim 2 _ 4
t—0 t
in(Az
O e G
t—0 t
. L —cos(Ar) A%
© lm—"—=7

(d) (eAt)/ — AeAt;
(e) (sin(Ar))’ = Acos(Ar);
(f) (cos(Ar))’ = —A sin(Ar).

Proof (a) Since A = PJ4P~" we have that

Let A; and A, be the eigenvalues of A. Then

)L]t
et —1
0
e)tzf -1 if .IA =
CJAI—Iz ¢
= A
t € ' 1 e)n
t ekt 1 if JA =
0
t

(a0
0 A

a

4.3)

(4.4)
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Combining (4.3) and (4.4) and passing to the limit when ¢t — 0 we get that part (a)
of the lemma is proved.
(b) Since

At _ q—iAt

Sin(Ar) = ————.
1

we get that

. sin(Af) . elAr _ gTiAl
lim = lim -
t—0 t —0 2it

eiAt _ 12 e—iAt _ 12
= lim - — lim -
=0  2it t—0 2it
@ A — (—iA)
N 2i

=A.

(c) Since 2 sin® ‘% = I, — cos(At) we get, based on part (b) of the lemma, that

2
I, — cos(At sin 4 A2
limLos()zzlim (_2) -

—0 2 —0 t 2
(d) Let f(f) = e*’. Then

At (A
Coette =1
i &~ 1)
h—0 h h—0

fa+h)—f@ _
i =

f@) = lim

(e) We have, based on part (d) of the lemma, that

eiAl _ e—iAt ! l'AeiAt _ (_l'A)e—iAt
sin(At))’ = =
(sin(41) ( 2i ) 2
QiAl 4 it
2
= A cos(A?).

=A

(f) The proof of this part of the lemma is similar to the proof of part (e). O
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4.3 A novel computation of function matrices

In this section we give a technique, presumably new?!, for calculating the function
matrix f(A) where f is an analytic function and A € .#, (C). We prove that f(A) can
be expressed as a linear combination of A and I,. This method is different than the
technique involving the Jordan canonical form of A.

Theorem 4.7 Expressing f(A) as a linear combination of A and . Let f
be a function which has the Taylor series expansion at 0

S ON())
@)= Zf nf )2, <R
n=0 :

where R € (0, 00] and let A € #, (C) be such that p(A) < R. Then:

fA) —f(A2) Mf(A2) = Aaf (A1) .
fey=1 Mk 0 dam D
MDA+ (FA) — A (L)L if Ay =21, =A.

Proof First we consider the case when A; # A,. We have, based on Theorem 3.1,
that if n > 1 is an integer, then A" = A{B + A}C, where

A—)Lz[z A_AIIZ
2740 d =AM
A —a, 0 A — A

It follows that
o0
/"0 ,
=2 = A

AIB + A5C)

(n)
=12+Zf n()(

n=1

/" (0)
=B+ Z n!
n=1

() ()
IB+C+Zf nf )Agc
n=1 ’

=0 n. =0 .
=f(A)B +f(A)C

_ ) —f() N Aif(A2) —)tzf(/h)
- /\1 —Az /‘{l A2
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Now we consider the case when A; = A, = A. Using Theorem 3.1 we have that
if n > 1is an integer, then A" = A"B + nA""'C, where B =1, and C = A — AI,.
This implies that

X ) (o
=30y
n=0 '

(n)
- Zf n(O)

n=1

o (0) " o (0)
=h+ Z A"B Z (n— 1); S

(A"B +nA""'C)

n=1

— f"(0), , f™0) -
,; A"l +Z 1)'1 YA = AD)

=ML+ (A)(A—AL)
= (MA+ (FQ) = A D)L

The theorem is proved. O

Remark 4.5 More generally, one can prove that if f is a function which has
the Taylor series expansion at 2

X )
f@) = Zf n(,ZO) (z—2)", lz—2l <R,
n=0 :

where R € (0, 00] and A € ., (C) with A1, A, € D(z9, R), then

f(A) —f(kz)A N Af(A2) = Aaf (A1)
fA) = A=Ay AL —
F (MDA + (FQA) — A (W) if Aj =M, =A.

L if A #£ A

The proof of the preceding formula, which is left as an exercise to the
interested reader, follows the same steps as in the case when zp = 0.

Corollary 4.1 Letf be as in Theorem 4.7 and let « € C.
(@) If A1 # A, € C are such that |A;| < R, i = 1,2, then

(continued)
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Proof This theorem follows from Theorem 4.7 since the eigenvalues of A are the
solutions of the characteristic equation A> — A +d = 0. O

Next we give a new proof, which is based on an application of Theorem 4.7, of
a classical limit from matrix theory. More precisely we prove that if A € .#, (C),
then




4.3 A novel computation of function matrices 197

Let n € N and let f be the polynomial function defined by f(x) = (1 + jf)n
Let A € ., (C) and let A, A, be the eigenvalues of A. We have, based on
Theorem 4.7, that

A n
(=+3)
n

A —(1+2)" (14 22) (1AL _
( zl_gz Va2l 21_5( Yn i £ 2

(+8 A+ [(1+2)" =20+ b i =2=2

Passing to the limit as n — o0 in the previous equality we get that

e —eh Aietz — d,eh
A\ A L if A A
l_iglo(lz-i-—) =43 A=A * -t L# Az
" A + (¢4 — ret) I if A =X =2A
=et.

Another proof of this formula which uses the Jordan canonical form of A is given
in the solution of problem 4.5. The previous limit is a particular case of a more
general result involving limits of functions of matrices.

Theorem 4.9 A general exponential limit.
Iff : C — C is an entire function with f(0) = 1 and A € .4, (C), then

lim f" (é) =04,

n—00 n

Proof Let Ay, A, be the eigenvalues of A, let J4 be the Jordan canonical form of
A, and let P be the invertible matrix such that A = PJ,P~'. We have f (%) =

Pf () P~ which implies f" (4) = Pf" () P~!.
We distinguish between the cases when A| # A, and 1| = A,.

Case A1 # 4. LetJy = (/t)l )?) We have, based on Corollary 4.1, that
2
wy_[(r(&) o
f PO A2
DU

This implies
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and it follows that

A SOM L
: n _ -1 _ (0)A
o (;) =7 ( 0 ef’wm)P =

Case A; = A, = A. In this case there are two possible subcases according to
whether J, = g g) or Jy = (?) /1\) IfJ, = (?) g), then A = AL,. This

implies that /" (%) =f" (%Iz) =f" (%) I,. Therefore,
A A / "/
lim f" (—) = lim f" (—) L = Ot =04
n

n—>oo

Al
0 A

()-8 48

(&)= ("7 ET )

Now we consider the case when J4 = ( ) An application of Corollary 4.1

shows that

which implies

n o ()
Thus,
A ef/(O))L f/ (O)ef/(O))L ,
oo [} ) —1 _ f (A
s (3) <3 P
and the theorem is proved. O

Remark 4.6 'We mention that Theorem 4.9 is a particular case of a more general
result [37], which states that if A,B € .#; (C) and f, g are entire functions with

f(0) = g(0) =1, then

() e e

When f = g = exp, one obtains Lie’s famous product formula for matrices. Herzog
proves (4.5) by using a technique based on inequalities involving norms of matrices.
However, when g(x) = 1 and A € .#, (C), the proof of Theorem 4.9, which we
believe is new in the literature, is based on an application of Corollary 4.1 combined
to the Jordan canonical form theorem.
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4.4 Explicit expressions of e*, sinA, and cos A

In this section we give explicit expressions for the exponential function e* and the
trigonometric functions sin A and cos A in the case of a general matrix A € .#; (C).
These expressions are given in terms of both the entries and the eigenvalues of A.

Theorem 4.10 Let A € .4, (C) and let Ay, A, be the eigenvalues of A. Then

et —eh2 Aiet2 — d,et
L if A A
eA: Al—kz + Al—kz 2 1 1# 2
CA(A"F(I—/\)Iz) if Al :Azzk

Proof This follows from Theorem 4.7. See also [10, Theorem 2.2, p. 1228]. m|

Corollary 4.2 [9, p. 716] IfA = (g Z) € 1, (C), then
1 b

o (o 1) if a=d
eA = a d

a ¢ —Z b £ astd

a= if a .
0 e

Corollary 4.3 [9,p.717] Lett € Candlet A = (8 1) € M5 (C). Then

o

Corollary 4.4 [9, p. 717 If 6 € R, A = (_00 g) and B — (—§0+ 0o 9),

A cosf sinf and & = sin@ cosf
~ \—sinf cosf “ \—cos@ sinf /"

then
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The next lemma gives the expressions for the exponential function of special
matrices.

Lemma 4.4 Let A € 4, (C) and let t € C. The following statements hold:

(@) (nilpotent) IfA> = O,, then e = I, + 1A;

(b) (involutory) If A> = b, then e = (cosh1)l, + (sinh)A;

(c) (skew involutory) If A> = —I,, then e = (cos 1), + (sint)A;

(d) (idempotent) If A2 = A, then e’ =1, + (e"=1)4;

(e) IfA> = —A, thene” =1 + (1 —e™)A.

Proof We prove only part (a) of the lemma and leave the proofs of the other parts

as an exercise to the interested reader. First, we observe that since A> = O,, then
A" = Oy, for all n > 2. Thus

o0 o0
“ (rA)" _ (rA)" _
e _Z p —Iz+tA~|—2; - =htA

n=0

and part (a) of the lemma is proved. O

Let J, € .#, (R) be the matrix

01
n=(2 o)

Note that J, is skew symmetric and orthogonal, that is JI = —J, = J5!. Observe
that, based on Theorem 1.3, this matrix corresponds to the complex number —i.

Lemma 4.5 IfA = (? (1)) then

e = (coshr)l, + (sinh7)A
and
e? = (cost)l, + (sinf)A.

Proof Use Theorem 4.7. O
Theorem 4.11 Let A € 4, (C) and let Ay, A, be the eigenvalues of A. Then
sinA; —sin A, ArsinA; — A, sin g

SinA = A] —/\2 l] —Az
(cosA)A + (sinA — Acos ), if Li=A=27

Loif A # A
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and
COSA; —COS Ay A1€0SAy —Aycos A .
I f A A
COSA = Al—/lz /\1—12 2 ! 1# 2
—(sinA)A 4 (cosA + AsinA)l, if Aj =21, =A.
Proof This follows from Theorem 4.7. O

4.5 Systems of first order differential equations
with constant coefficients

In this section we solve systems of linear differential equations with constant
coefficients by using a classical technique from matrix theory.

= (4

P CAORAQ) _([a(ndt [b()dt
A= (C’(f) d’(f)) and /A(t)dt B (fc(t)dt fd(z)dt)'

), where a, b, c¢,d : I — R are functions of ¢. Then,

That is, by differentiating or integrating a matrix we mean to perform the
operation on each of the matrix entries. It can be shown that the product rule for
derivatives in calculus holds for matrices whereas the power rule does not.

Let ., be the homogeneous system of linear differential equations with constant
coefficients

X = anx+any
<y() . ,
Y = axnx + axny,

where a;; € R,i,j = 1,2, andx = x(¢), y = y(¢) are the functions to be determined.
Since the solutions of systems of differential equations with constant coefficients are
defined on R in what follows we solve the system on R.

Let X(¢) = (x(t)) and A = (a11 d12) and we observe that the system .7
(1) az) ax
becomes

o X)) =AX().

This implies that X'(r) — AX(f) = O, and by multiplying the system by the
nonsingular matrix e’ we get that

—e MAX (1) + e VX (1) = 0,.
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This implies, since (e‘A’)/ = —Ae™', that the system is equivalent to
(VX)) = 02,
and it follows that the general solution of our system is

X(r) = e'C,

c1\ .
where C = ( ) is a constant vector.
(&)

If the initial condition X(#y) = Xy, tp € R, is added to the system .#, then we
have Xy = e*0C from which it follows that C = e~4%X,. Thus, the solution of the
Cauchy problem (or the system with initial condition) is

X(1) = e*T0X,.

Now we turn our attention to the study of the nonhomogeneous systems of linear
differential equations with constant coefficients.
We consider the system

Py X =anx+any+f
Y =anx+any+g.

where f = f(¢r) and g = g(¢) are continuous functions, ¢ € R.
Let F(r) = (f ®)
8(®)

can be written into the matrix form

) and exactly as in the previous case we obtain that our system

X' (1) = AX() + F(v).

This implies that (X’ (f) — AX(¢r) = F(¢) and multiplying both sides of the system by
the nonsingular matrix e’ we get that

(€X (1)) = e™F (1)
and it follows that

e VX(1) = / e MF(t)dt + C,

where C is a constant vector. Thus, the general solution of the nonhomogeneous
system becomes
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mo:&{/eﬂwmm]+&@.

If we add to the system .# the initial condition X(t)) = Xp, fto € R, then
the solution of the Cauchy problem becomes, after simple computations which the
reader is invited to check

t
x@:/&mwww+w%my

)

Since for solving systems of linear differential equations with constant coeffi-

cients one needs to calculate the exponential matrix e’ we give below a simple

algorithm for calculating e?’.

Algorithm for the computation of the exponential matrix e*’.

Step 1. Find the eigenvalues of A, determine the matrix J4 and the
invertible matrix P which verifies A = PJ4P~!.

Step 2. Observe that e’ = Pe/s’P~!.

Step 3. Determine e’ and e,

m If the eigenvalues of A are A; and A, and J4 = (Al 0 ), then

0 A
At
@ 0
CJAZ = ( 0 elzl‘) .

At
At _ € 0 —1
e —P( 0 ekzt)P .

m If the eigenvalues of Aare Ay = A, = Aand J4 = (g i), then

1t
Jat _ At
goer(1).

1 ), _
At At 1
=e"'P P
© © (0 1)

This implies

This implies
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Remark 4.7 The solutions of the homogeneous system .7 : X' (1) = AX(¢),t € R,
are given by:

(a) IfA;,A; € Rand A; # A,, then

x() = ajet 4+ B, o, B eR, teR
y(1) = areM’ + Bre, ay, fr R, t€R;

(b) IfA;, A, e Rand A; = A, = A but A ;é AL, then

x(t) = e"’(al + Bit), a1, 1R, teR
y(t) =eM (4 Bot), a2, Br R, tE€R;

() fA, A eC hipo=rZis, r,se€R,s#0,then

x(t) = e" (g cosst + Bysinst), o,B1 €R, teR
y(t) = e" (aycosst + Bosinst), on, P2 €R, t€R.

Definition 4.5 The stability of homogeneous linear systems.
Let . : X'(r) = AX(?), t € R, be a system of differential equations.

(a) The solution X, of . which verifies the initial condition X, (7)) = Cy is called
stable (in the sense of Liapunov) if for any € > 0 there exists §(€) > 0 such that
for any C € R? with the property ||C—Co|| < § we have ||X(f) —Xo(?)|| < € for
any t > ty, where X(¢) is the solution of the system .#, with the initial condition
X(t) = C.

(b) The solution Xj is called unstable if it is not stable.

(c) The solution X is called asymptotically stable if it is stable and

lim [|X(2) — Xo(1)[| = 0.
—>00

for any solution X with the initial condition X(f)) = C, where C is in a
neighborhood from R? of C.

Theorem 4.12 All solutions of the system %y have the same type of stability
as the zero solution.

Proof If X¢, is a unique solution of the system with the initial condition X¢, (fy) =

Cy and X¢ is the solution with the initial condition X¢(t)) = C, then X¢ — X¢, is

the solution of the system with the initial condition (X¢ — X¢,) (%) = C — Co, so

Xc — Xcy, = Xc—c,- We have [[Xc (1) — Xc, (D] = [|Xc—co (1) — O[] = [[Xc—c, (D]

and lim |[Xc(t) — X¢,(D)]] =0 & lim ||Xc—¢,(t) — 0| = 0. |
—>00 1—>00
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Remark 4.8 We mention that, based on the stability of the nonzero solution of
system .¥), stable, asymptotically stable or unstable, we say that the system .%
is stable, asymptotically stable, or unstable respectively.

For studying the stability of the system .%, we have based on remark 4.7 and
Theorem 4.12 the following observations:

(@ IfA;,A> € Rand max{A;,A,} > 0, then the function f(r) = aet'’ + Be*?,
t > ty, @ + B% # 0, is unbounded;

(b) If A1, A, € Rand max {A;, A} < 0, then tl_l)rgo lae + Ber| = 0;

(¢) If Ay = A, = 0, then the function f() = « + Bt, B # 0, t > 1, is unbounded,;

(d) If r > 0 and a® 4+ B? # 0, then the function f(f) = e’ (a cos st + B sinst),
t > ty is unbounded;

(e) Ifr <0,then t1_1)r(r)10 le” (a cos st + Bsinst) | = 0;

(f) The function f(f) = a cos st + B sinst, t > t; is bounded.

4.6 The matrix Riemann zeta function

The celebrated zeta function of Riemann [61, p. 265] is a function of a complex
variable defined by

1 1 1
= —=1l4+—4-4+—=4+-, N >1
¢(2) ;n to (2)

In this section we consider a matrix A € .#, (C) and we introduce, hopefully for
the first time in the literature?!, the matrix Riemann zeta function {(A) and discuss
some of its properties. First, we define the power matrix function a*, where a € C*
and A € ., (C).

Definition 4.6 If a € C* and A € ., (C), then a* = eL2®4,

Remark 4.9 We mention that [42, p. 224] the function Ln, which is called the
logarithm, is the multiple-valued function defined, for z € C*, by Ln(z) = In|z| +
i(argz 4 2km), k € Z. The function Inz = In|z| + iarg z, where argz € (—m, 7] is
called the principal value. In what follows, throughout this book we consider, both
in theory and problems, for the definition of the power matrix function the formula

a* = e"94 involving the principal value.

Theorem 4.13 Let a € C* and let Ay, A, be the eigenvalues of A € #, (C). Then
alt —a*2 Aa*? — dyat

A B py P W
(@*a)A+d (1-Alna),  if Ay =21 =21

L if A #As
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Proof The proof follows based on the formula a* = e™%4 combined to Theo-
rem 4.7. O

Corollary 4.5 Power matrix function properties.

(@) IfaeC*anda € C, then a®? = a®l,.
(b) IfA € 4, (C), then 14 = Ip.

(c) Ifa e C* thena® = b.

d) IfA € 4, (C), then

i = cos (zA) + isin (ZA)
N 2 27

(e) Ifa € C* and A € . (C) is a symmetric matrix, then a® is also a symmetric
matrix.

(f) IfAB = BA, then a’a® = a**8 a € C*.

() Ifa,b e C*, then a*b* = (ab)*.

Corollary 4.6 Special power matrix functions.

(@) IfaeC*anda,p € C, then

It 2):(aa )

0 af

(b) Ifae C*anda, B € C, then

(o) (7

0 1

(C) 1‘ ae (C a”d avﬁ € Cr then
(‘ ) =
¢ - ( )

(d) Ifae C*anda € C, then
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(e) IfaeC*anda,B €C, B #0, then
aa"l‘ﬁ + ao‘_ﬂ aa""ﬂ — aa_ﬂ
aa-i-ﬂ _ aa—ﬂ aa+f5 + aa—ﬂ) .

; ﬁ)zg(

Definition 4.7 The Riemann zeta function of a 2 x 2 matrix.
Let A € #,(C) and let A1, A, be its eigenvalues. The Riemann zeta

function of the matrix A is defined by
) A
(—) 9 Eﬁ(/\l) > 1, ER()Lz) > 1.

L) =Yy

n=1

° L The next

n=1 ;A"

By an abuse of notation we also use the writing {(A) = >
theorem gives the expression of {(A) in terms of both the entry values of A and the

eigenvalues of A.
Theorem 4.14 Let A € #, (C) and let Ay, A, be the eigenvalues of A with

if Ay #£ Ay

SR(AI) > 1, ER(/'\,z) > 1. Then
AE(A) —Azf(kl)l
2
if Ay =21, =A.

¢(A1) — ¢(A2)
A+
Al — Ay

(=1 ti—h
CMA + () = AL ) I

Proof We have, based on Theorem 4.13, that
A
if A # Ay

1 1
A
.\
+ Al — Ao |
(l—lln—)lz if Alz/\z:)t

2
! A+
n n*

If A4 # As, then
A
n*2 Al — Ay

1 21
pores

C(A) = I
A18(12) —lz§(/\1)12

_$(A) — ()
=5 At

nt2
n=1 n=1

(Alii—xzz
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If A\ = A, = A, then

t(A) = (in% >A+Z (I—Mn%)lz

n=1 n=1
= MA+ (L) = A (V) I,
and the theorem is proved. O

Corollary 4.7 IfA € #, (C) is a symmetric matrix, then {(A) is also a symmetric
matrix.

Corollary 4.8 Let a € C be such that 9i(a) > 1. Then {(al,) = {(a)L5.

Corollary 4.9 Special matrix zeta functions.

(@ Ifa,b € C suchthat R(a) > 1, R(b) > 1 and a # b, then
;(a 0) _ (C(a) 0 )
ob) Lo ¢tb)
(b) Ifa,b € C such that R(a) > 1, then
(0 7)= (9 #9)
0 a 0 ¢ )
(¢) Ifa,b € C such that R(a) > 1, then
- )
b a b¢'(a) t(a))”
(d) Ifa,b e C such that R(a £ b) > 1, then

é.(a b):l(i(a+b)+§(a—b) é‘(a-i—b)—;‘(a—b))
b a 2\¢l(a+b)—C(a—b) t(a+b)+Ll(a—b))"

4.7 The matrix Gamma function

Euler’s Gamma function I" [61, p. 235] is a function of a complex variable
defined by

o0
[(z) = / Fle7ldr, M(z) > 0.

0
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We extend this definition to square matrices of order 2.

Definition 4.8 The matrix Gamma function of a 2 x 2 matrix.

IfA € 4, (C) and Ay, A, are the eigenvalues of A with %(A;) > 0,i = 1,2,
then we define

o0 o
I'A) = / Arledr = / A e ds.
0 0

The next theorem gives the expression of I'(A) in terms of both the entry values
of A and the eigenvalues of A.

Theorem 4.15 Let A € #, (C) and let Ay, A, be the eigenvalues of A with
RA;) >0,i=1,2. Then

L) —T() AL (Ay) — A, (Ay) .
A I f A A
ray=) " a-n AT Ao 2 AAk

')A + (TA) — AT I if A=A =A.

Proof We have, based on Theorem 4.13, that

P — 2 A2 — Ayt
A Lo if
PR B v v s D

(FInt)A+ (1 —AlnnL  if A = = A

If A, 7é As, then

1 o0 o0
(/ ﬂ‘“e"dt—/ t““e"dt)A
Al _AZ 0 0
1 o Ar—1 * A1—1
A 2 el dr— A M leTdr | I
11—)&2( 1/0 © 2/0 © ) 2

i) —TI'@,) AMT(A2) — AT (Ay)
— A L.
aw—a, OF s 2

If Ay = A, = A, then

o o0 o0
I'A) = (/ 7 'e™ In tdt) A+ (/ A e dr — A/ 77l In tdt) b
0 0 0

= T'W)A+ (TA) — AT (V) b,

I') =

+

and the theorem is proved. O
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Corollary 4.10 The Gamma function of special matrices.

(a) Ifa € C such that R(a) > 0, then I'(al,) = T'(a)l,.
(b) Ifa, B € C such that R(x) > 0, R(B) > 0, then

F(a O):(F(a) 0 )
0p 0o Tr®)
(¢) Ifa,B € C such that R(a) > 0, then
- (a ﬂ) _ (r<a> ﬁF’(a))
0« 0 TI(a) )’
(d) Ifa,B € Csuchthat R(a + B) > 0, then

F(Ol ﬁ):l(r(a+ﬁ)+r(a—ﬁ) F(Ol+.3)—r(0l—,3))
B «a 2\T'(@+B)—T(@-p) T@a+B)+Ta-p)/)"

Lemma 4.6 A difference matrix equation.
IfA € 4, (C)with R(A;)) > 0,i= 1,2, thenT'(I, + A) = AT (A).

Proof First we observe the eigenvalues of I, + A are 1 + A; and 1 + A,. Using
Theorem 4.15 we have that

AT (A1) — A2 (A2) AAz (T'(Ay) = T'(A2)) )
A— I if A A
(s + A) = A — A -1 2 i Ai#d
(1 + M)A - AT (WD if A= =A.

If A\, # A, the Cayley—Hamilton Theorem implies that A> — (1; + A;)A +
A1A2l, = O;. We apply Theorem 4.15 and we have that

FAn)—-TMA) ,, MT@R) —AT(R)
AT'(A) = A A
@ w—t T A h
M) — lzr()tz)A A (TA) - I‘()kz))l
o A,] —12 ).1 _)\-2 >

If A, # A, the Cayley—Hamilton Theorem implies that A> — 20A + A%L, = O;.
We have, based on Theorem 4.15, that

AT(A) = 'A% 4+ (T(A) = AT (W) A = T'(1 + MA — AT/ (W),

and the lemma is proved. O
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Corollary 4.11 A product of two Gamma functions.
Let o be a real number such that 0 < o < 1, let B € C and let A =

((())l 5) Then

FAT(L-A) = T (1 —np cot(mx)) .

sin(ra) \O 1

Proof Use part (c) of Corollary 4.10 and the formula I' ()" (1 —a) = — .
sin(wa)

4.8 Problems

4.1 Prove thatif A = (0 1), then

10
1
0 if n is odd
10

10 e
if n is even.

Deduce that Ao = lim A" does not exists. A clue to this behavior can be found by
n—>oo

A" =

examining the eigenvalues, =1 of A.

Remark 4.10 The matrix A in the previous problem is called a transition or a double
stochastic matrix. Such a matrix has the property that all its entries are greater than
or equal to 0 and the sum of all its row and column entries is equal to 1 [34, p. 221].

4.2 Let A € 4, (C). Prove that lim A" = O, if and only if p(A) < 1.
n—odo

4.3 Let A € #,(C) such that p(A) < 1 and let k > 1 be an integer. Prove that

lim nfA" = 0,.
n—>o0

4.4 If A,B € 4, (C) such that AB = BA and lim A" = O, and lim B" = O,,

n—>oo n—>oo
then lim (AB)" = O;.
n—>oo

4.5 Let A € 4, (C) and let n € N. Prove by using the Jordan canonical form of A
that
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) A n A ) A n _a
Iim (L+—) =¢ and Iim |(L——] =¢e “.
n—>o00 n n—oo n

46 [63,p.339] LetA= ("% " YandB=("%") where0 < a < 1,
a 1-b a —b
1—(1—a—b)" .
0<b<1.ProvethatA” =1, + ——————B, n € N, and calculate lim A”".
Cl+b n—oo

Remark 4.11 Matrix A in the previous problem is called a left stochastic matrix
or a column stochastic matrix. A left stochastic matrix is a square matrix with
nonnegative entries with each column summing to 1.

1x

4.7 [1] Let B(x) = (xl

) . Consider the infinite matrix product

M(t) = BQ)BB3BG ™) -- = [Be™). t>1.
p

where the product runs over all primes, taken in increasing order. Calculate M(r).

4.8 Let

X

x° 1

AQx) = ((1 e xx) e.r(R) and let A"(x) = (“"(x) b"(x)), neN.

cn(X) dn(x)

Calculate lim M.
x—1 cn(x)

4.9 Calculate

4.10 Prove that
11 ' _ (cosh1 sinh1
% 1+ " \sinhl coshl/"

4.11 Calculate
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4.12 [29] LetA = ( 34 11). Calculate
o1 A™\" o1 AM\"
Iim - (L + — and lm —-|(L—— ) .
n—00 n n n—00 n n
2 -1
413 LetA = . Calculate
-2 3
) cos’A  cos?(2A) cos?(nA)
lim 4+t —).
n—oo\ n+1 n+2 2n

4.14 Gelfand’s spectral radius formula, 1941.

Let A = (a z) € M, (C) and let ||A|| be the Frobenius norm of A
c
defined by

IAl] = VTr(AA*) = Vlal? + b2 + |c|? + |d|>.
Prove that
. .
p(A) = lim [|A"|[.
n—>oo

4.15 Limits, nth roots and norms of matrices. Let A = (i _;)

(a) Calculate

g VIAGA + B)(A +2D) - (A + nb)|
1m .

n—00 n

(b) Calculate

i ofJAG+2B)(A + 4) - (A + 2D |

n—00 n!
(c) Calculate

o A+ @+ DDA+ 1+ 9b) - (A + (4 —2)D) |
woo A+ YA+ (4 3)D) - A+ n—=3)b)]

)

where ||A|| denotes the norm of A defined in problem 4.14.
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4.16 Pitagora in matrix form. The Frobenius norm of a matrix A € .#, (C), also
known as the Euclidean norm or Hilbert—-Schmidt norm, is defined by ||A|| =
Tr(AA*). Prove that if A € ., (C), then ||A]]> = ||R(A)|]> + ||S(A)]|%, where
9 (A) and I(A) denote the real part and the imaginary part of A respectively.

4.17 A bella problema. Let A = ( 2 (1)) Prove that:
(a) A"=(n+1 " ),fornzl;
—-n l—n
(b) et =eA;
(c) eszex(x+1 . ) x e R.
—x 1—x

4.18 Calculate e” for the following matrices:
3 -1
A= ;
@ a=(37)
4 =2
b) A= .
® a=(; )

4.19 Prove that
01
. 1 0/ _(coshl sinhl
~ \sinh1 cosh1)/’
4.20 (a)Let«, B € R. Prove that
(0 iﬂ)
B 0 2(99818 lsmﬂ).
isinf cosf
(b) Prove that

(s ) (8 1509)
eiﬁa — o [ CO8 isin '

isinf cosp

4.21 A rotation matrix as an exponential.

If0 e Rand J, = ( 01 é),then

(continued)
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4.21 (continued)
b0 _ c9s€ —sin 6 .
sinf cos@

Remark 4.12 We note that, based on Theorem 1.3, this problem is the matrix
version of the famous Euler’s formula e/ = cos 6 + i sin 8, from complex analysis.

4.22 LetA € 4, (C).

(a) Prove that if e is a triangular matrix which is not of the form al,, o € C,
then A is a triangular matrix.

(b) Show that if e* is triangular, then A need not be triangular.

4.23 Prove that

()
-1 a =ea(cosl sm1)7 LR

—sinl cosl

4.24 Leta,b € R. Calculate e?, where A = ( ab b).
—b a
t t—1

4.25 [6,p.205] Lett € Randlet A(r) = (0 q

). Prove that e*® = eA (e'™!).

4.26 LetA € .#, (C). Prove that if A is an eigenvalue of A, then e” is an eigenvalue
of e* and det (¢*) = e™@.

4.27 Commuting exponentials.

Let A, B € ., (C) be such that both A and B have real eigenvalues. Prove
that if e* commutes with e®, then A commutes with B.

Nota bene. If A and B have complex eigenvalues the problem is no longer
. 0 0 (74 4/3)7 s
lid. If A = dB = , th =
v (—n 0) o ((—7 +43)7 0 ene
e = -1, e = [, and AB # BA [9, p. 709].
More generally, if (x,,, y,) # (1, 0) are the solutions in positive integers of
Pell’s equation x> —dy?> = 1,d € N, d > 2, and

_ 0 w _ 0 (xn - \/L_l'}’n)ﬂ
A= (—n 0) and B = ((—xn + Vdy,) 7 0 )

(continued)
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4.27 (continued)
then e* = e® = —I, and AB # BA. Moreover, if 1 + x, = 2k?, k € N, then
eAtB = I, soetef = efet £ AT,

4.28 [25] When is an exponential matrix an integer matrix?
Let A € .#, (Z). Prove that e* € .#, (Z) if and only if A?> = 0.

4.29 [26] A gem of matrix analysis.

Let A € ., (Z). Prove that:
m sinA € .4, (Z) if and only if A2 = O,;
m cosA € ./, (Z) if and only if A> = 0,.

4.30 [30] Another gem of matrix analysis.

Let A € ., (Q) be such that p(A) < 1. Prove that:
m In(L, — A) € .#, (Q) if and only if A% = O;
m In(, + A) € .4, (Q) if and only if A2 = O,.

4.31 LetA,B, C € .#, (R) be commuting matrices. Prove that if cosA + cos B +
cos C = 0, and sinA + sin B + sin C = O, then

(a) cos(2A) + cos(2B) + cos(2C) = O5;

(b) sin(2A) + sin(2B) + sin(2C) = 0»;

(c) cos(3A) + cos(3B) 4 cos(3C) = 3cos(A + B + C);
(d) sin(3A) + sin(3B) + sin(3C) = 3sin(A + B+ C).

4.32 Matrix delights. Prove that:

(a b)
b a 4 [coshb sinhb
@ e ¢ (sinhb coshb)’ abet;

0a
) e(b 0) _ ( cosh Vab Msmh@

,a,beR, ab> 0;
J%sinh«/ab cosh v/ ab ) b€ a =



4.8 Problems .

11
(1 0)_ 1 ae"‘_ﬂeﬁ eot_eﬂ I
(c) e _ﬁ(e"—ef’ aeﬂ_ﬁea,a_ 5

IS
=
T
5

(d ; m = (L —2"")¢(A), where A € ., (C), R(A)) > 1, R(A,) >
1.
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(continued)
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4.36 Solve in .#, (C) the equation e* = al,, o € C*.

a0
0b

4.37 Solve in .# (C) the equation e* = (

),a,be(C*,a;éb.
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4.38 A circulant exponential equation.

Solve in .#, (C) the equation e* = ((1) (1))

4.39 A triangular exponential equation.

Solve in .#, (C) the equation e* = (g a), a € C*.
a

4.40 Check the identity sin(2A) = 2sinA cos A, where A = (n _11 _1’_ l)‘
-1 n

441 If A € 4, (C) is an idempotent matrix and k € Z, then sin(kwA) = O,.

4.42 (a) Are there matrices A € .#, (C) such that sinA = ((l) 20116)?

l o

, 0?
0 1) o« 7
443 Let A € ., (C) be a matrix such that detA = 0. Prove that:

m if Tr(A) =0, then 24 = I, + (In2)A;
2Tr(A) —1

Tr(A) A

(b) Are there matrices A € .#, (C) such that coshA = (

m if Tr(A) #0,then2 = I, +

4.44 Divertimento. Let A = (a Z) € /> (R). Prove that
c
A" = (‘C’ fz")’ VneN

if and only if A is of the following form

Cob G2) (o) GO) @) wrem

Challenge problems.

(continued)
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4.44 (continued)

m Find all matrices A = (a ¢ sid s b).

cd sinc sind
All matrices written above verify this equation. Are there any other?

) € ./, (R) such that sinA = (

m Find all matrices A = (a Z) € ., (R) such that cosA =
c
cosa cosb
cosc cosd)’

a b
4.45 [31] Are there matrices A = (a Z) € .# (R) such that e* = (Z" : d)?
c

4.46 Derivatives of matrices.

(a) Let A and B be square matrices whose entries are differentiable functions.
Prove that (AB)’ = A'B + AB'.

(b) It can be shown that if A is a differentiable and invertible square matrix
function, then A~! is differentiable.

m Prove that (A7) = —A~!1A’AL

m Calculate the derivative of A= = (A~!)", where n > 2 is an integer.

4.47 [6, p. 205] If A(z) is a scalar function of #, the derivative of e*®) is e*®A’ (7).
1 ¢
00
equal to either of the two products e*VA’(z) or A’(¢)e?".

Calculate the derivative of e*®” when A(f) = ( ) and show that the result is not

Systems of differential equations

4.48 Solve the system of differential equations

xXp = x; —4x,
xh = —2x1 + 3x,.

4.49 Leta > 0be areal number and let A = ( ! i)
—da

(a) Calculate e, t € R.

(b) Solve the system of differential equations
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X =x+y
y = —ax +y.

Remark 4.13 This problem was inspired by [52, Example 5.2.5, p. 238].

4.50 LetA = 21 .
34

(a) Calculate e, t € R.
(b) Solve the system of differential equations

X =2+y
Yy = 3x+ 4y,

with initial conditions x(0) = 2, y(0) = 4.

4.51 LetA = —4 1 .
-1 =2

(a) Calculate e, t € R.
(b) Solve the system of differential equations

X =—4x+2y
y=—x—-2y+¢,
with initial conditions x(0) = 1, y(0) = 7.

4.52 (a) Prove the solution of the linear differential system .#: tX'(r) = AX(¢),
where A € .#> (R) and ¢ > 0 is given by X(¢) = t*C, where C is a constant vector.

(b) Determine the solution of the nonhomogeneous system of linear differential
equations .#: tX'(t) = AX(r) + F(¢), F is a continuous function vector.

4.53 Solve the system of differential equations
o =—x+3y+1
' =x+y+1,

. o e o, _ 1 _ 3
with initial conditions x(1) = 5 and y(1) = 3.
Stability of homogeneous linear systems of differential equations
4.54 Discuss the stability of the system
X = ax + by
y = cx + dy,

according to the values of the parameters a, b, ¢, d € R.
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4.55 Discuss the stability of the system

X =—a*x+ay
Yy =x-v.
according to the values of the parameter a € R.

4.56 Discuss the stability of the system

X =—ax+ (a—1)y
Y =x,
according to the values of the parameter a € R.
4.57 Discuss the stability of the system
X =by
Y = cx,
according to the values of the parameters b, ¢ € R.
4.58 Discuss the stability of the system
X =—x+ay
y =bx—y,
according to the values of the parameters a, b € R.
4.59 Discuss the stability of the system
X =ax+y
Yy = bx + ay,

according to the values of the parameters a, b € R.

Series of matrices

-1 AT (=22 xIn2
4,60 Letx€c RandletA = (O _xl).Provethatl;ﬁ =< 012 X—T—z)

Remark 4.14 This problem was inspired by [63, problem 12, p. 65].
4.61 Let A € ., (C). Prove that

[0.9)

A 1 3A
Z = - eA—l—Ze_%cos\/— .
(3n)! 3 2

n=0
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4.62 Abel’s summation by parts formula for matrices.

Let (a,),>1 be a sequence of complex numbers, (B,),>1 € .#>(C) be a
sequence of matrices and let A, = Y ;_, ax. Then:
(a) the finite version

n n
ZakBk =A,B,1 + ZAk(Bk — Biy1);
k=1 =

(b) the infinite version

o o
ZakBk = lim A,B,y1 + ZAk(Bk — By 1),
=1 e =1

if the limit is finite and the series converges.

Remark 4.15 We mention that Abel’s summation by parts formula for sums of real
or complex numbers as well as applications can be found in [11, p. 55], [22, p. 258],
[57, p. 26].

4.63 The ’matrix generating function” for the Fibonacci sequence.

Let (F,),>0 be the Fibonacci sequence defined by the recurrence formula Fy = 0,
Fi=1and F,y| =F, + F,—1, Vn > 1. Prove that

ZFHA"_' = (12—A—A2)_‘, VA € ., (C) with p(A) < ‘/52_
n=1

4.64 If n > 1 is an integer, the nth harmonic number H, is defined by the formula

Ho=14 o ipy!
" 2 3 n

Let x be a real number, o« € (—1,1) and let A = « X and B = 0 x .
0 o 00
(a) Prove that

00

In(1 — 1 —1In(1—
ZHnAn:_ n( a)12+ n( a)B
— l—« (1 —a)?
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(b) Prove that

[es) 2 2
H, In“(1 — @) In(l—«) In“(1—a)
A" = L — B, 0.
n:Z]n—l—l 2a 2 (oc(l—oe)+ 202 o7

4.65 The generating functions of two harmonic numbers.

Let A € ., (C) with p(A) < 1 and let H, denote the nth harmonic number.
Prove that:

@ Y HA"=—(L—A)" In(l —A);

n=1

(b) > nH,A" = Al — In(l, — A))(I, — A) .

n=1

4.66 A power series with the tail of In %

Let A € ., (R) be such that p(A) < 1 and let A;,A; be the real
eigenvalues of A. Prove that

o0

> (n L o1, +(_1)n_1 A"
n_ — — .o
2 2 n

n=1

(I — A)~" (In(l, + A) — (In2)A) it 0< M, Ao <1,

= 1 In(1 + Tr(A4)) .
“n2)A if A =0,0< A <.
1 —TrA) ( Tr(A) " A <2l <

4.67 A sum with the tail of the logarithmic series.

Let A € ., (R) be a matrix whose eigenvalues belong to (—1, 1).
(a) Prove that

. A? A"
lim n{In(lhb —A) +A+ — +---+ — | = 0,.
n—00 2 n

(b) Prove that

> A? A" .
> In(l—A) + A+ 5 4+ — ) = —In(—A) ~ A~ 4)".

n=1
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Remark 4.16 A matrix series and Touchard’s polynomials.

More generally, if p > 1 is an integer and A € .#, (C), then

n P
in” e“‘—Iz—é_A_2 ..... A" — et S(P’k)Ak+1
: n! — k+1 ’

n=1

where S(p, k) are the Stirling numbers of the second kind [59, p. 58].
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p

The polynomial Q, defined by Q,(x) = > S(p,k)x*, where S(p,k) are the
k=1

Stirling numbers of the second kind is known in the mathematical literature as

Touchard’s polynomial [13].
The problem was inspired by the calculation of the series

S X X
Sor(erfT)
1! n!

n=1

where p > 1 is an integer and x € R (see [24]) with a solution in [44].

4.71 Letk > 0 be an integer and let A € .#, (C). Prove that

A A A? A" AR
> L= - — . — — )= ——e"
— \k 12 n! (k+ 1)!

4.72 Let A € ., (C). Prove that

(a) Z( I)LJ(e —Iz—é—A—z ----- Iﬁ):Iz—cosA;

1N 2 n!
" A AZ An—l ;
(b) Z(—l)LzJ (eA—Iz—l—!—z—! ————— (n_l)') = sinA.

n=1

Here |a| denotes the integer part of a.

4.73 Let f be a function which has the Taylor series expansion at 0,

() (0
fo=31 nf Jo el <R,

n=0

where R € (0, oo] and let A € .#, (C) be such that p(A) < R. Prove that:

f’(O) (0)
n!

@ Z (f(A) — FO)h — A") — AF'(A);

' ()
® Son(rw -son-LPan . L0)

=1

Az 7
= 7f (A).
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4.75 A variation on the same theme.
Let A € ., (C), let A1, A, be the eigenvalues of A, and let

> 11 1
S(A)=Z(e—1—1—!—5 ———— E)A

n=1

Prove that:
et2 —e) .
(@ S(A) =12+(A—1)§(A—12) ifA =1, A # 1
-
Al _ e A2 _ e
M) SA) =b+ ——— A h)+ — 2 (A AD) if

(A1 =A2)(A1 — 1)
/'\41#1, ;\'2;&19 )'1 #AZ,

© SA) = (1 — %) b+ %A A=A = 1

et —el Aet —2et e
PR el

(d SA) = (ﬁ +1 (A—1)2

(A=A = 1)

(A—AL) ifA; = = A £ 1.
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4.77 (a)LetA = (_01 xl) € ., (R). Prove that
o0
1 1 ERAE)] (_75(3) — @)x
- — — e —la = 8 16 4
Z(EG) 1= n3)A ( . e ,
n=1 S

where ¢ denotes the Riemann zeta function.
(b) Let A € .#, (C) with p(A) < 1. Prove that

o0

1 1

> (c(3> —l— s —3) A" = E(B)A - Lis@) (b —A)™",

n=1

where Lis denotes the polylogarithm function.

Remark 4.17 More generally, if A € ., (C) with p(A) < 1, then
- 1 1 n . —1
> (60— 1= 5 == ) A" = A L)) (= A),
n

n=1

where k > 3 is an integer and Li; denotes the polylogarithm function.
e n
478 (a) ' Ifa € Csuch that (@) > 2, then Y —— = ¢(a— 1)L,
n=1 ne
(b) If o, B € C such that fN(a) > 2, then
i n_(tla=1) @1
0 fe—1) )"

n=1 (Otﬂ)
nOoz

4.79 Computing {(A — ).
Let A € ., (C) and let A1, A, be its eigenvalues.

(@) IfA; # Ay, R(A) > 2, R(Ay) > 2, then

(continued)

'By an abuse of notation, if A € .#, (C) we use the writing & = (l)A.

n
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Remark 4.18 If k > 1 is an integer one may also express, using Theorem 4.14, the
matrix zeta function

e8] nk
A—kb) =) -5
n=1

in terms of the eigenvalues of A, where A € .#, (C) with R(A;) > k + 1 and
R(Ay) >k + 1.

Integrals of matrices

4.81 The Dilogarithm function Li, is the special function defined, for |z| < 1, by

t

Lis(z) = Z% = —/OZ =0,

n=1
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Leta e [—1,1)\ {0}, b € RandletA = (g b). Prove that
a

bIn(l —
/1 In(Z, _Ax)dx _ —Lis(a) y
0 X 0 —Lis(a)
4.82 LetA € ., (C) and let A1, A, be the eigenvalues of A. Prove that

/1 In(1, —Ax)dx _
0 X

—A if A=A =0,
LA if A =04 =1,

where ¢ denotes the Riemann zeta function.

4.83 LetA € #,(C) and let A1, A, be the eigenvalues of A with p(A) < 1. Prove
that

Liy(A2)—Lir (A1) AaLiz(A1)—A1Liz(A2) .
lln(I _A 2 )%1—)»22 UA 4 2222 /lll—A; 2(A2 L if A #kz,
) —Ax) .
/ — &= —A if )\1=)L2=0’
0

* In(1—4
DU A — (Lip(A) + In(1 — ) I if A =X =21#£0.

4.84 (a)Let A € ., (C) be a matrix having both eigenvalues equal to 0. Prove that

Uin2(, — A
/dezoz,
0

X

(b) A matrix logarithmic integral and Apery’s constant. Let A € ., (C) be a matrix

having the eigenvalues 0 and 1. Prove that

Un? (1, — Ax) _
/0 T g = 2,

where ¢ denotes the Riemann zeta function.

[e.]

1 . .
Nota bene. The constant {(3) = » — = 1.2020569031... is known in
n

n=1

the mathematical literature as Apéry’s constant. In 1979, Apéry [5] stunned the
mathematical world with a miraculous proof that ¢ (3) is irrational.

4.85 Let A € ., (C) with p(A) < 1 and let A, A, be the eigenvalues of A.
Prove that
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1
/ In(l, — Ax)dx
0

A

it A =4,=0,

2((1 —Tr(A))In (1 — Tr(A)) 1

A if A =00 AZ 1
2(A) I‘(A)) 1 1 ,0< | | <1,
(12 A 1)111(12 A) b

if 0< |A1|, |)L2| < 1.
4.86 Let A € ., (R) and let A1, A, be the eigenvalues of A. Prove that

A
L+~

1 Tr(A)
Ax g, _ e —1-Tr(A) :
eVdr =14 g +—————"A if A; =0, 0,
/(; 2 T2@) 1 2 F

if A1 =21,=0,

(GA —Iz)A_l if A], )tz 75 0.
4.87 LetA € ., (R) and let A1, A, be the eigenvalues of A.
(a) Prove that
12 if A] = 12 = 0,

! sin Tr(A) — Tr(A)
Ax)dx =4 L+ ——=A if A, =0,A 0,
/0 cos(Ax) > T2 @) if A 2 F#

A 'sinA if A1, Ay #0.
(b) Prove that
A
1
. 1-— Tr(A
/ sin(Ax)dx = *r() if A = 0,% #£0,
0 Tr=(A)

A7V (I —cosA) if A, A, #0.
(c) Prove that

A
Lot 2sin Tr(A) — sin 2Tr(A)
inA dxdy = A if Ay =0, 0,
/0 /0 sinA(x + y)dxdy I 1 2 #
A2 (2sinA — sin(24))

if A1 =24,=0,

if Ap, A, # 0.
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4.88 > Let A € ./, (R). Prove that

// vTAv e_”T“dxdy = zTr(A), where v = (x)
R2 2 y

4.89 Let A € .4, (R) be a symmetric matrix with positive eigenvalues.
(a) Prove that

T T
e U Adxdy = —.
//}RZ Y J/detA

(b) Let « > —1 be a real number. Prove that

al(x+1)

T o —vlAv
v Av)%e dxdy =
/ RZ( ) Y /detA

where I' denotes the Gamma function.

490 Let A € ., (R) be a symmetric matrix with positive eigenvalues and let
f : R? — R be the function defined by

1, Tp—1
VAT Y

€
flx,y) = 5

X 2
—— where v = e R”.
7 +/detA ( )

y

Prove that
/ [ f(x,y)Inf(x,y)dxdy = —In(2we+/detA).
R2

491 LetA € .#, (C) and let « be a positive number. Prove that
o0
/ eMe ¥ dy = ze%.
oo o

4.92 LetA € ., (R) and let « be a positive number. Prove that:

2

o 2 T o_a
(a) / cos(Ax)e ™ dx = [/ —e 4o,
oo a

(b) / sin(Ax)e_‘”zdxz 0,.
—0o0

2We mention that if v = ( ) is a vector in R? and A € %, (R), then vTAv is a matrix having one
y

row and one column, i.e., v"Av = (u). We identify, by an abuse of notation, the matrix v”Av by
the real number u. Also, we identify v7v by x> 4 y2.
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4.93 Let A € ./, (R) with p(A) < « and let « be a positive number. Prove that:
[o¢]
(a) / sin(Ax)e™**dx = A (A* + a212)‘1;
0

(b) / = cos(Ax)e ™ dx = o (A> + azlz)_l.
0

(continued)
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4.98 Dirichlet matrix integrals.

(a) LetA € ., (R) be a matrix which has two distinct real eigenvalues such that
A1Az > 0. Prove that

/oo Sll’l(A.x)dx _ %12 if )LI,A2 >0
0 X —%12 if )LI,A2 < 0.

(b) Let A € .#, (R) be a matrix whose eigenvalues are real such that A;A, > 0.
Prove that

/°° sinz(Ax)dx _)3Aa if A >0
0 —% if Al,lz < 0.



236 4 Functions of matrices. Matrix calculus

499 Let A € #,(R) be a matrix which has two distinct real eigenvalues with
p(A) < 1. Calculate

* sin(A
/ sin(Ax) cosxdx
0

X

A beautiful result often attributed to Frullani is contained in the following
formula

f“fwdx = (£ (0) _f(oo))lné, a,b >0,
0 x a

where f : [0,00) — R is a continuous function (it may be assumed to be
L-integrable over any interval of the form 0 < A < x < B < 00) and f(0c0) =
lim f(x) exists and is finite.
X—>00

In the next two problems we extend this formula to square 2 x 2 real matrices.
4.100 An exponential Frullani matrix integral.

Let A € .#> (R) be a matrix which has positive eigenvalues and let o, 8 > 0.
Prove that
00 —aAx __ ,—fAx
[ (1né)12.
0 X o

4.101 (a) Frullani matrix integrals.

Let f : [0,00) — R be a continuous differentiable function such that
1_i>m f(x) = f(o0) exists and is finite. Let o, B be positive real numbers and
X—>00

let A € .#, (R) be a matrix which has positive eigenvalues. Prove that

/wwdx — |:(f(0) — f(c0)) In é:| b.
0 X o

(b) Two sine Frullani integrals.
Let A € ., (R) be a matrix which has positive eigenvalues. Calculate

o0 1.4 00 oind
/ sin” (Ax) dr and / sin” (Ax) dx
0 0

x3 X2

(c) A quadratic Frullani integral.
Let A € ., (R) be a matrix which has positive eigenvalues. Calculate

[
0 X
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4.102 A spectacular double integral.

Let A € ., (R) be a matrix which has distinct positive eigenvalues. Prove
that
00 (o] —Ax __ ,—Ay 2
/ / (;) dxdy = (In4) .
o Jo xX=y

4.9 Solutions

4.2. Solution 1. We have, based on Theorem 3.1, that

B+, it A # Ay
A'B + I’lknilc, if l] = Az =

Al’l

and it follows that lim A" = O, if and only if lim A} = lim A =0if A; # A,
n—00 n—00 n—00
and lim A" = lim nA""! = 0if A; = A, = A. In both cases the preceding limits
n—oo n—>oo

are 0 if and only if |A{], |A2| < 1.

Solution 2. We have, based on Theorem 2.9, that there exists a nonsingular matrix
P such that A = PJ,P~!, which implies A" = PJ;{P_I. Thus,

P(Al On) P! if A 75 A
A" 0 A’2

= n n—1
(M ™ e i A = =2
0o A"

The problem reduces to the calculation of lim A" and lim nA"~ !, which are both
n—o0 n—>oo

0 if and only if |A| < 1.

4.3. See the solution of problem 4.2.

4.4. We have, based on problem 4.2., that p(A) < 1 and p(B) < 1. An application
of Theorem 2.1 shows that A4 = A4Ap and this implies that |A45| = |A4]|AB| < 1.
Thus, p(AB) < 1 and we have, based on problem 4.2., that l_i)m (AB)" = 0O,.

n—>oo

4.5. Let P be the nonsingular matrix such that A = PJ,P~'. We have



238 4 Functions of matrices. Matrix calculus

A n -,A n .
L+=) =P(L+=) P
n n
14+ a) 0 y)
P( ) i = (M0
o (1+%) 0 A

B P((w%)" (1+%>"“)P_1 N (x 1).
0o (1+2) 0 A

It follows that

The second limit follows, from the first limit, by replacing A by —A.
4.6. Solution 1. Prove by induction that A" = I, + *=0=“2"p e N.

Solution 2. Observe the eigenvalues of A are 1 and 1 —a—b and use Theorem 3.1.

On the other hand,

1 1
limA"=L+ —B= bb .
n—00 a+b a+b\a a

4.7. We prove that

o~

[~

(1

O, 1w 1
o T ton Tt
to 1 < ’
oy T T0

M(t) = %(

3
where ¢ denotes the Riemann zeta function. In particular, M (2) = 53 (; g)
b4

A calculation shows that the eigenvalues of the matrix B(x) are 1+x and 1—x with
the corresponding eigenvectors (o, «)” and (=8, B)T. Thus, B(x) = PJz(x)P~',
where Jp(x) denotes the Jordan canonical form and P is the matrix formed by the

eigenvectors of B(x), i.e.

l+x 0 1-1
JB(x)=( 0 l—x) and P=(1 1).
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Thus,
M@ =[]Be™" =]]PIe@HP " =P (]_[ JB(p—’)) p!
p p p
= Pl_[ (1 +0p_t 1 _Op_,) r!
p

[[,A+p™) 0 _
_P( " ]_[p(l—p_’))P "

Using Euler’s product formula [61, p. 272], 1/{(s) = ]_[p(l —1/p*), for R(s) >
1, we get that

e =110 -52) =T1( - )T () = T (1)

and this implies that I—[p(l +p7) =280/t (20).
Thus,

¢(0/¢@2n 0 )P—1
0 1/¢(®

:%(11)(UﬂgQﬂL£®)(jlb

M(t) =P(

4.8. The limit equals —1. First we prove the limit does not depend on n. Let A €

My (R), A = (a Z) with ¢ # 0 and let A" = (a” b”). We have, since AA" =
c

A"A = A" p e N, that

Cn n

aa, + an = aa, + Cbn o an = Cbn
aby + bd, = bay + db, (ay —d,)b = (a — d)b,

= —“”C_d” = u . Thus, we need to calculate hm ’(‘T EE

More generally [20] weletn > 1 bea natural number and let

X

filr) =x°
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where the number of x’s in the definition of f;, is n. For example

i) =x, LK) =x", fKx)=x"
Then

L, = lim 20 =@
x—1 (1 —x)"

We have, based on the Mean Value Theorem, that

exp(Inf,(x)) — exp(Inf,—1(x))
exp(fu—1(x) Inx) — exp(fy—2(x) Inx)
(f;l—l ()C) _fn—Z(-x)) -Inx- exp(en(x))s

Ja@) = fam1(x)

where 6, (x) is between f,,—1 (x) In x and f,,—»(x) In x. This implies lim,_ 8,(x) = 0.
Thus,

L i ) —ha )

=1 (1—=x) x—>1

It follows, since L, = lm} = ), =

49.leta = # and 8 = # We prove that

(1 )"=% ( o 12(25) (45 = (1+8)

1 a\" 1 B "
) a (1+7) —3<1+;>
Let B = (i (1)) We have based on the binomial theorem, part (b) of problem
1.29, and the definition of the Fibonacci sequence that

141 1\ 1\ & n\1 ~(n\1 (Fq F
n on =17 —-B = —B' =1 — ! ' s
( 111 1) (2+I’l ; iln 2+§ iln F; Fi

and the result follows by straightforward calculations.

= 1,that L, = (—1)" 2L, = (—1)".

—_—

4.10. Solution 1. It is known that if A and B are two commutative matrices, then
efef = eAtB = eBed. However, these formulae fail to hold if AB # BA. Lie’s

famous product formula for matrices [37] states that if A, B € .} (C), then

. A B\"
lim (enen) = eATB,
n—o0o
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00
Solution 2. Let n € N, let f be the polynomial function f(x) = (1 + f)", and let

Our problem follows by taking A = ((1) 8) and B = (0 1).

A= ((1) }) A calculation shows that the eigenvalues of A are A} = %1 +./1+ -4

4n?

and A, = 2_1n —4/1+ 4—22. We have, based on Theorem 4.7, that

I =

+ ! 1+ ! 1+ ! ! 1+ ! n
2 4n2 + 1 22 n Y 4n?
+1 1 ! 1+ ! +1 1+ ! n I
2 4nZ + 1 2n2  n\ 4n? >

Passing to the limit as » — oo in the previous equality, we get that

n
. 1 1 . 01 10
n —_
nhrn (% | ,112) —smhl(1 0)+coshl(0 1).

4.11. Let n € N, let f be the polynomial function f(x) = (1 + £)", and let A =
_1

( 1” 1) The eigenvalues of A are A = /1 + nlz and A, = —,/1 + niz We have

based Sn Theorem 4.7 that

n n
(1_% 1 ) (1+§,/1+niz) —(1—5 1+ni2) (_1
ln n e n

=
I+ 2,/1+ 4

—_
S = =
SN——"

Therefore

1
lim (
n—>o00
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—4 =2
First, we observe that both eigenvalues of A are equal to 1. Let P be the
11
01

4.12. The first limit equals e ( 2 1 )

nonsingular matrix such that P~!AP = J, = (

1 0 _ 10
(_2 1) and (2 1) We have

1 Am\" 1 1\
—(n+=) =pP|-(n+-1) |P"
n n n n

1n
1

). A calculation shows that

On the other hand, since J} = ( , we get that

1 1" 1
~(n+-1) =-
n n n

(=)

and this implies that

n\n 1\" 1\n—1
im 2 (1Y) - hmp[l (<l+z> n(i+1) )}
n—oo 1 n n—o00 n 0 (1 + ;)

-2 -1
4 2 )
Another approach for solving the problem would be to use Theorem 4.7.

1
Similarly one can prove the second limit equals — (
e

Remark 4.19 Let f,(x) = 1 (14 2)", n € N. If both eigenvalues of A are equal
real numbers A; = A, = A and A # A, we have based on Theorem 4.7 that

n\ n—1 n\ " nN\ n—1
fu4) = (1 + A—) ATIA 4 [1 (1 + A—) — A" (1 + A—) }12.
n n n n
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It follows that lim f,(A) is O, if |A| < 1 and e(A — L), when A = 1.
n—oo

IfA = AL, X € R, thenf,(4) = ! (1 + 2)" I, and the limit equals oo if A > 1,
the limit does not exist if A < —1 and the limit equals O, if —1 < A < 1.

4.13. The limit equals (In v/2)I. Use that if A € R, A # k., k € Z, then

lim cos(21) N cos(41) T cos(2ni) _o.
n—oo \ n+ 1 n—+2 2n

4.14. Use Theorem 3.1 and the formula

lim /|a|* + |b|* + |c|" + |d|" = max {|al, ||, |c|,|d]}, where a,b,c,d € C.
n—>o0o

1 _
4.15.(a) A = PJ,P~!, where J, = (2 0 ),P = (1 1) and P! = = ( 4 1).

0 —1 3\-1 1
We have
AA + L)A +2L) - (A + nl) = PIs(Ja + L)(Ja + 2D) -+ (Jo + nl)P™!

_ P((n+2)! O) P

_ n+2)! (4 —1

3 4 —1)°
It follows that

L VIAG+ BYA+ 20— GAab)l] _ YDV
o n—>odo n 3 o e.

n—o0o n

(b) The limit equals 2. Use Cauchy-d’Alembert’s criteria® and the problem
reduces to the calculation of the limit

- JA(A 4+ 2L)(A +4h) - (A+ 2n+ 2)b)||
n—>oo (n+ 1||AA + 2L)(A + 45) --- (A + 2nb)||

(c) We have

A+m+DL)A+ 0n+DDL) - (A+ (4n—2)D)
=PUs+ (n+ DL)Js + (n+4)D) - (Js + (4n —2)L)P~!

o ((n+3)(n+6)---(4n) 0 _
_P( 0 n(n+3)---(4n—3))P1

_ 1 (4Otn—ﬂn _Oln+ﬂn),

B 5 40(,1 - 4:311 —0y + 4,311

3The Cauchy-d’ Alembert criteria states that if (a,).> is a sequence of positive real numbers such
that lim %X =/ e R, then lim 2/a, =1
n—>oo M n— 00
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where o, = (n + 3)(n + 6)--- (4n) and B, = n(n + 3)--- (4n — 3). It follows that

A+ (+ Dh)A+ (n+4)D)--- (A + (4n—2)D)||

1
_ = 2 2 _
=3 \/34% + 34B2 — 50a, By

Similarly,

(A+nbL)A+ (n+3)b) - (A + (4n—3)b) = % (4un—vn —un+v,,)’

4u, — 4v, —u, + 4v,

where u, = (n+2)(n+5)---(4n—1)and v, = (n— 1)(n + 2)--- (4n — 4). This
implies that

1
[[(A+nh)A+ (n+3)L)---(A+ (4n—3)DL)|| = 3 \/34u% + 34v2 — 50u,v,.

Therefore

A+ (4 DA+ (4 D) - (A + (4n =)D
we0[[A+ L) A+ (4 3)D) A+ Gn=3)D)]

(n+3)(n+6)---(4n) 34+i—‘2‘_%
m
n=>00 (n+2)(n+5)--(dn—1) | 34 + 34.0=1> _ 50

(4n—1)2
_ i

n—1
4n—1

since (prove it!)

(n+3)(n+6)---(4n)
0o (1 +2)(n+5) - (dn—1) va.

Remark 4.20 We mention that beautiful limits, like in the previous formula,
involving products of sequences of integer numbers in arithmetic progression which
can be solved by elementary techniques based on the Squeeze Theorem can be found
in [53, problem 59, p. 19], [54, 55, 56].

4.16. A = R(A) + iI(A) and A* = R(A)T — iJ(A)T. It follows that
JAI2 = Tr [(9H(A) + i3(4)) (KA —i3(A)")]
=Tr[RARA) + IAIA)" +i(RA)'IA) — I(A)%RA))]
=Tr(RARA)) + Tr (IA)IA)")
= IR + [I3@A)]%.
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4.17. Solution 1. Use that (A — I,)?
Solution 2. (a) Use mathematical induction
(b) Part (b) follows from part (c) when x = 1
(c) We have, based on part (a), that

S ret) X
L e’} Ay _ ng(] n! ngl (n—1)! . X+1 x
¢ = nl S & - =\ o 1-x)
n=0 — X W 2w
n=1 n=0

(2 - ) We have that A2 —4A + 41, = 0, & (A—2D)?

4.18. A =

(@)e L o

Let B = A — 2I,. This implies that B? = 0, and A = B + 2I,. We have
21 2 B B B B"

e”’? =¢e“l, and e—12+1+§+ +—+ =1+ B.

It follows, since matrices 2/, and B commute, that
2 1)

eA 2b+B _ eleeB — 62(12 +B) — eZ(A _12) —e (1 0

e—3 2—2e

b) et =
®)e (6e—6 4-3e

) We have, based on Theorem 2.2, that A2 = A =
A, for all n > 1. It follows that

A" =

_ A A2 n

et 2+1'+§+ +—+
LA 1 1 1
=L+ 1'+2'+ +E+---
=Iz+(e—1)A
_ [4e—3 2-2¢

T \6e—6 4—3¢e)°

01
4.19.LetA =
¢ (1 0

) Observe that A = E, is the permutation matrix. A calculation
shows that A" = [, and A>"~!

A, for all n € N. It follows that
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o0

OoAn o0 A2 A2l
P PP MeTAp T

Il
i 1

1
—1 — A
a2t ; 2n—1)!
= (cosh 1)I; + (sinh 1)A
__(cosh1 sinhl
“ \sinh1 coshl)/)’

4.21. Solution 1. We have J3* = (—=1)*I; and J3*"1 = (=1)*"1J,, for all k > 1. It
follows that

S n
—0Jr _ (_QJZ)
¢ B 2—:0 n!

_ (—0J2)%* (—0J,)=D
_Z (2k)! Z 2k —1)!

k=0

8

2k o0 92](— 1

_ k ¢ _1\k
_2( D (2k)![2+;( D "

= (cos 0)I, — (sin 0)J,
__ fcos® —sinf
~ \sinf cosf )
Solution 2. Observe that

bid T nm s N
__ [ cos 7 Sim > no__ n [ COS 5 sin 35
_‘]2 - T bid and ‘]2 - (_1) s N nm :
sin 3 COoS 5 sSin >3 COS 5

It follows that

o0 o0 .
—6s (=0J5)" 0" (cos L —sin %)
c = = _
Z ! Z in T nx
n=0 :

| nw
=0 n! \ sm > Ccos >
o" o"
Z e -5 o7 sin
_ 1 n=0 n—O

Z - sin 2 Z & cos &
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0" nw 0" | nm
Let S| = E_O ECOST and S, = 2_0 il sin N We have
2. on FL4 T\
S S — _( - P _) — 6 — 0 . . 6’
1+ 15 ,;20 ol cos 3 + isin ) € COos 0 + isin

and it follows that S; = cos 6 and S, = sin 0.
4.22. (a) Use that e* = aA + BI,, for some o, B € C.

(b) LetA = (g —071). Then e* = —1I, (see problem 4.21).

4.23. See the solution of problem 4.24.

4.24. Observe that A = al, + bJ,. We have, since matrices al, and bJ, commute,
that

A _ gahtbly _ qabgblhy _ oaf cos(—=b) —sin(=b)\ _ . [ cosb sinb
©=e € ¢ 2(sin(—b) cos(—b) “ \sinb cosn)

We used in our calculations the result in problem 4.21 with 6 = —b.

4.25. First we consider the case when t = 1. We have, since A(1) = L, that e*(") =
e =el, = eA(e").

Now we consider the case when ¢ # 1. The eigenvalues of A(7) are 1 and 7. We
have that A(f) = PJy)P~", where

10 —11 _ 01
JA(,):(O t), P:(l 0) and Plz(l 1)

It follows that

0 e e —e
A() _ P JA(,)P—l - P € P—l — = cA =1 .
¢ ¢ (O e! 0 e ¢ (e )

4.26. See Theorem 4.6. Another “solution” is based on a formal computation. If A
is an eigenvalue of A there exists a nonzero vector X such that AX = AX. We have

00 00 00 00
A" A"X X Al
A A
eX——(E _n')X: E o = . o —<E —n!)X—eX,

n=0 n=0 n=0

which shows that e* is an eigenvalue of e and X is its corresponding eigenvector.

Recall that the determinant of a matrix equals the product of the eigenvalues and

the trace equals the sum of the eigenvalues. We have det (eA) = ¢hehr = hith

— eT1'(A) .
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4.27. e*ef = efer. We consider the following two cases.

Case e* = «al,, « € C.If J, is the Jordan canonical form of A we get that

e/t = al, and this implies that J, is diagonal. If J, = ():)1 )? ) € M, (R), we
2

have that e*! = e* = @ which implies, since A;,A; € R, thatoe € R, ¢ > 0,

Al =A; =Ina and A = (Ina)l,. Clearly, in this case A commutes with B.
Casee® # al,, o € C. We have, based on Theorem 1.1, that e® = ae” + bl,, for
some a,b € C. If a = 0 we get that e® = bI, and, like in the previous case, we get
that b € R, b > 0 and B = (Inb)I;. Clearly in this case B commutes with A.
If a # 0 we have, since B commutes with €?, that a (Be* —e*B) = 0, =
Be? = e¢4B. It follows, based on Theorem 1.1, that B = ce* +dl,, for some ¢, d € C.
Thus, AB = A(ce” + dI,) = (ce* + dI,)A = BA.

4.28. First we prove that if A> = O,, then e* € .#, (Z). We have

A? A"

A
eA:IZ+_+_++——|—=Iz+A€%2(Z)
2! n!

Now we prove that if e € .#, (Z), then A> = O,. If A, A, are the eigenvalues
of A, recall the eigenvalues of e are e*! and e*2. Observe that both A; and A,
are algebraic numbers being the roots of the characteristic polynomial of A which
has integer coefficients. On the other hand, et and e*? are also algebraic numbers
since they are the roots of the characteristic polynomial of e which has integer
coefficients. It follows that A; and A, are both 0, otherwise this would contradict
the Lindemann—Weierstrass Theorem which states that if « is a nonzero algebraic
number, then e% is transcendental. Thus, Ay = A, = 0 and we have based on
Theorem 2.2 that A2 = O,.

4.29. We solve only the first part of the problem, the second part can be solved
similarly.
We need the following lemma.

Lemma 4.7 [f g € Q%, then cos q is transcendental.

Proof We assume that cosq = a is algebraic. Then, sing = £+1 — a? is also
algebraic. It follows, since the sum of two algebraic numbers is algebraic, that ¥ =
cosq + ising is algebraic. However, this contradicts the Lindemann—Weierstrass
theorem which states that if & # 0 is algebraic, then e* is transcendental. m]

First we prove that if A2 = O,, then sinA € .#, (7). We have

A2n+1 A3

o0
sind =) (=1)"
n=0
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Now we prove the reverse implication. Let A; = ¢ + id and A, = ¢ — id be the
eigenvalues of A and let sinA; = a + ib and sin A, = a — ib be the eigenvalues of
sinA. Observe that ¢ = %Tr(A) € Qandd = %\/ 4detA — Tr*(A) is an algebraic
number. We have, L+, = 2c € Z, A Ay = 2 +d? € Z,sin A, +sind, = 2a € Z,
and sin A; sin A, = a? 4+ b% = v € Z. We calculate

A+ A A=Ay A=Ay
cos

sinA; + sinA, = 2sin 5 = 2sinccos = 2a

which implies that sin ¢ cos A';AZ = a. On the other hand,

cos(A; — Ay) —cos(A + Ay)
=v
2

sinA; sinA, = e 7.

This implies that cos? 2522 — cos? ¢ = v.
A=A

If sinc # 0, and this implies since ¢ € Q that ¢ # 0, then cos #57 = =
It follows, after simple calculations, that cos*c + (v — 1)cos’c +a> —v = 0
which implies that cos c is algebraic. This contradicts Lemma 4.7. Thus,¢c = 0 =
A1 = id and A, = —id. A calculation shows that sin A; sin A, = sin(id) sin(—id) =
=" _ 4 € 7. This implies d = 0.

If d # 0, then e is the solution of the equation x* — (2 + 4v)x> + 1 = 0, hence
e’ is algebraic. However, this contradicts the Lindemann—Weierstrass theorem.
Therefore,d =0 = A, =, =0 = A? = 0,.

d

Remark 4.21 The problem has an equivalent formulation. If A € .#5 (Z) then:
m sinA € .#, (Z) if and only if sinA = A;
m CcosA € 4, (Z) if and only if cosA = L.

4.30. We solve only the first part of the problem. If A2 = O,, then
N A"
In(l, —A) = — — =—Ae M, .
n(l, —A) ; " 2(Q)

Now we prove the other implication. Let A1, A, be the eigenvalues of A. We have
A+ A = ke Qand LA, = i € Q. Recall the eigenvalues of In(l, — A) are
In(1 — A1) and In(1 — A;) and we get, since In(I, — A) € .4, (Q), that In(1 — ;) +
In(1—=21;) =In[(1—=21)(1 =21,)] € Qand In(1 — A;)In(1 — A;) € Q. We have
In [(1 —Al)(l —Az)] = ln(l — A,] —)Lz + Alkz) = ln(l —k+ l) =ac Q

Ifa # Owehavethate = 1—k+i € Q = e?is algebraic. However, this
contradicts the Lindemann—Weierstrass Theorem which states that if « is a nonzero
algebraic number, then e“ is transcendental. Thereforea =0 = 1—-k+i=1 =
(1 = A;)(1 — A;) = 1. This implies —In*(1 — ;) € Q. Let In>(1 — X)) = b €

Q= h(l-A)==vhb = A =1-e = 4 =1- - =1-¢"

Since Ay + A, = ke Qwe getthat2 —k = eVl 4 e¥Vb and this in turn implies
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that eV is algebraic. This implies that » = 0 otherwise, if b # 0 we get based

on Lindemann—Weierstrass Theorem, since ++/b is nonzero algebraic, that etvhb
is transcendental. Therefore » = 0 and this implies that A.; = A, = 0. Thus, both
eigenvalues of A are 0 and we get based on the Cayley—Hamilton Theorem that
A% = 0.

The second part of the problem can be solved similarly.

Remark 4.22 The problem has an equivalent formulation. If A € ., (Q) such that
p(A) < 1 then:

m In(l, —A) € #,(Q) if and only if In(l, — A) = —A;
m In(l; + A) € 4, (Q) if and only if In(l; + A) = A.
4.31. We have ¢4 + /B + ¢/ = 0, and e™™ + 7B + 7€ = 0. It follows that

0, = (eiA + e 4 eic)2 — 2A | Q2B 4 Q2C | 9oi(A+B+O) (e—iA +e B 4 e—iC)'

This implies that €4 + e?# 4 %€ = 0, = co0s(2A4) + cos(2B) + cos(2C) = 0,
and sin(2A) + sin(2B) + sin(2C) = 0O,. On the other hand, 0, = &4 4 &8 +
e¥C — 3¢+B+0) and parts (c) and (d) follow.

4.32. (a) Let A = (Z b) and observe that A = al, + bE,, where E, = ((1) (l))
a

is the permutation matrix. We use a technique similar to the one in the solution of
problem 4.19 and we get that

A = ahtbEy _ qah bk, _ ca (COSD sinhb
sinhb coshb

Parts (b) and (c) can be solved using Theorem 4.10.

(d) We have
ad 1 ol (A |
;(Zn—l)AZ;n_A_;(Zn)A
N
=z(A)—2A;n—A

= £(4) 27 (4)
= (L—-2"")¢(@A).
4.36. Let @ = p(cost + isint), p > 0, t € (—m, x]. Then,

A—p Inp + (t + 2km)i 0 Ve,
0 Inp + (¢t + 2Im)i

where k,[ € Z and P € GL,; (C).
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4.37.Leta = p,(cost, +isint,), p, > 0,1, € (—m, ] and b = p,(cost, +isinty),
op > 0,1, € (—m, ). Then,

4= Inp, + (¢, + 2km)i 0
- 0 Inpp + (1, + 2Im)i)’

where k,n € Z.
azs 4 = (@R @uomiy 0 (k=i (204 i)
(2n— 5) i (2k+ 5) i (2n+ E) i (2k— 5) i
where k, n € Z.
Observe that A commutes with e? and use Theorem 1.1 to deduce that A is a

B «

circulant matrix, i.e., A = ), a,B € C. It follows, based on part (a) of

a p

A g (cosha sinha 01
et =e . = .
sinha cosho 10

This implies that ef cosha = 0 and e sinha = 1. The first equation implies that
cosha =0 = e = -1 = o = @m’,p € 7Z. A calculation shows that
sinha = (—1)?i and the second equation implies that e = (—1)?~!i. The cases

when p is even or odd lead to the desired solution.
4.39.Leta = p(cos + isinf), p > 0, and 6 € (—m, 7]. Then,

Inp + (6 + 2km)i 1
A= kel
( 0 Inp+ (0 +2km)i)

problem 4.32, that

-1 i) and note that B2 = O,.

4.40. We observe that A = I, + B, where B = (
We have

sinA = sin(wl, + B) = sin(xwl;) cos B + cos(xw ) sin B = cos(xwly) sinB = —B
cosA = cos(wl, + B) = cos(wl,) cos B—sin(wl,) sin B = cos(zwlp) cos B = —1,

and similarly sin(2A4) = 2B.
4.41. We have, since A2 = A, that

. ad (_1)n n = (_l)n n :
sin(kwA) = rg m(kﬂA)2 = ,g) m(kﬂ)2 A = sin(km)A = O;.

Similarly, if A is idempotent, then cos(kwA) = I, + ((—1)* — 1)A, for all k € Z.
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1 4032

4.42. (a) If such a matrix would exist, then sinA = (0 )

) and this implies,

0 —4032

since cos2A = I, — sin? A, that cos?A = (0 0

). However, there is no X €

> (C) such that X2 = (8 g) with a # 0.

1 2«

(b) If such a matrix would exist, then cosh’A = (0 ]

) and this implies,

0 2«

since cosh’A — sinh? A = I, that sinh?A = (0 0

). This is impossible since

0 a
00

4.43. If Tr(A) = 0 we have based on the Cayley—Hamilton Theorem that A> = O,.
Thus,

the equation X?> = ( ) with a # 0, has no solutions in .#, (C).

0 n
4= enan 3 (DDT
24 =e = 2 ) =1, + (In2)A.

If Tr(A) # 0, the Cayley—Hamilton Theorem implies that A% = Tr(A)A which in
turn implies that A” = Tr"~!(A)A, for all n € N. It follows that

o0
In 2)A)” Tr”(A) In" 2 2Tr(4) _ 1
2A _ oA _ (( =L+ ——A
; nl T (A) Z 2 @)
4.45. There are no such matrices. If A, A, are the eigenvalues of A, then et et are

the eigenvalues of e*. We have

€ =¢€¢€ —¢¢€ =¢€ — €

atd _ eTr(A) — e/h-i-lz — e/he/lz — det (CA) _ a.d b.c _ .atd b+c'
This implies that e?*¢ = 0, which is impossible.

4.46. (a) LetA = (aij)i.j=12, B = (bij)ij=l.2 and let C = (Cij)i,j=l,2a where C = AB.
We have (C,'j)/ = (a,-lblj + aizsz)/ = a’ilblj + ailb’lj + a/izsz + aizb/zj, for all
i,j = 1,2, which implies that (AB)’ = A'B + AB'.

(b) We have that A”'A = I, and it follows, based on part (a), that (A~'A) =
0,. Therefore (A™'YA +A7IA' = 0, = AYA = -A"A = @AY =
—A~lA'ATL

We have, based on part (a) and the first formula in part (b), that

(A—n)/ — (A—(n—l)A—l)/
— (A—(n—l))/A—l +A—(n—1)(A—1)/
— (A—(n—l))/A—l _A—nA/A—l .
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Let ¥, = A™". The previous formula implies that Y, = Y/ _ A~ —A7"A’/A7! =

n—1
YJA" =Y, _ A" — AT"A’A"! Tt follows that
VA" = —(ATIA + ATAA + ATAAT 4 4 ATIAATY
and this implies

(A—n)/ — _(A—IA/ +A—2A/A+A—3A/A2 4o +A_nA/An_1)A_n.

4.47. First we observe that A%(f) = A(f) which implies that A"(f) = A(f), for all
n > 1. It follows that

REN S A;;('t) — L+ <Z %) A() = 6L+ (e—DA@) = ((e) (e—1 1)t) ;

n=1 n=1

and this implies

(eA(t))’ _ (8 eg 1) )

On the other hand,

eA(t)A/(t) _ ((e) (e—l 1)[) (8 (1)) — (8 g) ” (eA(t))/

and

yooaw (01 —1 01 o/
woer = (00 (57 = (0 6) # e

4.48. The solution of the system is

xi(1) = (2e7" + ) ¢ + (2¢7 = 2e¥) ¢,
x() = (e —e") e + (7 +2e¥) s,

with ¢y, ¢, € R.

4.49. (a) The characteristic equation of A is (x — 1)> + @ = 0 and it follows that
(A—©L)*+al, = 0,.Let B = A — I, and we have that B> = —al,. This implies
that B?* = (—1)*a*I, and B! = (=1)¥"14*7!B, for all k > 1. We have e*’ =
el B — efeB! On the other hand,
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(Bt)zk (Bl‘)zk—l
Z

ot T — (2k—1)!

B o k(t\/E)Zk 1 S k—1(t\/5)2k_1
- g(_l) (2k)! L+ 7 ;(_1) 2k — 1)! B
= cos(ty/a)l, + ——~— s1n(tf)

Ja

_ cos(ta/a) —Sin:tf‘(l/a)
—Jasin(ty/a) cos(ty/a)]

This implies that
Al — o cos(t/a) &ﬁﬁ)
—Jasin(t/a) cos(t/a)]

(b) The system can be written as X’ = AX and we have that X(r) = e*'C, where
C is a constant vector. This implies that
x(f) = c1€e' cos(ta/a) + < e 'sin(t/a)
y(t) = —c1/ae' sm(tf) + c2€’ cos(ta/a),
where c;, c; € R.
4.52.(a) X' (r) = AX(1) = X'(1)— éX (f) = 0. We multiply this equation by ™ =
e~MD4 and we get that (e"™4X(1)) = 0 & (X)) =0 = X(1) =

C = X(t) = **C, where C is a constant vector.

(b) We divide by  and we multiply the system by 4 = e~(n94

and we have
1
(X(1)) = ;I_AF(I) o (X)) = AR E@
which implies
t
X)) = / u” AT F(u)du.
)
Thus

X =1 / r u” AT F(u)du.
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4.53. We have, based on problem 4.52, that

x(t) =1 — 25—

¥y =3+ 5 -

4.54. The eigenvalues of the matrix of the system A are the solutions of the
characteristic equation A> — (a + d)A + ad — bc = 0 or A> — Tr(A)A + detA = 0.
Using remarks 4.7 and 4.8 we have the following cases:

m IfA;, A e R, 41,4, <0,ie., Tr(A) < 0, A > 0 and detA > 0, then the zero
solution is asymptotically stable;

m IfA, 0 eC\R, A, =rtis,reR,se R*andr < 0,ie., Tr(A) < 0,4 <0
and detA > 0, the zero solution is asymptotically stable. It follows, by combining
this case with the previous case, that the system is asymptotically stable if and
only if Tr(A) < 0 and detA > 0;

m  Using parts (c) and (d) of remark 4.8 we obtain that the zero solution is unstable
if at least a solution of the characteristic equation has a positive real part or
both solutions are equal to O (but A # O;). We have the following possibilities:
detA <0 & A, eR A <0< AyordetA > 0and Tr(A) >0 & A, Ay €
C\Rand A; + A, > 0or Tr(A) = detA = 0 < A; = A, = 0. Therefore the
system is unstable if and only if detA < 0 or Tr(A) > 0 or Tr(A) = detA = 0;

m In all the other cases Tr(A) = 0 and detA > 0 or Tr(4) < 0 and detA = O the
system is stable but not asymptotically stable.

In conclusion we have that:

m the system is asymptotically stable if Tr(A) < 0 and detA > 0;
m the system is stable if Tr(A) = 0 and detA > 0 or Tr(A) < 0 and detA = 0;
m the system is unstable if Tr(A) > 0 or detA < 0 or Tr(A) = detA = 0.

4.55. Tr(A) = —(a®> + 1) and det A = a® — a. We have, based on problem 4.54, that
the system is:

m asymptotically stable for a € (—o0,0) U (1, 00);
m stable fora € {0, 1};
m unstable fora € (0, 1).

4.56. Tr(A) = —a and detA = 1 — a. We have, based on problem 4.54, that the
system is:

m asymptotically stable for a € (0, 1);
m stable fora € {0, 1};
m unstable for a € (—o0,0) U (1, 00).

4.57. Tr(A) = 0 and detA = —bc. It follows, based on problem 4.54, that the system
is stable for bc < 0 and unstable if bc > 0.
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4.58. Tr(A) = —2 and detA = 1 — ab. We have, based on problem 4.54, that

m the system is asymptotically stable if ab < 1;
m the system is stable if ab = 1;
m the system is unstable if ab > 1.

4.59. Tr(A) = 2a and detA = 4> — b. We have, based on problem 4.54, that

m the system is asymptotically stable if a < 0 and a®> — b > 0;
m the system is stable if a = O and b < 0 or a < 0 and a® = b;
m the system is unstable ifa > O ora> —bh < Oora = b = 0.

4.60. Observe that A = —I, 4+ B, where B = (g g) and note that B2 = 0,. We

have, based on the Binomial Theorem, that

_1\n —1)1
A" = (=1)"L + n(-1)""'B = (( 01) ME—B" ) '

It follows that

1SS 1\ ) _1yn—1
since Y (nlz) =_—T and ST — 2.

4.61.Lete = # We have

o0
Z 1:3’1' = % (eA +e + eézA) .
= (3n)!
A calculation shows that €2 = # and this implies that
e 1 e = e_%“"’@ + e_%_"@ =27 cos \/EA.

4.62. Part (a) of the problem can be proved by mathematical induction and part (b)
follows from part (a) by passing to the limit as n — oco.
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4.63. We have

) ) 00
fa) = ZFnAn_l =L+ ZFnAn_l =L+ ZF,,,HA’"
n=1 n=2 m=1

) 00 00
=I2+Z(Fm+Fm—l)Am:IZ+ZFmAm+ZF _1Am

m=1 m=1 m=1

o0 o0
=L+ Af(A) + Y Fu A" = L+ Af(A) + Y FA !
m=2 k=1

=L + Af(A) + A’f(A),

and it follows that f(A)(I, — A — A?) = L.

4.64. Recall the generating function for the nth harmonic numbers is given by

ZHx"——ln(l_x), l<x<l, (4.6)

1—x

and it follows, by differentiation and integration, that

> -, 1-In(1-x
> nH,x" == —1<x<l 4.7
- X
and

00 2
H, In%(1 —

Z—lx"+1=¥, l<x<l. (4.8)
n

n=1

We have A = al, + B, B> = 05, and it follows, by the Binomial Theorem, that
A" = oI, + noe'B, for all n > 1.
(a) We have, based on (4.6) and (4.7), that

In(1 — @) 1 —In(1—oa)
n n n—1
nEIH,,A EHaIz—i—E nH,a0" "B = — 1 L + {a B B

n=

(b) If & = 0, then A = B with B> = 0,. It follows that Z Hy AT =
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Let o # 0. We have, based on formulae (4.6), (4.7), and (4.8), that

o0 o0
Hl‘l Hl‘l
PIFVUED PR NTAS P
n—+1 n—+1 n+1
n=1 n=1 =1
lnz(l—a) > H, ,
= H n— B
E S D
In’(1 — In(1 — In’(1 —
_w(-o), (i) w0-w),
2o a(l —a) 202

4.65. Use the Jordan canonical form of A combined to the power series formulae

ln(l 2)
E H7'=——"2> 1 1;
(a) — or |z] <
—In(1 —2))
(b) E nH,7" = 1—Z)2, for [z] < L.

4.66. We use the following result [32] whose proof can be found in Appendix A.

A power series with the tail of In J.
Let x € R. The following equality holds:

oo

1 1 c4w*) In2-1 if x=1
In=+1—=+4+--+ ¥ = 2
;(2 2 n bltd=dn2 i xe (-1,1).

First we consider the case when A = 0 and 0 < |A;| < 1. Lett = A, = Tr(A).
The Cayley—Hamilton Theorem implies that A> — tA = 0, = A" = ""!A, for all
n>1.

Leta, = ln% + 1 —%—i—---—l— #.Wehave

. i 1 (In(1+0)
ZCIHA = Z ntA::(f—ln2)A

n=1

Now we consider the case when 0 < |A{],|Az] < 1. Let J4 = ()t)l f) We
2

have A = PJL,P7! = A" = PJszl, with J} = (/})1 fn) It follows that
2
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o0
o] 0o Z an/l’f 0
> a,A =P(Zanjg> Pl =p|=! o P!
n=1 n=1 0 > apAl
n=1
In(1+A1)—A11n2 0
=P =k p!
0 In(1+Az)—2;1n2
1—24,

= (L —A)"'(In(l; + A) — (In2)A) .
n n—1
It J, = (’\ ) we have A" = PJIP~!, with J§ = (’\0 ”); )
o0
Let f(x) = Y qux" = 20H9=xn2 "y o (1 1), We have

1—x
n=1

o oo ) ot (T L)Y ot
;anA _P<;anJA)P —P(O f(k))P = f(A).

4.67. (a) Let f,(x) = In(1 —x) + x + "72 4+ -4 %, x € (=1, 1). One can prove
that

x lim #f,(x) = lim n(ln(l X XD e —) - 0;
n—>o0 n—>oo

m lim nf,(x) = lim n (= +x+22 4+ =0.
n—>00 n—>oo
Let A, A, be the eigenvalues of A and let A = PJ,P~'. If

_ (M O o (nfu(X) 0O —1
JA—(o xz) = hid) =P ( 0 nfnuz))P ’

and it follows, based on the first limit above, that l_i)m nf,(A) = 0,.
n—oo
If

o (M) 1)
JA_(O A) N nfn(A)—P( ( nfn(A))Pl’

and we have, based on the previous limits, that lim nf,(A) = O,.
n—>oo

(b) We calculate the series by Abel’s summation formula, part (b) of problem
4.62, witha, = land B, = In(l, —A) + A+ ATZ + -+ ’%. We have, based on part
(a), that
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> A? A"
Z(ln(lz—A)+A+7+ + )

n=1

A2 Antl e n "
= li In(lhb —A)+A+ —+--- — —A"
1mn(n(2 )+A+ 7 + +n+1) ;n+l

n—00
An+1 An—i—]
n+1

(0

=—In(lb—A)— AL, —A)"".

4.68. (a) Use mathematical induction.
(b) We calculate the series using part (b) of problem 4.62, with a, = H,, and
=In(l, —A)+A+ ATZ + -+ *}—:, and we have

A2 Ar
ZH (ln(lz R R )

n=1

A2 Artl
= li DH, —n) (In(lb—A) + A+ = + -+
Jim ((2+1) n)(n(z )FA+ =+ +n+1)

n+1

n+1

— Y ((n+ 1DH, —n)

n=1

0 Artl

o0 o
_ n n+1 _
= A;H,,A +;A Zn+]

n=1

=AL—-A)""In(hb—A) +A(L—-A) "'+ 1In(lL—A) + A
=A+In(lhb—A)L—-A)"".

We used that

A2 Antl
li DH, —n) (In(l, —A) + A+ — + -+ =0
Jim ((2+ 1) n)(n(z )+ A+ =+ +n+1)

combined to the first formula in problem 4.65.
4.69. (a) See the idea in the solution of part (a) of problem 4.67.

(b) Use Abel’s summation formula, part (b) of problem 4.62, with a, = 1 and
B, =arctanA —A + & ... 4 (—1y AL
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4.70. (a) First, one can prove that if A € .#, (C), then

. A_g A A? A"\ 0
RS S Th Tha ) =0
We calculate the series by Abel’s summation formula, part (b) of problem 4.62,
withanzlandBn:eA—Ig—%—é—T ————— %,andwehave
St A A2 A A A2 Antl
N — - - - —|=tlimn|le!-Hh-=—-——... - —_—
= 12 nl |~ noo 12 (n+ 1)
o0
An+1
+ Z n D)
n=1
o0 Antl i Antl
n=1 ! = (I’l + 1)'
=Aet — et + 1.
(b) If A € .4, (C), then (prove it!)
i 2 (et — 1 A A? A"\ 0
RO e TR T ) = O

We calculate the series by Abel’s summation formula, part (b) of problem 4.62,

witha, =nandB, =e* — L — 4 — é—? ----- /:TI.[’ and we have
(4 A A A"
Zn e’ — ]2 _________ R
— o2 n!
. onn+1) (4, A A? Artl
= i -hL———— — =
n—00 TR (n+ 1)
i n(n+1) Artl
o 2 (n+ 1!
A2 o An—l1
-2 ; n—1)!
AZ
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4.73. Apply Abel’s summation formula with @, = 1 and B, = f(A) — f(0)], —

o/ ~(n) . .
/‘I(#A — e — fﬂ&A”, for the first series and the same formula with a, = n and

B, =f(A) —f(0), — f/lL!O)A — = J%fo)A”, for the second series.
4.74. (a) First one can show that if x, y € C, then
2 n
1imx"(e«"—1—1—y— ----- y—)=0.
n—>00 12! n!

When x = 1 this is part (a) of problem 4.70, so we solve the problem for the case
when x # 1.

We calculate the series by Abel’s summation formula, part (b) of problem 4.62,

Withanzx”andB,,=eA—12—%—/;—?—--~—/2—';.Wehave
o0
A? A"
n A— ————————— —
¥ (e h=117% n!)
n=1
1 —x" 4 A A2 An+1
= lim x e —-h—-——=—= ==
n—00 — X 1! 21 (}’l+ 1)'
o0

n An+1

3 X i An+1 1 i (Ax)n-l-l
S l—x“~—@m+1) 1-x“~m+1)

n=1

:lx (" =1 —A)— (e — 1, — Ax)
— X — X

xeA_eAx

T 1« +h

(b) This part follows from part (a) when x = —1.
4.75. Prove, using Abel’s summation formula (see Appendix A), that if z € C the
following equality holds

o et —ez

L 1, Sl oA
Se-t-gmg - R

— n! 1 ifoz=1.

It follows, by differentiation, that
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Calculate the matrix series using the previous two formulae combined to
Theorem 3.1.

4.76. Use Abel’s summation formula.

4.77. We need the following two results (see Appendix A).

Let k > 3 be an integer and let x € [—1, 1]. The following formula holds

x¢ (k) — Liy (x)

S ! L 1 — ifxe[-1,1)
L) — — — — — e — _)xn _ =
Z( e " Z(k—l)iz(k) if x=1,

n=1

where Li; denotes the polylogarithm function.

Let k > 3 be an integer and let x € [—1, 1). The following formula holds

oo

11 1\ ., ¢(k)—2Lik(x) — Lix(x)
Zn(f(k) ————————— —)x" = =2 ;

n=1

where Li; denotes the polylogarithm function.

(=D" n(=1y""'x
Use that A" =
(a) Use tha ( 0 (—1)y"
k=3andx = —1
(b) Express A" in terms of the eigenvalues of A using Theorem 4.7 and apply the

preceding two formulae.

) and the preceding two formulae with

o0
4.78. (a) Observe that ) ~r = ¢((a— 1)) and use Corollary 4.8.
n=1
(b) We have

i n =§(a81 aél)

n=1 a ﬁ
n(O Ol)

and the problem follows based on part (b) of Corollary 4.9.

o0
4.79. Observe that Y nlA = (A — 1), then use Theorem 4.14.

n=1

4.80. (a) Use Abel’s summation formula with @, = 1 and B, = {(A) — %A S
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(b) Use Abel’s summation formula witha, = nand B, = {(A)— %A—ZLA ----- nLA'
LY, 1
4.81.A" = (a R b) It follows that
0 a
1 1 [ ©  n—1
In(l, — A
/ In(l, —Ax) , _ _ / 3 oA dx
0 X 0 n=1 n
e A"
= n2

n=1
_ Z i a' na"'b
B n\0 a"

_ (—Liz(a) bln(;—a))
- 0 —Lira))’

4.82.1f 1, = 0O and A, = 1 we have that A2 = A and this implies that A" = A, for
all n > 1. Therefore

0 n=1

If A, = A, = 0, then A% = O, which implies that A" = O, for all n > 2. Thus,

ln(Iz—Ax) B
[ e -3

4.83. Use Theorem 4.7 with f(x) = In(1 — x) and A replaced by xA. Observe the
eigenvalues of xA are xA; and xA,.

4.84. We use the following series formula.

The quadratic logarithmic function.
The following equality holds

In*(l, — A) = 22 AT

where H, denotes the nth harmonic number and A € .#, (C) with p(A) < 1.
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We have
"In?(I, — A 'S H, >, H,

[ Md)c:/ zz_ann-H dx=2Z—An+l.
0 x 0 —n+l —(n+1)

@IfA; = A, =0, then A2 = 0, = A" = O,, for all n > 2. We have, based
on the previous formula, that

Uin2(, — A
/dezoz,
0

X

b)IfA;, =0and A, = 1,then A2 = A = A" = A, forall n > 1. It follows,
based on the previous formula, that

"n?(1, —Ax) H, _
fo — _22( +1)2 =2¢(3)A.

n=1

To prove the last equality we note that

Z(n+1)2 Z ZZ:_l;zH:Z Zn3—§(3)

n=1

o0
H,
since »  — = 2¢(3) (see [22, Problem 3.55, p. 148]).
n

4.85. We have

1 1 [ o XA" o0 A"
/Oln(lz—Ax)dx=—/0 (Z . )m:—;—n(nJrl).

n=1

IfA; =1, =0,thenA> = 0, = A" = 0,, forall n > 2. We have, based on
the previous formula, that

1
A
/ In(l, — Ax)dx = ——.
0 2

If A,y = 0and 0 < |A,| < 1, then A> = tA, where t = Tr(A). This implies that
A" = "71A for all n > 1. It follows that
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o0

1 tn—l
/0 ln(Iz—Ax)dx = —;mA
gl
- (1n - )

:_((l—t)ln(l—t) +1)A.
t

2

I£0 < [A1], 45| < 1, then

1 e A
/0 1H(12 —Ax)dx = —IZ n(n—-|—1)

n=1

=1In(l, —A) + A~ (= In(l, — A) — A)
=(hL—-A"YIn(, —A) —b.

4.86. We have

/Axdx /(Z(m)) i(ni"l)‘

n=0

IfA\, =1, =0,thenA? = 0, = A" = O,, for all n > 2. Thus

1 n A
eMdx = =5L+ =
/0 Z(n—i—l)' 2+2

If \; = 0and A, # O, then A2 = A, where t = Tr(A). This implies that
A" = 1A, for all n > 1. Tt follows that

x . _ -1 _ e—l—t
/oAdx Z<n+1>" Z<+1)' =ht—p A

If A, A, # 0, then

/()Axdx Z(n+])' (" —b)A™".
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4.87. (a) We have

) (xA)Z” B e} . A2n
f cos(Ax)dx = / (,1 O(—l) n)! )dx = g(_l) Cnt )

If A, = A, = 0, then A%> = O, which implies that A” = O, for all n > 2. Thus

2n
/ cos(Ax)dx = Z(— ) —— nt D) =D.

n=0

If A; = 0and A, # O, then A2 = A, where t = Tr(A). This implies that
A" = 714, for all n > 1. It follows that

2n

1 oo
| eostanar =1+ Yy

n=1

2n—1

_12+Z( ' G

sint — ¢t

=L+ A.

If A, A, # 0, then

2n

1\ oA=L s
/(;cos(Ax)dx Z( )(2 D = A" sinA.

(b) This part of the problem is solved similarly.
(c) We use the formula sinA(x 4+ y) = sinAxcosAy + cosAxsinAy, and we
get that

1,1 1,1
/ / sinA(x + y)dxdy = / / (sin Ax cos Ay + cos Ax sin Ay) dxdy
0o Jo 0o Jo
1 1
=2 / sinAxdx | cosAydy,
0 0

and the result follows from parts (a) and (b).
4.89. We solve only part (b) of the problem. Let A1, A, be the eigenvalues of A

and let
A O cos B —sinf
Jy = d P= .
4 (O 12) an (sin,B cos B
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Nota bene. We have that A = PJ4P~! and we choose P to be a rotation
matrix. We mention that the matrix P is the invertible matrix whose columns are
the eigenvectors corresponding to the eigenvalues A;, A, of A and we normalize
them in order to have a rotation matrix (see Theorem 2.5).

We calculate the double integral by changing the variables according to the

formula X = PY, i.e.
(x) _ (cos,B —sin ,B) (u)
y) \sinp cosp ) \w

I(x) —/ / (wTAv)%e™ A”dxdy

/ / /‘\,lu + sz ) —(Aluz-l-lzvz)

= / / ()L]uz + szz)a e_(A‘”2+A2”2)dudv,
o0 -0

and we have that

D(x,y)

dud
D@, v) |

D(x,y) . . .
where is the Jacobian of the transformation.
D(u,v)
Using the substitutions u = j_;Tl and v = j—z we get that
I(a ¥? 4 y? ae_ ) 4y dy
@ = «/)L Ao / / y

1 27
St

2r

o

_ 20 —p2 2

—— pe P pdp (p”=1)
detA Jo

b1

B v/detA Jo

_al(a+1)
JdetA

2
—1

/ - / > @+ =) 4xd T
€ y = —
~o0 J—o00 V3

When o = 0and A = ( _21) we obtain [58, Problem 2.3.3, p. 40] which

states that
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4.90. If A, A, are the eigenvalues of A, then ;- and .- are the eigenvalues of A~ I

Let P be the rotation matrix which verifies the equahty A7l = Pl P! We
calculate the integral by using the substitution X = PY, i.e.

x\ _ fcosf —sinf\ (X
y)  \sinf cosé y
and we have that

_ 1
// LA (—EUTA_IU—ln(27rvdetA))dxdy
R2
/2
%T )T _l X In(27 et A D(x,y) dr'dy
//Rz 2 /\1 )Lz n(m et4) D', y") Y
2 /2 /
D [ L1 (2400 L neavaeta) | axay Y = VA
//]RZ 2 /\1+)tz n(2m v det ) Yy = VA

1
= / / e (W Hv?) (—§(u2+v2)—ln(2nx/detA)) A1 Aodudy
R2

00 2 1
= vdetA/ / e 2" (—5,02 - ln(ZJTVdetA)) pdpda
o Jo

| >
= 2w +/detA [—5/ e 2f’ p>dp — In(27 v/det A ) e 2F pdp:|

0

— _27+/detA [1 +InQ27 x/detA)] .

4.91. Let A1, A, be the eigenvalues of A and let P be the invertible matrix such that
A = PJ,P~'. We have that

e o0\ . A1 0
P Pl if U =
o 0 el 0 A,
eM oxet\ Al
P Pl if U, = )
0 et 0 A

We are going to use in our calculations the following integral formulae which
can be proved by direct computations.
If L € Cand o > 0, then:

o0 o0
a2 T2 o2 T A 22
/ e My = el and f xe Ay = [ = —ela,
o0 o —00 o 2
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IfJy = (/\01 ;)2) we have that

° 2 © 2
/ eAxe—ax dx — P (/ e.]Axe—OéX dx) P—l
—00 —0o0

o Aix
( / (eo e/?zx) oo dx) p-l
—00
_p (j‘_o(‘;o e—ax2+/\1xdx 0 ) P—l

00 —ax?+Arx
0 e dx
b4 eji 0
a —
=./=P 2| P!
o 0 ew
T A2
= —eda
o

00 5 00 )
[ eAxe—ax-dx =p (/ eJAxe—ax dx) P—l
o L0 e

00 —ax?+Ax oo —ax?+Ax
e dx xe dx) _
P f —00 f —00 i P 1
0 [2o, emer Ay

4.92. Solution 1. Replacing A by iA in problem 4.91 we have that

0o
v —oi T _A2
elee axdx: e i,
—00 o
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and it follows, since e* = cos(Ax) + isin(Ax), that

* 2 T _A%
/ (cos(Ax) + isin(Ax)) e dx = [ —e 4.
o o

Identifying the real and the imaginary parts in the previous formula the problem
is solved.

Solution 2. Use a technique similar to the method in the solution of problem 4.91.
4.93. We need the following formulae which can be proved by direct computation.

Three exponential integrals with sine and cosine.

If « is a positive real number and 8 € C with o > |J(B)|, then

° o
(a) -/0 e~ cos(Bx)dx = m;
o —O0X L3 ﬂ
(b) /(; (] sm(ﬁx)dx = m;
(] ur az _ ﬂz
(C) Xe COS(,B)C)dx = m
. A O
(a) Let A; and A, be the eigenvalues of A. Let J4, = 0 2 and let P
2

be the nonsingular matrix such that A = PJ,P~'. This implies that sin(Ax) =

sin(41x) 0 ) . It follows that

Psin(J4x)P~', where sin(Jyx) = ( 0 sin(A,x)
2X

o0 o0
/ sin(Ax)e"**dx = P ( / sin(JAx)e_‘”‘dx) P!
0 0

157 sin(Ax)e ™ dx 0 -
=P ) I s | P
o sin(Axx)e™**dx

A 0
_ P(ﬁ-(‘:)-az - )Pl
23+a?

=A% + o)
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0 A 0 sin(Ax)

o0 o0
/ sin(Ax)e™**dx = P ( / sin(]Ax)e_‘”dx) P!
0 0

p 5 sin(Ax)e™*"dx foooooxc?os(kx)e_”dx Pl
0 Jo sin(Ax)e™**dx

A [
— p [ *?+e? (azt‘)ﬂ)z p!

A2 +a?

IfJ, = (A 1), then sin(J4x) = (sm(kx) XCOS(AX)). We have

=AA* +o’h) 7

Part (b) of the problem is solved similarly.

4.94. (a) We need the following integral formulae which can be proved by direct
computation.

Euler-Poisson integrals. Let A > 0. The following formulae hold:

(@ fooe—“zdx _
0

244
(b) / ¥ e = YT
0 422
o0 r(1+1
(c) / e Mdx = %, where I' denotes the Gamma function and
0

Let J4 be the Jordan canonical form of A and let P be the invertible matrix which

verifies A = PJ,P~!. A calculation shows that J, = (2 1), P = (1 0) and

02 11
P! = ( 11 ?).We have
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and it follows that

* e—szdx =P ./‘(JOo e—2x2dx - fOoo ‘xze_zxzdx P—l
0 0 =2 4y
0 0

5 1
Observe that if B = (4“1/5 4 2), then B2 = A~
W2 a2

(b)A = al, + bJ, where J = ((1) (1)) It follows that

A _ ) ]
e Axt e (al,+bJ)x" = @ Ize bx"J _

_ B
e ax"e be-

A calculation shows that e ™"/ = cosh(bx")I, — sinh(bx")J and it follows that

v _ e—(@bn" 4 o—(atb)” e—(a=b)" _ o—(a+b)"

— L — J.
2 2 2

Now the problem follows by integration and by using part (c) of Euler—Poisson
integrals. Another method for calculating e ™" is to use part (a) of problem 4.32.

4.95. We need the following integrals due to Laplace.

Three integrals of Laplace.
(a) The following formulae hold:

* cos b4 ° xsin 11
—axdx = —e 7l and al axdx = —e"“lsigna, a € R.
o 1+x? 2 o 1+x2 2

(b) If a € R, then

o
/ e cos 2axdx = ge_“2.
0
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(a) Observe that A = al, + bJ, where J = ((1) (1)) It follows that

cos(Ax) = cos(al, + bJ)x = cos(ax) cos(bxJ) — sin(ax) sin(bxJ).

A calculation shows that cos(bxJ) = cos(bx)l; and sin(bxJ) = sin(bx)J. This
implies that

cos(Ax) = cos(ax) cos(bx)I, — sin(ax) sin(bx)J

(cos(a + b)x + cos(a — b)x) 152 — (cos(a — b)x — cos(a + b)x) %

and we have
[°° COS(Ax)dx _ /°° cos(a + b)x + cos(a — b)xdx I
0 1 =+ .XZ 0 1 =+ xz 2
/°° cos(a — b)x — cos(a + b)xdx J
0 1 + x2 2

T e—|a+b\ +e—|a—h| e—\a+b\ _e—\u—b\
4 e—\a-i—bl _e—\a—b\ e—|a+b| +e—|a—b| :

The challenge integral as well as part (b) of the problem can be solved similarly.

Remark 4.23 1f A € .4, (R) the reader may wish to calculate the integrals

/ cos( );) dx, / )&(f)dx and f e cos(Ax)dx
0 1 +x 0 1 +x 0
by using Theorems A.2 and A.3.

4.96. Observe that A = al, + bJ, where J = ((1) (l)), and use Fresnel’s integrals

o0 o0 1
/ sin x2dx = / cos X2dx = —
0 0 2
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The challenge integral can be calculated by using the Fresnel integral

o0 1 Fid
cos X"dx=T1{1+ — ) cos —.
0 n 2n

We leave the details to the interested reader.
4.97. (a) Let J4 be the Jordan canonical form of A and let P be the invertible matrix

such that A = PILP L IfJ, = A0 thene ™ = P M0 Pl 1t
= A . A — 0 A,z ) = O e_AZX .

oo 0 —Aix
—Ax f € dx 0 —1
dx="P P
/(; ) ( 0 fooo e_lzxdx)

follows that

—Ax L a—AX
IfJ, = (g i), thene ™ = P (e ;CEM ) P11t follows that

0
© 0 \—Axdy 00 o —Axy .
/(; e dx_P(fo 0 j{oo _de )P
L1
:P((k) lz)P‘
A
=A""

(b) We have, based on part (a), that

o o0
/ e e dx = [ e~ qx = (A —al,) 7.
0 0

() IfJy = ()“ 0),then

0 A,
0o S —Alx n
[ e Ay = P( ¢ de _2” )P—1
0 0 N .
!
n! 0
n+1
=P AI n! P_l
0 A;“Fl
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IfJ, = (g i), then

o] 0 —Ax,n _ (% —Ax nt1
[Femenemp (00 ey
0 0 [0 e Mipndx

n! _ (n+1)!
=p /\n(;rl /};;4*2 P—l
/\n+1

— n!A_("'H).

0 A,
invertible matrix such that A = PJ,P~!. We have

* sin(Ax) 00 sin(A1) 0 _
/0 ——dx="P (fo OX 00 sin(lo) g p!

4.98. (a) Let J, = (A1 0) be the Jordan canonical form of A and let P be the

x Jo =

sign(A1) 5 0 —1
P 2 P
( 0 sign(kz)%)

%12 if /\1,12 >0
—%12 if /\1,12 < 0.

We used in the previous calculations Dirichlet’s integral f0°° Siniﬂdx = sign(1) %,
AeR.

b)IfJy = (Al O),then

0 A,
00 oin2 00 sin?(A1x)
A sin”(A1.x)
/ mgﬂﬁzp o T w'%) P
0 * 0 Joo T
_p sign(A)A1 5 0 p-l
0 sign(A2)A25

%A if )L1,12>0
—%A if )L1,12<0.
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IfJ, = (g i), then

. sin? (Ax sin(2Ax
/Oo s1n2(Ax)dx _p 1 %dx 1 %“dx Pl
2 0o sinZ(Ax)
0 X 0 Joo FEdx
_p (sign(k)k% sign(k)%ﬂ) Pl
0 sign(A)A %
) 3A if A>0
-3 if A <0.
We used in our calculations the formula f0°° Smi#dx = sign(A)A 7.

4.99. Let A; and A, be the distinct eigenvalues of A. The eigenvalues of A + I, are
the positive real numbers A; + 1 and A, + 1 and the eigenvalues of A — I, are the
negative real numbers A; — 1 and A, — 1. We have, based on part (a) of problem
4.98, that

/°° sin(Ax) cosX [‘X’ sin(Ax) cos(]zx)dx
0 X 0 X

. /°° sin(A + I)x + sin(A — Iz)xdx
0

2x
1 /7 T
-1 (51
2(22 2/
= b

4.100. Let A, A, be the eigenvalues of A, let J4 be the Jordan canonical form of A,
and let P be the invertible matrix such that A = PJ,P~'.

A 0
IfJ, = , th
A (0 Az) en

e8] e—ozAx _ e—ﬁAxdx _»p fooo e—akl}c;e—mlxdx 0 P_l
X O foo e—o(kzx_e—ﬂ/lzxdx
0 0 X
B
—p(™e O ) p
Int
o
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Al
IfJ, =
Ja (O A),then

00 o—aAx _ o—PAx 00 e—wlx_e—ﬁ)\xdx foo —axe_““-f—ﬂxe—ﬂhdx »
"% qr=p(l T o o Fp
e~ _e—hh
0 x 0 Joo e gy

X

4.101. (a) Let A1, A, be the eigenvalues of A, let J4 be the Jordan canonical form of
A, and let P be the invertible matrix such that A = PJ,P~!.

A 0
It 7, = . th
A (0 Az) en

[ S g p ([ L) P
0 0

X X

[0 LB g o }
=P OX fooo }wdx P

_ p (O —fcopnf 0 e
0 (f(0) —f(c0)) In £

- [(f((» —f(oo)) In g} b
IfJ, = (g i) we have that

f(an) —f(ﬂAx) — (f(akx) —f(,BAX) axf’(oe)tx) - ﬂxf/(ﬂkx)) )

0 flarx) — f(BAx)
Thus,

X

[ et 1619,
0

_p (fo"" Heb IR gy [ (af (@h) = B (BA) dx) -

0 s [@D)=f (BA) 4,
_ p[(FO —feopn ] 0 -
0 (f(0) — f(c0))In £

- [(f(O) ~fleo)n g} I
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(b) Let f : [0,00) — R be the function defined by f(x) = S‘;‘# if x # 0 and
f(0) = 1. Observe that
02 02
sin(Ax) _ P - SR f(A) —f(QAY)
x3 x x '

This implies, based on part (a), that

dx = A%*In2.

/‘ * sin*(Ax)
0 x?

~ To calculate the second integral we let g : [0,00) — R be the function g(x) =
=2 if x # 0 and g(0) = 1. We have

sin’ (Ax) _ 8(Ax) — g(3Ax) . %

x2 X 4

It follows, based on part (a), that

A.

/°° sin’(Ax) 3In3
;v =
0 X 4

(c) Letf : [0, 00) — R be the function f(x) = l_i_x ifx# O0and f(0) = 1. A
calculation shows that

X X

(12 — e—AX)2 _ [0 —feay

o /I — —Ax\ 2
L) dx = (2In2)A.
X

We mention that parts (b) and (c) of this problem were inspired by the sine
Frullani integrals

% gin* x % gind x 3In3
/0 s dx=1n2 and /o 2 dx = 7

which implies, based on part (a), that

the first of which being due to Mircea Ivan, and the quadratic Frullani integral due
to Furdui and Sintamarian [33]
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4.102. Let A1, A, be the eigenvalues of A, let J4 = ()(t)l )? ) be the Jordan canonical
2

form of A, and let P be the invertible matrix such that A = PJ4P~!. Then

2
—AX_a—Aly
— Ay 2 e Mr—em MY
(e -Ax eA)) (?) 0

pl
xX—y 0 (e‘*z"—e—*2>')2 ’
x—y
which implies, based on Lemma A .4, that
[ee] o] e—Ax _ e—Ay 2
[l () e
0 0 X=y
—AX_a—Aly 2
I s (e lx—; 1‘) dxdy 0 .
=P 00 00 [ eTA2x_g—h2y 2 P
0 ./0 .[0 ( x—=y ) dXdy

—p Ind4 O P_1
0 In4

= (ln 4)12 .



Chapter 5
Applications of matrices to plane geometry

Everyone wants to teach and nobody to learn.
Niels Abel (1802-1829)

5.1 Linear transformations

Definition 5.1 Let A € .# (R). The function f; : R?> — R?, defined by

fuey) = (0.y).  where ("1) iy (’“)
Yy Yy

is called a linear transformation defined by the matrix A (or linear map defined by
A) of R?.

The matrix A is called the matrix associated with the linear transformation fj, in
the canonical basis, and is denoted by Ay.

Proposition 5.1 The linear transformation fy : R? — R?, fy(x,y) = (X',y'), where

(x,) :A(x), A et (R),
y Yy

has the following properties:

(@) fa((x1,31) + (x2,2)) = fa(x1,31) + fa(x2,¥2), ¥ (x1,31). (x2.y2) € R?
() fala(xr,y1)) = afa(xi,y1), Ya € RV (x1.y1) € R,

where the operations with respect to which R? is a real vector space are those
defined for one line matrices or (one column matrices) as in Remark 1.3.

Proof (a) We have,

A= G =26 ()

and part (a) follows.
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(b) On the other hand,

and the proposition is proved. O

Remark 5.1 We mention that the properties in parts (a) and (b) of Proposition 5.1
are equivalent to

Sala(xr,y1) + B(x2, y2)) = afa(xi, y1) + Bfa(xa, y2),
Va,B € Rand V (x1,y1), (x2,y2) € R%.
We also have the following properties:
m the zero vector is preserved: f4(0,0) = (0,0);
m fa(—=(xy) = —falx.y);
m the identity map: fi,(x,y) = (x,y) or fi, = Ig2.

Definition 5.2 The kernel and the image of a linear transformation. The set

KeIfA = {(xvy) € Rz : fA(x’ y) = (070)}

is called the kernel of f4 and the set

Imfy = {fa(x.y) : (x,y) € R?}

is called the image of fj.

Thus, the kernel of a linear transformation consists of all points (vectors) in R?
which are mapped by f4 to zero (the zero vector in R?) and the image of f consists
of all points (vectors) in R? which were mapped from points (vectors) in R?.

It should be mentioned that the kernel and the image of a linear transformation
are analogous to the zeros and the range of a function.

Lemma 5.1 The following properties hold:

(a) The kernel of fy as a vector subspace of R?.

Va,p € Rand ¥ (x1,y1), (x2,y2) € Ketfy we have a/(x1, y1)+B(x2, y2) € Ketfa;
(b) The image of fy as a vector subspace of R2.

Ya,B € Rand ¥V (¥',y), (x",y") € Imfy we have a(X',y') + B(x",y") € Imfy.

Proof The proof of the lemma is left, as an exercise, to the interested reader. O

Theorem 5.1 If A,B € ., (R) and fu,fp are the linear transformations deter-
mined by A and B, then the function f o fz : R? — R? is a linear transformation
having the associated matrix AB.
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Proof If fg(x,y) = (x',y) and f(x',y) = (x”,y"), then
Jaofs(xy) = fa(fs(x,y) = fa@,y") = (", "),

where

It follows that

(£)-()

so the matrix of the linear transformation f; o fp is AB. O

5.2 The matrix of special transformations

In this section and in what follows, to simplify the calculations, we identify the point

(x,y) € R? by the vector (x)
y

Theorem 5.2 The matrix of a linear transformation.

If the linear transformation fy : R> — R?, f3 (x) = A (x) where A €
y y

Mo (R), verifies

#(o)= () et A ()= () oen 2= (3)
Proof LetA = (m n) Since
P q

1(o)=( ) 6)= () =)



284 5 Applications of matrices to plane geometry

#(1) =G0 -0)-6)

we get that A = (Z 2) and the theorem is proved. O

and

Using Theorem 5.2 we can determine the matrices associated with various linear
transformations.

The matrix of the reflection through the origin

We wish to determine the matrix of the reflection of a point through the
origin. This is the linear transformation which sends the point M(x, y) to the point
M'(—x, —y), the symmetric of M about the origin.

Letfy :R2 >R £ (Y) =4 ("), wherea = (¢ ).
y y b d

7o) =(5) = (1) =(5)

-1 0. . .
we have, based on Theorem 5.2, that A = ( 0 1) is the matrix of the reflection
through the origin.

The matrix of the reflection across the x-axis

Now we determine the reflection across the x-axis. This is the linear transforma-
tion which sends the point M(x, y) to the point M’ (x, —y) which is the symmetric of

M about the x-axis.
1 1 0 0
(o) =) e 2 ()= (5)

Since
we have, based on Theorem 5.2, that A = ((1) Ol) is the matrix of the reflection
across the x-axis.
The matrix of the reflection across the y-axis

As in the previous calculations we have that the matrix of the reflection across

the y-axis is given by A = (_0] (1))

The rotation matrix of angle o and center the origin
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Let « € (0,2mw). The rotation of angle « and center the origin O is the
transformation which preserves the origin (it sends O to O) and sends the point
M to the point M’ such that the segments [OM] and [OM’] have the same lengths,
ie., OM = OM’ and Am " and @ are equal and have the same orientation (if ¢ > 0
the rotation is counterclockwise, if & < 0 the rotation is clockwise).

Letfy : R? — R2, fy (x) =A (x)’ where A = (a C) and @ > 0.

y y b d

We have ¥ = cos(f + a) = cosfcosa —sinfsina, cosf = x, sinf = y.
It follows that X' = xcos« — ysina. Similarly, y = sin(f + «) = sinf cosa +
cos 0 sina, and we have that y) = xsina + ycosa.

Since
i 1 _ c9s o and f 0 Y sin o 7
0 sin 1 cos o

cosa —sina

we have, based on Theorem 5.2, that A = ( ) is the matrix of the

sine  coso
rotation of angle o and center the origin.
We have denoted this matrix (see problem 1.61) by R, = (C?S @ —sim a).
sine  cosw
Any rotation of angle « is a bijective transformation and its inverse is the rotation
of angle —a.
The set of all rotations around the origin together with the composition (of

transformations) is an abelian group which is called the group of rotations.

The rotation around an arbitrary point (xo, yo) has the equations

X = xo + (x —xp) cosa — (y — yp) sin«

¥y = yo + (x —xp) sine + (y — yo) cos .

The matrix of the uniform scaling of factor k
Let k € R*. The uniform scaling of factor k is the linear transformation
(geometrical transformation) which associates to the point M, the point M’ such

—
that OM' = kO—A)/I, where O is the origin of the coordinate system. We immediately
obtain that the image of M(x, y) is the point M’ (kx, ky).
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X X ac .
Letfy : R? - R2, fa =A , Where A = . Since
y y b d

1(o) =) e ()= ()

we have, based on Theorem 5.2, that A = (I(; Z) is the matrix of uniform scaling
of factor k.

Remark 5.2 When k = —1 the uniform scaling becomes the reflection through the
origin.

We mention that in geometry the uniform scaling of factor k£ > 0 is also known
as the homothety of center the origin and ratio k. We denote the uniform scaling of
factor k by 6y, and we have 6y x(x,y) = (kx, ky).

The homothety of center (xo, yo) and ratio k denoted by 6y, y,).x is defined by

Oro.y0)k (X, ) = (x0 + k(x — x0), y0 + k(y — y0)).

The matrix of the orthogonal projection of vectors from R? onto the x-axis

Letfy :R2 >R A (M) =A (), wherea = (¢ ).
y y bd

Since the projection of M(x, y) onto the x-axis is the point M’(x, 0), we get that

#(o)= (o) = 4= )

and we have, based on Theorem 5.2, that A = ((l) 8) is the matrix of the orthogonal

projection of vectors from R? onto the x-axis.

The matrix of the orthogonal projection of vectors from R? onto the x-axis

Similarly one has that A = (g (1)) is the matrix of the orthogonal projection of

vectors from R? onto the y-axis.
5.3 Projections and reflections of the plane

Definition 5.3 A linear transformation P : R? — R2 such that P o P = P is called
the projection of the plane.
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Remark 5.3 A projection is an idempotent transformation, i.e., PoPo---o P = P,
D —

. n times
for any integer n > 2.

Theorem 5.3 If P : R> — R? is a projection defined by the matrix A, then the
matrix A is idempotent, i.e., A% = A.

Proof We have, based on Theorem 5.1, that Apop = ApAp = A%, and it follows that
A% =A. O

To determine all the projections of the plane we need to determine first their
associated matrices, i.e., the idempotent matrices.

Theorem 5.4 Idempotent real matrices.

The matrix A = (z Z) € M, (R) is idempotent if and only if it has one of
the following forms:
(1) Ay = Oy;
(2) Ay =Dy
3) A = (O 0), ceR:
c 1
@ Ay = (1 0), ceR;
c 0

(5) As = (afaz b ) a€R, beR".
b a

Proof See the solution of problem 1.14. O

The next theorem gives the geometrical interpretation of all the projections of the
plane.

Theorem 5.5 The projections of the plane.

The projections of the plane are the linear maps Py, P», P3, P4, Ps : R? — R?
defined by:

(1) Pi(x,y) = (0, 0) (the zero projection, all points of the plane are projected
to the origin);

(2) Py(x,y) = (x,y) (the identity);

(continued)
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Theorem 5.5 (continued)

(3) Pi(x,y) = (0,cx + y) (the oblique projection onto the y-axis on the
direction of the line cx +y = 0);
The point M(x, y) is projected onto the y-axis. The lines which connect
a point (x, y) with its image P(x,y) = (x',y') have the same slope

_ Yoy _exty-y
X —x —X

m —c (constant).

In conclusion, P is the oblique projection onto the y-axis on the
direction of the line cx +y = 0.

(4) P4(x,y) = (x, cx) (the vertical projection onto the line y = cx);

We have ImP, = {(x, cx) : x € R}, i.e., the image of this transforma-
tion is the line y = cx. Since the points (x,y) and (x, cx) are located on
the same vertical line, we get that Py is the vertical projection onto the
line y = cx.

(5) Ps(x,y) = (ax + by, #x + (1 - a)y) (the oblique projection onto the

liney = I%x on the direction of the line ax + by = 0);

We have
1—
ImP5=%(t,Tat): teR},

and it follows that the image of this transformation is the line of equation
y =15t

The lines which connect a point M(x,y) with its image P5(x,y) =
M'(x',y') have the slope

e /
X —X

a
~3 (constant).

In conclusion Ps is the oblique projection onto the line y = l%x on the
direction of the line ax + by = 0.

Proof This follows from Theorem 5.4.

Theorem 5.6 The fundamental properties of projections.
LetA € M5 (R), A2 =A, A # 0y, A# L and let

P, :R? - R2, PA(’“) =A(x).
y y

(continued)
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Theorem 5.6 (continued)
Then:

(a) KerP, is a line;

(b) ImPy is a line;

(¢c) Py projects the point (x,y) onto the line ImP4 on the direction of the line
KerPy;

(d) any point (x,y) € R? can be written uniquely as the sum of a point in
KerP4 and another point in ImPy (this means that R? is the direct sum of
the vector subspaces KerP, and ImPy, i.e., R> = KerP, & ImP,);

(e) the Jordan canonical form of an idempotent matrix A, with A # O, and

A # D, is given by J4 = ((1) g)

Proof From the conditions of the theorem we see that the rank of A is 1, so the
system AX = 0 has a nontrivial solution Xy # 0 and any other solution of the
system is of the following form X = o Xy, o € R.

(a)
(b)

(©

(d)

KerP4 = {(x,y) : xyo = yxo}, where Xy = (xo).
Yo

Y € ImP4 < there exists X € R? such that AX = Y, i.e., the nonhomogeneous
system AX = Y is compatible. This is equivalent to saying that rank(A | Y) =
rank(A) = 1 and this implies that, if A; is a nonzero column of A, then Y = «aA;,

o € R. Thus, forA; = (a) we have that ImP4 = {(x,y) : cx = ay}.
C

Clearly P4 projects the points of the plane onto the line ImP4. We only need
to prove that the vector which connects a point on the plane with its image is
parallel to the line KerPy, i.e., the vector AX — X is proportional to the vector
Xy, with AXy = 0. However, A(AX — X) = A’2X — AX = (A> — A)X = 0, which
implies that the vector X; = AX — X is a solution of the system AX; = 0, so
X, € KerPy,.

Observe that any point (x,y) € R? can be written uniquely as (x,y) = (x,y) —
Ps(x,y) + Pa(x,y), where (x,y) — Pa(x,y) € KerP4 and P4 (x,y) € ImP,.

The theorem is proved. O

Definition 5.4 A linear transformation § : R> — R? such that S o § = I (this
implies that S is bijective and S™! = ) is called an involution or a reflection of the
plane.
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Theorem 5.7 If S : R? — R? is an involution defined by the matrix A, then the
matrix A is involutory, i.e., A2 =,

Proof We have, based on Theorem 5.1, that Ages = AsAs = A%, and it follows that
A’ =1, O

To determine all the reflections of the plane we need to determine first their
matrices, i.e., the real involutory matrices.

Theorem 5.8 Involutory real matrices.

The matrix B = (a b) € M, (R) is involutory if and only if B has one of the

cd
following forms:
(1) Bi = —h;
(2) By =D
(3) B; = (‘1 O), ceR;
c 1

4) B4=(1 0), ceR;
c —1

) AS=<1_“a2 b), aeR, beR*
4

Proof See the solution of problem 1.12. O

Like in the case of projections, the geometrical interpretations of all the
reflections of the plane are given by the next theorem.

Theorem 5.9 The reflections of the plane.

The reflections of the plane are the linear maps S, S», S3, S4, S5 : R? — R2
defined by:

(1) Si(x,y) = (—x, —y) (the reflections through the origin),
(2) S2(x,y) = (x,y) (the identity map);

(3) S3(x,y) = (—x,cx + y) (the reflection across the y-axis on the direction
of the line cx + 2y = 0);

@) S4(x,y) = (x,cx — y) (the reflection across the line cx — 2y = 0 on the
direction of the y-axis),

(continued)



5.3 Projections and reflections of the plane 291

Theorem 5.9 (continued)

2
a
x—ay) (the reflection across the line

(5) SS(-x’ y) = (ax + byr b
(a — 1)x + by = 0 on the direction of the line (a + 1)x + by = 0).

Proof This follows from Theorem 5.8. O

Theorem 5.10 The fundamental properties of reflections.

LetA € 45 (R), A2 = I, A # +D,, and let
Sq:R2 >R, S, (x) =A(x).
y Yy

(a) the set InvSy = {(x,y) eR? : Su(x,y) = (—x, —y)} is a line;
(b) the set of fixed points FixSy = {(x,y) eR? : Su(x,y) = (x, y)} is a line;

Then:

(c) forany X = (x) there exist and are unique the vectors X1, X, € R?* with
Yy
AX1 = —Xl, AX2 = X2 and X = X] + Xz;

(d) Sy is the reflection across the line FixSy, on the direction of the line InvSy;

(e) any point (x,y) € R? can be written uniquely as the sum of a point in
FixSy and a point in InvS, (this means that R? is the direct sum of the
vector subspaces FixSy and InvSy, i.e., R? = FixS, @ InvSy);

(f) the Jordan canonical form of an involutory matrix A, with A # =+, is

. 1 0
given by J, = (0 _1).

Proof (a) The matrix A + I, has rank 1, so the system AX = —X & (A+ L)X = O,
has nontrivial solutions, all of them being of the form aXj, Xy € R2, X, # 0 and
o €R.

(b) The matrix A — I, has rank 1, so the system AX = X < (A — )X = O; has
nontrivial solutions, all of them being of the form fX;, X; € R2, X, #0and § € R.

(c) If X; and X, would exist, then AX = AX|+AX, = —X;+Xsand X = X;+X>,
soX| = %(X —AX)and X, = %(X + AX), which verify the conditions AX; = —X
and AX2 = Xz.

(d) We prove that the line which connects a point with its image has a fixed
direction. We have A(AX — X) = A’X — AX = X — AX, which implies the vector
X| = AX — X verifies the equality AX; = —X|, so X; € InvS,4. On the other hand,
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A(3(AX +X)) = 1(A’X 4+ AX) = 3(X 4+ AX), s0 X, = 3(X + AX) is a fixed
vector, i.e., AX, = X>.

(e) Any vector v = (x,y) € R? can be written uniquely as v = % v+ Sa(v) +
% (v —S4(v)), where % (v + Sa(v)) € FixS4 and % (v—S84(v)) € InvS,. |

Now, we establish a connection between projections and involutions. Intuitively,
we have the formula

1
P(-xvy) = E ((X, y) + S(xvy)) s (-xvy) € st

which can be viewed geometrically as the point P(x,y) is the midpoint of the
segment determined by (x,y) and S(x, y).

Theorem 5.11 The link between projections and involutions.

If P : R? — R? is a projection, then S = 2P — I is an involution and
conversely, if § : R? — R? is an involution, then P = %(1 +S) is a projection,
where I : R*> — R? is the identity map.

Proof Let A € ., (R) be the matrix of P and let B € .#, (R) be the matrix of S.
Then, A2 = A and B2 = I,. If B = 2A — I, then

B*=4A> —4A+ 1L, =4A—4A+ 1, = Db.

1
On the other hand, if A = 2 (I + B), then

1 1 1
A2 = 1(12+2B+Bz) = (b +2B+ D) = S(L+B) =4,

and the theorem is proved. O

5.4 Gems on projections and reflections

In this section we collect gems and miscellaneous results about the projections and
the reflections of the plane.

Theorem 5.12 Let 2, :ax+ by = 0and 2, : cx +dy = 0, > + b*> # 0,
2+ d? # 0 and ad — bc # 0 be two lines passing through the origin.

(continued)
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Theorem 5.12 (continued)

(a) The projection P onto the line 2 on the direction of the line 9, is the
linear transformation defined by P : R* — R?

ad—bc ’ ad—bc

—bcx — bdy acx + ady
P(x,y) = ( ) :

(b) The reflection S across the line 2, on the direction of the line 2, is the
linear transformation defined by S : R? — R?

—(ad + bc)x — 2bdy 2acx + (ad + bc)y)

S s = B
(x.) ( ad — bc ad — bc

Proof For any (x,y) € R? there exist and are unique (x;,y;) € 2, and (x2,y-) € Z»
such that (x,y) = (x1,y1) + (x2,y2). Since ImP = FixS = %, and KerP = InvS =
2, we get that P(x,y) = (x1,y;) and S(x,y) = (x1,y1) — (X2, y2).

Solving the system

ax; +by; =0
cxy +dy, =0
X1 +x=x
it+y2=y
we get that
—bcx — bdy acx + ady adx + bdy —acx — bcy
Xl=—FF N =——"F"F = o V=

ad — bc ad—be T Tad—be ad — bc

and it follows that

—bcx — bdy acx + ady
P(x,y) = :
ad — bc ad — bc
and
—(ad + bc)x — 2bdy 2acx + (ad + bc)y
S(x,y) = , )
ad — bc ad — bc

The matrices of P and S are

1 (—bc —bd

1 _ _
_ and Mg — (ad + bc) 2bd .
ad — bc

M,
F ad — bc 2ac ad + bc

ac ad

The theorem is proved. |
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Lemma 5.2 Let 91, D, D5, P4 be four lines passing through the origin such
that 2y L 25 and 9, L D,. If the matrix of the projection onto the line 9,
on the direction of line 9, is M, then the matrix of the projection onto the line
D4 on the direction of line D5 is M.

Proof Let 21 : ax+by = 0, %, : cx+dy = 0,23 : —bx + ay = 0 and
P4 : —dx+cy = 0 be the lines through the origin. We have, based on Theorem 5.12,
that the matrix of the projection onto the line &, on the direction of 2, is

1 —bhe —
M= bc —bd
ad —bc \ ac ad

and the matrix of the projection onto the line Z4 on the direction of Z; is obtained
from matrix M via the substitutions a - —d, b — ¢, ¢ - —b, d — a and we get

that
1 bc —ac\ 1 —bc ac\ e
—ad + bc \bd —ad) ~ ad—bc \=bd ad)
Similarly one can prove that if A is the matrix of the reflection across the line Z;

on the direction of %, then AT is the matrix of the reflection across the line %, on
the direction of Z;. O

Lemma 5.3 When is a linear map an orthogonal projection?

Let A € Mr(R), A # 0, A # I, and let fy : R> — R? be the linear
transformation defined by the matrix A. Then, f4 is an orthogonal projection
if and only if AAT = A.

Proof Since AAT = A we get that AAT = AT which implies that A = AT, Thus,
A? = A which shows that A is an idempotent matrix and f; is a projection. We have,
based on Lemma 5.2, that the projection on line &, on the direction of line %, is
orthogonal if 2| L 2,,s0 25 = 2, and 94 = 2. It follows that the projection f4
is orthogonal if and only if A = AT, O

Nota bene. The matrix of an orthogonal projection P : R? — R? is given by
(see problem 5.8)

(continued)
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Mr=(% %), abeR wih 240 =a
bl—a
and P(x,y) = (ax + by, bx + (1 — a)y), VY (x,y) € R?.

Observe this is not an orthogonal matrix, i.e., the matrix corresponding to
an orthogonal projection is symmetric and not orthogonal!

Lemma 5.4 Projections and their matrices.
Let A € A, (R) be a matrix having the eigenvalues Ay = 1 and A, = 0 and

Z) and X, = (2) Then, A is the
matrix of the projection onto the line 9, : bx — ay = 0 on the direction of the

line 9, : dx — cy = 0.

the corresponding eigenvectors X| = (

Proof The Jordan canonical form of A is J4 = ((1) 8) and the invertible matrix P

is givenby P = (X | X3) = (Z 2) A calculation shows that
A=pppt = L (ad —ac
—Y T ad—be \bd —bc)”

We obtain, by replacing a — b, b — —a, ¢ — d, and d — —c in the formula
of matrix Mp given at the end of the proof of Theorem 5.12, the matrix A and this
proves the lemma. |

Lemma 5.5 Reflections and their matrices.
Let B € > (R) be a matrix having the eigenvalues Ay = 1 and A, = —1

and the corresponding eigenvectors X; = (Z) and X, = (2) Then, B is the

matrix of the reflection across the line 9, : bx — ay = 0 on the direction of
the line 9, : dx — cy = 0.

Proof The Jordan canonical form of B is Jg = ((1) Ol) and the invertible matrix

1 —
Qis given by 0 = (X | X2) = (Z ccl) with 01 = o (—db ac)'
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A calculation shows that

B=0QJp0""' =

1 ad + bc —2ac
ad—bc \ 2bd —(ad+bc))’

We obtain by replacing in the formula of matrix Mg given at the end of the proof of
Theorem 5.12by a — b, b - —a, ¢ — d, and d — —c the matrix B and this proves
the lemma. O

5.5 The isometries of the plane

Definition 5.5 A linear transformation 7 : R? — R? with 7'(x,y) = (¥','), such
that x> + y? = x> + y2, for all (x,y) € R?, is called a linear isometry of the plane.

Lemma 5.6 An isometry preserves the inner product, the distance between points
and the angle between vectors in R2.

Proof I T(x1,y1) = (x],¥}) and T(x2, y2) = (x},¥,), we need to prove that
/] /]
X1x2 + y1y2 = x1x, + y1y,.
We have
T(x1 +x2,1 +y2) = (x] +x3,5 +5)

and (x; +2x2)° + (1 +32)* = (] + ) + (] +5)%
This implies that

X 200 35 5+ 29y 33 = o 200 27 T + 2 )5
Since x7+yt = X7+ and x5 +y3 = 7 +7 we get that xix +y1y2 = X1, +Y,y).
Ifa = Z((x1,y1), (x2,y2)) and o' = Z (T (x1,y1), T(x2,y2)), then

J !
X1X2 + y1y2 , XX + Y1),
coso = and cosa’ =

VA TS+ X+ ¥ A5 57

which are equal based on the first part of the theorem.

To prove that d((x, y1), (x2,y2)) = d (T (x1,y1), T(x2,y2)) we need to show that
(x1 —x2)% + (y1 —y2)* = () — x5)* + (] — ¥5)?, which reduces to proving that
X1 + Y1y2 = X)X + V)55 =

Definition 5.6 A function F : R?> — 2, not necessarily a linear transformation,
which preserves the distance between points is called an isometry.
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Theorem 5.13 A linear transformation T : R> — R? is an isometry if and
only if its associated matrix My has one of the following forms

cost —sint cost sint
MT = . or MT = . 5
sint cost sint —cost

ab

Proof Let My = (
cd

). We have T'(x,y) = (¥',y) = (ax + by, cx + dy) and

2+ y2 = (ax + by)2 + (ex + dy)z, V(x,y) € R2.

This implies by identifying the coefficients of x?,y?, and xy that a*> + ¢ = 1,
b?> +d*> = 1,and ab + cd = 0. Since a*> + ¢*> = 1 and b* + d*> = 1 we get that there
exist £, s € R such that cost = a, sint = c and coss = d, sins = b. The equality
ab 4 c¢d = 0 implies that

costsins 4+ sinfcoss =0 < sin(s+17) =0

and it follows that t + s € {kz : k € Z}.

When s + ¢ = 0 we get s = —¢ and this implies that My, = (COSt —sm t).

sint cost

S cost sint
When s 4t = m we get s = m — ¢ and this implies that M7, = | . .
- sint —cost
The theorem is proved. O

Remark 5.4 We mention that the matrix
cost —sint
MT] = .
sint cost

corresponds to a counterclockwise rotation of angle ¢, while the matrix

cost sint
MT2 = .
sint —cost
corresponds to the composition of a rotation and a reflection, i.e., My, = My, Ms,

where Mg = (é

0. . . .
l) is the matrix of the reflection across the x-axis.

Definition 5.7 Let (xo, yo) € R? be fixed. A function Ty, ,) : R* — R? defined by
Txo.y0) (¥, ¥) = (x + X0,y + Yo) is called the translation of vector (xo, yo).

Thus, the equations of the translation are
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X =x)+x

Txp30) (X, y) = «.y) & ,
Yy =Y+

The origin (0, 0) is translated to the point (xg, o).
The composition of two translations is a translation

Two30) © Tixp) = Tiotvotp)

and the inverse of a translation is also a translation T Ol_yo) = T(—xp,—y0)-

We mention that a translation preserves the distances between two points, the
angles between lines, transforms parallel lines to parallel lines, and sends circles to
circles.

The set of all translations together with the composition of applications is a group
which is called the group of translations of the plane.

Definition 5.8 If f : R> — R? is a linear transformation and 7 : R?> — R? is
a translation, then the functions g;,g, : R> — R?, defined by g = T o f and
g» = f o T are called affine transformations.

Thus, the affine transformations are translations composed to linear transforma-
tions.

IfA = (a Z), is the matrix associated with f and (xo, yo) is the vector of the
¢

translation, then g(x,y) = (x',y’) where

()=20)+()

which implies that g(x,y) = (ax + by + xo. cx + dy + yo), (x,y) € R?, and

X = ax+ by + xo
Y = cx +dy+ .

are the equations of the affine transformation.

The set of all affine applications together with the composition of functions is a
group which is called the group of affine transformations.
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5.6 Systems of coordinates on the plane

The standard coordinate cartesian system xOy in the plane R* = {(x,y) : x,y € R}
consists of two orthogonal lines, the x-axis, Ox = {(x,0) : x € R} and the y-axis,
Oy = {(0,y) : y € R}, which intersect at the origin of the cartesian system O(0, 0).

By rotating the cartesian system around the origin counterclockwise by an angle
« we obtain a new system of coordinates which we denote by x'Oy’. Any point M
on the plane is uniquely determined with respect to the system xOy by the pair of
real numbers (x, y) and the same point considered with respect to the system x’ Oy’
is determined by the pair of real numbers (x’, y'). These two pairs are related to one

another by the formulae
x\ _ fcosa —sina) (¥
y)  \sina cosa )\

X\ [ cosa sina) (x
y —sina cosa /) \y
which allows one to pass from one coordinate system to another via the rotation
matrices R, or R_,.
By translating the coordinate system x’ Oy’, so that the origin O(0, 0) is translated

to the point O” (xy, yo), we obtain a new coordinate system x””O”y"” of the plane. We
denote by (x”,y”) the coordinate of M with respect to the new system x”O0”y”, then

we have the formula
" _
(x”) _r, (x XO)
y Yy—=Yo

1
()=o) =)
y Yo y
Example 5.1 1Tf the coordinate system x”0”y” is obtained by rotating the cartesian
system xOy counterclockwise by the angle £ and then by translating it to the point
0"(1,2), then a point M on the plane which has coordinates (x,y) with respect
to the standard coordinate system and with respect to the new system x”0"y” has

coordinates (x”,y”) are given by the formula

or

or
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or

5.7 Problems

5.1 Let S, be the reflection across the x-axis and S, be the reflection across the
y-axis. Find the matrix associated with Sy o S,.

5.2 Let ABCDEF be a regular hexagon with side length 2 which viewed with
respect to the system xCy has the vertices B and E on Cx respectively Cy. We con-
sider another system x'Fy’ positively oriented, the x’-axis being FA. Determine:

(a) the formula of passing from the system xCy to the system x'Fy’;

(b) the coordinates of vertices C and E with respect to the system x'Fy’.

5.3 What becomes the equation x> — y*> = 2 when the system xOy is rotated
counterclockwise by an angle of 7 around the origin?

5.4 Projections. Give the geometrical interpretation of the following linear trans-
formations f : R? — R?:

@ f(x.y) = (0,2x + y);

(b) f(x.y) = (x,2x);

(©) flx.y) = (3x—y, 6x—2y).

5.5 Reflections. Give the geometrical interpretation of the following linear transfor-
mations f : R? — R

@ fx,y) = (=x,2x +y);

®) f(x,y) = (x,2x —y);

(©) flx.y) = (3x—y,8x—3y).

5.6 Find a, b € R such that the following matrices are projection matrices and give
the geometrical interpretation of these projections:

(a) M = (f Z)
21
(b) M, = (a b).

5.7 Prove that the function

fiR* > R%  f(x,y) = (ax—by+b, bx+ay—a+ 1),
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is a rotation for any (a, b) # (1,0) with a*> + b*> = 1. Determine the center and the
angle of the rotation.

5.8 Orthogonal projections and their matrices.

Prove that the linear transformation P : R?> — R? is an orthogonal projection
onto a line passing through the origin if and only if there exist a,b € R such
that a®> + b*> = a and P(x,y) = (ax + by, bx + (1 — a)y), Y(x,y) € R2.

5.9 Orthogonal reflections and their matrices.

Prove that the linear transformation S : R?> — R? is an orthogonal reflection
across a line passing through the origin if and only if there exist a, b € R such
that a®> + b*> = 1 and S(x, y) = (ax + by, bx —ay), Y(x,y) € R2.

5.10 When is the sum of two projections a projection?

Let P, P, : R? — R? be two nonzero projections. Prove that if P; + P, is a
projection, then Py + P, = I2.

5.11 When is the sum of two projections an involution?

Let Py, P; : RZ — R? be two nonzero projections. Prove that if P; + P, is an
involution, then P; + P, = Ie.

5.12 Prove that an isometry of the plane is uniquely determined by the images of
three noncollinear points.

5.13 Prove that any isometry of the plane is of the form F = RoT or F = SoRoT,
where T is a translation, R is an affine rotation (around a point), and S is a reflection
across a line.

5.14 Prove that the composition of two orthogonal reflections is a rotation.

5.15 Let % be the curve 5x* + 8xy+ 5y> = 1. Prove that there exits a rotation in the
plane, (x,y) — (¥',y") = R(x,y), such that with respect to the system of coordinates
X' 0y’ the curve € has the equation ax’> 4+ by’> = 1, for some a, b € R.

5.16 Write the affine application f : R? — R?, f(x,y) = (2x—3y+1,3x+2y—1)
as a composition of elementary transformations.
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5.17 Let xOy be the coordinate system of the plane and let € be the curve
2x2 —y?> — 4xy = 1. Determine a rotation R, : R> — R?, R,(x,y) = (¥',y’) such
that in the new system of coordinates x'Oy’ the equation of the curve € becomes
ax®> +by? = 1.

5.18 Find the image of the square ABCD, where A(1, 1), B(—1, 1), C(—1,—1), and

D(1, —1), under the transformation whose matrix is (T _32)

5.19 Let xOy be the coordinate system of the plane and let A(2, 0), B(2, 2), C(0, 2)
be the vertices of a square. We consider the transformation which sends the origin
to O’(3,—1) and such that the new axis of coordinate O’'C’ makes with the x-axis
an angle o with tano = %. Determine the coordinates of the vertices of the square
O'A’B'C’ with respect to the coordinate system xOy.

5.20 What is the image of the line x —y + 1 = 0 under the rotation R of center the
origin and angle %?

5.21 Give the geometrical interpretation of the linear transformation f : R? — R:

f,y) = (V3x—y, x + /3y).

5.22 Orthogonal reflections revisited.

Prove that for any orthogonal reflection S across a line which passes through
the origin, there exists # € R such that the matrix associated with S is

cost sint
Mg =|". .
sinf —cost

5.23 Determine the projection onto the line Z; : 2x + y = 0 on the direction of the
line 2, : x — 3y = 0.

5.24 Orthogonal projection and reflection across a line passing through
the origin.

Determine the equations of the orthogonal projection onto the line 2: ax +
by = 0, a* + b* # 0 and the equations of the orthogonal reflection across the
line 9.
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5.25 Orthogonal projection and reflection across a line not passing
through the origin.

Determine the equations of the orthogonal projection and the orthogonal
reflection across the line 2: a(x — x) + b(y — yo) = 0.

5.26 The isometries of the square. Let & be the set of points in the plane
located in the interior or on the square ABCD. Determine all isometries of the
square ABCD, i.e., all isometries f : & — .

5.27 The billiard problem. Let & be a line and let A and B be two distinct points
on the same side of &. Determine the point M on & such that AM + MB is minimum.

5.28 Pompeiu’s Theorem. Let AABC be an equilateral triangle and let M be a
point on the plane of AABC not on the circumscribed circle of AABC. Prove that
the segments [MA], [MB] and [MC] are the sides of a triangle.

5.29 Torricelli’s point. Determine a point on the plane of AABC such that the sum
of the distances to the vertices of the triangle is minimum.

5.8 Solutions

5.1. The matrix associated with S, is A = ((1) 0 1

) and the matrix associated with

Syis B = (_01 (1)) It follows that the matrix associated with S, o S, is AB = —1I,.

5.2. (a) The coordinate systems xCy and x'Fy’ have different orientation and the

. . T cose —sina
matrix of the linear application is of the form A = ( ), where o =

—sino —cos«
% is the angle between the axes Cx and Fx'. The change of coordinates is given by
the formula

(x)=A(X/)+( 2) o Jr= Ry 2
y Y 2V3 y= —‘/Tgx’ — 1y +243.

(b) For the point C, which has the coordinates x = 0, y = 0, we get that X’ = 2,
y' = 2+/2, 50 C(2,2+/2). For the point E, with coordinates x = 0 and y = 2+/3, we
have that ¥ = —1 and y = /3, so E(—1, v/3).
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5.3. Let x and y be the coordinates of a point on the hyperbola x*> —y*> —2 = 0 before
the rotation and let X and Y be the coordinates of the same point on the hyperbola
after the rotation. We have

2
)CZXCOSZ—YSiHE = £(X—Y)
4 4 2

b4 /4 V2
=Xsin— 4+ Ycos— = — (X + 7).
y sm4+ cos4 2(+)

It follows that

2 2
2oy 2= (?(X—Y)) - (\/TE(X_{-Y)) —2=-2XY-2=0.

Thus, in the new system of coordinates the hyperbola x> — y*> — 2 = 0 has the
equation XY + 1 = 0 and the x-axis is the symmetry axis of the hyperbola.

00
21
projection onto the y-axis on the direction of the line & : 2x +y = 0.
10
20

5.4. (a) The matrix of the linear transformation is A = ( ) so we have a

(b) The matrix of the linear transformation is A = ( ) and this is a vertical

projection onto the line Z : y — 2x = 0.

(c) The matrix of the linear transformation is A = (3 _1) and we have a

6 =2
projection onto the line & : y — 2x = 0 on the direction of the line ¥’ : 3x —y = 0.

_21 (l)),A2 =h,sofisa

reflection across the y-axis on the direction of the line x + y = 0.

5.5. (a) The matrix of the linear transformation is A = (

(b) The matrix of the linear transformation is A = (; 01), A2 =1,s0fisa

vertical reflection across the line x —y = 0.
3 -1

,A2 =1,s0fisa
: _3) 50 f

reflection across the line 2x — y = 0 on the direction of the line 4x —y = 0.

(c) The matrix of the linear transformation is A = (
.. 2 . 2 =2
5.6. (a) The condition M7 = M, implies thata = —2,b = —1,and M| = .
! 1 -1
y y xX—=y

It follows that Py is the projection onto the line &, : x = 2y on the direction of the
line 2, :x—y=0.

We have
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2 1
-2 -1
Py(x,y) = (2x + y, —2x — y), which is the projection onto the line Z5 : x +y =0
on the direction of the line %4 : 2x +y = 0.

5.7. The center of the rotation is the unique fix point of the rotation. Thus,
f(x0,y0) = (x0,y0) and we get that

(b) From M% = M, we getthata = —2,b = —1l and M, = ( ) We have

(a— Dxo—byg = —b
bxo + (a—1)yy =a—1.

axo—byy + b = xo

bxo+ayo—a+1=yp

a—1 —b
b a-—1
(a,b) # (1,0). The system has a unique solution xy = 0 and yo = 1 and we have
that the center of the rotation is C(0, 1).
The equations of a rotation of center C(xo, yo) and angle o are

X\ (% n cosa —sina\ {x —x
y Yo sine cosa ) \y—yo/)

In our case these equations become

ax—by+b 0 coso —sina X
= +1 . .
bx+ay—a+1 1 sine  cos« y—1

These imply that

The determinant of the system is = (a—1)*+ b* # 0, since

ax—by+b=xcosa — (y—1)sina
bx+ay—a+1=1+xsina+ (y—1)cosa,

for all x,y € R. We get the necessary conditions coso = a and sina = b and we
note that these conditions can be satisfied since a> + b> = 1. There is @ € (0, 27)
such that cosa = a and sina = b.

5.8. We have, based on Lemma 5.3, that P is an orthogonal projection if and only if
its matrix is a symmetric matrix, i.e., Mp = M}T,. However, Theorem 5.4 shows that
the symmetric matrices of rank 1 are

00 10 a b
Az = , Ay = d As= , a€R, beR".
3 (o 1) s (o 0) ane A (—TZ 1—a) “

Using the condition AT = A5 we get that # =b&a*+b=a,s0

ASZ(Zlfa), aGR,bER*,

and if we allow b = 0 we recover the matrices Az and Ay.
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It follows that the matrix Mp is of the following form

Mp= (¢ b ., abeR with & +b =a,
b 1—a

and P(x,y) = (ax + by, bx + (1 —a)y), ¥V (x,y) € R

5.9. We have, based on Lemma 5.2, that the matrix of an orthogonal reflection is a
symmetric matrix so that we choose from Theorem 5.8 only the symmetric matrices.
These are

B3= —10 , By= 1o and BS= 1?2 b , GGR, bER*
01 0 -1 e

The symmetry condition on matrix Bs implies that a> + b*> = 1. Thus, matrix Bs is
of the following form
a b
Bs = ,

and if we allow b = 0 we get matrices B3 and By.
It follows that the matrix M of the orthogonal reflection S across a line passing
through the origin is of the following form

MS=(“ b), abeR with @+ =1.

. cost sint
If we let a = cost and b = sint we get that My = (

sint —cost
according to Theorem 5.13, the matrix of an isometry which appears in problem
5.22 by a different reasoning.

5.10. Since (P; + P»)> = P, + P, P% = Py, and P% = P, we get that

). This is,

PioPy+PyoP =0. 5.1)

Applying P; to the left and to the right in (5.1) we get that P,oPjo P, +P,0oP; =0
and Py o P, + P, o P; o P, = O which 1mplles that Py o P, = P, o P;. It follows,
based on (5.1), that Py o P, = P, o P = 0.

We make the observation that if P is a projection, then FixP = ImP.

If x € FixPy, then P, o P;(x) = 0 implies that P,(x) = 0, so FixP; C KerP,.
Analogously FixP, C KerP;. Since P; # 0 and P, # 0 we get that FixP, #
{(0,0)}, KerP, # R2, so FixP; = KerP, and FixP, = KerP;. However, FixP; =
2, = KerP; and FixP, = 2, = KerP; are distinct lines passing through the origin.
It follows, since Z; @ %, = R?, that if (x,y) = (x1,y1) + (x2.2), (x1.y1) € %,
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(x2,¥2) € D, then Pi(x,y) = (x1,y1) and Py(x,y) = (x2,y2). Thus, Pi(x,y) +
Py(x,y) = (x,y) =P+ P, =1

Remark 5.5 1t is worth mentioning that if P; is the projection onto the line Z; on
the direction of line %,, then P, is the projection onto the line %, on the direction
of line 2.

5.11. Since (P + Pz)2 =1, P% = P; and P% = P, we getthat P; + P, + P o P, +
P, o Py = I. Applying P, to the left and to the right in the preceding equality we get
that 2P, o Py + P, o Py o P, = 0 and 2P o P, + P, o P; o P, = 0 and it follows
that P, o P, = P, o Py. However, the equality 2P, o P 4+ P, o Py o P, = 0 implies
that 3P, o Py = 0 = Py o P, = P, o P; = 0. Now the solution is the same as the
solution of problem 5.10.

5.12. Let A}, Ay, and A3 be three noncollinear points. First we prove that the only
isometry F which satisfies the conditions F(A) = Ay, F(A;) = Ay, and F(A3) = A;
is the identity. For any point M on the plane let r, r,, and r3 be the distances from M
to Ay, Ay, and Aj respectively. Since d(F(M), F(A;)) = d(M,A;) = r,i = 1,2,3,
we get that F(M) is the point located at the intersection of the circles with centers
Ay, Ay, and Az and radius ry, r,, and r3. This point is unique, so F(M) = M.

Now, if we assume that there are two isometries which satisfy F(A;) = F2(A;),

i=1,2,3,then (F]' o F))(A) = Ai,i =1,2,3,50 F) = F).
5.13. We have based on problem 5.12 that any isometry is uniquely determined by
images of three noncollinear points. Let A, B, C be the vertices of a triangle with
different side lengths and let A" = F(A), B = F(B), and C' = F(C), where F
is an isometry of the plane. Observe that AABC and AA’B’'C’ are congruent since
AB=A'B,AC =A'C’,and BC = B'C'.

If AABC and AA'B'C’ have the same orientation, they may overlap via a
translation defined by T(A) = A’ followed by a rotation R, around point A’, of
angle m .

If AABC and AA’B'C’ have different orientation, they may overlap after a
translation T followed by a rotation R, like in the previous case (the side AB overlaps
onto the side A’B’) and a reflection across the line A’B’.

5.14. The matrices of such reflections are given, based on problem 5.9, by M| =

(CF)S i sinhy ) and M, = (CF)S f sinh ) The matrix of the composition of
Sinf; —COSfty Sinf; —COSfy

cos(t; — ) —sin(t; — 1)

sin(ty —t) cos(t; — 1)

matrix of a rotation of angle #; — 1,.

the two reflections is MM, = ( ) = R;,—,, which is the

cosa —sino
sina  cosa

/ /
rotation are (x/) =R, (x) or (x) =R_, (x/). This implies that
y y y y

5.15. The matrix of the rotation is R, = ( ) and the equations of the
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x=xcosa +y sina
y = —x'sina + y' cosa.

Putting these values of x and y in the equation of the curve ¥ we get that

€ 5(% 4+ y?) — 8x?sina cos o + 8y sina cosa + 8(cos? & — sin® ar)x’y’ = 1.

Since the term x’y’ should vanish we obtain that angle « verifies the equation
cos’a — sina = 0, so we can choose @ = 7- Thus, by rotating the system of
coordinates xOy by an angle of 7 the equation of the conic ¢’ becomes x’ 240y =

1,soa=1and b =09.

5.16. We have
xl
(y/)

620 C)
-G a6 ()
=( )0+ ()
mon ()

sof =Tyo OJE o R,, where R, is a rotation of angle = arctan %, 0\@ is the

uniform scaling of factor k = +/13 and 7y is the translation of vector v = ( ! 1).

cosa —sina
sine coso

/ /
the rotation are (x/) =Ry (x) or (x) =R_, (x,)' This implies that
y y y y

{x =x'cosa + ¥ sina

5.17. Since the matrix of the rotation is R, = ( ) and the equations of

y = —X'sina + y' cos .

Putting these values of x and y in the equation of the curve € we get that

(2cos® o — sin® a + 4sina cos a)x’? + y?(2sin®* @ — cos® o — 4 sin« cos o)

+ (6sina cos o — 4cos> o + 4sin® @)x'y’ = 1.
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Since the coefficient of x’y’ should vanish we have that 6 sin o cosa — 4 cos? a +
4sina = 0= a = % arctan % and the equation of the conic € becomes 3x'2 —
2y? =1,s0a=23and b = 2.

5.18. G _32) G) - (2) s0 A'(0, 4). Similarly we gt that B'(—4,2), C'(0, —4),

and D’ (4, —2), so the square ABCD is mapped to the parallelogram A’B'C'D’.

5.19. Observe the rotation angle is § = 37” + «. Therefore, cos 8 = cos (37” + a) =
sino = % and sinf = —cosa = —%. The transformation formulae are

With respect to the new coordinate system x'O’y’, the vertices A’, B’, C’, and D’ have
the same coordinates like the vertices O, A, B, and C with respect to the old system of
coordinates xOy. The coordinates of A’, B, and C’ with respect to the system xOy are
obtained from the transformation formulae and we have A’ (%, —%), B’ (%, —%)
and C’ (% é)

5.20. The rotation of center the origin and angle % is given by the equations

b4 /4
x' =xcos = — ysin — 1, V3,
3 3 X = —X +—y
P 2 2
, . T . T yz—éx/+ly/
y :xsmg—i—ysmg P 27

Replacing x and y in the equation x —y + 1 = 0 we get @x’ + @y’ +1=0,
which is the equation of a line.

5.21. The matrix of the linear transformation is

V3 -1 _ (2 0\ [cos% —sing
1 V3] \o2 sink  cos% )’
so f is the composition of a counterclockwise rotation of angle % and a uniform
scaling of factor 2.

—da
b
the reflection across the line %, : (a — 1)x + by = 0 on the direction of the line

P, : (a+ )x + by = 0. The condition that the lines 2, and %, are perpendicular
isa’> — 1 + b*> = 0 & a®> + b*> = 1. This implies there exists ¢ € [0, 27) such that
a = cost, b = sint, so the matrix My has the required form.

5.23. We write (x,y) = (x1,y1) + (x2,¥2), with (x1,y1) € 2, and (x2,y;) € P>.
This implies that 2x; +y; = 0,x — 3y> = 0, x; +x2 = x, y1 + y2 = y. It follows

b
5.22. The matrix of a reflection is of the form My = (1 “ 2 ) and represents
—a
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that x; = %(x—3y),x2 = %(2x+y),y1 = —%(x—3y),y2 = %(Zx—f-y) and we have
x—3y —2x+ 6y
P(x,y) = ,— .
(= (S5 )

5.24. The direction line to which the projection and the reflection are done is the
line 2’ : —bx + ay = 0, the perpendicular line to 2. Any point (x,y) € R? can be
written in the form (x,y) = (x1,y1) + (x2,¥2), with (x1,y1) € 2, (x2,y2) € 9’ and
we have P(x,y) = (x1,y1) and S(x,y) = 2P(x,y) — (x,¥) = (x1,y1) — (x2,y2). We
have the system of equations

X1 +x)=x

yity2=y
ax; +by; =0
—bxy + ay, =0,
from which it follows that
b*x — aby —abx + a’y a’*x + aby abx + b*y
X = —————, = ——F—5, X2 = — ’ = .
: a? + b? . a? + b2 2 a? + b? Y2 a? + b?

The matrices of the two linear transformations are

1 b* —ab 1 —a®> +b> —2ab
Mp = —— d M¢=——— .
P2y, (—ab a’ ) an ST @+ ( —2ab  a*—b?

One can check that M3 = Mp and M3 = I.

5.25. Let P and S; be the orthogonal projection and the orthogonal reflection across
the line & : a(x—xp)+b(y—yo) = 0and let P and S be the orthogonal projection and
the orthogonal reflection across the line ax + by = 0. Then, Py(x,y) = (xo,Y0) +
P(x — x0,y — yo) and S;(x,y) = (x0,¥0) + S(x — x0,¥ — yo). We have, based on
problem 5.24, that

a*xo + abyy abxy + bzyo) (bzx —aby —abx + azy)

Pl(x,y)z( a2+ a4+ a2+ a2+

and

2a*xo + 2abyy 2abxy + 2b%y
a2 + bZ ’ a2 + bZ
n b* — a®)x —2aby —2abx + (a®> — b*)y
a? + b? ’ a? + b? ’

&ww=wmw—ww=(
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If Pi(x,y) = (x1,y1) and S;(x,y) = (x2,y2), then we have the matrix equations

x\ 1 a ab\ (xo n 1 b —ab\ (x

vi)  @+b>\ab B*) \yo a?+b2\—ab a* ) \y
AN a® ab\ (xo n 1 b*—a®> —2ab X
o) @+ b2 \ab b*) \yo al+ b2\ —2ab a*>-0*)\y)’

5.26. It suffices to solve the problem for the square with vertices A(1,0), B(0, 1),
C(—1,0), and D(0,—1).

First, we observe that since d(A, C) = d(B,D) = 2, then for any isometry f
we have d (f(A),f(C)) = d(f(B),f(D)) = 2 and this implies that the vertices of
the square ABCD are sent to vertices, i.e., f(A), f(C) and f(B), f(D) are opposite
vertices of the square. The value f(A) is chosen from the set {A, B, C, D} in four
possible ways and f(C) is the opposite vertex of f(A). In each of these cases f(B) is
chosen in two possible ways from the other two vertices. We obtain 8 such functions
which are, so far, only isometries of the set of vertices of the square ABCD.

Second, we note that if M € &2, which is different from the vertices of the square,
then M is uniquely determined by the distances from M to the vertices A, B, C, i.e.,
a = dM,A), b = dM,B) and ¢ = d(M, C). We note that M is located at the
intersection of the circles (A, a), ¢ (B, b) and € (C, ¢). It follows that the point
f(M) is located at the intersection of the circles with centers f(A), f(B),f(C) and
radius a, b, c respectively. The 8 isometries of the vertices extend to the § isometries
of the square. These are:

m f(A)=A.f(C)=C.f(B)=Bandf(D) =D = [ = 15;

m f(A) =A,f(C) =C,f(B) =Dandf(D) = B= f = o, the symmetry across
the x-axis;

m f(A) =C,f(C) =A,f(B) = Band f(D) = D = f = o, the symmetry across
the y-axis;

m f(A) =C,f(C)=A,f(B) =D andf(D) = B=f = 0o the symmetry through
the origin;

m f(A) =B,f(C) =D, f(B) = Aand f(D) = C = f = 0,_,—0 the symmetry
across the liney —x = 0;

m f(A) =B,f(C) =D, f(B) = Cand f(D) = A = f = %z the rotation of angle
7 with center the origin;

m f(A) =D, f(C) =B,f(B) = Cand f(D) = A = f = 0y4,=0 the symmetry
across the line y + x = 0;

m f(A) =D,f(C) =B,f(B) =Aand f(D) = C = f = %_z the rotation of angle
—7 with center the origin.

and

These isometries form the dihedral group Dg.
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5.27. Let 54 be the orthogonal reflection across the line & and let A’ = s4(A) and
{M} = 9 N BA’. We prove that M is the point for which the minimum is attained. If
P € 9, is an arbitrary point, then we apply triangle’s inequality in AA’PB and we
get that A’"P + PB > A’B, with equality if and only if P = M. On the other hand,
A’P = AP, A’M = AM and we have AP + PB = A'P + PB > A'B = AM + MB,
which implies that the minimum is attained when P = M (Fig.5.1).

5.28.Letr = rp—z be the clockwise rotation of angle % around B. Then, r(A) = C,
r(C) = C', r(M) = M’ and point B is fixed. We have that AMBM’ is an isosceles
triangle and since B= Z we get that AMBM' is equilateral. Therefore ACMM’ has
its sides congruent to the segments [MC], [MB] and [MA]. Observe that ACMM’
degenerates if and only if M is located on the circle circumscribed to AABC
(Fig.5.2).

5.29. Let r = r, z be the counterclockwise rotation around point A of angle 5 and
let C' = r(C), M’ = r(M), where M is an arbitrary point on the plane of AABC.
We have MA + MB + MC = BM + MM’ + M’C’ > BC’, with equality if and

Fig. 5.1 The billiard A
problem
B
D
M P
A/
Fig. 5.2 Pompeiu’s Theorem A

M

Cl
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Fig. 5.3 The Torricelli point

only if the points B,M, M’ and C’ are collinear. Since AAMM’ is equilateral we
get that AMB = 120° and AM'C’ = 120°. It follows that AMB = AMC = 120°.
The construction of the Torricelli’s point 7 is as follows: we construct the equilateral
triangles AAC’'C and AAB’B to the exterior of AABC and we have {T} = BC'NCB’
(Fig.5.3).



Chapter 6
Conics

It is easy to teach someone, but to show him
an easy way to realize the learned things, this
is something to admire.

St. John Chrysostom (347—407)

6.1 Conics

Definition 6.1 An algebraic plane curve is a curve whose implicit equation is of the
following form

¢: F(x,y) =0,
where F is a polynomial in variables x and y. The degree of the polynomial is called
the degree of the algebraic curve.
Definition 6.2 A conic is an algebraic plane curve of degree two. The general
equation of a conic is

€ anx® +2apxy + any’ +bix + by +c =0,

where a1, aiz, ar», by, br,c € R and a%l + (1%2 + (1%2 7é 0.

When the system of plane coordinates is specially chosen the equation of the
conic has a simple form, called the canonical form. We review the nondegenerate
conics.

The nondegenerate conics

m The ellipse is defined as the set of points M(x,y) in the plane whose sum of
the distances to two distinct points, F(c,0) and F'(—c,0), ¢ > 0, called foci, is
constant. Thus, the set & of points M (x, y) with the property that MF+MF' = 2a,
a > c is called an ellipse (Fig. 6.1).

Let b> = a*> — 2. The equations of the ellipse are:

X . .. .
& -+ Y 1 the implicit equation
a b?
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Y

M

B
A/ K F A |
B/

Fig. 6.1 Theellipse 5 + % =1, a,b>0

b
y= a2 —x2
& a, X € [—a,a] the Cartesian equations
y=——va>—x2
a
X =acost . .
& ) t € [0,2m) the parametric equations
y = bsint

When a = b = r the ellipse becomes the circle

X =rcost
2+ =r or ) t € [0,2m).
y =rsint

The optical property. The tangent and the normal line at a point on an ellipse are
the bisectors of the angles determined by the focal radii.

m The hyperbola is the set of points M(x, y) in the plane for which the absolute
value of the difference between the distances from two fixed points, F(c, 0) and
F'(—c,0), ¢ > 0, called foci, is constant. Thus, the set .77 of points M (x, y) with
the property that [MF — MF'| = 2a,0 < a < c is called a hyperbola (Fig. 6.2).
The line determined by F and F” is called the focal axis, the length of the segment
FF' = 2c is called the focal distance and the segments MF and MF’ are called
the focal radii. Direct calculations show that the equations of the hyperbola are:



6.1 Conics 317

x
Fig. 6.2 The hyperbola 5 — % =1, a,b >0
I * yz—lh' lici i
: ; — ﬁ = the implicit equation
y= -3 —a?
I 9, x € (—00, —a] U [a, c0) the Cartesian equations
y=——~/x2—a2
a
x = *acosht . .
I ) t € R the parametric equations
y = bsinht
where
el +e’! . el —e!
cosht = and sinht = >
The hyperbola is an unbounded curve which has the inclined asymptotes y = gx

andy = —fl—’x. A hyperbola with perpendicular asymptotes is called equilateral.
The optical property. The tangent and the normal line at a point on a hyperbola
are the bisectors of the angles determined by the focal radii.

m The parabola is defined as the set of points on the plane M (x, y) whose distances
to a fixed linex = —5, p > 0, called the directrix and a fixed point F (5, 0) called
focus are equal (Fig. 6.3).

Thus, the equations of the parabola are:

P . y*=2px the implicit equation
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Y
M
B
A O\ F x
="
2
Fig. 6.3 The parabola y> = 2px, p >0
2
xX=—
K2 2p t € R the parametric equations.
y=t

A parabola, in general, is also defined as the graph of the functions of the
following form

y=ax*+bx+c, a#0 or x=dy +by+c, d#0.

The optical property. The tangent and the normal lines at a point on a parabola
are the bisectors of the angles determined by the focal radius and the parallel line
through the point to the axis of the parabola.

The degenerate conics
The algebraic curves of second degree which are degenerate conics are:

m % (a1x+ b1y + c1)(azx + byy + ¢3) = 0 (the union of two lines)

m G oax—x0)>+ B —y)>=0, a,8 >0 (apoint)

m C:oa(x—x0)+ By —y)>+8=0, a,B,8§ >0 (the void set).

Elementary properties of conics that can be formulated using elementary geom-
etry can be found in [2].
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6.2 The reduction of conics to their canonical form

Let
€ anx® + 2a1xy + any? + bix + by + ¢ =0, (6.1)

where a1, a2, a»,b1,bs,¢c € R and a%l + a%z + a%z # 0 be a conic in the xOy
plane.

To reduce a conic to its canonical form we understand to chose a system of
coordinates x'O0’y’ in the plane such that in the new coordinates the conic would have
a simplified equation, the so-called reduced equation. We shall see that any such
change of coordinates consists of two geometrical transformations, a translation
and a rotation (and eventually a reflection across an axis). These transformations are
determined based on a technique involving the Jordan canonical form of symmetric
matrices of order 2.

Letf(x,y) = a; %2+ 2a12xy + axny? be the quadratic part from the equation (6.1)
and let Ay be the symmetric matrix associated with f

Ay = (au alz) _
ap axn
Nota bene. The coefficients on the second diagonal of the matrix A, are equal to
half of the coefficient of xy in the equation of the conic.
It is known (see Theorem 2.5) that the matrix A is diagonalizable and the matrix
P € .#, (R) can be chosen to be an orthogonal matrix, i.e., P’ = P!, In fact P is
a rotation matrix. The eigenvalues A, A, of Ay are real numbers (see Theorem 2.5),

at least one of them being nonzero, since Ay # O,.
Let

A 0 T

where P is the matrix formed with the eigenvectors corresponding to the eigenvalues
/\1 and )Lz.

The rotation. We change the coordinate system by making an orthogonal
transformation in the xOy plane, a rotation defined by the matrix P

()=r()

and the coordinate system xQy is changed to x'Oy'.

Using the formula

T

=0 )



320 6 Conics

we get that
T T

o= () ar(§) = () o (§) = e

Thus, in the new system of coordinates x’Oy’ the equation of the conic becomes
€ MxXP+ AP+ DX+ by + =0, (6.2)

where the coefficients b}, b, are determined by the formulae

/
bix 4+ byy = b’lx’ + b’zy’ =4 [b] bg] (i) = [b/l b/z] (;)

which is equivalent to

[by by]P (;“,) = [b, 1] (’yc,) so  [b) by] = [by ba]P.

Nota bene. The purpose of the rotation is to make the term xy disappear.

The translation. We distinguish between the cases when both eigenvalues of Ay
are nonzero and one is zero.

Case 1. If A; # 0 and A, # 0 we write equation (6.2) in the following form

A X+ bll 2+A2 y/-i- blz 2—}—6/20,
2A1 24,

where
3 b’l2 3 b’z2
4, 4ry

c =cC

Now we translate the coordinate system x’'Oy’ to the coordinate system x”0"y”
and the equations of the translation are

b/

no__ 1

, X' =x +_2)kl
b
y”=y’+ 2 .
24,

The center of the new system of coordinates is the point O” whose coordinates
are determined by

=y'=0 & x’=—b—/1 y’=—b—/2 s (Y)=r ¥
2417 22 y )
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The equation of the conic becomes
C: MxXPH+ Ay 4+ =0.

If ¢ = 0 we get a degenerate conic which could be a point or a union of two
lines.
If ¢ # 0 the conic is either an ellipse or a hyperbola according to whether the
eigenvalues A1, A, have the same sign or different signs.
Case 2. If one of the eigenvalues is 0, say A, = 0 and A # 0 we have
/N 2 2
€ A (X/+2b_/111) —|—b'2y'+c’=O, c’:c—f—il,

and in this case the equations of the translation are

The conic is a parabola of equation

€. A+ by =0.
Nota bene. The equations of the translation are determined by completing the
squares (square) in x’ and/or y'.

Remark 6.1 If the conic is nondegenerate, then its nature can be determined only
by analyzing the sign of the eigenvalues of A;. More precisely, if

A1A2 > 0 the conic is an ellipse;
A1A; < 0 the conic is a hyperbola;

A1A2 = 0 the conic is a parabola.

Now we summarize the technique used above and we give an algorithm for
reducing a conic to its canonical form.

Algorithm for reducing a conic to its canonical form
m Step 1. Write the matrix Ay and find its eigenvalues.

m Step 2. Determine the Jordan canonical form J, and the orthogonal matrix
P, PT = P!, which verifies the identity

(continued)
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Example 6.1 A hyperbola. We consider the conic
€ 3x° 4 10xy +3y* —2x— 14y — 13 = 0,

which we reduce to its canonical form and determine its nature (Fig. 6.4).

y=—-az " zr+y=1 Y Y=z —y=3

Fig. 6.4 The hyperbola 3x> + 10xy + 3y> —2x — 14y — 13 =0
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Step 1. The quadratic form associated with our conic is f(x,y) = 3x> + 10xy + 3y?
and its corresponding symmetric matrix is

35
Ar = .
= (53)
The eigenvalues of Ay are obtained by solving the equation det(A — ALL) = 0
which implies 3 —1)? —25=0= A; = 8and A, = —2.

Step 2. We determine the eigenvectors corresponding to the eigenvalues A; = 8 and
A, = —2. The eigenvector corresponding to A; = 8 is determined by solving the
system (Ay — 81,)X = 0 and we have

—5x%1 + 5% =0
5)61 — 5)(2 = 0,

which implies that x; = x,. The solution of the system is (a)’ a € R*. We let
o

a = 1 and we divide our vector by its norm' (length) and we get the eigenvector

L
X, = (?) :
2
Similarly, the eigenvectors corresponding to A, = —2 are determined by solving
the system (As + 21,)X = 0 and we obtain the eigenvector

Thus,

|
=

= -5 cosZ —sinZ
p=[v2 V2= ( 4 4)
: 1 g
sin%  cos 7
which is a rotation matrix of angle 7.

Step 3. The equations of the rotation are

/ szx’_Ly’
()=r() o [ o
y Yy y=\—f2x +7§y.

Recall the norm or the length of a vector v = (Z) € R? is defined by ||v|| = /]al? + [b[2.
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We rotate the system of coordinates xOy by an angle of 7 counterclockwise and
the equation of the conic becomes

2 14
€ 8x* -2y — ﬁ(x’ —y) — ﬁ(x/ +y)—-13 =0,

which can be written, after completing the squares in x’ and y’, as

% : 8(’—%)2—2(y’+%)2—8=0.

Step 4. The equations of the translation are

C: 8 -2y?-8=0 & x?-——=1.

Thus, our conic is an ellipse of semi axes a = 1 and b = 2.
Next, we determine the equations of the axes of symmetry and the coordinates of
the center O”.

/
We have, based on (6.3), that (x/) = p! (x) = pPT (x) and this implies that
y y y

¥ = B+)

) | (6.4)

Y= 4y).

The equation of 0"x". To determine the equation of the O”x” we set y” = 0

which in turn implies that y = —%. The second equation in (6.4) implies that
—x+y=-3.

The equation of 0"y". To determine the equation of the O”y” we set x”” = 0 and

this implies that X’ = «/LE However, the first equation in (6.4) implies that x+y = 1.

The coordinates of the center of symmetry O". The coordinates of O” are the
solutions of the system
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x+y=1
—x+y=-3

which implies that x = 2 and y = —1. Thus, 0" (2, —1), i.e., the coordinates of 0"
with respect to the coordinate system xQy are (2, —1).

6.3 Problems

6.1 Find the canonical form of the following conics, determine their nature, the
symmetry axes, and the center:
(1) 3x> —4xy+3y> —2x—2y+1=0;
Q) 222 —dxy—y* + V5x+ /5y —1=0;
B) =2+ +2x—4y+5=0;
4) 4x% + 12xy 4+ 9% — 64 = 0;
(5) 9x% + 24xy + 16y*> — 40x + 30y = 0;
(6) 2x* —6xy + 10y> —8x + 12y +2 = 0;
(7) 42 —dxy+y*—2x— 14y +7 = 0;
(8) 4xy—3y?+4x—14y—7=0;
9) 3x2—4xy—2x+4y—-3=0;
10) > +2xy+y*+2x+2y—3=0;
(11) x> —8xy + 7y* + 6x — 6y + 9 = 0;
(12) 5x% + 12xy —22x — 12y — 19 = 0;
(13) 6x> —4xy 4+ 9y* —4x — 32y — 6 = 0;
(14) 5x> + 4xy + 8y? — 32x — 56y + 80 = 0;
15) xy—k=0, ke R*.
6.2 Discuss, according to the values of the parameter a, the nature of the following
conics:
(1) 5x* +2axy 4+ 5> + 2x +2y +2 = 0;
2) ax®> +2xy+ay’> —2x+2y+9=0;
() 2 +4dxy + 4?4+ ax =0,
@) x> =8y +y +a=0.
6.3 For what value (or values) of ¢ will the graph of the Cartesian equation 2xy —

4x 4+ 6y + ¢ = 0 be a pair of lines?

6.4 An equilateral hyperbola. Prove that the conic (x+2y+1)(2x—y+1)+a = 0,
where a # 0, is a hyperbola having the asymptotes x+2y+1 = 0 and 2x—y+1 = 0.
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Remark 6.2 More generally, one can prove that the conic
(a1x + b1y + cy)(axx + byy + ¢2) +a =0,

with a;by — ayby # 0 and @ # 0, is a hyperbola having the asymptotes ajx + by +
c1 =0and axx + by + ¢, =0.

6.5 (a) Find the equation of a hyperbola passing through the points (1, 1), (2, 1)
and (—1, —2) which has the asymptote x +y — 1 = 0.

(b) Find the equation of an equilateral hyperbola passing through the points (1, 1)
and (2, 1) which has the asymptote x —y + 1 = 0.

6.6 A Lamé’s curve and a parabola in disguise.
Let k > 0 be a real number. Prove that the curves ¢} : /y — J/x = vk,

Gl Jx+ Sy = Vkand €} Jx— /y = Vk form together a parabola,
determine its canonical form, the vertex, and the symmetry axis.

Remark 6.3 A Lamé’s curve has the Cartesian equation j—z + ;}—Z = 1, where a, b
are positive real numbers and « is a real number. These curves have been studied by
G. Lamé [39] in the 19th century and now they are called Lame’s curves or super
ellipses.

When k = 1 the curve ‘512 is discussed in [12] where it is shown, in spite the
graph of €7 looks like the arc of a circle, that 47 is part of a parabola and not of a
circle.

6.7 Determine the nature of the conic % : x> +y> —4xy — 1 = 0 and find the lattice
points on % .

6.8 Prove the hyperbola .77 : x> — 5y* = 4 contains infinitely many lattice points.

6.9 (a) Determine the equation of an ellipse which, on the xOy plane, has the foci
F1(3/3,2), F,(3+/3, 4) and the large semi axes a = 3.
(b) Find the canonical form of the conic from part (a).

6.10 (a) Find the equation of a hyperbola which has the foci F;(—1,2), F,(3,6)
and the semi axes a = 2.
(b) Find the canonical form of the conic from part (a).

6.11 (a) Find the locus of points M(x, y) on the xOy plane with the property that the
distance from M to the line 2 : /3x — 3y + 2+/3 = 0 and the distance from M to
the point F(2, 0) are equal.

(b) Find the canonical form of the conic from part (a).

6.12 An abelian group determined by an ellipse.

Let & be the ellipse Z—; + i—z = 1 and let * be the binary operation on & defined by
¥ :EXE - &, (M|,Mp) € &xE — My xM, € &, where M x M, is the point on
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& where the line passing through A(a, 0) parallel to the segment [MM,] intersects

the ellipse &. Prove that (&, %) is an abelian group.

6.13 Find the extreme values of the function f(x,y) = x*> +xy +y* +x—y—1 and
the points where these values are attained.

6.14 Extremum problems with constraints.

(a) Find the minimum and the maximum values of the function f(x,y) = x + y
subject to the constraint 3x* — 2xy + 3y + 4x + 4y — 4 = 0.

(b) Find the extreme values of the function f(x,y) = 2x 4+ y subject to the
constraint 3x> 4+ 10xy + 3y? — 16x — 16y — 16 = 0.

(c) Find the extreme values of the function f(x,y) = 2x — y subject to the
constraint 9x? + 24xy + 16y? — 40x + 30y = 0.

6.15 Constrained extrema of a quadratic form.

Letf(x,y) = ax’+2bxy+cy?, a,b, c € R with a®>+b*>+c? # 0. Prove that the
minimum and the maximum values of f, subject to the constraint 2+ y2 =1,
are the smallest respectively the largest of the eigenvalues of

6.16 Find the area of the domain bounded by the curve
5x% 4 6xy + 5% — 16x — 16y — 16 = 0.

Double integrals over elliptical domains.

6.17 Calculate:

(a) //D exz_xy+>,2dxdy, where D; = {(x,y) ER*: 2 —xy+)? < 1};
1
(b) // ex2+xy+y2dxdy, where D, = {(x,y) ERY: X 4xy+)2 < 1};
Ds
(© f/ e—x2+xy—y2dxdy, where D3 = {(x, YeER: 2 —xyty?> 1};
D3
(d //D e—xZ_xy—ydedy, where Dy = {(x,y) € R2: 2% +xy + )2 > 1}.
4

6.18 Leta,b € Rsuchthat 0 < b < 2a and let « > 0. Calculate:

(@) // e""z*b"”“-"zdxdy, where D| = {(x,y) eR?: ax? —bxy +ay’> < ot};
Dy

(b) // eaxz+bxy+“y2dxdy, where D, = {(x.y) € R*: ax? + bxy + ay* < a};
D,
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(©) // e~ o=’ qydy where Dy = {(x,y) € R?: ax? —bxy + ay* > a};
D3

(d) / / e~ ~by=a 4ydy, where Dy = {(x,y) e R?: ax? + bxy + ay® > a}.
Dy

(continued)



6.4 Solutions 329

6.21 (continued)
(b) Let A € > (R) be a symmetric matrix with positive eigenvalues, let

b= (Zl) be a vector in R2, and let ¢ be a real number. Prove that
)

—wTAv+2b"v+c) _ U bTA h—c — (X)
e dxdy = ——e¢ , where v = .
/ /RZ /detA y

6.4 Solutions

6.1. (1) The ellipse x> + 5y”> = 1, the equation of the axes O"x” : x —y = 0,
0"y’ : x +y = 2, and the center 0" (1, 1);
(2) the hyperbola 48x? — 72y"? = 1, the equation of the axes O"x” : —2x +y =

“/?g, 0"y :x+2y= #, and the center O” (ﬁ é),

12

(3) the parabola x”/ — +/2y"? = 0, the equation of the axes O"x” : —x + y = %,
oy :x+y= 1741, and the vertex 0" (% %7),

(4) the conic degenerates to a union of two parallel lines (2x + 3y — 8)(2x+
3y+8) =0;

(5) the parabola x> + 2y’ = 0, the equation of the axes Ox’ : —4x + 3y = 0,
0y’ : 3x + 4y = 0, and the vertex 0(0, 0);

(6) the ellipse x> + 11y""? — 6 = 0, the equation of the axes O"x” : x — 3y = 2,
0"y" : 3x +y = 6, and the center 0" (2, 0);

(7) the parabola y”? — %x/’ = 0, the equation of the axes O"x" : —2x +y =1,
0"y" : x + 2y = 1, and the vertex 0" (—1. 2);

(8) the hyperbola —x?> +4y"? —4 = 0, the equation of the axes O"x” : —x+2y =
—4, 0"yY" : 2x + y = 3, and the center 0" (2, —1);

(9) the hyperbola —x""? + 4y"? = 2, the equation of the axes O"x" : 2x —y = 1,
0"y" : x + 2y = 3, and the center 0" (1, 1);

(10) the conic degenerates to a union of two parallel lines (x+y—1)(x+y+3) =
0;

(11) the hyperbola ’%2 —y"? = 1, the equation of axes O"x"” : —x + 2y = 1,
0"y" : 2x +y = 3, and the center 0" (1, 1);

/72

(12) the hyperbola ’%2 — % = 1, the equation of axes O"x" : —2x 4 3y = 1,
0"y" : 3x + 2y = 5, and the center 0" (1, 1);

(13) the ellipse %2 + # = 1, the equation of the axes O"x" : —x + 2y = 3,
0"y" : 2x +y = 4, and the center 0" (1, 2);

(14) the ellipse ’%2 + y/—9/ = 1, the equation of the axes O"x" : 2x —y = 1,
0"y’ : x + 2y = 8, and the center 0" (2, 3);
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(15) the equilateral hyperbola x> — y"> — 2k = 0, which is tangent to the x-axis
and the y-axis. If k > 0 the branches of the hyperbola are located in the first and the
third quadrant and if £k < 0O the branches of the hyperbola are located in the second
and the fourth quadrant.

6.2. (1) The matrix associated with our conic is A = (5 Z), which has the
a
eigenvalues A; = 5—aand A, = 5+ a. If a # 0 the eigenvectors corresponding to

the eigenvalues A} = 5—aand A, =5+ aare X| = «/LE ( 11) and X, = % G)

1 1

_ 1 _ o ) , .

and P = 7 (_1 1) = R_%, which is a rotation matrix of angle -

m If a = 0 the equation of the conic becomes € : 5x> + 5y> +2x + 2y +2 =0
SC: AP+ +x+ D)+ + 1) =0=%¢=0.

m Ifa=5wehave @ :5x2 + 10xy + 5> + 2x+ 2y +2 =06 € : 4(x +y)*> +
GFy+ 12 +1=0=2>%=0.

m Ifa = —5 the equation of the conic becomes € : 5x>—10xy+5y> +2x+2y+2 =
06 C:5x—y)2+2(—))+4y+2=06F :5(x—y+ 1) =4 (y+ 2),
which is a parabola.

J

/

We make the rotation (x) =P (x) and the equation of the conic becomes
y

G—a)x?+ G +ay?*+2/2y +2=0o0r

24/2 2 4
€ : (5—a)x’2+(5+a)<y’2+ fy’-l— )-i— 512:0.

5+a (5+ a)?

m If a = —4 the equation of the conic becomes % : g()c—y)2 + %(x +y+2)? =0,
and the conic reduces to a point 4’ = {(—1,—1)}.

m Ifae(—5,—4),wehave5—a>0,5+a >0, ‘5‘% < 0, which implies that €
is an ellipse.

] Ifae(—4,5),wehaveS—a>0,5+a>0,giz>O:><€=®.

m Ifa e (—o0,—5) U (5,00), since 5 + a and 5 — a have opposite signs, we get
that ¢ is a hyperbola.

In conclusion:

If a € (—o0,—5) U (5,00) = % is a hyperbola.
If a = —5 = ¥ is a parabola.

Ifa € (—5,—4) = % is an ellipse.

If a = —4 = ¥ reduces to a point.

If a € (—4,5] = € is the empty set.
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(2) The matrix associated with the conic is A = (Cll 1) with eigenvalues A; =
a

a+ 1, A, = a— 1 and eigenvectors X; = ﬁ (i), X, = % (_11) and P =

1 —1

l _ x . . . . E

7 (1 | ) = Rz, which is a rotation matrix of angle 7.

m Ifa=1wehave (x+y)>—2(x+y)+1 =—-dy—8 & (x+y—1)? = —4(y+2),
which is a parabola.

mIfa=—-Ilwehave ¥ : (x—y+1)?=10& % :x—y+ 1 = £/10 and the
conic reduces to a union of two lines.

m Ifa € R\ {£1} we make the rotation (x) =P (x
y y

/

) and the equation of the

/

conic becomes (a + 1)x2 + (a— 1)y2 4+ 2+/2y + 9 = 0. We complete the square
in y’ and we get that

2
2 9a — 11
(a+Dx*+(@—1) (y’ + a{1> + = = 0.

a—1

We distinguish between the following cases:

Ifa= %, sincea + 1 > 0,a—1 > 0, the conic reduces to the point (g, —g).
Ifa> Y sincea+1>0,a—1>0, % > (0, the conic reduces to the
empty set.

Ifa e (1, 1—91), thena+1>0,a—1 >0, % < 0 and the conic is an ellipse.

Ifae (-1,1),thena+1>0,a—1 < 0, 2= 5 0 and the conic is a

a—1
hyperbola.
Ifa e (—oo,—1),thena+1<0,a—1<0, % > 0 and the conic is an
ellipse.

In conclusion:

Ifa e (—oo,—1)U (1, %), the conic is an ellipse.
If a = —1, the conic is a union of two lines.

If a € (—1, 1), the conic is a hyperbola.

If a = 1, the conic is a parabola.

Ifa= %, the conic reduces to a point.

Ifa e (% oo) the conic is the empty set.

(3) We have x> + 4xy + 4y*> + ax = 0 & (x + 2y)> = —ax. If a = 0 the conic
degenerates to the line x 4+ 2y = 0 and if a # 0 the conic is a parabola.

7 -4\ .. .
4] with eigenvalues

A1 =9, A, = —1. Making the rotation X = PY the equation of the conic becomes
9> —y? +a = 0.If a # 0 the conic is a hyperbola and if a = 0 the conic

(4) The matrix associated with the conic is A = (
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degenerates to a union of two lines. This follows since 7x> — 8xy + > = 0 &
(x—y)(7x—y) = 0, which implies that x —y = 0 or 7x —y = 0. Thus, whena = 0
we have that € = 2, U %,, where 2 :x—y=0and %, : 7x—y = 0.

6.3. c = —12.

6.5. (a) We have, based on Remark 6.2, that the equation of the hyperbola which has
x4+ y—1=0asanasymptote is (ax + by + ¢)(x +y—1) + « = 0, & # 0. Since
the points (1, 1), (2, 1), and (—1, —2) are on the graph of the hyperbola we have the
system of linear equations

a+b+c+a=0
4a+2b+2c+a =0
4a+8b—4c+a = 0.

This implies that the equation of the hyperbolais (2x—3y—3)(x+y—1)+4 = 0.
(b) Since an equilateral hyperbola has perpendicular asymptotes we obtain that
the equation of the hyperbolais (x +y+ ¢c)(x—y+ 1) + « = 0,  # 0. It follows
that x +y—4)(x—y+1)+2=0.
6.6. We consider the curve 47 : /x + JY = Vk and observe that x, y € [0, k]. We
square both sides of this equation and we getx+y+2,/xy = k & 2, /xy = k—x—y.
This implies k > x + y and since x,y € [0, k] we get that our curve is contained in
the triangle having the vertices A(0, k), B(k, 0), and O(0, 0). We square both sides
of the preceding equation and we have x> — 2xy + y> — 2kx — 2ky + k> = 0. Thus,
our curve is a conic, more precisely the arc of a conic contained in AOAB, i.e.

Cr: =2y +y —2kx—2ky+k* =0, 0<x<k 0<y<k

The matrix associated with the quadratic form x> —2xy +y? is A = ( 11 _11), with

eigenvalues A; = 0, A, = 2 and the corresponding eigenvectors

1 L
X1 = (“{E) and X2 = ( ]«/E)
V2 V2

V2 N2
The rotation matrix P is given by P = ﬁ J% = Rz. We make a rotation
2 2
which has the equations X = PY,
= Ly_ Ly s — L 1
X=X =5y or X 7 + 737
=Ly Ly S 1
y= ﬁx + ﬁy y = ﬁx + ﬁy
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Vi Vi = VE

I
<

V3

A0, )},
vz + g =V
O B(k‘, 0) €T

Fig. 6.5 Lamé’s parabola

and the equation of the conic with respect to the coordinate system Ox’y’ becomes

V2 — 2k + % =0 y2— V2% (x/ — %) = 0. The translation of equations
/!

X=X - %ﬁz v’ =y, reduces the conic to its canonical form which has, with

respect to the system of coordinates 0”x""y”, the equation y”?> — +/2kx” = 0. This
is a parabola, so our curve %} is the arc of this parabola, tangent to the x and the y
axes, which is contained in A OAB.

The axes of the new system of coordinates are O"x” : Y/ = 0 &y =0 &
x—y=0and 0"y : X' =0 X = #5 S x4y = %‘.Thevertexofthe

parabola, the point where the two axes intersect, has coordinates (i{ ﬂ—i)

Similarly, one can prove that the other two curves %;' and %, are parts of the same
parabola, i.e., %kl is the unbounded arc of the parabola, above the line y — x = 0,
which is tangent to the y axis at A(0, k) and ‘5,? is the unbounded arc, below the line
y —x = 0, which is tangent to the x axis at B(k, 0) (Fig. 6.5).

1 =2 .
5 ), which
has the eigenvalues A; = 3 and A, = —1. Since A;A, < 0 the conic is a hyperbola.
We write the equation of the conic as (x—2y)? —3y? = 1 and we note this is a Pell’s
equation which has the minimal solution xy = 4, yo = 1. The general solution of
this equation is given by x, — 2y, + y.+/3 = (2 4+ +/3)" and this implies that

6.7. The matrix corresponding to the quadratic form of ¥’ is A = (

_ 2V + - VI

_ 2+ -2V
5 :

23

The lattice points on the hyperbola are (£1, 0) and (+x,, y,), where

n>1.

Xn—2Yn

and 1y,
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x":G*T)‘“”’ (3-)e-vr

L SV S QLI SV )

=3 ﬁ( ) 5 ﬁ( )

6.8. A direct computation shows that (2,0), (3, 1) and (7, 3) are on the hyperbola.
We determine A € .#, (Q) which generates infinitely many lattice points (x,,y,) €

¢ via the recurrence relation (x,,+1) = A (x"), n > 0. Let (xo) = (2),
Yn+1 n Yo 0

L 3 and ) = 7.Wehave 3 =A2, 7 =A3 and
1 1 Y2 3 1 0 3 1

it follows that (? ;) =A (3 ‘;’) This implies that A = 3 (? ’j) The matrix

recurrence relation implies that x| = %(3x,, + 5y,) and y,4 = %(xn + 3y,),

n > 0. One can check that xﬁﬂ — 5y,21+1 = xﬁ — Syﬁ = 4, foralln > 0, so

(x4, yn) € S, forall n > 0.

6.9. (a) The center of the ellipse is the midpoint of the segment [FF,] which is

0"(2+/3,3). The large semi axes of the ellipse is on the line F;F, which has the
equation 0"x" 1y = x%x + 1. The small semi axes, which passes through O” and

is perpendicular to O”x”, has equation 0"y : y = —/3x + 9. The angle between
Ox and O"x" is given by the slope of the line O"x”, i.e., m = \/Lg = tan ¥, so the
coordinate system O”x”y” is obtained from the canonical system Oxy by a rotation
of angle % followed by a translatlon which sends the origin 0(0, 0) to 0”(2+/3, 3).

The coordinates x” and y”, with respect to the coordinate system O”x"y”, of a point

M((x,y) are given by
N\ ‘/75 Y (x—2v3 6.5)
y// - _% ¢T§ y— 3 . .

The ellipse has the focal distance F1F, = 4,50c = 2,a = 3,and b*> = a*> —c? = 5.
The equation of the ellipse with respect to the system O”x"y" is € : LZ + )’”2 —1=
0. Using equation (6.5), we get that x”/ = E(ﬁx +y—9) and y” = 2(—x +
V/3y — 4/3) and replacing them in the equation of the ellipse we obtain that € :
6x> + 8y? — 24/3xy — 18+/3x — 36y + 63 = 0.

(b) The matrix of the quadratic form of the ellipse is A = ( f@ _g/i) which
has the eigenvalues A; = 5 and A, = 9. The eigenvectors corresponding to the

l
2

1

ﬁ _
two eigenvalues are X; = and X, =
2

3
T) The matrix P, of passing to

the Jordan canonical form of A, is given by P = = Rz. We make a

—
= Nl&
S,

~—
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rotation of angle % around the origin and we obtain the coordinate system Ox'y’
With respect to this system a point on the ellipse 4 would have the coordinates x’
and y’ which are defined by the system of equations

(=7 4)¢)

Without making the calculations the quadratic form 6x + 88y? — 2+/3xy, of the
conic, becomes 5x2 + 9y’ 2 and the linear terms from the equation of the conic are
calculated, based on the previous equations and we get that the equation of the conic,
with respect to the system Ox’y’ becomes € : 5x% 4+ 9y2 — 45x' — 94/3y' 4+ 63 = 0

2
or¢ :5(x— %)2 + 9( - ¢T§) — 45 = 0. We make a translation of equations
f

v

, we obtain a new system of coordlnates 0"x"y", and
//2

the equation of the conic Wlth respect to this system becomes 5~ P+ = 0,
which is the same equation we obtained in part (a) of the problem.

x”—x’—gandy =y -

The axes of the new system of coordinates are 0"x" : y" = 0 & y = ‘/75 &
x—3y—/3=0and 0"y : X' =0 & x = g & /3x 4+ y—9 = 0. The center
of the ellipse, which is the intersection of these two lines, is 0" (2 V3 , 3). Therefore
the conic is an ellipse of semi axes a = 3 and b = /5.

6.10. (a) The center of the hyperbola is the midpoint of the segment [FF5], i.e.,
0”(1,4). The focal distance is F1F, = 4+/2, 50 ¢ = 44/2,a = 2 and b*> =
c? — a®> = 4, which implies that the hyperbola is equilateral. We choose the system
of coordinates O”x"y” such that the x” axis is the line F;F, which has the equation
0"x" .y = x + 3 and the y” axis, perpendicular to the x” axis and passing through

0", has the equation 0"y" : y = —x + 5. With respect to the coordinate system
0"x"y" the hyperbola has the equation 2~ — Y- —1 = 0 & x> —y"> —4 = 0. The
coordinate system O”x”y” is obtained by a rotatlon of angle 7, the angle between the
lines O”x" and Ox, and a translation which sends O to O”. The equations involving
the coordinates (x, y) and (x”,y”) of a point M with respect to the coordinate systems

Oxy and O"x"y" are given by
Y2\ (x—1
v2 */Ti y—4/)"

It follows that x” = ﬁ(x +y—5)andy’ = ﬁ(—x + y —3) and replacing them in
x> —y"> —4 = 0 we get the equation of the hyperbola with respect to the coordinate
system Oxy,xy—4x—y—2=0.

(b) We write the equation of the conic as ¢ : 2xy — 8x — 2y + 4 = 0 and

=
NN
I
&
B
= =
(.
B o—
SN———"
I
|
N
™

we note the matrix corresponding to the quadratic form 2xy is A = ((1) (1)) which
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Ja

2
has the eigenvalues Ay = 1 and A, = —1 and the eigenvectors X; = ( 2 ) and
2

ﬁ
X, = ( . The matrix P, of passing to the Jordan canonical form of A, is given

V2 2
iﬁ J% = Rz. We change the coordinates by making the rotation
2

2
-
y
2
system Ox"y': X2 —y2—5/2xX' =32y +4 = 0 & (x’ _ M) —(y’ 3[) .

0. This implies that ’%2 — % —1=0,wherex” = x' — 5*[ andy’ =y — 3*[

The axes of the new system of coordinates are O”x" : y V= =0&y=x+ 3 and
0"y’ : ¥ = 0<% y = —x+5. The center of the hyperbola, which is the intersection
of these two lines, is 0" (1, 4).

6.11. (a) The locus is a parabola with directrix & and focus F. The symmetry axis of
the parabola is the line which passes through F and is perpendicular to 2. The slope

<

/
X . L .
,) and we get the equation of the conic with respect to the coordinate

of Zism = */Tg and the slope of the symmetry axis is m’ = —% = —/3. It follows

that the symmetry axis has the equation 2’ : y = —+/3(x — 2). The projection of
F onto the directrix is the point F'(1, \/3), the intersection point of lines 2 and &',
FF' =2,s0p = 4.

The center of the coordinate system with respect to which the parabola has the

equation & : y"? = 2px” is the midpoint of the segment [FF'], i.e., 0" (3, ¥3) and
q P g 2072

the coordinate axes 0"x" = 2’ : y = —/3(x + 2) and 0"y" : x — /3y = 0, a line
parallel to 2. With respect to the coordinate system O”x"'y” the equation of parabola
is &2 : y"? = 8x”. The angle between the axes O"x” and Ox is given by the slope of
2',ie,m = tana = —+/3, so « = —Z. Thus, the system O”x"y” is obtained by
a rotation of angle —% followed by a translatlon of vector O0”. The equations that
relate the coordlnates of a point M with respect to the coordinate systems O”x"y”
and Oxy are given by

/" 3 1 V3 3
x x—3 5 =¥ -3

()= (75) - (L 7))
2 2 2 2

We obtain the equation of the parabola
P 32+ + 23— 28x + 1243y + 12 = 0.

(b) The matrix corresponding to the quadratic form 3x% + y* + 24/3xy is A =

(3«/5

N ) which has the eigenvalues A; = 0 and A, = 4 and the corresponding
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) and X, =

—
Nl»—ml&

eigenvectors X| = ( ) . The matrix P, of passing to the Jordan

| =
ol
w

1B
canonical form of A, is given by P = ( %/g % ) = R_z. Werotate the coordinate
)
system Oxy by an angle —% and we obtain the coordinate system Ox’y" and we have

the equations

(-sel) = 5)-n()

The equation of the conic with respect to the coordinate system Ox'y’ is y> —
2V3Y +3 = 8¢ & (Y — V3)r = 8 & y? = 8, where x/ = X’ and
y// — y/ _ \/g

The axes of the system of coordinates are 0"x” : y/ = 0 & y = /3 &
V3x+y—2+4/3 =0whichisline 2,and 0"y’ : ¥’ =0 X =0 & x— /3y =
0. The center of the system, the intersection of the coordinate axes, is the point

3 43
0" (3.%4).
6.12. Let M,(acost|,bsint;) and Mjy(acosty,bsint,) and M, * M, =

M(acost, bsinf). The slope of the line MM, is given by m = &2sin=sinn _

a costh—cos 1]
—2 cot 2322, The equation of the line which passes through A parallel to MM, is

givenby 2 1y = =& cot hrh +’2 (x —a). Intersecting the line with the ellipse we get
the equation bsint = 2 cot ”+’2a(cost— 1) & sin 4 cos £ = sin” £ cot 132, When
s1n 5 = 0 we get the p01nt A and when sin § # 0 we have that tan = tan ate +t2 , SO
t= l1 + .

The binary operation * is associative since M(t1) * (M(ty) * M(t3)) = (M(ty) *
M(5)) *M(t3) = M(t; +1t, +t3) and commutative M (1)) * M (1) = M(t) *xM(t)) =
M(t; + 1;). The identity element of * is A = M(0) and the inverse element of M(¢)
with respect to * is M’(—t), which is the symmetric point of M with respect to the x
axis.

6.13. The matrix associated with the quadratic term 2x> 4 2xy + 2y of the function
2f(x,y) isA = (f ;) which has the eigenvalues A; = 3 and A, = 1 and the

V2

30
JA—(O 1) and P—(

2

5

€ _ L
corresponding eigenvectors v| = (*(2) and v, = ( lf ) It follows that

S-S
S -
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We make a rotation of equations

_ L1y
x—ﬁx ﬁy

y

L

vl

and we obtain that the function 2f has, with respect to the coordinate system x’'Oy’,
the expression g(x',y') = 3x2 + y2 — 22y —2 = 3x2 + (y — v/2)> — 4. The
function g has the minimum value —4, when (x’,y’) = (0, +/2). The minimum value
of f is obtained when (x,y) = (—1, 1) and is equal to f(—1, 1) = —2.

6.14. (a) The matrix associated with the quadratic form 3x> — 2xy + 3y? is A =

( 31 _31) which has the eigenvalues Ay = 2, A, = 4 and the corresponding

4 L
eigenvectors are vy = (‘{5) and v, = ( lfz ) It follows that
/2

_ L
ﬁ)
-
2

V2

20
JA=(0 4) and P=(

We make the rotation

S-S

_ L 1.
AT
N 1y
—ﬁx-l-ﬁy

and the equation of the conic becomes x> + 2y +2+/2¢ =2 = 0 & (X' ++/2)> +

2y"? = 4. The translation of equations x’ ++/2 = x”,y’ = y” shows that our conic is

the ellipse x> 4 2y? = 4. The parametric equations of this ellipse are X" = 2 cos?,
/!

y' = /2sint, t € [0,27). Using the equations of the rotation and the translation
we get that

x = +/2cost—sint— 1
y = V2cost+sint— 1,

where 1 € [0, 27). It follows that f(x,y) = g(f) = 2+/2cost — 2, t € [0,27). This
function has the minimum value —2+/2 — 2, when ¢ = 7 and the maximum value
2.2 —2,when t = 0. Thus, the global minimum value of f, subject to the constraint,
is —2+/2 — 2 obtained at (x,y) = (—+/2 — 1, —+/2 — 1) and the global maximum
value of f is 24/2 — 2 obtained at (x,y) = (v/2 — 1, v/2 = 1).

Nota bene. Let & be the ellipse 3x> — 2xy + 3y + 4x + 4y — 4 = 0. It is worth
mentioning that since f is a continuous function and & is a compact set we know,
based on the Weierstrass Theorem, that f|s has a global minimum and a global
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maximum. Using the Lagrange multipliers method one can only need to determine
the constraint critical points of f, in our case there are two such points, and then
to observe that one is a point of global minimum and the other is a point of global
maximum.

(b) The matrix associated with the quadratic form 3x2+ 10xy+ 3y2 iISA = (3 5)

53
which has the eigenvalues A; = 8 and A, = —2 and the corresponding eigenvectors
i _L
v = (?) and v, = ( l“ﬁ) It follows that
V2 V2

4L
Jy = (g 02) and P = (‘{5 f/i)
B Vi V2

The rotation

and the translation

y/ — y//

show that our conic is the hyperbola 4x”? — y"?> = 16.

Let 2 be this hyperbola and let 77 and % be the two branches of 7, i.e.,
H = 74 U Hb5.

The parametric equation of # are x” = 2cosht, ¥’ = 4sinhz, t € R. We get
from the equations of the rotation and the translation that

x =14 +/2cosht —2+/2sinht
y=1+ ﬁcosht—l—Zﬁsinht,

t € R. Thus, we study the extreme values of the function g(r) = f(x,y) = 2x+y =
3+ % (ﬁe’ +5 ﬁe"), t € R. A calculation shows that g has the global minimum
value 3 4+ /10 when 7 = In +/5. Thus, the global minimum value of f is 3 + /10
obtained when x = 1 — \/gandy =1+ 7\/?

On the other hand, the parametric equations of % are x” = —2coshz, y' =
4sinht, t € R. This implies that
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x=1—+/2cosht—2+/2sinh¢
y=1-— \/Ecosht—l—Z\/Esinht,

t € R. Now we study the extreme values of the function i(¢) = f(x,y) =2x+y =
3 — % (Sﬁe’ + «/Ee_’), t € R. This function has the absolute maximum value
3 — 10 at 1 = —In+/5. Thus, the absolute maximum value of fis3 — V10
obtained when x = 1 + \/gandy =1- 7\/g.

(c) The matrix associated with the quadratic form 9x*> + 24xy + 16y* is A =

(192 12) which has the eigenvalues A1 = 25 and A, = 0 and the corresponding

3 _4
eigenvectors v| = (2) and v, = ( 3 ) It follows that
5 5

5
25 0 34
JA:( ) and P:(ﬁ 35).
00 : 3

The rotation

_ 3. 4.7
X = g.x — gy
Y=+ 3y
shows that the equation of the conic becomes x> + 2y’ = 0. The parametric
. . 2 . .
equations of this parabola are X' = r,y’ = —’5, t € R. The equations of the rotation

imply that x = 21 + 22 and y = 21 — %. Now we study the extreme values of

the function g(¢) = f(x,y) = 2x—y = %t + %tz, which has a global minimum at
58

t = —%. The global minimum value of f is —52—5 which is obtained when x = — &=

andy = —=:.

6.15. Let f(x,y) = ax®> + 2bxy + c¢y” and let L be the Lagrangian L(x,y) = ax*> +
2bxy + cy* — A(x* + y*> — 1). Then

(a—AMx+by=0

‘g—i:%lx+2by—2)tx:0
bx+ (c—A)y=0.

‘?)—5:2bx+20y—2)ky:0

Thus, Xy = (xo) is a constrained critical point of f subject to x> + y> = 1 if and
Yo

only if ArXy = AXo, for some A. That is, if and only if A is an eigenvalue of A,

. . . X
and X is its corresponding unit eigenvector. If Xy = ( 0

Yo
f(x0,y0) = (axo + byo)xo + (bxo + cyo)yo = Axi + Ay3 = A. Therefore, the largest

), with xé + y% = 1, then
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and the smallest eigenvalues of A are the maximum and the minimum of f subject
tox? +y*> = 1.
6.16. The curve is an ellipse whose canonical form is 4x> 4+ y"? = 16. Since the
area of the domain bounded by the ellipse >3 + = 1 is wab and, by making a
rotation and a translation the area of a domam is preserved, we get that the area of
the domain bounded by the curve 5x2 + 6xy + 5y> — 16x — 16y — 16 = O is 8.
2n(e — 1) 2r(e—1) 27 27
; (b) ; (© ; ()
V3 V3 ev3' T eV3

6.18. (a) The matrix associated with the quadratic form ax> — bxy + ay® is A =

6.17. (a)

_b
( “ 2) which has eigenvalues A} = a — g and A, = a + %. We have
a

_b
2
b
a—% 0 I (1 -1
Jy = 2 d P=— .
=0ty w50

We change variables according to the equation X = PY, i.e.

(x):L(l —l)(x:) N x=?(x:—y’l)
y/) 2\ 1) \y y=750+y)

and we get that

I, = // eaxszxy+ay2dxdy — // e(afg)x’2+(a+g)y/2 D()f’y/) dxdy,
Dy D} D(x',y)
D(x.y) . , : . o
where DY) is the Jacobian of the transformation and D) is the elliptical disk

= %(x’,y’) eR?: (a—g)x’z—l— (a+g)y/2§a%.

Leosh psme , where 6 € [0,27) and

and y =

Passing to polar coordinates x' =

p € [0, /o) we get that

Jo o p2n
1=/ /eszdee_
0 0 [q2 — B2
4

/ pep dp w_

4a? — b?
. 2w (e*—1)
(b) The integral equals ——.
grated v/ 4a; — b2
T

(c) The integral equals

e*v/4a? — b2
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b
€ matrix associated with the quadratic form ax“+bxy+ay“1SA =
(d) Th i iated with the quadratic fi 24 bxy+ay’isA a2
5 a
2

which has eigenvalues A; = a + %’ and A, = a— g We have

a+2 0 1 (1 -1
Jy = 2 d P=— )
= (07 0) e =500

We change variables according to the equation X = PY, i.e.

1 / /
1 (1 -1\ (¥ x=—-=))
(x)= (1 1)(x’) = Y
y V2 y yZTE(x +y)
and we get that

Dy Dz/l

D(x,y)
D', y")
including the boundary, of the elliptical disk

= %(x’,y’) eR*: (a-i-g)x/z—i- (a—g)y’zzag.

D(x,y)

dx'dy’,
D(x',y') Y

where is the Jacobian of the transformation and D:‘ is the exterior,

Passing to polar coordinates ¥’ = £ apd y = £508 ““9 , where 6 € [0,27) and

p € [/a, 00) we get that

o) 2 2
I =/ [ e L dpdo = / pePdp = — 2
Vo Jo Ja? - & V4a* — b? e“v4a* — b?

6.19. (a) The integral equals 0. See the solution of part (b).

5 a
which has the eigenvalues A; = a + g and A, = a— %’. A calculation shows that the
Jordan canonical form of A and the invertible matrix P which verifies the equality

A = PJ,P~! are given by

a+§ 0 1 (1 -1
= d P=— .
Ja ( 0 a—g) an ﬁ(l ])

b
(b) The matrix associated with the quadratic form ax? + bxy +ay’ isA = (f 2)
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We change variables according to the equation X = PY, i.e
"=y

()-506) = Lo
= — , =
v/ 2\l 1) \y y=50+Y)

and we get that

] e // xye_ﬂ "Z—bx}’—avzdxdy

/ / )@t (e
o,

is the Jacobian of the transformation and D!

D(x, y) dx/d ’
D,

is the exterior,

D(x,y)

where
D(x/, y/
including the boundary, of the elliptical disk

= {(x’,y/)eRz: (a—i—g)x’z—i— (a—g)y’ZZa} .

LA ““9 , where 6 € [0,2r7) and

/o pcos b y/ —

Passing to polar coordinates x
a

p € [/a, 00), we get that

1 oo ) 2w
= / ple ™ dp / cos® Hd@
—b?|a + Ja 0

1 0 ) 2
— / ple ™’ dp/ sin? 6d6
Jao 0
1 ® Ly b4 i
e d T
o ( v )

Ny Ja

Abr 1 .
) (__(1 0 p)

T Vi@ — b (da® —

2bn(1 + o)

VA — b (4a? — b2)e

oo

o




344 6 Conics

2
6.21. (a) We have, based on part (b), that the integral equals E.

V8

(b) Let A1, A, be the eigenvalues of A, let J4, = ()k1 0 ) be the Jordan canonical

0 A
form of A and let P be the orthogonal (rotation) matrix which satisfies A = PJ,P~!.

We have that P = (X; | X5), where X; = (xl) and X, = (xz) are the eigenvectors
D1 Y2

corresponding to the eigenvalues A; and A,. Using the substitution v = (x) =
y

x/
P ( /) we get that
y

12// ef(vTAv+2bTv+C)dxdy
R2

= / / e~ A2+ A2y +b1x +b5y +0)
R2

= //2 e—(/\1x/2+lzy’2+b1x’+b£y'+c)dx/dy/’
R

D(x,y)

/

where b; = 2b"X; and b, = 2b"X,. We make the substitutions xX'v/A; = u,
y'+/22 = v and we have that

// 2+v2+fu+fv+c)dudv
«/det R?

2 2 b
f/ - t+w +c— m_m)dtdw
\/ detA R2 ’
b/

where the last equality follows based on the substitutions u + #ﬂ = t,

= w.

v+ zf
We have, since X; = L;A7!1X; and X, = L, A™'X,, that

Mab? + bR = Ay (267X,) (2XTD) + Ay (267X,) (2X2D)
=40 :0"AT (X0 X] + XX3) b
= 4detAbTAT'Lb
= 4detAbTA™ "D,
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and this implies that

bTA Ip—c
I= / / = dedw
+/detA R2

bTA lp—c 2
m / / <™ pdpds

_ el AT b=

/detA

345



Appendix A
Gems of classical analysis and linear algebra

A.1 Series mirabilis

Chance favours only the prepared mind.
Louis Pasteur (1822-1895)

Lemma A.1 [32] A power series with the tail of In %

The convergence set of the power series
o

1 1 (-1
Z(1n§+1—§+-~-+ . )x”

n=1

is (—1, 1] and the following equality holds

i( 1 1 (—1)"—1) . w23 if x=1
In-+1->+--+——)xX"=4In(1+x)—xIn2
=\ 2 2 g —————— i xe(-LD).

Proof First we show that if n > 1 is an integer, then

1 1 (_l)n—l —l/l P
In=+1—=+-- = (=1)" dx.
n2+ 2+ + " =1 T
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We have

1 1 S | (1)
Mol —2
NSl Z
=1n1—2n:(—1)k/1)d<—1dx
2 O 0
1 n
ln— / Z(—x)k_ldx
0 k=1
1 1 — (=x)"
=In- i
2+/0 I4+x

1 n
- (—1)"—1f T
0 1+X

1 1 —1)r!
Leta, =In 5 +1- 3 +--+ ( ) . The radius of convergence of the power

series Z apx"is givenby R = lim ‘”"l - A calculation shows that
n=1 n—00 19n+1

Ap+1 _ 1
an (n—l—l)f1 =
On the other hand,
( N b xn+1 1+/1 xn+1 dx—1+/1 yrtl W
" T+x o T4xly Jo Gxn2 27 ) 02

! 1 n+1 _ 1 :
and this 1mpl1es since fo Gy < Jox'tldx = 5, that nli)rglo(n +

1) fo 2 dx = 1. Thus, = 1 and the series converges on (—1, 1).

1+x
Now we show that the series converges when x = 1 and diverges when x = —1.
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1
Let x = 1. We prove that the sum of the series equals In2 — 3 Let N € N. We
calculate the Nth partial sum of the series and we get that

N N

> (1 Loty +(_1)n_1 2 1)”1/1 "
= n-— R — _
N 2 2 " o L+t

n=1 n=1

U e L1 — (—0)Y)
=_/O I—H;(—z)dz=/o Tl
_ 1 t v 1 tN-i-l
_/0 (l—i—t)zdt_(_l) /0 —(1+t)2dt

_ 1 v 1 ANl

tN+1

(1 +1)?

1 1
1
This implies, since 0 < / dr < / AMlar =
0 0 N+

. that lim SN =
2 N—o00

1
In2 — 5
When x = —1 we get that

00 _ 00
1 1 (_l)nl 1 P
)" (ln=4+1-=+-- = dr
> ( )(n2+ A ) Z/O 1+1¢
n=1 n=1
1 00
F 1
=—| — f'de

= fl ! dr
o 1=2

1 "
= 5 111(1 — tz)

0

= —OQ.

We used at step (1) Tonelli’s Theorem for nonnegative functions which allow us to
interchange the summation and the integration signs.
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Letx € (—1,1) and let N € N. We have

=3 (mh a1 Gas E)
_ i(_l)"—l fl X i / Z( o
o o 1+1¢ =
_ /1 tx(1 = (—=tx)N) dt
o 1+ +xx)
1 1 N+1
- [ oot mesara
On the other hand,
J R
0 (1 + (1 + xt) |1+ txl 1 — |x| (N +2)(1—|x])

and this implies that

lim sy (x) /1 i dr
m sy(x) = D ——
N—oo o 1+ + w)

A calculation shows that

! tx by 1 1 In(1 4+ x) —xIn2
—dr= - + dr = .
o (14+0(1 4+ ) o 1—x 1+t 14+& 1—x

Lemma A.1 is proved. O

The Polylogarithm function Li,(z) is defined, for |z| < 1 and n # 1,2, by

o0 k z .
. Z Lln—l(t)
Liy2) =Y — :/ = a4
P k 0 t

When n = 1, we define Li;(z) = —In(1 — z) and when n = 2, we have that
Liy(z), also known as the Dilogarithm function, is defined by

x© 2

Lix(z) = Z % = —/Oz —ln(lt_ t)dt

n=1

Before we give the proofs of the next two lemmas we collect a result from the
theory of series. Recall that Abel’s summation formula [11, p. 55], [22, p. 258]
states that if (a,),>1 and (b,).>1 are two sequences of real or complex numbers and

n
A, =Y a, then
k=1
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Zakbk = Apbpt1 + ZAk(bk —bry1), neN.
k=1 k=1

We also use, in our calculations, the infinite version of the preceding formula

o0 o0
D abe = m (Agbut1) + Y Ar(bi — bes),
k=1 e k=1

provided the infinite series converges and the limit is finite.

Lemma A.2 The generating function of the tail of ¢ (k).
Let k > 3 be an integer and let x € [—1, 1]. The following formula holds

i(;(k)_l_i ..... l)xnz w if xe[-1.1)
e i (k—1)—=¢k) if x=1,

n=1

where Liy denotes the polylogarithm function.

Proof If x = 0 we have nothing to prove, so we consider the case when x € [—1, 1)

and x # 0. We use Abel’s summation formula, with @, = x" and b, = {(k) — lik —

Zik—---—nik.Wehave
o0
11 1\,
Z(?(k)—ﬁ—? ———— %)x
n=1
—lim Pt (C -~ - ]
_nl)rgox X é‘ F ? m
- 1
2 e n—
+;(x+x + +x)(n+1)k
¥ - 1 X"
_vaXm+w_m+nJ

n=1
X

- P@—l—l@M@—@}
X

1—x

x¢ (k) — Lig(x)
1—x ’
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Now we consider the case when x = 1. We use Abel’s summation formula, with

a :landb,,:§(k)—ﬁ—%—---—nik.Wehave
o0
1 1 1 . 1 1 1
;@W‘ﬁ‘ﬁ """ i) =l (s == 5= )
> n
gD Dy

< 1 1
B 1((n+1)'<—1 - (n+1>'<)
= {(k—1) = ¢(R),

and the lemma is proved. |

Lemma A.3 The generating function of » times the tail of (k).
(a) Let k > 3 be an integer and let x € [—1, 1). The following formula holds

ad 11 .tk — =ELigo (x) — Lig(x)
;n(f(k)—p_i ____ nk)"” 1—x) ’

where Liy denotes the polylogarithm function.
(b) Let k > 3 be a real number. Then

d 11 1 1
>0 (80 - =g == ) = 5 €= D= EG-D).

n=1

Proof (a) Differentiate the series in Lemma A.2.
(b) This part of the lemma can be proved by applying Abel’s summation formula
witha, =nand b, = {(k) — 5t — 5 — -+ — - O

A.2 Two quadratic Frullani integrals

In this section we prove a lemma which is used in the solution of problem 4.102.



A Gems of classical analysis and linear algebra 353

Lemma A.4 Frullani in disguise.

Let a be a positive real number. The following equality holds

//(_w _ay)zdxdy=/0w(l_xe_x)zdxzzlnz,

Proof First we calculate the single integral by observing that it is a Frullani integral
[33]. Let f : [0,00) — R be the function f(x) = “,if x # 0 and £(0) = 1.
A calculation shows that

(1 —e )2 _ S —f@)

X X

It follows, based on Frullani’s formula, that

o —e\ 2 o0 _
/[ (l—e )dx=2/ L0 =129 40— 5 (7(0) — fo0)) In2 = 21n2,
0 0 .

X

and the second equality of the lemma is proved.
Now we calculate the double integral by using the substitutions ox = u, &y = v

and we get that
e~ ox _ g—ay 2
=) e
/ / ( ) dudv
u—v
U e g\ 2
=2 — | dv | du.
0 0 u—7uv
The substitution u — v = ¢ shows that the inner integral becomes
U fo—U _ o=V 2 o U] et 2
—— | dv=e dr.
0 u—uv 0 t

00 U] el 2
This implies that / = 2 [ e ( [ ( ¢ ) dt) du. We calculate this integral
0 0

t
by parts with

u A\ 2 _auN\2 —2u
= [(55) o rw=(55) L dw=e g =0
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and we get that

u 1_ r\ 2
1= —e_z“f ( e) dr
0 t
==
= du
0 u

=2In2.

o o0 ] —e 2
+/ ( )du
0 0 u

The lemma is proved.

More generally [21] one can prove that if n# > 2 is an integer, then
e} e} —X _ a— Y\ " 2(—1)" o) 1_—xn
G R A e
o Jo xX=Yy n 0 X

2 < [n — i
= ()J '(=1Y Inj.
n! J

j=2

However, the case when n = 2 reduces to the calculation of a Frullani integral.

A.3 Computing e**

In this section we give a general method for calculating e**, where A € .7, (R) and
x € R. This method is based on a combination of the Cayley—Hamilton Theorem
and the power series expansion of the exponential function.

Theorem A.1 The exponential matrix e**.
Let A € #, (R), x € R, Tr(A) = t, and detA = d. Then:

I Ax 2 Ax t .

e? | cosh 5 L + ﬁ sinh 5 (A — 512):| if A>0

e = e [ 4+ A——Iz)x if A=0
sV Ax 2 J—Ax t ,

e2? | cos 5 L+ T sin 7 (A — —12) if A<O,

where A = 1> — 4d.



A Gems of classical analysis and linear algebra 355

Proof We have, based on the Cayley—Hamilton Theorem, that A2 — tA 4 dI, = O,
and it follows that ( — %Iz)2 = %Iz.

The case A > 0. Let b = YA and let B = A — £I,. We have that B = b2I,
and this implies that B = p?[, forall k > 0 and B*~! = p*~2B for all k > 1.
A calculation shows that

(Bx)Zk (BX 2k—1
Z @ 2k — )

_ (bx)Zk (bx)Zk 1 B
- Z (2k)' Z(Zk—l)' b

sinh(bx) B
b

cosh(bx)I, +

np VA%

AI—G—Z B
2\/_ 5 B

cosh

This implies that

Cxlg + % sinh \/_x (A — %Iz)] .

The case A = 0. We have that B> = O, and this implies that B¥ = 0,, for all
k > 2. This implies that e5* = I, + Bx and

x t
e — el — o [12 + (A - 512) x] .

The case A < 0. We have that B> = 21, or B2 = —b*I,, where b = @. This
implies that B* = (—1)*b*I,, for all k > 0 and B*~' = (—1)*"'p*~2B, for all
k > 1. A calculation shows that

Z (Bx)2k Z (BX)Zk—l

20! & (2k—1)!
_ k( ) k— 1(bx 2k E
_kg;(_ ) (2k)! +Z(_ ) Qk—1)! b
= cos(bx)l, + sin(bx)B

= COoS L + sin

\/Ex 2 . \/qx( t )

\S)
0
>

\S)
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This implies that

eM = e2leBr = 2 |:COS L+ sin

The theorem is proved. O

Remark A.1 'We mention that the hyperbolic functions sinh(Ax) and cosh(Ax) can
also be calculated as a consequence of Theorem A.1. We leave these calculations to
the interested reader.

A.4 Computing sin Ax and cos Ax

In this section we give a technique, other than the one involving the Jordan canonical
form of a matrix, for calculating the trigonometric functions sin(Ax) and cos(Ax),
where A € .4, (R) and x € R.

Theorem A.2 The trigonometric function sin(Ax).
Let A € #, (R), x € R, Tr(A) = t and detA = d. Then:

t 2 t VA t
cos xsin%lg—l—ﬁcosixsinTx(A—zlz) if A>0
r. r. t
sin(Ax) = 4 sin Exlz + xcosEx (A - 512) if A=
— t 2 V—=A t
cosh Yo sin iclz + ——— sinh al cos i (A — —12) if A<O,
2 2 v—A 2 2

where A = 1> — 4d.

Proof The Cayley—Hamilton Theorem implies that A>—tA+dl, = O, and it follows
2
that (A — 15)" = 2D,
The case A > 0. Leth = */TZ and let B = A — £I,. We have that B> = b’I, and
this implies that B* = b1, for all k > 0 and B*~' = p*~2B, forall k > 1. We
have
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) B © - (Bx)Zn—l
sin(Bx) = n=1(—1) —(Zn ~)
B 0 - (bx)zn—l B
_;( D Cn—1! b
_ sin;bx)B
= % sin 2Ax (A — —Iz>

and

o L BOT (b0 VAx
cos(Bx) = ;(—1) (Z—n)' = ;(—1) le = cos(bx)I, = cos 2 b.

It follows that
. . x
sin(Ax) = sin (Bx + 512)
. x . 1x
= sin(Bx) cos (512) + cos(Bx) sin <E[2>

= sin(Bx) cos (%C) + cos(Bx) sin (%)

VAx) | 2 tx . A Ax t
=cos | —— | sin —=f, + —— cos — sin —— (A — —12) .
2 2 VA 2 2 2

The case A = 0. We have that B> = O, and this implies that BF = 0,, for all
k > 2. A calculation shows that

t
SiIl(B)C) = Bx = (A — EIz)X and COS(B)C) = 12.
Thus
. . Ix
sin(Ax) = sin (Bx + 512)

L t
= sin(Bx) cos (glz) + cos(Bx) sin (’2—)612)

. DCI + 1x (A tI)
= SiIn — XCOS — —_ = .
22 2 22
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The case A < 0. We have that B> = 41, or B> = —b*I,, where b = —VZ_A. This
implies that B* = (—1)*b*1,, for all k > 0 and B*~! = (=1)"'b?=2B, for all
k > 1. A calculation shows that

sin(Bx) = Z( 1~ 1(Bx)2n

1

-1
(bx)Zn 1 B
_Z(Zn—l)' b

sinh(bx) B

and

e 2n S 2n /—A
cos(Bx) = Z(—l)” (g};))! = 2 ((192);))! I, = cosh(bx)l; = cosh 5 x]g.

It follows that

. . 1x
sin(Ax) = sin (Bx + 512)

. ix . (Ix
= sin(Bx) cos (512> + cos(Bx) sin (512)

vV —=A t 2 v—=A t t
= cosh Tx sin —xlz + sinh al cos = (A — —12> .

2 v—=A 2 2

The theorem is proved. O

Theorem A.3 The trigonometric function cos(Ax).
LetA € #, (R), x € R, Tr(A) = t, and detA = d. Then:

VA t 2 t A t
cos—xcos—xlz——sin—xsin—x(A——Iz) if A>0
. 2 2t At 2 2 2
cos(Ax) = 1 cos Exlz —xsinEx (A — 512) if A=0
—A 2 —-A t t
cosh Tx cos 512 e = sinh Tx sin Ex (A = 512) if A<DO,

where A = > — 4d.

Proof The proof of the theorem is similar to the proof of Theorem A.2. O



Appendix B
Trigonometric matrix equations

B.1 Four trigonometric equations

Read to get wise and teach others
when it will be needed.
St. Basil the Great (329-378)

In this appendix we solve the fundamental trigonometric matrix equations. First we
record a lemma which will be used in the proofs of Lemmas B.2 and B.4.

Lemma B.1 Let f be a function which has the Taylor series expansion at 0,
f@) = Y2, L20) n. |z| < R, where R € (0,00] and let A € > (C) be such

nl

that p(A) < R. Let o € C and let B € .#, (C) such that A and B are similar. Then,
f(A) = al ifand only if f(B) = al.

Proof The proof is left as an exercise to the interested reader. O

Lemma B.2 Let A € 4, (R). The solutions of the equation sinA = O, are
given by

. k7T 0 1
A_Q(o ln)Q ’

where I,k € Z and Q € 4> (R) is any invertible matrix.
Proof Let J4 be the Jordan canonical form of A. Since A ~ J4 we have, based on

Lemma B.1, that it suffices to study the equation sinJy = O,. Let A, A, be the
eigenvalues of A. We distinguish here the following two cases.
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0 12 0 sin Az
which implies that sinA; = 0 and sin A, = 0. Thus, A; = kx and A, = I, where
k,l€Z.

IfJ, = Al , then sinJ, = sin A C?SA = 0, and this implies sinA = 0
0 A 0 sinA
and cos A = 0 which is impossible since sin® A + cos? A = 1.

A has complex eigenvalues. Let § € R* and A; = o + i and A, = o — i} be

A has real eigenvalues. If /4, = (Al 0 ) then sinJy = (Smkl 0 ) =0,

the eigenvalues of A. We have, based on Theorem 2.10, that J, = ( (xﬂ p ) The
—B «a

equation sinA = O, implies that sinA = PsinJ4P~' = O, which in turn implies
that sinJ, = O,. A calculation, based on Theorem A.2, shows that

inh
sinJy = %JA + |:cosh|/3| sino — %Sinh|ﬂ|cosa:| L

. ( cosh |B| sin« %sinh|,3|cosa)

—% sinh |B|cosa  cosh|B]|sina
This implies that

cosh |B|sina =0
%sinh|ﬁ|cosa =0.

The first equation implies that sinae = 0 and, since B # 0, the second equation
shows that cos @ = 0 which contradicts sin” @ + cos?a = 1. |

Lemma B.3 Let A € .4, (R). The solutions of the equation cosA = O, are
given by

l'i‘k]f 0 —1
A= 2 ,
Q( 0 %+ln)Q

where I,k € Z and Q € #, (R) is any invertible matrix.
Proof Since cosA = sin (%Iz - A) we have that the equation to solve reads
in(5n-4)=0
sin{ =L —A) = 0,,
S b p)

and the result follows based on Lemma B.2. O
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Lemma B.4 Let A € ./, (R). The solutions of the equation sinA = I, are
given by

L 4 2km 0 =
a=0(>2 ,
Q( 0 %+2[7r)Q

where I,k € Z and Q € 4, (R) is any invertible matrix or

L 4+ 2mm 1 1
A=0(?
Q( 0 %-}-Zmn)Q '

where m € Z and Q € > (R) is any invertible matrix.

Proof Let J, be the Jordan canonical form of A. Since A ~ J4 we have, based on
Lemma B.1, that it suffices to study the equation sinJy = I,. Let A1, A; be the
eigenvalues of A. We distinguish here the following two cases.

A has real eigenvalues. If J, = (Al 0 ), then sinJy = (sm/h . 0 ) =1

0 A 0 sinA,

which implies that sinA; = 1 and sinA, = 1. Thus, Ay = § + 2kz and A, =
3+ 2Im, where k, 1 € Z.

IfJ, = (?) i), then sinJ, = (Su(l))L Z?ﬁi
and cos A = 0 which implies that A = % + 2mm, where m € Z.

A has complex eigenvalues. Let § € R* and A} = o + i and A, = o — iff be

the eigenvalues of A. We have, based on Theorem 2.10, that J4 = ( ozﬂ ﬁ ) The

equation sinA = I, implies that sinA = P sin JAP~' = I, which in turn implies that
sinJ, = I,. A calculation, based on Theorem A.2, shows that

) = [, and this implies sinA = 1

sinh |B]| cos & o
sinJy = %JA + |:cosh |B|sina — W sinh |B| cosa] e

cosh |B| sin« |;%‘sinh|,8|cosoz
N —%sinh|,3|cosa cosh|B|sina |

This implies that

cosh |B|sina = 1
%Sinh|ﬁ|cosa =0.
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The second equation implies, since B # 0, that cose = 0. This shows that
sine = %1 and we get from the first equation that cosh|8| = 1. The solution
of this equation is 8 = 0 which is impossible. O

Lemma B.5 Let A € .4, (R). The solutions of the equation cosA = I, are
given by

_ 2k7T 0 —1
A_Q( 0 ZZn)Q ’

where I,k € Z and Q € 4, (R) is any invertible matrix or

_ Zmn’ —1 1
A_Q( 0 Zmn)Q ’

where m € Z and Q € #, (R) is any invertible matrix.

Proof Observe that sin (%Iz —A) = cosA and the proof follows based on
Lemma B.4.

Other equations involving trigonometric functions can be solved by reducing
them to these four fundamental matrix equations. We stop our line of investigation
here and invite the reader to study further other matrix equations involving
trigonometric or inverse of trigonometric functions.
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Epilogue

The authors wish you success in solving this collection of problems involving
only matrices of order 2. Why only matrices of order 2?7 Simply because there
are spectacular results involving 2 x 2 matrices, see for example the determinant
formulae from Chapter 1 that do not hold for matrices other than those of order 2
and even if, in some cases, these results can be extended to matrices of order greater
than 2, these formulae lose splendor and beauty, not to mention the finesse of their
proofs.

Whether the problems turn out to be splendid or not that is for you, the reader, to
decide. We hope that you will enjoy both the problems and the theory. For questions,
generalizations, remarks, observations regarding the improvement of this material
and why not criticism, please do not hesitate to contact us at:

Vasile Pop

Technical University of Cluj-Napoca
Department of Mathematics

Str. Memorandumului Nr. 28, 400114
Cluj-Napoca, Romania

E-mail: Vasile.Pop@math.utcluj.ro

and

Ovidiu Furdui

Technical University of Cluj-Napoca
Department of Mathematics

Str. Memorandumului Nr. 28, 400114
Cluj-Napoca, Romania

E-mail: Ovidiu.Furdui @math.utcluj.ro
E-mail: ofurdui @yahoo.com
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