
Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 1, 2007

• 4954: Proposed by Kenneth Korbin, New York, NY.
Find four pairs of positive integers (a, b) that satisfy

a + i

a− i
· b + i

b− i
=

111 + i

111− i

with a < b.

• 4955: Proposed by Kenneth Korbin, New York, NY.
Between 100 and 200 pairs of red sox are mixed together with between 100 and 200 pairs
of blue sox. If three sox are selected at random, then the probability that all three are
the same color is 0.25. How many pairs of sox were there altogether?

• 4956: Proposed by Kenneth Korbin, New York, NY.
A circle with radius 3

√
2 is inscribed in a trapezoid having legs with lengths of 10 and

11. Find the lengths of the bases.

• 4957: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let {an}n≥0 be the sequence defined by a0 = 1, a1 = 2, a2 = 1 and for all n ≥ 3,
a3

n = an−1an−2an−3. Find lim
n→∞

an.

• 4958: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let f : [a, b] → R ( 0 < a < b) be a continuous function on [a, b] and derivable in (a, b).X
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Prove that there exists a c ∈ (a, b) such that

f ′(c) =
1

c
√

ab
· ln(ab/c2)
ln(c/a) · ln(c/b)

.

• 4959: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain.
Find all numbers N = ab, were a, b = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, such that

[S(N)]2 = S(N2),

where S(N)=a+b is the sum of the digits. For example:

N = 12 N2 = 144
S(N) = 3 S(N2) = 9 and [S(N)]2 = S(N2).

Solutions

• 4918: Proposed by Kenneth Korbin, New York, NY.
Find the dimensions of an isosceles triangle that has integer length inradius and sides and
which can be inscribed in a circle with diameter 50.

Solution by Paul M. Harms, North Newton, KS.
Put the circle on a coordinate system with center at (0, 0) and the vertex associated with
the two equal sides at (0, 25). Also make the side opposite the (0, 25) vertex parallel to
the x-axis. Using (x, y) as the vertex on the right side of the circle, we have x2 + y2 =
252 = 625. Let d be the length of the equal sides. Using the right triangle with vertices
at (0, 25), (0, y), and (x, y) we have (25− y)2 + x2 = d2.

Then d2 = (25 − y)2 + (252 − y2) = 1250 − 50y; the semi-perimeter s = x + d and the

inradius r =

√
x2(d− x)

d + x
. Using x2 + y2 = 252, we will check to see if x = 24 and y = 7

satisfies the problem. The number d2 = 900, so d = 30. The inradius r =

√
242(6)

54
= 8.

Thus the isosceles triangle with side lengths 30, 30, 48 and r = 8 satisfies the problem. If
x = 24 and y = −7, then d = 40 and r = 12. The isosceles triangle with side lengths
40, 40, 48 and r = 12 also satisfies the problem.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly),
San Angelo, TX; Peter E. Liley, Lafayette, IN; David E. Manes, Oneonta, NY;
David Stone and John Hawkins, Statesboro, GA; David C. Wilson, Winston-
Salem, NC, and the proposer.

• 4919: Proposed by Kenneth Korbin, New York, NY.
Let x be any even positive integer. Find the value of

x/2∑

k=0

(
x− k

k

)

2k.X
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Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly),
San Angelo, TX.

To simplify matters, let x = 2n and

S (n) =
n∑

k=0

(
2n− k

k

)

2k.

Since (
m

i

)

=
(

m− 1
i− 1

)

+
(

m− 1
i

)

for m ≥ 2 and 1 ≤ i ≤ m− 1, we have
(

2n + 4− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 3− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 2− k

k − 1

)

+
(

2n + 2− k

k

)

=
(

2n + 3− k

k − 1

)

+
(

2n + 3− k

k − 1

)

−
(

2n + 2− k

k − 2

)

+
(

2n + 2− k

k

)

=
(

2n + 2− k

k

)

+ 2
(

2n + 3− k

k − 1

)

−
(

2n + 2− k

k − 2

)

for n ≥ 1 and 2 ≤ k ≤ n + 1.
Therefore, for n ≥ 1,

S (n + 2) =
n+2∑

k=0

(
2n + 4− k

k

)

2k

= 1 + (2n + 3) · 2 +
n+1∑

k=2

(
2n + 4− k

k

)

2k + 2n+2

= 1 + (2n + 3) · 2 +
n+1∑

k=2

(
2n + 2− k

k

)

2k + 2
n+1∑

k=2

(
2n + 3− k

k − 1

)

2k

−
n+1∑

k=2

(
2n + 2− k

k − 2

)

2k + 2n+2

= 4 +
n+1∑

k=0

(
2n + 2− k

k

)

2k + 2
n∑

k=1

(
2n + 2− k

k

)

2k+1 −
n−1∑

k=0

(
2n− k

k

)

2k+2 + 2n+2

= S (n + 1) + 4
n+1∑

k=0

(
2n + 2− k

k

)

2k −
n−1∑

k=0

(
2n− k

k

)

2k+2 − 2n+2

= 5S (n + 1)− 4
n∑

k=0

(
2n− k

k

)

2k

= 5S (n + 1)− 4S (n) .

To solve for S (n), we use the usual techniques for solving homogeneous linear difference
equations with constant coefficients. If we look for a solution of the form S (n) = tn,
with t '= 0, thenX
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S (n + 2) = 5S (n + 1)− 4S (n)

becomes
t2 = 5t− 4,

whose solutions are t = 1, 4. This implies that the general solution for S (n) is

S (n) = A · 4n + B · 1n = A · 4n + B,

for some constants A and B. The initial conditions S (1) = 3 and S (2) = 11 yield A =
2
3

and B =
1
3
. Hence,

S (n) =
2
3

· 4n +
1
3

=
22n+1 + 1

3
for all n ≥ 1. The final solution is

x/2∑

k=0

(
x− k

k

)

2k =
2x+1 + 1

3

for all even positive integers x.

Also solved by David E. Manes, Oneonta, NY, David Stone, John Hawkins,
and Scott Kersey (jointly), Statesboro, GA, and the proposer.

• 4920: Proposed by Stanley Rabinowitz, Chelmsford, MA.
Find positive integers a, b, and c (each less than 12) such that

sin
aπ

24
+ sin

bπ

24
= sin

cπ

24
.

Solution by John Boncek, Montgomery, AL.

Recall the standard trigonometric identity:

sin(x + y) + sin(x− y) = 2 sinx cos y.

Let x + y =
aπ

24
and x− y =

bπ

24
. Then

sin
aπ

24
+ sin

bπ

24
= 2 sin

(a + b)π
48

cos
(a− b)π

48
.

We can make the right hand side of this equation equal to sin
cπ

24
if we let a− b = 16 and

a + b = 2c, or in other words, by choosing a value for c and then taking a = 8 + c and
b = c− 8.
Since we want positive solutions, we start by taking c = 9. This gives us a = 17 and b = 1.

Since sin
17π

24
= sin

7π

24
, replace a = 17 by a = 7 and we have a solution a = 7, b = 1 and

c = 9.
By taking c = 10 and c = 11 and using the same analysis, we obtain two additional triples
that solve the problem, namely: a = 6, b = 2, c = 10 and a = 5, b = 3, c = 11.X
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Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Kenneth Korbin, NY, NY; Peter, E. Liley, Lafayette,
IN; David E. Manes, Oneonta, NY; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 4921: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Evaluate
∫ π/2

0

cos2006 x + 2006 sin2 x

2006 + sin2006 x + cos2006 x
dx.

Solution by Michael C. Faleski, Midland, MI.

Call this integral I. Now, substitute sin2 x = 1 − cos2 x and add to the numerator
sin2006 x− sin2006 x to give

I =
∫ π/2

0

2006 + sin2006 x + cos2006 x− (2006 cos2 x + sin2006 x)
2006 + sin2006 x + cos2006x

dx

=
∫ π/2

0
dx−

∫ π/2

0

2006 cos2 x + sin2006 x

2006 + sin2006 x + cos2006 x
dx.

The second integral can be transformed with u = π/2− x to give
∫ π/2

0

2006 cos2 x + sin2006 x

2006 + sin2006 x + cos2006 x
dx = −

∫ 0

π/2

cos2006 u + 2006 sin2 u

2006 + sin2006 u + cos2006 u
du = I.

Hence, I =
∫ π/2
0 dx− I =⇒ 2I =

π

2
=⇒ I =

π

4
.

∫ π/2

0

cos2006 x + 2006 sin2 x

2006 + sin2006 x + cos2006 x
dx =

π

4
.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Ovidiu Furdui, Kala-
mazoo, MI; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the pro-
poser.

• 4922: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let a, b be real numbers such that 0 < a < b and let f : [a, b] → R be a continuous
function in [a, b] and derivable in (a, b). Prove that there exists c ∈ (a, b) such that

cf(c) =
1

ln b− ln a

∫ b

a
f(t) dt.

Solution by David E. Manes, Oneonta, NY.

For each x ∈ [a, b], define the function F (x) so that F (x) =
∫ x
a f(t)dt. Then F (b) =∫ b

a f(t)dt, F (a) = 0 and, by the Fundamental Theorem of Calculus, F ′(x) = f(x) for each
x ∈ (a, b).
Let g(x) = ln(x) be defined on [a, b]. Then both functions F and g are continuous on

the closed interval [a, b] and differentiable on the open interval (a, b) and g′(x) =
1
x
'= 0X
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for each x ∈ (a, b). By the Extended Mean-Value Theorem, there is at least one number
c ∈ (a, b) such that

F ′(c)
g′(c)

=
F (b)− F (a)
g(b)− g(a)

=

∫ b

a
f(t)dt

ln b− ln a
.

Since
F ′(c)
g′(c)

= cf(c), the result follows.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M.
Harms, North Newton, KS; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 4923: Proposed by Michael Brozinsky, Central Islip, NY.
Show that if n ≥ 6 and is composite, then n divides (n− 2)!.
Solution by Brian D. Beasley, Clinton, SC.

Let n be a composite integer with n ≥ 6. We consider two cases:
(i) Assume n is not the square of a prime. Then we may write n = ab for integers a and
b with 1 < a < b < n− 1. Thus a and b are distinct and are in {2, 3, . . . , n− 2}, so n = ab
divides (n− 2)!.
(ii) Assume n = p2 for some odd prime p. Then n− 2 = p2 − 2 ≥ 2p, since p > 2. Hence
both p and 2p are in {3, 4, . . . , n− 2}, so n = p2 divides (n− 2)!.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Luke Drylie (student, Old Dominion U.), Chesa-
peake, VA; Kenneth Korbin, NY, NY; Paul M. Harms, North Newton, KS;
Jahangeer Kholdi, Portsmouth, VA; N. J. Kuenzi, Oshkosh, WI; David E.
Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Boris Rays, Chesa-
peake, VA; Harry Sedinger, St. Bonaventure, NY; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 4924: Proposed by Kenneth Korbin, New York, NY.

Given
∞∑

N=1

FN

KN
= 3 where FN is the N th Fibonacci number. Find the value of the positive

number K.
Solution by R. P. Sealy, Sackville, New Brunswick, Canada.

The ratio test along with the fact that lim
n→∞

Fn+1

Fn
=

1 +
√

5
2

implies
∞∑

n=1

Fn

Kn
converges

for K >
1 +

√
5

2
. Then

3 =
∞∑

n=1

Fn

Kn
=

1
K

+
1

K2
+

∞∑

n=3

Fn

Kn

=
1
K

+
1

K2
+

∞∑

n=3

Fn−1 + Fn−2

Kn

=
1
K

+
1

K2
+

1
K

∞∑

n=3

Fn−1

Kn−1
+

1
K2

∞∑

n=3

Fn−2

Kn−2X
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=
1
K

+
1

K2
+

1
K

(
3− 1

K

)
+

3
K2

=
4
K

+
3

K2
⇒ K =

2 +
√

13
3

.

Also solved by Brian D. Beasley, Clinton, SC; Sam Brotherton (student,
Rockdale Magnet School For Science and Technology), Conyers, GA; Elsie
M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo,
TX; José Luis Dı́az-Barrero, Barcelona, Spain; Luke Drylie (student, Old Do-
minion U.), Chesapeake, VA; Paul M. Harms, North Newton, KS; Jahangeer
Kholdi and Boris Rays (jointly), Portsmouth, VA & Chesapeake,VA (respec-
tively); N. J. Kuenzi, Oshkosh, WI; Tom Leong, Scotrun, PA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4925: Proposed by Kenneth Korbin, New York, NY.
In the expansion of

x4

(1− x)3(1− x2)
= x4 + 3x5 + 7x6 + 13x7 + · · ·

find the coefficient of the term with x20 and with x21.
Solution 1 by Brian D. Beasley, Clinton, SC.

We have

1
(1− x)3(1− x2)

=
1

(1− x)4(1 + x)

= (1− x + x2 − x3 + · · ·)(1 + x + x2 + x3 + · · ·)4

= (1− x + x2 − x3 + · · ·)(1 + 2x + 3x2 + 4x3 + · · ·)2

= (1− x + x2 − x3 + · · ·)(1 + 4x + 10x2 + 20x3 + · · ·),

where the coefficients of the second factor in the last line are the binomial coefficients
C(k, 3) for k = 3, 4, 5, . . .. Hence, allowing for the x4 in the original numerator, the
desired coefficient of x20 is

19∑

k=3

C(k, 3)(−1)19−k = 525.

Similarly, the desired coefficient of x21 is
20∑

k=3

C(k, 3)(−1)20−k = 615.

Solution 2 by Tom Leong, Scotrun, PA.

Equivalently, we find the coefficients of x16 and x17 in

1
(1− x)3(1− x2)

. (1)X
ia
ng
’s
T
ex
m
at
h



We use the following well-known generating functions:

1
1− x2

= 1 + x2 + x4 + x6 + · · ·

1
(1− x)m+1

=
(

m

m

)

+
(

m + 1
m

)

x +
(

m + 2
m

)

x2 +
(

m + 3
m

)

x3 + · · ·.

A decomposition of (1) is

1
(1− x)3(1− x2)

=
1
2

1
(1− x)4

+
1
4

1
(1− x)3

+
1
8

1
(1− x)2

+
1
8

1
(1− x)

.

Thus the coefficient of xn is

1
2

(
n + 3

3

)

+
1
4

(
n + 2

2

)

+
1
8

(
n + 1

1

)

+
1
8

=
(n + 2)(n + 4)(2n + 3)

24
if n is even

or

1
2

(
n + 3

3

)

+
1
4

(
n + 2

2

)

+
1
8

(
n + 1

1

)

=
(n + 1)(n + 3)(2n + 7)

24
if n is odd.

So the coefficient of x16 is
18 · 20 · · · 35

24
= 525 and the coefficient of x17 is

18 · 20 · · · 41
24

=
615.

Solution 3 by Paul M. Harms, North Newton, KS.

When
−1 < x < 1,

1
1− x

= 1 + x + x2 + · · ·.

Taking two derivatives, we obtain for

−1 < x < 1,
2

(1− x)3
= 2 + 3(2)x + 4(3)x2 + · · ·.

When

−1 < x < 1,
x4

1− x2
= x4 + x6 + x8 + · · ·.

The series for
x4

(1− x)3(1− x2)
can be found by multiplying

1
2
· 2
(1− x)3

· x4

(1− x2)
=

1
2

[
2+3(2)x+4(3)x2+···+18(17)x16+19(18)x17+···

][
x4+x6+x8+···

]
.

The coefficient of x20 is

1
2

[
18(17) + 16(15) + 14(13) + · · ·4(3) + 2

]
= 525.

The coefficient of x21 is

1
2

[
19(18) + 17(16) + 15(14) + · · ·5(4) + 3(2)

]
= 615.

Comment: Jahangeer Kholdi and Boris Rays noticed that the coefficients in x4 +
3x5+7x6+13x7+22x8+34x9+50x10+ · · ·, are the partial sums of the alternate triangularX
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numbers. I.e., 1, 3, 1 + 6, 3 + 10, 1 + 6 + 15, 3 + 10 + 21, · · ·, which leads to the coefficients
of x20 and x21 being 525 and 615 respectively.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; José Luis
Dı́az-Barrero, Barcelona, Spain; Jahangeer Kholdi and Boris Rays (jointly),
Portsmouth, VA & Chesapeake,VA (respectively); Peter E. Liley, Lafayette,
IN; John Nord, Spokane, WA; Harry Sedinger, St. Bonaventure, NY; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4926: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate ∞∑

n=1

nF 2
n

3n

where Fn is the nth Fibonacci number defined by F1 = F2 = 1 and for n ≥ 3, Fn =
Fn−1 + Fn−2.
Solution by David Stone and John Hawkins, Statesboro, GA.

By Binet’s Formula, Fn =
αn − βn

√
5

, where α and β are the solutions of the quadratic

equation x2 − x− 1 = 0; α =
1 +

√
5

2
, β =

1−
√

5
2

.

Note that a − b =
√

5, α · β = −1, α2 + β2 = 3, and α6 + β6 = 18. Also recall from

calculus that
∞∑

n=1

nxn =
x

(1− x)2
for |x| < 1. Thus we have

∞∑

n=1

nF 2
n

3n
=

∞∑

n=1

n

3n

α2n − 2αnβn + β2n

5

=
∞∑

n=1

n

3n

α2n − 2(−1)n + β2n

5

=
1
5

{ ∞∑

n=1

n
(

α2

3

)n

− 2
∞∑

n=1

n
(−1

3

)n

+
∞∑

n=1

n
(

β2

3

)n
}

=
1
5

{ α2

3[
1− α2

3

]2 − 2
−1
3[

1 + 1
3

]2 +
β2

3[
1− β2

3

]2

}
, valid because

β2

3
<

α2

3
< 1;

=
1
5

{ 3α2

[3− α2]2
+

3
8

+
3β2

[3− β2]2

}

=
3
5

{
α2

[β2]2
+

1
8

+
β2

[α2]2

}
because α2 + β2 = 3,

=
3
5

{1
8

+
α6 + β6

α4β4

}
by algebra,X
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=
3
5

{1
8

+
18
1

}
=

87
8

.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Tom Leong, Scotrun, PA, and the proposer.

• 4927: Proposed by José Luis Dı́az-Barrero and Miquel Grau-Sánchez, Barcelona, Spain.
Let k be a positive integer and let

A =
∞∑

n=0

(−1)n

2k(2n + 1)
and B =

∞∑

n=0

(−1)n

{
2k∑

m=0

(−1)m

(4k + 2)n + 2m + 1

}

.

Prove that
B

A
is an even integer for all k ≥ 1.

Solution by Tom Leong, Scotrun, PA.
Note that inside the curly braces in the expression for B, the terms of the (alternating) sum
are the reciprocals of the consecutive odd numbers from (4k+2)n+1 to (4k+2)n+(4k+1).
As n = 0, 1, 2, . . ., the reciprocal of every positive odd number appears exactly once in
this sum (disregarding its sign). Thus

B =
∞∑

n=0

{
2k∑

m=0

(−1)m+n

(4k + 2)n + 2m + 1

}

=
∞∑

i=0

(−1)i

2i + 1

from which we find
B

A
= 2k. (In fact, it is well-known that B = π/4.)

Comment by Editor: This problem was incorrectly stated when it was initially posted
in the May, 06 issue of SSM. The authors reformulated it, and the correct statement of
the problem and its solution are listed above. The corrected version was also solved by
Paul M. Harms of North Newton, KS.

• 4928: Proposed by Yair Mulian, Beer-Sheva, Israel.
Prove that for all natural numbers n

∫ 1

0

2x2n+1

x2 − 1
dx =

∫ 1

0

xn

x− 1
+

1
x + 1

dx.

Comment by Editor: The integrals in their present form do not exist, and I did not
see this when I accepted this problem for publication. Some of the readers rewrote
the problem in what they described as “its more common form;” i.e., to show that∫ 1

0

2x2n+1

x2 − 1
−

(
xn

x− 1
+

1
x + 1

)
dx = 0. But I believe that one cannot legitimately recast

the problem in this manner, because the
∫ b
a (f(x) + g(x))dx =

∫ b
a f(x)dx +

∫ b
a g(x)dx if,

and only if, f(x) and g(x) is each integrable over these limits. So as I see it, the problem
as it was originally stated is not solvable. Mea culpa, once again.X
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• 4929: Proposed by Michael Brozinsky, Central Islip, NY.
An archaeological expedition uncovered 85 houses. The floor of each of these houses was a
rectangular area covered by mn tiles where m ≤ n. Each tile was a 1 unit by 1 unit square.
The tiles in each house were all white, except for a (non-empty) square configuration of
blue tiles. Among the 85 houses, all possible square configurations of blue tiles appeared
once and only once. Find all possible values of m and n.
Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo,
TX.

Assume that each configuration of blue tiles is a k × k square. Since m ≤ n and each
such configuration was non-empty, it follows that k = 1, 2, . . . ,m. For each value of k,
there are (m− k + 1) (n− k + 1) possible locations for the k × k configuration of blue
tiles. Since each arrangement appeared once and only once among the 85 houses, we have

85 =
m∑

k=1

(m− k + 1) (n− k + 1)

=
m∑

k=1

(m + 1) (n + 1)− (m + n + 2)
m∑

k=1

k +
m∑

k=1

k2

= m (m + 1) (n + 1)− (m + n + 2)
m (m + 1)

2
+

m (m + 1) (2m + 1)
6

=
m (m + 1)

6
[3n− (m− 1)]

or
m (m + 1) [3n− (m− 1)] = 510. (1)

This implies that m and m + 1 must be consecutive factors of 510. By checking all 16
factors of 510, we see that the only possible values of m are 1, 2, 5. If m = 2, (1) does
not produce an integral solution for n. If m = 1 or 5, equation (1) yields n = 85 or 7
(respectively). Therefore, the only solutions are (m,n) = (1, 85) or (5, 7).

Also solved by Tom Leong, Scotrun, PA; Paul M. Harms, North Newton,
KS; Harry Sedinger, St. Bonaventure, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 1, 2007

• 4960: Proposed by Kenneth Korbin, New York, NY.
Equilateral triangle ABC has an interior point P such that

AP =
√

5, BP =
√

12, and CP =
√

17.

Find the area of "APB.

• 4961: Proposed by Kenneth Korbin, New York, NY.
A convex hexagon is inscribed in a circle with diameter d. Find the area of the hexagon
if its sides are 3, 3, 3, 4, 4 and 4.

• 4962: Proposed by Kenneth Korbin, New York, NY.
Find the area of quadrilateral ABCD if the midpoints of the sides are the vertices of a
square and if AB =

√
29 and CD =

√
65.

• 4963: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Calculate

lim
n→∞

∑

1≤i<j≤n

1
3i+j

.

• 4964: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let x, y be real numbers and we define the law of composition

x ⊥ y = x
√

1 + y2 + y
√

1 + x2.X
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Prove that (R,+) and (R,⊥) are isomorphic and solve the equation x ⊥ a = b.

• 4965: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.
Let ha, hb, hc be the heights of triangle ABC. Let P be any point inside "ABC. Prove
that

(a)
ha

da
+

hb

db
+

hc

dc
≥ 9, (b)

d2
a

h2
a

+
d2

b

h2
b

+
d2

c

h2
c
≥ 1

3
,

where da, db, dc are the distances from P to the sides BC, CA and AB respectively.

Solutions

• 4930: Proposed by Kenneth Korbin, New York, NY.

Find an acute angle y such that cos(y) + cos(3y)− cos(5y) =
√

7
2

.

Solution by Brian D. Beasley, Clinton, SC.

Given an acute angle y, let c = cos(y) > 0. We use cos(3y) = 4c3 − 3c and cos(5y) =
16c5 − 20c3 + 5c to transform the given equation into

−16c5 + 24c3 − 7c =
√

7
2

.

Since this equation in turn is equivalent to

32c5 − 48c3 + 14c +
√

7 = (8c3 − 4
√

7c2 +
√

7)(4c2 + 2
√

7c + 1) = 0,

we need only determine the positive zeros of f(x) = 8x3−4
√

7x2+
√

7. Applying cos(7y) =
64c7 − 112c5 + 56c3 − 7c, we note that the six zeros of

64x6 − 112x4 + 56x2 − 7 = f(x)(8x3 + 4
√

7x2 −
√

7)

are cos(kπ/14) for k ∈ {1, 3, 5, 9, 11, 13}. We let g(x) = 8x3 + 4
√

7x2 −
√

7 and use
g′(x) = 24x2 + 8

√
7x to conclude that g is increasing on (0,∞), and hence has at most

one positive zero. But g(1/2) > 0, cos(π/14) > 1/2, and cos(3π/14) > 1/2, so cos(π/14)
and cos(3π/14) must be zeros of f(x) instead. Thus we may take y = π/14 or y = 3π/14
in the original equation.

Also solved by: Dionne Bailey, Elsie Campbell, and Charles Dimminnie (jointly),
San Angelo, TX; Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayete,
IN; Charles McCracken, Dayton, OH; Boris Rays, Chesapeake, VA; David
Stone and John Hawkins (jointly), Satesboro, GA, and the proposer.

• 4931: Proposed by Kenneth Korbin, New York, NY.
A Pythagorean triangle and an isosceles triangle with integer length sides both have the
same length perimeter P = 864. Find the dimensions of these triangles if they both have
the same area too.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA.

Surprisingly, there exists only one such pair of triangles: the (primitive) Pythagorean
tiangle (135, 352, 377) and the isosceles triangle (366, 366, 132). Each has a perimeter 864
and area 23, 760.
By Heron’s Formula (or geometry), an isosceles triangle with given perimeter P and sidesX
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(a, a, b) has area

A =
b

4

√
4a2 − b2 =

P − 2a

4

√
P (4a− P ), where

P
4
≤ a ≤ P

2
.

In our problem, P = 864. We can analyze possibilities to reduce the number of cases to
check or we can use a calculator or computer to check all possibilities. In any case, there
are only a few such triangles with integer length sides:






a b A
222 420 15, 120
240 384 27, 648
270 324 34, 992
312 240 34, 560
366 132 23, 760






Now, if (a, b, c) is a Pythaorean triangle with given perimeter P and given area A, we can
solve the equations

P = a + b + c
c2 = a2 + b2

A =
ab

2

to obtain a =
(P 2 + 4A) ±

√
P 4 − 24P 2A + 16A2

4P
, b =

2A

a
, c = P − a− 2A

a
.

We substitute P = 864 and the values for A from the above table. Only with A = 23, 760
do we find a solutions (135, 352, 377). (Note that the two large values of A each produce a
negative under the radical because those values of A are too large to be hemmed up by a
perimeter of 864, while the first two values of A produce right triangles with non-integer
sides.)

Also solved by Brain D. Beasley, Clinton, SC; Paul M. Harms, North Newton,
KS; Peter E. Liley, Lafayette, IN; Amihai Menuhin, Beer-Sheva, Israel, Harry
Sedinger, St. Bonaventure, NY, and the proposer.

• 4932: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.
Let ABC be a triangle with semi-perimeter s, in-radius r and circum-radius R. Prove
that

3
√

r2 + 3
√

s2 ≤ 2 3
√

2R2

and determine when equality holds.

Solution by the proposer.

From Euler’s inequality for the triangle 2r ≤ R, we have r/R ≤ 1/2 and
(

r

R

)2/3

≤
(1

2

)2/3

(1)

Next, we will see that
s

R
≤ 3

√
3

2
(2)X
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In fact, from Sine’s Law
a

sin A
=

b

sinB
=

c

sinC
= 2R,

we have
a + b + c

sinA + sinB + sinC
= 2R

or
s

R
=

a + b + c

2R
= sinA + sinB + sinC ≤ 3

√
3

2
as claimed. Notice that the last inequality is an immediate consequence of Jensen’s
inequality applied to the function f(x) = sin x that is concave in [0,π].

Finally, from (1) and (2), we have
(

r

R

)2/3

+
(

s

R

)2/3

≤
(1

2

)2/3

+
(

3
√

3
2

)2/3

= 2 3
√

2

from which the statement immediately follows as desired. Note that equality holds when
"ABC is equilateral, as immediately follows from (1) and (2).

• 4933: Proposed by José Luis Dı́az-Barrero and Juan José Egozcue, Barcelona, Spain.
Let n be a positive integer. Prove that

1
n

n∑

k=1

k

(
n

k

)1/2

≤ 1
2

√
(n + 1)2n.

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX .

By the Binomial Theorem,
n∑

k=0

(
n

k

)

xk = (1 + x)n

d

dx

n∑

k=0

(
n

k

)

xk =
d

dx
(1 + x)n

n∑

k=1

k

(
n

k

)

xk−1 = n(1 + x)n−1

n∑

k=1

k

(
n

k

)

xk = nx(1 + x)n−1

d

dx

n∑

k=1

k

(
n

k

)

xk =
d

dx

[
nx(1 + x)n−1

]

n∑

k=1

k2

(
n

k

)

xk−1 = n(1 + x)n−2(nx + 1) (1).

Evaluating (1) when x = 1,
n∑

k=1

k2

(
n

k

)

= n(n + 1)2n−2

1
n

n∑

k=1

k2

(
n

k

)

=
(n + 1)2n

4
(2).X
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By the Root Mean Square Inequality and (2),

1
n

n∑

k=1

k

(
n

k

)1/2

≤

√√√√√
n∑

k=1
k2

(n
k

)

n

=

√
(n + 1)2n

4

=
1
2

√
(n + 1)2n.

Also solved by the proposer.

• 4934: Proposed by Michael Brozinsky, Central Islip, NY.
Mrs. Moriaty had two sets of twins who were always getting lost. She insisted that one
set must chose an arbitrary non-horizontal chord of the circle x2 + y2 = 4 as long as the
chord went through (1, 0) and they were to remain at the opposite endpoints. The other
set of twins was similarly instructed to choose an arbitrary non-vertical chord of the same
circle as long as the chord went through (0, 1) and they too were to remain at the opposite
endpoints. The four kids escaped and went off on a tangent (to the circle, of course). All
that is known is that the first set of twins met at some point and the second set met at
another point. Mrs. Moriaty did not know where to look for them but Sherlock Holmes
deduced that she should confine her search to two lines. What are their equations?

Solution by R. P. Sealy, Sackville, New Brunswick, Canada

The equations of the two lines are x = 4 for the first set of twins and y = 4 for the second
set of twins.

The vertical chord through the point (1,0) meets the circle at points (1,
√

3) and (1,−
√

3).

The slopes of the tangent lines are − 1√
3

and
1√
3
. So the equations of the tangent lines

are
y = − 1√

3
x +

4√
3

and y =
1√
3
x − 4√

3
.

These tangent lines meet at the point (4,0). Otherwise, a non-vertical (and non-horizontal)
chord through the point (1,0) intersects the circle at points (a, b) and (c, d), bd )= 0, b )= d.
The slopes of the tangent lines are −a

b
and − c

d
. So the equations of the tangent lines are

y = −a

b
x +

4
b

and y = − c
d

x +
4
d

.

The x-coordinate of the point of intersection of the tangent lines is
4(d− b)
ad− bc

. And since

the points (a, b), (c, d) and (1,0) are on the chord, we have

b− 0
a− 1

=
d− 0
c− 1

or
d− b = ad− bc.

Therefore, the x-coordinate of the point of intersection of the tangent lines is 4.X
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Similar calculations apply to position of the second set of twins.

Also solve by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 4935: Proposed by Xuan Liang, Queens, NY and Michael Brozinsky, Central Islip, NY.
Without using the converse of the Pythagorean Theorem nor the concepts of slope, similar
triangles or trigonometry, show that the triangle with vertices A(−1, 0), B(m2, 0) and
C(0,m) is a right triangle.
Solution by Harry Sedinger, St. Bonaventure, NY.

Let O = (0, 0). The area of "ABC is

1
2

(
|OB|

)(
|AC|

)
=

1
2
m(m2 + 1) =

1
2
m

√
m2 + 1

√
m2 + 1

=
1
2

√
m4 + m2

√
m2 + 1 =

1
2

(
|BC|

)(
|AB|

)
.

Thus if AB is considered the base of "ABC, its height is |BC|, so AB ⊥ BC and "ABC
is a right triangle.

Also solved by Charles Ashbacher, Cedar Rapis, IA; Brian D. Beasley, Clinton,
SC; Grant Evans (student, Saint George’s School), Spokane, WA; Paul M.
Harms, North Newton, KS; Jahangeer Kholdi, Portsmouth, VA; John Nord,
Spokane, WA; Boris Rays, Chesapeake, VA; David Stone and John Hawkins
(jointly), Statesboro, GA; William Weirich (student Virginia Commonwealth
University), Richmond, VA, and the proposers.

Editor’s comment: Several readers used the distance formula or the law of cosines,
or the dot product of vectors in their solutions; but to the best of my knowledge, these
notions are obtained with the use of the Pythagorean Theorem.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
July 1, 2007

• 4966: Proposed by Kenneth Korbin, New York, NY.

Solve:
16x+ 30

√
1− x2 = 17

√
1 + x+ 17

√
1− x

with 0 < x < 1.

• 4967: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with an interior point P such that AP
2
+ BP

2
= CP

2
,

and with an exterior point Q such that AQ
2
+BQ

2
= CQ

2
, where points C, P, and Q are

in a line. Find the lengths of AQ and BQ if AP =
√
21 and BP =

√
28.

• 4968: Proposed by Kenneth Korbin, New York, NY.

Find two quadruples of positive integers (a, b, c, d) such that

a+ i

a− i ·
b+ i

b− i ·
c+ i

c− i ·
d+ i

d− i =
a− i
a+ i

· b− i
b+ i

· c− i
c+ i

· d− i
d+ i

with a < b < c < d and i =
√
−1.

• 4969: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that

1

a2
(
1

a
+

1

c

) +
1

b2
(
1

b
+

1

a

) +
1

c2
(
1

c
+

1

b

) ≥ 3

2
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• 4970: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let f : [0, 1] −→ R be a contintuous convex function. Prove that

3

4

∫ 1/5

0
f(t)dt+

1

8

∫ 2/5

0
f(t)dt ≥ 4

5

∫ 1/4

0
f(t)dt.

• 4971: Proposed by Howard Sporn, Great Neck, NY and Michael Brozinsky, Central Islip,
NY.

Let m ≥ 2 be a positive integer and let 1 ≤ x < y. Prove:

xm − (x− 1)m < ym − (y − 1)m.

Solutions

• 4936: Proposed by Kenneth Korbin, New York, NY.

Find all prime numbers P and all positive integers a such that P − 4 = a4.

Solution 1 by Daniel Copeland (student, Saint George’s School), Spokane,
WA.

P = a4 + 4
= (a2 + 2)2 − 4a2

= (a2 − 2a+ 2)(a2 + 2a+ 2).

Since P is a prime, one of the factors of P must be 1. Since a is a positive integer,
a2 − 2a+ 2 = 1 which yields the only positive solution a = 1, P = 5.

Solution 2 by Timothy Bowen (student, Waynesburg College), Waynesburg,
PA.

The only solution is P = 5 and a = 1.
Case 1: Integer a is an even integer. For a = 2n, note P = a4+4 = (2n)4+4 = 4·(4n4+1).
Clearly, P is a composite for all natural numbers n.

Case 2: Integer a is an odd integer. For a = 2n+1, note that P = a4+4 = (2n+1)4+4 =
(4n2 + 8n+ 5)(4n2 + 1). P is prime only for n = 0 (corresponding to a = 1 and P = 5).
Otherwise, P is a composite number for all natural numbers n.

Solution 3 by Jahangeer Kholdi & Robert Anderson (jointly), Portsmouth,
VA.

The only prime is P = 5 when a = 1. Consider P = a4 + 4. If a is an even positive
integer, then clearly P is even and hence a composite integer. Moreover, if a is a positive
integer ending in digits {1, 3, 7 or 9}, then P is a positive integer ending with the digit of
5. This also implies P is divisible by 5 and hence a composite. Lastly, assume a = 10k+5
where k = 0 or k > 0; that is a is a positive integer ending with a digit of 5. Then
P = (10k + 5)4 + 4. But

P = (10k + 5)4 + 4 = (100k2 + 80k + 17)(100k2 + 120k + 37).

Hence, for all positive integers a > 1 the positive integer P is composite.

Also solved by Brian D. Beasley, Clinton, SC; Dionne Bailey, Elsie Campbell
and Charles Diminnie (jointly), San Angelo, TX; Pat Costello, Richmond, KY;X
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Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; Boris
Rays, Chesapeake, VA; Vicki Schell, Pensacola, FL; R. P. Sealy, Sackville,
New Brunswick, Canada; Harry Sedinger, St. Bonaventure, NY; David Stone
and John Hawkins of Statesboro, GA jointly with Chris Caldwell of Martin,
TN, and the proposer.

• 4937: Proposed by Kenneth Korbin, New York, NY.

Find the smallest and the largest possible perimeter of all the triangles with integer-length
sides which can be inscribed in a circle with diameter 1105.

Solution by Paul M. Harms, North Newton, KS.

Consider a radius line from the circle’s center to one vertex of an inscribed triangle.
Assume at this vertex one side has a length a and subtends a central angle of 2A and the
other side making this vertex has a length b and subtends a central angle of 2B.

Using the perpendicular bisector of chords, we have sinA =
a/2

1105/2
=

a

1105
and sinB =

b

1105
. Also, the central angle of the third side is related to 2A+2B and the perpendicular

bisector to the third side gives

sin(A+B) =
c

1105
= sinA cosB + sinB cosA

=
a

1105

√
11052 − b2
1105

+
b

1105

√
11052 − a2
1105

Thus c =
1

1105

(
a
√
11052 − b2 + b

√
11052 − a2

)
.

From this equation we find integers a and b which make integer square roots. Some
numbers which do this are {47,1104 105, 1100, 169, 1092, etc. }. Checking the smaller
numbers for the smallest perimeter we see that a triangle with side lengths {105,169,272}
gives a perimeter of 546 which seems to be the smallest perimeter.

To find the largest perimeter we look for side lengths close to the lengths of an inscribed
equilateral triangle. An inscribed equilateral triangle for this circle has side length close
to 957. Integers such as 884, 943, 952, 975, and 1001 make integer square roots in the
equation for c. The maximum perimeter appears to be 2870 with a triangle of side
lengths {943,952,975}.

Comment: David Stone and John Hawkins of Statesboro, GA used a slightly
different approach in solving this problem. Letting the side lengths be a, b, and c and
noting that the circumradius is 552.5 they obtained

1105

2
=

abc

4
√
a+ b+ c)(a+ b− c)(a− b+ c)(b+ c− a)

which can be rewritten as

√
a+ b+ c)(a+ b− c)(a− b+ c)(b+ c− a) = abc

(2)(5)(13)(17)
.

They then used that part of the law of sines that connects in any triangle ABC, side

length a, 6 A and the circumradius R;
a

sinA
= 2R. This allowed them to find that c2 =X
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a2+ b2∓ 2ab
√
11052 − c2
1105

. Noting that the factors of a,b, and c had to include the primes

2,5,13 and 17 and that 11052 − c2 had to be a perfect square, (and similarly for 11052−b2
and 11052 − a2) they put EXCEL to work and proved that {105, 272, 169} gives the
smallest perimeter and that {952, 975, 943} gives the largest. All in all they found 101
triangles with integer side lengths that can be inscribed in a circle with diameter 1105.

Also solved by the proposer.

• 4938: Proposed by Luis Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b and c be the sides of an acute triangle ABC. Prove that

csc2
A

2
+ csc2

B

2
+ csc2

C

2
≥ 6


 ∏

cyclic

(
1 +

b2

a2

)

1/3

Solution by proposers.

First, we claim that a2 ≥ 2(b2+c2) sin2(A/2). In fact, the preceding inequality is equivalent
to a2 ≥ (b2 + c2)(1− cosA) and

a2 − (b2 + c2)(1− cosA) = b2 + c2 − 2bc cosA− (b2 + c2) + (b2 + c2) cosA

= (b− c)2 cosA ≥ 0.

Similar inequalities can be obtained for b and c. Multiplying them up, we have

a2b2c2 ≥ 8(a2 + b2)(b2 + c2)(c2 + a2) sin2(A/2) sin2(B/2) sin2(C/2). (1)

On the other hand, from GM-HM inequality we have

sin2(A/2) sin2(B/2) sin2(C/2) ≥
(

3

1/ sin2(A/2) + 1/ sin2(B/2) + 1/ sin2(C/2)

)3

=

(
3

csc2(A/2) + csc2(B/2) + csc2(C/2)

)3

.

Substituting into the statement of the problem yields

(
csc2

A

2
+ csc2

B

2
+ csc2

C

2

)3

≥ 216

(
a2 + b2

c2

)(
b2 + c2

a2

)(
c2 + a2

b2

)

= 216
∏

cyclic

(
1 +

b2

a2

)
.

Notice that equality holds when A = B = C = π/3. That is, when 4ABC is equilateral
and we are done.

• 4939: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

For any positive integer n, prove that

{
4n +

[ n−1∑

k=0

3k+1/2

(
2n

2k + 1

)]2}1/2X
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is a whole number.

Solution by David E. Manes, Oneonta, NY.

Let W = 4n +

[ n−1∑

k=0

3k+1/2

(
2n

2k + 1

)]2
and notice that it suffices to show that

√
W is a

whole number. Expanding (
√
3 + 1)2n and (

√
3 − 1)2n using the Binomial Theorem and

subtracting the second expansion from the first, one obtains

n−1∑

k=0

3k+1/2

(
2n

2k + 1

)
=

(
√
3 + 1)2n − (

√
3− 1)2n

2
.

Therefore,

W = 4n +

[
(
√
3 + 1)2n − (

√
3− 1)2n

2

]2

= 4n +
(
√
3 + 1)4n − 22n+1 + (

√
3− 1)4n

4

=
22n+2 + (

√
3 + 1)4n − 22n+1 + (

√
3− 1)4n

4

=
(
√
3 + 1)4n + 22n+1 + (

√
3− 1)4n

4

=

[
(
√
3 + 1)2n − (

√
3− 1)2n

2

]2
.

Consequently,

√
W =

(
√
3 + 1)2n − (

√
3− 1)2n

2
=

n∑

k=0

(
2n

2k

)
(
√
3)2k

=
n∑

k=0

(
2n

2k

)
3k, a whole number.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Dimin-
nie (jointly), San Angelo, TX; Paul H. Harms, North Newton, KS, and the
proposer.

• 4940: Proposed by Michael Brozinsky, Central Islip, NY and Leo Levine, Queens, NY .

Let S = {n ∈ N |n ≥ 5}. Let G(x) be the fractional part of x, i.e., G(x) = x− [x] where
[x] is the greatest integer function. Characterize those elements T of S for which the
function

f(n) = n2
(
G
((n− 2)!

n

))
= n.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada

T is the set of primes in S. One form of Wilson’s Theorem states: A necessary and sufficient
condition that n be prime is that (n − 1)! ≡ −1(mod n). But (n − 1)! = (n − 1)(n − 2)!
with n − 1 ≡ −1(mod n). Therefore (n − 2)! ≡ 1(mod n) if, and only if, n is prime.
Therefore

f(n) = n2
(
G

(
(n− 2)!

n

))
= n2 · 1

n
= n if, and only if, n ≥ 5 is prime.X
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Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie, San Angelo, TX; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 4941: Proposed by Tom Leong, Brooklyn, NY.

The numbers 1, 2, · · ·, 2006 are randomly arranged around a circle.
(a) Show that we can select 1000 adjacent numbers consisting of 500 even and 500 odd
numbers.
(b) Show that part (a) need not hold if the numbers were randomly arranged in a line.

Solution 1 by Paul Zorn, Northfield, MN.

Claim: Suppose we have 1003 0’s and 1003 1’s arranged in a circle, like a 2006-hour clock.
Then there must be a stretch of length of 1000 containing 500 of each.

Proof: Call the clock positions 1, 2, · · ·, 2006 as on an ordinary clock, and let a(n) be 0
or 1, depending on what’s at position n. Let S(n) = a(n) + a(n+ 1) + · · ·+ a(n+ 999),
where addition in the arguments is mod 2006.

Note that S(n) is just the number of 1’s in the 1000-hour stretch starting at n, and we’re
done if S(n) = 500 for some n.

Now S(n) has two key properties, both easy to show:
i) S(n+ 1) differs from S(n) by at most 1
ii) S(1) + S(2) + S(3) + · · ·S(2006) = 1000·(sum of all the 1’s around the circle)
=1000(1003).

From i) and ii) it follows that if S(j) > 500 and S(k) < 500 for some j and k, then
S(n) = 500 for some n between j and k. So suppose, toward contradiction, that (say)
S(n) > 500 for all n. Then

S(1) + S(2) + S(3) + · · ·+ S(2006) > 2006 · 501 = 1003(1002),

which contradicts ii) above.

Solution 2 by Harry Sedinger, St. Bonaventure, NY.

Denote the numbers going around the circle in a given direction as n1, n2, · · ·, n206 where
ni and ni+1 are adjacent for each i and n2006 and n1 are also adjacent. Let Si be the set
of 1,000 adjacent numbers going in the same direction and starting with ni. Let E(Si) be
the number of even numbers in Si. It is easily seen that each number occurs in exactly
1000 such sets. Thus the sum S of occurring even numbers in all such sets is 1,003 (the
number of even numbers) times 1000 which is equal to 1,003,000.

a) Suppose that E(Si) 6= 500 for every i. Clearly E(Si) and E(Si+1) differ by at most
one, (as do E(S2006) and E(S1)), so either E(Si) ≤ 499 for every i or E(Si) ≥ 501 for
every i. In the first case S ≤ 499 · 2, 006 < 1003, 000, a contradiction, and in the second
case S ≥ 501 · 2006 > 1, 003, 000, also a contradiction. Hence E(Si) = 500 for some k and
the number of odd numbers in Sk is also 500.

b) It is easily seen that a) does not hold if the numbers are sequenced by 499 odd, followed
by 499 even, followed by 499 odd, followed by 499 even, followed by 4 odd, and followed
by 4 even.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.X
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Apologies Once Again

I inadvertently forgot to mention that David Stone and John Hawkins of Statesboro, GA
jointly solved problems 4910 and 4911. But worse, in my comments on 4911 (Is is possible for
the sums of the squares of the six trigonometric functions to equal one), I mentioned that only
two of the 26 solutions that were submitted considered the problem with respect to complex
arguments. (For real arguments the answer is no; but for complex arguments it is yes.) David
and John’s solution considered both arguments–which makes my omission of their name all
the more embarrassing. So once again, mea-culpa.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 1, 2007

• 4972: Proposed by Kenneth Korbin, New York, NY.

Find the length of the side of equilateral triangle ABC if it has a cevian CD such that

AD = x, BD = x+ 1 CD =
√
y

where x and y are positive integers with 20 < x < 120.

• 4973: Proposed by Kenneth Korbin, New York, NY.

Find the area of trapezoid ABCD if it is inscribed in a circle with radius R=2, and if it
has base AB = 1 and 6 ACD = 60o.

• 4974: Proposed by Kenneth Korbin, New York, NY.

A convex cyclic hexagon has sides a, a, a, b, b, and b. Express the values of the circumradius
and the area of the hexagon in terms of a and b.

• 4975: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Solve in R the following system of equations

2x1 = 3x2
√
1 + x23

2x2 = 3x3
√
1 + x24

. . . . . .

2xn = 3x1
√
1 + x22
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• 4976: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers. Prove that

a2 + 3b2 + 9c2

bc
+
b2 + 3c2 + 9a2

ca
+
c2 + 3a2 + 9b2

ab
≥ 27.

• 4977: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let 1 < a < b be real numbers. Prove that for any x1, x2, x3 ∈ [a, b] there exist c ∈ (a, b)
such that

1

log x1
+

1

log x2
+

1

log x3
+

3

log x1x2x3
=

4

log c
.

Solutions

• 4942: Proposed by Kenneth Korbin, New York, NY.

Given positive integers a and b. Find the minimum and the maximum possible values of

the sum (a+ b) if
ab− 1

a+ b
= 2007.

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX.

If
ab− 1

a+ b
= 2007, then

ab− 1 = 2007(a+ b)

ab− 2007a− 2007b = 1

ab− 2007a− 2007b+ 20072 = 1 + 20072

(a− 2007)(b− 2007) = 2 · 52 · 13 · 6197 (1).

Since (1) and the sum (a+ b) are symmetric in a and b, then we will assume that a < b.
By the prime factorization in (1), there are exactly 12 distinct values for (a− 2007) and
(b− 2007) which are summarized below.

a− 2007 b− 2007 a b a+ b

1 4, 028, 050 2, 008 4, 030, 057 4, 032, 065
2 2, 014, 025 2, 009 2, 016, 032 2, 018, 041
5 805, 610 2, 012 807, 617 809, 629
10 402, 805 2, 017 404, 812 406, 829
13 309, 850 2, 020 311, 857 313, 877
25 161, 122 2, 032 163, 129 165, 161
26 154, 925 2, 033 156, 932 158, 965
50 80, 561 2, 057 82, 568 84, 625
65 61, 970 2, 072 63, 977 66, 049
130 30, 985 2, 137 32, 992 35, 129
325 12, 394 2, 332 14, 401 16, 733
650 6, 197 2, 657 8, 204 10, 861

Thus, the minimum value is 10, 861, and the maximum value is 4, 032, 065.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; John Nord, Spokane, WA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.X
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• 4943: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with AB = 19, BC = 8, CD = 6, and AD = 17. Find the
area of the quadrilateral if both AC and BD also have integer lengths.

Solution by Brian D. Beasley, Clinton, SC.

Let x = AC and y = BD, where both x and y are positive integers. Let A1 be the area
of triangle ABC, A2 be the area of triangle of ADC, A3 be the area of triangle BAD,
and A4 be the area of triangle BCD. Then by Heron’s formula, we have

A1 =
√
s(s− 19)(s− 8)(s− x) A2 =

√
t(t− 17)(t− 6)(t− x),

where s = (19 + 8 + x)/2 and t = (17 + 6 + x)/2. Similarly,

A3 =
√
u(u− 19)(u− 17)(u− y) A4 =

√
v(v − 8)(v − 6)(v − y),

where u = (19+17+ y)/2 and v = (8+6+ y)/2. Also, the lengths of the various triangle
sides imply x ∈ {12, 13, · · · , 22} and y ∈ {3, 4, · · · , 13}. We consider three cases for the
area T of ABCD:

Case 1: Assume ABCD is convex. Then T = A1 + A2 = A3 + A4. But a search among
the possible values for x and y yields no solutions in this case.

Case 2: Assume ABCD is not convex, with triangle BAD containing triangle BCD (i.e.,
C is interior to ABD). Then T = A1+A2 = A3−A4. Again, a search among the possible
values for x and y yields no solutions in this case.

Case 3: Assume ABCD is not convex, with triangle ABC containing triangle ADC (i.e.,
D is interior to ABC ). Then T = A1 −A2 = A3 +A4. In this case, a search among the
possible values for x and y yields the unique solution x = 22 and y = 4; this produces
T =

√
1815 = 11

√
15.

Due to the lengths of the quadrilateral, these are the only three cases for ABCD. Thus
the unique value for its area is 11

√
15.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins, Statesboro, GA, and the proposer.

• 4944: Proposed by James Bush, Waynesburg, PA.

Independent random numbers a and b are generated from the interval [−1, 1] to fill the

matrix A =

(
a2 a2 + b

a2 − b a2

)
. Find the probability that the matrix A has two real

eigenvalues.

Solution by Paul M. Harms, North Newton, KS.

The characteristic equation is (a2−λ)2−(a4−b2) = 0. The solutions for λ are a2+
√
a4 − b2

and a2−
√
a4 − b2. There are two real eigenvalues when a4−b2 > 0 or a2 > |b|. The region

in the ab coordinate system which satisfies the inequality is between the parabolas b = a2

and b = −a2 and inside the square where a and b are both in [−1, 1]. From the symmetry
of the region we see that the probability is the area in the first quadrant between the

a-axis and b = a2 from a = 0 to a = 1. Integrating gives a probability of
1

3
.

Also solved by Tom Leong, Scotrun, PA; John Nord, Spokane, WA; David
Stone and John Hawkins (jointly), Statesboro, GA; Boris Rays, Chesapeake,
VA, and the proposer.X
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• 4945: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Prove that

17 +
√
2

n∑

k=1

(
L4
k + L4

k+1 + L4
k+2

)1/2
= L2

n + 3L2
n+1 + 5LnLn+1

where Ln is the nth Lucas number defined by L0 = 2, L1 = 1 and for all n ≥ 2, Ln =
Ln−1 + Ln−2.

Solution by Tom Leong, Scotrun, PA.

Using the identity a4 + b4 + (a+ b)4 = 2(a2 + ab+ b2)2 we have

17 +
√
2

n∑

k=1

(
L4
k + L4

k+1 + L4
k+2

)1/2
= 17 +

√
2

n∑

k=1

(
L4
k + L4

k+1 + (Lk + Lk+1)
4
)1/2

= 17 + 2
n∑

k=1

(
L2
k + LkLk+1 + L2

k+1

)

= 17 +
n∑

k=1

L2
k +

n∑

k=1

L2
k+1 +

n∑

k=1

(Lk + Lk+1)
2

= 17 +
n∑

k=1

L2
k +

n∑

k=1

L2
k+1 +

n∑

k=1

L2
k+2

= 17 + L2
n+2 + 2L2

n+1 − L2
2 − 2L2

1 + 3
n∑

k=1

L2
k

= 17 + (Ln + Ln+1)
2 + 2L2

n+1 − 32 − 2 · 12 + 3
n∑

k=1

L2
k

= L2
n + 3L2

n+1 + 2LnLn+1 + 6 + 3
n∑

k=1

L2
k

= L2
n + 3L2

n+1 + 2LnLn+1 + 6 + 3 (LnLn+1 − 2)

= L2
n + 3L2

n+1 + 5LnLn+1

where we used the identity
n∑

k=1

L2
k = LnLn+1 − 2 which is easily proved via induction.

Comment: Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie started
off their solution with

2(L4
k + L4

k+1 + L4
k+2) = (L2

k + L2
k+1 + L2

k+2)
2

and noted that this is a special case of Candido’s Identity 2(x4+y4+(x+y)4) = (x2+y2+
(x+ y)2)2, for which Roger Nelsen gave a proof without words in Mathematics Magazine
(vol. 78,no. 2). Candido used this identity to establish that 2(F 4

n + F 4
n+1 + F 4

n+2) =
(F 2

n + F 2
n+1 + F 2

n+2), where Fn denotes the nth Fibonacci number.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne
T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS, and the proposer.

• 4946: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.X
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Let z1, z2 be nonzero complex numbers. Prove that

(
1

|z1|
+

1

|z2|

)(∣∣∣∣
z1 + z2

2
+
√
z1z2

∣∣∣∣+
∣∣∣∣
z1 + z2

2
−√z1z2

∣∣∣∣
)
≥ 4.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA.

We note that for a, b > 0,

a2 − 2ab+ b2 = (a− b)2 ≥ 0
so a2 + 2ab + b2 ≥ 4ab
so (a + b)(a + b) ≥ 4ab

so
(a + b)

ab
(a + b) ≥ 4

or

(
1

a
+

1

b

)
(a + b) ≥ 4

Therefore, (1)

(
1

|z1|
+

1

|z2|

)
(|z1|+ |z2|) ≥ 4.

For two complex numbers w = a+ bi and v = c+ di, we have

|(w − v)2|+ |(w + v)2| = |w − v|2 + |w + v|2 = (a− c)2 + (b− d)2 + (a+ c)2 + (b+ d)2

= 2(a2 + b2 + c2 + d2) = 2(|w|2 + |v|2)

so, (2) |(w − v)2|+ |(w + v)|2 = 2(|w2|+ |v2|).
Let w be such that w2 = z1 and v be such that v2 = z2. Substituting this into (2), we
get |w2 − 2wv + v2|+ |w2 + 2wv + v2| = 2(|z1|+ |z2|), hence

∣∣∣∣
z1 + z2

2
− wv

∣∣∣∣+
∣∣∣∣
z1 + z2

2
+ wv

∣∣∣∣ = |z1|+ |z2|.

Since (wv)2 = z1z2, wv must equal
√
z1z2 or −√z1z2. Thus the preceding equation

becomes ∣∣∣∣
z1 + z2

2
−√z1z2

∣∣∣∣+
∣∣∣∣
z1 + z2

2
+
√
z1z2

∣∣∣∣ = |z1|+ |z2|.

Multiplying by
1

|z1|
+

1

|z2|
, we get

(
1

|z1|
+

1

|z2|

)(∣∣∣∣
z1 + z2

2
−√z1z2

∣∣∣∣+
∣∣∣∣
z1 + z2

2
+
√
z1z2

∣∣∣∣
)
=

(
1

|z1|
+

1

|z2|

)
(|z1|+ |z2|) ≥ 4

by inequality (1).

Also solved by Tom Leong Scotrun, PA, and the proposers.

• 4947: Proposed by Tom Leong, Brooklyn, NY.

Define a set S of positive integers to be among composites if for any positive integer n,
there exists an x ∈ S such that all of the 2n integers x± 1, x± 2, . . . , x±n are composite.
Which of the following sets are among composites? (a) The set {a+ dk|k ∈ N} of terms
of any given arithmetic progression with a, d ∈ N, d > 0. (b) The set of squares. (c) The
set of primes. (d)∗ The set of factorials.

Remarks and solution by the proposer, (with a few slight changes made in the
comments by the editor).X
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This proposal arose after working Richard L. Francis’s problems 4904 and 4905; it can be
considered a variation on the idea in problem 4904. My original intention was to propose
parts (c) and (d) only; however, I couldn’t solve part (d) and, after searching the MAA
journals, I later found that the question posed by part (c) is not original at all. An article
in (The Two-Year College Mathematics Journal, Vol. 12, No. 1, Jan 1981, p. 36) solves
part (c). However it appears that the appealing result of part (c) is not well-known and
the solution I offer differs from the published one. Parts (a) and (b), as far as I know, are
original.

Solution. The sets in (a), (b) and (c) are all among composites. In the solutions below,
let n be any positive integer.

(a) Choose m ≥ n and m > d. Clearly the consecutive integers (3m)! + 2, (3m)! +
3, . . . , (3m)! + 3m are all composite. Furthermore since d ≤ m − 1, one of the integers
(3m)! +m+ 2, (3m)! +m+ 3, . . . , (3m)! + 2m belongs to the arithmetic progression and
we are done.

(b) By Dirichlet’s theorem on primes in arithmetic progressions, there are infinitely many
primes congruent to 1 mod 4. Let p > n be prime with p ≡ 1 (mod 4). From the
theory of quadratic residues, we know −1 is a quadratic residue mod p, that is, there is a
positive integer r such that r2 ≡ −1 (mod p). Also by Wilson’s theorem, (p− 1)! ≡ −1
(mod p). Put x = [r(p − 1)!]2. Then x ± 2, x ± 3, . . . , x ± (p − 1) are all composite.
Furthermore, x − 1 = [r(p − 1)!]2 − 1 = [r(p − 1)! + 1][r(p − 1)! − 1] is composite and
x ≡ r2[(p− 1)!]2 ≡ −1(−1)2 ≡ −1 (mod p), that is, x+ 1 is composite.

(c) Let p > n + 1 be an odd prime. First note p! and (p − 1)! − 1 are relatively prime.
Indeed, the prime divisors of p! are all primes not exceeding p while none of those primes
divide (p−1)!−1 (clearly primes less than p do not divide (p−1)!−1, while (p−1)!−1 ≡ −2
(mod p) by Wilson’s theorem). Appealing to Dirichlet’s theorem again, there are infinitely
many primes x of the form x = kp! + (p − 1)! − 1. So x − 1, x − 2, . . . , x − (p − 2) and
x+1, x+3, x+4, . . . , x+p are all composite. By Wilson’s theorem, (p−1)!+1 is divisible
by p; hence x+ 2 is divisible by p, that is, composite.

Remarks. (b) In fact, it can similarly be shown that the set of nth powers for any
positive integer n is among composites.

(d) For any prime p, let x = (p− 1)!. Then x± 2, x± 3, . . . , x± (p− 1) are all composite
and by Wilson’s theorem, x + 1 is also composite. It remains: is x − 1 = (p − 1)! − 1
composite? I don’t know; however it’s unlikely to be prime for all primes p.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2007

• 4978: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with side AB = 9 and with cevian CD. Find the length
of AD if 4ADC can be inscribed in a circle with diameter equal to 10.

• 4979: Proposed by Kenneth Korbin, New York, NY.

Part I: Find two pairs of positive numbers (x, y) such that

x√
1 + y −√1− y =

√
65

2
,

where x is an integer.

Part II: Find four pairs of positive numbers (x, y) such that

x√
1 + y −√1− y =

65

2
,

where x is an integer.

• 4980: J.P. Shiwalkar and M.N. Deshpande, Nagpur, India.

An unbiased coin is sequentially tossed until (r + 1) heads are obtained. The resulting
sequence of heads (H) and tails (T) is observed in a linear array. Let the random variable
X denote the number of double heads (HH’s, where overlapping is allowed) in the resulting
sequence. For example: Let r = 6 so the unbiased coin is tossed till 7 heads are obtained
and suppose the resulting sequence of H’s and T’s is as follows:

HHTTTHTTTTHHHTTHX
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Now in the above sequence, there are three double heads (HH’s) at toss number (1, 2), (11, 12)
and (12, 13). So the random variable X takes the value 3 for the above observed sequence.

In general, what is the expected value of X?

• 4981: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

5x + 3x + 2x − 28x+ 18 = 0.

• 4982: Proposed by Juan José Egozcue and José Luis Dı́az-Barrero, Barcelona, Spain.

Calculate

lim
n→∞

1

n+ 1


 ∑

1≤i1≤n+1

1

i1
+

∑

1≤i1<i2≤n+1

1

i1i2
+ · · ·+

∑

1≤i1<...<in≤n+1

1

i1i2 . . . in


 .

• 4983: Proposed by Ovidiu Furdui, Kalamazoo, MI.

Let k be a positive integer. Evaluate

1∫

0

{
k

x

}
dx,

where {a} is the fractional part of a.

Solutions

• 4948: Proposed by Kenneth Korbin, New York, NY.

The sides of a triangle have lengths x1, x2, and x3 respectively. Find the area of the
triangle if

(x− x1)(x− x2)(x− x3) = x3 − 12x2 + 47x− 60.

Solution by Jahangeer Kholdi and Robert Anderson (jointly), Portsmouth,
VA.

The given equation implies that

x1 + x2 + x3 = 12
x1x2 + x1x3 + x2x3 = 47

x1x2x3 = 60

from which by inspection, x1 = 3, x2 = 4 and x3 = 5.

Editor’s comment: At the time this problem was sent to the technical editor, the
Journal was in a state of transition. A new editor- in-chief was coming on board and there
was some question as to the future of the problem solving column. As such, I sent an
advanced copy of the problem solving column to many of the regular contributors. In that
advanced copy this polynomial was listed as (x−x1)(x−x2)(x−x3) = x3−12x2+47x−59,
and not with the constant term as listed above. Well, many of those who sent in solutions
solved the problem in one of two ways: as above, obtaining the perimeter x1 + x2 + x3 =
12; and then finding the area with Heron’s formula. A =

√
6(6− x1)(6− x2)(6− x3).X
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Substituting 6 into (x−x1)(x−x2)(x−x3) = x3−12x2+47x−59 gives (6−x1)(6−x2)(6−
x3) = 7. So, A =

√
(6)(7) =

√
42. But others noted that the equation x3−12x2+47x−59

has only one real root, and this gives the impossible situation of having a triangle with
the lengths of two of its sides being complex numbers. The intention of the problem was
that a solution should exist, and so the version of this problem that was posted on the
internet had a constant term of -60. In the end I counted a solution as being correct if
the solution path was correct, with special kudos going to those who recognized that the
advanced copy version of this problem was not solvable.

Also solved by Brian D. Beasley, Clinton, SC; Mark Cassell (student, St.
George’s School), Spokane, WA; Pat Costello, Richmond, KY; Elsie M. Camp-
bell, Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; José
Luis Dı́az-Barrero, Barcelona, Spain; Grant Evans (student, St. George’s
School), Spokane, WA; Paul M. Harms, North Newton, KS; Peter E. Liley,
Lafayette, IN; David E. Manes, Oneonta, NY; Charles McCracken (two solu-
tions as outlined above), Dayton, OH; John Nord (two solutions as outlined
above), Spokane, WA; Boris Rays, Chesapeake, VA; R. P. Sealy, Sackville,
New Brunswick, Canada; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 4949: Proposed by Kenneth Korbin, New York, NY.

A convex pentagon is inscribed in a circle with diameter d. Find positive integers a, b,
and d if the sides of the pentagon have lengths a, a, a, b, and b respectively and if a > b.
Express the area of the pentagon in terms of a, b, and d.

Solution by David Stone and John Hawkins, Statesboro, GA.

Note, that any solution can be scaled upward by any integer factor to produce infinitely
many similar solutions.

We have three isosceles triangles with base a and equal sides
d

2
, and two isosceles triangles

with base b and equal sides
d

2
. Let α be the measure of the angle opposite base a, and let

β be the measure of the angle opposite the base b. Then 3α+ 2β = 2π.

For each triangle with base a, the perimeter is d+ a, and Heron’s formula gives

An =

√(
d+ a

2

)(
d− a
2

)(
a

2

)
=
a

4

√
d2 − a2.

We can also use the Law of Cosines to express the cosine of α as cosα =
a2 − 2

(
d

2

)2

−2
(
d

2

)2 =
d2 − 2a2

d2
.

From the Pythagorean Identity, it follows that

sinα =

√

1−
(
d2 − 2a2

d2

)2

=
1

d2

√
d4 − d4 + 4a2d2 − 4a4 =

2a

d2

√
d2 − a2.

Because the triangle is isosceles, with equal sides forming the angle α, an altitude through

angle α divides the triangle into two equal right triangles. Therefore, cos
α

2
=

1

d

√
d2 − a2

and sin
α

2
=
a

d
.X
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For the triangles with base b, we can similarly obtain Ab =
b

4

√
d2 − b2 and cosβ =

d2 − 2b2

d2
.

The area for the convex polygon is then

Apolygon = 3Aa + 2Ab

=
3a

4

√
d2 − a2 + b

2

√
d2 − b2

=
1

4

(
3a
√
d2 − a2 + 2b

√
d2 − b2

)

in terms of a, b, and d.

Solving 3α+ 2β = 2π, we find β =
2π − 3α

2
= π − 3α

2
.

Therefore,

cosβ = cos

(
π − 3α

2

)
= − cos

(
3α

2

)
= − cos

(
α+

α

2

)
= − cos

α

2
cosα+ sin

α

2
sinα.

Replacing the trig functions in this formula with the values computed above gives

d2 − 2b2

d2
= −
√
d2 − a2
d

(
d2 − 2a2

d2

)
+
a

d

(
2a

d2

)√
d2 − a2 =

√
d2 − a2
d

(
4a2 − d2

)
.

Solving for b2 in terms of a and d gives

b2 =
d3 −

√
d2 − a2

(
4a2 − d2

)

2d
, or b =

√√√√√d3 −
√
d2 − a2

(
4a2 − d2

)

2d
.

Note also that (1) 2b2 = d2 −

√
d2 − a2

(
4a2 − d2

)

d
.

We can use this expression for b to compute the area of the polygon solely in terms of a
and d.

Apolygon =
3a

4

√
d2 − a2 + b

2

√
d2 − b2 = 3a

4

√
d2 − a2 + a|3d2 − 4a2|

4d
.

To find specific values which satisfy the problem, we use equation (1).

If d2 − a2 = m2, then (1) becomes (2) 2b2 = d2 −
m

(
4a2 − d2

)

d
= d2 −

m

(
3a2 −m2

)

d
.

Then(a,m, d) is a Pythagorean triple, and thus a scalar multiple of a primitive Pythagorean
triple (A,B,C). Using the standard technique, this triple is generated by two parameters,
s and t: 




A = 2st
B = s2 − t2
C = s2 + t2

,

X
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where s > t, s and t are relatively prime and have opposite parity. There are the two
possibilities, where k is some scalar:

a = kA = 2kst, m = kB = k

(
s2 − t2

)
, and d = kC = k

(
s2 + t2

)

or

m = kA = 2kst, a = kB = k

(
s2 − t2

)
, and d = kC = d

(
s2 + t2

)
.

We’ll find solutions satisfying the first set of conditions, recognizing that this will probably
not produce all solutions of the problem. Substituting these in (2),we find

2b2 = d2 − m(3a2 −m2)

d
= k

(
s2 + t2

)2

−
k(s2 − t2)

(
3(2ks)2 − k2

(
s2 − t2

)2)

k(s2 + t2)
.

Simplifying, we find that b2 =
k2s2

(
s2 − 3t2

)2

s2 + t2
, and we want this b to be an integer.

The simplest possible choice is to let k2 = s2 + t2 (so that (s, t, k) is itself a Pythagorean

triple); this forces b = s

(
s2 − 3t2

)
. We then have

a = 2kst = 2st
√
s2 + t2, m =

√
s2 + t2

(
s2−t2

)
, d = k(s2+t2) = k3 =

(
s2+t2

)3/2

and

b = s

(
s2 − 3t2

)
.

That is, if (s, t, k) is a Pythagorean triple with s2 − 3t2 > 0, we have




a = 2kst

b = s

(
s2 − 3t2

)

d = k3.

The restriction that a > b imposes further conditions on s and t (roughly, s < 3.08t).

Some results, due to Excel:

s t k b a d Area
12 5 13 828 1, 560 2, 197 1, 024, 576
15 8 17 495 4, 080 4, 913 3, 396, 630
35 12 37 27, 755 31, 080 50, 653 604, 785, 405
80 39 89 146, 960 555, 360 704, 969 85, 620, 163, 980
140 51 149 1, 651, 580 2, 127, 720 3, 307, 949 2, 530, 718, 023, 785
117 44 125 922, 077 1, 287, 000 1, 953, 125 829, 590, 714, 707
168 95 193 193, 032 6, 160, 560 7, 189, 057 6, 053, 649, 964, 950
208 105 233 2, 119, 312 10, 177, 440 12, 649, 337 25, 719, 674, 553, 300
187 84 205 2, 580, 787 6, 440, 280 8, 615, 125 14, 516, 270, 565, 027
252 115 277 6, 004, 908 16, 054, 920 21, 253, 933 86, 507, 377, 177, 725
209 120 241 100, 529 12, 088, 560 13, 997, 521 21, 678, 178, 927, 350
247 96 265 8, 240, 167 12, 567, 360 18, 609, 625 77, 495, 769, 561, 288
352 135 377 24, 368, 608 35, 830, 080 53, 582, 633 647, 598, 434, 135, 400

Also solved by the proposerX
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• 4950: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that

a+ b
4
√
a3 +

4
√
b3

+
b+ c

4
√
b3 +

4
√
c3

+
c+ a

4
√
c3 +

4
√
a3
≥ 3.

Solution by Kee-Wai Lau, Hong Kong, China

Since

a+ b =
( 4
√
a+ 4
√
b)( 4
√
a3 + 4

√
b3) + ( 4

√
a− 4
√
b)2(
√
a+ 4
√
a 4
√
b+
√
b)

2

≥ ( 4
√
a+

4
√
b)( 4
√
a3 +

4
√
b3)

2

with similar results for b+c and c+a, so by the arithmetic mean-geometric mean inequality,
we have

a+ b
4
√
a3 + 4

√
b3

+
b+ c

4
√
b3 + 4

√
c3

+
c+ a

4
√
c3 + 4

√
a3

≥ 4
√
a+

4
√
b+ 4
√
c

≥ 3 12
√
abc

= 3 as required.

Also solved by Michael Brozinsky (two solutions), Central Islip, NY; Dionne
Bailey, Elsie Campbell, and Charles Diminnie (jointly), San Angelo, TX, and
the proposer.

• 4951: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let α, β, and γ be the angles of an acute triangle ABC. Prove that

π sin

√
α2 + β2 + γ2

π
≥ α sin

√
α+ β sin

√
β + γ sin

√
γ.

Solution by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie (jointly),
San Angelo, TX.

Since α, β, and γ are the angles of an acute triangle,

α, β, γ ∈ (0,
π

2
) and

α

π
+
β

π
+
γ

π
= 1

Let f(x) = sin
√
x on (0,

π

2
). Then, since

f ′′(x) = −
√
x sin

√
x+ cos

√
x

4x3/2
< 0

on (0,
π

2
) , it follows that f(x) is concave down on (0,

π

2
). Hence, by Jensen’s Inequality

and (1)

α

π
sin
√
α+

β

π
sin
√
β +

γ

π
sin
√
γ ≤ sin

√
α

π
· α+

β

π
· β +

γ

π
· γX
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= sin

√
α2 + β2 + γ2

π
,

with equality if and only if α = β = γ =
π

3
.

Also solved by the proposer

• 4952: Proposed by Michael Brozinsky, Central Islip, NY & Robert Holt, Scotch Plains,
NJ.

An archeological expedition discovered all dwellings in an ancient civilization had 1, 2, or
3 of each of k independent features. Each plot of land contained three of these houses
such that the k sums of the number of each of these features were all divisible by 3.
Furthermore, no plot contained two houses with identical configurations of features and
no two plots had the same configurations of three houses. Find a) the maximum number
of plots that a house with a given configuration might be located on, and b) the maximum
number of distinct possible plots.

Solution by Paul M. Harms, North Newton, KS

Let

(
n

r

)
be the combination of n things taken r at a time. With k independent features

there are

(
k

1

)
= k number of different “groups” containing one feature,

(
k

2

)
different

“groups” containing two features, etc. To have the sum of independent features in a plot
of three houses be divisible by three, there are four possibilities. I. Each house in a plot
has one feature. II. Each house in a plot has two features. III. Each house in a plot has
three features. IV. One house in a plot has one feature, another house has two features,
and the third house has three features.

The maximum number of distinct plots can be found by summing the number of plots for
each of the four possibilities above. The sum is

((k
1

)

3

)
+

((k
2

)

3

)
+

((k
3

)

3

)
+

(
k

1

)(
k

2

)(
k

3

)

This is the result for part b).

For part a), first consider a house with one fixed feature. There are plots in possibilities
I and IV. In possibility I the other two houses can have any combination of the other

(k − 1) single features so there are

(
k − 1

2

)
plots. In possibility IV the number of plots

with a house with one fixed feature is

(
k

1

)(
k

2

)(
k

3

)
. The number of plots with houses

with different features is the following: For a house with one fixed feature there are(
k − 1

2

)
+

(
k

2

)(
k

3

)
plots. For a house with two fixed features there are

((k2)−1
2

)
+
(k
1

)(k
3

)

plots. For a house with three fixed features there are

((k
2

)− 1

2

)
+

(
k

1

)(
k

2

)
plots.

Also solved by the proposer.X
ia
ng
’s
T
ex
m
at
h



• 4953: Proposed by Tom Leong, Brooklyn, NY.

Letπ(x) denote the number of primes not exceeding x. Fix a positive integer n and define
sequences by a1 = b1 = n and

ak+1 = ak − π(ak) + n, bk+1 = π(bk) + n+ 1 for k ≥ 1.

a) Show that lim
k→∞

ak is the nth prime.

b) Show that lim
k→∞

bk is the nth composite.

Solution by Paul M. Harms, North Newton, KS.

Any positive integer m is less than the mth prime since 1 is not a prime. In part a)
with a1 = n, we have π(n) primes less than or equal to n. We need n − π(n) more
primes than n has in order to get to the nth prime. Note that a2 is greater than a1 by
n − π(n). If all of the integers from a1 + 1 to a2 are prime, then a2 is the nth prime. If
not all of the integers indicated in the last sentence are primes, we see that a3 is greater
than a2 by the number of non-primes from a1 + 1 to a2. This is true in general from
ak to ak+1 since ak+1 = ak + (n − π(ak)). If ak is not the nth prime, then ak+1 will
increase by the quantity of integers to get to the nth prime provided all integers ak+1 will
increase by the quantity of integers to get to the nth prime provided all integers ak +1,to
ak+1. We see that the sequence increases until some am = N , the nth prime. Then
am+1 = am + (n − π(am)) = am + 0 = am. In this same way it is seen that ak = am for
all k greater that m. Thus the limit for the sequence in part a) is the nth prime.

For part b) note that n is less than the nth composite. Since the integer 1 and integers
π(n) are not composite, the nth composite must be at least 1+π(n) greater than n. With
b1 = n we see that b2 = n + (1 + π(n)). Then b2 will be the nth composte provided all
integers n+ 1, n+ 2, · · · , n+ 1 + π(n) are composites. If some of the integers in the last
sentence are prime, then b3 is greater than b2 by the number of primes in the integers
from b1 + 1 to b2. In general, bk+1 is greater than bk by the number of primes in the
integers from bk−1 +1 to bk and the sequence will be an increasing sequence until the nth

composite is reached. If bm = N , the nth composite, then all integers from bm−1 + 1 to
bm are composite. Then π(bm−1) = π(bm) and bm+1 = π(bm−1) + 1 + n = bm = N . We
see that bk = N for all k at least as great as m. Thus the limit of the sequence in part
b) is the nth composite.

Also solved by David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 4954: Proposed by Kenneth Korbin, New York, NY.

Find four pairs of positive integers (a, b) that satisfy

a+ i

a− i ·
b+ i

b− i =
111 + i

111− i
with a < b.

Solution by David E. Manes, Oneonta, NY.

The only solutions (a, b) with a < b are (112, 12433), (113, 6272), (172, 313), and (212, 233).

Expanding the given equation and clearing fractions, one obtains [2(111)(a+ b)− 2(ab−
1)]i = 0. Therefore,

ab− 1

a+ b
= 111. Let b = a + k for some positive integer k. Then theX
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above equation reduces to a quadratic in a; namely a2+(k− 222)a− (111k+1) = 0 with
roots given by

a =
(222− k)±

√
k2 + 49288

2
.

Since a is a positive integer, it follows that k2 + 49288 = n2 or

n2 − k2 = (n+ k)(n− k) = 49288 = 23 · 61 · 101.

Therefore, n+ k and n− k are positive divisors of 49288. The only such divisors yielding
solutions are

n+ k n− k
24644 2
12322 4
404 122
244 202

Solving these equations simultaneously gives the following values for(n, k) :

(12323, 12321), (6163, 6159), (263, 141), and (223, 21)

from which the above cited solutions for a and b are found.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Daniel Copeland (stu-
dent at St. George’s School), Spokane, WA; Jeremy Erickson, Matthew Rus-
sell, and Chad Mangum (jointly; students at Taylor University), Upland, IN;
Grant Evans (student at St. George’s School), Spokane, WA; Paul M. Harms,
North Newton, KS; Peter E. Liley, Lafayette, IN; John Nord, Spokane, WA;
Homeira Pajoohesh, David Stone, and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 4955: Proposed by Kenneth Korbin, New York, NY.

Between 100 and 200 pairs of red sox are mixed together with between 100 and 200 pairs
of blue sox. If three sox are selected at random, then the probability that all three are
the same color is 0.25. How many pairs of sox were there altogether?

Solution by Brian D. Beasley, Clinton, SC.

Let R be the number of pairs of red sox and B be the number of pairs of blue sox. Then
200 ≤ R+B ≤ 400 and

2R(2R− 1)(2R− 2) + 2B(2B − 1)(2B − 2)

(2R+ 2B)(2R+ 2B − 1)(2R+ 2B − 2)
=

1

4
.

Thus 4[R(2R − 1)(R − 1) + B(2B − 1)(B − 1)] = (R + B)(2R + 2B − 1)(R + B − 1), or
equivalently

4(2R2 + 2B2 −R−B − 2RB)(R+B − 1) = (2R2 + 2B2 −R−B + 4RB)(R+B − 1).

This yields 6R2 + 6B2 − 3R − 3B − 12RB = 0 and hence 2(R − B)2 = R + B. Letting
x = R−B, we obtain R = x2+ 1

2x and B = x2− 1
2x, so x is even. In addition, the size of

R + B forces |x| ∈ {10, 12, 14}. A quick check shows that only |x| = 12 produces values
for R and B between 100 and 200, giving the unique solution {R,B} = {138, 150}. Thus
R+B = 288.X
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Also solved by Pat Costello, Richmond, KY; Paul M. Harms, North Newton,
KS, and the proposer.

• 4956: Proposed by Kenneth Korbin, New York, NY.

A circle with radius 3
√
2 is inscribed in a trapezoid having legs with lengths of 10 and

11. Find the lengths of the bases.

Solution by Eric Malm, Stanford, CA.

There are two different solutions: one when the trapezoid is shaped like /O\, and the
other when it is configured like /O/. In fact, by reflecting the right-hand half of the plane
about the x-axis, we can interchange between these two cases. Anyway, in the first case,
the lengths of the bases are 7−

√
7 and 14 +

√
7, and in the second case they are 7 +

√
7

and 14−
√
7.

Also solved by Michael Brozinsky, Central Islip, NY; Daniel Copeland (stu-
dent at St. George’s School), Spokane, WA; Paul M. Harms, North Newton,
KS; Peter E. Liley, Lafayette, IN; Charles McCracken, Dayton, OH; Boris
Rays, Chesapeake, VA; Nate Wynn (student at St. George’s School), Spokane,
WA, and the proposer.

• 4957: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let {an}n≥0 be the sequence defined by a0 = 1, a1 = 2, a2 = 1 and for all n ≥ 3,
a3n = an−1an−2an−3. Find lim

n→∞ an.

Solution by Michael Brozinsky, Central Islip, NY.

If we write an = 2bn we have bn =
bn−1 + bn−2 + bn−3

3
where b0 = 0, b1 = 1, and b2 = 0.

The characteristic equation is

x3 =
x2

3
+
x

3
+

1

3
with roots

r1 = 1, r2 =
−1 + i

√
2

3
, and r3 =

−1− i
√
2

3
.

The generating function f(n) for {bn} is (using the initial conditions) found to be

f(n) = A+B

(−1 + i
√
2

3

)n

+ C

(−1− i
√
2

3

)n

where

A =
1

3
, B = −1

6
− 5i
√
2

12
, and C = −1

6
+

5i
√
2

12
.

Since |r2| = |r3| =
√
6

4
< 1 we have the last two terms in the expression for f(n) approach

0 as n approaches infinity, and hence lim
n→∞ bn =

1

3
and so lim

n→∞ an =
3
√
2.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays and Jahangeer Khold
(jointly), Chesapeake, VA & Portsmouth, VA; R. P. Sealy, Sackville, New
Brunswick, Canada; David Stone and John Hawkins, Statesboro, GA, and
the proposer.

• 4958: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.X
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Let f : [a, b] → R (0 < a < b) be a continuous function on [a, b] and derivable in (a, b).
Prove that there exists a c ∈ (a, b) such that

f ′(c) =
1

c
√
ab
· ln(ab/c2)

ln(c/a) · ln(c/b) .

Solution by the proposer.
Consider the function F : [a, b]→ R defined by

F (x) = (lnx− ln a)(lnx− ln b) exp
[√
ab f(x)

]

Since F is continuous function on [a, b], derivable in (a, b) and F (a) = F (b) = 0, then by
Rolle’s theorem there exists c ∈ (a, b) such that F ′(c) = 0. We have

F ′(x) =
[
1

x
(lnx− ln b) +

1

x
(lnx− ln a)

+
√
ab(lnx− ln a)(lnx− ln b)f ′(x)

]
exp

[√
ab f(x)

]

and
1

c
ln

(
c2

ab

)
+
√
ab ln

(
c

a

)
ln

(
c

b

)
f ′(c) = 0

From the preceding immediately follows

√
ab ln(c/a) ln(c/b) f ′(c) =

1

c
ln(ab/c2)

and we are done.

• 4959: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain.

Find all numbers N = ab, were a, b = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, such that

[S(N)]2 = S(N2),

where S(N)=a+b is the sum of the digits. For example:

N = 12 N2 = 144
S(N) = 3 S(N2) = 9 and [S(N)]2 = S(N2).

Solution by Jeremy Erickson, Matthew Russell, and Chad Mangum (jointly,
students at Taylor University), Upland, IN.

We start by considering the possibilities that exist for N . Since there are 10 possibilities
for a and for b, there are 100 possibilities for N . It would not be incorrect to check all
100 cases, however we need not do so.
We can eliminate the majority of these 100 cases without directly checking them. If we
assume that S(N) ≥ 6, then [S(N)] ≥ 36, which means that for the property to hold,
S(N2) ≥ 36 as well. This would require N2 ≥ 9999. However, this leads us to a contradic-
tion because the largest possible value for N by our definition is 99, andN2 in that case is
only N2 = 992 = 9801 < 9999. Therefore, we need not check any number N such S(N) >
6. More precisely, any numberN in the intervals[6, 9]; [15, 19]; [24, 29]; [33, 39]; [42, 49]; [51, 99]
need not be checked. This leaves us with 21 cases that can easily be checked.X
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After checking each of these cases separately, we find that for 13 of them, the property
[S(N)]2 = S(N2) does in fact hold. These 13 solutions are

N = 00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 30, 31.

We show the computation for N = 31 as an example:

N = 31 N2 = 312 = 961
S(N) = 3 + 1 = 4 S(N2) = 9 + 6 + 1 = 16

[S(N)]2 = 42 = 16
[S(N)]2 = S(N2) = 16 for N = 31.

The other 12 solutions can be checked similarly.

Also solved by Paul M. Harms, North Newton, KS; Jahangeer Kholdi, Robert
Anderson and Boris Rays (jointly), Portsmouth, Portsmouth, & Chesapeake,
VA; Peter E. Liley, Lafayette, IN; Jim Moore, Seth Bird and Jonathan Schrock
(jointly, students at Taylor University), Upland, IN; R. P. Sealy, Sackville,
New Brunswick, Canada; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

Late Solutions

Late solutions by David E. Manes of Oneonta, NY were received for problems 4942
and 4944.
—————-
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2008

• 4984: Proposed by Kenneth Korbin, New York, NY.

Prove that
1√

1 +
√

3
+

1√
5 +
√

7
+ · · ·+ 1√

2009 +
√

2011
>
√

120.

• 4985: Proposed by Kenneth Korbin, New York, NY.

A Heron triangle is one that has both integer length sides and integer area. Assume
Heron triangle ABC is such that 6 B = 26 A and with (a,b,c)=1.

PartI : Find the dimensions of the triangle if side a = 25.
PartII : Find the dimensions of the triangle if 100 < a < 200.

• 4986: Michael Brozinsky, Central Islip, NY.

Show that if 0 < a < b and c > 0, that

√
(a+ c)2 + d2 +

√
(b− c)2 + d2 ≤

√
(a− c)2 + d2 +

√
(b+ c)2 + d2.

• 4987: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be the sides of a triangle ABC with area S. Prove that

(a2 + b2)(b2 + c2)(c2 + a2) ≤ 64S3 csc 2A csc 2B csc 2C.X
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• 4988: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

3x
2−x−z + 3y

2−y−x + 3z
2−z−y = 1.

• 4989: Proposed by Tom Leong, Scotrun, PA.

The numbers 1, 2, 3, · · · , 2n are randomly arranged onto 2n distinct points on a circle.
For a chord joining two of these points, define its value to be the absolute value of the
difference of the numbers on its endpoints. Show that we can connect the 2n points in
disjoint pairs with n chords such that no two chords intersect inside the circle and the
sum of the values of the chords is exactly n2.

Solutions

• 4960: Proposed by Kenneth Korbin, New York, NY.

Equilateral triangle ABC has an interior point P such that

AP =
√

5, BP =
√

12, and CP =
√

17.

Find the area of 4APB.

Solution by Scott H. Brown, Montgomery, AL.

First rotate 4ABC about point C through a counter clockwise angle of 60o. This will
create equilateral triangle CBB′ and interior point P ′. Since triangle ABC is equialteral
and m6 ACB = 60o, AC falls on BC, and CP ′ =

√
17, B′P ′ =

√
12, BP ′ =

√
5. Now

4CPA ∼= 4CP ′B and m6 ACP = m6 BCP ′, so m6 PCP ′ = 60o.

Second, draw PP ′, forming isosceles triangle PCP ′. Since m6 PCP ′ = 60o, triangle
PCP ′ is equilateral. We find PP ′ =

√
17, PA = P ′B =

√
5 and PB =

√
12. So triangle

PBP ′ is a right triangle.

Third, m6 APB′ = 120o and m6 PBP ′ = 90o. We find m6 PBA+m6 P ′BB′ = 30o.
Since m6 P ′BB′ = m6 PAB, then by substitution, m6 PBA+m6 PAB = 30o. Thus
m6 APB = 150o.

Finally, we find the area of triangle APB=
1

2
(
√

5)(
√

12) sin(150o) =

√
15

2
square units.

(Reference: Challenging Problems in Geometry 2, Posamentier & Salkind, p. 39.)

Also solved by Mark Cassell (student, Saint George’s School), Spokane, WA;
Matt DeLong, Upland, IN; Grant Evans (student, Saint George’s School),
Spokane, WA; Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; David E. Manes, Oneonta, NY; John Nord, Spokane, WA; Boris Rays
and Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4961: Proposed by Kenneth Korbin, New York, NY.

A convex hexagon is inscribed in a circle with diameter d. Find the area of the hexagon
if its sides are 3, 3, 3, 4, 4 and 4.

Solution 1 by John Nord, Spokane, WA.
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For cyclic quadrilateral ABCD with sides a, b, c, and d, two different formulations of the
area are given, Brahmagupta’s formula and Bretschneider’s formula.

A =
√

(s− a)(s− b)(s− c)(s− d) where s =
a+ b+ c+ d

2
(1)

A =

√
(ac+ bd)(ad+ bc)(ab+ cd)

4R
where R is the circumradius (2)

In order to employ the cyclic quadrilateral theorems, place a diagonal into the hexagon
to obtain two inscribed quadrilaterals. The first has side lengths of 3,3,3, and x and the
second has side lengths of 4,4,4 and x.

Equating (1) and (2) and solving for R yields

R =
1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

(s− a)(s− b)(s− c)(s− d)
(3)

Both quadrilaterals are inscribed in the same circle so (3) can be used for both
quadrilaterals and they can be set equal to each other. Solving for x is surprisingly
simple and the area computations can be calculated using (1) directly. The area of the

inscribed hexagon with sides 3,3,3,4,4, and 4 is
73
√

3

4
.

Solution 2 by Jonathan Schrock, Seth Bird, and Jim Moore (jointly, students
at Taylor University), Upland, IN.

Since the hexagon is convex and cyclic, a radius of the circumscribing circle can be
drawn to each vertex producing six isosceles triangles. The formula for the height of one

of these triangles is
1

2

√
4r2 − c2 where c is the length of the base of the triangle and r is

the radius of the circle. Since 2r = d (the diameter of the circle), the area of any one of

these triangles will therefore be
c

4

√
d2 − c2. The total area of the hexagon is the sum of

the areas of the triangles. There are three triangles for which c = 3 and three for which

c = 4. So the total area of the hexagon in terms of d is 3
√
d2 − 16 +

9

4

√
d2 − 9.

We can determine d by rearranging the hexagon so that the side lengths alternate as
3,4,3,4,3,4. This creates three congruent quadrilaterals. Consider just one of these
quadrilaterals and label it ABCO, where A, B, and C lie on the circle and O is the
center of the circle. Since the interior angle for a circle is 360o and there are three
quadrilaterals, 6 AOC = 120o. By constructing a line from A to C we can see by the
symmetry of the rearranged hexagon, that 6 ABC = 120o. Using the law of cosines,

AC
2

= AB
2

+BC
2 − 2

(
AB

)(
BC

)
cos(120o),

which can be written as AC
2

= 32 + 42 − 2(3)(4) cos(120o). That is, AC =
√

37.
To determine d we use the law of cosines again. Here,

AC
2

= AO
2

+ CO
2 − 2

(
AO

)(
CO

)
cos(120o),

which can be written as 37 =
d2

2
− d2

2
cos(120o). Solving for d gives d = 2

√
37

3
.

Substituting this value of d into the formula 3
√
d2 − 16 +

9

4

√
d2 − 9 gives the area of the

hexagon as
73
√

3

4
.
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Comment by editor: David Stone and John Hawkins of Statesboro GA
generalized the problem for any convex, cyclic hexagon with side lengths a, a, a, b, b, b
(with 0 < a ≤ b) and with d as the diameter of the circumscribing circle. They showed

that d is uniquely determined by the values of a and b, d =
√

4
3(a2 + ab+ b2). Then

they asked the question: What fraction of the circle’s area is covered by the hexagon?
They found that in general, the fraction of the circle’s area covered by the hexagon is:

√
3

4
(a2 + 4ab+ b2)

π

3
(a2 + ab+ b2)

=
3
√

3(a2 + 4ab+ b2)

4π(a2 + ab+ b2)
=

3
√

3

4π

(a+ b)2 + 2ab

(a+ b)2 − ab =

(
3
√

3

4π

)
1 + 2c

1− c

where c =
ab

(a+ b)2
.

They continued on by stating that in fact, c takes on the values 0 < c ≤ 1/4, thus

forcing 1 <
1 + 2c

1− c ≤ 2. So by appropriate choices of a and b, the hexagon can cover

from
3
√

3

4π
≈ 0.4135 of the circle up to

3
√

3

4π
· 2 ≈ 0.827 of the circle. A regular hexagon,

where a = b and c = 1/4, would achieve the upper bound and cover the largest possible
fraction of the circle.

For instance, we can force the hexagon to cover exactly one half the circle by making(
3
√

3

4π

)
1 + 2c

1− c =
1

2
. This would require c =

2π − 3
√

3

2

(
3
√

3 + π

) ≈ 0.0651875. Setting this

equal to
ab

(a+ b)2
, we find that

a

b
=

(
6
√

3− π
)
±
√

3(27− π2)

2π − 3
√

3
.

That is, if b = 13.2649868a, the hexagon will cover half of the circle.

Also solved by Matt DeLong, Upland, IN; Peter E. Liley, Lafayette, IN;
Mandy Isaacson, Julia Temple, and Adrienne Ramsay (jointly, students at
Taylor University), Upland, IN; Paul M. Harms, North Newton, KS; Boris
Rays and Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA , and
the proposer.

• 4962: Proposed by Kenneth Korbin, New York, NY.

Find the area of quadrilateral ABCD if the midpoints of the sides are the vertices of a
square and if AB =

√
29 and CD =

√
65.

Solution by proposer.

Conclude that AC ⊥ BD and that AC = BD. Then, there are positive numbers
(w, x, y, z) such that

w + x = AC,
y + z = BD,

w2 + y2 = 29, and
x2 + z2 = 65.

Then, (w, x, y, z) = (
11√
10
,

19√
10
,

13√
10
,

17√
10

) and AC = BD =
30√
10

. The area of the
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quadrilateral then equals 1
2(AC)(BD) =

1

2

(
30√
10

)(
30√
10

)
= 45.

Also solved by Peter E. Liley, Lafayette, IN, and by Boris Rays and
Jahangeer Kholdi (jointly), Chesapeake and Portsmouth, VA.

• 4963: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Calculate

lim
n→∞

∑

1≤i<j≤n

1

3i+j
.

Solution 1 by Ken Korbin, New York, NY.

∑

1≤i<j≤n

1

3i+j
=

(
1

33
+

1

34

)
+

(
2

35
+

2

36

)
+

(
3

37
+

3

38

)
+

(
4

39
+

4

310

)
+ · · ·

=
4

34
+

8

36
+

12

38
+

16

310
+ · · ·

=
4

34

[
1 +

2

32
+

3

34
+

4

36
+ · · ·

]

=
4

34

[
1 +

1

32
+

1

34
+

1

36
+ · · ·

]2

=
4

34

[
1

1− 1

32

]2

=
4

34

[
9

8

]2
=

1

16
.

Solutions 2 and 3 by Pat Costello, Richmond, KY.

2) When n = 2 we have
1

31+2
.

When n = 3 we have
1

31+3
+

1

32+3
.

When n = 4 we have
1

31+4
+

1

32+4
+

1

33+4
.

Adding down the columns we obtain:

∞∑

k=3

1

3k
+
∞∑

k=5

1

3k
+
∞∑

k=7

1

3k
+ · · ·

=
(1/3)3

1− 1/3
+

(1/3)5

1− 1/3
+

(1/3)7

1− 1/3
+ · · ·

=
3

2

(
1

3

)3

(1 + (1/3)2 + (1/3)4 + · · ·)

=
3

2

(
1

3

)3(
1 + (1/9) + (1/9)2 + · · ·

)

=
3

2

(
1

3

)3( 1

1− 1/9

)
=

1

16
.X

ia
ng
’s
T
ex
m
at
h



3) Another way to see that the value is 1/16 is to write the limit as the double sum

∞∑

n=2

n−1∑

i=2

1

3n+i
=

∞∑

n=2

1

3n

n−1∑

i=2

1

3i
=
∞∑

n=2

1

3n

(
(1/3)− (1/3)n

1− (1/3)

)

=
3

2

∞∑

n=2

1

3n

(
(1/3)− (1/3)n

)

=
3

2

(
(1/3)

∞∑

n=2

1

3n
−
∞∑

n=2

1

9n

)

=
3

2

(
(
1

3
)

1/9

1− 1/3
− 1/(81)

1− 1/9

)

=
3

2

(
1

18
− 1

72

)
=

1

16
.

Also solved by Bethany Ballard, Nicole Gottier, Jessica Heil (jointly,
students at Taylor University), Upland, IN; Matt DeLong, Upland, IN; Paul
M. Harms, North Newton, KS; Carl Libis, Kingston, RI; David E. Manes,
Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 4964: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x, y be real numbers and we define the law of composition

x ⊥ y = x
√

1 + y2 + y
√

1 + x2.

Prove that (R,+) and (R,⊥) are isomorphic and solve the equation x ⊥ a = b.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada

Define f : (R,+)→ (R,⊥) by f(x) = sinhx.
Then f is one-to-one and onto, and

f(a+ b) = sinh(a+ b)

= sinh a cosh b+ cosh a sinh b

= sinh a

√
1 + sinh2 b+ sinh b

√
1 + sinh2 a

= f(a) ⊥ f(b)

Therefore (R,+) and (R,⊥) are isomorphic abelian groups.
Note that:





i) f(0) = 0 and that f(−a) = −f(a).
ii) In (R,⊥)

0 ⊥ a = 0
√

1 + a2 + a
√

1 + 02 = a and
a ⊥ (−a) = a

√
1 + a2 − a

√
1 + a2 = 0.

If x ⊥ a = b, then x = b ⊥ (−a) = b
√

1 + a2 − a
√

1 + b2.
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Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta,
NY, and the proposer.

• 4965: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let ha, hb, hc be the heights of triangle ABC. Let P be any point inside 4ABC. Prove
that

(a)
ha
da

+
hb
db

+
hc
dc
≥ 9, (b)

d2a
h2a

+
d2b
h2b

+
d2c
h2c
≥ 1

3
,

where da, db, dc are the distances from P to the sides BC,CA and AB respectively.

Solution to part (a) by Scott H. Brown, Montgomery, AL.

Suppose P is any point inside triangle ABC. Let AP,BP, and CP be the line segments
whose distances from the vertices are x, y, and z respectively. Let AP,BP, and CP
intersect the sides BC,CA, and AB, at points L,M, and N respectively. Denote
PL,PM, and PN by u, v, and w respectively.
In reference [1] it is shown that

x

u
+
y

v
+
z

w
≥ 6, (1)

with equality holding only if P in the centroid of triangle ABC.

Considering the heights ha, hb, and hc, and the distances respectively to the sides from
P as da, db, and dc in terms of u, v, w, x, y, and z gives:

ha
da

=
x+ u

u
,

hb
db

=
y + v

v
,

hc
dc

=
z + w

w
. (2)

Applying inequality (1) gives:
ha
da

+
hb
db

+
hc
dc
≥ 9,

with equality holding only if P is the centroid of triangle ABC.

Reference [1]. Some Inequalities For A Triangle, L. Carlitz,
American Mathematical Monthly, 1964, pp. 881-885.

Solution to part (b) by the proposers.

For the triangles BPC,APC,APB we have,

[BPC] = da ×
BC

2
=
da
ha
× haBC

2
=
da
ha
× [ABC]

[APC] = db ×
AC

2
=
db
hb
× hbAC

2
=
db
hb
× [ABC]

[APB] = dc ×
AB

2
=
dc
hc
× hcABC

2
=
dc
hc
× [ABC]

Adding up the preceding expressions yields,

(
da
ha

+
db
hb

+
dc
hc

)
[ABC] = [ABC]X
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and
da
ha

+
db
hb

+
dc
hc

= 1

Applying AM-QM inequality, we get
√√√√ d2a

h2a
+

d2
b

h2
b

+ d2c
h2c

3
≥ 1

3

(
da
ha

+
db
hb

+
dc
hc

)
=

1

3

from which the inequality claimed immediately follows. Finally, notice that equality
holds when da/ha = db/hb = dc/hc = 1/3. That is, when 4ABC is equilateral and P is
its centroid.

• 4966: Proposed by Kenneth Korbin, New York, NY.

Solve:
16x+ 30

√
1− x2 = 17

√
1 + x+ 17

√
1− x

with 0 < x < 1.

Solution 1 by Elsie Campbell, Dionne Bailey, & Charles Diminnie, San
Angelo, TX.

Let x = cos θ where θ ∈ (0, π2 ). Then,

16x+ 30
√

1− x2 = 17
√

1 + x+ 17
√

1− x

becomes

16 cos θ + 30
√

1− cos2 θ = 17
√

1 + cos θ + 17
√

1− cos θ

= 17
√

2



√

1 + cos θ

2
+

√
1− cos θ

2




= 34

(
1√
2

cos
θ

2
+

1√
2

sin
θ

2

)

= 34

(
cos

π

4
cos

θ

2
+ sin

π

4
sin

θ

2

)

= 34 cos(
π

4
− θ

2
). (1)

Let cos θ0 = 8
17 . Then by (1),

cos(
π

4
− θ

2
) =

8

17
cos θ +

15

17
sin θ

= cos θ0 cos θ + sin θ0 sin θ

= cos(θ0 − θ).

Therefore,

θ0 − θ = π
4 − θ

2
⇒ θ = 2θ0 − π

2
⇒ x = 240

289

or
θ0 − θ = −(π4 − θ

2)
⇒ θ = 2

3θ0 + π
6

⇒ x = cos(23 cos−1 8
17 + π

6 ).

Remark: This solution is an adaptation of the solution on pp.13-14 from Mathematical
Miniatures by Savchev and Andreescu.
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Solution 2 by Brian D. Beasley, Clinton, SC.

Since 0 < x < 1, each side of the given equation will be positive, so we may square both
sides without introducing any extraneous solutions. After simplifying, this yields

(480x− 289)
√

1− x2 = 161(2x2 − 1).

For each side of this equation to have the same sign (or zero), we require
x ∈ (0, 289/480] ∪ [

√
2/2, 1). We now square again, checking for actual as well as

extraneous solutions. This produces

(1156x3 − 867x+ 240)(289x− 240) = 0,

so one potential solution is x = 240/289. The cubic formula yields three more, namely

x ∈ {− cos(
1

3
cos−1(

240

289
)), sin(

1

3
sin−1(

240

289
)), cos(

1

3
cos−1(−240

289
))}.

Of these four values, only two are in x ∈ (0, 289/480] ∪ [
√

2/2, 1):

x =
240

289
and x = sin(

1

3
sin−1(

240

289
)).

Addendum. The given equation generalizes nicely to

2ax+ 2b
√

1− x2 = c
√

1 + x+ c
√

1− x,

where a2 + b2 = c2 with a < b. The technique outlined above produces

(4c2x3 − 3c2x+ 2ab)(c2x− 2ab) = 0,

so one solution (which checks in the original equation) is x = 2ab/c2. Another solution

(does it always check in the original equation?) is x = sin(
1

3
sin−1(

2ab

c2
)), which is

connected to the right triangle with side lengths (b2 − a2, 2ab, c2) in the following way:

If we let 3θ be the angle opposite the side of length 2ab in this triangle, then we have
2ab/c2 = sin(3θ) = −4 sin3 θ + 3 sin θ, which brings us right back to
4c2x3 − 3c2x+ 2ab = 0 for x = sin θ.

Similarly, we may show that the other two solutions are x = − cos(
1

3
cos−1(

2ab

c2
)) and

x = cos(
1

3
cos−1(−2ab

c2
)); the first of these is never in (0, 1), but will the second ever be a

solution of the original equation?

Also solved by John Boncek, Montgomery, AL; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; Charles McCracken, Dayton,
OH; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4967: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with an interior point P such that AP
2

+ BP
2

= CP
2
,

and with an exterior point Q such that AQ
2

+ BQ
2

= CQ
2
, where points C, P, and Q

are in a line. Find the lengths of AQ and BQ if AP =
√

21 and BP =
√

28.

Solution by Paul M. Harms, North Newton, KS.

Put the equilateral triangle on a coordinate system with A at (0, 0), B at (a,
√

3a) and C
at (2a, 0) where a > 0. The point P is at the intersection of the circles

x2 + y2 = 21
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(x− a)2 + (y −
√

3a)2 = 28 and
(x− 2a)2 + y2 = 28 + 21 = 49.

Using x2 + y2 = 21 in the last two circles we obtain

−2ax− 2
√

3ay + 4a2 = 28− 21 = 7 and
−4ax+ 4a2 = 49− 21 = 28.

From the last equation x =
a2 − 7

a
and, using the linear equation, we get y =

2a2 + 7

2
√

3a
.

Putting these x, y values into x2 + y2 = 21 yields the quadratic in
a2, 16a4 − 392a2 + 637 = 0. From this equation a2 = 22.75 or a2 = 1.75. From the
distances given in the problem, a2 must be 22.75. The coordinates of P are x = 3.3021
and y = 3.1774. The line through C and P is y = −0.5094x+ 4.85965.

Let Q have coordinates (x1, y1). An equation for AQ
2

+BQ
2

= CQ
2

can be found using
the coordinates Q(x1, y1), A(0, 0), B(4.7697, 8.2614), and C(9.5394, 0). An equation is

x21 + y21 + (x1 − 4.7697)2 + (y1 − 8.2614)2 = (x1 − 9.5394)2 + y21.

Simplifying and replacing y1 by −0.5094x1 + 4.85965 yields the quadratic equation
1.2595x21 + 13.0052x1 − 56.6783 = 0. In order that Q is exterior to the triangle we need
the solution x1 = −13.6277. Then y1 = −0.5094x1 + 4.85965 = 11.8020. The distance
from A to Q is

√
325 = 18.0278 and the distance from B to Q is

√
351 = 18.7350.

Also solved by Zhonghong Jiang, New York, NY, and the proposer.

• 4968: Proposed by Kenneth Korbin, New York, NY.

Find two quadruples of positive integers (a, b, c, d) such that

a+ i

a− i ·
b+ i

b− i ·
c+ i

c− i ·
d+ i

d− i =
a− i
a+ i

· b− i
b+ i

· c− i
c+ i

· d− i
d+ i

with a < b < c < d and i =
√
−1.

Solution 1 by Brian D. Beasley, Clinton, SC.

We need ((a+ i)(b+ i)(c+ i)(d+ i))2 = ((a− i)(b− i)(c− i)(d− i))2, so

(a+ i)(b+ i)(c+ i)(d+ i) = ±(a− i)(b− i)(c− i)(d− i).
Then either

(ab− 1)(c+ d) + (a+ b)(cd− 1) = 0 or (ab− 1)(cd− 1)− (a+ b)(c+ d) = 0.

But (ab− 1)(c+ d) > 0 and (a+ b)(cd− 1) > 0, so the first case cannot occur. In the
second case, since d = (ab+ ac+ bc− 1)/(abc− a− b− c) > 0, we have abc > a+ b+ c.
Then d ≥ 4 implies

3 ≤ c ≤ ab+ 4a+ 4b− 1

4ab− a− b− 4
,

where we note that 1 ≤ a < b implies 4ab > a+ b+ 4. Thus 2 ≤ b ≤ (7a+ 11)/(11a− 7),
so a ≤ 5/3. Thus a = 1, which yields b ∈ {2, 3, 4}.

If (a, b) = (1, 2), then d = (3c+ 1)/(c− 3), so c < d forces c ∈ {4, 5, 6}. Only c ∈ {4, 5}
will yield integral values for d, producing the two solutions (1, 2, 4, 13) and (1, 2, 5, 8) for
(a, b, c, d).
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If (a, b) = (1, 3), then d = (2c+ 1)/(c− 2), so 3 < c < d forces c = 4. But this yields
d = 9/2.

If (a, b) = (1, 4), then d = (5c+ 3)/(3c− 5), but 4 < c < d forces the contradiction c ≤ 3.

Hence the only two solutions for (a, b, c, d) are (1, 2, 4, 13) and (1, 2, 5, 8).

Solution 2 by Dionne Bailey, Elsie Campbell, & Charles Diminnie, San
Angelo, TX.

By using the following properties of complex numbers,

(z1z2) = z̄1z̄2,
(
z1
z2

)
= z1

z2
, z = z,

we see that the left and right sides of the equation are conjugates and hence, the
equation reduces to

Im

(
a+ i

a− i ·
b+ i

b− i ·
c+ i

c− i ·
d+ i

d− i

)
= 0. (1)

If z = (a+ i) (b+ i) (c+ i) (d+ i) = A+Bi, then (1) becomes

Im

(
z

z

)
= 0,

which reduces to AB = 0 or equivalently, A = 0 or B = 0. With some labor, we get

A = 1− (ab+ ac+ ad+ bc+ bd+ cd) + abcd

= (ab− 1) (cd− 1)− (a+ b) (c+ d) and

B = (abc+ abd+ acd+ bcd)− (a+ b+ c+ d)

= (a+ d) (bc− 1) + (b+ c) (ad− 1) .

Therefore, a, b, c, d must satisfy

(ab− 1) (cd− 1) = (a+ b) (c+ d) (2)

or
(a+ d) (bc− 1) + (b+ c) (ad− 1) = 0. (3)

Immediately, the condition 1 ≤ a < b < c < d rules out equation (3) and we may restrict
our attention to equation (2).

Since c ≥ 3 and d ≥ 4, we obtain

(cd− 1)− (c+ d) = (c− 1) (d− 1)− 2 > 0

and hence,
c+ d < cd− 1.

Using this and the fact that (ab− 1) > 0, equation (2) implies that

(ab− 1) (c+ d) < (ab− 1) (cd− 1) = (a+ b) (c+ d) ,

or
ab− 1 < a+ b.

This in turn implies that
0 ≤ (a− 1) (b− 1) < 2.
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Then, since 1 ≤ a < b, we must have a = 1 and equation (2) becomes

(b− 1) (cd− 1) = (b+ 1) (c+ d) . (4)

Finally, b ≥ 2 implies that

cd− 1 =
b+ 1

b− 1
(c+ d) =

(
1 +

2

b− 1

)
(c+ d) ≤ 3 (c+ d)

or
0 ≤ (c− 3) (d− 3) ≤ 10. (5)

To complete the solution, we solve each of the 11 possibilities presented by (5) and then
substitute back into (4) to solve for the remaining variable. It turns out that the only
situation which yields feasible answers for b, c, d is the case where (c− 3) (d− 3) = 10.
We show this case and two others to indicate the reasoning applied.

Case 1. If
(c− 3) (d− 3) = 0,

then since 1 = a < b < c < d, we must have c = 3 and b = 2. When these are substituted
into (4), we get

3d− 1 = 3 (3 + d)

which is impossible.

Case 2. If
(c− 3) (d− 3) = 6,

then since c < d, we must have c− 3 = 1, d− 3 = 6 or c− 3 = 2, d− 3 = 3. These yield
c = 4, d = 9 or c = 5, d = 6. However, neither pair gives an integral answer for b when
these are substituted into (4).

Case 3. If
(c− 3) (d− 3) = 10,

then since c < d, we must have c− 3 = 1, d− 3 = 10 or c− 3 = 2, d− 3 = 5. These yield
c = 4, d = 13 or c = 5, d = 8. When substituted into (4), both pairs give the answer
b = 2.

Therefore, the only solutions for which a, b, c, d are integers, with
1 ≤ a < b < c < d, are (a, b, c, d) = (1, 2, 4, 13) or (1, 2, 5, 8).

Also solved by Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Raul A. Simon, Santiago, Chile; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

.

• 4969: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that

1

a2
(

1

a
+

1

c

) +
1

b2
(

1

b
+

1

a

) +
1

c2
(

1

c
+

1

b

) ≥ 3

2

Solution by Kenneth Korbin, New York, NY.
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Let x =
1

a
, y =

1

b
, z =

1

c
. Then, K =

x2

x+ z
+

y2

y + x
+

z2

z + y
.

Let U1 =
x√
x+ z

, U2 =
y√
y + x

, U3 =
z√
z + y

. Then, K = (U1)
2 + (U2)

2 + (U3)
2.

Let V1 =
√
x+ z, V2 =

√
y + x, V3 =

√
z + y. Then, by the Cauchy inequality,

K = (U1)
2 + (U2)

2 + (U3)
2

≥ (U1V1 + U2V2 + U3V3)
2

(V1)2 + (V2)2 + (V3)2

=
(x+ y + z+)2

2(x+ y + z)
=
x+ y + z

2

Then, by the AM-GM inequality,

K ≥ x+ y + z

2

≥ 1

2
(3)( 3
√
xyz)

=
3

2
(1) =

3

2
.

Note: abc = 1 implies xyz = 1.

Comment by editor: John Boncek of Montgomery, AL noted that this problem is a
variant of an exercise given in Andreescu and Enescu’s Mathemical Olympiad Treasures,
(Birkhauser, 2004, problem 6, page 108.)

Also solved by John Boncek; David E. Manes, Oneonta, NY, and the
proposer.

• 4970: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let f : [0, 1] −→ R be a contintuous convex function. Prove that

3

4

∫ 1/5

0
f(t)dt+

1

8

∫ 2/5

0
f(t)dt ≥ 4

5

∫ 1/4

0
f(t)dt.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

By the convexity of f we have

3

4
f

(
s

5

)
+

1

4
f

(
2s

5

)
≥ f

(
(
3

4
)(
s

5
) + (

1

4
)(

2s

5
)

)
= f

(
s

4

)

for 0 ≤ s ≤ 1. Hence,

3

4

∫ 1

0
f

(
s

5

)
ds+

1

4

∫ 1

0
f

(
2s

5

)
ds ≥

∫ 1

0
f

(
s

4

)
ds.

By substituting s = 5t in the first integral, s =
5t

2
in the second at the left and s = 4t in

the integral at the right, we obtain the inequality of the problem.
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Solution 2 by David Stone and John Hawkins, Statesboro, GA.

Note 1. Consider the behavior in the extreme case: if f is a linear function, then
equality holds:

3

4

∫ 1/5

0
(mt+b)dt+

1

8

∫ 2/5

0
(mt+b)dt =

3

4

[
m

2

(
1

5

)2

+b
1

5

]
+

1

8

[
m

2

(
2

5

)2

+b
2

5

]
=

1

40
m+

1

5
b,

and
4

5

∫ 1/4

0
(mt+ b)dt =

4

5

[
m

2

(
1

4

)2

+ b
1

4

]
=

1

40
m+

1

5
b.

We rewrite the inequality in an equivalent form by clearing fractions and splitting the
integrals so that they are taken over non-overlapping intervals:

3

4

∫ 1/5

0
f(t)dt+

1

8

∫ 2/5

0
f(t)dt ≥ 4

5

∫ 1/4

0
f(t)dt ⇐⇒

30

∫ 1/5

0
f(t)dt+ 5

[ ∫ 1/5

0
f(t)dt+

∫ 1/4

1/5
f(t)dt+

∫ 2/5

1/4
f(t)dt

]
≥ 32

[ ∫ 1/5

0
f(t)dt+

∫ 1/4

1/5
f(t)dt

]
⇐⇒

3

∫ 1/5

0
f(t)dt+ 5

∫ 2/5

1/4
f(t)dt ≥ 27

∫ 1/4

1/5
f(t)dt. (1)

So we see that the interval of interest,

[
0,

2

5

]
, has been partitioned into three

subintervals

[
0,

1

5

]
,

[
1

5
,
1

4

]
and

[
1

4
,
2

5

]
.

Consider the secant line through the two points

(
1

5
, f

(
1

5

))
and

(
1

4
, f

(
1

4

))
. The

linear function giving this line is s(t) = 20

[
f

(
1

4

)
− f

(
1

5

)]
t+

[
5f

(
1

5

)
− 4f

(
1

4

)]
. It is

straightforward to use the convexity condition to show that this line lies above f(t) on

the middle interval

[
1

5

]
, and lies below f(t) on the outside intervals

[
0,

1

5

]
and

[
1

4
,
2

5

]
.

That is

s(t) ≥ f(t) on

[
1

5
,
1

4

]
and (2)

s(t) ≤ f(t) on

[
0,

1

5

]
, and

[
1

4
,
2

5

]
(3).

Considering the sides of (1),

3

∫ 1/5

0
f(t)dt+ 5

∫ 2/5

1/4
f(t)dt ≥ 3

∫ 1/5

0
s(t)dt+ 5

∫ 2/5

1/4
s(t)dt by (3).

and

3

∫ 1/5

0
s(t)dt+ 5

∫ 2/5

1/4
s(t)dt = 27

∫ 1/4

1/5
s(t)dt by (Note 1),

and

27

∫ 1/4

1/5
s(t)dt ≥ 27

∫ 1/4

1/5
f(t)dt by (2).

Therefore (1) is true.

Also solved by John Boncek, Montgomery, AL and the proposers.
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• 4971: Proposed by Howard Sporn, Great Neck, NY and Michael Brozinsky, Central Islip,
NY.

Let m ≥ 2 be a positive integer and let 1 ≤ x < y. Prove:

xm − (x− 1)m < ym − (y − 1)m.

Solution 1 by Brian D. Beasley, Clinton, SC.

We let f(x) = xm − (x− 1)m for x ≥ 1 and show that f is strictly increasing on [1,∞).
Since f ′(x) = mxm−1 −m(x− 1)m−1, we have f ′(x) > 0 if and only if
xm−1 > (x− 1)m−1. Since x ≥ 1 and m ≥ 2, this latter inequality holds, so we are done.

Solution 2 by Matt DeLong, Upland, IN.

Let X = x− 1 and Y = y − 1. Then 0 ≤ X < Y, x = X + 1, and y = Y + 1. Expanding
(X + 1)m −Xm and (Y + 1)m − Y m we see that

(X + 1)m −Xm = mXm−1 +
m(m− 1)

2
Xm−2 + · · ·+mX + 1

and

(Y + 1)m − Y m = mY m−1 +
m(m− 1)

2
Y m−2 + · · ·+mY + 1.

Since 0 ≤ X < Y , we can compare these two sums term-by-term and conclude that each
term involving Y is larger than the corresponding term involving X. Therefore,

(X + 1)m −Xm < (Y + 1)m − Y m.

Since x = X + 1 and y = Y + 1, we have shown that

xm − (x− 1)m < ym − (y − 1)m.

.

Solution 3 by José Luis Dı́az-Barrero, Barcelona, Spain.

We will argue by induction. The case when m = 2 trivially holds because
x2 − (x− 1)2 = 2x− 1 < 2y − 1 = y2 − (y − 1)2. Suppose that

xm − (x− 1)m < ym − (y − 1)m

holds and we have to see that

xm+1 − (x− 1)m+1 < ym+1 − (y − 1)m+1

holds. In fact, multiplying by m+ 1 both sides of xm − (x− 1)m < ym − (y − 1)m yields

(m+ 1)(xm − (x− 1)m) < (m+ 1)(ym − (y − 1)m)

and ∫ x

1
(m+ 1)(xm − (x− 1)m) dx <

∫ y

1
(m+ 1)(ym − (y − 1)m) dy

from which immediately follows

xm+1 − (x− 1)m+1 < ym+1 − (y − 1)m+1
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Therefore, by the PMI the statement is proved and we are done.

Solution 4 by Kenneth Korbin, New York, NY.

Let m ≥ 2 be a positive integer, and let 1 ≤ x < y. Then,

(y − 1)m < ym, and
(y − 1)m−1(x− 1) < ym−1(x), and

(y − 1)m−2(x− 1)2 < ym−2(x2), and
.
.
.

y0 = 1 ≤ xm.

Adding gives

[
(y − 1)m + (y − 1)m−1(x− 1) + · · ·+ 1

]
<

[
ym + ym−1x+ ym−2x2 + · · ·+ xm

]
.

Multiplying both sides by [(y − 1)− (x− 1)] = [y − x] gives

(y − 1)m − (x− 1)m < ym − xm.

Therefore
xm − (x− 1)m < ym − (y − 1)m.

Also solved by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; Raul A. Simon,
Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA;
various teams of students at Taylor University in Upland, IN:

Bethany Ballard, Nicole Gottier, and Jessica Heil;
Mandy Isaacson, Julia Temple, and Adrienne Ramsay;
Jeremy Erickson, Matthew Russell, and Chad Mangum;

Seth Bird, Jim Moore, and Jonathan Schrock;

and the proposers.

X
ia
ng
’s
T
ex
m
at
h



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2008

• 4990: Proposed by Kenneth Korbin, New York, NY.

Solve
40x+ 42

√
1− x2 = 29

√
1 + x+ 29

√
1− x

with 0 < x < 1.

• 4991: Proposed by Kenneth Korbin, New York, NY.

Find six triples of positive integers (a, b, c) such that

9

a
+
a

b
+
b

9
= c.

• 4992: Proposed by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie, San
Angelo, TX.

A closed circular cone has integral values for its height and base radius. Find all
possible values for its dimensions if its volume V and its total area (including its circular
base) A satisfy V = 2A.

• 4993: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

126x7 − 127x6 + 1 = 0.

• 4994: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.X
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Let a, b, c be three nonzero complex numbers lying on the circle C = {z ∈ C : |z| = r}.
Prove that the roots of the equation az2 + bz + c = 0 lie in the ring shaped region

D =

{
z ∈ C :

1−
√
5

2
≤ |z| ≤ 1 +

√
5

2

}
.

• 4995: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India.

Let A be a triangular array ai,j where i = 1, 2, · · · , and j = 0, 1, 2, · · · , i. Let

a1,0 = 1, a1,1 = 2, and ai,0 = T (i+ 1)− 2 for i = 2, 3, 4, · · · ,

where T (i+ 1) = (i+ 1)(i+ 2)/2, the usual triangular numbers. Furthermore, let
ai,j+1 − ai,j = j + 1 for all j. Thus, the array will look like this:

1 2
4 5 7

8 9 11 14
13 14 16 19 23

19 20 22 25 29 34

Show that for every pair (i, j), 4ai,j + 9 is the sum of two perfect squares.

Solutions

• 4972:Proposed by Kenneth Korbin, New York, NY.

Find the length of the side of equilateral triangle ABC if it has a cevian CD such that

AD = x, BD = x+ 1 CD =
√
y

where x and y are positive integers with 20 < x < 120.

Solution by Kee-Wai Lau, Hong Kong, China.

Applying the cosine formula to triangle CAD, we obtain

CD
2
= AD

2
+AC

2 − 2AD ·AC cos 60o,

or

(
√
y)2 = x2 + (2x+ 1)2 − 2x(2x+ 1) cos 60o

y = 3x2 + 3x+ 1.

For 20 < x < 120, we find using a calculator that y is the square of a positive integer if
x = 104, y = 32761. Hence the length of the side of equilateral triangle ABC is 209.

Comments:

1) Scott H. Brown, Montgomery, AL.

The list of pairs (x, y) that satisfy the equation y = 3x2 + 3x+ 1 is so large I will not
attempt to name each pair...numerous triangles with the given conditions can be found.

2) David Stone and John Hawkins, Statesboro, GA.X
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The restriction on x seems artificial–every x produces a triangle. In fact, if we require
the cevian length to be an integer, this becomes a Pell’s Equation problem and we can
generate nice solutions recursively in the usual fashion. The first few for
x, s = 2x+ 1, y = 3x2 + 3x+ 1, & cevian =

√
y are:

7 15 169 13

104 209 32761 181

1455 2911 6355441 2521

20272 40545 1232922769 35113

Also solved by Peter E. Liley, Lafayette, IN, and the proposer.

• 4973: Proposed by Kenneth Korbin, New York, NY.

Find the area of trapezoid ABCD if it is inscribed in a circle with radius R=2, and if it
has base AB = 1 and 6 ACD = 60o.

Solution by David E. Manes, Oneonta, NY.

The area A of the trapezoid is given by A =
3
√
3

8

(
15 +

√
5

)
.

Since the trapezoid is cyclic, it is isosceles so that AD = BC. Note that
6 ACD = 60o ⇒ 6 CAB = 60o since alternate interior angles of a transversal intersecting
two parallel lines are congruent. Therefore, from the law of sines in triangle ABC,
BC

sin 60o
= 2R or BC = 2

√
3. Using the law of cosines in triangle ABC,

BC2 = 1 +AC2 − 2AC · cos 60o, or AC2 −AC− 11 = 0.

Thus, AC is the positive root of this equation so that AC =
1 + 3

√
5

2
. Similarly, using

the law of cosines in triangle ACD and recalling that AD = BC, one obtains

AD2 = AC2 +DC2 − 2 ·AC ·DC · cos 60o

or DC2 −
(
1 + 3

√
5

2

)
DC +

−1 + 3
√
5

2
= 0. Noting that DC > 2 and

√
6− 2

√
5 =

√
(1−

√
5)2 =

√
5− 1, it follows that DC = 3

√
5− 1. Finally, let H be the

point on line segment DC such that AH is perpendicular to DC. Then the height h of

the trapezoid is given by h = AC · sin 60o =
√
3

4

(
1 + 3

√
5

)
. Hence,

A =
1

2

(
AB +DC

)
· h =

1

2

(
1 + 3

√
5− 1

)√
3

4

(
1 + 3

√
5

)
=

3
√
3

8

(
15 +

√
5

)
.

Also solved by Robert Anderson, Gino Mizusawa, and Jahangeer Kholdi
(jointly), Portsmouth, VA; Dionne Bailey, Elsie Campbell, and Charles
Diminnie, (jointly), San Angelo, TX; Paul M. Harms, North Newton, KS;
Zhonghong Jiang, NY, NY; Charles McCracken, Dayton, OH; Boris Rays,
Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.X
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• 4974: Proposed by Kenneth Korbin, New York, NY.

A convex cyclic hexagon has sides a, a, a, b, b, and b. Express the values of the
circumradius and the area of the hexagon in terms of a and b.

Solution by Kee-Wai Lau, Hong Cong, China.

We show that the circumradius R is

√
a2 + ab+ b2

3
and the area A of the hexagon is

√
3(a2 + 4ab+ b2)

4
.

Denote the angle subtended by side a and side b at the center of the circumcircle
respectively by θ and φ. Since 3θ + 3φ = 360o so θ = 120− φ and

cos θ = cos(120o − φ) = − cosφ+
√
3 sinφ

2
. Hence,

(2 cos θ + cosφ)2 = 3(1− cos2 φ) or 4 cos2 θ + 4 cos θ cosφ+ 4 cos2 φ− 3 = 0.

Now by the cosine formula cos θ =
2R2 − a2

2R2
and cosφ =

2R2 − b2
2R2

.

Therefore,

(2R2 − a2)2 + (2R2 − a2)(2R2 − b2) + (2R2 − b2)2 − 3R4 = 0 or

9R4 − 6(a2 + b2)R2 + a4 + a2b2 + b4 = 0.

Solving the equation we obtain R2 =
a2 + ab+ b2

3
or R2 =

a2 − ab+ b2

3
. The latter

result is rejected because if not, then for a = b, we have cos θ = cosφ < 0 so that

θ + φ > 180o, which is not true. Hence, R =

√
a2 + ab+ b2

3
.

To find A, we need to find the area of the triangles with sides R,R, a and R,R, b. The

heights to bases a and b are respectively

√
4R2 − a2

2
=

√
3(a+ 2b)

6
and

√
4R2 − b2

2
=

√
3(2a+ b)

6
. Hence the area of the hexagon equals

3

(√
3a(a+ 2b)

12
+

√
3b(2a+ b)

12

)
=

√
3

4

(
a2 + 4ab+ b2

)
as claimed.

Also solved by Matt DeLong, Upland, IN; Paul M. Harms, North Newton,
KS; Zhonghong Jiang, NY, NY; David E. Manes, Oneonta, NY; M. N.
Deshpande, Nagpur, India; Boris Rays, Chesapeake, VA; David Stone and
John Hawkins (jointly), Statesboro, GA; Jonathan Schrock, Seth Bird, and
Jim Moore (jointly, students at Taylor University), Upland, IN; David
Wilson, Winston-Salem, NC, and the proposer.

• 4975: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Solve in R the following system of equations
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2x1 = 3x2
√
1 + x23

2x2 = 3x3
√
1 + x24

. . . . . .

2xn = 3x1
√
1 + x22





Solution by David Stone and John Hawkins, Statesboro, GA.

Squaring each equation and summing, we have

4(x21+x
2
2+x

2
3+ · · ·+x2n) = 9(x21+x

2
2+x

2
3+ · · ·+x2n)+9(x21x

2
2+x

2
2x

2
3+x

2
3x

2
4+ · · ·+x2n−1x

2
n).

So
0 = 5(x21 + x22 + x23 + · · ·+ x2n) + 9(x21x

2
2 + x22x

2
3 + x23x

2
4 + · · ·+ x2n−1x

2
n).

Because these squares are non-negative and the sum is zero, each term on the right-hand
side must indeed equal 0. Therefore x1 = x2 = x3 = · · · = xn = 0.

Alternatively, we could multiply the equations to obtain

2nx1x2x3x4 · · ·xn = 3nx1x2x3x4n

√
1 + x21

√
1 + x22 · · ·

√
1 + x2n.

If all xk are non-zero, we’ll have

(
2

3

)n

=
√
1 + x21

√
1 + x22 · · ·

√
1 + x2n. The term on the

left is < 1, while each term on the right is > 1, so the product is > 1. Thus we have
reached a contradiction, forcing all xk to be zero.

Also solved by Bethany Ballard, Nicole Gottier, and Jessica Heil (jointly,
students, Taylor University), Upland, IN; Elsie M. Campbell, Dionne T.
Bailey and Charles Diminnie, San Angelo, TX; Matt DeLong, Upland, IN;
Paul M. Harms, North Newton, KS; Mandy Isaacson, Julia Temple, and
Adrienne Ramsay (jointly, students, Taylor University), Upland, IN;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris
Rays, Chesapeake, VA, and the proposer.

• 4976: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers. Prove that

a2 + 3b2 + 9c2

bc
+
b2 + 3c2 + 9a2

ca
+
c2 + 3a2 + 9b2

ab
≥ 27.

Solution by Matt DeLong, Upland, IN.

In fact, I will prove that the sum is at least 39. Rewrite the sum

a2 + 3b2 + 9c2

bc
+
b2 + 3c2 + 9a2

ca
+
c2 + 3a2 + 9b2

ab
as

a2

bc
+ 3

b

c
+ 9

c

b
+
b2

ca
+ 3

c

a
+ 9

a

c
+
c2

ab
+ 3

a

b
+ 9

b

a
.

Rearranging the terms gives

(
a2

bc
+
b2

ca
+
c2

ab

)
+ 3

(
b

c
+
c

b
+
c

a
+
a

c
+
a

b
+
b

a

)
+ 6

(
c

b
+
a

c
+
b

a

)X
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Now, repeatedly apply the Arithmetic Mean-Geometric Mean inequality.

a2

bc
+
b2

ca
+
c2

ab
≥ 3

(
a2b2c2

bccaab

)1/3

= 3

b

c
+
c

b
≥ 2

(
bc

cb

)1/2

= 2

c

a
+
a

c
≥ 2

(
ac

ca

)1/2

= 2

a

b
+
b

a
≥ 2

(
ab

ba

)1/2

= 2

c

b
+
a

c
+
b

a
≥ 3

(
cab

bca

)1/3

= 3.

Thus, we have

(
a2

bc
+
b2

ca
+
c2

ab

)
+3

(
b

c
+
c

b
+
c

a
+
a

c
+
a

b
+
b

a

)
+6

(
c

b
+
a

c
+
b

a

)
≥ 3+ 3(2+ 2+ 2)+ 6(3).

In other words

a2 + 3b2 + 9c2

bc
+
b2 + 3c2 + 9a2

ca
+
c2 + 3a2 + 9b2

ab
≥ 39

.

Also solved by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie,
San Angelo, TX; Jeremy Erickson, Matthew Russell, and Chad Mangum
(jointly, students, Taylor University), Upland, IN; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 4977: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let 1 < a < b be real numbers. Prove that for any x1, x2, x3 ∈ [a, b] there exist c ∈ (a, b)
such that

1

log x1
+

1

log x2
+

1

log x3
+

3

log x1x2x3
=

4

log c
.

Solution by Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles
Diminnie, San Angelo, TX .

Strictly speaking, the conclusion is incorrect as stated. If a = x1 = x2 = x3, then

1

log x1
+

1

log x2
+

1

log x3
+

3

log x1x2x3
=

4

log a
.

Similarly,
1

log x1
+

1

log x2
+

1

log x3
+

3

log x1x2x3
=

4

log b

when b = x1 = x2 = x3.
The statement is true when 1 < a ≤ x1 ≤ x2 ≤ x3 ≤ b with x1 6= x3. Since

3

log x1x2x3
=

3

log x1 + log x2 + log x3
,X
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then
4

log x3
<

1

log x1
+

1

log x2
+

1

log x3
+

3

log x1x2x3
<

4

log x1
.

By the Intermediate Value Theorem, there exists c ∈ (a, b) such that

1

log x1
+

1

log x2
+

1

log x3
+

3

log x1x2x3
=

4

log c
.

Solution 2 by Paul M. Harms, North Newton, KS.

Assume x1 < x3 with x2 in the interval [x1, x3]. For x > 1, we note that f(x) = log(x)
and g(x) = 1/ log(x) are both continuous, one-to-one, positive functions with f(x)
strictly increasing and g(x) strictly decreasing.

Consider
3

log(x1x2x3)
=

1

log(x1) + log(x2) + log(x3)

3

.

The denominator is the average of the 3 log values which means this average value is
between the extremes log x1 and log x3. Since f(x) is one-to-one and continuous there is

a value x4 where x1 < x4 < x3 and log x4 =
(log x1 + log x2 + log x3)

3
with log x4

between log x1 and log x3.

The equation in the problem can now be written

1
log x1

+ 1
log x2

+ 1
log x3

+ 1
log x4

4
=

1

log c
or

g(x1) + g(x2) + g(x3) + g(x4)

4
=

1

log c
.

The average of the four g(x) values is between the extremes g(x1) and g(x3). Since g(x)
is continuous and one-to-one there is a value x = c such that

g(c) =
1

log c
=
g(x1) + g(x2) + g(x3) + g(x4)

4

where x1 < c < x3 and, thus, a < c < b.

Note that if x1 = x2 = x3, then we obtain c = x1 = x2 = x3. If we want a < c < b, then
it appears that we need to keep x1, x2 and x3 away from a and b when these three
x-values are equal to each other.

Also solved by Michael Brozinsky, Central Islip, NY; Matt DeLong, Upland,
IN; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2008

• 4996: Proposed by Kenneth Korbin, New York, NY.

Simplify:
N∑

i=1

(
N

i

)(
2i−1

)(
1 + 3N−i

)
.

• 4997: Proposed by Kenneth Korbin, New York, NY.

Three different triangles with integer-length sides all have the same perimeter P and all
have the same area K.
Find the dimensions of these triangles if K = 420.

• 4998: Proposed by Jyoti P. Shiwalkar & M.N. Deshpande, Nagpur, India.

Let A = [ai,j ], i = 1, 2, · · · and j = 1, 2, · · · , i be a triangular array satisfying the
following conditions:

1) ai,1 = L(i) for all i
2) ai,i = i for all i
3) ai,j = ai−1,j + ai−2,j + ai−1,j−1 − ai−2,j−1 for 2 ≤ j ≤ (i − 1 ).

If T (i) =
i∑

j=1

ai,j for all i ≥ 2, then find a closed form for T (i), where L(i) are the Lucas

numbers, L(1) = 1, L(2) = 3, and L(i) = L(i− 1) + L(i− 2) for i ≥ 3.X
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• 4999: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real triplets (x, y, z) such that

x+ y + z = 2

2x+y2 + 2y+z2 + 2z+x2
= 6

9
√
2

• 5000: Proposed by Richard L. Francis, Cape Girardeau, MO.

Of all the right triangles inscribed in the unit circle, which has the Morley triangle of
greatest area?

• 5001: Proposed by Ovidiu Furdui, Toledo, OH.

Evaluate:

∫ ∞

0
ln2
(

x2

x2 + 3x+ 2

)
dx.

Solutions

• 4978: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with side AB = 9 and with cevian CD. Find the length
of AD if 4ADC can be inscribed in a circle with diameter equal to 10.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, Karl Havlak,
and Paula Koca (jointly), San Angelo, TX.

Let x = AD and y = CD. If A is the area of 4ADC, then

A =
1

2
(9)x sin 60o =

9

4

√
3x.

Since the circumradius of 4ADC is 5, we have

5 =
9xy

4A
=

y√
3

and hence,
y = 5

√
3.

Then, by the Law of Cosines,

75 = y2 = x2 + 81− 2 (9)x cos 60o = x2 − 9x+ 81

which reduces to
x2 − 9x+ 6 = 0.

Therefore, there are two possible solutions:

AD = x =
9±
√
57

2
.

Also solved by Scott H. Brown, Montgomery, AL; Daniel Copeland,
Portland, OR; M.N. Deshpande, Nagpur, India; Paul M. Harms, NorthX
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Newton, KS; Jahangeer Kholdi, Portsmouth, VA; Xiezhang Li, David Stone
& John Hawkins (jointly), Statesboro, GA; Peter E. Liley, Lafayette, IN;
David E. Manes, Oneonta, NY; Charles, McCracken, Dayton, OH; Boris
Rays, Chesapeake, VA; David C. Wilson, Winston-Salem, NC, and the
proposer.

• 4979: Proposed by Kenneth Korbin, New York, NY.

Part I: Find two pairs of positive numbers (x, y) such that

x√
1 + y −√1− y =

√
65

2
,

where x is an integer.

Part II: Find four pairs of positive numbers (x, y) such that

x√
1 + y −√1− y =

65

2
,

where x is an integer.

Solution 1 by Brian D. Beasley, Clinton, SC.

(I) We need 0 < y ≤ 1, so requiring x to be an integer yields

x =

√
65

2

(√
1 + y −

√
1− y

)
∈ {1, 2, 3, 4, 5}.

We solve for y to obtain y = 2x
√
65− x2/65. Substituting x ∈ {1, 2, 3, 4, 5} yields five

solutions for (x, y), with two of these also having y rational, namely

(x, y) = (1, 16/65) and (x, y) = (4, 56/65).

(II) We again need 0 < y ≤ 1, so requiring x to be an integer yields

x =
65

2

(√
1 + y −

√
1− y

)
∈ {1, 2, . . . , 45}.

We solve for y to obtain y = 2x
√
4225− x2/4225. Substituting x ∈ {1, 2, . . . , 45} yields

45 solutions for (x, y), with four of these also having y rational, namely

(x, y) = (16, 2016/4225); (x, y) = (25, 120/169);
(x, y) = (33, 3696/4225); (x, y) = (39, 24/25).

Solution 2 by James Colin Hill, Cambridge, MA.

Part I: The given equation yields 4x2 = 130(1 +
√
1− y2). Let y = cos θ. Then

sin θ =
4x2

130
− 1.

For x ∈ Z+, we find several solutions, including the following (rational) pair:

x = 1, y = 16/65
x = 4, y = 56/64.

Part II: The given equation yields sin θ =
4x2

8450
− 1, where y = cos θ as before. For

x ∈ Z+, we find many solutions, including the following (rational) four:

x = 16, y = 2016/4225X
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x = 25, y = 120/169
x = 33, y = 3696/4225
x = 39, y = 24/25

Also solved by John Boncek, Montgomery, AL; Dionne Bailey, Elsie
Campbell, and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; Peter E. Liley, Lafayette, IN; David E. Manes, Oneonta,
NY; Boris Rays, Chesapeake, VA; Harry Sedinger, St. Bonaventure, NY;
David Stone and John Hawkins (jointly), Statesboro, GA, David C. Wilson,
Winston-Salem, NC, and the proposer.

• 4980: J.P. Shiwalkar and M.N. Deshpande, Nagpur, India.

An unbiased coin is sequentially tossed until (r + 1) heads are obtained. The resulting
sequence of heads (H) and tails (T) is observed in a linear array. Let the random
variable X denote the number of double heads (HH’s, where overlapping is allowed) in
the resulting sequence. For example: Let r = 6 so the unbiased coin is tossed till 7 heads
are obtained and suppose the resulting sequence of H’s and T’s is as follows:

HHTTTHTTTTHHHTTH

Now in the above sequence, there are three double heads (HH’s) at toss number
(1, 2), (11, 12) and (12, 13). So the random variable X takes the value 3 for the above
observed sequence.

In general, what is the expected value of X?

Solution by N. J. Kuenzi, Oshkosh,WI.

Let X(r) be the number of double heads (HH) in the resulting sequence.
First consider the case r = 1. Since the resulting sequence of heads (H) and tails (T )

ends in either TH or HH, P [X(1) = 0] =
1

2
and P [X(1) = 1] =

1

2
. So E[X(1)] =

1

2
.

Next let r > 1, an unbiased coin is tossed until (r + 1) heads are obtained. If the
resulting sequence of H ′s and T ′s ends in TH then X(r) = X(r − 1). And if the
resulting sequence of H ′s and T ′s ends in HH then X(r) = X(r − 1). So

P [X(r) = X(r − 1)] =
1

2
and P [X (r) = X (r − 1) + 1] =

1

2
.

It follows that

E[X(r)] =
1

2
E[X(r − 1)] +

1

2
E[X(r − 1) + 1] = E[X(r − 1)] +

1

2
.

Finally, the Principle of Mathematical Induction can be used to show that E[X(r)] =
r

2
.

Also solved by Kee-Wai Lau, Hong Kong, China; Harry Sedinger, St.
Bonvatenture, NY, and the proposers.

• 4981: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

5x + 3x + 2x − 28x+ 18 = 0.X
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Solution by Paolo Perfetti, Dept. of Mathematics, University of Rome, Italy.

Let f(x) = 5x + 3x + 2x − 28x+ 18. The values for x ≤ 0 are excluded from being
solutions because for these values f(x) > 0. It is immediately seen that f(x) = 0 for
x = 1, 2. Moreover, the derivative f ′(x) = 5x ln 5 + 3x ln 3 + 2x ln 2− 28 is an increasing
continuous function such that:

1) f ′(0) = ln 30− 28 < 0, lim
x+∞

f ′(x) = +∞
2) f ′(1) = 5 ln 5 + 3 ln 3 + 2 ln 2− 28 < 10 + 6 + 2− 28 = −10
3) f ′(2) = 25 ln 5 + 9 ln 3 + 4 ln 2− 28 ≥ 34− 28 > 0.

By continuity this implies that f ′(x) = 0 for just one point xo between 1 and 2, and that
the graph of f(x) has a minimum only at x = xo. It follows that there are no values of x
other than x = 1, 2 satisfying f(x) = 0.

Also solved by Brain D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly), San
Angelo, TX; M.N. Deshpande, Nagpur, India; Paul M. Harms, North
Newton, KS; Jahangeer Kholdi, Portsmouth, VA; Kee-Wai Lau, Hong Kong,
China; Kenneth Korbin, NY, NY; Charles McCracken, Dayton, OH; Boris
Rays, Chesapeake, VA; Harry Sedinger, St. Bonaventure, NY; David Stone
and John Hawkins, Statesboro, GA, and the proposers.

• 4982: Proposed by Juan José Egozcue and José Luis Dı́az-Barrero, Barcelona, Spain.

Calculate

lim
n→∞

1

n+ 1


 ∑

1≤i1≤n+1

1

i1
+

∑

1≤i1<i2≤n+1

1

i1i2
+ · · ·+

∑

1≤i1<...<in≤n+1

1

i1i2 . . . in


 .

Solution 1 by Paul M. Harms, North Newton, KS.

Let S(n) be the addition of the summations inside the parentheses of the expression in
the problem. When n = 1 . The expression in the problem is

1

2

([
1

1
+

1

2

]
+

[
1

1(2)

])
= (

1

2
)2 = 1, where S (1) = 2.

When n = 2 the expression is

=
1

3

([
1

1
+

1

2
+

1

3

]
+

[
1

1(2)
+

1

1(3)
+

1

(2)(3)

]
+

[
1

1(2)(3)

])

=
1

3

(
S(1) +

1

3

[
1 + S(1)

])

=
1

3

(
2 +

1

3
3

)
= 1, where S (2) = 3.

When n = 3 the expression is

1

4

(
S(2) +

1

4

[
1 + S(2)

])
=

1

4

(
3 +

1

4

[
1 + 3

])
= 1, where S (3) = 4.

When n = k + 1 the expression becomes

1

k + 2

(
S(k) +

1

k + 2

[
1 + S(k)

])
= 1, where S (k) = k + 1.X
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The limit in the problem is one.

Solution 2 by David E. Manes,Oneonta, NY.

Let

an =
1

n+ 1


 ∑

1≤i1≤n+1

1

i1
+

∑

1≤i1<i2≤n+1

1

i1i2
+ · · ·+

∑

1≤i1<...<in≤n+1

1

i1i2 . . . in


 .

Then a1 = 3/4, a2 = 17/18, a3 = 95/96, and a4 = 599/600.

We will show that

an = 1− 1

(n+ 1)(n+ 1)!

Note that the equation is true for n = 1 and assume inductively that it is true for some
integer n ≥ 1. Then

an =
1

n+ 1


 ∑

1≤i1≤n+1

1

i1
+

∑

1≤i1<i2≤n+1

1

i1i2
+ · · ·+

∑

1≤i1<...<in≤n+1

1

i1i2 . . . in




=
1

n+ 2

[
(n+ 1)an +

1

n+ 2
+

(
n+ 1

n+ 2

)
an +

1

(n+ 1)!

]

=
1

n+ 2

[
(n+ 1)

(
1− 1

(n+ 1)(n+ 1)!

)
+

1

n+ 2
+

(
n+ 1

n+ 2

)(
1− 1

(n+ 1)(n+ 1)!

)
+

1

(n+ 1)!

]

=
1

n+ 2

[
(n+ 1)− 1

(n+ 1)!
+ 1− 1

(n+ 2)(n+ 1)!
+

1

(n+ 1)!

]

=
1

n+ 2

[
n+ 2− 1

(n+ 2)!

]
= 1− 1

(n+ 2)(n+ 2)!
.

Therefore, the result is true for n+ 1. By induction an = 1− 1

(n+ 1)(n+ 1)!
is valid for

all integers n ≥ 1. Hence lim
n→∞ an = 1.

Also solved by Carl Libis, Kingston, RI; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 4983: Proposed by Ovidiu Furdui, Kalamazoo, MI.

Let k be a positive integer. Evaluate

1∫

0

{
k

x

}
dx,

where {a} is the fractional part of a.

Solution by Kee-Wai Lau, Hong Kong, China.

We show that
1∫

0

{
k

x

}
dx = k

( k∑

n=1

1

n
− ln k − γ

)
,X
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where γ is Euler’s constant. By substituting x = ky, we obtain

1∫

0

{
k

x

}
dx = k

∫ 1/k

0

{
1

y

}
dy. For any integer M > k , we have

1/k∫

1/M

{
1

y

}
dy =

M−1∑

n=k

∫ 1/n

1/(n+1)

{
1

y

}
dy

=
M−1∑

n=k

∫ 1/n

1/(n+1)

{
1

y
− n

}
dy

=
M−1∑

n=k

(
ln(

n+ 1

n
)− 1

n+ 1

)

= ln

(
M

k

)
−

M∑

n=k+1

1

n

=
k∑

n=1

1

n
− ln k −

( M∑

n=1

1

n
− lnM

)
.

Since lim
M→∞

( M∑

n=1

1

n
− lnM

)
= γ, we obtain our result.

Also solved by Brian D. Beasley, Clinton, SC; Jahangeer Kholdi,
Portsmouth, VA; David E. Manes, Oneonta, NY; Paolo Perfetti, Dept. of
Mathematics, University of Rome, Italy; R. P. Sealy, Sackville, New
Brunswick, Canada; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.
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Problem 4952 was posted in the January 07 issue of this column. It was proposed by
Michael Brozinsky of Central Islip, NY & Robert Holt of Scotch Plains, NJ.
I received one solution to this problem; it was from Paul M. Harms of North
Newton, KS. His solution, which was different from the one presented by proposers,
made a lot of sense to me and it was published in the October 07 issue of this column.
Michael then wrote to me stating that he thinks Paul misinterpreted the problem. For
the sake of completeness, here is the proposers’ solution to their problem.

• 4952: An archeological expedition discovered all dwellings in an ancient civilization had
1, 2, or 3 of each of k independent features. Each plot of land contained three of these
houses such that the k sums of the number of each of these features were all divisible by
3. Furthermore, no plot contained two houses with identical configurations of featuresX
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and no two plots had the same configurations of three houses. Find a) the maximum
number of plots that a house with a given configuration might be located on, and b) the
maximum number of distinct possible plots.

Solution by the proposers: a) Clearly these maximum numbers will be attained
using the 3k possible configurations for a house.

Note: For any two houses on a plot:
1) if they have the same number of any given feature then the third house will
necessarily have this same number of that feature since the sum must be divisible by
three, and
2) if they have a different number of a given feature then the third house will have a
different number of that feature than the first two houses since the sum must be
divisible by three.

It follows then that any fixed house can be adjoined with
3k − 1

2
possible pairs of houses

to be placed on a plot since the second house can be any of the remaining 3k − 1 house
configurations but the third configuration is uniquely determined by the above note and
the fact that no two houses on a plot can be identically configured. These 3k − 1

permutations of the second and third house thus must have arisen from the
3k − 1

2

possible pairs claimed above. The answer is thus
3k − 1

2
.

b) The above note shows that for any two differently configured houses only one of the
remaining 3k − 2 configurations will form a plot with these two. Hence, the probability
that 3 configurations chosen randomly from the 3k configurations are suitable for a plot

is
1

3k − 2
. Since there are

(
3k

3

)
subsets of size three that can be formed from the 3k

configurations, it follows that the maximum number of distinct possible plots is(
3k

3

)

3k − 2
=

3k−1(3k − 1)

2
.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2008

• 5002: Proposed by Kenneth Korbin, New York, NY.

A convex hexagon with sides 3x, 3x, 3x, 5x, 5x and 5x is inscribed in a unit circle. Find
the value of x.

• 5003: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that

3
√
x+

√
x2 − 1 +

3
√
x−

√
x2 − 1 =

7

2
and

3

√
y +

√
y2 − 1 +

3

√
y −

√
y2 − 1 =

√
10

• 5004: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be nonnegative real numbers. Prove that

a

1 + a
+

b

1 + b
+

c

1 + c
≥

√
ab

1 + a+ b
+

√
bc

1 + b+ c
+

√
ca

1 + c+ a

• 5005: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that
√
3

2

(
a+ b+ c

)1/2

≥ 1

a+ b
+

1

b+ c
+

1

c+ a
.X
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• 5006: Proposed by Ovidiu Furdui, Toledo, OH.

Find the sum ∞∑

k=2

(−1)k ln
(
1− 1

k2

)
.

• 5007: Richard L. Francis, Cape Girardeau, MO.

Is the centroid of a triangle the same as the centroid of its Morley triangle?

Solutions

• 4984: Proposed by Kenneth Korbin, New York, NY.

Prove that
1√

1 +
√
3
+

1√
5 +
√
7
+ · · ·+ 1√

2009 +
√
2011

>
√
120.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

The sum

503∑

k=1

1√
4k − 3 +

√
4k − 1

>
1

2

503∑

k=1

(
1√

4k − 3 +
√
4k − 1

+
1√

4k − 1 +
√
4k + 1

)

=
1

2

503∑

k=1

(√
4k − 1−

√
4k − 3

2
+

√
4k + 1−

√
4k − 1

2

)

=
1

4

503∑

k=1

(√
4k + 1−

√
4k − 3

)

=
1

4

(√
2013− 1

)

=
1

4

√
2013− 2

√
2013 + 1

>
1

4

(√
2013− 2(45) + 1

)

>
1

4

√
1920

=
√
120

as required.

Solution 2 by Kenneth Korbin, the proposer.X
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Let K =
1√

1 +
√
3
+

1√
5 +
√
7
+ · · ·+ 1√

2009 +
√
2011

.

Then, K >
1√

3 +
√
5
+

1√
7 +
√
9
+ · · ·+ 1√

2011 +
√
2013

and,

2K >
1√

1 +
√
3
+

1√
3 +
√
5
+

1√
5 +
√
7
+ · · ·+ 1√

2011 +
√
2013

=

√
3−
√
1

2
+

√
5−
√
3

2
+

√
7−
√
5

2
+ · · ·+

√
2013−

√
2011

2

=

√
2013− 1

2
. So,

K >

√
2013− 1

4
>
√
120.

Also solved by Brian D. Beasley, Clinton, SC; Charles R. Diminnie, San
Angelo, TX; Paul M. Harms, North Newton, KS; Paolo Perfetti,
Mathematics Department, U. of Rome, Italy, and David Stone & John
Hawkins (jointly), Statesboro, GA.

• 4985: Proposed by Kenneth Korbin, New York, NY.

A Heron triangle is one that has both integer length sides and integer area. Assume
Heron triangle ABC is such that 6 B = 26 A and with (a,b,c)=1.

PartI : Find the dimensions of the triangle if side a = 25.
PartII : Find the dimensions of the triangle if 100 < a < 200.

Solution by Brian D. Beasely, Clinton, SC.

Using the Law of Sines, we obtain

sinA

a
=

sin(2A)

b
=

sin(180◦ − 3A)

c
=

sin(3A)

c
,

where 6 B = 26 A forces 0◦ < A < 60◦. Since sin(2A) = 2 sinA cosA and
sin(3A) = 3 sinA− 4 sin3A, we have b = 2a cosA and c = a(3− 4 sin2A). In particular,

a < b < 2a, and using A = cos−1
(
b

2a

)
implies

c = 3a− 4a

(
1−

(
b

2a

)2
)

= −a+ b2

a
.

Then a divides b2, so we claim that a must be a perfect square: Otherwise, if a prime p
divides a but p2 does not, then p divides b2; thus p divides b, yet p2 does not divide a,
which would imply that p divides b2/a and hence p divides c, a contradiction of
(a, b, c) = 1.

Next, we note that the area of the triangle is (1/2)bc sinA, which becomes

b(b+ a)(b− a)
2a

√

1−
(
b

2a

)2

=
b(b+ a)(b− a)

4a2

√
4a2 − b2.X
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I. Let a = 25. Then 25 < b < 50 and c = −25 + b2/25, so 5 divides b. Checking
b ∈ {30, 35, 40, 45} yields two solutions for which the area of the triangle is an integer:

(a, b, c) = (25, 30, 11) with area = 132; (a, b, c) = (25, 40, 39) with area = 468.

II. Let 100 < a < 200. Then a ∈ {121, 144, 169, 196}.

If a = 121, then 11 divides b, so b = 11d for d ∈ {12, 13, . . . , 21}. Since the area formula
requires 4a2 − b2 = 112(222 − d2) to be a perfect square, we check that no such d
produces a perfect square 222 − d2.

If a = 144, then 12 divides b, so b = 12d for d ∈ {13, 14, . . . , 23}. Since
4a2 − b2 = 122(242 − d2) must be a perfect square, we check that no such d produces a
perfect square 242 − d2.

If a = 169, then 13 divides b, so b = 13d for d ∈ {14, 15, . . . , 25}. Since
4a2 − b2 = 132(262 − d2) must be a perfect square, we check that the only such d to
produce a perfect square 262 − d2 is d = 24. This yields the triangle

(a, b, c) = (169, 312, 407) with area 24,420.

If a = 196, then 14 divides b, so b = 14d for d ∈ {15, 16, . . . , 27}. Since
4a2 − b2 = 142(282 − d2) must be a perfect square, we check that no such d produces a
perfect square 282 − d2.

Comment: David Stone and John Hawkins of Statesboro, GA conjectured that
in order to meet the conditions of the problem, a must equal p2, where p is an odd
prime congruent to 1 mod 4. With p = m2 + n2, there are one or two triangles,
according to the ratio of m and n. If

√
3n < m < (2 +

√
3)n, there are two solutions; if

m > (2 +
√
3)n, there is one solution; and if n < m <

√
3n, there is one solution.

Also solved by M.N. Deshpande, Nagpur, India; Grant Evans (student, Saint
George’s School), Spokane, WA; Paul M. Harms, North Newton, KS; Peter
E. Liley, Lafayette, IN; John Nord, Spokane, WA; David Stone & John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 4986: Michael Brozinsky, Central Islip, NY.

Show that if 0 < a < b and c > 0, that
√
(a+ c)2 + d2 +

√
(b− c)2 + d2 ≤

√
(a− c)2 + d2 +

√
(b+ c)2 + d2.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

Squaring both sides and simplifying, we reduce the desired inequality to

2c(b− a) +
√
(a− c)2 + d2

√
(b+ c)2 + d2 ≥

√
(a+ c)2 + d2

√
b− c)2 + d2.

Squaring the last inequality and simplifying we obtain
√
(a− c)2 + d2

√
(b+ c)2 + d2 ≥ ab+ ac− bc− c2 − d2. (1)

If ab+ ac− bc− c2 − d2 ≤ 0, (1) is certainly true. If ab+ ac− bc− c2 − d2 > 0, we square
both sides of (1) and the resulting inequality simplifies to the trivial inequality
(a+ b)2d2 ≥ 0. This completes the solution.X
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Solution 2 by Paolo Perfetti, Mathematics Department, U. of Rome, Italy.
The inequality is

√
(b− c)2 + d2 −

√
(a− c)2 + d2 ≤

√
(b+ c)2 + d2 −

√
(a+ c)2 + d2.

Defining f(x) =
√
(b+ x)2 + d2 −

√
(a+ x)2 + d2, −c ≤ x ≤ c, the inequality becomes

f(−c) ≤ f(c) so we prove that

f ′(x) =
b+ x√

(b+ x)2 + d2
− a+ x√

(a+ x)2 + d2
> 0.

There are three possibilities: 1) b+ x > a+ x ≥ 0, 2) a+ x < b+ x < 0, and 3)
b+ x > 0, a+ x < 0. It is evident that 3) implies f ′(x) > 0. With the condition 1), after
squaring, we obtain

(b+ x)2((a+ x)2 + d2) > (a+ x)2((b+ x)2 + d2) or

(b+ x)2 > (a+ x)2which is true.

As for 2) we have

|b+ x|√
(b+ x)2 + d2

<
|a+ x|√

(a+ x)2 + d2
or

(b+ x)2 < (a+ x)2

and making the square root −(b+ x) < −(a+ x) which is true as well.

Also solved by Angelo State University Problem Solving Group, San Angelo,
TX; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York, NY,
and the proposer.

• 4987: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be the sides of a triangle ABC with area S. Prove that

(a2 + b2)(b2 + c2)(c2 + a2) ≤ 64S3 csc 2A csc 2B csc 2C.

Solution by José Luis Dı́az-Barrero, the proposer.

Let A′ ∈ BC be the foot of ha. We have,

ha = c sinB and BA′ = c cosB (1)

and
ha = b sinC and A′C = b cosC (2)

Multiplying up and adding the resulting expressions yields

ha(BA
′ +A′C) =

b2 sin 2C

2
+
c2 sin 2B

2

or
c2 sin 2B + b2 sin 2C = 4SX
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Likewise, we have
a2 sin 2C + c2 sin 2A = 4S,

a2 sin 2B + b2 sin 2A = 4S.

Adding up the above expressions yields

(a2 + b2) sin 2C + (b2 + c2) sin 2A+ (c2 + a2) sin 2B = 12S

Applying the AM-GM inequality yields

3

√
(a2 + b2) sin 2C(b2 + c2) sin 2A(c2 + a2) sin 2B ≤ 4S

from which the statement follows. Equality holds when 4ABC is equilateral and we are
done.

• 4988: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

3x
2−x−z + 3y

2−y−x + 3z
2−z−y = 1.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, Karl Havlak,
and Paula Koca (jointly), San Angelo, TX.

By the Arithmetic - Geometric Mean Inequality,

1 = 3x
2−x−z + 3y

2−y−x + 3z
2−z−y

≥ 3
3
√
3x2−2x+y2−2y+z2−2z

=
3
√
3(x−1)2+(y−1)2+(z−1)2

and hence,

3(x−1)2+(y−1)2+(z−1)2 ≤ 1.

It follows that
(x− 1)2 + (y − 1)2 + (z − 1)2 = 0,

i.e.,
x = y = z = 1.

Since it is easily checked that these values satisfy the original equation, the solution is
complete.

Also solved by Kee-Wai Lau, Hong Kong, China; Charles McCracken,
Dayton, OH; Paolo Perfetti, Mathematics Department, U. of Rome, Italy;
Boris Rays, Chesapeake, VA, and the proposer.

• 4989: Proposed by Tom Leong, Scotrun, PA.

The numbers 1, 2, 3, · · · , 2n are randomly arranged onto 2n distinct points on a circle.
For a chord joining two of these points, define its value to be the absolute value of the
difference of the numbers on its endpoints. Show that we can connect the 2n points in
disjoint pairs with n chords such that no two chords intersect inside the circle and the
sum of the values of the chords is exactly n2.X
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Solution 1 by Harry Sedinger, St. Bonaventure, NY.

First we show by induction that if there are n red points and n blue points (all distinct)
on the circle, then there exist n nonintersecting chords, each connecting a read point an
a blue point (with each point being used exactly once). This is obvious for n = 1.
Assume it is true for n and consider the case for n+ 1. There obviously is a pair of
adjacent points (no other points between them on one arc), one read and one blue.
Clearly they can be connected by a chord which does not intersect any chord connecting
two other points. Removing this chord and the two end points then reduces the problem
to the case for n, which can be done according to the induction hypothesis. The desired
result is then true for n+ 1 and by induction true for all n.
Now for the given problem, color the points numbered 1, 2, · · · , n red and color the ones
numbered n+ 1, n+ 2, · · · , 2n blue. From above there exists n nonintersecting chords
and the sum of their values is

2n∑

k=n+1

k −
n∑

k=1

k =
2n∑

k=1

k − 2
n∑

k=1

k =
2n(2n+ 1)

2
− 2

n(n+ 1)

2
= n2.

Solution 2 by Kenneth Korbin, New York, NY.

Arrange the numbers 1, 2, 3, · · · , 2n randomly on points of a circle. Place a red checker
on each point from 1 through n. Let

∑
R = 1 + 2 + · · ·+ n =

n(n+ 1)

2
.

Place a black checker on each point numbered from n+ 1 through 2n. Let

∑
B = (n+ 1) + (n+ 2) + · · ·+ (2n) = n2 +

n(n+ 1)

2
.

Remove a pair of adjacent checkers that have different colors. Connect the two points
with a chord. The value of this chord is (B1 −R1).

Remove another pair of adjacent checkers with different colors. The chord between these
two points will have value (B2 −R2).

Continue this procedure until the last checkers are removed and the last chord will have
value (Bn −Rn).

The sum of the value of these n chords is

(B1 −R1) + (B2 −R2) + · · ·+ (Bn −Rn) =
∑

B −
∑

R = n2.

Also solved by N.J. Kuenzi, Oshkosh, WI; David Stone & John Hawkins
(jointly), Statesboro,GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2008

• 5008: Proposed by Kenneth Korbin, New York, NY.

Given isosceles trapezoid ABCD with 6 ABD = 60o, and with legs BC = AD = 31.

Find the perimeter of the trapezoid if each of the bases has positive integer length with
AB > CD.

• 5009: Proposed by Kenneth Korbin, New York, NY.

Given equilateral triangle ABC with a cevian CD such that AD and BD have integer
lengths. Find the side of the triangle AB if CD = 1729 and if (AB, 1729) = 1.

• 5010: Proposed by José Gibergans-Báguena and José Luis Dı́az-Barrero, Barcelona,
Spain.

Let α, β, and γ be real numbers such that 0 < α ≤ β ≤ γ < π/2. Prove that

sin 2α+ sin 2β + sin 2γ

(sinα+ sinβ + sin γ)(cosα+ cosβ + cos γ)
≤ 2

3
.

• 5011: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let {an}n≥0 be the sequence defined by a0 = a1 = 2 and for n ≥ 2, an = 2an−1−
1

2
an−2.

Prove that
2pap+q + aq−p = 2papaq

where p ≤ q are nonnegative integers.X
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• 5012 Richard L. Francis, Cape Girardeau, MO.

Is the incenter of a triangle the same as the incenter of its Morley triangle?

• 5013: Proposed by Ovidiu Furdui, Toledo, OH.

Let k ≥ 2 be a natural number. Find the sum

∑

n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
.

Solutions

• 4990: Proposed by Kenneth Korbin, New York, NY.

Solve
40x+ 42

√
1− x2 = 29

√
1 + x+ 29

√
1− x

with 0 < x < 1.

Solution by Boris Rays, Chesapeake, VA.

Let x = cosα, where α ∈ (0, π/2). Then

40 cosα+ 42
√
1− cos2 α = 29

√
1 + cos + 29

√
1− cosα

= 29
√
2

(√
1 + cosα

2
+

√
1− cosα

2

)

= 29 · 2√
2

(√
1 + cosα

2
+

√
1− cosα

2

)

= 29 · 2
(

1√
2
cos

α

2
+

1√
2
sin

α

2

)

= 58

(
cos

π

4
cos

α

2
+ sin

π

4
sin

α

2

)
= 58 cos(

π

4
− α

2
). Therefore,

40 cosα+ 42 sinα = 58 cos (
π

4
− α

2
).

40

58
cosα+

42

58
sinα = cos (

π

4
− α

2
)

20

29
cosα+

21

29
sinα = cos (

π

4
− α

2
).

Let cosα0 =
20

29
. Then sinα0 =

√
1−

(
20

29

)2

=
21

29
.

cosα0 cosα+ sinα0 sinα = cos

(
π

4
− α

2

)X
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cos(α0 − α) = cos

(
π

4
− α

2

)
.

Therefore we obtain from the above,

1) α0 − α1 =
π

4
− α1

2

α1 = 2α0 −
π

2
, where α0 = arccos

20

29
.

2) α0 − α2 = −
(
π

4
− α2

2

)
=
α2

2
− π

4

3

2
α2 = α0 +

π

4

α2 =
2

3
α0 +

π

6
, where α0 = arccos

20

29
.

Therefore,

1) x1 = cos

(
2α0 −

π

2

)
= cos (2α0) cos

π

2
+ sin (2α0) sin

π

2

= 2 sinα0 cosα0 · 1 = 2 · 21
29
· 20
29

=
840

841
.

2) x2 = cos

(
2

3
α0 +

π

6

)
= cos

(
2

3
arccos

(
20

29

)
+
π

6

)
.

The solution is:

x1 =
840

841
x2 = cos

(
2

3
arccos

(
20

29

)
+
π

6

)
.

Remark: This solution is an adaptation of the solution to SSM problem 4966, which is
an adaptation of the solution on pages 13-14 of Mathematical Miniatures by Savchev
and Andreescu.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey and Charles Diminnie (jointly), San Angelo, TX; Paul M. Harms,
North Newton, KS; José Hernández Santiago (student at UTM), Oaxaca,
México; Kee-Wai Lau, Hong Kong, China; Peter E. Liley, Lafayette, IN;
John Nord, Spokane, WA; Paolo Perfetti, Math Dept., U. of Rome, Italy;
David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4991: Proposed by Kenneth Korbin, New York, NY.

Find six triples of positive integers (a, b, c) such that

9

a
+
a

b
+
b

9
= c.

Solution by David Stone and John Hawkins, Statesboro, GA,(with comments
by editor).

David Stone and John Hawkins submitted a six page densely packed analysis of the
problem, but it is too long to include here. Listed below is their solution and the gist ofX
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their analysis as to how they solved it. (Interested readers may obtain their full analysis
by writing to David at <dstone@georgiasouthern.edu> or to me at <eisenbt@013.net>.
Others who solved the problem programmed a computer.

David and John began by listing what they believe to be all ten solutions to the problem.




a b c
2 12 6
9 9 3
14 588 66
18 36 5
54 12 6
162 4 41
378 588 66
405 25 19
11826 21316 2369
29565 133225 14803




The analysis in their words:
Rewriting the equation, we seek positive integer solutions to

(1) 81b+ 9a2 + ab2 = 9abc.

Theorem. A solution must have the form a = 3iA, b = 3jA2, where (A, 3) = 1, i, j ≥ 0.
At least one of i, j must be ≥ 1.

Proof. From equation (1), we see that 9 divides all terms but ab2, so 9 divides ab2, so 3
divides a or b so at least one of i, j must be ≥ 1.

Also from equation (1), it is clear that if p is a prime different from 3, then p divides a if
and only if p divides b.

Suppose p is such a prime and a = 3ipmC, b = 3jpnD, where m,n ≥ 1, and C and D are
not divisible by 3 or p. Then equation (1) becomes

81

(
3jpnD

)
+ 9

(
3ipmC

)2

+

(
3ipmC

)(
3jpnD

)2

= 9

(
3ipmC

)(
3jpnD

)
c,

or
(#) 3j+4pnD + 32i+2p2mC2 + 3i+2jpm+2nCD2 = 3i+j+2pm+nCDc.

If n < 2m, we can divide equation (#) by pn to obtain

3j+4D + 32i+2p2m−nC2 + 3i+2jpm+nCD2 = 3i+j+2pmCDc.

But then p divides each term after the first, so p divides 3j+4D, which is impossible.

If n > 2m, we can divide through equation (#) by p2m to obtain

3j+4pn−2mD + 32i+2C2 + 3i+2jp2n−mCD2 = 3i+j+2pn−mCDc

81pm−2nD + 9C2 + pmCD2 = 9pm−nCDc.

Noting that 2n > 4m > m and n > 2m > m, we see that p divides each term except
32i+2C2, so p divides 32i+2C2, which is impossible.

Therefore n = 2m.
That is, a and b have the same prime divisors, and in b, the power on each such prime isX
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twice the corresponding power in a; therefore, in b, the product of all divisors other than
3 is the square of the analogous product in a. So the proof is complete.

They then substituted this result into equation (1) obtaining

81

(
3jA2

)
+ 9

(
3iA2

)
+

(
3iA

)(
3jA2

)2

= 9

(
3iA

)(
3jA2

)
c,

or

(2)

(
2j+4 + 32i+2

)
+ 3i+2jA3 = 3i+j+2Ac

and started looking for values of i, j, A and c satisfying this equation.

Analyzing the cases (1) where 3 divides b but not a; (2) where 3 divides a but not b;
and (3) where 3 divides a and b led to the solutions listed above.
They ended their submission with comments about the patterns they observed in

solving analogous equations of the form
N

a
+ b+

c

N
= c for various integral values of N .

Also solved by Charles Ashbacher, Marion, IA; Britton Stamper (student at
Saint George’s School), Spokane, WA, and the proposer.

• 4992: Proposed by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie, San
Angelo, TX.

A closed circular cone has integral values for its height and base radius. Find all
possible values for its dimensions if its volume V and its total area (including its circular
base) A satisfy V = 2A.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada.

1

3
πr2h = 2(πr2 + πr

√
r2 + h2) or

rh = 6r + 6
√
r2 + h2.

Squaring and simplifying gives r2 = 36
h

h− 12
. Therefore,

h

h− 12
is a square, and

h

h− 12
∈ {1, 4, 9, 16, . . .}. Note that f(h) =

h

h− 12
is a decreasing function of h for

h > 12 and that h(16) = 4. Note also that f(13), f(14) and f(15) are not squares of
integers. Therefore (h, r) = (16, 24) is the only solution.

Also solved by Paul M.Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; Britton
Stamper (student at Saint George’s School), Spokane, WA; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4993: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real solutions of the equation

126x7 − 127x6 + 1 = 0.

Solution by N. J. Kuenzi, Oshkosh, WI.X
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Both 1 and 1/2 are easily seen to be positive rational roots of the given equation. So
(x− 1) and (2x− 1) are both factors of the polynomial 126x7 − 127x6 + 1. Factoring
yields

126x2 − 127x6 + 1 = (x− 1)(2x− 1)(63x5 + 31x4 + 15c3 + 7x2 + 3x+ 1).

The equation (63x5 + 31x4 + 15c3 + 7x2 + 3x+ 1) does not have any rational roots
(Rational Roots Theorem) nor any positive real roots (Descartes’ Rule of Signs).
Using numerical techniques one can find that −0.420834167 is the approximate value of
a real root.
The four other roots are complex with approximate values:

0.1956354060 + 0.4093830251i 0.1956354060− 0.4093830251i

−0.2312499936 + 0.3601917120i −0.2312499936− 0.3601917120i

So the real solutions of the equation 126x7− 127x6 +1 = 0 are 1, 1/2 and −0.420834167.

Also solved by Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayette,
IN; Charles McCracken, Dayton, OH; Boris Rays, Chesapeake, VA; David
Stone and John Hawkins (jointly), Statesboro GA, and the proposer.

• 4994: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be three nonzero complex numbers lying on the circle C = {z ∈ C : |z| = r}.
Prove that the roots of the equation az2 + bz + c = 0 lie in the ring shaped region

D =

{
z ∈ C :

1−
√
5

2
≤ |z| ≤ 1 +

√
5

2

}
.

Solution by Kee-Wai Lau, Hong Kong, China.

By rewriting the equation as az2 = −bz − c, we obtain

|a||z|2 = |az2| = |bz + c| ≤ |b||z|+ |c| or |z |2 − |z | − 1 ≤ 0

or

(
|z|+

√
5− 1

2

)(
|z| −

√
5 + 1

2

)
≤ 0 so that |z | ≤ 1 +

√
5

2
.

By rewriting the equation as c = −az2 − bz, we obtain

|c| = | − az2 − bz| ≤ |a||z|2 + |b||z| or |z |2 + |z | − 1 ≥ 0

or

(
|z|+

√
5 + 1

2

)(
|z| −

√
5− 1

2

)
≥ 0 so that |z | ≥

√
5− 1

2
.

This finishes the solution.

Also solved by Michael Brozinsky, Central Islip, NY; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie (jointly), San Angelo, TX; Russell
Euler and Jawad Sadek (jointly), Maryville, MO; Boris Rays, Chesapeake,
VA; José Hernández Santiago (student at UTM) Oaxaca, México; R. P.
Sealy, Sackville, New Brunswick, Canada; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.X
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• 4995: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India.

Let A be a triangular array ai,j where i = 1, 2, · · · , and j = 0, 1, 2, · · · , i. Let

a1,0 = 1, a1,1 = 2, and ai,0 = T (i+ 1)− 2 for i = 2, 3, 4, · · · ,

where T (i+ 1) = (i+ 1)(i+ 2)/2, the usual triangular numbers. Furthermore, let
ai,j+1 − ai,j = j + 1 for all j. Thus, the array will look like this:

1 2
4 5 7

8 9 11 14
13 14 16 19 23

19 20 22 25 29 34

Show that for every pair (i, j), 4ai,j + 9 is the sum of two perfect squares.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX.

If we allow T (0) = 0, then for i ≥ 1 and j = 0, 1, . . . , i, it’s clear from the definition of
ai,j that

ai,j = ai,0 + T (j)

= T (i+ 1)− 2 + T (j)

=
i2 + 3i− 2 + j2 + j

2
.

Therefore, for every pair (i, j),

4ai,j + 9 = 2
(
i2 + 3i− 2 + j2 + j

)
+ 9

= 2
(
i2 + 3i+ j2 + j

)
+ 5

= (i+ j + 2)2 + (i− j + 1)2 .

Solution 2 by Carl Libis, Kingston, RI.

For every pair (i, j), 4a(i, j) + 9 = (i− j + 1)2 + (i+ j + 2)2 since

4a(i, j) + 9 = 4

[
a(i, 0) +

j(j + 1)

2

]
+ 9 = 4

[
(i+ 1)(i+ 2)

2
− 2 +

j(j + 1)

2

]
+ 9

= 2(i+ 1)(i+ 2)− 8 + 2j(j + 1) + 9

= 2i2 + 6i+ 4 + 2j2 + 2j + 1

= (i− j + 1)2 + (i+ j + 2)2.

Also solved by Paul M. Harms, North Newton, KS; N. J. Kuenzi, Oshkosh,
WI; R. P. Sealy, Sackville, New Brunswick, Canada; David Stone and John
Hawkins (jointly), Statesboro GA; José Hernándz Santiago (student at
UTM), Oaxaca, México, and the proposers.X
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2008

• 5014: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with a = 100, b = 105, and with equal cevians AD and BE. Find
the perimeter of the triangle if AE · BD = CE · CD.

• 5015: Proposed by Kenneth Korbin, New York, NY.

Part I: Find the value of
10∑

x=1

Arcsin
( 4x2

4x4 + 1

)
.

Part II: Find the value of ∞∑

x=1

Arcsin
( 4x2

4x4 + 1

)
.

• 5016: Proposed by John Nord, Spokane, WA.

Locate a point (p, q) in the Cartesian plane with integral values, such that for any line
through (p, q) expressed in the general form ax + by = c, the coefficients a, b, c form an
arithmetic progression.

• 5017: Proposed by M.N. Deshpande, Nagpur, India.

Let ABC be a triangle such that each angle is less than 900. Show that

a

c · sinB
+

1
tanA

=
b

a · sinC
+

1
tanB

=
c

b · sin A
+

1
tanCX
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where a = l(BC), b = l(AC), and c = l(AB).

• 5018: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Write the polynomial x5020 + x1004 + 1 as a product of two polynomials with integer
coefficients.

• 5019: Michael Brozinsky, Central Islip, NY.

In a horse race with 10 horses the horse with the number one on its saddle is referred to
as the number one horse, and so on for the other numbers. The outcome of the race
showed the number one horse did not finish first, the number two horse did not finish
second, the number three horse did not finish third and the number four horse did not
finish fourth. However, the number five horse did finish fifth. How many possible orders
of finish are there for the ten horses assuming no ties?

Solutions

• 4996: Proposed by Kenneth Korbin, New York, NY.
Simplify:

N∑

i=1

(
N

i

)(
2i−1

)(
1 + 3N−i

)
.

Solution by José Hernández Santiago, (student, UTM, Oaxaca, México.)

N∑

i=1

(
N

i

)(
2i−1

)(
1 + 3N−i

)
=

N∑

i=1

(
N

i

)

2i−1 +
N∑

i=1

(
N

i

)

2i−1 · 3N−i

=
1
2

N∑

i=1

(
N

i

)

2i +
3N

2

N∑

i=1

(
N

i

)(2
3

)i

=
(1

2

)((
2 + 1

)N

− 1
)

+
(3N

2

)((2
3

+ 1
)N

− 1
)

=
3N − 1

2
+

3N

2

(5N − 3N

3N

)

=
(3N − 1)3N + 3N (5N − 3N )

2 · 3N

=
15N − 3N

2 · 3N

=
5N − 1

2

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky, CentralX
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Islip, NY; John Boncek, Montgomery, AL; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; José Luis
Dı́az-Barrero, Barcelona, Spain; Paul M. Harms, North Newton, KS; N. J.
Kuenzi, Oshkosh, WI; Kee-Wai Lau, Hong Kong, China; Carl Libis,
Kingston, RI; R. P. Sealy, Sackville, New Brunswick, Canada; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 4997: Proposed by Kenneth Korbin, New York, NY.
Three different triangles with integer-length sides all have the same perimeter P and all
have the same area K.
Find the dimensions of these triangles if K = 420.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly),
San Angelo, TX.

Let a, b, c be the sides of the triangle and, for convenience, assume that a ≤ b ≤ c. By
Heron’s Formula,

(420)2 =
(

a + b + c

2

) (
a + b− c

2

) (
a− b + c

2

) (−a + b + c

2

)
(1)

Since a, b, c are positive integers, it is easily demonstrated that the quantities
(a + b− c), (a− b + c), and (−a + b + c) are all odd or all even. By (1), it is clear that
in this case, they are all even. Therefore, there are positive integers x, y, z such that
a + b− c = 2x, a− b + c = 2y, and −a + b + c = 2z. Then, a = x + y, b = x + z,
c = y + z, a + b + c = 2 (x + y + z), and a ≤ b ≤ c implies that x ≤ y ≤ z. With this
substitution, (1) becomes

(420)2 = xyz (x + y + z) (2)

Since x ≤ y ≤ z < x + y + z, (2) implies that

x4 < xyz (x + y + z) = (420)2

and hence,
1 ≤ x ≤

⌊√
420

⌋
= 20,

where $m% denotes the greatest integer ≤ m. Therefore, the possible values of x are
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20 (since x must also be a factor of (420)2).
Further, for each x, (2) implies that

y3 < yz (x + y + z) =
(420)2

x
,

i.e.,

x ≤ y ≤

 3

√
(420)2

x

 ,

(and y is a factor of (420)2x). Once we have assigned values to x and y, (2) becomes

z (x + y + z) =
(420)2

xy
, (3)

which is a quadratic equation in z. If (3) yields an integral solution ≥ y, we have found
a viable solution for x, y, z and hence, for a, b, c also. By finding all such solutions, weX
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can find all Heronian triangles (triangles with integral sides and integral area) whose
area is 420. Then, we must find three of these with the same perimeter to complete our
solution.
The following two cases illustrate the typical steps encountered in this approach.
Case 1. If x = 1 and y = 18, (3) becomes

z2 + 19z − 9800 = 0.

Since this has no integral solutions, this case does not lead to feasible values for a, b, c.
Case 2. If x = 2 and y = 24, (3) becomes

z2 + 26z − 3675 = 0,

which has z = 49 as its only positive integral solution. These values of x, y, z yield
a = 26, b = 51, c = 73, and P = 150.
The results of our approach are summarized in the following table.

x y z a b c P
1 6 168 7 169 174 350
1 14 105 15 106 119 240
1 20 84 21 85 104 210
1 25 72 26 73 97 196
1 40 49 41 50 89 180
2 24 49 26 51 73 150
2 35 35 37 37 70 144
4 21 35 25 39 56 120
5 9 56 14 61 65 140
5 21 30 26 35 51 112
6 15 35 21 41 50 112
8 21 21 29 29 42 100
9 20 20 29 29 40 98
10 15 24 25 34 39 98
12 12 25 24 37 37 98

Now, it is obvious that the last three entires constitute the solution of this problem.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North
Newton, KS; David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 4998: Proposed by Jyoti P. Shiwalkar & M.N. Deshpande, Nagpur, India.
Let A = [ai,j ], i = 1, 2, · · · and j = 1, 2, · · · , i be a triangular array satisfying the
following conditions:

1) ai,1 = L(i) for all i
2) ai,i = i for all i
3) ai,j = ai−1,j + ai−2,j + ai−1,j−1 − ai−2,j−1 for 2 ≤ j ≤ (i − 1 ).

If T (i) =
i∑

j=1

ai,j for all i ≥ 2, then find a closed form for T (i), where L(i) are the Lucas

numbers, L(1) = 1, L(2) = 3, and L(i) = L(i− 1) + L(i− 2) for i ≥ 3.X
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Solution by Paul M. Harms, North Newton, KS.

Note that ai−2,j is not in the triangular array when j = i− 1, so we set ai−2,i−1 = 0.
From Lucas numbers ai,1 = ai−1,1 + ai−2,1 for i > 2. For i > 2,

T (i) = ai,1 + ai,2 + · · · + ai,i−1 + i

= (ai−1,1 + ai−2,1) + (ai−1,2 + ai−2,2 + ai−1,1 − ai−2,1) + · · ·
+(ai−1,i−1 + ai−2,i−1 + ai−1,i−2 − ai−2,i−2) + i.

Therefore we have

(ai−1,i−1 + ai−2,i−1 + ai−1,i−2 − ai−2,i−2) = (i− 1) + 0 + ai−1,i−2 − (i− 2).

Note that in T (i) each term of row (i− 2) appears twice and subtracts out and each
term of row (i− 1) except for the last term (i− 1), is added to itself. The term (i− 1)
appears once. If we write the last term, i, of T (i) as i = (i− 1) + 1, then
T (i) = 2T (i− 1) + 1. The values of the row sums are:

T (1) = 1
T (2) = 5
T (3) = 2(5) + 1
T (4) = 2(2(5) + 1) + 1 = 22(5) + 2 + 1

T (5) = 2
(

2[2(5) + 1] + 1
)

+ 1 = 23(5) + 22 + 2 + 1, and in general

T (i) = 2i−2(5) + (2i−3 + 2i−4 + · · · + 1)

= 2i−2(5) + (2i−2 − 1)
= 2i−2(6)− 1
= 2i−1(3) for i ≥ 2.

Also solved by Carl Libis, Kingston, RI; N. J. Kuenzi, Oshkosh, WI; R. P.
Sealy, Sackville, New Brunswick, Canada; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 4999: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Find all real triplets (x, y, z) such that

x + y + z = 2
2x+y2

+ 2y+z2
+ 2z+x2

= 6 9
√

2

Solution by David E. Manes, Oneonta, NY.

The only real solution is (x, y, z) = (
2
3
,
2
3
,
2
3
). Note that these values do satisfy each of

the equations.
By the Arithmetic-Geometric Mean Inequality,

6 9
√

2 = 2x+y2
+ 2y+z2

+ 2z+x2
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≥ 3 3
√

2x+y+z · 2x2+y2+z2 = 2 · 22/3 3
√

2x2+y2+z2 .

Therefore, 2x2+y2+z2 ≤ 24/3 so that x2 + y2 + z2 ≤ 4/3 (1). Note that

4 = (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx), so that

x2 + y2 + z2 = 4− 2(xy + yz + zx).

Substituting in (1) yields the inequality xy + yz + zx ≥ 4
3
. From

(x− y)2 + (y− z)2 + (z − x)2 ≥ 0 with equality if and only if x = y = z, one now obtains
the inequalities

4
3
≥ x2 + y2 + z2 ≥ xy + yz + zx ≥ 4

3
.

Hence

x2 + y2 + z2 = xy + yz + zx =
4
3

(x− y)2 + (y − z)2 + (z − x)2 = 0, and x = y = z =
2
3
.

.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie and Karl
Havlak (jointly), San Angelo, TX; Michael Brozinsky, Central Islip, NY;
Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Math Dept. U. of Rome,
Italy; Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposers.

• 5000: Proposed by Richard L. Francis, Cape Girardeau, MO.

Of all the right triangles inscribed in the unit circle, which has the Morley triangle of
greatest area?

Solution by Ken Korbin, New York, NY.

Given 'ABC with circumradius R = 1 and with A + B = C = 90o.
The side x of the Morley triangle is given by the formula

x = 8 · R · sin(
A

3
) · sin(

B

3
) · sin(

C

3
)

= 8 · 1 · sin(
A

3
) · sin(

B

3
) · 1

2

= 4 sin(
A

3
) sin(

B

3
).

x will have a maximum value if

A

3
=

B

3
=

45o

3
= 15o.

Then,

x = 4 sin2(15o)X
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= 4
(1− cos 30o

2

)

= 2− 2 cos 30o

= 2−
√

3.

The area of this Morley triangle is

1
2

· (2−
√

3)2 · sin 60o

=
1
2
(7− 4

√
3) ·

√
3

2
=

7
√

3− 12
4

.

Comment by David Stone and John Hawkins: “It may be the maximum, but it is
pretty small!”

Also solved by Michael Brozinsky, Central Islip, NY; Kee-Wai Lau, Hong
Kong, China; David Stone an John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 5001: Proposed by Ovidiu Furdui, Toledo, OH.

Evaluate:

∫ ∞

0
ln2

(
x2

x2 + 3x + 2

)

dx.

Solution by Kee-Wai Lau, Hong Kong, China.

We show that
∫ ∞

0
ln2

(
x2

x2 + 3x + 2

)
dx = 2 ln2 2 +

11π2

6
.

Denote the integral by I. Replacing x by 1/x, we obtain

I =
∫ ∞

0

ln2
(

(x + 1)(2x + 1)
)

x2
dx =

∫ ∞

0

ln2(x + 1)
x2

dx +
∫ ∞

0

ln2(2x + 1)
x2

dx

+2
∫ ∞

0

ln(x + 1) ln(2x + 1)
x

dx

= I1 + I2 + 2I3, say.

Integrating by parts, we obtain

I1 =
∫ ∞

0
ln2(x + 1)d(

−1
x

) = 2
∫ ∞

0

ln(x + 1)
x(x + 1)

dx = 2
∫ ∞

1

lnx

x(x− 1)
dx.

Replacing x by /(1− x),we obtain I1 = −2
∫ 1

0

ln(1− x)
x

dx = 2
∞∑

n=1

1
n2

=
π2

3
.

Replacing x by x/2 in I2, we see that I2 = 2I1 =
2π2

3
. Next note that

I3 =
∫ ∞

0
ln(x+1) ln(2x+1)d(

−1
x

) =
∫ ∞

0

ln(2x + 1)
x(x + 1)

dx+2
∫ ∞

0

ln(x + 1)
x(2x + 1)

dx = J1+2J2, say.X
ia
ng
’s
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Replacing x by x/2, then x by x− 1 and then x by 1/x, we have

J1 = 2
∫ ∞

0

ln(x + 1)
x(x + 2)

dx = 2
∫ ∞

1

lnx

(x− 1)(x + 1)
dx

= −2
∫ 1

0

lnx

(1− x)(1 + x)
dx = −

∫ 1

0
lnx

( 1
1− x

+
1

1 + x

)
dx.

Integrating by parts, we have,

J1 =
∫ 1

0

− ln(1− x) + ln(1 + x)
x

dx =
∞∑

n=1

1 + (−1)n−1

n2
=

π2

6
+

π2

12
=

π2

4
.

We now evaluate J2. Replacing x + 1 by x and then x by 1/x, we have

J2 =
∫ ∞

1

lnx

(x− 1)(2x− 1)
dx = −

∫ 1

0

lnx

(1− x)(2− x)
dx = −

∫ 1

0

lnx

1− x
+

∫ 1

0

lnx

2− x
dx =

π2

6
+K, say.

Replacing x by 1− x

K =
∫ 1

0

ln(1− x)
1 + x

dx =
∫ 1

0

ln(1 + x)
1 + x

dx +
∫ 1

0

ln(1− x)− ln(1 + x)
1 + x

dx

=
1
2

ln2 2 +
∫ 1

0

ln
(1− x

1 + x

)

1 + x
dx.

By putting y =
1− x

1 + x
, we see that the last integral reduces to

∫ 1

0

ln y

1 + y
dy = −π2

12
.

Hence, K =
1
2

ln2 2− π2

12
, J2 =

1
2

ln2 2 +
π2

12
, I3 = ln2 2 +

5π2

12
and finally

I = I1 + I2 + 2I3 =
π2

3
+

2π2

3
+ 2

(
ln2 2 +

5π2

12

)
= 2 ln2 2 +

11π2

6
as desired.

Also solved by Paolo Perfetti, Math. Dept., U. of Rome, Italy; Worapol
Rattanapan (student at Montfort College (high school)), Chiang Mai,
Thailand, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 15, 2008

• 5020: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that
{
x7 − 13y = 21
13x− y7 = 21

• 5021: Proposed by Kenneth Korbin, New York, NY.

Given
x+ x2

1− 34x+ x2
= x+ 35x2 + · · ·+ anx

n + · · ·

Find an explicit formula for an.

• 5022: Proposed by Michael Brozinsky, Central Islip, NY .

Show that

sin

(
x

3

)
sin

(
π + x

3

)
sin

(
2π + x

3

)

is proportional to sin(x).

• 5023: Proposed by M.N. Deshpande, Nagpur, India.

Let A1A2A3 · · ·An be a regular n-gon (n ≥ 4) whose sides are of unit length. From Ak

draw Lk parallel to Ak+1Ak+2 and let Lk meet Lk+1 at Tk. Then we have a “necklace”
of congruent isosceles triangles bordering A1A2A3 · · ·An on the inside boundary. Find
the total area of this necklace of triangles.X
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• 5024: Proposed by José Luis Dı́az-Barrero and Josep Rubió-Massegú, Barcelona, Spain.

Find all real solutions to the equation

√
1 +
√
1− x− 2

√
1−
√
1− x = 4

√
x.

• 5025: Ovidiu Furdui, Toledo, OH.

Calculate the double integral ∫ 1

0

∫ 1

0
{x− y}dxdy,

where {a} = a− [a] denotes the fractional part of a.

Solutions

• 5002: Proposed by Kenneth Korbin, New York, NY.

A convex hexagon with sides 3x, 3x, 3x, 5x, 5x and 5x is inscribed in a unit circle. Find
the value of x.

Solution by David E. Manes, Oneonta, NY.

The value of x is

√
3

7
.

Note that each inscribed side of the hexagon subtends an angle at the center of the
circle that is independent of its position in the circle The sides are subject to the
constraint that the sum of the angles subtended at the center equals 360o. Therefore the
sides of the hexagon can be permuted from 3x, 3x, 3x, 5x, 5x, 5x to 3x, 5x, 3x, 5x, 3x, 5x.
In problem 4974 : (December 2007, Korbin, Lau) it is shown that the circumradius r is
then given by

r =

√
(3x)2 + (5x)2 + (3x)(5x)

3
.

With r = 1, one obtains x =

√
3

7
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; John Boncek, Montgomery, AL; M.N.
Deshpande, Nagpur, India; José Luis Dı́az-Barrero, Barcelona, Spain; Grant
Evans (student at St George’s School), Spokane, WA; Paul M. Harms, North
Newton, KS; Minerva P. Harwell (student at Auburn University),
Montgomery, AL; Kee-Wai Lau, Hong Kong, China; Peter E. Liley,
Lafayette, IN; Amanda Miller (student at St. George’s School), Spokane,
WA; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5003: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that

3
√
x+

√
x2 − 1 +

3
√
x−

√
x2 − 1 =

7

2
andX
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3

√
y +

√
y2 − 1 +

3

√
y −

√
y2 − 1 =

√
10

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX.

Let A =
3
√
x+
√
x2 − 1 and B =

3
√
x−
√
x2 − 1. Note that

A3 +B3 = 2x and

AB = 1.

Since A+B =
7

2
,

343

8
= (A+B)3

= A3 + 3A2B + 3AB2 +B3

= A3 +B3 + 3AB(A+B)

= 2x+
21

2
.

Thus, x =
259

16
.

Similarly,
2y + 3

√
10 = 10

√
10

and, thus, y =
7
√
10

2
.

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; M.N. Deshpande, Nagpur, India; José Luis Dı́az-Barrero, Barcelona,
Spain; Grant Evans (student at St. George’s School), Spokane, WA; Paul M.
Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Peter E.
Liley, Lafayette, IN; David E. Manes, Oneonta, NY; Amanda Miller (student
at St. George’s School), Spokane, WA; John Nord, Spokane, WA; Paolo
Perfetti (Department of Mathematics, University of Rome), Italy; Boris
Rays, Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5004: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be nonnegative real numbers. Prove that

a

1 + a
+

b

1 + b
+

c

1 + c
≥

√
ab

1 + a+ b
+

√
bc

1 + b+ c
+

√
ac

1 + c+ a

Solution by John Boncek, Montgomery, AL.

We use the arithmetic-geometric inequality: If x, y ≥ 0, then x+ y ≥ 2
√
xy. Now

a

1 + a
≥ a

1 + a+ b
, and

b

1 + b
≥ b

1 + a+ b
, soX
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a

1 + a
+

b

1 + b
≥ a+ b

1 + a+ b
≥ 2

√
ab

1 + a+ b
.

Similarly,
a

1 + a
+

c

1 + c
≥ 2

√
ac

1 + a+ c
, and

b

1 + b
+

c

1 + c
≥ 2

√
bc

1 + b+ c
.

Summing up all three inequalities, we obtain

2

(
a

1 + a
+

b

1 + b
+

c

1 + c

)
≥ 2

√
ab

1 + a+ b
+

2
√
ac

1 + a+ c
+

2
√
bc

1 + b+ c
.

Divide both sides of the inequality by 2 to obtain the result.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; M.N. Deshpande, Nagpur, India; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes,
Oneonta, NY; Paolo Perfetti (Department of Mathematics, University of
Rome), Italy; Boris Rays, Chesapeake, VA, and the proposers.

• 5005: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers such that abc = 1. Prove that

√
3

2

(
a+ b+ c

)1/2

≥ 1

a+ b
+

1

b+ c
+

1

c+ a
.

Solution 1 by Kee-Wai Lau, Hong Kong, China.

Since a+ b ≥ 2
√
ab =

2√
c
and so on, and by the Cauchy-Schwarz inequality, we have

1

a+ b
+

1

b+ c
+

1

c+ a

≤
√
c+
√
a+
√
b

2

=
1

2

(
(1)
√
a+ (1)

√
b+ (1)

√
c

)

≤ 1

2

√
1 + 1 + 1

√
a+ b+ c

=

√
3

2

(
a+ b+ c)1/2

as required.

Solution 2 by Charles McCracken, Dayton, OH.

Suppose a=b=c=1. Then the original inequality reduces to
3

2
≥ 3

2
which is certainly

true.X
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ng
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Let L represent the left side of the original inequality and let R represent the right side.
Allow a, b, and c to vary and take partial derivatives.

∂L

∂a
=

√
3

2
· 1
2

(
a+ b+ c

)−1/2

> 0. Similarly,
∂L

∂b
> 0 and

∂L

∂c
> 0.

∂R

∂a
= −(a+ b)−2 − c(a+ b)−2 < 0. Similarly,

∂R

∂b
< 0 and

∂R

∂c
< 0.

So any change in a, b or c results in an increase in L and a decrease in R so that L is
always greater than R.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Paolo Perfetti (Department of Mathematics,
University of Rome), Italy, and the proposer.

• 5006: Proposed by Ovidiu Furdui, Toledo, OH.

Find the sum ∞∑

k=2

(−1)k ln
(
1− 1

k2

)
.

Solution 1 by Paul M. Harms, North Newton, KS.

Using ln

(
1− 1

k2

)
= ln

(
k − 1

k

)
+ ln

(
k + 1

k

)
, the summation is

(
ln

1

2
+ ln

3

2

)
−
(
ln

2

3
+ ln

4

3

)
+

(
ln

3

4
+ ln

5

4

)
− ln

(
4

5
+ ln

6

5

)
+ · · ·

= ln

(
1

2

)
+ ln

(
3

2

)2

+ ln

(
3

4

)2

+ ln

(
5

4

)2

+ · · ·

= ln

(
1

2

)
+ 2

[
ln

(
3

2

)
+ ln

(
3

4

)
+ ln

(
5

4

)
+ ln

(
5

6

)
+ · · ·

]

= ln

(
1

2

)
+ 2 ln

(
3

2

)(
3

4

)(
5

4

)(
5

6

)(
7

6

)
· · · .

Wallis’ product for
π

2
is

π

2
=

(
2

1

)(
2

3

)(
4

3

)(
4

5

)(
6

5

)(
6

7

)
· · · .

Dividing both sides by 2 and taking the reciprocal yields

4

π
=

(
3

2

)(
3

4

)(
5

4

)(
5

6

)(
7

6

)(
7

8

)
· · · .

The summation in the problem is then

ln

(
1

2

)
+ 2 ln

(
4

π

)
= ln

[(
1

2

)(
16

π2

)]
= ln

(
8

π2

)
.

Solution 2 by Kee-Wai Lau, Hong Kong, China.X
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It can be proved readily by induction that for positive intergers n,

2n∑

k=2

(−1)k ln
(
1− 1

k2

)
= 4

(
ln((2n)!)− 2 ln(n!)

)
+ lnn+ ln(2n+ 1)− 2(4n− 1) ln 2.

By using the Stirling approximation ln(n!) = n lnn− n+
1

2
ln(2πn) +O

(
1

n

)
as n→∞,

we obtain

ln((2n)!)− 2 ln(n!) = 2n ln 2− lnn

2
− lnπ

2
+O

(
1

n

)
.

It follows that

2n∑

k=2

(−1)k ln
(
1− 1

k2

)
= 3 ln 2− 2 lnπ + ln

(
1 +

1

2n

)
+O

(
1

n

)
= 3 ln 2− 2 lnπ +O

(
1

n

)

and that
2n+1∑

k=2

(−1)k ln
(
1− 1

k2

)
= 3 ln 2− 2 lnπ +O

(
1

n

)
as well.

This shows that the sum of the problem equal 3 ln 2− 2 lnπ = ln

(
8

π2

)
.

Also solved by Brian D. Beasley, Clinton, SC; Worapol Rattanapan (student
at Montfort College (high school)), Chiang Mai, Thailand; Paolo Perfetti
(Department of Mathematics, University of Rome), Italy; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5007: Richard L. Francis, Cape Girardeau, MO.

Is the centroid of a triangle the same as the centroid of its Morley triangle?

Solution by Kenneth Korbin, New York, NY.

The centroids are not the same unless the triangle is equilateral.

For example, the isosceles right triangle with vertices at (−6, 0), (6, 0) and (0, 6) has its
centroid at (0, 2).

Its Morley triangle has verticies at (0, 12− 6
√
3), (−6 + 3

√
3, 3), and (6− 3

√
3, 3) and

has its centroid at (0, 6− 2
√
3).

Also solved by Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2008

• 5026: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P has coordinates (x, 3). Find the value of x if

area 4PAD+ area 4PBC = area 4PAB+ area 4PCD.

• 5027: Proposed by Kenneth Korbin, New York, NY.

Find the x and y intercepts of

y = x7 + x6 + x4 + x3 + 1.

• 5028: Proposed by Michael Brozinsky, Central Islip, NY .

If the ratio of the area of the square inscribed in an isosceles triangle with one side on the
base to the area of the triangle uniquely determine the base angles, find the base angles.

• 5029: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x > 1 be a non-integer number. Prove that

(
x+ {x}

[x]
− [x]

x+ {x}

)
+

(
x+ [x]

{x} − {x}
x+ [x]

)
>

9

2
,

where [x] and {x} represents the entire and fractional part of x.X
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• 5030: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let A1, A2, · · · , An ∈M2(C), (n ≥ 2 ), be the solutions of the equation Xn =

(
2 1
6 3

)
.

Prove that
n∑

k=1

Tr(Ak) = 0.

• 5031: Ovidiu Furdui, Toledo, OH.

Let x be a real number. Find the sum

∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solutions

• 5008: Proposed by Kenneth Korbin, New York, NY.

Given isosceles trapezoid ABCD with 6 ABD = 60o, and with legs BC = AD = 31.

Find the perimeter of the trapezoid if each of the bases has positive integer length with
AB > CD.

Solution by David C. Wilson, Winston-Salem, N.C.

Let the side lengths of AB= x, BC=31, CD= y, DA=31, and BD=z.
By the law of cosines

312 = x2 + z2 − 2xz cos 60o and
312 = y2 + z2 − 2yz cos 60o =⇒
961 = z2 + x2 − xz and
961 = y2 + z2 − yz =⇒
0 = (y2 − x2)− yz + xz =⇒
0 = (y − x)(y + x)− z(y − x) = (y − x)(y + x− z) =⇒

y − x = 0 or y + x− z = 0.

But AB > CD =⇒ x > y =⇒ y − x 6= 0. Thus, y + x− z = 0 =⇒ z = x+ y. Thus,

961 = (x+ y)2 + x2 − x(x+ y) = x2 + 2xy + y2 + x2 − x2 − xy = x2 + xy + y2.

Consider x = 30, 29, · · · , 18. After trial and error with a calculator, when x = 24 then
y = 11 =⇒ z = 35 and these check. Thus, the perimeter of ABCD is 35 + 31 + 31 = 97.

Also solved by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Matt DeLong, Upland, IN; Lauren Christenson,
Taylor Brennan, Ross Hayden, and Meaghan Haynes (jointly; students at
Taylor University), Upland, IN; Charles McCracken, Dayton, OH; Amanda
Miller (student, St.George’s School), Spokane, WA; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5009: Proposed by Kenneth Korbin, New York, NY.X
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Given equilateral triangle ABC with a cevian CD such that AD and BD have integer
lengths. Find the side of the triangle AB if CD = 1729 and if (AB, 1729) = 1.

Solution by David Stone and John Hawkins, Statesboro, GA.

The answer: AB = 1775, 1840, 1961, 1984 .

Let x =AD and y =BD, with s = x+ y = the side length AB. Applying the Law of
cosines in each “subtriangle,” we have

17292 = s2 + x2 − 2sx cos
π

3
= s2 + x2 − sx and

17292 = s2 + y2 − 2sy cos
π

3
= s2 + y2 − sy.

After adding equations and doing some algebra, we obtain the equation

y2 + xy + x2 = 17292.

Solving for y by the Quadratic Formula, we obtain

y =
−x±

√
4 · 17292 − 3x2

2
=
−x± z

2

where z =
√
4 · 17292 − 3x2 must be an integer.

Because y must be positive, we have to choose y =
−x+ z

2
.

Now we let Excel calculate, trying x = 1, 2, · · · , 1729. We have 13 “solutions”, but only
four of them have s = AB relatively prime to 1729; hence only equilateral triangles of
side length AB = 1775, 1840, 1961, and 1984 admit the cevian described in the problem.




x z =
√
345862 − 3x2 y = (−x+ z)/2 s = x+ y gcd(1729, s)

96 3454 1679 1775 1
209 3439 1615 1824 19
249 3431 1591 1840 1
299 3419 1560 1859 13
361 3401 1520 1881 19
455 3367 1456 1911 91
504 3346 1421 1925 7
651 3269 1309 1960 7
656 3266 1305 1961 1
741 3211 1235 1976 247
799 3169 1185 1984 1
845 3133 1144 1989 13
931 3059 1064 1995 133




Note that we could let x run further, but the problem is symmetric in x and y, so we’d
just recover these same solutions with x and y interchanged.

Comment by Kenneth Korbin, the proposer.

In the problem CD = (7)(13)(19) and there were exactly 4 possible answers. If CD
would have been equal to (7)(13)(19)(31)then there would have been exactly 8 possible
solutions.X
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Similarly, there are exactly 4 primitive Pythagorean triangles with hypotenuse
(5)(13)(17) and there exactly 8 primitive Pythagorean triangles with hypotenuse
(5)(13)(17)(29). And so on.

Also solved by Charles McCracken, Dayton, OH; David E. Manes, Oneonta,
NY; David C. Wilson, Winston-Salem, NC, and the proposer.

• 5010: Proposed by José Gibergans-Báguena and José Luis Dı́az-Barrero, Barcelona,
Spain.

Let α, β, and γ be real numbers such that 0 < α ≤ β ≤ γ < π/2. Prove that

sin 2α+ sin 2β + sin 2γ

(sinα+ sinβ + sin γ)(cosα+ cosβ + cos γ)
≤ 2

3
.

Solution by Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy.

Proof After some simple simplification the inequality is

sin 2α+ sin 2β + sin 2γ ≤ sin(α+ β) + sin(β + γ) + sin(γ + α)

The concavity of sin(x) in the interval [0, π] allows us to write
sin(x+ y) ≥ (sin(2x) + sin(2y))/2 thus

sin(α+ β) + sin(β + γ) + sin(γ + α) ≥ sin 2α+ sin 2β + sin 2γ

concluding the proof.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris Rays,
Chesapeak, VA, and the proposers.

• 5011: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let {an}n≥0 be the sequence defined by a0 = a1 = 2 and for n ≥ 2, an = 2an−1−
1

2
an−2.

Prove that
2pap+q + aq−p = 2papaq

where p ≤ q are nonnegative integers.

Solution 1 by R. P. Sealy, Sackville, New Brunswick, Canada.

Solving the characteristic equation

r2 − 2r +
1

2
= 0

and using the intitial conditions, we obtain the solution

an =

(
2 +
√
2

2

)n

+

(
2−
√
2

2

)n

.

Note that

2pap+q =
(2 +

√
2)p+q + (2−

√
2)p+q

2q
andX
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aq−p =
(2 +

√
2)q−p + (2−

√
2)q−p

2q−p
while

2papaq =
(2 +

√
2)p+q + (2−

√
2)p+q + 2p[(2 +

√
2)q−p + (2−

√
2)q−p]

2q

= 2pap+q + aq−p.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

By induction, we obtain readily that for n ≥ 0,

an =

(
2 +
√
2

2

)n

+

(
2−
√
2

2

)n

.

Hence

apaq =

((
2 +
√
2

2

)p

+

(
2−
√
2

2

)p)((2 +
√
2

2

)q

+

(
2−
√
2

2

)q)

=

((
2 +
√
2

2

)p+q

+

(
2−
√
2

2

)p+q)
+

(
2 +
√
2

2

)p(2−
√
2

2

)q

+

(
2−
√
2

2

)p(2 +
√
2

2

)q

= ap+q +

(
2 +
√
2

2

)p(2−
√
2

2

)q((2−
√
2

2

)q−p

+

(
2 +
√
2

2

)q)

= ap+q +
1

2p
aq−p,

and the identity of the problem follows.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; Jose Hernández Santiago
(student, UTM), Oaxaca, México; Boris Rays, Chesapeake, VA; David Stone
and John Hawkins (jointly), Statesboro, GA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5012: Richard L. Francis, Cape Girardeau, MO.

Is the incenter of a triangle the same as the incenter of its Morley triangle?

Solution 1 by Kenneth Korbin, New York, NY.

The incenters are not the same unless the triangle is equilateral. For example, the
isosceles right triangle with vertices at (−6, 0), (6, 0) and (0, 6) has its incenter at
(0, 6
√
2− 6).

Its Morely triangle has vertices at (0, 12− 6
√
3), (−6 + 3

√
3, 3), and (6− 3

√
3, 3) and has

its incenter at (0, 6− 2
√
3).

Solution 2 by Kee-Wai Lau, Hong-Kong, China.

We show that the incenter I of a triangle ABC is the same as the incenter IM of its
Morley triangle if and only if ABC is equilateral.X
ia
ng
’s
T
ex
m
at
h



In homogeneous trilinear coordinates, I is 1 : 1 : 1 and IM is

cos

(
A

3

)
+2 cos

(
B

3

)
cos

(
C

3

)
: cos

(
B

3

)
+2 cos

(
C

3

)
cos

(
A

3

)
: cos

(
C

3

)
+2 cos

(
A

3

)
cos

(
B

3

)
.

Clearly if ABC is equilateral, then I = IM . Now suppose that I = IM so that

cos

(
A

3

)
+ 2 cos

(
B

3

)
cos

(
C

3

)
= cos

(
B

3

)
+ 2 cos

(
C

3

)
cos

(
A

3

)
(1)

cos

(
B

3

)
+ 2 cos

(
C

3

)
cos

(
A

3

)
= cos

(
C

3

)
+ 2 cos

(
A

3

)
cos

(
B

3

)
. (2)

From (1) we obtain

(
cos

(
A

3

)
− cos

(
B

3

))(
1− 2 cos

(
C

3

))
= 0.

Since 0 < C < π, so

1− 2 cos

(
C

3

)
< 0.

Thus,

cos

(
A

3

)
= cos

(
B

3

)
or A = B.

Similarly from (2) we obtain B = C. It follows that ABC is equilateral and this
completes the solution.

Also solved by David E. Manes, Oneonta, NY, and the proposer.

• 5013: Proposed by Ovidiu Furdui, Toledo, OH.

Let k ≥ 2 be a natural number. Find the sum

∑

n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
.

Solution by Kee-Wai Lau, Hong Kong, China.

For positive integers M1,M2, · · · ,Mk, we have

M1∑

n1=1

M2∑

n2=1

· · ·
Mk∑

nk=1

(−1)n1+n2+···+nk

n1 + n2 · · ·+ nk

=
M1∑

n1=1

M2∑

n2=1

· · ·
Mk∑

nk=1

(−1)n1+n2+···+nk

∫ 1

0
xn1+n2+···+nk−1dx

=

∫ 1

0

( M1∑

n1=1

(−1)n1xn1

)( M2∑

n2=1

(−1)n2xn2

)
· · ·
( Mk∑

nk=1

(−1)nkxnk

)
x−1dx

=

∫ 1

0

(−x(1− (−x)M1)

1 + x

)(−x(1− (−x)M2)

1 + x

)(−x(1− (−x)Mk)

1 + x

)
x−1dxX
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= (−1)k
∫ 1

0

xk−1(1− (−x)M1)(1− (−x)M2) · · · (1− (−x)Mk))

(1 + x)k
dx

= (−1)k
∫ 1

0

xk−1

(1 + x)k
dx+O

(∫ 1

0
xM1 + xM2 + · · ·+ xMk

)
dx

= (−1)k
∫ 1

0

xk−1

(1 + x)k
dx+O

(
1

M1
+

1

M2
+ · · ·+ 1

Mk

)

as M1,M2, · · · ,Mk tend to infinity. Here the constants implied by the O′s depend at
most on k.
It follows that the sum of the problem equals

(−1)k
∫ 1

0

xk−1

1 + x)k
dx = (−1)kIk, say.

Integrating by parts, we have for k ≥ 3,

Ik =
1

1− k

∫ 1

0
xk−1d((1 + x)1−k)

=
−1

(k − 1)2k−1
+ Ik−1.

Since I2 = ln 2− 1

2
, we obtain readily by induction that for k ≥ 2.

Ik = ln 2−
k∑

j=2

1

(j − 1)2j−1
.

we now conclude that for k ≥ 2,

∑

n1,n2,···,nk≥1

(−1)n1+n2+···+nk

n1 + n2 + · · ·+ nk
= (−1)k

(
ln 2−

k−1∑

j=1

1

j(2j)

)
.

Also solved by Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy; Paul M. Harms, North Newton, KS; Boris Rays,
Chesapeake, VA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Proposals are always welcomed. Please observe the following guidelines
when submitting proposals or solutions:

1. Proposals and solutions must be legible and should appear on separate sheets, each indicat-
ing the name and address of the sender. Drawings must be suitable for reproduction. Proposals
should be accompanied by solutions. An asterisk (*) indicates that neither the proposer nor
the editor has supplied a solution.

2. Send submittals to: Ted Eisenberg, Department of Mathematics, Ben-Gurion University,
Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions
can be sent e-mail to: <eisen@math.bgu.ac.il> or to <eisenbt@013.net>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2009

• 5032: Proposed by Kenneth Korbin, New York, NY.

Given positive acute angles A,B,C such that

tanA · tanB + tanB · tanC + tanC · tanA = 1.

Find the value of
sinA

cosB · cosC +
sinB

cosA · cosC +
sinC

cosA · cosB .

• 5033: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P is on side AB and point Q is on side CD. Find the coordinates of P and Q if
area 4PCD = area 4QAB = 1

2area quadrilateral ABCD.

• 5034: Proposed by Roger Izard, Dallas, TX.

In rectangle MDCB, MB ⊥MD. F is the midpoint of BC, and points N,E and G lie
on line segments DC,DM , and MB respectively, such that NC = GB. Let the area of
quadrilateral MGFC be A1 and let the area of quadrilateral MGFE be A2. Determine
the area of quadrilateral EDNF in terms of A1 and A2.

• 5035: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers. Prove that

(aabbcc)2(a−(b+c) + b−(c+a) + c−(a+b))3 ≥ 27.X
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• 5036: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all triples (x, y, z) of nonnegative numbers such that

{
x2 + y2 + z2 = 1
3x + 3y + 3z = 5

• 5037: Ovidiu Furdui, Toledo, OH.

Let k, p be natural numbers. Prove that

1k + 3k + 5k + · · ·+ (2n+ 1)k = (1 + 3 + · · ·+ (2n+ 1))p

for all n ≥ 1 if and only if k = p = 1.

Solutions

• 5014: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with a = 100, b = 105, and with equal cevians AD and BE. Find
the perimeter of the triangle if AE ·BD = CE · CD.

Solution by David Stone and John Hawkins, Statesboro, GA.

The solution to this problem is more complex than expected. There are infinitely many
triangles satisfying the given conditions, governed in a sense by two types of degeneracy.
The nicest of these solutions is a right triangle with integer sides, dictated by the given
data: 100 = 5(20) and 105 = 5(21) and (20, 21, 29) is a Pythagorean triple.

One type of degeneracy is the usual: if AB = 5 or AB = 205, we have a degenerate
triangle which can be shown to satisfy the conditions of the problem.

The other type of degeneracy is problem specific: when neither cevian intersects the
interior of its targeted side, but lies along a side of the triangle. In these two situations,
the problem’s condition are also met.

Let x = length of CE so 0 ≤ x ≤ 105. The following table summarizes our results.





x = CE cos(C) C AB BD Perimeter AD = BE note

0 21
40 cos−1

(
21
40

)
100 0 305 100 1

21 194
350 cos−1

(
194
350

) √
9385 20 301.88

√
8113 2

1985
41 1 0 5 1900

41 210 2105
41 3

excluded values ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2205
41 −1 180o 205 2100

41 410 6305
41 3

105
41 (
√
178081− 400) 0 90o 145 ≈ 53.65 350 ≈ 114.775 4

105 10
21 cos−1

(
10
21

)
105 100 310 105 5
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Notes:

1. Cevian BE is side BC; Cevian AD is side AB. 2. A “nice” value for x. 3.
Degenerate triangle. 4. Right triangle. 5. Cevian BE is side AB; Cevian AD is side
AC.

In short, the perimeter assumes all values in [210, 305] ∪ [310, 410].

Now we support these assertions. Consider 4ABC with cevians BE (from 6 B to side
AC) and AD ( from 6 A to side BC). Let CE = x,AE = 105− x and CD = 100−BD.
To find the perimeter, we only need to compute AB.

We have AE = 105− x, so

AE ·BD = CE · CD

(105− x)BD = x(100−BD)

100x = 105BD

so BD =
20

21
x and CD = 100 − 20

21
x .

Applying the Law of Cosines three times, we have

(1) BE2 = x2 + 1002 − 2(100)x cosC
(2) AD2 = CD2 + 1052 − 2(105)CD cos(C) and
(3) AB2 = 1002 + 1052 − 2 · 100 · 105 cos(C).

Because we must have AD = BE, we combine (1) and (2) to get

CD2 + 1052 − 2(105)CD cos(C) = x2 + 1002 − 2(100)x cos(C) or

(
100− 20

21
x

)2

+ 1055 − 210

(
100− 20

21
x

)
cos(C) = x2 + 1002 − 2(100)x cos(C).

Solving for cos(C), we obtain a rational expression in x:

(4) cos(C) =
41x2 + 84000x− 22052

212 · 200(2x− 105)
.

Substituting this value into (3) we have

AB2 = 21025− 2100 · 41x
2 + 84000x− 22052

212 · 200(200x− 105)
, so

(5) AB2 =
5

21

41x2 + 92610x+ 4410000

105− 2x
.

Thus we can then calculate AB and the perimeter

P = 205 +

√
5

21

41x2 + 92610x+ 4410000

105− 2x
.X
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The graphs of cos(C) and of AB have vertical asymptotes at x =
105

2
, in the center of

our interval [0, 105]. Other than an interval bracketing this singularity, each value of x
produces a solution to the problem.

We explore the endpoints and the “degenerate” solutions, obtaining the values exhibited
in the table above.

I. x = 0: That is CE = 0, so E = C and the cevian from vertex B is actually the side
BC. Therefore, BE = BC = 100. Hence, the condition

AE ·BD = CE · CD becomes
AC ·BD = 0 · CD or
100 ·BD = 0.

Thus BD = 0, so D = B and the cevian from vertex A is actually the side AB;
AD = AB.

Computing by (4) and (5): cos(C) =
21

40
and AB = 100. Thus

AD = AB = 100 = BC = BE, so this triangle satisfies the required conditions. Its
perimeter is 305.

II. x = 105: gives a similar result, a (105, 105, 100) triangle with cevians lying along the
sides and P = 310.

III. The degenerate case C = 0 occurs when cos(C) = 1. By (4), this happens when

x =
1985

41
. Also, C = 0 if and only if AB = 5, which is the smallest possible value (by

the Triangle Inequality).

IV. The degenerate case C = π occurs when cos(C) = −1. By (4) this happens when

x =
2205

41
. Also C = π if and only if AB = 205, which is the largest possible value (by

the Triangle Inequality).

The values of x appearing in III and IV are the endpoints of the interval of excluded

values bracketing
105

2
.

V. The degenerate case C = π/2 occurs when cos(C) = 0. By (4), this happens when x

takes on the ugly irrational
105

41

(√
178081− 400

)
. In this case, AB = 145 and our

triangle is the (20, 21, 29) Pythagorean triangle scaled up by a factor of 5. The common

value of the cevians is AD = BE =
5

41

√
49788121− 352800

√
178081 ≈ 114.775.

VI. Because BD =
20

21
x, some nice results occur when x is a multiple of 21. The table

shows the values for x = 21.

Excel has produced many values of these triangles, letting x range from 0 to 105, except

for the excluded interval

(
1985

41
,
2205

41

)
, but in summary,

– the perimeter assumes all values in [210, 305] ∪ [310, 410].

– side AB assumes all values in [5, 100] ∪ [105, 205].

– 6 C assumes all values inX
ia
ng
’s
T
ex
m
at
h



[
0, cos−1

(
21

40

)]
∪
[
cos−1

(
10

21
, 180o

)]
= [0, 58.33o] ∪ [61.56o, 180o].

– The common cevians achieve the values[
2105

41
, 100

]
∪
[
105,

6305

41

]
≈ [51.34, 100] ∪ [105, 153.78].

Our final comment: AB assumes all integer values in [5, 100] ∪ [105, 205], so the right
triangle described above is not the only solution with all sides integral. For any integer
AB in [5, 100] ∪ [105, 205], we can use (5) to determine the appropriate value of x, C,
etc. Of course, this raises another question: are any of these triangles Heronian?

Also solved by the proposer.

5015: Proposed by Kenneth Korbin, New York, NY.

Part I: Find the value of
10∑

x=1

Arcsin

(
4x2

4x4 + 1

)
.

Part II: Find the value of ∞∑

x=1

Arcsin

(
4x2

4x4 + 1

)
.

Solution by David C. Wilson, Winston-Salem, N.C.

First, let’s look for a pattern.

x = 1 : Arcsin(
4

5
).

x = 2 : Arcsin(
4

5
) + Arcsin(

16

65
) = Arcsin(

12

13
).

Let θ = Arcsin(
4

5
) and φ = Arcsin(

16

65
).

sin θ =
4

5
sinφ =

16

65

cos θ =
3

5
cosφ =

63

65

sin(θ + φ) = sin θ cosφ+ cos θ sinφ = (
4

5
)(
63

65
) + (

3

5
)(
16

65
) =

300

325
=

12

13
= Arcsin(

12

13
).

x = 3 : Arcsin(
12

13
) + Arcsin(

36

325
) = Arcsin(

24

25
).

Let θ = Arcsin(
12

13
) and φ = Arcsin(

36

325
).

sin θ =
12

13
sinφ =

36

325

cos θ =
5

13
cosφ =

323

325

sin(θ + φ) = (
12

13
)(
323

325
) + (

5

13
)(

36

325
) =

4056

4225
=

24

25
= Arcsin(

24

25
).

x = 4 : Arcsin(
24

25
) + Arcsin(

64

1025
) = Arcsin(

40

41
).X
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Let θ = Arcsin(
24

25
) and φ = Arcsin(

64

1025
).

sin θ =
24

25
sinφ =

64

1025

cos θ =
7

25
cosφ =

1023

1025

sin(θ + φ) = (
24

25
)(
1023

1025
) + (

7

25
)(

64

1025
) =

25000

25625
=

40

41
= Arcsin(

40

41
).

Therefore, the conjecture is

n∑

x=1

Arcsin

(
4x2

4x4 + 1

)
= Arcsin

(
2n2 + 2n

2n2 + 2n+ 1

)
.

Proof is by induction.

1) For n = 1, we obtain Arcsin(
4

5
) = Arcsin(

4

5
).

2) Assume true for n; i.e.,

n∑

x=1

Arcsin

(
4x2

4x4 + 1

)
= Arcsin

(
2n2 + 2n

2n2 + 2n+ 1

)
.

3) For n+ 1, we have

n+1∑

x=1

Arcsin

(
4x2

4x4 + 1

)
=

n∑

x=1

Arcsin

(
4x2

4x4 + 1

)
+Arcsin

(
4(n+ 1)2

4(n+ 1)4 + 1

)

=
n∑

x=1

Arcsin

(
2n2 + 2n

2n2 + 2n+ 1

)
+Arcsin

(
4(n+ 1)2

4(n+ 1)4 + 1

)
.

Let θ = Arcsin

(
2n2 + 2n

2n2 + 2n + 1

)
and φ = Arcsin

(
4(n + 1)2

4(n + 1)4 + 1

)
.

sin θ =
2n2 + 2n

2n2 + 2n+ 1
sinφ =

4(n+ 1)2

4(n+ 1)4 + 1

cos θ =
2n+ 1

2n2 + 2n+ 1
cosφ =

4(n+ 1)4 − 1

4(n+ 1)4 + 1

sin(θ + φ) = sin θ cosφ+ cos θ sinφ

=

(
2n2 + 2n

2n2 + 2n+ 1

)[
4(n+ 1)4 − 1

4(n+ 1)4 + 1

]
+

(
2n+ 1

2n2 + 2n+ 1

)[
4(n+ 1)2

4(n+ 1)4 + 1

]

=
8n6 + 40n5 + 80n4 + 88n3 + 58n2 + 22n+ 4

(2n2 + 2n+ 1)(2n2 + 6n+ 5)(2n2 + 2n+ 1)

=
(2n2 + 2n+ 1)2(2n2 + 6n+ 4)

(2n2 + 2n+ 1)2(2n2 + 6n+ 5)
=

2n2 + 6n+ 4

2n2 + 6n+ 5
=

2(n+ 1)2 + 2(n+ 1)

2(n+ 1)2 + 2(n+ 1) + 1
.

Thus
n+1∑

x=1

Arcsin

(
4x2

4x4 + 1

)
= Arcsin

[
2(n+ 1)2 + 2(n+ 1)

2(n+ 1)2 + 2(n+ 1) + 1

]
and this proves the

conjecture.X
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Part I:
10∑

x=1

Arcsin

(
4x2

4x4 + 1

)
= Arcsin

[
220

221

]
.

Part II:
∞∑

x=1

Arcsin

(
4x2

4x4 + 1

)
=

lim

n→∞
n∑

x=1

Arcsin

[
4x2

4x4 + 1

]

=
lim

n→∞Arcsin

(
2n2 + 2n

2n2 + 2n+ 1

)

= Arcsin

[
lim

n→∞
2n2 + 2n

2n2 + 2n+ 1

]
= Arcsin(1) =

π

2
.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Roger
Zarnowski (jointly), San Angelo, TX; Brian D. Beasley, Clinton, SC;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Charles
McCracken, Dayton, OH; Paolo Perfetti, Mathematics Department,
University “Tor Vergata”, Rome, Italy; Boris Rays, Chesapeake, VA; R. P.
Sealy, Sackville, New Brunswick, Canada; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

5016: Proposed by John Nord, Spokane, WA.

Locate a point (p, q) in the Cartesian plane with integral values, such that for any line
through (p, q) expressed in the general form ax+ by = c, the coefficients a, b, c form an
arithmetic progression.

Solution 1 by Nate Wynn (student at Saint George’s School), Spokane, WA.

As {a, b, c} is an arithmetic progression, b can be written as a+ n and c can be written
as a+ 2n. Then using a series of two equations:

{
ap+ (a+ n)q =a+2n
tp+ (t+ u)q =t+2u

Solving this system gives

(tn− au)q = 2tn− 2au, thus q = 2 .

Placing this value into the first equation and solving gives

ap+ 2a+ 2n = a+ 2n
a(p+ 1) = 0

p = −1.

Therefore the point is (−1, 2).

Solution 2 by Eric Malm (graduate student at Stanford University, and an
alumnus of Saint George’s School in Spokane), Stanford, CA.

The only such point is (−1, 2).
Suppose that each line through (p, q) is of the form ax+ by = c with (a, b, c) an
arithmetic progression. Then c = 2b− a. Taking a = 0 yields the line by = 2b or y = 2,
so q = 2. Taking a 6= 0, p= must satisfy ap+ 2b = 2b− a, so p = −1.X
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Conversely, any line through (p, q) = (−1, 2) must be of the form
ax+ by = ap+ bq = 2b− a, in which case the coefficients (a, b, 2b− a) form an arithmetic
progression.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Matt DeLong, Upland, IN; Rachel Demeo,
Matthew Hussey, Allison Reece, and Brian Tencher (jointly, students at
Talyor University, Upland, IN); Michael N. Fried, Kibbutz Revivim, Israel;
Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; Charles
McCracken, Dayton, OH; Boris Rays, Chesapeake, VA; Raul A. Simon,
Chile; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.

5017: Proposed by M.N. Deshpande, Nagpur, India.

Let ABC be a triangle such that each angle is less than 900. Show that

a

c · sinB +
1

tanA
=

b

a · sinC +
1

tanB
=

c

b · sinA +
1

tanC

where a = l(BC), b = l(AC), and c = l(AB).

Solution by John Boncek, Montgomery, AL.

From the Law of Sines:

a sinB = b sinA → sinB =
b sinA

a

b sinC = c sinB → sinC =
c sinB

b

c sinA = a sinC → sinA =
a sinC

c
,

and from the Law of Cosines, we have

bc cosA =
1

2
(b2 + c2 − a2)

ac cosB =
1

2
(a2 + c2 − b2)

ab cosC =
1

2
(a2 + b2 − c2).

Thus,

a

c sinB
+

1

tanA
=

a2

bc sinA
+

cosA

sinA

=
a2 + bc cosA

bc sinA

=
a2 + b2 + c2

2bc sinA
,

b

a sinC
+

1

tanB
=

b2

ac sinB
+

cosB

sinBX
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=
b2 + ac cosB

ac sinB

=
a2 + b2 + c2

2ac sinB

=
a2 + b2 + c2

2c(a sinB)

=
a2 + b2 + c2

2bc sinA
,

and

c

b sinA
+

1

tanC
=

c2

ab sinC
+

cosC

sinC

=
c2 + ab cosC

ab sinC

=
a2 + b2 + c2

2ab sinC

=
a2 + b2 + c2

2b(a sinC)

=
a2 + b2 + c2

2bc sinA
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Michael C. Faleski, University Center, MI; Paul
M. Harms, North Newton, KS; Kenneth Korbin, New York, NY; David E.
Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

5018: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Write the polynomial x5020 + x1004 + 1 as a product of two polynomials with integer
coefficients.

Solution by Kee-Wai Lau, Hong Kong, China.

Clearly the polynomial y5 + y + 1 has no linear factor with integer coefficients.
We suppose that for some integers a, b, c, d, e

y5 + y + 1 = (y3 + ay2 + by + c)(y2 + dy + e)

= y5 + (a+ d)y4 + (b+ e+ ad)y3 + (ae+ bd+ c)y2 + (be+ cd)y + ce.

Hence
a+ d = b+ e+ ad = ae+ bd+ c = 0, be+ cd = ce = 1.

It is easy to check that a = −1, b = 0, c = 1, d = 1, e = 1 so that

y5 + y + 1 = (y3 − y2 + 1)(y2 + y + 1)X
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and

x5020 + x1004 + 1 =

(
x3012 − x2008 + 1

)(
x2008 + x1004 + 1

)
.

Comment by Kenneth Korbin, New York, NY. Note that (y2 + y + 1) is a factor
of (yN + y + 1) for all N congruent to 2(mod3) with N > 1.

Also solved by Landon Anspach, Nicki Reishus, Jessi Byl, and Laura
Schindler (jointly, students at Taylor University), Upland, IN; Brian D.
Beasley, Clinton, SC; John Boncek, Montgomery, AL; Elsie M. Campbell,
Dionne T. Bailey, and Charles Diminnie, San Angelo, TX; Matt DeLong,
Upland, IN; Paul M. Harms, North Newton, KS; Matthew Hussey Rachel
DeMeo, Brian Tencher, and Allison Reece (jointly, students at Taylor
University), Upland IN; Kenneth Korbin, New York, NY; N. J. Kuenzi,
Oshkosh, WI; Carl Libis, Kingston, RI; Eric Malm, Stanford, CA; David E.
Manes, Oneonta, NY; John Nord, Spokane, WA; Harry Sedinger, St.
Bonaventure, NY; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.

5019: Michael Brozinsky, Central Islip, NY.

In a horse race with 10 horses the horse with the number one on its saddle is referred to
as the number one horse, and so on for the other numbers. The outcome of the race
showed the number one horse did not finish first, the number two horse did not finish
second, the number three horse did not finish third and the number four horse did not
finish fourth. However, the number five horse did finish fifth. How many possible orders
of finish are there for the ten horses assuming no ties?

Solution 1 by R. P. Sealy, Sackville, New Brunswick, Canada.

There are 229,080 possible orders of finish.

For k = 0, 1, 2, 3, 4 we perform the following calculations:

a) Choose the k horses numbered 1 through 4 which finish in places 1 through 4.

b) Arrange the k horses in places 1 through 4 and count the permutations with no
“fixed points.”

c) Arrange the remaining (4− k) horses numbered 1 through 4 in places 6 through 10.

d) Arrange the 5 horses numbered 6 through 10 in the remaining 5 places.

Case 1: K=0.

4C0 · 5 · 4 · 3 · 2 · 5! = 120 · 5!
Case 2: K=1.

4C1 · 3 · 5 · 4 · 3 · 5! = 720 · 5!
Case 3: K=2.

4C2 · 7 · 5 · 4 · 5! = 840 · 5!
Case 4: K=3.

4C3 · 11 · 5 · 5! = 220 · 5!
Case 5: K=4.

4C4 · 9 · 5! = 9 · 5!X
ia
ng
’s
T
ex
m
at
h



Solution 2 by Matt DeLong, Upland, IN.

We must count the total number of ways that 10 horses can be put in order subject to
the given conditions. Since the number five horse always finishes fifth, we are essentially
only counting the total number of way that 9 horses can be put in order subject to the
other given conditions. Thus there are at most 9! possibilities.

However, this over counts, since it doesn’t exclude the orderings with the number one
horse finishing first, etc. By considering the number of ways to order the other eight
horses, we can see that there are 8! ways in which the number one horse does finish first.
Likewise, there are 8! ways in which each of the horses numbered two through four
finish in the position corresponding to its saddle number. By eliminating these from
consideration, we see that there are at least 9!-4(8!) possibilities.

However, this under counts, since we twice removed orderings in which both horse one
finished first and horse two finished second etc. There are 6(7!) such orderings, since
there are 6 ways to choose 2 horses from among 4, and once those are chosen the other 7
horses must be ordered. We can add these back in, but then we will again be over
counting. We would need to subtract out those orderings in which three of the first four
horses finish according to their saddle numbers. There are 4(6!) of these, since there are
4 ways to choose 3 horses from among 4, and once those are chosen the other 6 horses
must be ordered. Finally, we would then need to add back in the number of orderings in
which all four horses numbered one through four finish according to their saddle
numbers. There are 5! such orderings.

In sum, we are applying the inclusion-exclusion principle, and the total that we are
interested in is 9!− 4(8!) + 6(7!)− 4(6!) + 5! = 229, 080.

Also solved by Michael C. Faleski, University Center, MI; Paul M. Harms,
North Newton, KS; Nate Kirsch and Isaac Bryan (students at Taylor
University), Upland, IN; N. J. Kuenzi, Oshkosh, WI; Kee-Wai Lau, Hong
Kong, China; Carl Libis, Kingston, RI; David E. Manes, Oneonta, NY;
Harry Sedinger, St. Bonaventure, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2009

• 5038: Proposed by Kenneth Korbin, New York, NY.

Given the equations





√
1 +
√
1− x − 5 ·

√
1−
√
1− x = 4 · 4

√
x and

4 ·
√
1 +
√
1− y − 5 ·

√
1−√1− y = 4

√
y.

Find the positive values of x and y.

• 5039: Proposed by Kenneth Korbin, New York, NY.

Let d be equal to the product of the first N prime numbers which are congruent to
1(mod 4). That is

d = 5 · 13 · 17 · 29 · · ·PN .

A convex polygon with integer length sides is inscribed in a circle with diameter d.
Prove or disprove that the maximum possible number of sides of the polygon is the N th

term of the sequence t = (4, 8, 20, 32, 80, · · · , tN , · · ·) where tN = 4tN−2 for N > 3.

Examples: If N = 1, then d = 5, and the maximum polygon has 4 sides (3, 3, 4, 4). If N =
2, then d = 5 ·13 = 65 and the maximum polygon has 8 sides (16, 16, 25, 25, 25, 25, 33, 33).

Editor’s comment: In correspondence with Ken about this problem he wrote that he has
been unable to prove the formula for N > 5; so it remains technically a conjecture.

• 5040: Proposed by John Nord, Spokane, WA.

Two circles of equal radii overlap to form a lens. Find the distance between the centers

if the area in circle A that is not covered by circle B is
1

3

(
2π + 3

√
3

)
r2.

• 5041: Proposed by Michael Brozinsky, Central Islip, NY.

Quadrilateral ABCD (with diagonals AC = d1 and BD = d2 and sides AB = s1, BC =
s2, CD = s3, and DA = s4) is inscribed in a circle. Show that:

d21 + d22 + d1d2 >
s21 + s22 + s23 + s24

2
.X
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• 5042: Proposed by Miquel Grau-Sánchez and José Luis Dı́az-Barrero, Barcelona, Spain.

Let A(z) = zn +
n−1∑

k=0

akz
k (ak 6= 0) and B(z) = zn+1 +

n∑

k=0

bkz
k (bk 6= 0) be two prime

polynomials with roots z1, z2, . . . , zn and w1, w2, . . . , wn+1 respectively. Prove that

A(w1)A(w2) . . . A(wn+1)

B(z1)B(z2) . . . B(zn)

is an integer and determine its value.

• 5043: Ovidiu Furdui, Toledo, OH.

Solve the following diophantine equation in positive integers k, m, and n

k · n! ·m! +m! + n! = (m+ n)!.

Solutions

• 5020: Proposed by Kenneth Korbin, New York, NY.

Find positive numbers x and y such that

{
x7 − 13y = 21
13x− y7 = 21

Solution 1 by Brian D. Beasley, Clinton, SC.

Using the Fibonacci numbers F1 = 1, F2 = 1, and Fn = Fn−2 + Fn−1 for each integer
n ≥ 3, we generalize the given problem by finding numbers x and y such that

{
xn − Fny = Fn+1

Fnx+ (−1)nyn = Fn+1

for each positive integer n. (The given problem is the case n = 7.)

We let α = (1 +
√
5)/2 and β = (1−

√
5)/2 and apply the Binet formula

Fn = (αn − βn)/
√
5 for each positive integer n to show that we may take x = α > 0 and

y = −β > 0:

αn − Fn(−β) =
αn(β +

√
5)− βn+1

√
5

=
αn+1 − βn+1

√
5

= Fn+1;

Fn(α) + (−1)n(−β)n =
αn+1 − βn(α−

√
5)√

5
=
αn+1 − βn+1

√
5

= Fn+1.

Solution 2 by David Stone and John Hawkins, Statesboro, GA.

The solution anticipated by the poser is probably (α,−β), where
α =

1 +
√
5

2
≈ 1.618034 is the Golden Ratio and β =

1−
√
5

2
≈ −0.618034 its

companion (in the official terminology of The Fibonacci Quarterly ).

Note that:X
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(#) if (x, y) is a solution to the system, then so is (−y, x). Thus we may as well look for
all solutions, not just positive solutions. We graph the system in the form




y =

x7 − 21

13

y = (13x− 21)1/7

.

There are five points of intersection. Graphically conditional (#) appears as symmetry
of intersections across the line y = −x (even though the curves themselves have no such
symmetry).

Although we cannot determine all solutions analytically, we have their approximate
numerical values:

(x , y)
(1.6418599 , 0.85866981)
(1.61803399 , 0.61803399)

(1.249536927 , −1.249536927)
(−0.61803399 , −1.61803399)
(−0.85866981 , −1.6418599)

(1) The second and fourth solutions seem to lie on the line y = x− 1, suggesting that x
satisfies x7 − 13(x− 1) = 21, so x7 − 13x− 8 = 0. Factoring,

x7 − 13x− 8 = (x2 − x− 1)(x5 + x4 + 2x3 + 3x2 + 5x+ 8)

and the quadratic factor has (well-known) roots

α =
1 +
√
5

2
≈ 1.618034 and β =

1−
√
5

2
≈ −0.618034.

Thus we actually know the second and fourth solutions are (α,−β) and (β,−α).
We verify that (α,−β) is indeed a solution to the given system. Note that by the first
well-known relationship to the Fibonacci numbers, αn = αFn + Fn−1, we have
α7 = αF7 + F6 = 13α+ 8.

Now, substituting into the first equation:

α7 − 13(−β) = α7 − 13(α− 1)
= α7 − 13α+ 13
= 13α+ 8− 13α+ 13 = 21, as desired.

It is also straight forward to verify the second equation: 13α− (−β)7 = 21, using
αβ = −1.
(2) The third solution lies on the line y = −x, so x is the sole real zero of
x7 + 13x− 21 = 0. This polynomial equation is not solvable in radicals – according to
Maple, the Galois group of x7 + 13x− 21 is S7, which is not a solvable group. Hence, an
approximation is probably the best we can do (barring some ingenious treatment
employing transcendental functions.)
Unfortunately, we do not have any analytic characterization of the first and fifth
solutions.X
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A final comment: the problem involves the exponent 7 and the Fibonacci numbers
F7 = 13 and F8 = 21, so there is almost certainly a more general version with solution
(α,−β).

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Peter E. Liley, Lafayette, IN; Charles McCracken,
Dayton, OH; Boris Rays, Chesapeake, VA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5021: Proposed by Kenneth Korbin, New York, NY.

Given
x+ x2

1− 34x+ x2
= x+ 35x2 + · · ·+ anx

n + · · ·

Find an explicit formula for an.

Solution by David E. Manes, Oneonta, NY.

An explicit formula for an is given by

an = −1

8

[
(4− 3

√
2)(17 + 12

√
2)n + (4 + 3

√
2)(17− 12

√
2)n
]
.

Let F (x) =
x+ x2

1− 34x+ x2
be the generating function for the sequence

(
an

)

n≥1
, where

a1 = 1 and a2 = 35.

Then the characteristic equation is λ2 − 34λ+ 1 = 0, with roots r1 = 17 + 12
√
2 and

r2 = 17− 12
√
2.

Therefore,

an = α

(
17 + 12

√
2

)n

+ β

(
17− 12

√
2

)n

for some real numbers α and β. From the initial conditions one obtains

1 = α

(
17 + 12

√
2

)
+ β

(
17− 12

√
2

)

35 = α

(
17 + 12

√
2

)2

+ β

(
17− 12

√
2

)2

.

The solution for this system of equations is

α = −1

8

(
4− 3

√
2

)

β = −1

8

(
4 + 3

√
2

)
.

Hence, if n ≥ 1, then

an = −1

8

[
(4− 3

√
2)(17 + 12

√
2)n + (4 + 3

√
2)(17− 12

√
2)n
]
.

Also solved by Brian D. Beasley, Clinton, SC; Dionne T. Bailey, Elsie M.
Campbell, and Charles Diminnie (jointly), San Angelo, TX; Bruno SalgueiroX
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Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau,
Hong Kong, China; Boris Rays, Chesapeake, VA; David Stone and John
Hawkins, Statesboro, GA; David C. Wilson, Winston-Salem, NC, and the
proposer.

• 5022: Proposed by Michael Brozinsky, Central Islip, NY.

Show that

sin

(
x

3

)
sin

(
π + x

3

)
sin

(
2π + x

3

)

is proportional to sin(x).

Solution 1 by José Hernández Santiago, (student, UTM), Oaxaca, México.

From the well-known identity sin 3θ = 3 cos2 θ sin θ − sin3 θ, we derive that

sin 3θ = 4 sin θ

(
3

4
cos2 θ − 1

4
sin2 θ

)

= 4 sin θ

(√
3

2
cos θ − 1

2
sin θ

)(√
3

2
cos θ +

1

2
sin θ

)

= 4 sin θ sin

(
π

3
− θ

)
sin

(
π

3
+ θ

)
.

When we let θ =
x

3
, the latter formula becomes:

sin 3

(
x

3

)
= 4 sin

(
x

3

)
sin

(
π − x
3

)
sin

(
π + x

3

)
(1)

Now, the fact that

sin

(
x+ 2π

3

)
= sin

(
x− π
3

+ π

)

= sin

(
x− π
3

)
cosπ

= sin

(
π − x
3

)

allows us to put (1) in the form

sinx = 4 sin

(
x

3

)
sin

(
π + x

3

)
sin

(
x+ 2π

3

)
;

and clearly this is equivalent to what the problem asked us to demonstrate.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

Since

sin

(
π + x

3

)
sin

(
2π + x

3

)
=

1

2

(
cos

(
π

3

)
+ cos

(
2x

3

))

=
1

2

(
1

2
+ 1− 2 sin2

(
x

3

))

=
1

4

(
3− 4 sin2

(
x

3

))
,X
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so

sin

(
x

3

)
sin

(
π + x

3

)
sin

(
2π + x

3

)
=

1

4

(
3 sin

(
x

3

)
− 4 sin3

(
x

3

))
=

1

4
sin(x),

which is proportional to sin(x).

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly),
San Angelo, TX; Michael C. Faleski, University Center, MI; Bruno Salgueiro
Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Jahangeer
Kholdi, Portsmouth, VA; Kenneth Korbin, NY, NY: Peter E. Liley,
Lafayette, IN; David E. Manes, Oneonta, NY; Charles, McCracken, Dayton,
OH; John Nord, Spokane, WA; Paolo Perfetti, Mathematics Department,
University “Tor Vergata”, Rome, Italy; Boris Rays, Chesapeake, VA; David
Stone and John Hawkins (jointly), Statesboro, GA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5023: Proposed by M.N. Deshpande, Nagpur, India.

Let A1A2A3 · · ·An be a regular n−gon (n ≥ 4) whose sides are of unit length. From Ak

draw Lk parallel to Ak+1Ak+2 and let Lk meet Lk+1 at Tk. Then we have a “necklace”
of congruent isosceles triangles bordering A1A2A3 · · ·An on the inside boundary. Find
the total area of this necklace of triangles.

Solution 1 by Paul M. Harms, North Newton, KS.

In order that the “necklace” of triangles have the n−gon as an inside boundary, it
appears that line Lk (through Ak) should be parallel to Ak−1Ak+1 rather than
Ak+1Ak+2. With this interpretation in mind, we now consider the n isosceles triangles
with a vertex at the center of the n−gon and the opposite side being a side of unit
length. The measure of the central angles are 360o/n. The angle inside the n-gon at the
intersection of 2 unit sides is twice one of the equal angles of the isosceles triangles with
a vertex at the center of the n−gon, so it has a degree measure of 180o − (360o/n).

The isosceles triangle Ak−1AkAk+1 has two equal angles (opposite the sides of unit
length) with a measure of

1

2

(
180o − (180o − (360o/n))

)
=

180o

n
.

A side of length one intersects the two parallel lines (Ak−1Ak+1) and the line parallel to
it through Ak. Using equal angles for a line intersecting parallel lines, we see that the
equal angles in one necklace isosceles triangle has a measure of 180o/n.

Using the side of length one as a base, the area of one necklace triangle is

1

2
(base) · (height) = 1

2
(1)

(
1

2
tan(180o/n)

)
=

1

4
tan(180o/n).

The total area of n necklace triangles is
n

4
tan(180o/n). It is interesting to note that the

total area approaches π/4 as n gets large.X
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Solution 2 by David Stone and John Hawkins, Statesboro, GA.

David and John looked at the problem a bit differently than the other solvers. They
wrote: “In order to get a clearer picture of what is going on, we introduce additional
points that we will call Bk, where we define Bk to be the intersection of Lk and Lk−2,
for 3 ≤ k ≤ n and the intersection of Lk and Lk+n−2 for k = 1 or 2.”

Doing this gave them a “necklace of isosceles triangles with bases along the interior
boundary of the polygon: 4A1B1A2,4A2B2A3,4A3B3A4, · · · ,4AnBnA1.” (Note that
by doing this AkTk does pass through Ak+3.)

They went on: “It is not clear that this was the intended necklace, because these
triangles do not involve the points Tk. Let’s call this the Perimeter Necklace.”

There is a second necklace of isosceles triangle whose bases do involve the points
Tk : 4T1B3T2, 4T2B4T3, 4T3B5T4, · · · , 4Tn−2BnTn1, 4Tn−1B1T1, 4TnB2T1. Let’s
call this the Inner Necklace.
They then found the areas for both necklaces and summarized their results as follows:

n = 4: Area of Perimeter Necklace = 0. No Inner Necklace.
n = 5:

Area of Perimeter Necklace =
5

4
tan

(
π

5

)

Area of Inner Necklace =
5

4

(
1− tan2

π

5

)
sin

(
π

5

)

n = 6

Area of Perimeter Necklace =
3

2
tan

(
π

3

)
=

3
√
3

2

Area of Inner Necklace = 0.

n > 5

Area of Perimeter Necklace =
n

4
tan

(
2π

n

)

Area of Inner Necklace =
π

4

(
4 sin

2π

n
cos

2π

n
− 4 sin

2π

n
+ tan

2π

n

)

Note that these give the correct results for n=6.

Then they used Excel to compute the areas of the necklaces for various values of n, and
proved that for large values of n, the ratio of the areas approaches one.

n PerimeterNecklace InnerNecklace
6 2.59876211 0
10 1.81635632 0.693786379
100 1.572747657 1.561067973
500 1.570879015 1.570382935

lim

n→∞

n

4

(
4 sin

2π

n
sin

2π

n
− 4 sin

2π

n
+ tan

2π

n

)

n

4
tan

2π

n

= 1.X
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Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Michael N. Fried,
Kibbutz Revivim, Israel; Grant Evans (student, Saint George’s School),
Spokane, WA; Boris Rays, Chesapeake, VA, and the proposer.

• 5024: Proposed by Luis Dı́az-Barrero and Josep Rubió-Massegú, Barcelona, Spain.

Find all real solutions to the equation

√
1 +
√
1− x− 2

√
1−
√
1− x = 4

√
x.

Solution by Jahangeer Kholdi, Portsmouth, VA.

Square both sides of the equation, simplify, and then factor to obtain

5(1−√x) = 3
√
1− x.

Squaring again gives 17x− 25
√
x+ 8 = 0, and now using the quadratic formula gives

x = 1 and x =
64

289
. But x = 1 does not satisfy the original equation. The only real

solution to the original equation is x =
64

289
.

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly),
San Angelo, TX; Matt DeLong, Upland, IN; Grant Evans (student, Saint
George’s School), Spokane, WA; Michael C. Faleski, University Center, MI;
Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton,
KS; Kenneth Korbin, NY, NY; Kee-Wai Lau, Hong Kong, China; Peter E.
Liley, Lafayette, IN; David E. Manes, Oneonta, NY; Charles McCracken,
Dayton, OH; Wattana Namkaew (student, Nakhon Ratchasima Rajabhat
University), Thailand; John Nord, Spokane, WA; Paolo Perfetti,
Mathematics Department, University “Tor Vergata”, Rome, Italy; Boris
Rays, Chesapeake, VA; David Stone and John Hawkins (jointly), Statesboro,
GA; David C. Wilson, Winston-Salem, NC, and the proposers.

• 5025: Ovidiu Furdui, Toledo, OH.

Calculate the double integral ∫ 1

0

∫ 1

0
{x− y}dxdy,

where {a} = a− [a] denotes the fractional part of a.

Solution by R. P. Sealy, Sackville, New Brunswick, Canada.

∫ 1

0

∫ 1

0
{x− y}dxdy =

∫ 1

0

∫ x

0
{x− y}dydx+

∫ 1

0

∫ y

0
{x− y}dxdy

=

∫ 1

0

∫ x

0
(x− y)dydx+

∫ 1

0

∫ y

0
(x− y + 1)dxdy

=

∫ 1

0

(
xy − y2

2

)∣∣∣∣
x

0
dx+

∫ 1

0

(
x2

2
− xy + x

)∣∣∣∣∣

y

0

dy

=

∫ 1

0

x2

2
dx+

∫ 1

0

(
y − y2

2

)
dyX
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=
x3

6

∣∣∣∣∣

1

0

+

(
y2

2
− y3

6

)∣∣∣∣∣

1

0

=
1

2
.

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Matt DeLong, Upland, IN; Michael C. Faleski,
University Center, MI; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
Harms, North Newton, KS; Nate Kirsch and Isaac Bryan (jointly, students
at Taylor University), Upland, IN; Kee-Wai Lau, Hong Kong, China;
Matthew Hussey, Rachel DeMeo, Brian Tencher (jointly, students at Taylor
University), Upland, IN; Paolo Perfetti, Mathematics Department,
University “Tor Vergata”, Rome, Italy; Nicki Reishus, Laura Schindler,
Landon Anspach and Jessi Byl (jointly, students at Taylor University),
Upland, IN; José Hernández Santiago (student, UTM), Oaxaca, México,
Boris Rays, Chesapeake, VA; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2009

• 5044: Proposed by Kenneth Korbin, New York, NY.

Let N be a positive integer and let
{
x = 9N2 + 24N + 14 and
y = 9(N + 1)2 + 24(N + 1) + 14.

Express the value of y in terms of x, and express the value of x in terms of y.

• 5045: Proposed by Kenneth Korbin, New York, NY.

Given convex cyclic hexagon ABCDEF with sides

AB = BC = 85
CD = DE = 104, and
EF = FA = 140.

Find the area of 4BDF and the perimeter of 4ACE.

• 5046: Proposed by R.M. Welukar of Nashik, India and K.S. Bhanu, and M.N. Deshpande
of Nagpur, India.

Let 4n successive Lucas numbers Lk, Lk+1, · · · , Lk+4n−1 be arranged in a 2× 2n matrix
as shown below:




1 2 3 4 · · · 2n

Lk Lk+3 Lk+4 Lk+7 · · · Lk+4n−1

Lk+1 Lk+2 Lk+5 Lk+6 · · · Lk+4n−2




Show that the sum of the elements of the first and second row denoted by R1 and R2

respectively can be expressed as

R1 = 2F2nL2n+k

R2 = F2nL2n+k+1

where {Ln, n ≥ 1} denotes the Lucas sequence with L1 = 1, L2 = 3 and Li+2 = Li + Li+1

for i ≥ 1 and {Fn, n ≥ 1} denotes the Fibonacci sequence,
F1 = 1, F2 = 1, Fn+2 = Fn + Fn+1.
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• 5047: Proposed by David C. Wilson, Winston-Salem, N.C.

Find a procedure for continuing the following pattern:

S(n, 0) =
n∑

k=0

(
n

k

)
= 2n

S(n, 1) =
n∑

k=0

(
n

k

)
k = 2n−1n

S(n, 2) =
n∑

k=0

(
n

k

)
k2 = 2n−2n(n+ 1)

S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3n2(n+ 3)

...

• 5048: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”
Rome, Italy.

Let a, b, c, be positive real numbers. Prove that

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥ 54

(a+ b+ c)2
(abc)3√

(ab)4 + (bc)4 + (ca)4
.

• 5049: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find a function f : < → < such that

2f(x) + f(−x) =
{−x3 − 3, x ≤ 1,
3− 7x3, x > 1.

Solutions

• 5026: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P has coordinates (x, 3). Find the value of x if

area 4PAD+ area 4PBC = area 4PAB+ area 4PCD. (1)

Solution by Bruno Salgueiro Fanego, Viveiro, Spain.

(1) ⇔ 1

2

∣∣∣∣det




x 3 1
−3 0 1
0 4 1



∣∣∣∣+

1

2

∣∣∣∣det



x 3 1
12 0 1
4 15 1



∣∣∣∣
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+
1

2

∣∣∣∣det




x 3 1
−3 0 1
12 0 1



∣∣∣∣+

1

2

∣∣∣∣det



x 3 1
4 15 1
0 4 1



∣∣∣∣

⇔ | − 4x− 3| + |156− 15x| = 45 + |11x+ 4|. (2)

If x ≤ −3
4
, then (2) ⇔ −4x− 3− 15x+ 156 = 45− 11x− 4⇔ x = 14, impossible.

If
−3
4
< x ≤ −4

11
, then (2) ⇔ 4x+ 3− 15x+ 156 = 45− 11x− 4⇔ x = 159 = 41,

impossible.

If
−4
11

< x ≤ 52

5
, then (2) ⇔ 4x+ 3− 15x+ 156 = 45 + 11x+ 4⇔ x = 5.

If x >
52

5
, then (2) ⇔ 4x+ 3 + 15x− 156 = 45 + 11x+ 4⇔ x =

101

4
.

Thus, there are two possible values of x : x = 5 and
101

4
.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Mark Cassell
(student, St. George’s School), Spokane, WA; Grant Evans (student, St.
George’s School), Spokane, WA; John Hawkins and David Stone (jointly),
Statesboro, GA; Peter E. Liley, Lafayette, IN; Paul M. Harms, North
Newton, KS; Charles, McCracken, Dayton, OH; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA; Britton Stamper, (student, St. George’s
School), Spokane, WA; Vu Tran (student, Texas A&M University), College
Station, TX, and the proposer.

• 5027: Proposed by Kenneth Korbin, New York, NY.

Find the x and y intercepts of

y = x7 + x6 + x4 + x3 + 1.

Solution by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy.

The point (0, 1) is trivial. To find the x intercept we decompose
x7 + x6 + x4 + x3 + 1 = (x4 + x3 + x2 + x+ 1)(x3 − x+ 1) and the value we are looking
for is given by x3 − x+ 1 = 0 since

x4 + x3 + x2 + x+ 1 = (x2 − x−1 +
√
5

2
+ 1)(x2 − x−1−

√
5

2
+ 1) 6= 0.

Applying the formula for solving cubic equations, the only real root of x3 − x+ 1 = 0 is

(
−1

2
+

√
1

4
− 1

27

)1/3

+

(
−1

2
−
√

1

4
− 1

27

)1/3

=

(
−1

2
+

√
69

18

)1/3

+

(
−1

2
−
√

69

18

)1/3

whose approximate value is −1.3247 . . .

Also solved by Brian D. Beasley, Clinton, SC; Mark Cassell and Britton
Stamper (jointly, students at St. George’s School), Spokane, WA; Michael
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Fried, Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS; John
Hawkins and David Stone (jointly), Statesboro, GA; Charles McCracken,
Dayton, OH; John Nord, Spokane, WA; Boris Rays, Chesapeake, VA, and
the propser.

• 5028: Proposed by Michael Brozinsky, Central Islip, NY .

If the ratio of the area of the square inscribed in an isosceles triangle with one side on the
base to the area of the triangle uniquely determine the base angles, find the base angles.

Solution 1 by Brian D. Beasley, Clinton, SC.

Let θ be the measure of each base angle in the triangle, and let y be the length of each
side opposite a base angle. Let x be the side length of the inscribed square. We first
consider the right triangle formed with θ as an angle and x as a leg, denoting its
hypotenuse by z. Then x = z sin θ. Next, we consider the isosceles triangle formed with
the top of the inscribed square as its base; taking the right half of the top of the square
as a leg, we form another right triangle with angle θ and hypotenuse y − z. Then
1
2x = (y− z) cos θ, so y = x(csc θ+ 1

2 sec θ). Denoting the area of the square by S and the
area of the original triangle by T , we have

T

S
=

1
2y

2 sin(π − 2θ)

x2
=

1

2
sin(2θ)

(
csc θ +

1

2
sec θ

)2

=
1

4
tan θ + cot θ + 1.

Let f(θ) = 1
4 tan θ + cot θ + 1 for 0 < θ < π/2. Then it is straightforward to verify that

lim
θ→0+

f(θ) = lim
θ→π

2
−
f(θ) =∞

and that f attains an absolute minimum value of 2 at θ = arctan(2). Hence the ratio
T/S (and thus S/T ) is uniquely determined when θ = arctan(2) ≈ 63.435◦.

Solution 2 by J. W. Wilson, Athens, GA.

With no loss of generality, let the base of the isosceles triangle b be a fixed value and
vary the height h of the triangle. Then if f(h) is a function giving the ratio for the
compared areas, in order for it to uniquely determine the base angles, there must be
either a minimum or maximum value of the function. Let f(h) represent the ratio of the
area of the triangle to the area of the square.

It is generally known (and easy to show) that side s of an inscribed square on base b of a
triangle is on-half of the harmonic mean of the base b and the altitude h to that base.
Thus

s =
hb

h+ b
. So,

f(h) =
bh

2s2
. Substituting and simplifying this gives :

f(h) =
h2 + 2bh+ b2

2bh
.

For h > 0 it can be shown, by using the arithmetic mean−geometric mean inequality,
that this function has a minimum value of 2 when h = b.

f(h) =
h2 + 2bh+ b2

2bh
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=
h+ 2b+

b2

h
2b

.

Since b is fixed, and using the arithmetic mean−geometric mean inequaltiy, we may write:

h+
b2

h
≥ 2

√

h
b2

h
= 2b, with equality holding if, and only if,

h =
b2

h
.

Therefore f(h) reaches a maximum if, and only if, h = b. This means the base angles can
be uniquely determined when the altitude and the base are the same length. Thus, by
considering the right triangle formed by the altitude and the base, the base angle would
be arctan 2.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; John Hawkins and
David Stone (jointly; two solutions), Statesboro, GA; Peter E. Liley,
Lafayette, IN; Kenneth Korbin, New York, NY; John Nord, Spokane, WA;
Boris Rays, Chesapeake, VA, and the proposer.

• 5029: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x > 1 be a non-integer number. Prove that

(
x+ {x}

[x]
− [x]

x+ {x}

)
+

(
x+ [x]

{x} − {x}
x+ [x]

)
>

9

2
,

where [x] and {x} represents the entire and fractional part of x.

Solution by John Hawkins and David Stone, Statesboro, GA.

We improve the lower bound by verifying the more accurate inequality

#

(
x+ {x}

[x]
− [x]

x+ {x}

)
+

(
x+ [x]

{x} − {x}
x+ [x]

)
>

16

3
.

In fact,
16

3
is a sharp lower bound for

(
x+ {x}

[x]
− [x]

x+ {x}

)
+

(
x+ [x]

{x} − {x}
x+ [x]

)
for x

in the interval (1, 2), while this expression becomes much larger for larger x.

For convenience, we let

f(x) =

(
x+ {x}

[x]
− [x]

x+ {x}

)
+

(
x+ [x]

{x} − {x}
x+ [x]

)
.

The function f , defined for x > 1, x not an integer, has a“repetitive” behavior. Its graph
has a vertical asymptote at each positive integer. On each interval (n, n+ 1), f(x)
decreases(strictly) from infinity to a specific limit, hn (which we will specify), then
repeats the behavior on the next interval, but does not drop down as far, because
hn < hn+1 (so f(x) never comes close to h1 =

16
3 again.)
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We verify these statements by fixing n and examining the behavior on f(x) on the
interval (n, n+ 1). In this case, we let x = n+ t, where 0 < t < 1; therefore, [x] = n and
|x| = t. Thus

f(x) =

(
n+ t+ t

n
− n

n+ t+ t

)
+

(
n+ t+ n

t
− t

n+ t+ n

)

=
n+ 2t

n
− n

n+ 2t
+

2n+ t

t
− t

2n+ t
.

We handle the above claims in order:

(1) lim
t→0+

f(x) = lim
t→0+

n+ 2t

n
− n

n+ 2t
+

2n+ t

t
− t

2n+ t
= +∞.

(2) Because f(x) has been expressed in terms of t, say

g(t) =
n+ 2t

n
− n

n+ 2t
+

2n+ t

t
− t

2n+ t
,

we can show that g(t) is decreasing by showing its derivative is negative.

We compute the derivative with respect to t:

g′(t) =
2

n
+

2n

(2t+ n)2
− 2n

t2
− 2n

(t+ 2n)2
.

Basically, this is negative because of the dominant term
−2n
t2

, but we can make this more

precise:

g′(t) < 0

⇔ 2

n
+

2n

(2t+ n)2
− 2n

t2
− 2n

(t+ 2n)2
< 0

⇔ 1

n
+

n

(2t+ n)2
<
n

t2
+

n

(t+ 2n)2

⇔ (2t+ n)2 + n2

n(2t+ n)2
<
n(t+ 2n)2 + nt2

t2(t+ 2n)2

⇔ t2(t+ 2n)2
[
(2t+ n)2 + n2

]
< n(2t+ n)2

[
n(t+ 2n)2 + nt2

]

⇔ t2(t+ 2n)2
[
(2t2 + 2tn+ n2

]
< n2(2t+ n)2

[
t2 + 2tn+ 2n2

]

⇔ 2t6 + 10t5n+ 17t4n2 + 12t3n3 + 4t2n4 < 2n6 + 10n5t+ 17n4t2 + 12n3t3 + 4n2t4

⇔ 0 < 2
(
n6 − t6

)
+ 10nt

(
n4 − t4

)
+ 17n2t2

(
n2 − t2

)
− 4n2t2

(
n2 − t2

)

⇔ 0 < 2
(
n6 − t6

)
+ 10nt

(
n4 − t4

)
+ 13n2t2

(
n2 − t2

)
,

and this last inequality is true because 0 < t < 1 < n.

(3) Finally, we compute the lower bound at the right-hand endpoint:

lim
t→1−

f(x) = lim
t→1−

[
n+ 2t

n
− n

n+ 2
+

2n+ t

t
− t

2n+ t

]
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=
n+ 2

n
− n

n+ 2
+

2n+ 1

1
− 1

2n+ 1

= 2n+ 1− 1

2n+ 1
+

4(n+ 1)

n(n+ 2)
.

Thus, we see that hn = 2n+ 1− 1

2n+ 1
+

4(n+ 1)

n(n+ 2)
≈ 2n+ 1, so the intervals’ lower

bounds increase linearly with n.

Note that h1 = 3 +
7

3
=

16

3
, so f(x) >

16

3
for 1 < x < 2. So inequality (#) has been

verified.

As stated above, the lower bound on x then grows, for instance,

h2 = 5 +
13

10
=

63

10
, so f(x) >

63

10
for 2 < x < 3,

and

h3 = 7 +
97

105
=

832

105
, so f(x) >

832

105
for 3 < x < 4.

Comment: The inequality # is sharp in the sense that no value larger than
16

3
can be

used. That is, by (3) above, we know that values of x very close to 2 produce values of

f(x) just above and arbitrarily close to
16

3
. We can see this precisely:

f

(
2− 1

m

)
= f

(
1 +

m− 1

m

)

=




2m− 1

m
+
m− 1

m
1

− 1
2m− 1

m
+
m− 1

m


+




2m− 1

m
+ 1

m− 1

m

−
m− 1

m
2m− 1

m
+ 1




=
3m− 2

m
− m

3m− 2
+

3m− 1

m− 1
− m− 1

3m− 1

=
16

3
+

2

3

[
3

m(m− 1)
− 1

3(m− 1)(3m− 2)

]
.

(John and David accompanied their above solution with a graph generated by Maple

showing how the lower bounds increase from
16

3
for various values of x.)

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Paolo Perfetti, Mathematics Department, University
“Tor Vergata,” Rome, Italy; Vu Tran (student, Texas A&M University),
College Station, TX; Boris Rays, Chesapeake, VA, and the proposer.

• 5030: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let A1, A2, · · · , An ∈M2(C), (n ≥ 2 ), be the solutions of the equation Xn =

(
2 1
6 3

)
.
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Prove that
n∑

k=1

Tr(Ak) = 0.

Solution by John Hawkins and David Stone, Statesboro, GA.

The involvement of the Trace function is a red herring. Actually, for A1, A2, A3, . . . , An

as specified in the problem, we have
n∑

k=1

Ak = 0. Therefore, since Tr is linear,

n∑

k=1

Tr(Ak) = Tr

( n∑

k=1

(Ak

)
= Tr(0) = 0. In fact

n∑

k=1

Tr(Ak) = 0 for any linear

transformation T :M2(C) −→W to any complex vector space W .

Here is our argument. For convenience, let B =

(
2 1
6 3

)
. Note that B2 = 5B. Thus

B3 = BB2 = B5B = 5B2 = 52B. Inductively, Bk = 5k−1B for k ≥ 1.

Therefore, B =
1

5n−1
Bn =

[
1

5(n−1)/n
B

]n
, so A1 =

1

5(n−1)/n
B is an nth root of B:

An
1 =

[
1

5(n−1)/n
B

]n
=

1

5n−1
Bn =

1

5n−1
5n−1B = B.

Now let ξ = e2πi/n be the primitive nth root of unity. Then

0 = ξn − 1 = (ξ − 1)(ξn−1 + ξn−2 + ξn−3 + · · ·+ ξ + 1),

so,
(#) (ξn−1 + ξn−2 + ξn−3 + · · ·+ ξ + 1) = 0.

With A1 =
1

5(n−1)/n
B as above, let Ak = ξk−1A1 for k = 2, 3, . . . , n. These n distinct

matrices are the nth roots of B, namely:

An
k = [ξk−1A1]

n = ξ(k−1)nAn
1 = (ξn)k−1An

1 = 1k−1An
1 = An

1 = B.

Therefore,

n∑

k=1

Ak =
n∑

k=1

ξk−1A1 =

( n∑

k=1

ξk−1
)
A1

= 0 ·A1 by (#)

= 0.

Comment 1: Implicit in the problem statement is that the given matrix equation has
exactly n solutions. This is true for this particular matrix B. But it is not true in
general. Gantmacher (“Matrix Theory”, page 233) gives an example of a 3× 3 matrix

with infinitely many square roots:



0 1 0
0 0 0
0 0 0


.
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Comment 2: The result would be true for B any 2× 2 matrix having determinant zero
but trace non-zero. In that case, we would have B2 = Tr(B)B and we use

A1 =
1

Tr(B)(n−1)/n
B.

Comment 3: More generally, let V be a vector space over C and c1, c2, . . . , cn be complex
scalars whose sum is zero. Also let A be any vector in V and let Ak = ckA for
k = 1, 2, · · · , n. Then

n∑

k=1

Ak =
n∑

k=1

ckA =

( n∑

k=1

ck

)
A = 0 ·A = 0.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.

• 5031: Ovidiu Furdui, Toledo, OH.

Let x be a real number. Find the sum

∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solution 1 by Paul M. Harms, North Newton, KS.

We know that ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · · .

The expression

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
= (−1)n−1n

(
xn+1

(n+ 1)!
+

xn+2

(n+ 2)!
+ · · ·

)
.

So the sum
∞∑

n=1

(−1)n−1n

(
xn+1

(n+ 1)!
+

xn+2

(n+ 2)!
+ · · ·

)
equals

(
x2

2!
+
x3

3!
+ · · ·

)
− 2

(
x3

3!
+
x4

4!
+ · · ·

)
+ 3

(
x4

4!
+
x5

5!
+ · · ·

)
− 4

(
x5

5!
+ · · ·

)
+ · · ·

=
(1)x2

2!
+

(1− 2)x3

2!
+

(1− 2 + 3)x4

4!
+

(1− 2 + 3− 4)x5

5!
+ · · ·

=
x2

2!
− x3

3!
+

2x4

4!
− 2x5

5!
+

3x6

6!
− 3x7

7!
+

4x8

8!
− 4x9

9!
· · ·

We need to find the sum of this alternating series..

We have

sinhx = x+
x3

3!
+
x5

5!
+ · · · · · ·

x

2
sinhx =

1

2
x2 +

2
4x

4

3!
+

3
6x

6

5!
+

4
8x

8

7!
+ · · ·

=
x

2!
+

2x4

4!
+

3x6

6!
+

4x8

8!
+ · · · .

The positive terms of the alternating series sum to
x

2
sinhx. Each negative term of the

alternating series is an antiderivative of the previous term except for the minus sign. The
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general anitderivative of
x

2
sinhx is

1

2

[
x coshx− sinhx

]
+ C. Using Taylor series we can

show that
−1
2

[
x coshx− sinhx

]
equals the sum of the negative terms of the alternating

series. The sum in the problem is

x

2
sinhx− 1

2

[
x coshx− sinhx

]
=
x+ 1

2
sinhx− x

2
coshx.

Solution 2 by N. J. Kuenzi, Oshkosh, WI.

Let

F (x) =
∞∑

n=1

(−1)n−1n

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Differentiation yields

F ′(x) =
∞∑

n=1

(
(−1)n−1n(ex − 1− x− · · · − xn−1

(n− 1)!

)

=
∞∑

n=1

(
(−1)n−1n(ex − 1− x− · · · − xn−1

(n− 1)!
− xn

n!
+
xn

n!

)

= F (x) +
∞∑

n=1

(−1)n−1n
xn

n!

= F (x) + x

(
1− x+

x2

2!
− x3

3!
+ · · ·+ (−1)mx

m

m!
+ · · ·

)

= F (x) + xe−x.

Solving the differential equation

F ′(x) = F (x) + xe−x with initial conditions F(0) = 0 yields

F (x) =
ex − (1 + 2x)e−x

4
.

Also solved by Charles Diminnie and Andrew Siefker (jointly), San Angelo,
TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paolo Perfetti, Mathematics
Department, University “Tor Vergata,” Rome, Italy, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2009

• 5050: Proposed by Kenneth Korbin, New York, NY.

Given 4ABC with integer-length sides, and with 6 A = 120o, and with (a, b, c) = 1.

Find the lengths of b and c if side a = 19, and if a = 192, and if a = 194.

• 5051: Proposed by Kenneth Korbin, New York, NY.

Find four pairs of positive integers (x, y) such that
(x− y)2
x+ y

= 8 with x < y.

Find a formula for obtaining additional pairs of these integers.

• 5052: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain.

If a ≥ 0, evaluate:

∫ +∞

0
arctg

2a(1 + ax)

x2(1 + a2) + 2ax+ 1− a2
dx

1 + x2
.

• 5053: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a, b and c be the sides, r the in-radius, and R the circum-radius of 4ABC. Prove or
disprove that

(a+ b− c)(b+ c− a)(c+ a− b)
a+ b+ c

≤ 2rR.

• 5054: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let x, y, z be positive numbers such that xyz = 1. Prove that

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx+ x2
≥ 1.

• 5055: Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Let α be a positive real number. Find the limit
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lim
n→∞

n∑

k=1

1

n+ kα
.

Solutions

• 5032: Proposed by Kenneth Korbin, New York, NY.

Given positive acute angles A,B,C such that

tanA · tanB + tanB · tanC + tanC · tanA = 1.

Find the value of
sinA

cosB · cosC +
sinB

cosA · cosC +
sinC

cosA · cosB .

Solution 1 by Brian D. Beasley, Clinton, SC.

Since A, B, and C are positive acute angles with

1 =
sinA sinB cosC + cosA sinB sinC + sinA cosB sinC

cosA cosB cosC

=
cosA cosB cosC − cos(A+B + C)

cosA cosB cosC
,

we have cos(A+B + C) = 0 and thus A+B + C = 90◦. Then

sinA

cosB cosC
+

sinB

cosA cosC
+

sinC

cosA cosB
=

sinA cosA+ sinB cosB + sinC cosC

cosA cosB cosC
.

Letting N be the numerator of this latter fraction, we obtain

N = sinA cosA+ sinB cosB + cos(A+B) sin(A+B)

= sinA cosA+ sinB cosB + (cosA cosB − sinA sinB)(sinA cosB + cosA sinB)

= sinA cosA(1 + cos2B − sin2B) + sinB cosB(1 + cos2A− sin2A)

= sinA cosA(2 cos2B) + sinB cosB(2 cos2A)

= 2 cosA cosB(sinA cosB + cosA sinB)

= 2 cosA cosB sin(A+B)

= 2 cosA cosB cosC.

Hence the desired value is 2.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

The condition tanA tanB + tanB tanC + tanC tanA = 1 is equivalent to
cotA+ cotB + cotC = cotA cotB cotC. Since it is well known that

cos(A+B + C) = − sinA sinB sinC

(
cotA+ cotB + cotC − cotA cotB cotC

)
,

so cos(A+B + C) = 0 and A+B + C =
π

2
. Hence,

sin 2A+ sin 2B + sin 2C = 2 sin(A+B) cos(A−B) + 2 sinC cosC

2X
ia
ng
’s
T
ex
m
at
h



= 2 cosC( cos(A−B) + cos(A+B))

= 4 cosA cosB cosC.

If follows that

sinA

cosB cosC
+

sinB

cosA cosC
+

sinC

cosA cosB
=

sin 2A+ sin 2B + sin 2C

2 cosA cosB cosC
= 2.

Solution 3 by Boris Rays, Chesapeake, VA.

tanA tanB + tanB tanC + tanC tanA = 1 implies,

tanB(tanA+ tanC) = 1− tanA tanC

tanA+ tanC

1− tanA tanC
=

1

tanB

tan(A+ C) = cotB = tan(90o −B).

Similarly, we obtain:

tan(B + C) =
1

tanA
= cotA = tan(90o −A)

tan(A+B) =
1

tanC
= cotC = tan(90o − C),which implies

A = 90o − (B + C)
B = 90o − (A+ C)
C = 90o − (A+B).

Therefore,

sinA

cosB cosC
+

sinB

cosA cosC
+

sinC

cosA cosB

=
sin(90o − (B + C))

cosB cosC
+

sin(90o − (A+ C))

cosA cosC
+

sin(90o − (A+B))

cosA cosB

=
cos(B + C)

cosB cosC
+

cos(A+ C)

cosA cosC
+

cos(A+B)

cosA cosB

=
cosB cosC − sinB sinC

cosB cosC
+

cosA cosC − sinA sinC

cosA cosC
+

cosA cosB − sinA sinB

cosA cosB

=

(
1− tanB tanC

)
+

(
1− tanA tanC

)
+

(
1− tanA tanB

)

= 1 + 1 + 1− (tanA tanB + tanB tanC + tanA tanC)

= 3− 1 = 2.

Also solved by Elsie M. Campbell, Dionne T. Bailey and Charles Diminnie
(jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
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Harms, North Newton, KS; John Hawkins, and David Stone (jointly),
Statesboro, GA; Valmir Krasniqi, Prishtin, Kosovo; David E. Manes,
Oneonta, NY; Charles McCracken, Dayton, OH; David C.Wilson,
Winston-Salem, NC, and the proposer.

• 5033: Proposed by Kenneth Korbin, New York, NY.

Given quadrilateral ABCD with coordinates A(−3, 0), B(12, 0), C(4, 15), and D(0, 4).
Point P is on side AB and point Q is on side CD. Find the coordinates of P and Q if
area 4PCD = area 4QAB = 1

2area quadrilateral ABCD. (1)

Solution by Bruno Salgueiro Fanego, Viveiro, Spain.

P is on side AB : y = 0⇒ P (p, 0).

Q is on side CD : y =
11

4
x+ 4⇒ Q(4q, 11q + 4).

Area quadrilateral ABCD=area 4ABD+area 4BCD, so

(1) ⇔ 1

2

∣∣∣∣ det



p 0 1
4 15 1
0 4 1



∣∣∣∣ =

1

2

∣∣∣∣ det




4q 11q + 4 1
−3 0 1
12 0 1



∣∣∣∣

=
1

2

∣∣∣∣ det



−3 0 1
12 0 1
0 4 1



∣∣∣∣+

1

2

∣∣∣∣ det



12 0 1
4 15 1
0 4 1



∣∣∣∣

⇔
∣∣∣∣11p+ 16

∣∣∣∣ = 30 + 74 = 15

∣∣∣∣11q + 4

∣∣∣∣⇔ 11p+ 16 = ±104 = 15(11q + 4)

⇔ P1(8, 0) or P2(−120/11, 0) and Q1(16/15, 104/15) or Q2(−656/165,−104/15).

Observations by Ken Korbin. The following four points are on a straight line:
midpoint of AC, midpoint of BD, P1, and Q1. Moreover, the midpoint of P1P2 = the
midpoint of Q1, Q2 = the intersection point of lines AB and CD.

Also solved by Brian D. Beasley, Clinton, SC; Michael N. Fried, Kibbutz
Revivim, Israel; John Hawkins and David Stone (jointly), Statesboro, GA;
Paul M. Harms, North Newton, KS; Peter E. Liley, Lafayette, IN; David E.
Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Boris Rays,
Chesapeake, VA; David C.Wilson, Winston-Salem, NC, and the proposer.

• 5034: Proposed by Roger Izard, Dallas, TX.

In rectangle MDCB, MB ⊥MD. F is the midpoint of BC, and points N,E and G lie
on line segments DC,DM and MB respectively, such that NC = GB. Let the area of
quadrilateral MGFC be A1 and let the area of quadrilateral MGFE be A2. Determine
the area of quadrilateral EDNF in terms of A1 and A2.

Solution by Paul M. Harms, North Newton, KS.

Put the rectangle MDCB on a coordinate system. Assume all nonzero coordinates are
positive with coordinates
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M(0, 0), B(0, b), C(c, b), D(c, 0) and E(e, 0), F (c/2, b), G(0, g), N(c, g).

The coordinates satisfy e < c and g < b. The area A1 of the quadrilateral MGFC = the
area of 4MGF+ area of 4MFC. Then

A1 =
1

2
g(c/2) +

1

2
(c/2)b =

1

2
(c/2)(b+ g).

The area A2 of the quadrilateral MGFE = area of 4MGF+ area of 4MEF . Then

A2 =
1

2
g(c/2) +

1

2
eb.

The area of the quadrilateral EDNF = area of 4EFD+ area of 4FDN . The area of
the quadrilateral EDNF is then

=
1

2
(c− e)b+ 1

2
g(c/2)

= 2(
1

2
)(c/2)b− 1

2
eb+

1

2
g(c/2)

= 2A1 −A2.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; John Hawkins and
David Stone (jointly), Statesboro,GA; Kenneth Korbin, New York, NY;
Peter E. Liley, Lafayette, IN; David E. Manes, Oneonta, NY; Boris Rays,
Chesapeake, VA, and the proposer.

• 5035: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be positive numbers. Prove that

(aabbcc)2(a−(b+c) + b−(c+a) + c−(a+b))3 ≥ 27.

Solution 1 by David E. Manes, Oneonta, NY.

Note that the inequality is equivalent to

3

a
1

b+c + b
1

c+a + c
1

b+c

≤ 3
√
a2ab2bc2c.

Since the problem is symmetrical in the variables a, b, and c, we can assume a ≥ b ≥ c.
Therefore, ln a ≥ ln b ≥ ln c. By the Rearrangement Inequality

a ln a+ b ln b+ c ln c ≥ b ln a+ c ln b+ a ln c and

a ln a+ b ln b+ c ln c ≥ c ln a+ a ln b+ b ln c.

Adding the two inequalities yields

2a ln a+ 2b ln b+ 2c ln c ≥ (b+ c) ln a+ (c+ a) ln b+ (a+ b) ln c.
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Therefore,

ln

(
a2ab2bc2c

)
≥ ln

(
ab+cbc+aca+b

)
or

a2ab2bc2c ≥ ab+cbc+aca+b and so

3
√
a2ab2bc2c ≥ 3

√
ab+cbc+aca+b.

By the Harmonic-Geometric Mean Inequality

3

a
1

b+c + b
1

c+a + c
1

b+c

≤ 3
√
ab+cbc+aca+b ≤ 3

√
a2ab2bc2c.

Solution 2 by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy.

Taking the logarithm we obtain,

2
∑

cyc

ln a+ 3 ln

(∑

cyc

a−(b+c)

)
≥ 3 ln 3.

The concavity of the logarithm yields,

2
∑

cyc

ln a+ 3

(
ln 3−

∑

cyc

(b+ c) ln a

)
≥ 3 ln 3.

Defining s = a+ b+ c gives,

∑

cyc

(3a− s) ln a ≥ 0.

Since the second derivative of the function f(x) = (3x− s) lnx is positive for any x and
s, (f ′′(x) = 3/x+ s/x2) it follows that,

∑

cyc

(3a− s) ln a ≥
∑

cyc

(3a− s) ln a
∣∣∣a=s/3 = 0.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Boris Rays, Chesapeake, VA, and the proposer.

• 5036: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find all triples (x, y, z) of nonnegative numbers such that

{
x2 + y2 + z2 = 1
3x + 3y + 3z = 5

Solution 1 by John Hawkins and David Stone, Statesboro, GA.

We are looking for all first octant points of intersection of the unit sphere with the
surface 3x + 3y + 3z = 5. Clearly, the intercept points (1, 0, 0), (0, 1, 0) and (0, 0, 1) are
solutions. We claim there no other solutions.
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Consider the traces of our two surfaces in the xy-plane: the unit circle and the curve
give by 3x + 3y = 4. Our only concern is in the first quadrant, where we have a unit

quarter circle and the curve y =
ln(4− 3x)

ln 3
. The two curves meet on the coordinate

axes; otherwise graphing software shows that the logarithmic curve lies inside the
quarter circle.

By the symmetry of the variables, we have the same behavior when we look at the
traces in the xz- and yz-planes. That is, at our boundaries of concern, the exponential
surface starts inside the sphere. By implicit differentiation of 3x + 3y + 3z = 5, we have

the partial derivatives
∂z

∂x
= −3x

3z
and

∂z

∂y
= −3y

3z
, which are both negative for

nonnegative x, y and z. Therefore, the exponential surface descends from a trace inside
the sphere to a trace which lies within the sphere. So the two surfaces have no points of
intersection within the interior of the first octant.

Solution 2 by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Such triples are (x, y, z) = (1, 0, 0), (0, 1, 0), (0, 0, 1). We note that the first equation
implies that x, y, z ∈ [0, 1]. On the other hand, using Bernoulli’s inequality we obtain
that





3x = (1 + 2)x ≤ 1 + 2x
3y = (1 + 2)y ≤ 1 + 2y
3z = (1 + 2)z ≤ 1 + 2,

and hence, 5 = 3x + 3y + 3z ≤ 3 + 2(x+ y + z). It follows that 1 ≤ x+ y + z. This
implies that x2 + y2 + z2 ≤ x+ y + z, and hence, x(1− x) + y(1− y) + z(1− z) ≤ 0.
Since the left hand side of the preceding inequality is nonnegative we obtain that
x(1− x) = y(1− y) = z(1− z) = 0 from which it follows that x, y, z are either 0 or 1.
This combined with the first equation of the system shows that exactly one of x, y, and
z is 1 and the other two are 0, and the problem is solved.

Solution 3 by the proposer.

By inspection we see that (1, 0, 0), (0, 1, 0) and (0, 0, 1) are solutions of the given system.
We claim that they are the only solutions of the system. In fact, for all t ∈ [0, 1] the
function f(t) = 3t is greater than or equal to the function g(t) = 2t2 +1, as can be easily
proven, for instance, by drawing their graphs when 0 ≤ t ≤ 1.

Since x2 + y2 + z2 = 1, then x ∈ [0, 1], y ∈ [0, 1] and z ∈ [0, 1]. Therefore

3x ≥ 2x2 + 1,
3y ≥ 2y2 + 1,
3z ≥ 2z2 + 1.

Adding up the preceding expressions yields

3x + 3y + 3z ≥ 2(x2 + y2 + z2) + 3 ≥ 5

and we are done

Also solved by Charles McCracken, Dayton, OH; Paolo Perfetti,
Mathematics Department, University “Tor Vergata,” Rome, Italy, and Boris
Rays, Chesapeake,VA.
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• 5037: Ovidiu Furdui, Campia Turzii, Cluj, Romania

Let k, p be natural numbers. Prove that

1k + 3k + 5k + · · ·+ (2n+ 1)k = (1 + 3 + · · ·+ (2n+ 1))p

for all n ≥ 1 if and only if k = p = 1.

Solution 1 by Carl Libis, Kingston, RI.

Since

(
1 + 3 + · · ·+ (2n+ 1)

)p

=

[
(n+ 1)2

]p
= (n+ 1)2p, it is clear that

(
1 + 3 + · · ·+ (2n+ 1)

)p

is a monic polynomial of degree 2p.

Let S2n+1
k =

2n+1∑

i=1

ik. Then

S2n+1
k =

n+1∑

i=1

(2i− 1)k +
n∑

i=1

(2i)k =
n∑

i=0

(2i+ 1)k + 2k
n∑

i=1

ik =
n∑

i=0

(2i+ 1)k + 2kSn
k .

Then
n∑

i=0

(2i+ 1)k = S2n+1
k − 2kSn

k . It is well known for sums of powers of integers Sn
k ,

that the leading term of Sn
k is

nk+1

k + 1
. Thus the leading term of

1k + 3k + 5k + · · ·+ (2n+ 1)k is

(2n+ 1)k+1

k + 1
− 2knk+1

k + 1
=

2k+1nk+1 − 2knk+1

k + 1
=

2knk+1

k + 1
.

This is monic if, and only if, k = 1. When k = 1 we have that

n∑

i=0

(2i+ 1) = S2n+1
1 − 2Sn

1 =
(2n+ 1)(2n+ 2)

2
− 2

n(n+ 1)

2
= (n+ 1)2.

For k, p natural numbers we have that

1k + 3k + 5k + · · ·+ (2n+ 1)k =

(
1 + 3 + · · ·+ (2n+ 1)

)p

for all n ≥ 1 if, and only if,

k = p = 1.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

If k = p = 1, the equality 1k + 3k + 5k + · · ·+ (2n+ 1)k = (1 + 3 + · · ·+ (2n+ 1))p is
trivial. Now suppose that the equality holds for all n ≥ 1. By putting n = 1, 2, we
obtain 1 + 3k = 4p and 1 + 3k + 5k = 9p. Hence

3k = 4p − 1 and
5k = 9p − 4p.

Eliminating k from the last two equations, we obtain 9p = 4p + (4p − 1)(ln 5/ ln 3). Hence,

9p < 2

(
4p(ln 5/ ln 3)

)

p ln 9 < ln 2 +
p(ln 4)(ln 5)

ln 3
, and
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p <
(ln 2)(ln 3)

(ln 3)(ln 9)− (ln 4)(ln 5)
= 4.16 · · · .

Thus p = 1, 2, 3, 4. But it is easy to check that only the case p = 1 and k = 1 admits
solutions in the natural numbers for the equation 1 + 3k = 4p, and this completes the
solution.

Solution 3 by Paul M. Harms, North Newton, KS.

Clearly if k = p = 1, the equation holds for all appropriate integers n. For the only if
part of the statement consider the contrapostive statement:

If p 6= 1 or k 6= 1, then for some n ≥ 1 the equation does not hold.

Consider n = 1. Then the equation in the problem is 1k + 3k = (1 + 3)p = 4p. If k = 1
with p > 1, then 4 < 4p so the equation does not hold.

If k > 1 with p = 1, then 1k + 3k > 4 so the equation does not hold.

Now consider both p > 1 and k > 1 using the equation in the form
3k = 4p − 1k = (2p − 1)(2p + 1).

If p > 1, then 2p − 1 > 1 and 2p + 1 > 1. Also, the expressions 2p − 1 and 2p + 1 are 2
units apart so that if 3 is a factor of one of these expressions then 3 is not a factor of the
other expression. Since both expressions are greater than one, if 3 is a factor of one of
the expressions, then the other expression has a prime number other than 3 as a factor.
Thus (2p − 1)(2p + 1) has a prime number other than 3 as a factor and cannot be equal
to 3k, a product of just the prime number 3. Thus the equation does not hold when
both p > 1 and k > 1.

Solution 4 by John Hawkins and David Stone, Statesboro, GA.

Denote 1k + 3k + 5k + · · ·+ (2n+ 1)k = (1 + 3 + · · ·+ (2n+ 1))p by (#). The condition
requesting all n ≥ 1 is overkill. Actually, we can prove the following are equivalent:

(a) condition (#) holds for all n ≥ 1,

(b) condition (#) holds for all n = 1,

(c) k = p = 1.

Clearly, (a)⇒ (b).

Also (c) ⇒ (a), for if k = p = 1, then (#) becomes the identity

1 + 3 + 5 + · · ·+ (2n+ 1) = (1 + 3 + · · ·+ (2n+ 1)).

Finally, we prove that (b) ⇒ (c). Assuming the truth of (#) for n = 1 tells us that
3k = 4p − 1.

If k = 1, we immediately conclude that p = 1 and we are finished.

Arguing by contradiction, suppose k ≥ 2, so 3k is actually a multiple of 9. Thus
4p ≡ 1(mod 9). Now consider the powers of 4 modulo 9:

40 ≡ 1(mod 9)
41 ≡ 4(mod 9)
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42 ≡ 7(mod 9)
43 ≡ 1(mod 9)

That is, 4 has order 3(mod 9), so 4p ≡ 1(mod 9) if and only if p is a multiple of 3. Based
upon some numerical testing, we consider 4p modulo 7: 4p = 43t ≡ 64t ≡ 1t ≡ 1(mod 7).
That is, 7 divides 4p − 1, so 4p − 1 cannot be a power of 3. We have reached a
contradiction.

Solution 5 by the proposer.

One implication is easy to prove. To prove the other implication we note that

1+3+ · · ·+(2n+1) =
n+1∑

k=1

(2k−1) = 2
n+1∑

k=1

k−(n+1) = (n+1)(n+2)−(n+1) = (n+1)2.

It follows that
1k + 3k + 5k + · · ·+ (2n+ 1)k = (n+ 1)2p.

We multiply the preceding relation by 2/(2n+ 1)k+1 and we get that

2

2n+ 1

((
1

2n+ 1

)k

+

(
3

2n+ 1

)k

+ · · ·+
(
2n+ 1

2n+ 1

)k
)

= 2
(n+ 1)2p

(2n+ 1)k+1
. (1)

Letting n→∞ in (1) we get that

1∫

0

xkdx =
1

k + 1
= lim

n→∞ 2
(n+ 1)2p

(2n+ 1)k+1
.

It follows that 2p = k + 1 and that 1
k+1 = 1

2k
. However, the equation k + 1 = 2k has a

unique positive solution namely k = 1. This can be proved by applying Bernouli’s
inequality as follows

2k = (1 + 1)k ≥ 1 + k · 1 = k + 1,

with equality if and only if k = 1. Thus, k = p = 1 and the problem is solved.

Also solved by Boris Rays, Chesapeake, VA.

Late Solutions

Late solutions were received from David C. Wilson of Winston-Salem, NC to
problems 5026, 5027, and 5028.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2009

• 5062: Proposed by Kenneth Korbin, New York, NY.

Find the sides and the angles of convex cyclic quadrilateral ABCD if
AB = BC = CD = AD − 2 = AC − 2.

• 5063: Proposed by Richard L. Francis, Cape Girardeau, MO.

Euclid’s inscribed polygon is a constructible polygon inscribed in a circle whose
consecutive central angle degree measures form a positive integral arithmetic sequence
with a non-zero difference.

a) Does Euclid’s inscribed n-gon exist for any prime n greater than 5?

b) Does Euclid’s n-gon exist for all composite numbers n greater than 2?

• 5064: Proposed by Michael Brozinsky, Central Islip, NY.

The Lemoine point of a triangle is that point inside the triangle whose distances to the
three sides are proportional to those sides. Find the maximum value that the constant
of proportionality, say λ, can attain.

• 5065: Mihály Bencze, Brasov, Romania.

Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers. Prove that

1)
n∑

i,j=1

|(i− j)(xi − xj)| =
n

2

n∑

i,j=1

|xi − xj |.

2)
n∑

i,j=1

(i− j)2 = n2(n2 − 1)

6
.

• 5066: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a, b, and c be the sides of an acute-angled triangle ABC. Let abc = 1. Let H be the
orthocenter, and let da, db, and dc be the distances from H to the sides BC, CA, and AB
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respectively. Prove or disprove that

3(a+ b)(b+ c)(c+ a) ≥ 32(da + db + dc)
2.

• 5067: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be complex numbers such that a+ b+ c = 0. Prove that

max {|a|, |b|, |c|} ≤
√
3

2

√
|a|2 + |b|2 + |c|2.

Solutions

• 5044: Proposed by Kenneth Korbin, New York, NY.

Let N be a positive integer and let

{
x = 9N2 + 24N + 14 and
y = 9(N + 1)2 + 24(N + 1) + 14.

Express the value of y in terms of x, and express the value of x in terms of y.

Solution by Armend Sh. Shabani, Republic of Kosova.

One easily verifies that
y − x = 18N + 33. (1)

From 9N2 + 24N + 14− x = 0 one obtains N1,2 =
−4±

√
2 + x

3
, and since N is a

positive integer we have

N =
−4 +

√
2 + x

3
. (2)

Substituting (2) into (1) gives:

y = x+ 9 + 6
√
2 + x. (3)

From 9(N + 1)2 + 24(N + 1) + 14− y = 0 one obtains N1,2 =
−7±√2 + y

3
, and since N

is a positive integer we have

N =
−7 +√2 + y

3
. (4)

Substituting (4) into (1) gives:

x = y + 9− 6
√
2 + y. (5)

Relations (3) and (5) are the solutions to the problem.

Comments: 1. Paul M. Harms mentioned that the equations for x in terms of y, as
well as for y in terms of x, are valid for integers satisfying the x, y and N equations in
the problem. The minimum x and y values occur when N = 1 and are x = 47 and
y = 98. 2. David Stone and John Hawkins observed that in addition to (47, 98),
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other integer lattice points on the curve of y = 9 + x+ 6
√
2 + x in the first quadrant are

(4, 98), (98, 167), (167, 254), (254, 359), and (23, 62).

Also solved by Brian D. Beasley, Clinton, SC; John Boncek, Montgomery,
AL; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, San
Angelo, TX; José Luis Dı́az-Barrero, Barcelona, Spain; Bruno Salgueiro
Fanego, Viveiro, Spain; Michael C. Faleski, University Center, MI; Michael
N. Fried, Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS;
David E. Manes, Oneonta, NY; Boris Rays, Chesapeake, VA; José
Hernández Santiago (student UTM), Oaxaca, México; David Stone and John
Hawkins (jointly), Statesboro, GA; David C.Wilson, Winston-Salem, NC,
and the proposer.

• 5045: Proposed by Kenneth Korbin, New York, NY.

Given convex cyclic hexagon ABCDEF with sides

AB = BC = 85
CD = DE = 104, and
EF = FA = 140.

Find the area of 4BDF and the perimeter of 4ACE.

Solution by Kee-Wai Lau, Hong Kong, China.

We show that the area of 4BDF iis 15390 and the perimeter of 4ACE is
123120

221
.

Let 6 AFE = 2α, 6 EDC = 2β, and 6 CBA=2γ so that

6 ACE = π − 2α, 6 CAE = π − 2β, and 6 AEC = π − 2γ.

Since 6 ACE + 6 CAE + 6 AEC = π, so

α+ β + γ = π

cosα+ cosβ + cos γ = 4 sin
α

2
sin

β

2
sin

γ

2
+ 1 or

(cosα+ cosβ + cos γ − 1)2 = 2(1− cosα)(1− cosβ)(1− cos γ). (1)

Denote the radius of the circumcircle by R. Applying the Sine Formula to 4ACE, we
have

R =
AE

2 sin 2α
=

EC

2 sin 2β
=

CA

2 sin 2γ
.

By considering triangles AFE, EDC, and CBA respectively, we obtain

AE = 280 sinα, EC = 208 sinβ, CA = 170 sin γ.

It follows that cosα =
70

R
, cosβ =

52

R
, and cos γ =

85

2R
. Substituting into (1) and

simplifying, we obtain

4R3 − 37641R− 1237600 = 0 or

(
2R− 221

)(
2R2 + 221R+ 5600

)
= 0.
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Hence,

R =
221

2
, cosα =

140

221
, sinα =

171

221

cosβ =
104

221
, sinβ =

195

221

cos γ =
85

221
, sin γ =

204

221
,

and our result for the perimeter of 4ACE.

It is easy to check that 6 BFD = α, 6 FDB = β, 6 DBF = γ so that
6 BAF = π − β, 6 DEF = π − γ.
Applying the cosine formula to 4BAF and 4DEF respectively, we obtain BF = 195
and DF = 204.

It follows, as claimed, that the area of

4BDF =
1

2

(
BF

)(
DF

)
sin 6 BFD =

1

2
(195)(204)

171

221
= 15390.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; David E. Manes,
Oneonta, NY; Boris Rays, Chesapeake, VA; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5046: Proposed by R.M. Welukar of Nashik, India and K.S. Bhanu, and M.N.
Deshpande of Nagpur, India.

Let 4n successive Lucas numbers Lk, Lk+1, · · · , Lk+4n−1 be arranged in a 2× 2n matrix
as shown below:




1 2 3 4 · · · 2n

Lk Lk+3 Lk+4 Lk+7 · · · Lk+4n−1

Lk+1 Lk+2 Lk+5 Lk+6 · · · Lk+4n−2




Show that the sum of the elements of the first and second row denoted by R1 and R2

respectively can be expressed as

R1 = 2F2nL2n+k

R2 = F2nL2n+k+1

where {Ln, n ≥ 1} denotes the Lucas sequence with L1 = 1, L2 = 3 and
Li+2 = Li + Li+1 for i ≥ 1 and {Fn, n ≥ 1} denotes the Fibonacci sequence,
F1 = 1, F2 = 1, Fn+2 = Fn + Fn+1.

Solution by Angel Plaza and Sergio Falcon, Las Palmas, Gran Canaria,
Spain.

R1 = Lk + Lk+3 + Lk+4 + Lk+7 + · · ·+ Lk+4n−2 + Lk+4n−1, and since Li = Fi−1 + Fi+1,
we have:
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R1 = Fk−1 + Fk+1 + Fk+2 + Fk+4 + Fk+3 + Fk+5 + · · ·+ Fk+4n−2 + Fk+4n

= Fk−1 +
4n∑

j=1

Fk+j − Fk+4n−1

= Fk−1 − Fk+4n−1 +
4n+k∑

j=0

Fj −
k∑

j=0

Fj

And since
m∑

j=0

Fj = Fm+2 − 1 we have:

R1 = Fk−1 − Fk+4n−1 + Fk+4n+2 − 1− Fk+2 + 1 = 2Fk+4n − 2Fk

where in the last equation it has been used that Fi+2 − Fi = Fi+1 + Fi − Fi−1 = 2Fi.
Now, using the relation LnFm = Fn+m − (−1)mFn−m (S. Vajda, Fibonacci and Lucas
numbers, and the Golden Section: Theory and Applications, Dover Press (2008)) in the
form L2n+kF2n = F4n+k − (−1)2nF2n+k−2n it is deduced R1 = 2F2nL2n+k.
In order to prove the fomula for R2 note that

R1 +R2 =
4n−1∑

j=0

Lk+j =
4n+k−1∑

j=0

Lj −
k−1∑

j=0

Lj

As before,
4n+k−1∑

j=0

Lj = Fk+4n + Fk+4n+2, while
k−1∑

j=0

Lj = Fk + Fk+2, so

R1 +R2 = Fk+4n − Fk + Fk+4n+2 − Fk+2

= L2n+kF2n + L2n+k+2F2n

And therefore,

R2 = F2n (L2n+k+2 − L2n+k) = F2nL2n+k+1

Also solved by Paul M. Harms, North Newton, KS; John Hawkins and
David Stone (jointly), Statesboro, GA, and the proposers.)

• 5047: Proposed by David C. Wilson, Winston-Salem, N.C.

Find a procedure for continuing the following pattern:

S(n, 0) =
n∑

k=0

(
n

k

)
= 2n

S(n, 1) =
n∑

k=0

(
n

k

)
k = 2n−1n

S(n, 2) =
n∑

k=0

(
n

k

)
k2 = 2n−2n(n+ 1)
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S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3n2(n+ 3)

...

Solution by David E. Manes, Oneonta, NY.

Let f(x) = (1 + x)n =
n∑

k=0

(
n

k

)
xk. For m ≥ 0,

S(n,m) =

(
x
d

dx

)m

(f(x))

∣∣∣∣
x=1

, where

(
x
d

dx

)m

is the procedure x
d

dx
iterated m times

and then evaluating the resulting function at x = 1. For example,

S(n, 0) = f(1) =
n∑

k=0

(
n

k

)
= 2n. Then

x
d

dx
(f(x)) = x

d

dx
(1 + x)n = x

d

dx

( n∑

k=0

(
n

k

)
xk
)

implies

nx(1 + x)n−1 =
n∑

k=0

(
n

k

)
k · xk. If x = 1, then

n∑

k=0

(
n

k

)
k = n · 2n−1 = S(n, 1).

For the value of S(n, 2) note that if

x
d

dx

[
nx(1 + x)n−1

]
= x

d

dx

[ n∑

k=0

(
n

k

)
kxk

]
, then

nx(nx+ 1)(1 + x)n−2 =
n∑

k=0

(
n

k

)
k2xk. If x = 1, then

n(n+ 1)2n−2 =
n∑

k=0

(
n

k

)
k2 = S(n, 2)

Similarly,

S(n, 3) =
n∑

k=0

(
n

k

)
k3 = 2n−3 · n2(n+ 3) and

S(n, 4) =
n∑

k=0

(
n

k

)
k4 = 2n−4 · n(n+ 1)(n2 + 5n− 2.)

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro GA, and the proposer.
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• 5048: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”
Rome, Italy.

Let a, b, c, be positive real numbers. Prove that

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥ 54

(a+ b+ c)2
(abc)3√

(ab)4 + (bc)4 + (ca)4
.

Solution1 by Boris Rays, Chesapeake, VA.

Rewrite the inequality into the form:

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ·

(
a+b+c

)2

·
√
(ab)4 + (bc)4 + (ca)4 ≥ 54(abc)3 (1)

We will use the Arithmetic-Geometric Mean Inequality (e.g., x+ y + z ≥ 3 3
√
xyz and

u+ v ≥ 2
√
uv) for each of the three factors on the left side of (1).

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ≥

√
3 3

√
c2(a2 + b2)2 · b2(c2 + a2)2 · a2(b2 + c2)2

≥
√
3 3

√
(abc)2(a2 + b2)2(c2 + a2)2(b2 + c2)2

≥
√
3 3

√
(abc)2(4a2b2)(4c2a2)(4b2c2)

=

√
3(abc)2/3

3
√
43a4b4c4

=
√
3(abc)2/34(abc)4/3

=
√
3 · 22(abc)2

= 2
√
3(abc) (2)

Also, since (a+ b+ c) ≥ 3 3
√
abc, we have

(a+ b+ c)2 ≥ 32
(

3
√
abc

)2

= 32(abc)2/3 (3)

√
(ab)4 + (bc)4 + (ca)4 ≥

√
3 3

√
(ab)4(bc)4(ca)4

=

√
3

3
√
a8b8c8

=
√
3(abc)8/3

=
√
3(abc)4/3 (4)

Combining (2), (3), and (4) we obtain:
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√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2 ·

(
a+ b+ c

)2

·
√
(ab)4 + (bc)4 + (ca)4

≥ 2
√
3(abc) · 32(abc)2/3

√
3(abc)4/3

= 2 · 33(abc)1+2/3+4/3

= 54(abc)3.

Hence, we have shown that (1) is true, with equality holding if a = b = c.

Solution 2 by José Luis Dı́az-Barrero, Barcelona, Spain.

The inequality claimed is equivalent to

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2

√
(ab)4 + (bc)4 + (ca)4 ≥ 54(abc)3

(a+ b+ c)2

Applying Cauchy’s inequality to the vectors ~u = (c(a2 + b2), b(c2 + a2), a(b2 + c2)) and
~v = (a2b2, c2a2, b2c2) yields

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2

√
(ab)4 + (bc)4 + (ca)4

≥ abc(ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2))

So, it will be suffice to prove that

(ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2))(a+ b+ c)2 ≥ 54a2b2c2 (1)

Taking into account GM-AM-QM inequalities, we have

ab(a2 + b2) + bc(b2 + c2) + ca(c2 + a2) ≥ 2(a2b2 + b2c2 + c2a2) ≥ 6abc
3
√
abc

and
(a+ b+ c)2 ≥ 9

3
√
a2b2c2

Multiplying up the preceding inequalities (1) follows and the proof is complete

Solution 3 by Kee-Wai Lau, Hong Kong, China.

By homogeneity, we may assume without loss of generality that abc = 1. We have

√
c2(a2 + b2)2 + b2(c2 + a2)2 + a2(b2 + c2)2

=

√(
a2 + b2

ab

)2

+

(
c2 + a2

ca

)2

+

(
b2 + c2

bc

)2

=

√(
a2 − b2
ab

)2

+

(
c2 − a2
ca

)2

+

(
b2 − c2
bc

)2

+ 12
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≥ 2
√
3.

By the arithmetic-geometric mean inequality, we have (a+ b = c)2 ≥ 9(abc)2/3 = 9 and
√
(ab)4 + (bc)4 + (ca)4 ≥

√
3(abc)4/3 =

√
3. The inequality of the problem now follows

immediately.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ovidiu Furdui, Campia
Turzii, Cluj, Romania; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Armend Sh. Shabani, Republic of Kosova, and the proposer.

5049: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Find a function f : < → < such that

2f(x) + f(−x) =
{−x3 − 3, x ≤ 1,
3− 7x3, x > 1.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie (jointly), San
Angelo, TX .

If x > 1, then
2f (x) + f (−x) = 3− 7x3. (1)

Also, since −x < −1, we have

2f (−x) + f (x) = − (−x)3 − 3 = x3 − 3. (2)

By (1) and (2), f (x) = 3− 5x3 and f (−x) = −3 + 3x3 when x > 1. Further,
f (−x) = −3 + 3x3 when x > 1 implies that f (x) = −3 + 3 (−x)3 = −3− 3x3 when x < −1.

Finally, when −1 ≤ x ≤ 1, we get −1 ≤ −x ≤ 1 also, and hence,

2f (x) + f (−x) = −x3 − 3, (3)

2f (−x) + f (x) = − (−x)3 − 3 = x3 − 3. (4)

As above, (3) and (4) imply that f (x) = −x3 − 1 when −1 ≤ x ≤ 1.

Therefore, f (x) must be of the form

f (x) =




−3− 3x3 if x < −1,
−1− x3 if −1 ≤ x ≤ 1, (5)
3− 5x3 if x > 1.

With some perseverance, this can be condensed to

f (x) =
∣∣∣x3 + 1

∣∣∣− 2
∣∣∣x3 − 1

∣∣∣− 4x3
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for all x ∈ <. Since it is straightforward to check that this function satisfies the given
conditions of the problem, this completes the solution.

Also solved by Brian D. Beasely, Clinton, SC; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton,
KS; N. J. Kuenzi, Oshkosh, WI; David E. Manes, Oneonta, NY; Boris Rays,
Chesapeake, VA; David C. Wilson, Winston-Salem, NC, and the proposer.

Late Solutions

Late solutions were received from Pat Costello of Richmond, KY to problem 5027;
Patrick Farrell of Andover, MA to 5022 and 5024, and from David C. Wilson of
Winston-Salem, NC to 5038.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion
University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solu-
tions can be sent by e-mail to eisenbt@013.net. Solutions to previously stated problems can be seen at
http://ssmj.tamu.edu

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2009

• 5068: Proposed by Kenneth Korbin, New York, NY

Find the value of √

1 + 2009

√
1 + 2010

√
1 + 2011

√
1 + · · ·.

• 5069: Proposed by Kenneth Korbin, New York, NY

Four circles having radii
1

14
,

1

15
,
1

x
and

1

y
respectively, are placed so that each of the circles is

tangent to the other three circles. Find positive integers x and y with 15 < x < y < 300.

• 5070: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Find all real solutions to the system

9(x21 + x22 − x23) = 6x3 − 1,

9(x22 + x23 − x24) = 6x4 − 1,
. . . . . . . . .

9(x2n + x21 − x22) = 6x2 − 1.





• 5071: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let ha, hb, hc be the altitudes of 4ABC with semi-perimeter s, in-radius r and circum-radius R,
respectively. Prove that

1

4

(
s(2s− a)

ha
+
s(2s− b)

hb
+
s(2s− c)

hc

)
≤ R2

r

(
sin2A+ sin2B + sin2C

)
.

• 5072: Proposed by Panagiote Ligouras, Alberobello, Italy

Let a, b and c be the sides, la, lb, lc the bisectors, ma,mb,mc the medians, and ha, hb, hc the
heights of 4ABC. Prove or disprove that

a)
(−a+ b+ c)3

a
+

(a− b+ c)3

b
+

(a+ b− c)3
c

≥ 4

3

(
ma · la + lb · hb + hc ·mc

)
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b) 3
∑

cyc

(−a+ b+ c)3

a
≥ 2

∑

cyc

[ma(la + ha)].

• 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania

Let m > −1 be a real number. Evaluate

∫ 1

0
{lnx}xmdx,

where {a} = a− [a] denotes the fractional part of a.

Solutions

• 5050: Proposed by Kenneth Korbin, New York, NY

Given 4ABC with integer-length sides, and with 6 A = 120o, and with (a, b, c) = 1.

Find the lengths of b and c if side a = 19, and if a = 192, and if a = 194.

Solution 1 by Paul M. Harms, North Newton, KS

Using the law of cosines we have a2 = b2 + c2 − 2bc cos 120o = b2 + c2 + bc.

When a = 19 we have 192 = 361 = b2 + c2 + bc. The result b = 5, c = 16 with a = 19 satisfies
the problem.

Some books indicate that the Diophantine equation a2 = b2 + c2 + bc has solutions of the form

b = u2 − v2, c = 2uv + v2, and a = u2 + v2 + uv .

For the above u = 3, v = 2 and a = 19 = 32 + 22 + 2(3).

Let a21 = b21 + c21 + b1c1 be another Diophantine equation which has solutions of the form
b1 = u21 − v21, c1 = 2u1v1 + v2, and a1 = u1 + v21 + u1v1. Let u1 be the largest and v1 be the
smallest of the numbers {b, c}. If b = c, the Diophantine equation becomes a21 = 3b21 which has
no integer solutions. Suppose c > b. (If b > c, a procedure similar to that below can be used).

Let u1 = c and v1 = b. Then b1 = c2 − b2 and c1 = 2cb+ b2. The expression
b21 + c21 + b1c1 = (c2 − b2)2 + (2cb+ b2)2 + (c2 − b2)(2cb+ b2) = (c2 + b2 + bc)2 = (a2)2 = a4 = a21.
In this case a1 = a2.

Now start with the above solution where a = 19, u = 3, v = 2, b = 5, and c = 16. For a = 192, let
u = 16 and v = 5. Then we have the solution b = 2312, c = 185 where
a2 = 194 = 231 + 1852 + 231(185).

For a = 194, let u = 231 and v = 185. Then b = 19136, c = 119695 and
a2 = 198 = 191362 + 1196952 + 19136(119695). Since 19 is not a factor of the b and c solutions
above, (a, b, c) = 1.

The solutions I have found are (19, 5, 16), (192, 231, 185), and (194, 19136, 119695).

Solution 2 by Bruno Salguerio Fanego, Viveiro, Spain

If 4ABC is such a triangle, by the cosine theorem a2 = b2 + c2 − 2bc cosA, that is

c2 + bc+ b2 − a2 = 0, c =
−b±

√
4a2 − 3b2

2
and 4a2 − 3b2
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must be positive integers and the latter a perfect square, with (a, b, c) = 1.

When a = 19, 0 < b ≤ 2 · 19/
√
3 ⇒ 0 < b ≤ 21; 4 · 192 − 3b2 is a positive perfect square for

b ∈ {24, 5} so c ∈ {5, 24}, and (a, b, c) = 1.

When a = 192, 0 < b ≤ 2 · 192/
√
3 ⇒ 0 < b ≤ 416; 4 · 194 − 3b2 is a positive perfect square

that is not a multiple of 19 for b ∈ {3 · 7 · 11, 5 · 37}, so c ∈ {5 · 37, 3 · 7 · 11}, and (a.b.c) = 1.

When a = 194, 0 < b ≤ 2 · 194/
√
3 ⇒ 0 < b ≤ 150481; 4 · 198 − 3b2 is a positive perfect square

that is not a multiple of 19 for b ∈ {5 · 37 · 647, 26 · 13 · 23}. So c ∈ {26 · 13 · 23, 5 · 37 · 647}, and
(a, b, c) = 1.

And reciprocally, the triangular inequalities are verified by a = 19, 16, 5, by a = 192, 231, 185,
and by a = 194, 119695, 19136, so there is a 4ABC with sides a, b and c with these integer
lengths, and with 6 A = 120o, and (a, b, c) = 1.

Thus, if a = 19, then {b, c} = {5, 16}; if a = 192, then {b, c} = {185, 231}, and if a = 194, then
{b, c} = {19136, 119695}.

Note: When a = 192, 4 · 194 − 3b2 is a perfect square for b ∈ {24 · 19, 3 · 7 · 11, 5 · 37, 5 · 19}.
When a = 194, 4 · 198 − 3b2 is a perfect square for
b ∈ {5 ·37 ·647, 24 ·193, 24 ·32 ·5 ·7 ·19, 3 ·7 ·11 ·192, 5 ·192 ·37, 17 ·19 ·163, 5 ·193, 26 ·13 ·23}.

Also solved by John Hawkins and David Stone (jointly), Statesboro, GA; David E.
Manes, Oneonta, NY; Boris Rays, Brooklyn, NY; David C.Wilson, Winston-Salem,
NC, and the proposer.

• 5051: Proposed by Kenneth Korbin, New York, NY

Find four pairs of positive integers (x, y) such that
(x− y)2
x+ y

= 8 with x < y.

Find a formula for obtaining additional pairs of these integers.

Solution 1 by Charles McCracken, Dayton, OH

The given equation can be solved for y in term of x by expanding the numerator and
multiplying by the denominator to get

x2 − 2xy + y2 = 8((x+ y) =⇒ y2 − (2x+ 8)y + (x2 − 8x) = 0.

Solving this by the quadratic formula yields y = x+ 4 + 4
√
x+ 1.

Since the problem calls for integers we choose values of x that will make x+ 1 a square.
Specifically

x = 3, 8, 15, 24, 35, · · · or
x = k2 + 2k, k ≥ 1

The first four pairs are (3, 15), (8, 24), (15, 35), (24, 48).

In general, x = k2 + 2k and y = k2 + 6k + 8, k ≥ 1.

Solution 2 by Armend Sh. Shabani, Republic of Kosova

The pairs are (3, 15), (8, 24), (15, 35), (24, 48). In order to find a formula for additional pairs we
write the given relation (y − x)2 = 8(x+ y) in its equivalent form y − x = 2

√
2(x+ y).
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From this it is clear that x+ y should be of the form 2s2, and this gives the system of equations:

{
x+ y = 2s2

y − x = 4s

The solutions to this system are x = s2 − 2s, y = s2 + 2s, and since the solutions should be
positive, we choose s ≥ 3.

Solution 3 by Boris Rays, Brooklyn, NY

Let {
x+ y = a
y − x = b

Since x < y and a and b are positive integers, it follows that b2 = 8a and that b=2
√
2a. Since b

is a positive integer we may choose values of a so that 2a is a perfect square. Specifically, let
a = 22n−1, where n = 1, 2, 3, · · ·. Therefore, 2a = 2 · 22n−1 = 22n = (2n)2, where n = 1, 2, 3, · · · .
Similarly, b = 2n+1 n = 1, 2, 3, · · ·.
Substituting these values of a and of b into the original system gives:

x =
22n−1 − 2n+1

2
= 2n(2n−2 − 1)

y =
22n−1 + 2n+1

2
= 2n(2n−2 + 1)

and since we want x, y > 0 we choose n = 3, 4, 5, · · ·. The ordered triplets

(n, x, y) : (3, 8, 24), (4, 48, 80), (5, 224, 288), (6, 960, 1088).

satisfy the problem. It can also be easily shown that our general values of x and y also satisfy
the original equation.

Also solved by Brian D. Beasley, Clinton, SC; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie (jointly), San Angelo, TX; Pat Costello, Richmond,
KY; Michael C. Faleski, University Center, MI; Bruno Salgueiro Fanego, Viveiro,
Spain; Paul M. Harms, North Newton, KS; Jahangeer Kholdi (with John Viands
and Tyler Winn (students),Western Branch High School, Chesapeake, VA),
Portsmouth, VA; Tuan Le (student, Fairmont, High School), Anaheim, CA; David
E. Manes, Oneonta, NY; Melfried Olson, Honolulu, HI; Jaquan Outlaw (student,
Heritage High School) Newport News, VA and Robert H. Anderson (jointly),
Chesapeake, VA; Boris Rays, Brooklyn, NY; Vicki Schell, Pensacola, FL; David
Stone and John Hawkins (jointly), Statesboro, GA; David C. Wilson,
Winston-Salem, NC, and the proposer.

• 5052: Proposed by Juan-Bosco Romero Márquez, Valladolid, Spain

If a ≥ 0, evaluate:

∫ +∞

0
arctg

2a(1 + ax)

x2(1 + a2) + 2ax+ 1− a2
dx

1 + x2
.

Solution by Kee-Wai Lau, Hong Kong, China
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Denote the integral by I. We show that

I =





π

4
arctg

2a

1− a2 , 0 ≤ a < 1;

π2

8
, a = 1; (1)

π

4

(
π − arctg 2a

a2 − 1
− 4arctg

√
a4 + a2 − 1− a

1 + a2

)
, a > 1.

Let J =

∫ +∞

0

2a(ax2 + 2x+ a)arctg(x)

(1 + x2)

(
(a2 + 1)x2 + 4ax+ a2 + 1

)dx. Integrating by parts, we see that for

0 ≤ a < 1,

I =

∫ +∞

0
arctg

2a(1 + ax)

x2(1 + a2) + 2ax+ 1− a2d(arctg(x))

=

[
arctg

2a(1 + ax)

x2(1 + a2) + 2ax+ 1− a2arctg(x)
]+∞

0

−
∫ +∞

0
arctg(x)d

(
arctg

2a(1 + ax)

x2(1 + a2) + 2ax+ 1− a2
)

= J.

For a ≥ 1, let ra =

√
a4 + a2 − 1− a

1 + a2
be the non-negative root of the quadratic equation

(1 + a2)x2 + 2ax+ 1− a2 = 0 so that

I =

[
arctg

2a(1 + ax)

x2(1 + a2) + 2ax+ 1− a2arctg(x)
]ra

0

+

[
arctg

2a(1 + ax)

x2(1 + a2) + 2ax+ 1− a2arctg(x)
]+∞

ra

+ J

= −πarctg(ra) + J.

By substituting x =
1

y
and making use of the fact that arctg(1/y) =

π

2
− arctg(y) we obtain

J = 2a

∫ +∞

0

(ay2 + 2y + a)arctg(1/y)

(1 + y2)

(
(a2 + 1)y2 + 4ay + a2 + 1

)dy
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= 2a

(
π

2

∫ +∞

0

(ay2 + 2y + a)

(1 + y2)

(
(a2 + 1)y2 + 4ay + a2 + 1

)dy
)
− J

so that J =
πa

2

∫ +∞

0

(ay2 + 2y + a)

(1 + y2)

(
(a2 + 1)y2 + 4ay + a2 + 1

)dy. Resolving into partial fractions

we obtain

J =
π

4

(∫ +∞

0

dy

1 + y2
+ (a2 − 1)

∫ +∞

0

dy

(1 + a2)y2 + 4ay + 1 + a2

)
.

Clearly, J =
π2

8
for a = 1. For p > 0, pr > q2, we have the well know result

∫ +∞

0

dy

py2 + 2qy + r
=

1√
pr − q2

arctg
q√

pr − q2
,

so that for a ≥ 0, a 6= 1

J =
π

4

(
π

2
+

a2 − 1

|a2 − 1|arctg
2a

|a2 − 1|

)
.

Hence (1) follows and this completes the solution.

Also solved by Paolo Perfetti, Mathematics Department, University “Tor Vergata”,
Rome, Italy, and the proposer.

• 5053: Proposed by Panagiote Ligouras, Alberobello, Italy

Let a, b and c be the sides, r the in-radius, and R the circum-radius of 4ABC. Prove or
disprove that

(a+ b− c)(b+ c− a)(c+ a− b)
a+ b+ c

≤ 2rR.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Roger
Zarnowski (jointly), San Angelo, TX

The given inequality is essentially the same as Padoa’s Inequality which states that

abc ≥ (a+ b− c) (b+ c− a) (c+ a− b) ,

with equality if and only if a = b = c. We will prove this using the approach presented in [1].

Let x =
a+ b− c

2
, y =

b+ c− a
2

, and z =
c+ a− b

2
. Then, x, y, z > 0 by the Triangle

Inequality and a = x+ z, b = x+ y, c = y + z. By the Arithmetic - Geometric Mean Inequality,

abc = (x+ z)(x+ y)(y + z)

≥ (2
√
xz)(2

√
xy)(2

√
yz)

= (2x)(2y)(2z)

= (a+ b− c)(b+ c− a)(c+ a− b),

with equality if and only if x = y = z, i.e., if and only if a = b = c.
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If A = Area(4ABC) and s = a+ b+ c

2
, then

R =
abc

4A
and A = rs = r

(
a + b + c

2

)
,

which imply that 2rR =
abc

a+ b+ c
. Hence, the problem reduces to Padoa’s Inequality.

Reference:

[1] R. B. Nelsen, Proof Without Words: Padoa’s Inequality, Mathematics Magazine 79
(2006) 53.

Also solved by Scott H. Brown, Montgomery, AL; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS;
Kee-Wai Lau, Hong Kong, China; Tuan Le (student, Fairmont High School),
Anaheim, CA; David E. Manes, Oneonta, NY; Manh Dung Nguyen (student,
Special High School for Gifted Students), HUS, Vietnam; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.)

• 5054: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let x, y, z be positive numbers such that xyz = 1. Prove that

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx+ x2
≥ 1.

Solution 1 by Ovidiu Furdui, Campia Turzii, Cluj, Romania

First we note that if a and b are two positive numbers then the following inequality holds

a2 − ab+ b2

a2 + ab+ b2
≥ 1

3
(1).

Let

S =
x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx+ x2
.

We have,

S =
x3 − y3 + y3

x2 + xy + y2
+
y3 − z3 + z3

y2 + yz + z2
+
z3 − x3 + x3

z2 + zx+ x2

= (x− y) + y3

x2 + xy + y2
+ (y − z) + z3

y2 + yz + z2
+ (z − x) + x3

z2 + zx+ x2

=
y3

x2 + xy + y2
+

z3

y2 + yz + z2
+

x3

z2 + zx+ x2
.

It follows, based on (1), that

S =
1

2
(S + S)

=
1

2

(
x3 + y3

x2 + xy + y2
+

y3 + z3

y2 + yz + z2
+

z3 + x3

z2 + zx+ x2

)

=
1

2

(
(x+ y)

x2 − xy + y2

x2 + xy + y2
+ (y + z)

y2 − yz + z2

y2 + yz + z2
+ (z + x)

z2 − xz + x2

z2 + zx+ x2

)
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≥ 1

2

(
x+ y

3
+
y + z

3
+
z + x

3

)

=
x+ y + z

3
≥ 3
√
xyz = 1, and the problem is solved.

Solution 2 by Manh Dung Nguyen (student, Special High School for Gifted
Students) HUS, Vietnam

Firstly, we have,

∑ x3 − y3
(x2 + xy + y2)

=
∑ (x− y)(x2 + xy + y2)

(x2 + xy + y2)
=
∑

(x− y) = 0.

Hence,
∑ x3

x2 + xy + y2
=
∑ y3

x2 + xy + y2
.

So it suffices to show that,
∑ x3 + y3

x2 + xy + y2
≥ 2.

On the other hand,

3(x2 − xy + y2)− (x2 + xy + y2) = 2(x− y)2 ≥ 0.

Thus,
∑ x3 + y3

x2 + xy + y2
=
∑ (x+ y)(x2 − xy + y2)

x2 + xy + y2
=
∑ x+ y

3
=

2(x+ y + z)

3
.

By the AM-GM Inequality, we have,

x+ y + z ≥ 3 3
√
xyz = 3,

so we are done.
Equality hold if and only if x = y = z = 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It can be checked readily that,

x3

x2 + xy + y2
=

(2x− y)
3

+
(x+ y)(x− y)2
3(x2 + xy + y2)

≥ (2x− y)
3

.

Similarly,
y3

y2 + yz + z2
≥ (2y − z)

3
,

z3

z2 + zx+ x2
≥ (2z − x)

3
.

Hence by the arithmetic mean-geometric mean inequality, we have:

x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx+ x2

≥ x+ y + z

3
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≥ 3
√
xyz

= 1.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie (jointly), San
Angelo, TX; Scott H. Brown, Montgomery, AL; Michael Brozinsky, Central Islip,
NY; Bruno Salgueiro Fanego, Viveiro, Spain; Tuan Le (student, Fairmont High
School), Anaheim, CA; Paolo Perfetti, Mathematics Department, University “Tor
Vergata”, Rome, Italy; Boris Rays, Brooklyn, NY; Armend Sh. Shabani, Republic
of Kosova, and the proposer.

• 5055: Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania

Let α be a positive real number. Find the limit

lim
n→∞

n∑

k=1

1

n+ kα
.

Solution 1 by Paolo Perfetti, Mathematics Department, University “Tor Vergata”,
Rome, Italy

Answer:

The limit is





0, if α > 1;
1, if 0 < α < 1;
ln 2, if α = 1.

Proof: Let α > 1.

Writing kα =
N∑

i=1

kα

N
, by the AGM we have

1

n+ kα
=

1
n
2 + n

2 + kα

N + . . .+ kα

N

≤ 1

n
2 +

(
n

2

kαN

NN

) 1
N+1

=
1

n
2 +

n
1

N+1k
αN
N+1

2
1

N+1N
N

N+1

≤ 1

n
1

N+1


1

2 +
k

αN
N+1

2
1

N+1N
N

N+1




and we observe that αN/(N + 1) > 1 if N > 1/(α− 1). Thus we write

0 <
n∑

k=1

1

n+ kα
≤ n−1/(N+1)

∞∑

k=1

1(
1
2 + k

αN
N+1

2
1

N+1N
N

N+1

)

The series converges and the limit is zero.

Let α < 1. Trivially we have
n∑

k=1

1

n+ kα
≤

n∑

k=1

1

n
= 1.

Moreover,
n∑

k=1

1

n+ kα
≥

n∑

k=1

1

n

1

1 + kα

n

≥
n∑

k=1

1

n
(1− kα

n
) = 1−

n∑

k=1

kα

n2
≥ 1− n1+α

n2
,
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1 ≥ (1− x2) has been used. By comparison the limit equals one since

1 ≤
n∑

k=1

1

n+ kα
≤ 1− n1+α

n2

The last step is α = 1. We need the well known equality Hn ≈
n∑

k=1

1

k
= lnn+ γ + o(1) and then

n∑

k=1

1

n+ k
=

2n∑

k=n+1

(H2n −Hn) = ln(2n)− lnn+ o(1)→ ln 2

The proof is complete.

Solution 2 by David Stone and John Hawkins, Statesboro, GA

Below we show that for 0 < α < 1, the limit is 1; for α = 1, the limit is ln 2; and for α > 1, the
limit is 0.

For α = 1 we get ∫ 1

0

1

1 + u
du ≥

n∑

k=1

1

n+ k
≥
∫ (n+1)/n

1/n

1

1 + u
du.

Since
1

2
≤ 1

1 + u
≤ 1, we know that the limit exists as n approaches infinity and is given by

lim
n→∞

n∑

k=1

1

n+ kα
=

∫ 1

0

1

1 + u
du = ln(1 + u)

∣∣∣∣
1

0
= ln 2− ln 1 = ln 2.

Next suppose α < 1. Then
0 < kα ≤ nα for 1 ≤ k≤n, so

n < n+ kα ≤ n+ nα and

1

n+ nn
≤ 1

n+ kα
<

1

n
. Thus,

n∑

k=1

1

n+ nα
≤

n∑

k=1

1

n+ kα
<

n∑

k=1

1

n
= 1, or

n

n+ nα
≤

n∑

k=1

1

n+ kα
< 1. Hence,

lim
n→∞

n

n+ nα
≤ lim

n→∞

n∑

k=1

1

n+ kα
≤ 1

lim
n→∞

1

1 + αnα−1
≤ lim

n→∞

n∑

k=1

1

n+ kα
≤ 1. But,

lim
n→∞

1

1 + αnα−1
= 1, since α− 1 < 0. Therefore,

lim
n→∞

n∑

k=1

1

n+ kα
= 1.

Finally, suppose α > 1.
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We note that
1

n+ kα
is a decreasing function of k and as a result we can write

0 ≤
∞∑

k=1

1

n+ kα
≤
∫ n

0

1

n+ kα
dk =

1

n

∫ 1

0

1

1 +
kn

nα/α

dk.

Using the substitution u =
k

u1/α
with du =

1

n1/α
dk, the above becomes,

0 ≤
n∑

k=1

1

n+ kα
≤ n1/α

n

∫ n(n−1)/n

0

1

1 + uα
du =

1

n(α−1)/α

∫ n(n−1)/α

0

1

1 + uα
du

≤ 1

n(α−1)/α

∫ n

0

1

1 + uα
du

≤ 1

n(α−1)α

∫ 1

0

1

1 + uα
du+

1

n(α−1)/α

∫ n

1

1

1 + uα
du

≤ 1

n(α−1)/α
(1) +

1

n(α−1)/α

∫ n

1

1

1 + u
du

=
1

n(α−1)/α
(1) +

1

n(α−1)/α
(1)

[
ln(1 + n)− ln 2

]
.

That is,

0 ≤ lim
n→∞

n∑

k=1

1

n+ kα
≤ lim

n→∞
1

n(α−1)/α
+ lim

n→∞

ln

(
n+1
2

)

n(α−1)/α
.

Using L’Hospital’s rule repeatedly we get,

lim
n→∞

1

n(α−1)/α
+ lim

n→∞

ln

(
n+1
2

)

n(α−1)/α
= 0 + lim

n→∞

2
n+1(

α−1
α

)
n−1/α

= lim
n→∞

2αn1/α

(α− 1)(n+ 1)

= lim
n→∞

2

(α− 1)(n)1−1/α

= 0.

Thus, lim
n→∞

n∑

k=1

1

n+ kα
= 0 for α > 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that lim
n→∞

n∑

k=1

1

n+ kα
=





1, 0 < α < 1;
ln 2, α = 1;
0, α > 1.

For 0 < α < 1, we have
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1

1 + nα−1
=

n∑

k=1

1

n+ nα
≤

n∑

k=1

1

n+ kα
<

n∑

k=1

1

n
= 1 and so lim

n→∞

n∑

k=1

1

n+ kα
= 1.

For α = 1 we have

lim
n→∞

n∑

k=1

1

n+ kα
= lim

n→∞

n∑

k=1

1

n+ k
= lim

n→∞

n∑

k=1

1

n

1

(1 + k/n)
=

∫ 1

0

dx

1 + x
= ln 2.

For α > 1, let t be any real number satisfying
1

α
< t < 1 and let m = bntc.

We have

0 <
n∑

k=1

1

n+ kα
=

m∑

k=1

1

n+ kα
+

n∑

k=m+1

1

n+ kα
<
m

n
+

n−m
(m+ 1)α

≤ 1

n1−t
+

1

nαt−1
,

which tends to 0 as n tends to infinity. It follows that lim
n→∞

n∑

k=1

1

n+ kα
= 0.

This completes the solution.

Also solved by Valmir Krasniqi, Prishtina, Kosova, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2009

• 5074: Proposed by Kenneth Korbin, New York, NY

Solve in the reals:
√
25 + 9x+ 30

√
x−

√
16 + 9x+ 30

√
x− 1 =

3

x
√
x
.

• 5075: Proposed by Kenneth Korbin, New York, NY

An isosceles trapezoid is such that the length of its diagonal is equal to the sum of the
lengths of the bases. The length of each side of this trapezoid is of the form a+ b

√
3

where a and b are positive integers.

Find the dimensions of this trapezoid if its perimeter is 31 + 16
√
3.

• 5076: Proposed by M.N. Deshpande, Nagpur, India

Let a, b, and m be positive integers and let Fn satisfy the recursive relationship

Fn+2 = mFn+1 + Fn, with F0 = a, F1 = b, n ≥ 0.

Furthermore, let an = F 2
n + F 2

n+1, n ≥ 0. Show that for every a, b,m, and n,

an+2 = (m2 + 2)an+1 − an.

• 5077: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Find all triplets (x, y, z) of real numbers such that

xy(x+ y − z) = 3,
yz(y + z − x) = 1,
zx(z + x− y) = 1.





• 5078: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,”
Rome, Italy

Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

a√
b(b+ c)

+
b√

c(a+ c)
+

c√
a(a+ b)

≥ 3

2

1√
ab+ ac+ cb

.
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• 5079: Proposed by Ovidiu Furdui, Cluj, Romania

Let x ∈ (0, 1) be a real number. Study the convergence of the series

∞∑

n=1

x
sin

1

1
+ sin

1

2
+ · · ·+ sin

1

n .

Solutions

• 5056: Proposed by Kenneth Korbin, New York, NY

A convex pentagon with integer length sides is inscribed in a circle with diameter
d = 1105. Find the area of the pentagon if its longest side is 561.

Solution by proposer

The answer is 25284.

The sides are 561, 169, 264, 105, and 47 (in any order).

Check: arcsin

(
561

d

)
= arcsin

(
169

d

)
+ arcsin

(
264

d

)
+ arcsin

(
105

d

)
+ arcsin

(
47

d

)
.

Let AB = 561, BC = 105, CD = 47, DE = 169, EA = 264. Then Diag AC = 468.

Check: arcsin

(
468

d

)
= arcsin

(
47

d

)
+ arcsin

(
169

d

)
+ arcsin

(
264

d

)
.

Area 4ABC =
√
567 · 99 · 462 · 6 = 12474.

Diag AD = 425.

Check: arcsin

(
425

d

)
= arcsin

(
169

d

)
+ arcsin

(
264

d

)
.

Area 4ACD =
√
470 · 45 · 423 · 2 = 4230, and

Area 4ADE =
√
429 · 260 · 165 · 4 = 8580.

Area pentagon = 12474 + 4230 + 8580 = 25284.

Editor’s comments: Several solutions to this problem were received each claiming, at
least initially, that the problem was impossible. I sent these individuals Ken’s proof and
some responded with an analysis of their errors. Brian Beasley of Clinton, SC
responded as follows:

“My assumption was that the inscribed pentagon was large enough to contain the center
of the circle, so that I could subdivide the pentagon into five isosceles triangles, each
with two radii as sides along with one side of the pentagon. But this pentagon is very
small compared to the circle; it does not contain the center of the circle, and the ratio of
its area to the area of the circle is only bout 2.64%. Attached is a rough diagram with
two attempts to draw such an inscribed pentagon.”

“This has been a fascinating exercise! I found a Wolfram site and a Monthly paper with
results about cyclic pentagons: <http://mathworld.wolfram.com/CyclicPentagon.html>
and Areas of Polygons Inscribed in a Circle, by D. Robbins, American Mathematical
Monthly, 102(6), 1995, 523-530.”
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“I salute Ken for creating this problem and for finding the arcsine identities to make it
work.”

David Stone and John Hawkins of Statesboro GA wrote: “Using MATLAB, we
found the following four cyclic pentagons which have a side of length 561 and can be
inscribed in a circle of diameter 1105. The first one has longest side 561, as required by
the problem.”

561 264 169 105 47 Area = 25284
817 663 663 561 520 Area = 705276
817 744 576 561 520 Area = 699984
817 744 663 561 425 Area = 692340

• 5057: Proposed by David C. Wilson, Winston-Salem, N.C.

We know that 1 + x+ x2 + x3 + · · · =
∞∑

k=0

xk =
1

1− x where −1 < x < 1.

Find formulas for
∞∑

k=1

kxk,
∞∑

k=0

k2xk,
∞∑

k=0

k3xk,
∞∑

k=0

k4xk, and
∞∑

k=0

k5xk.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
San Angelo, TX

By differentiating the geometric series when |x| < 1,

∞∑

k=1

xk =
1

1− x

⇒
∞∑

k=1

kxk−1 =
1

(1− x)2

⇒
∞∑

k=1

kxk =
x

(1− x)2 (1)

Similarly, by differentiating (1),

∞∑

k=1

k2xk−1 =
1 + x

(1− x)3

⇒
∞∑

k=1

k2xk =
x(1 + x)

(1− x)3 .

Continuing this technique, it can be shown that

∞∑

k=1

k3xk =
x(x2 + 4x+ 1)

(1− x)4
∞∑

k=1

k4xk =
x(x3 + 11x2 + 11x+ 1)

(1− x)5
∞∑

k=1

k5xk =
x(x4 + 26x3 + 66x2 + 26x+ 1)

(1− x)6

Solution 2 by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy
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The sums are respectively:

x

(1− x)2 ,
x(x+ 1)

(1− x)3 ,
x(x2 + 4x+ 1)

(1− x)4 ,

x(x3 + 11x2 + 11x+ 1)

(1− x)5 ,
x(x4 + 26x3 + 66x2 + 26x+ 1)

(1− x)6
One might invoke standard theorems about the differentiability of convergent power
series, but we propose the following proof which we believe is attributed to Euler.
We define

Sp(x)
.
=

∞∑

k=1

kpxk, p = 1, . . . , 5 and employ
∞∑

k=1

xk =

( ∞∑

k=0

xk
)
− 1 =

1

1− x − 1 =
x

1− x .

To compute
∞∑

k=0

xk − 1 =
1

1− x we proceed as follows:

P
.
=

∞∑

k=0

xk = 1 + x(1 + x+ x2 + . . .) = 1 + xP =⇒ P =
1

1− x.

S1(x) :

∞∑

k=1

kxk =
∞∑

k=2

(k − 1)xk +
∞∑

k=0

xk − 1 = x
∞∑

n=1

nxn +
1

1− x − 1 or

(1− x)
∞∑

k=1

kxk =
x

1− x =⇒
∞∑

k=1

kxk =
x

(1− x)2 .

S2(x) :

∞∑

k=1

k2xk =
∞∑

k=2

(k − 1)2xk + 2
∞∑

k=1

kxk −
∞∑

k=1

xk or

∞∑

k=1

k2xk − x
∞∑

n=1

n2xn = 2
∞∑

k=1

kxk −
∞∑

k=1

xk

=
2x

(1− x)2 −
x

(1− x) =⇒ S2(x) =
x(x+ 1)

(1− x)3 .

S3(x) :

∞∑

k=1

k3xk =
∞∑

k=2

(k − 1)3xk + 3
∞∑

k=1

k2xk − 3
∞∑

k=1

kxk +
∞∑

k=1

xk

= x
∞∑

k=1

k3xk + 3
∞∑

k=1

k2xk − 3
∞∑

k=1

kxk +
∞∑

k=1

xk or

(1− x)
∞∑

k=1

k3xk = 3S2(x)− 3S1(x) +
x

1− x =⇒ S3(x) =
x(x2 + 4x+ 1)

(1− x)4 .

S4(x) :
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∞∑

k=1

k4xk =
∞∑

k=2

(k − 1)4xk + 4
∞∑

k=1

k3xk − 6
∞∑

k=1

k2xk + 4
∞∑

k=1

kxk −
∞∑

k=1

xk

= x
∞∑

k=1

k4xk + 4
∞∑

k=1

k3xk − 6
∞∑

k=1

k2xk + 4
∞∑

k=1

kxk −
∞∑

k=1

xk or

(1−x)
∞∑

k=1

k4xk = 4S3(x)− 6S2(x)+4S1(x)−
x

1− x =⇒ S4(x) =
x(x3 + 11x2 + 11x+ 1)

(1− x)5.

S5(x) :

∞∑

k=1

k5xk =
∞∑

k=2

(k − 1)5xk + 5
∞∑

k=1

k4xk − 10
∞∑

k=1

k3xk + 10
∞∑

k=1

k2xk − 5
∞∑

k=1

kxk +
∞∑

k=1

xk

= x
∞∑

k=1

k5xk + 5S4(x)− 10
∞∑

k=1

k3xk + 10
∞∑

k=1

k2xk − 5
∞∑

k=1

kxk +
∞∑

k=1

xk or

(1− x)
∞∑

k=1

k5xk = 5S4(x)− 10S3(x) + 10S2(x)− 5S1(x) +
x

1− x

=⇒ S5(x) =
x(x4 + 26x3 + 66x2 + 26x+ 1)

(1− x)6 .

Also solved by Matei Alexianu (student, St. George’s School), Spokane,WA;
Brian D. Beasley, Clinton, SC; Sully Blake (student, St. George’s School),
Spokane,WA; Michael Brozinsky, Central Islip, NY; Mark Cassell (student,
St. George’s School), Spokane,WA; Richard Caulkins (student, St. George’s
School), Spokane,WA; Pat Costello, Richmond, KY; Michael C. Faleski,
University Center, MI; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
Harms, North Newton, KS; John Hawkins and David Stone (jointly),
Statesboro, GA; David E. Manes, Oneonta, NY; John Nord, Spokane, WA;
Nguyen Pham and Quynh Anh (jointly; students, Belarusian State
University), Belarus; Boris Rays, Brooklyn, NY, and the proposer.

• 5058: Proposed by Juan-Bosco Romero Márquez, Avila, Spain.

If p, r, a,A are the semi-perimeter, inradius, side, and angle respectively of an acute
triangle, show that

r + a ≤ p ≤ p

sinA
≤ p

tan
A

2

,

with equality holding if, and only if, A = 90o.

Solution by Manh Dung Nguyen,(student, Special High School for Gifted
Students) HUS, Vietnam
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1) r+ a ≤ p :

tan
A

2
≤ 1 for all A ∈ (0, π/2], so by the well known formula tan

A

2
=

(p− b)(p− c)
p(p− a) we

have (p− b)(p− c) ≤ p(p− a). Letting S be the area of 4ABC and using Heron’s
formula,

S2 = p2r2 = p(p− a)(p− b)(p− c) ≤ p2(p− a)2. Thus

r ≤ p− a or r + a ≤ p.

2) p ≤ p

sinA
:

We have sinA ≤ 1 for all A ∈ (0, π), so p ≤ p

sinA
.

3)
p

sinA
≤ p

tan
A

2

:

For A ∈ (0, π/2] we have

sinA− tan
A

2
= sin

A

2

(
2 cos

A

2
− 1

cos
A

2

)
=

sin
A

2
cosA

cos
A

2

≥ 0. Hence

p

sinA
≤ p

tan
A

2

.

Equality holds if and only if A = 900.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Scott H. Brown, Montgomery, AL; Bruno
Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; John
Hawkins and David Stone (jointly), Statesboro, GA; Kee-Wai Lau, Hong
Kong, China; Boris Rays, Brooklyn, NY, and the proposer.

• 5059: Proposed by Panagiote Ligouras, Alberobello, Italy.

Prove that for all triangles ABC

sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin

(
A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 6
√
3 + 1

8
.

Editor’s comment: Many readers noted that the inequality as stated in the problem is

incorrect. It should have been
3(2
√
3 + 1)

2
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We need the following inequalities

sin(A) + sin(B) + sin(C) ≥ sin(2A) + sin(2B) + sin(2C) (1)

sin(A) + sin(B) + sin(A) ≤ 3
√
3

2
(2)

6X
ia
ng
’s
T
ex
m
at
h



sin(
A

2
) + sin(

B

2
) + sin(

C

2
) ≤ 3

2
(3)

Inequalities (1), (2), (3) appear respectively as inequalities 2.4, 2.2(1),and 2.9 in
Geometric Inequalities by O. Bottema, R.Z. Dordevic, R.R. Janic, D.S. Mitrinovic, and
P.M. Vasic, (Groningen), 1969.

It follows from (1),(2),(3) that

sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin

(
A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 3(2

√
3 + 1)

2
.

Solution 2 by John Hawkins and David Stone, Statesboro, GA

We treat this as a Lagrange Multiplier Problem: let

f(A,B,C) = sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin

(
A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
.

We wish to find the maximum value of this function of three variables, subject to the
constraint g(A,B,C) : A+B + C = π. That is, (A,B,C) lies in the closed, bounded,
triangular region in the first octant with vertices on the coordinate axes:
(π, 0, 0), (0, π, 0), (0, 0, π).

By taking partial derivatives with respect to the variables A,B, and C and setting

∇f(A,B,C) = λ∇g(A,B,C) or
〈
fA, fB, fC

〉
= λ

〈
gA, gB, gC

〉
= λ〈1, 1, 1〉, we are lead

to the system





2 cos(2A) + cos(A) + 1
2 cos

(
A

2

)
= λ

2 cos(2B) + cos(B) + 1
2 cos

(
B

2

)
= λ

2 cos(2C) + cos(C) + 1
2 cos

(
C

2

)
= λ

It is clear that one solution is to let A = B = C. We claim there are no others in our
domain.

To show this, we investigate the fuction h(θ) = 2 cos(2θ) + cos(θ) +
1

2
cos

(
θ

2

)
on the

interval 0 ≤ θ ≤ π. Finding a solution to our system is equivalent to finding values A,B
and C such that h(A) = h(B) = h(C) = λ.

We determine that h(0) = 3.5; then the function h decreases, passing through height 1
at (0.802,1), reaching a minimum at (1.72,−1.73), then rising to height 1 at π. No
horizontal line crosses the graph three times, so we cannot find distinct A,B and C with
h(A) = h(B) = h(C). In fact, because the function is decreasing from 0 to 1.72, and
increasing from 1.72 to π, any horizontal line crossing the graph more than once must
do so after θ = 0.802. That is all of A,B and C would have to be greater than 0.802,
and at least one of them greater than 1.72. Because 0.802 + 0.802 + 1.72 = 3.324 > π,
this violates the condition that A+B + C = π.
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Thus the maximum value occurs when A = B = C =
π

3
:

f

(
π

3
,
π

3
,
π

3

)
= 3 sin

(
2π

3

)
+ 3 sin

(
π

3

)
+ 3 sin

(
π

6

)
= 6

√
3

2
+

3

2
=

6
√
3 + 3

2
.

This method tells us that the only point on the plane A+B + C = π (in the first
octant) where the function f achieves a maximum value is the point we just found. We
must check the boundaries for a minimum.

Note that f(π, 0, 0) = 1 = f(0, π, 0) = f(0, 0, π). That is f achieves the lower bound 1 at
the vertices of our triangular region.

We also consider the behavior of the function f along the edges of this region. For
instance, in the AB-plane where C = 0, we have A+B = π. Then

f(A, π −A, 0) = 2 sinA+ sin

(
A

2

)
+ cos

(
A

2

)
, which has value 1 (of course) at the

endpoints A = 0 and A = π, and climbs to a local maximum value of 2 +
√
2 when

A =
π

2
. This value is less than f

(
π

3
,
π

3
,
π

3

)
.

There is identical behavior along the other two edges.

In summary, the function f achieves an absolute maximum of
6
√
3 + 3

2
at the interior

point A = B = C =
π

3
, and f achieves its absolute minimum of 1 at the vertices.

However, for a non-degenerate triangle ABC

1 < sin(2A)+sin(2B)+sin(2C)+sin(A)+sin(B)+sin(C)+sin

(
A

2

)
+sin

(
B

2

)
+sin

(
C

2

)
≤ 6
√
3 + 3

2
,

and the lower bound is never actually achieved.

Solution 3 by Tom Leong, Scranton, PA

This inequality follows from summing the three known inequalities labeled (1), (2), and

(3) below. Both sinx and sin
x

2
are concave down on (0, π). Applying the AM-GM

inequality followed by Jensen’s inequality gives

sinA sinB sinC ≤
(
sinA+ sinB + sinC

3

)3

≤ sin3
(
A+B + C

3

)
=

3
√
3

8
(1)

and

sin
A

2
sin

B

2
sin

C

2
≤



sin

A

2
+ sin

B

2
+ sin

C

2
3




3

≤ sin3
(
A+B + C

6

)
=

1

8
. (2)

For the third inequality, we use the AM-GM inequality along with the identity

sin 2A+ sin 2B + sin 2C = 4 sinA sinB sinC

and (1):

sin 2A sin 2B sin 2C ≤
(
sin 2A+ sin 2B + sin 2C

3

)3

=

(
4 sinA sinB sinC

3

)3
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≤
(
4

3
· 3
√
3

8

)3

=
3
√
3

8
. (3)

Equality occurs if and only if A = B = C = π/3 as it does in every inequality used
above.

Also solved by Brian D. Beasley, Clinton, SC; Scott H. Brown, Montgomery,
AL; Michael Brozinsky, Central Islip, NY; Elsie Campbell, Dionne Bailey,
and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Manh Dung Nguyen (student, Special High School for Gifted
Students) HUS, Vietnam; Boris Rays, Brooklyn, NY, and the proposer.

• 5060: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Show that there exists c ∈ (0, π/2) such that

∫ c

0

√
sinx dx+ c

√
cos c =

∫ π/2

c

√
cosx dx+ (π/2− c)

√
sin c

Solution 1 by Paul M. Harms, North Newton, KS

Let

f(x) =

∫ x

0

√
sin t dt+ x

√
cosx−

∫ π/2

x

√
cos t dt− (

π

2
− x)
√
sinx where x ∈ [0, π/2].

For x ∈ [0, π/2], each term of f(x) is continuous including the integrals of continuous
functions. Then f(x) is continuous for x ∈ [0, π/2]. For any x ∈ [0, π/2], the two
integrals of nonnegative functions are positive except when the lower limit equals the
upper limit. We have

f(0) = −
∫ π/2

0

√
cos t dt < 0 and f(π/2) =

∫ π/2

0

√
sin t dt > 0.

Since f(x) is continuous for x ∈ [0, π/2], f(0) < 0 and f(π/2) > 0, there is at least one
c ∈ (0, π/2) such that

f(c) = 0 =

∫ c

0

√
sin t dt+ c

√
cos c−

∫ π/2

c

√
cos t− (π/2− c)

√
sin c.

This last equation is equivalent to the equation in the problem.

Solution 2 by Michael C. Faleski, University Center, MI

The given equation will hold if the integrals and their constants of integration are the
same on each side of the equality.

For the integral

∫ c

0

√
sinxdx we substitute x =

π

2
− y to obtain

∫ c

0

√
sinxdx =

∫ π/2−c

π/2

√
sin

(
π

2
− y

)
(−dy) =

∫ π/2

π/2−c

√
cos ydy.

We substitute this into the original statement of the problem and equate the integrals
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on each side of the equation.
∫ π/2

π/2−c

√
cos ydy =

∫ π/2

c

√
cos ydy

For equality to hold the lower limits of integration must be the same; that is,
π

2
− c = c =⇒ c =

π

4
We now check the constants of integration on each side of the equality when c =

π

4
, and

we see that they are equal.
π

4

(
1√
2

)1/2

=
π

4

(
1√
2

)1/2

Hence, the value of c =
π

4
satisfies the original equation.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie, and
Andrew Siefker (jointly), San Angelo, TX; Brian D. Beasley, Clinton, SC;
Bruno Salgueiro Fanego, Viveiro, Spain; Ovidiu Furdui, Cluj, Romania;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Nguyen
Pham and Quynh Anh (jointly; students, Belarusian State University),
Belarus; Angel Plaza, Las Palmas, Spain; Paolo Perfetti, Mathematics
Department, University “Tor Vergata,” Rome, Italy; David Stone and John
Hawkins (jointly) Statesboro, GA , and the proposer.

• 5061: Michael P. Abramson, NSA, Ft. Meade, MD.

Let a1, a2, . . . , an be a sequence of positive integers. Prove that

n∑

im=1

im∑

im−1=1

· · ·
i2∑

i1=1

ai1 =
n∑

i=1

(
n− i+m− 1

m− 1

)
ai.

Solution by Tom Leong, Scranton, PA

We treat the a’s as variables; they don’t necessarily have to be integers. Fix an i,
1 ≤ i ≤ n, and imagine completely expanding all the sums on the lefthand side. We wish
to show that, in this expansion, the number of times that the term ai appears is(
n− i+m− 1

m− 1

)
. Now each term in this expansion corresponds to some m-tuple of

indices in the set

I = {(i1, i2, . . . , im) : 1 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ n}.
We want to count the number of elements of I of the form (i, i2, . . . , im). Equivalently,
using the one-to-one correspondence between I and

J = {(j1, j2, . . . , jm) : 1 ≤ j1 < j2 < · · · < jm ≤ n+m− 1}
given by

(i1, i2, . . . , im)↔ (j1, j2, . . . , jm) = (i1, i2 + 1, i3 + 2 . . . , im +m− 1),

we wish to count the number elements of J of the form (i, j2, . . . , jm). This number is
simply the number of (m− 1)-element subsets of {i+ 1, i+ 2, . . . , n+m− 1} which is

just

(
n− i+m− 1

m− 1

)
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2010

• 5080: Proposed by Kenneth Korbin, New York, NY

If p is a prime number congruent to 1 (mod4), then there are positive integers a, b, c,
such that

arcsin

(
a

p3

)
+ arcsin

(
b

p3

)
+ arcsin

(
c

p3

)
= 90o.

Find a, b, and c if p = 37 and if p = 41, with a < b < c.

• 5081: Proposed by Kenneth Korbin, New York, NY

Find the dimensions of equilateral triangle ABC if it has an interior point P such that
PA = 5, PB = 12, and PC = 13.

• 5082: Proposed by David C. Wilson, Winston-Salem, NC

Generalize and prove:

1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n+ 1)
= 1− 1

n+ 1

1

1 · 2 · 3 +
1

2 · 3 · 4 + · · ·+ 1

n(n+ 1)(n+ 2)
=

1

4
− 1

2(n+ 1)(n+ 2)

1

1 · 2 · 3 · 4 +
1

2 · 3 · 4 · 5 + · · ·+ 1

n(n+ 1)(n+ 2)(n+ 3)
=

1

18
− 1

3(n+ 1)(n+ 2)(n+ 3)

1

1 · 2 · 3 · 4 · 5 + · · ·+ 1

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
=

1

96
− 1

4(n+ 1)(n+ 2)(n+ 3)(n+ 4)

• 5083: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let α > 0 be a real number and let f : [−α, α]→ < be a continuous function two times
derivable in (−α, α) such that f(0) = 0 and f ′′ is bounded in (−α, α). Prove that the
sequence {xn}n≥1 defined by

xn =





n∑

k=1

f

(
k

n2

)
, n >

1

α
;

0, n ≤ 1

α

is convergent and determine its limit.
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• 5084: Charles McCracken, Dayton, OH

A natural number is called a “repdigit” if all of its digits are alike.
Prove that regardless of positive integral base b, no natural number with two or more
digits when raised to a positive integral power will produce a repdigit.

• 5085: Proposed by Valmir Krasniqi, (student, Mathematics Department,) University of
Prishtinë, Kosova

Suppose that ak, (1 ≤ k ≤ n) are positive real numbers. Let ej,k = (n− 1) if j = k and
ej,k = (n− 2) otherwise. Let dj,k = 0 if j = k and dj,k = 1 otherwise.

Prove that
n∏

j=1

n∑

k=1

ej,ka
2
k ≥

n∏

j=1

( n∑

k=1

dj,kak

)2

.

Solutions

• 5062: Proposed by Kenneth Korbin, New York, NY.

Find the sides and the angles of convex cyclic quadrilateral ABCD if
AB = BC = CD = AD − 2 = AC − 2.

Solution 1 by David E. Manes, Oneonta, NY

Let x = AB = BC = CD and let y = BD. Then AD = AC = x+ 2.

Let α = 6 CAB, β = 6 ABD, and γ = 6 DBC. Finally, in quadrilateral ABCD, we
denote the angle at vertex A by 6 A and similarly for the other three vertices. Then
AB = BC implies α = 6 BCA. Since angles inscribed in the same arc are congruent, it
follows that

α = 6 CAB = 6 CDA,
α = 6 BCA = 6 BDA,
β = 6 ABD = 6 ACD, and
γ = 6 DBC = 6 DAC

Therefore,

6 A = α+ γ, 6 B = β + γ, 6 C = α+ β and 6 D = 2α = β since AC = AD .

From Ptolemy’s Theorem, one obtains

AC ·BD = AB · CD +AD ·BC or
(x+ 2)y = x2 + x(x+ 2)

y =
2x(x+ 1)

x+ 2
.

In triangles ACD and BCD, the law of cosines implies cos γ =
2(x+ 2)2 − x2

2(x+ 2)2
and

cos γ =
y

2x
=
x+ 1

x+ 2
respectively. Setting the two values equal yields the quadratic

equation x2 − 2x− 4 = 0 with positive solution x = 1 +
√
5. Hence,

AB = BC = CD = 1 +
√
5 and AD = 3 +

√
5 .
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Moreover, note that

cos γ =
x+ 1

x+ 2
=

2 +
√
5

3 +
√
5
=

1 +
√
5

4
implies that

γ = arccos

(
1 +
√
5

4

)
= 360

In 4ACD, γ + β + 2α = 180o or γ + 2β = 1800 so that β =
1800 − 360

2
= 720 and

α = β/2 = 360.

Therefore,

6 A = α+ γ = 720 = 2α = 6 D and

6 B = β + γ = 1080 = α+ β = 6 C.

Solution 2 by Brian D. Beasley, Clinton, SC

We let a = AB, b = BC, c = CD, d = AD, p = BD and q = AC. Then
a = b = c = d− 2 = q − 2. According to the Wolfram MathWorld web site [1], for a
cyclic quadrilateral, we have

pq = ac+ bd (Ptolemy′sTheorem) and q =

√
(ac+ bd)(ad+ bc)

ab+ cd
.

Thus a+ 2 =
√
2a2 + 2a, so the only positive value of a is a = 1 +

√
5. Hence

a = b = c = 1 +
√
5 and d = p = q = 3 +

√
5. Using the Law of Cosines, it is

straightforward to verify that 6 ABC = 6 BCD = 108◦ and 6 CDA = 6 DAB = 72◦.

[1] Weisstein, Eric W. “Cyclic Quadrilateral.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/CyclicQuadrilateral.html

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

We show that the sides are 1 +
√
5, 1 +

√
5, 1 +

√
5, 3 +

√
5 and the angles are

1080, 720, 720, 1080.

Let α = AB = BC = CD = AD − 2 = AC − 2, β = 6 CBA and R the circumradius of
ABCD.

By solution 1 of SSM problem 4961,

R =
1

4

√
[aa+ a(a+ 2)][a(a+ 2) + aa][aa+ a(a+ 2)]

(2a+ 1− a)(2a+ 1− a)(2a+ 1− a)[2a+ 1− (a+ 2)]
=

a

2

√
2a

a− 1
.

From this and the generalized sine theorem in 4ABC,

a

2R
= sin

(
1800 − β

2

)
=⇒ cos

(
β

2

)
=

√
a− 1

2a
.

By the law of cosines in 4ABC,

cosβ =
a2 + a2 − (a+ 2)2

2a2
=⇒ cos

(
β

2

)
=

√
1 + cosβ

2
=

√
3a2 − 4a− 4

2a
.
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Hence,
√
a− 1

2a
=

√
3a2 − 4a− 4

2a
=⇒ a2 − 2a− 4 = 0 =⇒ a = 1 +

√
5 = 2φ,

so the sides are

AB = BC = CD = 1 +
√
5 and AD = a + 2 = 3 +

√
5 .

Then β = 2arccos

√ √
5

2(1 +
√
5)

= 1080, so the angles are

6 CBA = 1080, 6 DCB = 6 CBA = 1080, 6 ADC = 1800− 1080 = 720 and 6 BAD = 720.

Also solved by Michael Brozinsky, Central Islip, NY; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; Charles McCracken, Dayton,
OH; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5063: Proposed by Richard L. Francis, Cape Girardeau, MO.

Euclid’s inscribed polygon is a constructible polygon inscribed in a circle whose
consecutive central angle degree measures form a positive integral arithmetic sequence
with a non-zero difference.

a) Does Euclid’s inscribed n-gon exist for any prime n greater than 5?

b) Does Euclid’s n-gon exist for all composite numbers n greater than 2?

Solution by Joseph Lupton, Jacob Erb, David Ebert, and Daniel Kasper,
students at Taylor University, Upland, IN

a) For an inscribed polygon to fit this description, there has to be an arithmetic
sequence of positive integers where the number of terms in the sequence is equal to the
number of sides of the polygon and the terms sum to 360. So if the first term is f and
the constant difference between the terms is d, the sum of the terms is

f · n+
n(n− 1)

2
d = 360.

Thus, f · n+
n(n− 1)

2
d = 360 =⇒ n

∣∣∣∣360. That is, n is a prime number greater than five

and n

∣∣∣∣23 · 33 · 5. But there is no prime number greater than five that divides 360. So

there is no Euclidean polygon that can be inscribed in a circle whose consecutive central
angle degree measures form a positive integral arithmetic sequence with a non-zero
difference.

b) Euclid’s inscribed n-gon does not exist for all composite numbers greater than two.

Obviously, if n gets too large, then the terms n(n−1)
2 d will be greater than 360 even if

d = 1 which is the minimal d allowed. There is no Eculidean inscribed n-gon for n = 21.

If there were, the the sum of central angles would be f · n+ n · d · n− 1

2
implies that 21

divides 360. Similarly, there is no 14-gon for if there were, it would imply that 7 divides
360.

• Comments and elaborations by David Stone and John Hawkins, Statesboro
GA
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We note that this problem previously appeared as part of Problem 4708 in this journal
in March, 1999; however the solution was not published. Also, a Google search on the
internet turned up a paper by the proposer in the Bulletin of the Malaysian
Mathematical Sciences Society in which the answer to both questions is presented as
being “no”. {See “The Euclidean Inscribed Polygon” (Bull. Malaysian Math Sc. Soc
(Second series) 27 (2004), 45-52).}
David and John solved the problem and then elaborated on it by considering the
possibility that the inscribed polygon many not enclose the center of the circle. And it is
here that things start to get interesting.

(In the case where the inscribed polygon does not include the center of the circle, and
letting a be the first term in the arithmetic sequence and d the common difference, they
noted that the largest central angle must be the sum of the previous n− 1 central
angles, and they proceeded as follows:)

a+ (n− 1)d = Sn−1 =
n− 1

2

(
2a+ (n− 2)d

)
or

2a+ 2(n− 1)d = 2a(n− 1) + (n− 1)(n− 2)d or

2a(n− 2) = −(n− 1)(n− 4)d.

For n = 3, this happens exactly when a = d; although n = 3 is of no concern for the
stated problem, we shall return to this case later.

For n ≥ 4, this condition is never satisfied because the left-hand side is positive and the
right-hand side ≤ 0.

David and John then determined all Euclidean inscribed n-gons as follows:

The cited paper by the poser points out that 30 is the smallest constructible angle of
positive integral degree. In fact, it is well known that an angle is constructible if, and
only if, its degree measure is an integral multiple of 30. This implies that a and d must
both be multiples of 3. We wish to find all solutions of the Diophantine equation
(1) n(2a+ (n− 1)d) = 24 · 32 · 5, where a and d are multiples of 3.

Letting a = 3A and d = 3D, the above equation becomes

(2) n

(
2A+ (n− 1)D

)
= 24 · 3 · 5 = 240, so n must be a divisor of 240.

Moreover, the cofactor 2A+ (n− 1)D is bounded below. That is

2A+ (n− 1)D ≥ 2 + (n− 1) = n+ 1. So

240

n
= 2A+ (n− 1)D ≥ 1, and

n(n+ 1) ≤ 240.

These conditions allow only n = 3, 4, 5, 6, 8, 10, 12, and 15.

First we show that n = 12 fails. For in this case (2) becomes

12(2A+ 11D) = 240, or
2A+ 11D = 20,
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and this linear Diophantine equation has no positive solutions.

All other possible values of n do produce corresponding Euclidean n−gons.
The case n = 3 is perhaps the most interesting. There are twenty triangles inscribed in
semi-circle: (3A, 6A, 9A) for A = 1, 2, . . . 20, each having a = d, and nineteen more
triangles which properly enclose the center of the circle: (3t, 120, 240− 3t), for
t = 21, 22, . . . , 39, each with d = 120− a.
We consider in detail the case n = 4, in which case Equation (2) becomes
4(2A+ 3D) = 24 · 3 · 5, or 2A+ 3D = 60. The solution of this Diophantine equation is
given by {

A = 3t
D = 20− 2t

where the integer parameter t satisfies 0 < t < 10.

We exhibit the results in tabular form, with all angles in degrees:

t A a = 3A D d = 3D Central angles of inscribed quarilateral
1 3 9 18 54 9, 63, 117, 171
2 6 18 16 48 18, 66, 114, 162
3 9 27 14 42 27, 69, 111 153
4 12 36 12 36 36, 72, 108, 144
5 15 45 10 30 45, 75, 105, 135
6 18 54 8 24 54, 78, 102, 126
7 21 63 6 18 63, 81, 99, 117
8 24 72 4 12 72, 84, 96, 108
9 27 81 2 6 81, 87, 93, 99

That is, the central angles are (9t, 60 + 3t, 120− 3t, 180− 9t) for t = 1, 2, . . . , 9. Thus
we have nine Euclidean inscribed quadrilaterals.

Similarly for n = 5, we have eleven Euclidean inscribed pentagons, with central angles
(6t, 36 + 3t, 72, 108− 3t, 144− 6t) for t = 1, 2, . . . , 11.

Similarly for n = 6, we have three Euclidean inscribed hexagons, with central angles
(45, 51, 57, 63, 75), (30, 42, 54, 66, 78, 90) and (15, 33, 52, 69, 105).

For n = 8, we have two Euclidean inscribed octagons with central angles
(24, 30, 36, 42, 48, 54, 60, 66) and (3, 15, 27, 39, 51, 63, 75, 87).

For n = 10, we have one Euclidean inscribed decagon, with central angles
(9, 15, 21, 27, 33, 39, 45, 51, 57, 63).

For n = 15, we have one Euclidean inscribed 15-gon with central angles
(3, 6, 9, 12, 15, 18, 21, 24 27, 30, 33, 36, 39, 42, 45).

There is a grand total of 66 Euclidean inscribed n-gons!

A final note: If n(n+ 1) divides 240, then a = d = 3
240

n(n+ 1)
=

720

n(n+ 1)
produces a

Euclidean inscribed n−gon.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Boris Rays,
Brooklyn, NY, and the proposer.

• 5064: Proposed by Michael Brozinsky, Central Islip, NY.
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The Lemoine point of a triangle is that point inside the triangle whose distances to the
three sides are proportional to those sides. Find the maximum value that the constant
of proportionality, say λ, can attain.

Solution 1 by David E. Manes, Oneonta, NY

The maximum value of λ is
√
3/6 and is attained when the triangle is equilateral.

Given the triangle ABC let [ABC] denote its area. The distance from the Lemoine point

to the three sides are in the ratio λa, λb, λc where λ =
2[ABC]

a2 + b2 + c2
and a, b, c denote

the length of the sides BC, CA and AB respectively. Let α = 6 BAC, β = 6 CBA, and
γ = 6 ACB. Then

[ABC] =
1

2
bc · sinα =

1

2
ac · sinβ =

1

2
ab · sin γ.

Therefore,

a2 + b2 + c2 ≥ ab+ bc+ ca = [ABC]

(
1

sinα
+

1

sinβ
+

1

sin γ

)
.

The function f(x) =
1

sinx
is convex on the interval (0, π). Jensen’s inequality then

implies

f(α) + f(β) + f(γ) ≥ 3f

(
α+ β + γ

3

)
= 3f

(
π

3

)
=

3

sin (
π

3
)
= 2
√
3

with equality if and only if α = β = γ = π/3. Therefore, a2 + b2 + c2 ≥ 4
√
3 · [ABC] so

that

λ =
2[ABC]

a2 + b2 + c2
≤ 2[ABC]

4
√
3 · [ABC]

=

√
3

6

with equality if and only if the triangle ABC is equilateral.

Solution 2 by John Nord, Spokane, WA

Without loss of generality we can denote the coordinates of 4ABC as
A(0, 0), B(1, 0), C(b, c), the coordinates of the Lemoine point L as (x1, y1), the constant
of proportionality from L to the sides as λ, the coordinates on AB of the foot of the
perpendicular from L to AB as D(x1, 0), the coordinates on BC of the foot of the
perpendicular from L to BC as E(x2, y2) and the coordinates on AC of the foot of the
perpendicular from L to AC as F (x3, y3).

The distance from L to AB equals LD = λ · 1.
The distance from L to BC equals LE = λ ·

√
(1− b)2 + c2 and

The distance from L to AC equals LF = λ ·
√
b2 + c2.

The coordinates of E can be found by finding the intersection of LE and BC. That is, by
solving: 




y =
c

b− 1
x+

c

1− b , and

y =
1− b
c

x+ y1 +
b− 1

c
x1.
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And the coordinates of F can be found by finding the intersection of LF and AC. That
is, by solving, 




y =
c

b
x and

y =
−b
c
x+ y1 +

b

c
x1.

Once we have computed (x2, y2) and (x3, y3) in terms of b, c, x1 and λ, we apply the
distance relationships above. This results in:

x1 =
b+ b2 + c2

2(1− b+ b2 + c2)
y1 = λ =

c

2(1− b+ b2 + c2)
.

The maximum value of λ is obtained by solving the system of partial derivatives




∂λ

∂b
= 0

∂λ

∂c
= 0.

This yields: c =

√
3

2
and b =

1

2
. Substituting these values into y1 above gives λ =

√
3

6
as

the maximum value of the constant of proportionality.

Solution 3 by Charles Mc Cracken, Dayton, OH

The Lemoine point is also the intersection of the symmedians.

The medians of a triangle divide the triangle in two equal areas.

The medians intersect at the centroid, G.

Any point other than G is closer than G to one side of the triangle.

In 4ABC let a denote the side (and its length) opposite 6 A, b the side opposite 6 B,
and c the side opposite 6 C. Let L denote the Lemoine point.

If the distance from L to side a is λa, then λa less the distance from G to a we call γa.

Similarly for sides b and c.

For λ = γ, L must coincide with G.

This will happen when the medians and symmedians coincide.

This occurs when the triangle is equiangular (600 − 600 − 600) and hence equilateral
(a = b = c).

In that case, λ =

√
3

6
≡ 0.289.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, John Hawkins and
David Stone (jointly), Statesboro, GA; Kee-Wai Lau, Hong Kong, China;
Tom Leong, Scranton, PA, and the proposer.

• 5065: Mihály Bencze, Brasov, Romania.

Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers. Prove that

1)
n∑

i,j=1

|(i− j)(xi − xj)| =
n

2

n∑

i,j=1

|xi − xj |.
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2)
n∑

i,j=1

(i− j)2 = n2(n2 − 1)

6
.

Solution 1 by Paul M. Harms, North Newton, KS

1) Both summations in part 1) have the same terms for i > j that they have for i < j
and have 0 for i = j. Equality will be shown for i > j.

Each row below is the left summation of part 1) of the problem for i > j and for a fixed
j starting with j = 1.

1(x2 − x1) + 2(x3 − x1) + . . .+ (n− 1)(xn − x1)
1(x3 − x2) + 2(x4 − x2) + . . .+ (n− 2)(xn − x2)

...
1(xn−1 − xn−2) + 2(xn − xn−2)

1(xn − xn−1)

The coefficient of x1 is (−1)[1 + 2+ . . .+ (n− 1)] =
−(n− 1)n

2
. Note that the coefficient

of xn (looking at the diagonal from lower left to upper right is

1 + 2 + . . .+ (n− 1) =
(n− 1)n

2
.

The coefficient of x2 is (−1)[1 + 2 + . . .+ (n− 2)] + 1 =
−(n− 2)(n− 1)

2
+ 1, where the

one is the coefficient of x2 in row 1.

The coefficient of xn−1 is the negative of the coefficient of x2.

The coefficient of xr where r is a positive integer less than
n+ 1

2
is

(−1)[1 + 2 + . . . (n− r)] + 0 + 1 + . . . (r − 1) =
(−1)(n− r)(n− r + 1)

2
+

(r − 1)r

2

=
(−1)n(n− 2r + 1)

2
= (−1)n

2
[(n− r) + (1− r)].

The coefficients of xr andxn+1−r are the negatives of each other.

If we write out the right summation of part 1) for i > j, we can obtain a triangular form
like that above except that each coefficient of the difference of the x′s is 1. Using the
form just explained, the coefficient of x1 is (−1)(n− 1) and the coefficient of xn along
the diagonal is (n− 1).

The coefficient of x2 is (−1)(n− 2) + 1 where the (+1) is the coefficient of x2 in row 1.

For xr, where r is a positive integer less than
n+ 1

2
, the coefficient is

(−1)(n− r) + (r − 1) where (r − 1) comes from the xr having coefficients of one in each
of the first (r− 1) rows. The coefficient of xr on the right side of the inequaity of part 1)

is then
n

2
(−1)[(n− r) + (1− r)] which is the same as the left side of the inequality.

Also, the coefficients of xr and xn+1−r are negative of each other.
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2) To show part 2), first consider the summation of each of the three terms i2, j2,−2ij.

For each j, the summation of i2 from i = 1 to n is 12 + 22 + . . . n2 =
n(n+ 1)(2n+ 1)

6
.

Then the summation of i2 where both i and j go from 1 to n is
n(n+ 1)(2n+ 1)

6
. The

summation of j2 is the same value.

The summation of ij is

1(1 + 2 + . . .+ n) + 2(1 + 2 + . . .+ n) + . . .+ n(1 + 2 + . . .+ n) = (1 + 2 + . . .+ n)2

=
n2(n+ 1)2

22

The total summation of the left side of part 2) is

2n2(n+ 1)(2n+ 1)

6
− 2n2(n+ 1)2

22
= n2(n+ 1)

[
2n+ 1

3
− n+ 1

2

]

=
n2(n+ 1)(n− 1)

6
.

Solution 2 by Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy

We begin with 1). The result is achieved by a double induction. For n = 1 there is
nothing to say. Let’s suppose that 1) holds for any 1 ≤ n ≤ m. For n = m+ 1 the
equality reads as

m+1∑

i,j=1

|i− j| |xi − xj | =

m∑

i,j=1

|i− j| |xi − xj |+
m+1∑

i=1

|i−m− 1| |xi − xm+1|+
m+1∑

j=1

|m+ 1− j| |xm+1 − xj | =

m

2

m∑

i,j=1

|xi − xj |+ 2
m+1∑

i=1

|i−m− 1| (xm+1 − xi).

(in the second passage the induction hypotheses has been used) and we need it equal to

m+ 1

2

m+1∑

i,j=1

|xi − xj | =
m

2

m∑

i,j=1

|xi − xj |+
1

2

m∑

i,j=1

|xi − xj |+ (m+ 1)
m∑

i=1

|xi − xm+1|.

Comparing the two quantities we have to prove

2
m+1∑

i=1

(m+ 1− i)(xm+1 − xi) =
1

2

m∑

i,j=1

|xi − xj |+ (m+ 1)
m∑

i=1

|xi − xm+1|

or

m∑

i=1

(xm+1 − xi)(m+ 1− 2i) =
1

2

m∑

i,j=1

|xi − xj |

or
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−
m∑

i=1

xi(m+ 1− 2i) =
1

2

m∑

i,j=1

|xi − xj | since
m∑

i=1

(m+ 1− 2i) = 0.

Here starts the second induction. For m = 1 there is nothing to do as well. Let’s suppose
that the equality holds true for any 1 ≤ m ≤ r. For m = r + 1 we have to prove that

−
r+1∑

i=1

xi(r + 2− 2i) =
1

2

r∑

i,j=1

|xi − xj |+
1

2

r+1∑

i=1

(xr+1 − xi) +
1

2

r+1∑

i=1

(xr+1 − xi).

which, by using the induction hypotheses is

−
r∑

i=1

xi(r + 1− 2i)−
r∑

i=1

xi + rxr+1 = −
r∑

i=1

xi(r + 1− 2i) +
r+1∑

i=1

(xr+1 − xi).

or

−
r∑

i=1

xi + rxr+1 = (r + 1)xr+1 − xr+1 −
r∑

i=1

xi.

namely the expected result.

To prove 2) we employ 1) by calculating
n

2

n∑

i,j=1

|i− j|. The symmetry of the absolute

value yields

n

2

n∑

i,j=1

|i− j| = n
n∑

1≤i<j≤n

(j− i) = n
n∑

i=1

n∑

j=i+1

(j− i) = n
n∑

i=1

n−i∑

k=1

k =
n

2

n∑

i=1

(n− i)(n− i+1).

The last sum is equal to
n

2

n−1∑

k=1

k(k + 1).

In the last step we show that
n−1∑

k=1

k(k + 1) =
n3 − n

3
.

For n = 1 both sides are 0. Let’s suppose it is true for 1 ≤ n ≤ m− 1.
For n = m we have

m−1∑

k=1

k(k+1)+m(m+1) =
m3 −m

3
+m(m+1) = m(m+1)

m+ 2

3
=

(m+ 1)3 − (m+ 1)

3
.

Finally,
n

2

n3 − n
3

= n2
n2 − 1

6

The proof is complete.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Michael C. Faleski,
University Center, MI; Kee-Wai Lau, Hong Kong, China; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposer.
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• 5066: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a, b, and c be the sides of an acute-angled triangle ABC. Let abc = 1. Let H be the
orthocenter, and let da, db, and dc be the distances from H to the sides BC, CA, and AB
respectively. Prove or disprove that

3(a+ b)(b+ c)(c+ a) ≥ 32(da + db + dc)
2.

Solution by Kee-Wai Lau, Hong Kong, China

We prove the inequality. First we have (a+ b)(b+ c)(c+ a) ≥ (2
√
ab)(2

√
bc)(2

√
ca) = 8.

Hence it suffices to prove that da + db + dc ≤
√
3

2
. Let s, r, R be respectively the

semi-perimeter, in-radius and circumradius of triangle ABC. Let the foot of the
perpendicular from A to BC be D and the foot of the perpendicular from B to AC be
E so that 4BCE ∼ 4BHD. Hence,

da = DH =
(BD)(CE)

BE

=
(c cosB)(a cosC)

c sinA
= 2R cosB cosC, and similarly,

db = 2R cosC cosA and dc = 2R cosA cosB .

Therefore, by the well known equality

cosA cosB + cosB cosC + cosC cosA =
r2 + s2 − 4R2

4R2
, we have

da + db + dc =
r2 + s2 − rR2

2R
.

And by a result of J. C. Gerretsen: Ongelijkheden in de Driehoek Nieyw Tijdschr.Wisk.
41(1953), 1-7, we have s2 ≤ 4R2 + 4Rr + 3r2. Thus

da + db + dc =
2r(R+ r)

R
≤ 3r,

which follows from L. Euler’s result that R ≥ 2r.

It remains to show that r ≤ 1

2
√
3
. But this follows from the well known result that

s ≥ 3
√
3r and the fact that 1 = abc = 4rsR ≥ 4r(3

√
3)r(2r) = 24

√
3r3.

This completes the solution.

Also solved by the proposer.

• 5067: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let a, b, c be complex numbers such that a+ b+ c = 0. Prove that

max {|a|, |b|, |c|} ≤
√
3

2

√
|a|2 + |b|2 + |c|2.
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Solution by Tom Leong, Scranton, PA

Since a+ b+ c = 0, |a|, |b|, and |c| form the sides of a (possibly degenerate) triangle. It
follows from the triangle inequality that the longest side, max{|a|, |b|, |c|}, cannot exceed
half of the perimeter,

1

2
(|a|+ |b|+ |c|), of the triangle. Using this fact along with the

Cauchy-Schwarz inequality gives the desired result:

max{|a|, |b|, |c|} ≤ 1

2
(|a|+ |b|+ |c|)

=
1

2
(1 · |a|+ 1 · |b|+ 1 · |c|)

≤ 1

2

√
12 + 12 + 12

√
|a|2 + |b|2 + |c|2

=

√
3

2

√
|a|2 + |b|2 + |c|2.

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky, Centeral
Islip, NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Manh Dung Nguyen (student, Special High School for Gifted Students),
HUS, Vietnam; Paolo Perfetti, Mathematics Department, University “Tor
Vergata,” Rome, Italy; Boris Rays, Brooklyn, NY; Dmitri V. Skjorshammer
(student, Harvey Mudd College), Claremont, CA; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2010

• 5086: Proposed by Kenneth Korbin, New York, NY

Find the value of the sum
2

3
+

8

9
+ · · ·+ 2N2

3N
.

• 5087: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c, and d such that (a+ b+ c+ d)2 = 2(a2 + b2 + c2 + d2)
with a < b < c < d. Rationalize and simplify

√
x+ y −√x√
x+ y +

√
x

if

{
x = bc+ bd+ cd, and
y = ab+ ac+ ad.

• 5088: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b be positive integers. Prove that

ϕ(ab)√
ϕ2(a2) + ϕ2(b2)

≤
√
2

2
,

where ϕ(n) is Euler’s totient function.

• 5089: Proposed by Panagiote Ligouras, Alberobello, Italy

In 4ABC let AB = c,BC = a,CA = b, r = the in-radius and ra, rb, and rc= the
ex-radii, respectively.

Prove or disprove that

(ra − r)(rb + rc)

rarc + rrb
+
(rc − r)(ra + rb)

rcrb + rra
+
(rb − r)(rc + ra)

rbra + rrc
≥ 2

(
ab

b2 + ca
+

bc

c2 + ab
+

ca

a2 + bc

)
.

• 5090: Proposed by Mohsen Soltanifar (student), University of Saskatchewan, Canada

Given a prime number p and a natural number n. Calculate the number of elementary
matrices En×n over the field Zp.

• 5091: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k, p ≥ 0 be nonnegative integers. Evaluate the integral

∫ π/2

−π/2

sin2p x

1 + sin2k+1 x+
√
1 + sin4k+2 x

dx.

Solutions

• 5068: Proposed by Kenneth Korbin, New York, NY.

Find the value of √

1 + 2009

√
1 + 2010

√
1 + 2011

√
1 + · · ·.

Solution by Dmitri V. Skjorshammer (student, Harvey Mudd College),
Claremont, CA

To solve this, we apply Ramanujan’s nested radical. Consider the identity
(x+ n)2 = x2 + 2nx+ n2, which can be rewritten as

x+ n =
√
n2 + x((x+ n) + n).

Now, the (x+ n) + n term has the same form as the left-hand side, so we can write it in
terms of a radical:

x+ n =

√
n2 + x

√
n2 + (x+ n)((x+ 2n) + n)

Repeating this process, ad infinitum, yields Ramanujan’s nested radical:

x+ n =

√
n2 + x

√
n2 + (x+ n)

√
n2 + · · ·

With n = 1 and x = 2009, the right-hand side becomes the expression in the problem. It
follows that the value is 2010.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Pat Costello,
Richmond, KY; Michael N. Fried, Kibbutz Revivim, Israel; David E. Manes,
Oneonta, NY; Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy; David Stone and John Hawkins (jointly), Statesboro,
GA; Nguyen Van Vinh (student, Belarusian State University), Minsk,
Belarus, and the proposer.

• 5069: Proposed by Kenneth Korbin, New York, NY.

Four circles having radii
1

14
,

1

15
,
1

x
and

1

y
respectively, are placed so that each of the

circles is tangent to the other three circles. Find positive integers x and y with
15 < x < y < 300.

Solution by Bruno Salgueiro Fanego, Viveiro, Spain
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If all the circles are tangent in a point, the problem is not interesting because x and y
can take on any value for which 15 < x < y < 300. So we assume that the circles are not
mutually tangent at a point.
By Descarte’s circle theorem with ε1, ε2 and ε3 being the curvature of the first three
circles, the curvature ε4 of the fourth circle can be obtained with Soddy’s formula:

ε4 = ε1 + ε2 + ε3 ± 2
√
ε1ε2 + ε2ε3 + ε3ε1, that is,

y = 14 + 15 + x± 2
√
14 · 15 + 15 · x+ x · 14

y = 29 + x+±2
√
210 + 29x

Then, 210 + 29x must be a perfect square, say a2. Since, 15 < x < 300,

252 < 210 + 29x < 952, so

26 ≤ a ≤ 94.

Thus,

29

∣∣∣∣(a
2 − 210).

The only integers a, 26 ≤ a ≤ 94, which satisfy this condition are 35, 52, 64, 81, and 93.
Taking into account that 15 < x < y < 300, we have:

For a = 35, x = 35 and so y = 29 + x ± 2a = 134
For a = 52, x = 86 and y = 219 ;
For a = 64, x = 134 and y = 291 ;

and for a ∈ {81, 93}, none of the obtained values of y is valid.

Thus the only pairs of integers x and y with 15 < x < y < 300 are

(x, y) ∈
{
(35, 134), (86, 219), (134, 291)

}
.

Also solved by Michael N. Fried, Kibbutz Revivim, Israel; Paul M. Harms,
North Newton, KS; John Hawkins and David Stone (jointly), Statesboro,
GA; Antonio Ledesma Vila, Requena-Valencia, Spain, and the proposer.

• 5070: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az- Barrero, Barcelona, Spain.

Find all real solutions to the system

9(x21 + x22 − x23) = 6x3 − 1,

9(x22 + x23 − x24) = 6x4 − 1,
. . . . . . . . .

9(x2n + x21 − x22) = 6x2 − 1.





Solution by Antonio Ledesma Vila, Requena -Valencia, Spain
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Add all

9(x21 + x22 − x23) = 6x3 − 1

9(x22 + x23 − x24) = 6x4 − 1
· · ·

9(x2n + x21 − x22) = 6x2 − 1

9

(
n∑

i=1

x2i +
n∑

i=1

x2i −
n∑

i=1

x2i

)
= 6

n∑

i=1

xi − n

9
n∑

i=1

x2i = 6
n∑

i=1

xi − n

n∑

i=1

(3xi)
2 = 2

n∑

i=1

(3xi)− n

n∑

i=1

(3xi)
2 − 2

n∑

i=1

(3xi) + n = 0

n∑

i=1

(3xi − 1)2 = 0,

xi =
1

3
for all i

Also solved by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai
Lau, Hong Kong; China; David E. Manes, Oneonta, NY; John Nord,
Spokane, WA; Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy; Boris Rays, Brooklyn, NY; Dmitri V. Skjorshammer
(student, Harvey Mudd College), Claremont, CA, and the proposer.

• 5071: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain.

Let ha, hb, hc be the altitudes of 4ABC with semi-perimeter s, in-radius r and
circum-radius R, respectively. Prove that

1

4

(
s(2s− a)

ha
+
s(2s− b)

hb
+
s(2s− c)

hc

)
≤ R2

r

(
sin2A+ sin2B + sin2C

)
.

Solution by Charles McCracken, Dayton, OH

Multiply both sides of the inequality by 4 to obtain

s(2s− a)
ha

+
s(2s− b)

hb
+
s(2s− c)

hc
≤ (2R)2

r

[
sin2A+ sin2B + sin2C

]

s(2s− a)
ha

+
s(2s− b)

hb
+
s(2s− c)

hc
≤ 1

r

[
(2R)2 sin2A+ (2R)2 sin2B + (2R)2 sin2C

]
.
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Now 2R =
a

sinA
=

b

sinB
=

c

sinC
so the inequality becomes

s(2s− a)
ha

+
s(2s− b)

hb
+
s(2s− c)

hc
≤ 1

r

(
a2 + b2 + c2

)
.

From Johnson (Roger A. Johnson, Advanced Euclidean Geometry, Dover, 2007, p. 11)
we have

ha =
2∆

a
, hb =

2∆

b
, hc =

2∆

c
, where ∆ represents the area of the triangle.

The inequality now takes the form

as(2s− a)
2∆

+
bs(2s− b)

2∆
+
cs(2s− c)

2∆
≤ 1

r

(
a2 + b2 + c2

)
.

Since ∆ = rs, we now have our inequality in the form

as(2s− a)
2rs

+
bs(2s− b)

2rs
+
cs(2s− c)

2rs
≤ 1

r

(
a2 + b2 + c2

)

a(2s− a)
2

+
b(2s− b)

2
+
c(2s− c)

2
≤

(
a2 + b2 + c2

)

Substituting a+ b+ c for 2s we have

a(b+ c) + b(c+ a) + c(a+ b) ≤ 2a2 + 2b2 + 2c2

ab+ ac+ bc+ ba+ ca+ cb ≤ 2a2 + 2b2 + 2c2

ab+ bc+ ca ≤ a2 + b2 + c2

This last inequality, ab+ bc+ ca ≤ a2 + b2 + c2, can be readily proved true for any triple
of positive numbers a, b, c by letting b = a+ δ and c = a+ ε with 0 < δ < ε. Hence the
original inequality holds.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.

• 5072: Proposed by Panagiote Ligouras, Alberobello, Italy.

Let a, b and c be the sides, la, lb, lc the bisectors, ma,mb,mc the medians, and ha, hb, hc
the heights of 4ABC. Prove or disprove that

a)
(−a+ b+ c)3

a
+

(a− b+ c)3

b
+

(a+ b− c)3
c

≥ 4

3

(
ma · la + lb · hb + hc ·mc

)

b) 3
∑

cyc

(−a+ b+ c)3

a
≥ 2

∑

cyc

[ma(la + ha)].

5X
ia
ng
’s
T
ex
m
at
h



Solution by proposer

We have

(−a+ b+ c)3

a
+

(a− b+ c)3

b
+

(a+ b− c)3
c

≥ a2 + b2 + c2. (1)

In fact, the equality is homogeneous and putting a+ b = c = 1 gives

(−a+ b+ c)3

a
+

(a− b+ c)3

b
+

(a+ b− c)3
c

≥ a2 + b2 + c2 ⇔
∑

cyc

(1− 2a)3

a
≥
∑

cyc

a2. (2)

Applying Chebyshev’s Inequality gives

∑

cyc

(1− 2a)3

a
=
∑

cyc

1

a
(1− 2a)3 ≥ 1

3

(∑

cyc

1

a

)
·
[∑

cyc

(1− 2a)3
]
. (3)

Using the well known equalities

∑
x3 =

(∑
x

)3

− 3(x+ y)(y + z)(z + x). (4)

(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
≥ 32 = 9 (5)

and applying (4), (3), and (5) we have

∑

cyc

(1− 2a)3

a
≥ 1

3

(∑

cyc

1

a

)
·
[∑

cyc

(1− 2a)3
]

=
1

3

(∑

cyc

1

a

)
·
[
(1− 2a+ 1− 2b+ 1− 2c)3 − 3(1− 2a+ 1− 2b)(1− 2b+ 1− 2c)(1− 2c+ 1− 2a)

]

=
1

3

(∑

cyc

1

a

)
· [1− 24abc]

=
1

3

(∑

cyc

1

a

)
· (
∑

a)− 24

3

(∑

cyc

ab

)

≥ 1

3
· 9− 8

(∑

cyc

ab

)

⇔
∑

cyc

(1− 2a)3

a
≥ 3− 8

(∑

cyc

ab

)
. (6)

We have

3− 8

(∑

cyc

ab

)
≥
∑

cyc

a2. (7)

In fact,

3− 8

(∑

cyc

ab

)
≥
∑

cyc

a2 ⇔ 3− 6

(∑

cyc

ab

)
≥
∑

cyc

a2 + 2

(∑

cyc

ab

)
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⇔ 3− 6

(∑

cyc

ab

)
≥
(∑

cyc

a

)2

= 1⇔ 3− 6

(∑

cyc

ab

)
≥ 1− 3

⇔
∑

cyc

ab ≤ 1

3
=

(∑
a

)2

3

⇔
∑

cyc

(a− b)2 ≥ 0, and this last statement is true.

Using (6) and (7) we have

∑

cyc

(1− 2a)3

a
≥ 3− 8

(∑

cyc

ab

)
≥
∑

cyc

a2

⇔
∑

cyc

(1− 2a)3

a
≥
∑

cyc

a2, and (1) is true.

Is well known that

a2 + b2 = 2m2
c +

1

2
c2 (A)

c2 + b2 = 2m2
a +

1

2
a2 (B)

c2 + a2 = 2m2
b +

1

2
b2 (C)

For (A),(B), and (C)

m2
a +m2

b +m2
c =

3

4
(a2 + b2 + c2) and

a2 + b2 + c2 =
4

3
(m2

a +m2
b +m2

c) (8)

It is also well known that

ma ≥ la ≥ ha, mb ≥ lb ≥ hb, mc ≥ lc ≥ hc. (9)

Using (9) we have

m2
a ≥ ma · la ≥ ma · ha, m2

b ≥ mb · lb ≥ mb · hb, m2
c ≥ mc · lc ≥ mc · hc (D)

m2
a ≥ la · ha, m2

b ≥ lb · hb, m2
c ≥ lc · hc, (E)

Using (8) and (D) we have

a2 + b2 + c2 ≥ 4

3
(mala +mblb +mclc). (10)
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a2 + b2 + c2 ≥ 4

3
(maha +mbhb +mchc). (11)

And using (8), (D), and (E) we have

a2 + b2 + c2 ≥ 4

3
(mala + lbhb + hcmc). (12)

For part a of the problem, using (1) and (12) we have

(−a+ b+ c)3

a
+

(a− b+ c)3

b
+

(a+ b− c)3
c

≥ 4

3

(
ma · la + lb · hb + hc ·mc

)

For part b of the problem, using (1), (10) and (11) we have

2

[
(−a+ b+ c)3

a
+

(a− b+ c)3

b
+

(a+ b− c)3
c

]
≥

4

3

(
ma · la +mb · lb +mc · lc

)
+

4

3

(
ma · ha +mb · hb +mc · hc

)

⇔ (−a+ b+ c)3

a
+

(a− b+ c)3

b
+

(a+ b− c)3
c

≥ 2

3

(
ma · la +mb · lb +mc · lc +ma · ha +mb · hb +mc · hc

)

⇔ (−a+ b+ c)3

a
+

(a− b+ c)3

b
+

(a+ b− c)3
c

≥ 2

3

[
ma · (la + ha) +mb · (lb + hb) +mc · (lc + hc)

]

• 5073: Proposed by Ovidiu Furdui, Campia-Turzii, Cluj, Romania.

Let m > −1 be a real number. Evaluate
∫ 1

0
{lnx}xmdx,

where {a} = a− [a] denotes the fractional part of a.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Im =

∫ 1

0
{lnx}xmdx =

∫ 1

0
(lnx− [lnx])xmdx =

∫ 1

0
(lnx)xmdx−

∫ 1

0
[lnx]xmdx = A−B

where A =

∫ 1

0
(lnx)xmdx and B =

∫ 1

0
[lnx]xmdx. Integrating by parts

( ∫
udv = uv − ∫ vdu with u = lnx and dv = xmdx

)
, and by using Barrow’s and

L’Hospital’s rule we obtain,

∫
(lnx)xmdx =

(lnx)xm+1

m+ 1
−
∫

xm

m+ 1
dx =

(lnx)xm+1

m+ 1
− xm+1

(m+ 1)2
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=⇒ A =
(lnx)xm+1

m+ 1
− xm+1

(m+ 1)2

∣∣∣∣
1

0

=
(ln 1)1m+1

m+ 1
− 1m+1

(m+ 1)2
−
(

lim
x→0+

(lnx)xm+1

m+ 1
− 0m+1

(m+ 1)2

)

=
−1

(m+ 1)2
− lim

x→0+

(lnx)

(m+ 1)x−(m+1)

=
−1

(m+ 1)2
− lim

x→0+

x−1

−(m+ 1)2x−(m+2)

=
−1

(m+ 1)2
+ lim

x→0+

xm+1

(m+ 1)2

=
−1

(m+ 1)2

With the partition

{
. . . , e−n, e−n+1, e−n+2, . . . , e−2, e−1, e0 = 1

}
of (0, 1], being

[lnx] = −n for e−n ≤ x < e−n+1, and

∣∣∣∣e−m−1

∣∣∣∣ < 1,

B =

∫ 1

0
[lnx]xmdx =

∞∑

n=1

∫ e−n+1

e−n
[lnx]xmdx

=
∞∑

n=1

∫ e−n+1

e−n
(−n)xmdx =

∞∑

n=1

−nxm+1

m+ 1

∣∣∣∣
e−n+1

e−n

=
∞∑

n=1

−n
(
e(−n+1)(m+1) − e−n(m+1)

)

m+ 1

=
∞∑

n=1

−n
(
em+1e(−n)(m+1) − e−n(m+1)

)

m+ 1

=
∞∑

n=1

−n
(
e(m+1) − 1

)
e−n(m+1)

m+ 1

=
∞∑

n=1

(
1− e(m+1)

)
n

(
e−m−1

)n

m+ 1
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=

(
1− em+1

)
e−m−1

m+ 1

∞∑

n=1

(
e−m−1

)n−1

=
e−m−1 − 1

m+ 1

∞∑

n=1

d

dx
xn
∣∣∣∣
x=e−m−1

=
e−m−1 − 1

m+ 1

d

dx

∞∑

n=1

xn
∣∣∣∣
x=e−m−1

=
e−m−1 − 1

m+ 1

d

dx

x

1− x

∣∣∣∣
x=e−m−1

=
e−m−1 − 1

(m+ 1)(1− x)2
∣∣∣∣
x=e−m−1

=
e−m−1 − 1

(m+ 1)(e−m−1 − 1)2
=

1

(m+ 1)(e−m−1 − 1)
, so

Im = A−B = − 1

(m+ 1)2
− 1

(m+ 1)(e−m−1 − 1)

=
mem+1 + 1

(m+ 1)2(em+1 − 1)
.

Solution 2 by the proposer

The integral equals
em+1

(m+ 1)(em+1 − 1)
− 1

(1 +m)2
.

We have, by making the substitution lnx = y, that

1∫

0

{lnx}xmdx =

0∫

−∞
{y} e(m+1)ydy

=
∞∑
k=0

−k∫
−k−1

{y} e(m+1)ydy

=
∞∑

k=0

−k∫

−k−1

(y − (−k − 1)) e(m+1)ydy

=
∞∑

k=0

−k∫

−k−1

(y + k + 1)) e(m+1)ydy
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=
∞∑

k=0

(
y + k + 1

m+ 1
e(m+1)y

∣∣∣∣
−k

−k−1
− e(m+1)y

(m+ 1)2

∣∣∣∣
−k

−k−1

)

=
∞∑

k=0

e−(m+1)k

m+ 1
− 1

(m+ 1)2

∞∑

k=0

(
e−(m+1)k − e−(m+1)(k+1)

)

=
em+1

(m+ 1)(em+1 − 1)
− 1

(1 +m)2
,

and the problem is solved.

Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
Paolo Perfetti, Department of Mathematics, University Tor Vergata, Rome,
Italy; and David Stone and John Hawkins (jointly), Statesboro, GA.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2010

• 5092: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with altitude h and with cevian CD. A circle with
radius x is inscribed in 4ACD, and a circle with radius y is inscribed in 4BCD with
x < y. Find the length of the cevian CD if x, y and h are positive integers with
(x, y, h) = 1.

• 5093: Proposed by Worapol Ratanapan (student), Montfort College, Chiang Mai,
Thailand

6 = 1 + 2 + 3 is one way to partition 6, and the product of 1, 2, 3 is 6. In this case, we
call each of 1, 2, 3 a part of 6.

We denote the maximum of the product of all parts of natural number n as N(n).

As a result, N(6) = 3× 3 = 9, N(10) = 2× 2× 3× 3 = 36, and N(15) = 35 = 243.

More generally, ∀n ∈ N, N(3n) = 3n, N(3n+ 1) = 4× 3n−1, and N(3n+ 2) = 2× 3n.

Now let’s define R(r) in the same way as N(n), but each part of r is positive real. For
instance R(5) = 6.25 and occurs when we write 5 = 2.5 + 2.5

Evaluate the following:

i) R(2e)
ii) R(5π)

• 5094: Proposed by Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy

Let a, b, c be real positive numbers such that a+ b+ c+ 2 = abc. Prove that

2(a2 + b2 + c2) + 2(a+ b+ c) ≥ (a+ b+ c)2.

• 5095: Proposed by Zdravko F. Starc, Vršac, Serbia

Let Fn be the Fibonacci numbers defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn (n = 1, 2, · · ·).
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Prove that

√
Fn−2Fn−1 + 1 ≤ Fn ≤

√
(n− 2)Fn−2Fn−1 + 1 (n = 3, 4, · · ·).

• 5096: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a

b+
4
√
ab3

+
b

c+
4
√
bc3

+
c

a+
4
√
ca3
≥ 3

2
.

• 5097: Proposed by Ovidiu Furdui, Cluj, Romania

Let p ≥ 2 be a natural number. Find the sum

∞∑

n=1

(−1)n
b p
√
nc ,

where bac denotes the floor of a. (Example b2.4c = 2).

Solutions

• 5074: Proposed by Kenneth Korbin, New York, NY

Solve in the reals:
√
25 + 9x+ 30

√
x−

√
16 + 9x+ 30

√
x− 1 =

3

x
√
x
.

Solution by Antonio Ledesma Vila, Requena-Valencia, Spain

Note that the domain of definition is x ≥ 1, and that the two radicands are perfect
squares:

25 + 9x+ 30
√
x =

(
3
√
x+ 5

)2

16 + 9x+ 30
√
x− 1 =

(
3
√
x− 1 + 5

)2

So
√
25 + 9x+ 30

√
x−

√
16 + 9x+ 30

√
x− 1 =

3

x
√
x

√(
3
√
x+ 5

)2

−
√(

3
√
x− 1 + 5

)2

=
3

x
√
x∣∣∣∣3

√
x+ 5

∣∣∣∣−
∣∣∣∣3
√
x− 1 + 5

∣∣∣∣ =
3

x
√
x

(3
√
x+ 5)− (3

√
x− 1 + 5) =

3

x
√
x
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√
x−
√
x− 1 =

1

x
√
x

1√
x−
√
x− 1

= x
√
x

√
x+
√
x− 1 = x

√
x

√
x− 1 = (x− 1)

√
x

(x− 1) = (x− 1)2x

(x− 1)

(
1− (x− 1)x

)
= 0

Therefore, x = 1 or x2 − x− 1 = 0 =⇒ x =
1±
√
5

2
. But

1−
√
5

2
is an extraneous root.

Hence, the only two real solutions are x = 1 and x =
1 +
√
5

2
= φ, the golden ratio.

Also solved by Daniel Lopez Aguayo, Puebla, Mexico; José Luis Dı́az-Barrero,
Barcelona, Spain; Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Elsie M. Campbell, Dionne T. Bailey, and
Charles Diminnie (jointly), San Angelo, TX; Katherine Janell Eyre (student,
Angelo State University), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro,
Spain; Michael N. Fried, Kibbutz Revivim, Israel; G. C. Greubel, Newport News,
VA; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA; Ercole
Suppa, Teramo, Italy; David C. Wilson, Winston-Salem, NC, and the proposer.

5075: Proposed by Kenneth Korbin, New York, NY

An isosceles trapezoid is such that the length of its diagonal is equal to the sum of the lengths
of the bases. The length of each side of this trapezoid is of the form a+ b

√
3 where a and b

are positive integers.

Find the dimensions of this trapezoid if its perimeter is 31 + 16
√
3.

Solution by Michael N. Fried, Kibbutz Revivim, Israel

Let the equal sides be s = a+ b
√
3 and the bases be b1 = p+ q

√
3 and b2 = u+ v

√
3. Since

each of its diagonals d is the sum of the bases, we have:

d = b1 + b2 = (p+ u) + (q + v)
√
3 = y + x

√
3,

where a, b, p, q, u, v, and accordingly, y and x are all positive integers.
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We begin by making some observations.
I. Since the diagonal d = b1 + b2, we have P = 2s+ d = 31 + 16

√
3 (1)

II. From (1), we have,

s = a+ b
√
3 =

(
31− y

2

)
+

(
16− x

2

)√
3 or

a =
31− y

2
(2)

b =
16− x

2
(3)

And since a and b are positive integers, (2) and (3) imply that y is odd and x even.

III. Since any isosceles trapezoid can be inscribed in a circle, we can apply Ptolemy’s theorem
here to obtain the equation: d2 − s2 = b1b2 (4). This, together with the fact that d = b1 + b2,
implies that the bases b1 and b2 are the solutions of the equation b2− db+(d2− s2) = 0. Thus:

b1 =
1

2

(
d+

√
4s2 − 3d2

)
(5)

b2 =
1

2

(
d−

√
4s2 − 3d2

)
(6)

IV. Since b1 = p+ q
√
3 and b2 = u+ v

√
3 where p, q, u, and v are integers, it follows from (5)

and (6) that

4s2 − 3d2 =

(
K + L

√
3

)2

= K2 + 3L2 + 2KL
√
3 (7)

where K and L are integers.

Now, let us find bounds for d and, from those, bounds for y and x. But to start, let us find

bounds for
s

d
.

From equation (4), we have:

s2

d2
= 1− b1b2

d2
= 1− b1b2

(b1 + b2)2

= 1− 1

4

(
(b1 + b2)

2 − (b1 − b2)2
(b1 + b2)2

)

=
3

4
+

1

4

(
b1 − b2
b1 + b2

)2

Thus,
3

4
<
s2

d2
< 1

or √
3

2
<
s

d
< 1.

From this, we can write,

1 +
√
3 <

2s+ d

d
< 3.
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By (1), we can substitue 31 + 16
√
3 for 2s+ d, thus eliminating s. With that, we obtain:

31 + 16
√
3

3
< d <

31 + 16
√
3

1 +
√
3

(8)

Replacing d by y + x
√
3, we can rewrite (8) as bounds for y in terms of x:

31 + (16− 3x)
√
3

3
< y <

(31− 3x) + (16− x)
√
3

1 +
√
3

(9)

Since y must be a positive integer, x cannot exceed 11, otherwise y will be either negative or
less than 1. Also, recalling observation II, x must be even and y must be odd. Replacing x
successively by 2, 4, 6, 8, and 10, then, we find by (9) that the corresponding values of y will be
17, 13, 11, 7, and 3. From these values, in turn, we can then find a and b by equations (2) and
(3). The five possibilities we have to check are summarized in the following table.





d = y + x
√
3 s = a+ b

√
3

x = 2 y = 17 a = 7 b = 7
x = 4 y = 13 a = 9 b = 6
x = 6 y = 11 a = 10 b = 5
x = 8 y = 7 a = 12 b = 4
x = 10 y = 3 a = 14 b = 3





Now, in observation IV, we found 4s2 − 3d2 =

(
K + L

√
3

)2

= K2 + 3L2 + 2KL
√
3 which of

course must be a positive number. This immediately eliminates the first and last possibilities,
d = 17 + 2

√
3, s = 7 + 7

√
2, and d = 3 + 10

√
3, s = 14 + 3

√
2 since the rational part of

4s2 − 3d2 (that is, the part not multiplying
√
3) is negative for these pairs.

This leaves only the second, third, and fourth possibilities. The rational parts of 4s2 − 3d2 for
these are, respectively, 105, 13, and 45. It is then easy to check that only 13 = 12 + 3× 22

corresponding to d = 11 + 6
√
3, s = 10 + 5

√
3 can be written in the form K2 + 3L2, and the

irrational part is also 4 = 2KL.

Hence, these together with equations (5) and (6), give us our solution:

s = 10 + 5
√
3

b1 = 6 + 4
√
3

b2 = 5 + 2
√
3

Also solved by Mayer Goldberg, Beer-Sheva, Israel; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

5076: Proposed by M.N. Deshpande, Nagpur, India

Let a, b, and m be positive integers and let Fn satisfy the recursive relationship

Fn+2 = mFn+1 + Fn, with F0 = a, F1 = b, n ≥ 0.
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Furthermore, let an = F 2
n + F 2

n+1, n ≥ 0. Show that for every a, b,m, and n,

an+2 = (m2 + 2)an+1 − an.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX

From the given,

an+2 = F 2
n+2 + F 2

n+3

= F 2
n+2 + (mFn+2 + Fn+1)

2

= F 2
n+2 +m2F 2

n+2 +mFn+1Fn+2 +mFn+1Fn+2 + F 2
n+1

= F 2
n+2 +m2F 2

n+2 +mFn+1Fn+2 +mFn+1(Fn +mFn+1) + F 2
n+1

= F 2
n+2 +m2F 2

n+2 +mFn+1(Fn+2 + Fn) +m2F 2
n+1 + F 2

n+1

= F 2
n+2 +m2F 2

n+2 + (Fn+2 − Fn)(Fn+2 + Fn) +m2F 2
n+1 + F 2

n+1

= F 2
n+2(m

2 + 2) + F 2
n+1(m

2 + 1)− F 2
n

= (F 2
n+2 + F 2

n+1)(m
2 + 2)− (F 2

n + F 2
n+1)

= (m2 + 2)an+1 − an.

Solution 2 by G. C. Greubel, Newport News, VA

Changing the terms slightly we shall use the more familiar Fibonacci polynomial terminology.
The fibonacci polynomials are given by

Fn+2(x) = xFn+1(x) + Fn(x).

The Binet form of the Fibonacci polynomials is given by

Fn(x) =
αn − βn
α− β ,

where

α = α(x) =
1

2

(
x+

√
x2 + 4

)

β = β(x) =
1

2

(
x−

√
x2 + 4

)
.

Also, the Lucas polynomials are given by

Ln(x) = αn + βn

and satisfies the recurrence relation

Ln+2(x) = xLn+1(x) + Ln(x).
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The term to be considered is

an = F 2
n+1(x) + F 2

n(x).

It can be seen that

F 2
n(x) =

1

x2 + 4
(L2n(x)− 2(−1)n) .

This leads to the relation

an =
1

x2 + 4
(L2n+1(x) + L2n(x)) .

The relation being asked to show is given by

an+2 =
(
x2 + 2

)
an+1 − an.

Let φn =
(
x2 + 2

)
an+1 − an for the purpose of demonstration. With the use of the above

equations we can see the following:
(
x2 + 4

)
φn =

(
x2 + 4

) [(
x2 + 2

)
an+1 − an

]

=
(
x2 + 2

)
(L2n+3 + L2n+2)− (L2n+1 + L2n)

=
(
x2 + 2

) ((
x2 + x+ 1

)
L2n+1 + (x+ 1)L2n

)
− (L2n+1 + L2n)

=
(
x4 + x3 + 3x2 + 2x+ 1

)
L2n+1 +

(
x3 + x2 + 2x+ 1

)
L2n

=
(
x3 + x2 + 2x+ 1

)
L2n+2 +

(
x2 + x+ 1

)
L2n+1

=
(
x2 + x+ 1

)
L2n+3 + (x+ 1)L2n+2

= xL2n+4 + L2n+4 + L2n+3

= L2n+5 + L2n+4. (1)

From the equation an =
1

x2 + 4
(L2n+1(x) + L2n(x)) we have

(
x2 + 4

)
an+2 = L2n+5 + L2n+4. (2)

Comparing the result of (1) to that of (2) leads to φn = an+2. Thus we have the relation

an+2 =
(
x2 + 2

)
an+1 − an

and this provides the relation being sought.

Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas Lutheran
University) Seguin, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA; David C. Wilson, Winston-Salem, NC, and the proposer.
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5077: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Find all triplets (x, y, z) of real numbers such that

xy(x+ y − z) = 3,
yz(y + z − x) = 1,
zx(z + x− y) = 1.





Solution by Ercole Suppa, Teramo, Italy

From the second and third equation it follows that

yz(y + z) = zx(z + x) ⇐⇒ (x− y)(x+ y + z) = 0.

If x+ y + z = 0 the first two equations yield −2xyz = 3 and −xyz = 1 which is impossible.

If x = y then the system can rewritten as

x2(2x− z) = 3
z2y = 1
z2x = 1

Thus x =
1

z2
and

1

z4

(
2

z2
− z

)
= 3

3z6 + z3 − 2 = 0

(3z3 − 2)(z3 + 1) = 0

The equation (3z3 − 2)(z3 + 1) = 0 factors into

(
31/3z − 21/3

)(
32/3z2 + (31/3 · 21/3)z + 22/3

)
(z + 1)(z2 − z + 1) = 0.

Setting each factor equal to zero we see that only the first and third factors give real roots for

the unknown z. So, the real roots are z =
3

√
2

3
and z = −1. And since x = y =

1

z2
we see that

(1, 1,−1) and
(

3

√
9

4
,

3

√
9

4
,

3

√
2

3

)
are the only real triplets (x, y, z) that satisfy the given system.

Also solved by Daniel Lopez Aguayo, Puebla, Mexico; Valmir Bucaj (student,
Texas Lutheran University), Seguin, TX; Elsie M. Campbell, Dionne T. Bailey,
and Charles Diminnie (jointly), San Angelo, TX; M. N. Deshpande, Nagpur,
India; Bruno Salgueiro Fanego, Viveiro, Spain; G. C. Greubel, Newport News,
VA; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York, NY;
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Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro, GA;
Antonio Ledesma Vila, Requena-Valencia, Spain, and the proposers.

5078: Proposed by Paolo Perfetti, Mathematics Department, University “Tor Vergata,” Rome,
Italy

Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

a√
b(b+ c)

+
b√

c(a+ c)
+

c√
a(a+ b)

≥ 3

2

1√
ab+ ac+ cb

.

Solution by Kee-Wai Lau, Hong Kong, China

For x > 0, let f(x) be the convex function x−1 so that we have

a√
b(b+ c)

+
b√

c(a+ c)
+

c√
a(a+ b)

= af

(√
b(b+ c)

)
+ bf

(√
c(a+ c)

)
+ cf

(√
a(a+ b)

)

≥ f

(
a
√
b(b+ c) + b

√
c(a+ c) + c

√
a(a+ b)

)

=
1

a
√
b(b+ c) + b

√
c(a+ c) + c

√
a(a+ b)

. (1)

By the Cauchy-Schwarz inequality, we have

a
√
b(b+ c) + b

√
c(a+ c) + c

√
a(a+ b)

=

(√
ab(b+ c)

)(√
a(b+ c)

)
+

(√
bc(a+ c)

)(√
b(a+ c)

)
+

(√
ca(a+ b)

)(√
c(a+ b)

)

≤
(√

ab(b+ c) + bc(a+ c) + ca(a+ b)

)(√
a(b+ c) + b(a+ c) + c(a+ b)

)

=

(√
ab2 + bc2 + ca2 + 3abc

)(√
2(ab+ bc+ ca)

)
. (2)

By (1) and (2), it suffices for us to show that ab2 + bc2 + ca2 + 3abc ≤ 2

9
. In fact,

ab2 + bc2 + ca2 + 3abc
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=

(
a+ b+ c− 2

3

)
(ab+ bc+ ca) +

a+ b+ c

9
− b
(
a− 1

3

)2

− c
(
b− 1

3

)2

− a
(
c− 1

3

)2

≤ ab+ bc+ ca

3
+

1

9

=
(a+ b+ c)2

9
− (a− b)2 + (b− c)2 + (c− a)2

18
+

1

9

≤ 2

9
.

This completes the solution.

Also solved by Boris Rays, Brooklyn, NY, and the proposer.

5079: Proposed by Ovidiu Furdui, Cluj, Romania

Let x ∈ (0, 1) be a real number. Study the convergence of the series

∞∑

n=1

x
sin

1

1
+ sin

1

2
+ · · ·+ sin

1

n .

Solution 1 by Kee-Wai Lau, Hong Kong, China

For positive integers n and x ∈ (0, 1), let an = an(x) = x
sin

1

1
+ sin

1

2
+ · · ·+ sin

1

n
.

Since sin
1

n+ 1
=

1

n
+O

(
1

n2

)
as n tends to infinity, so

∣∣∣∣
an
an+1

∣∣∣∣ = exp

((
sin

1

n+ 1

)(
ln

1

x

))

= 1 +

(
sin

1

n+ 1

)(
ln

1

x

)
+

∞∑

m=2

((
sin

1

n+ 1

)(
ln

1

x

))m

m!

= 1 +
1

n
ln

(
1

x

)
+O

(
1

n2

)
,

where the constant implied by the last O depends at most on x. Hence, by Gauss’ test, the

series of the problem is convergent if 0 < x <
1

e
and is divergent if

1

e
≤ x < 1.

10X
ia
ng
’s
T
ex
m
at
h



Solution 2 by David Stone and John Hawkins (jointly), Statesboro, GA

Our answer: we have convergence if 0 < x <
1

e
and divergence if

1

e
≤ x < 1.

We start by looking at the sum
n∑

i=1

sin
1

k
. Each term of the sum, sin

1

k
, can be expanded in an

alternating series sin
1

k
=

1

k
− 1

3!

(
1

k

)3

+ · · ·. The error from terminating the series after the

first term does not exceed the second term. Thus we have

∣∣∣∣ sin
1

k
− 1

k

∣∣∣∣ <
1

3!

(
1

k

)3

, so

− 1

6k3
< sin

1

k
− 1

k
<

1

6k3

1

k
− 1

6k3
< sin

1

k
<

1

k
+

1

6k3
. Therefore,

n∑

k=1

1

k
− 1

6

n∑

k=1

1

k3
<

n∑

k=1

sin
1

k
<

n∑

k=1

1

k
+

1

6

n∑

k=1

1

k3
.

The series
∞∑

k=1

1

k3
is known to be convergent, say to L, which is grater than any of its partial

sums.

Moreover, by looking at the graph of y = 1/x we see that

1

k
<

∫ k

k−1

1

u
du = ln k − ln(k − 1), and

1

k
>

∫ k+1

k

1

u
du = ln(k + 1)− ln(k).

Using these for our bound on the partial sum of sin
1

k
, we obtain

n∑

k=1

(
ln(k + 1)− ln k

)
− 1

6

n∑

k=1

1

k3
<

n∑

k=1

1

k
− 1

6

n∑

k=1

1

k3
<

n∑

k=1

sin
1

k
, so

ln(n+ 1)− 1

6
L <

n∑

k=1

1

k
− 1

6

n∑

k=1

1

k3
<

n∑

k=1

sin
1

k
.

On the other hand,
n∑

k=1

sin
1

k
<

n∑

k=1

1

k
+

1

6

n∑

k=1

1

k3
< 1 + lnn+

1

6
L.

Thus we have bounds on the sine sum:

ln(n+ 1)− 1

6
L <

n∑

i=1

sin
1

k
< 1 + lnn+

1

6
L.
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We use this to investigate the convergence so the series
∞∑

n=1

x
sin

1

1
+ sin

1

2
+ · · ·+ sin

1

n .

Since 0 < x < 1, we know that xu is a decreasing function of u. Thus

x−
1
6
L+ln(n+1) > x

n∑

k=1

sin
1

k
> x

1
6
L+lnn

and we have

x
1
6
L+1

t∑

n=1

xlnn <
t∑

n=1

x

n∑

k=1

sin
1

k
< x−

1
6
L

t∑

n=1

xln(n+1).

Noting that

xlnn = eln(x
lnn) = e(lnn)(lnx) = elnnln x

= nlnx

we can rewrite the outside sums to obtain

x
1
6
L+1

t∑

n=1

nlnx <
t∑

n=1

x

n∑

k=1

sin
1

k
< x−

1
6
L

t∑

n=1

(n+ 1)lnx.

It is well known that the series
∞∑

n=1

nα diverges if α ≥ −1. Hence, if lnx ≥ −1, the series

∞∑

n=1

x

n∑

k=1

sin
1

k
dominates the divergent series

∞∑

n=1

xlnx and thus diverges. That is, we have

divergence if 1 > x ≥ 1

e
.

Likewise, it is well known that
∞∑

n=1

(n+ 1)α converges if α < −1. So if lnx < −1, the series

∞∑

n=1

x

n∑

k=1

sin
1

k
is dominated by the convergent series

∞∑

n=1

(n+ 1)lnx and thus converges.

That is, we have convergence if 0 < x <
1

e
.

Also solved by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2010

• 5098: Proposed by Kenneth Korbin, New York, NY

Given integer-sided triangle ABC with 6 B = 60◦ and with a < b < c. The perimeter of
the triangle is 3N2 + 9N + 6, where N is a positive integer. Find the sides of a triangle
satisfying the above conditions.

• 5099: Proposed by Kenneth Korbin, New York, NY

An equilateral triangle is inscribed in a circle with diameter d. Find the perimeter of the
triangle if a chord with length d− 1 bisects two of its sides.

• 5100: Proposed by Mihály Bencze, Brasov, Romania

Prove that
n∑

k=1

√
k

k + 1

(
n

k

)
≤
√
n(2n+1 − n)2n−1

n+ 1

• 5101: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India

An unbiased coin is tossed repeatedly until r heads are obtained. The outcomes of the
tosses are written sequentially. Let R denote the total number of runs (of heads and
tails) in the above experiment. Find the distribution of R.

Illustration: if we decide to toss a coin until we get 4 heads, then one of the possibilities
could be the sequence T T H H T H T H resulting in 6 runs.

• 5102: Proposed by Miquel Grau-Sánchez and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a positive integer and let a1, a2, · · · , an be any real numbers. Prove that

1

1 + a21 + . . .+ a2n
+

1

FnFn+1

(
n∑

k=1

akFk

1 + a21 + . . .+ a2k

)2

≤ 1,

where Fk represents the kth Fibonacci number defined by F1 = F2 = 1 and for
n ≥ 3, Fn = Fn−1 + Fn−2.

• 5103: Proposed by Roger Izard, Dallas, TX

A number of circles of equal radius surround and are tangent to another circle. Each of
the outer circles is tangent to two of the other outer circles. No two outer circles
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intersect in two points. The radius of the inner circle is a and the radius of each outer
circle is b. If

a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0,

determine the number of outer circles.

Solutions

• 5080: Proposed by Kenneth Korbin, New York, NY

If p is a prime number congruent to 1 (mod 4), then there are positive integers a, b, c,
such that

arcsin

(
a

p3

)
+ arcsin

(
b

p3

)
+ arcsin

(
c

p3

)
= 90◦.

Find a, b, and c if p = 37 and if p = 41, with a < b < c.

Solution 1 by Paul M. Harms, North Newton, KS

The equation in the problem is equivalent to

arcsin

(
a

p3

)
+ arcsin

(
b

p3

)
= 90◦ − arcsin

(
c

p3

)
.

Taking the cosine of both sides yields

(p6 − a2)1/2(p6 − b2)1/2
p6

− ab

p6
=

c

p3
.

(p6 − a2)1/2(p6 − b2)1/2 − ab = cp3.

Since p3 is a factor on the right side I made some assumptions on a and b so that the
left side also had p3 as a factor.
Assume a = p2a1 and b = pb1 where all numbers are positive integers. Then we have

c = (p2 − a1)1/2(p4 − b21)1/2 − a1b1.

I then looked for perfect squares for (p2 − a21) and (p4 − b21).
When p = 37, (372 − a21) = (37− a1)(37 + a1) and a1 = 12 yields a product of the
squares 25 and 49.

When p = 37, (374 − b21) = (372 − b1)(372 + b1).

I checked for a number b1 where both (372 − b1) and(372 + b1) were perfect squares. The
numbers b1 which make (372 − b1) a square are

0, 37 + 36 = 73, 73 + (36 + 35) = 144, 144 + (35 + 34) = 213, · · · .

When b1 = 840, both factors involving b1 are perfect squares.

When p = 37 a result is a = (12)372 = 16428, b = 840(37) = 31080 and c = 27755.

Since the problem conditions state that a < b < c, I will switch notation. One answer is

a = 16428, b = 27755, and = 31080
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with approximate angles 18.925◦, 33.226◦ and 37.849◦.

When p = 41, (41− a1)(41 + a1) is a perfect square when a1 = 9 or 40. The product
(412 − b1)(412 + b1) is a perfect square when b1 = 720. One answer is

a = 9(412) = 15129, b = 720(41) = 29520 and c = 54280

with approximate angles 12.757◦, 25, 361◦, and 51.959◦.

When a1 = 40 and b1 = 720, c was less than zero so this did not satisfy the problem.

Solution 2 by Tom Leong, Scotrun, PA

Fermat’s Two-Square Theorem implies that every prime congruent to 1 mod 4 can be
represented as the sum of two distinct squares. We give a solution to the following
modest generalization. Suppose the positive integer n is the sum of two distinct squares,
say, n = x2 + y2 with 0 < x < y. Then a solution to

arcsin
A

n
+ arcsin

B

n2
+ arcsin

C

n3
= 90◦

in positive integers A,B,C is

(A,B,C) =





(s, 2st, 2(xs+ yt)(xt− ys)) if 1 <
y

x
<
√
3

(t, t2 − s2, 2(xs+ yt)(ys− xt)) if
√
3 <

y

x
< 1 +

√
2

(s, s2 − t2, (xs+ yt)2 − (ys− xt)2) if 1 +
√
2 <

y

x
< 2 +

√
3

(t, 2st, (ys− xt)2 − (xs+ yt)2) if
y

x
> 2 +

√
3

where s = y2 − x2 and t = 2xy.
We can verify this as follows. Since arcsin(A/n) + arcsin(B/n2) and arcsin(C/n3) are
complementary,

tan

(
arcsin

A

n
+ arcsin

B

n2

)
= cot

(
arcsin

C

n3

)
.

Using the angle sum formula for tangent and tan(arcsin z) = z/
√
1− z2, this reduces to

A
√
n4 −B2 +B

√
n2 −A2

√
n2 −A2

√
n4 −B2 −AB

=

√
n6 − C2

C
.

Now verifying the solutions is straightforward using the following identities

n = x2 + y2, n2 = s2 + t2, n3 = (xs+ yt)2 + (ys− xt)2

and the following inequalities

y

x
<
√
3 ⇔ ys < xt,

y

x
< 1 +

√
2 ⇔ s < t,

y

x
< 2 +

√
3 ⇔ ys− xt < xs+ yt.

As for the original problem, for n = 37, since 37 = 12 + 62, we have
x = 1, y = 6, s = 35, t = 12 which gives

arcsin
12

37
+arcsin

840

372
+arcsin

27755

373
= arcsin

16428

373
+arcsin

31080

373
+arcsin

27755

373
= 90◦.
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For n = 41, since 41 = 42 + 52, we have x = 4, y = 5, s = 9, t = 40 which gives

arcsin
9

41
+arcsin

720

412
+arcsin

54280

413
= arcsin

15129

413
+arcsin

29520

413
+arcsin

54280

413
= 90◦.

Comment by editor: David Stone and John Hawkins of Statesboro, GA
developed equations:

b =

√
p3(p3 − c)

2

a =
−bc+

√
b2c2 + p6 (p6 − b2 − c2)

p3
.

Using Matlab they found four solutions for p = 37,

a = 16428 b = 27755 c = 31080
a = 3293 b = 32157 c = 36963
a = 7363 b = 27188 c = 38332
a = 352 b = 25123 c = 43808

and two solutions for p = 41,

a = 15129 b = 29520 c = 54280
a = 5005 b = 31529 c = 58835.

Also solved by Brian D. Beasley, Clinton, SC, and the proposer.

• 5081: Proposed by Kenneth Korbin, New York, NY

Find the dimensions of equilateral triangle ABC if it has an interior point P such that
PA = 5, PB = 12, and PC = 13.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let the length of the sides of the equilateral triangle be x. We show that

x =
√
169 + 60

√
3.

Applying the cosine formula to triangles APB, BPC, and CPA respectively, we obtain

cos 6 APB =
169− x2

120
, cos 6 BPC =

313− x2
312

, cos 6 CPA =
194− x2

130
.

Since

6 APB + 6 BPC + 6 CPA = 360◦ so

cos 6 CPA = cos(6 APB + 6 BPC) and

sin 6 APB sin 6 BPC = cos 6 APB cos 6 BPC − cos 6 CPA.

Hence,
(√

338x2 − x4 − 14161

120

)(√
626x2 − x4 − 625

312

)
=

(
169− x2

120

)(
313− x2

312

)
− 194− x2

130
or
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√
338x2 − x4 − 14161

√
626x2 − x4 − 625 = (169− x2)(313− x2)− 288(194− x2).

Squaring both sides and simplifying, we obtain

576x6 − 194668x4 + 10230336x2 = 0 or

576x2(x4 − 338x2 + 17761) = 0.

It follows that x =
√
169− 60

√
3,
√
160 + 60

√
3. Since 6 APB, 6 BPC, 6 CPA are not

all acute, the value of
√
169− 60

√
3 must be rejected.

This completes the solution.

Comments and Solutions 2 & 3 by Tom Leong, Scotrun, PA

Comments: This problem is not new and has appeared in, e.g., the 1998 Irish
Mathematical Olympiad and T. Andreescu & R. Gelca, Mathematical Olympiad
Challenges, Birkhäuser, 2000, p5. A nice elementary solution to this problem uses a
rotation argument (Solution 2 below). A quick solution to a more general problem can
be found using a somewhat obscure result of Euler on tripolar coordinates (Solution 3
below).
Solution 2
Rotate the figure about the point C by 60◦ so that B maps onto A. Let P ′ denote the
image of P under this rotation. Note that triangle PCP ′ is equilateral since PC = P ′C
and 6 PCP ′ = 60◦. So 6 P ′PC = 60◦. Furthermore, since PP ′ = 13, triangle APP ′ is a
5-12-13 right triangle. Consequently,

cos 6 APC = cos( 6 APP ′ + 60◦) =
5

13
· 1
2
− 12

13
·
√
3

2
=

5− 12
√
3

26
.

So by the Law of Cosines,

AC =

√

52 + 132 − 2 · 5 · 13 · 5− 12
√
3

26
=

√
169 + 60

√
3

Solution 3
A generalization follows from a result of Euler on tripolar coordinates (see, e.g., van
Lamoen, Floor and Weisstein, Eric W. “Tripolar Coordinates” From MathWorld–A
Wolfram Web Resource.
http://mathworld.wolfram.com/TripolarCoordinates.html.) Suppose triangle
ABC is equilateral with side length s, and P is a point in the plane of ABC. The triple
(x, y, z) = (PA,PB,PC) is the tripolar coordinates of P in reference to triangle ABC.
A result of Euler implies these tripolar coordinates satisfy

s4 − (x2 + y2 + z2)s2 + x4 + y4 + z4 − x2y2 − y2z2 − z2x2 = 0

which gives the positive solutions

s =

√
x2 + y2 + z2 ±

√
(x2 + y2 + z2)2 − 2(x− y)2 − 2(y − z)2 − 2(z − x)2

2
.
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The larger solution refers to the case where P is interior to the triangle, while the smaller
solution refers to the case where P is exterior to the triangle. In the case where (x, y, z)
is a Pythatgorean triple with x2 + y2 = z2, this simplifies to the surprisingly terse

s =

√
z2 ± xy

√
3.

In the original problem, with (x, y, z) = (5, 12, 13), we find

s =

√
169± 60

√
3

with the larger solution s =
√
169 + 60

√
3 being the desired answer.

A conjecture by David Stone and John Hawkins, Statesboro, GA

If a, b, c form a right triangle with a2 + b2 = c2, then

1. the side length of the unique equilateral triangle ABC having an interior point P

such that PA = a, PB = b, and PC = c is s
√
c2 + ab

√
3, and

2. the side length of the unique equilateral triangle with an exterior point P satisfying

PA = a, PB = b, and PC = c is s
√
c2 − ab

√
3.

Also solved by Scott H. Brown, Montgomery, AL; Valmir Bucaj (student,
Texas Lutheran University), Seguin, TX; Pat Costello, Richmon, KY; Paul
M. Harms, North Newton, KS; Antonio Ledesma López, Requena-Valencia,
Spain; David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH;
John Nord, Spokane, WA; Boris Rays, Brooklyn, NY; Armend Sh. Shabani,
Republic of Kosova; David Stone and John Hawkins, Statesboro, GA, and
the proposer.

• 5082: Proposed by David C. Wilson, Winston-Salem, NC

Generalize and prove:

1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n+ 1)
= 1− 1

n+ 1

1

1 · 2 · 3 +
1

2 · 3 · 4 + · · ·+ 1

n(n+ 1)(n+ 2)
=

1

4
− 1

2(n+ 1)(n+ 2)

1

1 · 2 · 3 · 4 +
1

2 · 3 · 4 · 5 + · · ·+ 1

n(n+ 1)(n+ 2)(n+ 3)
=

1

18
− 1

3(n+ 1)(n+ 2)(n+ 3)

1

1 · 2 · 3 · 4 · 5 + · · ·+ 1

n(n+ 1)(n+ 2)(n+ 3)(n+ 4)
=

1

96
− 1

4(n+ 1)(n+ 2)(n+ 3)(n+ 4)

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

We will give two different proofs, each relies on the telescoping property.

First proof:

Our quantity may be written as
n∑

k=1

1

k(k + 1) · · · (k +m)
where m is a positive integer.

Next we observe
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1

k(k + 1) · · · (k +m− 1)
− 1

(k + 1) · · · (k +m)
=

m

k(k + 1) · · · (k +m)

yielding, also by telescoping,

n∑

k=1

1

k(k + 1) · · · (k +m)
=

1

m

n∑

k=1

(
1

k(k + 1) · · · (k +m− 1)
− 1

(k + 1) · · · (k +m)

)

=
1

m

(
1

m!
− 1

(n+ 1) · · · (n+m)

)

Second proof:

If ak =
1

k(k + 1) · · · (k +m)
, then

ak+1

ak
=

k · (k + 1) · · · (k +m)

(k + 1)(k + 2) · · · (k +m)
=

k

k + 1 +m

and then mak = kak − (k + 1)ak+1 and therefore

m
n∑

k=1

ak = m
n−1∑

k=0

ak+1 = m
n−1∑

k=0

(kak − (k + 1)ak+1)

=
1

m!
− 1

(n+ 1)(n+ 2) · · · (n+m)

and the result is immediate.

Solution 2 by G. C. Greubel, Newport News, VA

It can be seen that all the series in question are of the form

Sm
n =

n∑

k=1

(k − 1)!

(k +m)!
.

Making a slight change we have

Sm
n =

1

m!

n∑

k=1

(k − 1)!m!

(k +m)!
=

1

m!

n∑

k=1

B(k,m+ 1),

where B(x, y) is the Beta function. By using an integral form of the Beta function,
namely,

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt,

the series becomes

Sm
n =

1

m!

n∑

k=1

∫ 1

0
tm(1− t)k−1dt

=
1

m!

∫ 1

0
tm(1− t)−1 · (1− t)(1− (1− t)n)

t
dt

=
1

m!

∫ 1

0
tm−1(1− (1− t)n)dt
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=
1

m!

(∫ 1

0
tm−1dt−B(n+ 1,m)

)

=
1

m!

(
1

m
−B(n+ 1,m)

)

=
1

m

[
1

m!
− n!

(n+m)!

]
.

The general result is given by

n∑

k=1

(k − 1)!

(k +m)!
=

1

m

[
1

m!
− n!

(n+m)!

]
.

As examples let m = 1 to obtain

n∑

k=1

1

k(k + 1)
= 1− 1

n+ 1

and when m = 2 the series becomes

n∑

k=1

1

n(n+ 1)(n+ 2)
=

1

4
− 1

2(n+ 1)(n+ 2)
.

The other series follow with higher values of m.

Comments by Tom Leong, Scotrun, PA

This series is well-known and has appeared in the literature in several places. Some
references include

1. Problem 241, College Mathematics Journal (Nov 1984, p448–450)

2. Problem 819, College Mathematics Journal (Jan 2007, p65–66)

3. K. Knopp, Theory and Application of Infinite Series, 2nd ed., Blackie & Son, 1951,
p233

4. D.O. Shklarsky, N.N. Chentzov, and I.M. Yaglom, The USSR Olympiad Problem
Book, W.H. Freeman and Company, 1962, p30

In the first reference above, four different perspectives on this series are given.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; N. J.
Kuenzi, Oshkosh, WI; Kee-Wai Lau, Hong Kong, China; Antonio Ledesma
López, Requena-Valencia, Spain; Tom Leong, Scotrun, PA; David E. Manes,
Oneonta, NY; Boris Rays, Brooklyn, NY; Raúl A. Simón, Santiago, Chile;
Armend Sh. Shabani, Republic of Kosova; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5083: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let α > 0 be a real number and let f : [−α, α]→ < be a continuous function two times
derivable in (−α, α) such that f(0) = 0 and f ′′ is bounded in (−α, α). Prove that the
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sequence {xn}n≥1 defined by

xn =





n∑

k=1

f

(
k

n2

)
, n >

1

α
;

0, n ≤ 1

α

is convergent and determine its limit.

Solution 1 by Michael N. Fried, Kibbutz Revivim, Israel

Clearly, for n large enough, we will have n >
1

α
. Therefore, we only need to show that

n∑

k=1

f

(
k

n2

)
converges and to find its limit as n→∞.

Since f(0) = 0 and f ′(x) exist in [0, k/n2] ⊂ [0, 1/n] ⊂ [−α, α], there is some

ξk ∈ [0, k/n2] such that f

(
k

n2

)
= f ′ (ξk)

k

n2
by the mean value theorem.

Let f ′(Mn) =maxkf
′(ξk) and f ′(mn) =minkf

′(ξk).

Then, since
n∑

k=1

f

(
k

n2

)
=

n∑

k=0

f ′(ξk)
k

n2
, we have:

f ′(mn)
n∑

k=1

k

n2
≤

n∑

k=1

f

(
k

n2

)
≤ f ′(Mn)

n∑

k=1

k

n2
, or

f ′(mn)

(
1

2
+

1

2n

)
≤

n∑

k=1

f

(
k

n2

)
≤ f ′(Mn)

(
1

2
+

1

2n

)
.

But f ′ is bounded in [−α, α] and, thus, in every subinterval of [−α, α]. Therefore, f ′ is
continuous in every subinterval of [−α, α]. Hence,

lim
n→∞ f ′(mn) = lim

n→∞ f ′(Mn) = f ′(0), so that

lim
n→∞

n∑

k=1

f

(
k

n2

)
=
f ′(0)
2

Heuristically, we can approach the problem in a slightly different way. Keeping in mind
that f(0) = 0, write:

n∑

k=1

f

(
k

n2

)
= n2

n∑

k=0

(
k

n
× 1

n

)
1

n2
≈ n2

∫ 1
n

0
f (ξ) dξ.

The approximation become exact as n→∞ (this is the heuristic part!)
Since f ′ is bounded in (0, α) (being bounded in (−α, α)), and since f(0) = 0 we can
write, for some s ∈ (0, 1/n):

n2
∫ 1

n

0
f(ξ)dξ = n2

∫ 1
n

0

(
f ′(0)ξ +

f ′′(s)
2

ξ2
)
dξ
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= n2
(
f ′(0)
2

1

n2
+
f ′′(s)
6

1

n3

)

=
f ′(0)
2

+
f ′′(s)
6

1

n

=
f ′(0)
2

as n →∞.

Solution 2 by Ovidiu Furdui, Cluj, Romania

The limit equals
f ′(0)
2

.

We have, since f(0) = 0, that for all n >
1

α
one has

xn =
n∑

k=1

f

(
k

n2

)
=

n∑

k=1

(
f

(
k

n2

)
− f(0)

)

=
n∑

k=1

k

n2
f ′ (θk,n)

=
n∑

k=1

k

n2
(
f ′(θk,n)− f ′(0)

)
+

n∑

k=1

k

n2
f ′(0)

=
n∑

k=1

k

n2
θk,nf

′′(βk,n) +
f ′(0)(n+ 1)

2n
. (1)

We used, in the preceding calculations, the Mean Value Theorem twice where

0 < βk,n < θk,n <
k

n2
. Now,

∣∣∣∣
n∑

k=1

k

n2
θk,nf

′′(βk,n)
∣∣∣∣≤M

n∑

k=1

k

n2
θk,n ≤M

n∑

k=1

k2

n4
=M

(n+ 1)(2n+ 1)

6n3
,

where M = sup
x∈(−α,α)

|f ′′(x)|. Thus,

lim
n→∞

n∑

k=1

k

n2
θk,nf

′′(βk,n) = 0. (2)

Combining (1) and (2) we get that the desired limit holds and the problem is solved.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie (jointly),
San Angelo, TX; Tom Leong, Scotrun, PA; Paolo Perfetti, Department of
Mathematics, Tor Vergata Universtiy, Rome, Italy, and the proposer.

• 5084: Charles McCracken, Dayton, OH
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A natural number is called a “repdigit” if all of its digits are alike.
Prove that regardless of positive integral base b, no natural number with two or more
digits when raised to a positive integral power will produce a repdigit.

Comments by David E. Manes, Oneonta, NY; Michael N. Fried, Kibbutz
Revivim, Israel, the proposer, and the editor.

Manes: The website <http://www.research.att.com/ njas/sequences/A158235> appears
to have many counterexamples to problem 5084.
Editor: Following are some examples and comments from the above site.

11, 20, 39, 40, 49, 78, 133, 247, 494, 543, 1086, 1218,

1651, 1729, 2172, 2289, 2715, 3097, 3258, 3458, 3801,

171, 4344, 4503, 4578, 4887, 5187, 5430, 6194, 6231.

(And indeed, each number listed above can be written as repdigit in some base. For
example:)

112 = 11111 in base 3
202 = 1111 in base 7
392 = 333 in base 22
402 = 4444 in base 7
492 = 777 in base 18
782 = (12)(12)(12) in base 22

12182 = (21)(21)(21)(21) in base 41

McCracken: When I wrote the problem I intended that the number and it’s power be
written in the same base.

Editor: Charles McCracken sent in a proof that was convincing to me that the
statement, as he had intended it to be, was indeed correct. No natural number with two
or more digits (written in base b), when raised to a positive integral power, will produce
a repdigit (in base b). I showed the problem, its solution, and Manes’ comment, to my
colleague Michael Fried, and he finally convinced me that although the intended
statement might be true, the proof was in error.

Fried: The Sloan Integer Sequence site (mentioned above) also cites a paper which
among other things, refers to Catalan’s conjecture, now proven, stating that the only
solution to xk − yn = 1 is 32 − 23 − 9− 8 = 1. This is the fact one needs to show that
Charles’ claim is true for base 2 repdigits. For in base 2 only numbers of the form
11111 . . . 1 are repdigits. These numbers are equal to 2n − 1. So if one of these numbers
were equal to xk, we would have 2n − 1 = xk or 2n − xk = 1. But by the proven Catalan
conjecture, the latter can never be satisfied.

Editor: So, dear readers, let’s rephrase the problem: Prove or disprove that regardless of
positive integral base b, no natural number with two or more digits when raised to a
positive integral power will produce a repdigit in base b.
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• 5085: Proposed by Valmir Krasniqi, (student, Mathematics Department,) University of
Prishtinë, Kosova

Suppose that ak, (1 ≤ k ≤ n) are positive real numbers. Let ej,k = (n− 1) if j = k and
ej,k = (n− 2) otherwise. Let dj,k = 0 if j = k and dj,k = 1 otherwise.

Prove that
n∏

j=1

n∑

k=1

ej,ka
2
k ≥

n∏

j=1

( n∑

k=1

dj,kak

)2

.

Solution by proposer

On expanding each side and reducing, the inequality becomes

n∏

k=1

[
(n− 2)S + a2k

]
≥

n∏

k=1

(T − ak) , where

S =
n∑

k=1

a2k and T =
n∑

k=1

ak.

Since (T − a1)2 ≤ (n− 1)(S − a21), etc., it suffices to prove that

n∏

k=1

[
(n− 2)S + a2k

]
≥ (n− 1)n

n∏

k=1

(S − ak) . (1)

If we now let xk = S − a2k where k = 1, 2, 3, . . . , n so that S =
x1 + x2 + . . .+ xn

n− 1
and

a2k = S − xk, then (1) becomes

n∏

k=1

(
S

′ − xk
)
≥ (n− 1)n · x1 · x2 · . . . · xn, where S

′
=

n∑

k=1

xk .

The result now follows by applying the AM-GM inequality to each of the factors
(S

′ − xk) on the left hand side. There is equality if, and only if, all the ak’s are equal.

Also solved by Tom Leong, Scotrun, PA
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2010

• 5104: Proposed by Kenneth Korbin, New York, NY

There are infinitely many primitive Pythagorean triangles with hypotenuse of the form
4x4 + 1 where x is a positive integer. Find the dimensions of all such triangles in which
at least one of the sides has prime integer length.

• 5105: Proposed by Kenneth Korbin, New York, NY

Solve the equation

x+ y −
√
x2 + xy + y2 = 2 +

√
5

if x and y are of the form a+ b
√
5 where a and b are positive integers.

• 5106: Proposed by Michael Brozinsky, Central Islip, NY

Let a, b, and c be the sides of an acute-angled triangle ABC. Let H be the orthocenter
and let da, db and dc be the distances from H to the sides BC,CA, and AB respectively.

Show that

da + db + dc ≤
3

4
D

where D is the diameter of the circumcircle.

• 5107: Proposed by Tuan Le (student, Fairmont, H.S.), Anaheim, CA

Let a, b, c be positive real numbers. Prove that

√
a3 + b3

a2 + b2
+

√
b3 + c3

b2 + c2
+

√
c3 + a3

c2 + a2
≥ 6(ab+ bc+ ac)

(a+ b+ c)
√
(a+ b)(b+ c)(c+ a)

• 5108: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Compute

lim
n→∞

1

n
tan

[ 4n+1∑

k=1

arctan

(
1 +

2

k(k + 1)

)]
.

• 5109 Proposed by Ovidiu Furdui, Cluj, Romania
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Let k ≥ 1 be a natural number. Find the value of

lim
n→∞

(k n
√
n− k + 1)n

nk
.

Solutions

• 5086: Proposed by Kenneth Korbin, New York, NY

Find the value of the sum
2

3
+

8

9
+ · · ·+ 2N2

3N
.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

If x 6= 1, the formula for a geometric sum yields

N∑

k=0

xk =
xN+1 − 1

x− 1
.

If we differentiate and simplify, we obtain

N∑

k=1

kxk−1 =
NxN+1 − (N + 1)xN + 1

(x− 1)2
.

Next, multiply by x and differentiate again to get

N∑

k=1

kxk =
NxN+2 − (N + 1)xN+1 + x

(x− 1)2

and
N∑

k=1

k2xk−1 =
N2xN+2 − (2N2 + 2N − 1

)
xN+1 + (N + 1)2 xN − x− 1

(x− 1)3
.

Finally, multiply by x once more to yield

N∑

k=1

k2xk =
N2xN+3 − (2N2 + 2N − 1

)
xN+2 + (N + 1)2 xN+1 − x2 − x

(x− 1)3
.

In particular, when we substitute x =
1

3
and simplify, the result is

N∑

k=1

k2

3k
=

3N+1 − (N2 + 3N + 3
)

2 · 3N .

Therefore, the desired sum is

N∑

k=1

2k2

3k
=

3N+1 − (N2 + 3N + 3
)

3N
.
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Solution 2 by Ercole Suppa, Teramo, Italy

The required sum can be written as SN =
2

3N
· xn, where xn denotes the sequence

xn = 12 · 3n−1 + 22 · 3n−2 + 32 · 3n−3 + · · ·+ n2 · 30.

Since
xn+1 = 12 · 3n + 22 · 3n−1 + 32 · 3n−2 + · · ·+ n2 · 31 + (n+ 1)2 · 30,

such a sequence satisfies the linear recurrence

xn+1 − 3xn = (n+ 1)2. (∗)

Solving the characteristic equation λ− 3 = 0, we obtain the homogeneous solutions
xn = A · 3n, where A is a real parameter. To determine a particular solution, we look for

a solution of the form x
(p)
n = Bn2 + Cn+D. Substituting this into the difference

equation, we have

B (n+ 1)2 + C (n+ 1) +D − 3
[
Bn2 + Cn+D

]
= (n+ 1)2 ⇔

−2Bn2 + 2 (B − C)n+B + C − 2D = n2 + 2n+ 1.

Comparing the coefficients of n and the constant terms on the two sides of this equation,
we obtain

B = −1

2
, C = −3

2
, D = −3

2

and thus

x(p)n = −1

2
n2 +−3

2
n− 3

2

The general solution of (∗) is simply the sum of the homogeneous and particular
solutions, i.e.,

xn = A · 3n − 1

2
n2 +−3

2
n− 3

2

From the boundary condition x1 = 1, the constant is determined as
3

2
.

Finally, the desired sum is

SN =
3N+1 −N2 − 3N − 3

3N

and we are done.

Also solved by Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Pat Costello, Richmond, KY; G. C.
Greubel, Newport News, VA; Paul M. Harms, North Newton, KS; Enkel
Hysnelaj, Sydney, Australia & Elton Bojaxhiu, Germany; Kee-Wai Lau,
Hong Kong, China; David E. Manes, Oneonta, NY; John Nord, Spokane,
WA; Paolo Perfetti, Department of Mathematics, Tor Vergata Universtiy,
Rome, Italy; David Stone and John Hawkins (jointly), Statesboro, GA;
Taylor University Problem Solving Group, Upland, IN, and the proposer.
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• 5087: Proposed by Kenneth Korbin, New York, NY

Given positive integers a, b, c, and d such that (a+ b+ c+ d)2 = 2(a2 + b2 + c2 + d2)
with a < b < c < d. Rationalize and simplify

√
x+ y −√x√
x+ y +

√
x

if

{
x = bc+ bd+ cd, and
y = ab+ ac+ ad.

Solution by Paul M. Harms, North Newton, KS

From the equation given in the problem we have

(a+ b+ c+ d)2 = a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd = 2
(
a2 + b2 + c2 + d2

)
.

From the last equation we have

2 (ab+ ac+ ad+ bc+ bd+ cd) = a2 + b2 + c2 + d2.

We note that,

x+ y = ab+ ac+ ad+ bc+ bd+ cd, then

2 (x+ y) = a2 + b2 + c2 + d2

From the identity in the problem,

2 (x+ y) =
(a+ b+ c+ d)2

2
or

(x+ y) =
(a+ b+ c+ d)2

22

Also note that,

y = a(b+ c+ d) or

y

a
= b+ c+ d. Then

x+ y =
(a+ (y/a))2

22
=

(a2 + y)2

(2a)2
.

We have,

x = (x+ y)− y

=
(a2 + y)2

(2a)2
− y

=
a4 + 2a2y + y2 − 4a2y

4a2

=
(a2 − y)2
(2a)2

.
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From a < b < c < d, we see that

a2 − y = a2 − a (b+ c+ d) < 0. Thus

√
(a2 − y)2 = y − a2.

Working with the expression to be simplified, we have

√
x+ y −√x√
x+ y +

√
x

=
(
√
x+ y −√x)2

y

=

[
(a2 + y)/(2a)− (y − a2)/(2a)]2

y

=

(
2a2/2a

)2

y

=
a2

y

=
a

b+ c+ d
.

Also solved by Brian D. Beasley, Clinton, SC; G. C., Greubel, Newport
News, VA; Enkel Hysnelaj, Sydney, Australia & Elton Bojaxhiu, Germany;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Boris
Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5088: Proposed by Isabel Iriberri Dı́az and José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b be positive integers. Prove that

ϕ(ab)√
ϕ2(a2) + ϕ2(b2)

≤
√
2

2
,

where ϕ(n) is Euler’s totient function.

Solution by Tom Leong, Scotrun, PA

We show

ϕ(ab) ≤
√
ϕ(a2)ϕ(b2) ≤

√
ϕ2a2) + ϕ2(b2)

2

which implies the desired result. The second inequality used here is simply the AM-GM
Inequality. To prove the first inequality, let pi denote the prime factors of both a and b,
and let qj denote the prime factors of a only and rk the primes factors of b only. Then

ϕ(ab) = ab
∏

i

(
1− 1

pi

)∏

j

(
1− 1

qj

)∏

k

(
1− 1

rk

)

ϕ(a2)ϕ(b2) =


a2

∏

i

(
1− 1

pi

)∏

j

(
1− 1

qj

)

[
b2
∏

i

(
1− 1

pi

)∏

k

(
1− 1

rk

)]
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where we understand the empty product to be 1. Then ϕ(ab) ≤
√
ϕ(a2)ϕ(b2) reduces to

∏

j

(
1− 1

qj

)∏

k

(
1− 1

rk

)
≤ 1

which is obviously true.

Editor’s comment: Kee-Wai Lau of Hong Kong, China mentioned in his solution to
this problem that in the Handbook of Number Theory I (Section 1.2 of Chapter I by J.
Sándor, D.S. Mitrinovi, and B. Crstic, Springer, 1995), the proof of
(ϕ(mn))2 ≤ ϕ(m2)ϕ(n2), for positive integers m and n is attributed to a 1940 paper by
T. Popoviciu. Kee-Wai then wrote

√
ϕ2(a2) + ϕ2(b2) ≥

√
2ϕ(a2)ϕ(b2) ≥

√
2ϕ(ab),

proving the inequality.

Also solved by Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Enkel Hysnelaj, Sydney, Australia &
Elton Bojaxhiu, Germany; David E. Manes, Oneonta, NY; Paolo Perfetti,
Department of Mathematics, University Tor Vergata, Rome, Italy; David
Stone and John Hawkins (jointly), Statesboro, GA; Ercole Suppa, Teramo,
Italy; and the proposers.

• 5089: Proposed by Panagiote Ligouras, Alberobello, Italy

In 4ABC let AB = c,BC = a,CA = b, r = the in-radius and ra, rb, and rc= the
ex-radii, respectively.

Prove or disprove that

(ra − r)(rb + rc)

rarc + rrb
+
(rc − r)(ra + rb)

rcrb + rra
+
(rb − r)(rc + ra)

rbra + rrc
≥ 2

(
ab

b2 + ca
+

bc

c2 + ab
+

ca

a2 + bc

)
.

Solution by Kee-Wai Lau, Hong Kong, China

We prove the inequality.

Let s and S be respectively the semi-perimeter and area of 4ABC. It is well known that

r =
S

s
, ra =

S

s− a, rb =
S

s− b , rc =
S

s− c .

Using these relations, we readily simplify

(ra − r)(rb + rc)

rarc + rrb
to

a

c
,
(rc − r)(ra + rb)

rcrb + rra
to

c

b
, and

(rb − r)(rc + ra)

rbra + rrc
to

b

a
.

Since b2 + ca ≥ 2b
√
ca, c2 + ab ≥ 2c

√
ab, and a2 + bc ≥ 2a

√
bc, so

2

(
ab

b2 + ca
+

bc

c2 + ab
+

ca

a2 + bc

)
≤
√
a

c
+

√
b

a
+

√
c

b
.

By the Cauchy-Schwarz inequality, we have

√
a

c
+

√
b

a
+

√
c

b
≤
√
3

(
a

c
+
b

a
+
c

b

)
,

6X
ia
ng
’s
T
ex
m
at
h



and by the arithmeic mean-geometric mean inequality we have

3 = 3

(
3

√(
a

c

)(
b

a

)(
c

b

)
≤ a

c
+
b

a
+
c

b
.

It follows that

√
a

c
+

√
b

a
+

√
c

b
≤ a

c
+
b

a
+
c

b
and this completes the solution.

Also solved by Tom Leong, Scotrun, PA; Ercole Suppa, Teramo, Italy, and
the proposer.

• 5090: Proposed by Mohsen Soltanifar (student), University of Saskatchewan, Canada

Given a prime number p and a natural number n. Calculate the number of elementary
matrices En×n over the field Zp.

Solution by Paul M. Harms, North Newton, KS

The notation 0 and 1 will be used for the additive and multiplicative identities,
respectively.

There are three types of matrices which make up the set of elementary matrices. One
type is a matrix where two rows of the identity matrix are interchanged. Since there are
n rows and we interchange two at a time, the number of elementary matrices of this

type is
n(n− 1)

2
, the combination of n things taken two at a time.

Another type of elementary matrix is a matrix where one of the elements along the main
diagonal is replaced by an element which is not 0 or 1. There are (p− 2) elements which
can replace a 1 on the main diagonal. The number of elementary matrices of this type is
(p− 2)n.

The third type of elementary matrix is the identity matrix where at most one position,
not on the main diagonal, is replaced by a non-zero element. There are (n2 − n)
positions off the main diagonal and (p− 1) non-zero elements. Then there are
(n2 − n)(p− 1) different elementary matrices where a non-zero element replaces one zero
element in the identity matrix. If the identity matrix is included here, the number of
elementary matrices of this type is (n2 − n)(p− 1) + 1.

The total number of elementary matrices is

n(n− 1)

2
+ (p− 2)n+ (n2 − n)(p− 1) + 1 = n2

(
p− 1

2

)
− 3n

2
+ 1.

Comment by David Stone and John Hawkins of Statesboro, GA. There
doesn’t seem to be any need to require that p be prime as we form and count these
elementary matrices. However, if m were not prime then Zm would not be a field and
the algebraic properties would be affected. For instance, it’s preferable that any
elementary matrix be invertible and the appearance of non-invertible scalars would

produce non-invertible elementary matrices such as

(
1 0
0 2

)
over Z4.

Also solved by David E. Manes, Oneonta, NY; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.
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• 5091: Proposed by Ovidiu Furdui, Cluj, Romania

Let k, p ≥ 0 be nonnegative integers. Evaluate the integral

∫ π/2

−π/2

sin2p x

1 + sin2k+1 x+
√
1 + sin4k+2 x

dx.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the integral equals
(2p− 1)!!

(2p)!!

π

2
, independent of k.

Here (−1)!! = 0!! = 1, n!! = n(n− 2) . . . (3)(1) if n is a positive odd integer and
n!! = n(n− 2) . . . (4)(2) if n is a positive even integer.

By substituting x = −y, we have

∫ 0

−π/2

sin2p x

1 + sin2k+1 x+
√
1 + sin4k+2 x

dx =

∫ π/2

0

0 sin2p y

1− sin2k+1 y +
√
1 + sin4k+2 y

so that

∫ π/2

−π/2

sin2p x

1 + sin2k+1 x+
√
1 + sin4k+2 x

dx

=

∫ π/2

0
sin2p x

(
1

1 + sin2k+1 x+
√
1 + sin4k+2 x

+
1

1− sin2k+1 x+
√
1 + sin4k+2 x

)
dx

= 2

∫ π/2

0
sin2p x


 1 +

√
1 + sin4k+2 x(

1 + sin2k+1 x+
√
1 + sin4k+2 x

) (
1− sin2k+1 x+

√
1 + sin4k+2 x

)


 dx

=

∫ π/2

0
sin2p xdx.

The last integral is standard and its value is well known to be
(2p− 1)!!

(2p)!!

π

2
.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata,
Rome, Italy

The answer is:
(2p)!

22p(p!)2
π

2
for any k.

Proof Let’s substitute sinx = t

∫ 1

−1

t2p

1 + t2k+1 +
√
1 + t4k+2

dt√
1− t2

=

∫ 1

−1

t2p(1 + t2k+1 −
√
1 + t4k+2)

2t2k+1

dt√
1− t2

Now

∫ 1

−1

t2p

2t2k+1

dt√
1− t2

=

∫ 1

−1

t2p
√
1 + t4k+2

2t2k+1

dt√
1− t2

= 0

since the integrands are odd functions. It remains
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1

2

∫ 1

−1

t2p√
1− t2

dt =
1

2

∫ π/2

−π/2
(sinx)2pdx

after changing variable t = sinx. Integrating by parts we obtain

∫ π/2

−π/2
(sinx)2pdx =

∫ π/2

−π/2
(− cosx)′(sinx)2p−1dx

= − cosx(sinx)2p−1
∣∣∣
π/2

−π/2
+(2p− 1)

∫ π/2

−π/2
cos2 x(sinx)2p−2dx

= (2p− 1)

∫ π/2

−π/2
(sinx)2p−2dx− (2p− 1)

∫ π/2

−π/2
(sinx)2pdx

and if we call I2p =

∫ π/2

−π/2
(sinx)2pdx, then we have I2p =

2p− 1

2p
I2p−2. It results that

I2p =
(2p− 1)!!

(2p)!!
π =

(2p)!

22p(p!)2
π and then

1

2

∫ 1

−1

t2p√
1− t2

dt =
π

2

(2p− 1)!!

(2p)!!
=

(2p)!

22p(p!)2
π

2

Editor’s comment: The two solutions presented,
(2p− 1)!!

(2p)!!

π

2
and

(2p)!

22p(p!)2
π

2
, are

equivalent to one another.

Also solved by Boris Rays, Brooklyn, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2010

• 5110: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with an interior point P and with coordinates A(0, 0), B(6, 8), and
C(21, 0). The distance from point P to side AB is a, to side BC is b, and to side CA is
c where a : b : c = AB : BC : CA.

Find the coordinates of point P .

• 5111: Proposed by Michael Brozinsky, Central Islip, NY.

In Cartesianland where immortal ants live, it is mandated that any anthill must be
surrounded by a triangular fence circumscribed in a circle of unit radius. Further-
more, if the vertices of any such triangle are denoted by A,B, and C, in counter-
clockwise order, the anthill’s center must be located at the interior point P such that
6 PAB = 6 PBC = 6 PCA.

Show PA · PB · PC ≤ 1.

• 5112: Proposed by Juan-Bosco Romero Márquez, Madrid, Spain

Let 0 < a < b be real numbers with a fixed and b variable. Prove that

lim
b→a

∫ b

a

dx

ln
b+ x

a+ x

= lim
b→a

∫ b

a

dx

ln
b(a+ x)

a(b+ x)

.

• 5113: Proposed by Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy

Let x, y be positive real numbers. Prove that

2xy

x+ y
+

√
x2 + y2

2
≤ √xy +

x+ y

2
+

(
x+ y

6
−
√
xy

3

)2

2xy

x+ y

.
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• 5114: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let M be a point in the plane of triangle ABC. Prove that

MA
2

+MB
2

+MC
2

AB
2

+BC
2

+ CA
2 ≥

1

3
.

When does equality hold?

• 5115: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon,
Canada

Let G be a finite cyclic group. Compute the number of distinct composition series of G.

Solutions

• 5092: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with altitude h and with cevian CD. A circle with radius
x is inscribed in 4ACD, and a circle with radius y is inscribed in 4BCD with x < y.
Find the length of the cevian CD if x, y and h are positive integers with (x, y, h) = 1.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA;

We let the length of cevian = d. Since the altitude of the equilateral triangle is h, the

length of the side AC is
2h√

3
. Let F be the center of the circle inscribed in 4ACD. Let

α = 6 ACF = 6 FCD. Therefore 6 ACD = 2α.

Let E be the point where the inscribed circle in 4ACD is tangent to side AC. Since AF
bisects the base angle of 60◦, we know that 4AEF is a 30◦− 60◦− 90◦ triangle, implying

that AE =
√

3x. Thus the length of CE is AC −AE =
2h√

3
−
√

3x =
2h− 3x√

3
.

Applying the Law of Sines in triangle 4ADC, we have

sin 2α

AD
=

sin 60◦

d
=

sin(6 ADC)

AC
. (1)

Because 6 ADC = 180◦ − 60◦ − 2α = 120◦ − 2α, we have

sin (6 ADC) = sin (120◦ − 2α)

= sin 120◦ cos 2α− cos 120◦ sin 2α

=

√
3

2
cos 2α+

1

2
sin 2α

=

√
3

2

(
cos2 α− sin2 α

)
+

1

2
(2 sinα sinα) .
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Thus from (1) we have

√
3

2d
=

[√
3
(
cos2 α− sin2 α

)
+ (2 sinα sinα)

]√
3

4h
.

Therefore, we can solve for d in terms of h and α:

d =
2h[√

3
(
cos2 α− sin2 α

)
+ (2 sinα sinα)

] .

In the right triangle 4EFC, we have

FC =

√
x2 +

(
2h− 3x√

3

)2

=

√
3x2 + 4h2 − 12hx+ 9x2

3
=

2√
3

√
3x2 + h2 − 3hx.

Thus, sinα =

√
3x

2
√

3x2 + h2 − 3hx
and cosα =

2h− 3x

2
√

3x2 + h2 − 3hx
. Therefore,

cos2α− sin2 α =
(2h− 3x)2

4 (3x2 + h2 − 3hx)
− 3x2

4 (3x2 + h2 − 3hx)

=
4h2 − 12hx+ 6x2

4 (3x2 + h2 − 3hx)
=

2h2 − 6hx+ 3x2

2 (3x2 + h2 − 3hx)
.

and 2 sinα cosα =

√
3x (2h− 3x)

2 (3x2 + h2 − 3hx)
.

Therefore the denominator in the expression for d becomes

√
3(2h2 − 6hx+ 3x2)

2 (3x2 + h2 − 3hx)
+

√
3x (2h− 3x)

2 (3x2 + h2 − 3hx)
=
√

3
2h2 − 4hx

2 (3x2 + h2 − 3hx)
.

Thus, d =
2h√

3(2h2 − 4hx)

2(3x2 + h2 − 3hx)

=
2(3x2 + h2 − 3hx)√

3(h− 2x)
.

Similarly, working in 4BCD, we can show that d =
2(3y2 + h2 − 3hy)√

3(h− 2y)
.

We note that x and y both satisfy the same equation when set equal to d. Thus for a
given value of d, the equation should have two solutions. The smaller one can be used for
x and the larger for y.

We also note that if x, h and y are integers, then d has the form d =
r√
3

, for r a rational

number. We substitute this into the equation x:

d =
2
(
3x2 + h2 − 3hx

)
√

3(h− 2x)
=

r√
3
, so
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r =
2(3x2 + h2 − 3hx)

h− 2x
.

Now we solve this for x:

rh− 2xr = 6x2 + 2h2 − 6hx

6x2 − (6h− 2r)x+ 2h2 − rh = 0

x =
6h− 2r ±

√
36h2 − 24hr + 4r2 − 48h2 + 24hr

12
=

3h− r ±
√
r2 − 3h2

6
.

Of course we would have the exact same expression for y.

Thus we take x =
3h− r −

√
r2 − 3h2

6
and y =

3h− r −
√
r2 − 3h2

6
and find h and r so

that x and y turn out to be positive integers.

Subtracting x from y gives y−x =

√
r2 − 3h2

3
. Thus we need r and h such that

√
r2 − 3h2

3
is an integer.

It must be the case that r2 − 3h2 ≥ 0, which requires 0 <
√

3h ≤ r. In addition it must
be true that

3h− r −
√
r2 − 3h2 > 0

9h2 − 6hr + r2 > r2 − 3h2

12h2 − 6hr > 0

6h(2h− r) > 0

0 < r < 2h. Thus,

√
3h ≤ r < 2h.

If we restrict our attention to integer values of r, then both h and r must be divisible by
3.

For h = 3, 6 and 9, no integer values of r divisible by 3 satisfy
√

3h ≤ r < 2h. So the first
allowable value of h is 12. Then the condition 12

√
3 ≤ r < 24 forces r = 21. From this

we find that x = 2 and y = 3 and d = 7
√

3. (Note that (2, 3, 12) = 1.)

This is only the first solution. We programmed these constraints and let MatLab check
for integer values of h and appropriate integer values of r which make x and y integers

4X
ia
ng
’s
T
ex
m
at
h



satisfying (x, y, h) = 1. There are many solutions:




r y x y cevian

21 12 2 3 7
√

3

78 45 9 10 26
√

3

111 60 5 18 37
√

3

114 63 7 18 38
√

3

129 72 9 20 43
√

3




Editor’s note: David and John then listed another 47 solutions. They capped their
search at h = 1000, but stated that solutions exist for values of h > 1000. They ended the
write-up of their solution with a formula for expressing the cevian in terms of x, y and h.

y − x =

√
r2 − 3h2

3

9(y − x)2 = r2 − 3h2

r2 = 3h2 + 9(y − x)2

r =
√

3h2 + 9(y − x)2

Length of cevian
r√
3

=
√
h2 + 3(y − x)2.

Ken Korbin, the proposer of this problem, gave some insights into how such a problem
can be consructed. He wrote:

Begin with any prime number P congruent to 1(mod 6). Find positive integers [a, b] such
that a2 + ab+ b2 = P 2. Construct an equilateral triangle with side a+ b and with Cevian
P . The Cevian will divide the base of the triangle into segments with lengths a and b.
Find the altitude of the triangle and the inradii of the 2 smaller triangles. Multiply the
altitude, the inradii and the Cevian P by

√
3 and then by their LCD. This should do it.

Examples: P = 7, [a, b] = [3, 5]. P = 13, [a, b] = [7, 8]. And so on.

• 5093: Proposed by Worapol Ratanapan (student), Montfort College, Chiang Mai, Thai-
land

6 = 1 + 2 + 3 is one way to partition 6, and the product of 1, 2, 3, is 6. In this case, we
call each of 1, 2, 3 a part of 6.

We denote the maximum of the product of all parts of natural number n as N(n).

As a result, N(6) = 3× 3 = 9, N(10) = 2× 2× 3× 3 = 36, and N(15) = 35 = 243.

More generally, ∀n ∈ N,N(3n) = 3n, N(3n+ 1) = 4× 3n−1, and N = (3n+ 2) = 2× 3n.
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Now let’s define R(r) in the same way as N(n), but each part of r is positive real. For
instance R(5) = 6.25 and occurs when we write 5 = 2.5 + 2.5

Evaluate the following:

i) R(2e)
ii) R(5π)

Solution by Michael N. Fried, Kibbutz Revivim, Israel

Let R(r) =
∏

i

xi, where
∑

i

xi = r and xi > 0 for all i. For any given r, find the maximum

of R(r).

Since for any given r and n the arithmetic mean of every set {xi} i = 1, 2, 3 . . . n is
r

n
by

assumption, the geometric-arithemetic mean inequality implies that

R(r) =
n∏

i=1

xi ≤
(
r

n

)n

.

Hence the maximum of R(r) is a function of n. Let us then find the maximum of the

function R(x) =

(
r

x

)x

, which is the same as the maximum of

L(x) = ln (R(x)) = x ln r − x lnx.

L(x) indeed has a single maximum at x =
r

e
.

Let m = br
e
c and M = dr

e
e. Then the maximum value of R(r) is

max

((
r

m

)m

,

(
r

M

)M
)
.

To make this concrete consider r = 5, 2e, and 5π.

For r = 5, r/e = 1.8393 . . ., so maxR(5) = max
(
5, (5/2)2

)
= max(5, 6.25) = 6.25

For r = 2e, r/e = 2, so maxR(2e) = e2.

For r = 5π, r/e = 5.7786 . . ., so maxR(5π) = max

((
5π

5

)5

,

(
5π

6

)6
)

=

(
5π

6

)6

.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North New-
ton, KS; Kee-Wai Lau, Hong Kong, China; David Stone and John Hawkins
(jointly), Statesboro, GA; The Taylor University Problem Solving Group, Up-
land, IN, and the proposer.

• 5094: Proposed by Paolo Perfetti, Mathematics Department Tor Vergata University,
Rome, Italy

Let a, b, c be real positive numbers such that a+ b+ c+ 2 = abc. Prove that

2
(
a2 + b2 + c2

)
+ 2 (a+ b+ c) ≥ (a+ b+ c)2 .
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Solution 1 by Ercole Suppa, Teramo, Italy

We will use the “magical” substitution given in “Problems from The Book” by Titu
Andreescu and Gabriel Dospinescu, which is explained in the following lemma:

If a, b, c are positive real numbers such that a + b + c + 2 = abc, then there exists three
real numbers x, y, z > 0 such that

a =
y + z

x
, b =

z + x

y
, and c =

x + y

z
. (∗)

Proof: By means of a simple computation the condition a+ b+ c+2 = abc can be written
in the following equivalent form

1

1 + a
+

1

1 + b
+

1

1 + c
= 1.

Now if we take

x =
1

1 + a
, y =

1

1 + b
, and z =

1

1 + c
,

then x+ y+ z = 1 and a =
1− x
x

=
y + z

x
. Of course, in the same way we find b =

z + x

y

and c =
x+ y

z
.

By using the substitution (∗), after some calculations, the given inequality rewrites as

z4(x− y)2 + x4(y − z)2 + y4(x− z)2 + 2(x3y3 + x3z3 + y3z3 − 3x2y2z2)

x2y2z2
≥ 0,

which is true since
x3y3 + x3z3 + y3z3 ≥ 3x2y2z2

by virtue of the AM-GM inequality.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

First let x = a+ b and y = ab. Hence x ≥ 2
√
y.

From a+ b+ c+ 2 = abc, we have c =
x+ 2

y − 1
. Hence, y > 1.

Noting that x2 − 2y = a2 + b2, it follows readily that the original inequality can be
rewritten as

(y − 2)2 x2 + 2
(
y2 − 3y + 4

)
x− 4y3 + 8y2 ≥ 0, (1)

where y > 1 and x ≥ 2
√
y. For y > 1 arbitrary but fixed, we denote by fy(x), for x ≥ 2

√
y,

the function on the left-hand side of (1).

Trivially, fy(x) ≥ 0 for y = 2. For y 6= 2 (which we henceforth assume), fy(·), when ex-

tended to <, is a quadratic function (parabola) attaining its minimum at x0 =
− (y2 − 3y + 4)

(y − 2)2
.

Noting that x0 < 0, it follows that

min
{x:x≥2√y}

fy(x) = fy(2
√
y)
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= 4
√
y
(
y2 − 3y + 4− 2y3/2 + 4

√
y
)
.

Thus the inequality (1) will be proved if we show that

ϕ(y) := y2 − 3y + 4− 2y3/2 + 4
√
y ≥ 0. (2)

This is trivial for 1 < y < 2 since in this case both y2 − 3y + 4 and −2y3/2 + 4
√
y are

greater than 0.

For y > 2, it is readily seen that ϕ′′(y) > 0. Hence, ϕ′(y) is increasing for y > 2. Noting
that ϕ′(4) = 0, it thus follows that min{y>2} ϕ(y) = ϕ(4). Since ϕ(4) = 0, inequality (2)
is proved.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Firstly, we have

2(a2 + b2 + c2) + 2(a+ b+ c)− (a+ b+ c)2 = (a+ b+ c)(a+ b+ c+ 2)− 4(ab+ bc+ ca)

Let p = a+ b+ c, q = ab+ bc+ ca, r = abc , so that r = p+ 2.

We need to show that q ≤ p(p+ 2)

4
(1)

It is well known that a, b, and c are the positive real roots of the cubic equation

x3 − px2 + qx− r = 0 if, and only if,

p2q2 − 4p3r + 18pqr − 4q3 − 27r2 ≥ 0.

By substituting r = p + 2 and simplifying, we reduce the last inequality to f(q) ≤ 0,
where

f(q) = 4q3 − p2q2 −
(
36p+ 18p2

)
q + 4p4 + 8p3 + 27p2 + 108p+ 108

= (q + 2p+ 3)
(
4q2 − (p2 + 8p+ 12)q + 2p3 + p2 + 12p+ 36

)
. Thus

4q2 − (p2 + 8p+ 12)q + 2p3 + p2 + 12p+ 36 ≤ 0. (2)

By the arithmetic mean-geometric inequality we have

abc = a+ b+ c+ 2 ≥ 4(2abc)1/4 so that abc ≥ 8 and p = a+ b+ c ≥ 6.

From (2) we obtain q ≤ 1

8

(
p2 + 8p+ 12 +

√
(p+ 2)(p− 6)3

)
and it remains to show that

1

8

(
p2 + 8p+ 12 +

√
(p+ 2)(p− 6)3

)
≤ p(p+ 2)

4
. (3)

Now (3) is equivalent to
√

(p+ 2)(p− 63)≤ (p− 6)(p+ 2) or, on squaring both sides and
simplifying, −8(p+ 2)(p− 6)2 ≤ 0.

Since the last inequality is clearly true, we see that (1) is true, and this completes the
solution.

Also solved by Tom Leong, Scotrun, PA; Bruno Salgueiro Fanego, Viveiro,
Spain, and the proposer.
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• 5095: Proposed by Zdravko F. Starc, Vršac, Serbia

Let Fn be the Fibonacci numbers defined by

F1 = F2 = 1, Fn+2 = Fn+1 + Fn (n = 1, 2, · · ·).

Prove that

√
Fn−2Fn−1 + 1 ≤ Fn ≤

√
(n− 2)Fn−2Fn−1 + 1 (n = 3, 4, · · ·).

Solution 1 by Valmir Bucaj (student, Texas Lutheran University), Seguin, TX

First, using mathematical induction, we show that

F 2
n = Fn−1Fn+1 + (−1)n+1, for n = 2 , 3 , . . . (2 ).

For n = 2 we have:
F 2
2 = 1 = 1 · 2− 1 = F1F3 + (−1)3.

Assume that (2) holds for n. We show that it is true also for n+ 1.

FnFn+2 + (−1)n+2 = Fn (Fn + Fn+1) + (−1)n+2

= F 2
n + FnFn+1 + (−1)n+2

= Fn−1Fn+1 + FnFn+1 + (−1)n+1 + (−1)n+2

= Fn+1 (Fn−1 + Fn) = F 2
n+1.

So (2) hold for any n ≥ 2.

Next we show that, √
Fn−2Fn−1 + 1 ≤ Fn, holds.

By applying (2) several times we obtain:

F 2
n = Fn−1Fn+1 + (−1)n+1

= Fn−1 (Fn + Fn−1) + (−1)n+1

= Fn−1Fn + F 2
n−1 + (−1)n+1

= Fn−1Fn + Fn−2Fn + (−1)n + (−1)n+1

= Fn−1Fn + Fn−2Fn−1 + F 2
n−2

= 2Fn−1Fn−2 + Fn−2Fn + F 2
n−2 + (−1)n+1

= 3Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1

= Fn−1Fn−2 + 2Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1
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≥ Fn−1Fn−2 + 2
√
Fn−1Fn−2 + 1

=
(√

Fn−1Fn−2 + 1
)2

Taking the square root of both sides we obtain:

Fn ≥
√
Fn−1Fn−2 + 1,

which is the first part of (1).

To prove the second part of (1), we proceed similarly. That is:

F 2
n = Fn−1Fn+1 + (−1)n+1

= Fn−1 (Fn + Fn−1) + (−1)n+1

= Fn−1Fn + F 2
n−1 + (−1)n+1

= Fn−1Fn + Fn−2Fn + (−1)n + (−1)n+1

= Fn−1Fn + Fn−2Fn−1 + F 2
n−2

= 2Fn−1Fn−2 + Fn−2Fn + F 2
n−2 + (−1)n+1

= 3Fn−1Fn−2 + 2F 2
n−2 + (−1)n+1

≤ 3Fn−1Fn−2 + 2Fn−1Fn−2 + 1

= 5Fn−1Fn−2 + 1

≤ (n− 2)Fn−1Fn−2 + 1 for n ≥ 7.

Taking the square root of both sides we obtain:

Fn ≤
√

(n− 2)Fn−1Fn−2 + 1 ≤
√

(n− 2)Fn−1Fn−2 + 1, (4)

which proves the second part of (1) for n ≥ 7.

On can easily show that (4) also holds for n = 3, 4, 5, and 6 by checking each of these
cases separately. So combining (3) and (4) we have proved that:

√
Fn−2Fn−1 + 1 ≤ Fn ≤

√
(n− 2)Fn−2Fn−1 + 1 (n = 3, 4, · · ·).

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Given n = 3, 4, · · · , we can use (because all the Fn are positive) the Geometric Mean-
Arithmetic Mean Inequality applied to Fi, i = n−1, n−2, the facts that Fn = Fn−1+Fn−2
and Fn ≥ 2 with equality if, and only if, n = 3, to obtain:

√
Fn−2Fn−1 + 1 ≤ Fn−2 + Fn−1

2
+ 1 =

Fn

2
+ 1 ≤ Fn,
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which is the first inequality to prove, with equality if, and only if, n = 3.

The second inequality, if n = 3, 4, · · · can be proved using that Fn =
n−2∑

i=1

Fi + 1, the

Quadratic Mean-Arithmetic Mean inequality applied to the positive numbers Fi, i =

1, 2, · · · , n− 2, and that Fn−2Fn−1 =
n−2∑

i=1

F 2
i , because

Fn =
n−2∑

i=1

Fi + 1 ≤

√√√√(n− 2)
n−2∑

i=1

F 2
i + 1 =

√
(n− 2)Fn−2Fn−1 + 1,

with equality if, and only if, n = 3 or n = 4.

Solution 3 by Shai Covo, Kiryat-Ono, Israel

The left inequality is trivial. Indeed, for any n ≥ 3,
√
Fn−2Fn−1 + 1 ≤

√
Fn−1Fn−1 + Fn−2 = Fn.

As for the right inequality, the result is readily seen to hold for n = 3, 4, 5, 6. Hence, it
suffices to show that for any n ≥ 7 the following inequality holds:

Fn = Fn−2 + Fn−1 <
√

5Fn−2Fn−1.

With x and y playing the role of Fn−2 and Fn−1 (n ≥ 7), respectively, it thus suffices to
show that x+ y <

√
5xy, subject to x < y < 2x (x ≥ F5 = 5).

It is readily checked that, for any fixed x > 0 (real), the function φx(y) =
√

5xy− (x+ y),
defined for y ∈ [x, 2x], has a global minimum at y = 2x, where φx(y) = (

√
10− 3)x > 0.

The result is now established.

Solution 4 by Brian D. Beasley, Clinton, SC

Let Ln = α
√
αFn−2Fn−1 − 1 and Un = α

√
αFn−2Fn−1 + 1, where α = (1 +

√
5)/2. We

prove the stronger inequalities Ln ≤ Fn ≤ Un for n ≥ 3, with improved lower bound for
n ≥ 5 and improved upper bound for n ≥ 7.

First, we note that the inequalities given in the original problem hold for 3 ≤ n ≤ 6. Next,
we apply induction on n, verifying that L3 ≤ F3 ≤ U3 and assuming that Ln ≤ Fn ≤ Un

for some n ≥ 3. Then (Fn − 1)2 ≤ α3Fn−2Fn−1 ≤ (Fn + 1)2, which implies

(Fn+1 − 1)2 = (Fn − 1)2 + 2Fn−1(Fn − 1) + F 2
n−1 ≤ α3Fn−2Fn−1 + 2Fn−1(Fn − 1) + F 2

n−1
and

(Fn+1 + 1)2 = (Fn + 1)2 + 2Fn−1(Fn + 1) +F 2
n−1 ≥ α3Fn−2Fn−1 + 2Fn−1(Fn + 1) +F 2

n−1.

Since α3Fn−1Fn = α3Fn−2Fn−1 + α3F 2
n−1, it suffices to show that

2Fn−1(Fn − 1) + F 2
n−1 ≤ α3F 2

n−1 ≤ 2Fn−1(Fn + 1) + F 2
n−1,

that is, 2(Fn − 1) + Fn−1 ≤ α3Fn−1 ≤ 2(Fn + 1) + Fn−1. Using the Binet formula
Fn = (αn − βn)/

√
5, where β = (1 −

√
5)/2, these latter inequalities are equivalent to

2βn−1 − 2 ≤ 0 ≤ 2βn−1 + 2, both of which hold since −1 < β < 0. (We also used the
identities 2α+ 1− α3 = 0 and α3 − 1− 2β = 2

√
5.)
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Finally, we note that Un is smaller than the original upper bound for n ≥ 7, since α3+2 <
7. Also, a quick check verifies that Ln is larger than the original lower bound for n ≥ 5;
this requires

(α3 − 1)2(Fn−2Fn−1)2 − 8(α3 + 1)Fn−2Fn−1 + 16 ≥ 0,

which holds if Fn−2Fn−1 ≥ 4.
Also solved by Paul M. Harms, North Newton, KS; Tom Leong, Scotrun, PA;
Boris Rays, Brooklyn NY; David Stone and John Hawkins (jointly), States-
boro, GA, and the proposer.

• 5096: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a

b+
4
√
ab3

+
b

c+
4
√
bc3

+
c

a+
4
√
ca3
≥ 3

2
.

Solution 1 by Ovidiu Furdui, Cluj, Romania

We have, since 4
√
xy3 ≤ x+ 3y

4
, that

∑

cyclic

a

b+ 4
√
ab3
≥ 4

∑

cyclic

a

7b+ a
= 4

∑

cyclic

a2

7ba+ a2
≥ 4

(a+ b+ c)2∑
a2 + 7

∑
ab
,

and hence it suffices to prove that

8(a+ b+ c)2 ≥ 3(a2 + b2 + c2) + 21(ab+ bc+ ca).

However, the last inequality reduces to proving that

a2 + b2 + c2 ≥ ab+ bc+ ca,

and the problem is solved since the preceding inequality holds for all real a, b, and c.

Solution 2 by Ercole Suppa, Teramo, Italy

By the weighted AM-GM inequality we have

a

b+
4
√
ab3

+
b

c+
4
√
bc3

+
c

a+
4
√
ca3

≥ a

b+
1

4
a+

3

4
b

+
b

c+
1

4
b+

3

4
c

+
c

a+
1

4
c+

3

4
a

=
4a

a+ 7b
+

4b

b+ 7c
+

4c

c+ 7a
.

So it suffices to prove that

a

a+ 7b
+

b

b+ 7c
+

c

c+ 7a
≥ 3

8
.
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This inequality is equivalent to

7(13a2b+ 13b2c+ 13ac2 + 35ab2 + 35a2c+ 35bc2 − 144abc)

8(a+ 7b)(b+ 7c)(c+ 7a)
≥ 0

which is true. Indeed according to the AM-GM inequality we obtain

13a2b+ 13b2c+ 13ac2 ≥ 13 · 3 · 3
√
a3b3c3 = 39abc

35ab2 + 35a2c+ 35bc2 ≥ 35 · 3 · 3
√
a3b3c3 = 105abc

and, summing these inequalities we obtain:

13a2b+ 35ab2 + 35a2c+ 13b2c+ 13ac2 + 35bc2 ≥ 144abc.

This ends the proof. Clearly, equality occurs for a = b = c.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San An-
gelo, TX

We start by considering the function

f(t) =
1

et + e
3
4
t

on <. Then for all t ∈ <,

f ′′(t) =
16e2t + 23e

7
4
t + 9e

3
2
t

16
(
et + e

3
4
t
)3 > 0,

and hence, f(t) is strictly convex on <.

If x = ln

(
b

a

)
, y = ln

(
b

a

)
, and z = ln

(
b

a

)
, then

x+ y + z = ln

(
b

a
· c
b
· a
c

)
= ln 1 = 0.

By Jensen’s Theorem,

a

b+
4
√
ab3

+
b

c+
4
√
bc3

+
c

a+
4
√
ca3

=
1

(
b

a

)
+

(
b

a

)3/4
+

1
(
c

b

)
+

(
c

b

)3/4
+

1
(
a

c

)
+

(
a

c

)3/4

= f(x) + f(y) + f(z)

≥ 3f

(
x+ y + z

3

)
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= 3f(0)

=
3

2
.

Further, equality is attained if, and only if, x = y = z = 0, i.e., if, and only if, a = b = c.

Solution 4 by Shai Covo, Kiryat-Ono, Israel

Let us first represent b and c as b = xa and c = yxa, where x and y are arbitrary positive
real numbers. By doing so, the original inequality becomes

1

x+ x3/4
+

1

y + y3/4
+

yx

1 + (yx)1/4
≥ 3

2
. (1)

Let us denote by f(x, y) the expression on the left-hand side of this inequality. Clearly,
f(x, y) has a global minimum at some point (α, β) ∈ (0,∞)×(0,∞), a priori not necessar-
ily unique. This point is, in particular, a critical point of f ; that is, fx(α, β) = fy(α, β) =
0, where fx and fy denote the partial derivatives of f with respect to x and y. Calculating
derivatives, the conditions fx(α, β) = 0 and fy(α, β) = 0 imply that





1 + 3
4α
−1/4

(
α+ α3/4

)2 =
β
[
1 + 3

4(βα)1/4
]

[
1 + (βα)1/4

]2 and

1 + 3
4β
−1/4

(
β + β3/4

)2 =
α
[
1 + 3

4(βα)1/4
]

[
1 + (βα)1/4

]2

, (2)

respectively. From this it follows straight forwardly, that

1 + 3
4α
−1/4

α
(
1 + α−1/4

)2 =
1 + 3

4β
−1/4

β
(
1 + β−1/4

)2 .

Writing this equality as ϕ(α) = ϕ(β) and noting that ϕ is strictly decreasing, we conclude
(by virtue of ϕ being one-to-one) that α = β. Substituting this into (2) gives

1 + 3
4α
−1/4

(
α+ α3/4

)2 =
α
(
1 + 3

4α
1/2
)

(
1 + α1/2

)2 .

Comparing the numerators and denominators of this equation shows that the right-hand
side is greater than the left-hand side for α > 1, while the opposite is true for α < 1.
We conclude that α = β = 1. Thus f has a unique global minimum at (x, y) = (1, 1),
where f(x, y) = 3/2. The inequality (1), and hence the one stated in the problem, is thus
proved.

Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong Kong,
China; Tom Leong, Scotrun, PA; Paolo Perfetti, Mathematics Department
Tor Vergata University, Rome, Italy, and the proposer.
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• 5097: Proposed by Ovidiu Furdui, Cluj, Romania

Let p ≥ 2 be a natural number. Find the sum

∞∑

n=1

(−1)n

b p
√
nc ,

where bac denotes the floor of a. (Example b2.4c = 2).

Solution 1 by Paul M. Harms, North Newton, KS

Since the series is an alternating series it is important to check whether the number of
terms with the same denominator is even or odd. It is shown below that the number of
terms with the same denominator is an odd number.

Consider p=2. The series starts:

(−1)1

1
+

(−1)2

1
+

(−1)3

1
+

(−1)4

1
+ . . .+

(−1)8

2
+

(−1)9

3
+ . . .

=
(−1)3

1
+

(−1)8

2

(−1)15

3
+ . . .

= −1 +
1

2
− 1

3
+ . . . .

The terms with 1 in the denominator are from n = 12 up to (not including) n = 22, and
the terms with 2 in the denominator come from n = 22 up to n = 32. The number of
terms with 1 in the denominator is 22 − 12 = 3 terms.

For p = 2 the number of terms with a positive integer m in the denominator is (m+ 1)2−
m2 = 2m+ 1 terms which is an odd number of terms.

For a general positive integer p, the number of terms with a positive integer m in the
denominator is (m+ 1)p −mp terms. Either (m+ 1) is even and m is odd or vice versa.
An odd integer raised to a positive power is an odd integer, and an even integer raised
to a positive power is an even integer. Then (m + 1)p −mp is the difference of an even
integer and an odd integer which is an odd integer. Since, for every positive integer p the

series starts with
(−1)1

1
= −1 and we have an odd number of terms with denominator 1,

the last term with 1 in the denominator is
−1

1
and the other terms cancel out.

The terms with denominator 2 start and end with positive terms. They all cancel out

except the last term of
1

2
.

Terms with denominator 3 start and end with negative terms. For every p we have the
series −1

1
+

1

2
− 1

3
+

1

4
− 1

5
+ . . . = − ln 2.

Solution 2 by The Taylor University Problem Solving Group, Upland, IN
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First note that the denominators of the terms of this series will be increasing natural
numbers, because p

√
n will always be a real number greater than or equal to 1 for n ≥ 1,

meaning that its floor will be a natural number. Furthermore, for a natural number a,
ap is the smallest n for which a is the denominator, because b p

√
apc = bac = a. In other

words, the denominator increases by 1 each time n is a perfect pth power. Thus, a natural
number k occurs as the denominator (k+1)p−kp times in the series. Because multiplying
a number by itself preserves parity and k+ 1 and k always have opposite parity, (k+ 1)p

and kp also have opposite parity, hence their difference is odd. So each denominator
occurs an odd number of times. Because the numberator alternates between 1 and -1,
all but the last of the terms with the same denominator will cancel each other out. This
leaves an alternating harmonic series with a negative first term, which converges to − ln 2.

This can be demonstrated by the fact that the alternating harmonic series with a positive
first term is the Mercator series evaluated at x = 1, and this series is simply the opposite
of that.

Incidentally, this property holds for p = 1 as well.

Also solved by Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro Fanego, Viveiro,
Spain; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Mathematics Depart-
ment Tor Vergata University, Rome, Italy; David Stone and John Hawkins
(jointly), Statesboro, GA; Ercole Suppa, Teramo, Italy, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 15, 2010

• 5116: Proposed by Kenneth Korbin, New York, NY

Given square ABCD with point P on side AB, and with point Q on side BC such that

AP

PB
=
BQ

QC
> 5.

The cevians DP and DQ divide diagonal AC into three segments with each having
integer length. Find those three lengths, if AC = 84.

• 5117: Proposed by Kenneth Korbin, New York, NY

Find positive acute angles A and B such that

sinA+ sinB = 2 sinA · cosB.

• 5118: Proposed by David E. Manes, Oneonta, NY

Find the value of
√

2011 + 2007

√
2012 + 2008

√
2013 + 2009

√
2014 + · · ·

• 5119: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a non-negative integer. Prove that

2 +
1

2n+1

n∏

k=0

csc

(
1

Fk

)
< Fn+1

where Fn is the nth Fermat number defined by Fn = 22
n
+ 1 for all n ≥ 0.

• 5120: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Calculate

lim
n→∞

1

2n

n∑

k=0

(−1)k
(
n

k

)
log

(
2n− k
2n+ k

)
.
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• 5121: Proposed by Tom Leong, Scotrun, PA

Let n, k and r be positive integers. It is easy to show that

∑

n1+n2+···+nr=n

(
n1
k

)(
n2
k

)
· · ·
(
nr
k

)
=

(
n+ r − 1

kr + r − 1

)
, n1, n2, · · ·nr ∈ N

using generating functions. Give a combinatorial argument that proves this identity.

Solutions

• 5098: Proposed by Kenneth Korbin, New York, NY

Given integer-sided triangle ABC with 6 B = 60◦ and with a < b < c. The perimeter of
the triangle is 3N2 + 9N + 6, where N is a positive integer. Find the sides of a triangle
satisfying the above conditions.

Solution 1 by Michael N. Fried, Kibbutz Revivim, Israel

Since 3n2 + 9n+ 6 = 3(n+ 1)(n+ 2) = 3K, we can rephrase the problem as follows:
Find an integer-sided triangle ABC with angle B = 60◦ and a < b < c whose perimeter
is the same as an equilateral triangle PBQ whose side is K.

Let us then consider a triangle derived from PBQ by lengthening PB by an integer x
and shortening BQ by an integer y such that the resulting triangle still has perimeter
3K.

Thus, we can write the following expression:

Perimeter (4ABC ) = (K+x )+(K−y)+
[
(K + x )2 + (K − y)2 − (K + x )(K − y)

]1/2
= 3K (1)

Also we must make sure that,

(K + x)2 + (K − y)2 − (K + x)(K − y) =M2, for some interger M (2)

Note also that BC < CA < AB since 6 BAC < 60◦ < 6 BCA.

Equation (1) can be transformed into the much simpler equation,

xy = K(y − x) = (n+ 1)(n+ 2)(y − x) (3)

The most obvious solution of (3) is x = n+ 1 and y = n+ 2.

Substituting these expressions into the left hand side of (2) and simplifying, we get

(K+x)2+(K−y)2−(K+x)(K−y) = (n+1)4+2(n+1)3+3(n+1)2+2(n+1)+1 (4)

But the right hand side of (4) is just
[
(n+ 1)2 + (n+ 1) + 1

]2
, so that (2) is satisfied

when x = n+ 1 and y = n+ 2.

Hence, we have at least one solution:

AB = K + x = (n+ 1)(n+ 2) + (n+ 1) = (n+ 1)(n+ 3)
BC = K − y = (n+ 1)(n+ 2)− (n+ 2) = n(n+ 2)
CA = (n+ 1)2 + (n+ 1) + 1
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Solution 2 by David Stone and John Hawkins, Statesboro, GA

We show that the following triangle satisfies the conditions posed in the problem:

a = N2 + 2N = N(N + 2)
b = N2 + 3N + 3 = (N + 1)(N + 2) + 1
c = N2 + 4N + 3 = (N + 1)(N + 3).

But by no means does this give all acceptable triangles and we exhibit some others (and
methods to produce them).

The given sum for the perimeter does have a connection to triangles: 3N2 + 9N + 6 is
6TN+1, the N + 1st triangular number!

Since a < b < c are all integers, we let m and n be positive integers such that b = a+m
and c = a+m+ n.

By the Law of Cosines, b2 = a2 + c2 − 2ac cos 60◦ = a2 − ac+ c2. Replacing b = a+m
and c = a+m+ n we get

(a+m)2 = a2 − a(a+m+ n) + (a+m+ n)2 or
−am+ an+ n2 + 2mn = 0. (1)

Likewise, substituting b = a+m and c = a+m+ n into the proscribed perimeter
conditions produces

3a+ 2m+ n = 3(N + 1)(N + 2). (2)

From equation (1), we have am = n(a+ 2m+ n); and from this we see that n must be a
factor of am. There are many ways for this to happen, but the simplest possible is that
n|s or n|m.

Case I: a = nA.

Then

nAm = n(nA+ 2m+ n),
Am = nA+ 2m+ n, or

(A− 2)m = n(A+ 1). (1a)

The simplest possible solution to Equation (1a) is

n = A− 2
m = A+ 1

In this case, equation (2) becomes

3nA+ 2m+ n = 3 (N + 1) (N + 2) ,
3(A− 2)A+ 2(A+ 1) + (A− 2) = 3(N + 1)(N + 2),

3A2 − 3A = 3(N + 1)(N + 2), or
(A− 1)A = (N + 1)(N + 2).

Because A− 1 and A are consecutive integers, as are N + 1 and N + 2, we must have
A = N + 2 (so n = N and m = N + 3). It then follows that

a = nA = N(N + 2)
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b = a+m = N(N + 2) + (N + 3) = N2 + 3N + 3
c = a+m+ n = N(N + 2) + (N + 3) +N = N2 + 4N + 3.

It is straightforward to check that such a, b, c satisfy equations (1) and (2). Here are the
first few solutions:

N a b c
1 3 7 8
2 8 13 15
3 15 21 24
4 24 31 35
5 35 43 48
6 48 57 63
7 63 73 80
8 80 91 99
9 99 111 120
10 120 133 143
11 143 157 168
12 168 183 195
13 195 211 224
14 224 241 255
15 225 273 288

There are more solutions to the equation (1a) : (A− 2)m = n(A+ 1). For instance, we
could look for solutions with m = d(A+ 1) and n = d(A− 2), with d > 1. In this case,
equation (2) becomes dA(A− 1) = (N + 1)(N + 2) which is quadratic in A. By varying
d (and using Excel) we find more solutions:

d N a b c
2 2 6 14 16
2 19 390 422 448
3 8 72 93 105
3 34 1197 1263 1320
5 4 15 35 40
5 13 175 215 240
5 98 9675 9905 10120

Note that these solutions are scalar multiples of the (fundamental?) solutions found
above. Many more solutions are possible.

Case II: n|m, or m = nC.

In this case, am = n(a+ 2m+ n) becomes

anC = n(a+ 2nC + n) or
aC = a+ 2nC + n or

(C − 1)a = n(2C + 1) (1b)

Once again, there are many ways to find solutions to this, but no general solution valid
for all values of N. We stop by giving one more: with N = 54 we find
a = 231, b = 4449, c = 4560.

Also solved by Brian D. Beasley, Clinton, SC; G. C. Greubel, Newport
News, VA; Paul M. Harms, North Newton, KS; David C. Wilson,
Winston-Salem, NC, and the proposer.
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• 5099: Proposed by Kenneth Korbin, New York, NY

An equilateral triangle is inscribed in a circle with diameter d. Find the perimeter of the
triangle if a chord with length d− 1 bisects two of its sides.

Solution 1 by Boris Rays, Brooklyn, NY

Let O be the center of the inscribed equilateral triangle ABC. Let the intersection of
the altitude from vertex A with side BC be F ; from vertex B with side AC be H, and
from vertex C with side AB be E . Since 4ABC is equilateral, AF,BH, and CE are
also the respective angle bisectors, perpendicular bisectors, and medians of the
equilateral triangle, and AH = HC = CE = FB = BE = EA.

Let line segment EF be extended in each direction, intersecting BH at K, and the
circumscribing circle of 4ABC at points D and G, where D is on the minor arcÂB and
G is on the minor arc B̂C. Note that points D,E,K,F, and G lie on line segment DG
and that AO = OG. Also note, by the givens of the problem, that

DG = d− 1 and

AO = BO = CO = r =
d

2
, (1)

where r and d are correspondingly the radius and diameter of the circumscribed circle.

BH ⊥ AC,AH = HC, 6 BAO = 6 OAH = 30◦.

OH =
1

2
AO =

d

4
.

AH =

√(
d

2

)2

−
(
d

4

)2

=
d

4

√
3.

AC = 2AH =
d

2

√
3 (2)

The perimeter P of triangle 4ABC will be

P = 3 ·AC =
3

2

√
3d. (3)

BK =
1

2
BH =

1

2
· 3 ·OH =

3

8
d.

KO = BO −BK =
d

2
− 3

8
d =

d

8
.

GK =
1

2
DG =

d− 1

2
.

Triangle 4GKO is a right triangle with DG ⊥ BH and GK ⊥ BO. Therefore,

GO2 = GK2 +KO2 (4)

Substituting the values of the component parts of 4GKO into (4),

GO = r =
d

2
, GK =

d− 1

2
, KO =

d

8
,
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we obtain (
d− 1

2

)2

−
(
d

8

)2

=

(
d

2

)2

. (5)

Simplifying the last equation (5) we find that d = 4 ·
(
4 +
√
15
)
. Therefore,

AC =
4(4 +

√
15)

2

√
3 = 2

(
4
√
3 + 3

√
5
)
, and

P = 3 · 2
(
4
√
3 + 3

√
5
)
= 24

√
3 + 18

√
5.

.

Solution 2 by Brian D. Beasley, Clinton, NC

We model the circle using x2 + y2 = r2, where r = d/2, and place the triangle with one
vertex at (0, r), leaving the other two vertices in the third and fourth quadrants.
Labeling the fourth quadrant vertex as (a, b), we have b = r −

√
3a and thus a =

√
3r/2,

b = −r/2. Then two of the midpoints of the triangle’s sides are

(√
3

4
r,
1

4
r

)
and

(
0,−1

2
r

)
. We find the endpoints of the chord through these two midpoints by

substituting its equation, y =
√
3x− r/2, into the equation of the circle; the two

x-coordinates of these endpoints are x = sr and x = tr, where

s =

√
3 +
√
15

8
and t =

√
3−
√
15

8
.

Hence the length of the chord is
√
(s− t)2r2 + (

√
3(s− t))2r2 = d(s− t).

If the chord length is d− k, where 0 < k < d, then d = k/(1− s+ t) = 4k(4 +
√
15).

Thus the perimeter of the triangle is P = 3
√
3r = k(24

√
3 + 18

√
5). For the given

problem, since k = 1, we obtain P = 24
√
3 + 18

√
5.

Also solved by Michael Brozinsky, Central Islip, NY; Paul M. Harms, North
Newton, KS; John Nord, Spokane, WA; Raúl A. Simón, Santiago, Chile;
David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5100: Proposed by Mihály Bencze, Brasov, Romania

Prove that
n∑

k=1

√
k

k + 1

(
n

k

)
≤
√
n(2n+1 − n)2n−1

n+ 1

Solution 1 by Kee-Wai Lau, Hong Kong, China

We need the identities

n∑

k=0

(
n

k

)
xk = (1 + x)n (1)

n∑

k=0

k

(
n

k

)
xk−1 = n (1 + x)n−1 (2)
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and
n∑

k=0

(
n

k

)
x k+1

k + 1
=

(1 + x)n+1 − 1

n+ 1
(3)

Identity (1) is the well known binomial expansion, whilst identities (2) and (3) follow
respectively by differentiating and integrating (1). By the Cauchy-Schwarz inequality
and putting x = 1 in (2) and (3) we obtain

n∑

k=1

√
k

k + 1

(
n

k

)
=

n∑

k=1



√√√√k

(
n

k

)



√√√√
(
n

k

)
1

k + 1




≤
√√√√
(

n∑

k=1

k

(
n

k

))(
n∑

k=1

(
n

k

)
1

k + 1

)

=

√
(n2n−1)

(
2n+1 − 1

n+ 1
− 1

)

=

√
n (2n+1 − n− 2) 2n−1

n+ 1
,

and the inequality of the problem follows.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

We shall prove a substantially better upper bound than the one stated in the problem.
Namely, we show that

n∑

k=1

√
k

k + 1

(
n

k

)
<

n

n+ 1

(
2n − 1

2

)
.

It is readily checked that our bound is less than the bound of

√
n(2n+1 − n)2n−1

n+ 1
that

the problem suggests; moreover, we have verified numerically that it is much tighter.

Now to the proof. The key observation is that

√
k

k + 1
< 1− 1

2(k + 1)

for all k ∈ N (actually, for any real k > 0; its origin lies in the mean value theorem
applied to the function f(x) =

√
x and points a = k/(k + 1), b = 1.

Thus, using the elementary identity
n∑

k=0

(
n

k

)
= 2n (twice), we get

n∑

k=1

√
k

k + 1

(
n

k

)
<

n∑

k=1

(
n

k

)
− 1

2

n∑

k=1

1

k + 1

(
n

k

)
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= 2n − 1− 1

2(n+ 1)

n∑

k=1

(
n+ 1

k + 1

)

= 2n − 1− 2n+1 − (n+ 1)− 1

2(n+ 1)

=
n

n+ 1

(
2n − 1

2

)
.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

We prove the slightly more general statement

n∑

k=1

√
k

k + 1

(
n

k

)
≤
√

(2n − 1) [(n− 1) 2n + 1]

n+ 1
. (1)

To show that this implies the desired inequality, we begin by letting P (n) be the
statement: 2n+1 > (n− 1)2 + 3. P (1) is obvious and if we assume P (n) is true for some
n ≥ 1, then

2n+2 = 2 · 2n+1 > 2
[
(n− 1)2 + 3

]
=
(
n2 + 3

)
+
(
n2 − 4n+ 5

)

=
(
n2 + 3

)
+
[
(n− 2)2 + 1

]
> n2 + 3,

and P (n+ 1) is also true. By Mathematical Induction, P (n) is true for all n ≥ 1.

Then, for n ≥ 1,

n
(
2n+1 − n

)
2n−1 − (2n − 1) [(n− 1) 2n + 1]

= 2n−1
[
2n+1 − (n− 1)2 − 3

]
+ 1

> 0

and we have

(2n − 1) [(n− 1) 2n + 1] < n
(
2n+1 − n

)
2n−1. (2)

It follows that statement (1) implies the given inequality.

To prove statement (1), we note that since
n∑

k=0

(
n

k

)
= 2n, we get

n∑

k=1

(n
k

)

2n − 1
= 1.

Because f (x) =
√
x is concave down on [0,∞), Jensen’s Theorem implies that

n∑

k=1

(
n

k

)
1

2n − 1

√
k

k + 1
≤
√√√√

n∑

k=1

(
n

k

)
1

2n − 1

k

k + 1
=

√√√√ 1

2n − 1

n∑

k=1

(
n

k

)
k

k + 1
,

and hence,
n∑

k=1

(
n

k

)√
k

k + 1
≤
√√√√(2n − 1)

n∑

k=1

(
n

k

)
k

k + 1
. (3)
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For k = 1, 2, . . . , n, (
n

k

)
k

k + 1
=

k

n+ 1

(
n+ 1

k + 1

)

and we get

n∑

k=1

(
n

k

)
k

k + 1
=

1

n+ 1

n∑

k=1

k

(
n+ 1

k + 1

)
=

1

n+ 1

n+1∑

k=2

(k − 1)

(
n+ 1

k

)
. (4)

Finally, the Binomial Theorem yields

n+1∑

k=0

(
n+ 1

k

)
xk = (1 + x)n+1 .

It follows that when x 6= 0,

n+1∑

k=1

(
n+ 1

k

)
xk−1 =

(1 + x)n+1 − 1

x

and, by differentiating,

n+1∑

k=2

(k − 1)

(
n+ 1

k

)
xk−2 =

x (n+ 1) (1 + x)n −
[
(1 + x)n+1 − 1

]

x2
.

In particular, when x = 1,

n+1∑

k=2

(k − 1)

(
n+ 1

k

)
= (n+ 1) 2n − 2n+1 + 1 = (n− 1) 2n + 1. (5)

Then, statements (3), (4), and (5) imply statement (1), which (by statement (2)) yields
the desired inequality.

Also solved by G. C. Greubel, Newport News, VA, and the proposer

• 5101: Proposed by K. S. Bhanu and M. N. Deshpande, Nagpur, India

An unbiased coin is tossed repeatedly until r heads are obtained. The outcomes of the
tosses are written sequentially. Let R denote the total number of runs (of heads and
tails) in the above experiment. Find the distribution of R.

Illustration: if we decide to toss a coin until we get 4 heads, then one of the possibilities
could be the sequence T T H H T H T H resulting in 6 runs.

Solution by Shai Covo, Kiryat-Ono, Israel

It is readily seen that R can be represented as

R = 1 + Y1 + 2
r∑

i=2

Yi, (1)

where Yi, i = 1, . . . , r, is a random variable equal to 1 if the i-th head follows a tail and
equal to 0 otherwise. The Yi′s are thus independent Bernoulli (1/2) variables, that is

9X
ia
ng
’s
T
ex
m
at
h



P (Yi = 1) = P (Yi = 0) = 1/2. Noting that R is odd if and only if Y1 = 0, and even if
and only if Y1 = 1, it follows straightforwardly from (1) that

P (R = n) =
1

2
P

(
r∑

i=2

Yi =
n− 1

2

)
for n = 1, 3, . . . , (2r − 1) and

P (R = n) =
1

2
P

(
r∑

i=2

Yi =
n− 2

2

)
for n = 2, 4, . . . , 2r .

(2)

Finally, since
r∑

i=2

Yi has a binomial distribution with parameters r − 1 and
1

2
(defined as

0 if r = 1), we conclude that

P (R = n) =

(
r − 1

(n− 1)/2

)
1

2r
for n = 1, 3, . . . , (2r − 1)

and

P (R = n) =

(
r − 1

(n− 2)/2

)
1

2r
for n = 2, 4, . . . , 2r .

Remark 1. More generally, if the probability of getting a head on each throw is
p ∈ (0, 1), then P (R = n) is given, in a shorter form, by

P (R = n) =

(
r − 1

bn−1
2 c

)
(1− p)bn/2cpr−bn/2c, n = 1, 2, . . . , 2r,

where b·c denotes the floor function. This is proved in the same way as in the unbiased
case, only that now the Yi are Bernoulli (1− p) variables.
Remark 2. From (1) and the fact that E(Yi) = 1/2 and V ar(Yi) = 1/4, we find that
the expectation and variance of R are given by

E(R) = 1 +
1

2
+ 2(r − 1)

1

2
= r +

1

2
and V ar(R) =

1

4
+ 4(r − 1)

1

4
= r − 3

4
.

In the more general case of Remark 1, where E(Yi) = 1− p and V ar(Yi) = (1− p)p, the
expectation and variance of R are given by

E(R) = 2(1− p)r + p and Var(R) = 4(1− p)pr − 3(1− p)p.

Also solved by David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposers.

• 5102: Proposed by Miquel Grau-Sánchez and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a positive integer and let a1, a2, · · · , an be any real numbers. Prove that

1

1 + a21 + . . .+ a2n
+

1

FnFn+1

(
n∑

k=1

akFk

1 + a21 + . . .+ a2k

)2

≤ 1,
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where Fk represents the kth Fibonacci number defined by F1 = F2 = 1 and for
n ≥ 3, Fn = Fn−1 + Fn−2.

Solution by Kee-Wai Lau, Hong Kong, China

By Cauchy-Schwarz’s inequality and the well known identity
n∑

k=1

F 2
k = FnFn+1 we have

1

FnFn+1

(
n∑

k=1

akFk

1 + a21 + . . .+ a2k

)2

=
1

FnFn+1

(
n∑

k=1

(
ak

1 + a21 + . . .+ a2k

)
Fk

)2

≤ 1

FnFn+1

(
n∑

k=1

a2k(
1 + a21 + . . .+ a2k

)2

)(
n∑

k=1

F 2
k

)

=
n∑

k=1

a2k(
1 + a21 + . . .+ a2k

)2

Hence it remains for us to show that

1

1 = a21 + . . .+ a2n
+

n∑

k=1

a2k(
1 + a21 + . . .+ a2k

)2 ≤ 1. (1)

Denote the left hand side of (1) by f(n). Since f(1) =
1 + 2a21

1 + 2a21 + a41
, so f(1) ≤ 1.

Now

f(m+ 1)− f(m)

=
1

1 + a21 + . . .+ a2m+1

+
a2m+1(

1 + a21 + . . .+ a2m+1

)2 −
1

1 + a21 + . . .+ a2m

=

(
1 + a21 + . . .+ a2m

) (
1 + a21 + . . .+ a2m + 2a2m+1

)− (1 + a21 + . . .+ a2m+1

)2
(
1 + a21 + . . .+ a2m+1

)2 (
1 + a21 + . . .+ a2m

)

= − a4m+1(
1 + a21 + . . .+ a2m+1

)2 (
1 + a21 + . . .+ a2m

)

≤ 0,

so in fact f(n) ≤ 1 for all positive integers n. Thus (1) holds and this completes the
solution.

Also solved by the proposers.

• 5103: Proposed by Roger Izard, Dallas, TX
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A number of circles of equal radius surround and are tangent to another circle. Each of
the outer circles is tangent to two of the other outer circles. No two outer circles
intersect in two points. The radius of the inner circle is a and the radius of each outer
circle is b. If

a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0,

determine the number of outer circles.

Solution by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
San Angelo, TX

Let CA be the inner circle centered at point A with radius a. Similarly, let CB be a fixed
outer circle centered at point B with radius b. Circle CB is tangent to two other outer
circles; let T1 and T2 be these points of tangency. Then,

BT1 ⊥ AT1 and BT ⊥ AT.

If θ is the measure of 6 T1AT2, then 0◦ < θ < 180◦. Further, triangle T1AB is a right
triangle where

m6 T1AB =
θ

2
, T1B = b, and AB = a+ b

which yields

sin

(
θ

2

)
=

b

a+ b
. (1)

The given condition a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0 implies that

a4 + 4a3b+ b4 = 10a2b2 + 28ab3

a4 + 4a3b+ 6a2b2 + 4ab3 + b4 = 16a2b2 + 32ab3

(a+ b)4 = 16b2(a2 + 2ab)

(a+ b)4 = 16b2(a2 + 2ab+ b2)− 16b4

(a+ b)4 = 16b2(a+ b)2 − 16b4

1 =
16b2(a+ b)2 − 16b4

(a+ b)4

1 = 16

(
b

a+ b

)2

− 16

(
b

a+ b

)4

.

By equation (1) and the half-angle formula, sin2
(
θ

2

)
=

1− cos θ

2
, it follows that:

1 = 16

(
1− cos θ

2

)
− 16

(
1− cos θ

2

)2

1 = 8(1− cos θ)− 4(1− cos θ)2

1 = 4− 4 cos2 θ
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cos2 θ =
3

4

cos θ = ±
√
3

2

θ = 30◦ or 150◦.

Since the number of outer circles is
360◦

θ
, then θ = 30◦ and there must be 12 outer

circles.

Comment by editor: David Stone and John Hawkins of Statesboro, GA observed
in their solution that “the circle passing through the centers of the outer bracelet of
circles has circumference almost equal, but slightly larger than, the perimeter of the

regular polygon determined by these centers: 2π(a+ b) ≈ n(2b). Thus n ≈ a+ b

b
π (in

fact, n must be slightly smaller than
a+ b

b
π).”

They went on to say that since

a4 + 4a3b− 10a2b2 − 28ab3 + b4 = 0,

a4

b4
+

4a3b

b4
− 10a2b2

b4
− 28ab3

b4
+
b4

b4
= 0, implies

x4 + 4x3 − 10x2 − 28x+ 1 = 0, where x =
a

b
.

Therefore,
a

b
=
√
6±
√
2− 1, and since n ≈ a+ b

b
π, n = 12. But then they went further.

The equation sin

(
π

n

)
=

b

a+ b
=

1

1 +
a

b

, provides the link between n and the ratio
a

b
;

we can solve for either:

n =
π

sin−1

(
1

1 + a/b

) and
a

b
=

1

sin(π/n)
− 1.

The problem poser cleverly embedded a nice ratio for
a

b
in the fourth degree polynomial;

nice in the sense that the n turned out to be an integer. In fact, the graph of the

increasing function y =
π

sin−1

(
1

1 + r

) is continuous and increasing for the positive ratio

r. Thus any lager value of n is uniquely attainable (given the correct choice of r =
a

b
).

Or we can reverse the process: fix the number of surrounding circles and calculate r =
a

b
.

A nice example (by letting b = 1): if we want to surround a circle with a bracelet of 100
unit circles, how large should it be? Answer:

radius = a =
a

1
=

1

sin
π

100

− 1 = 30 .836225 .

Also solved by Michael Brozinsky, Central Islip, NY; Michael N. Fried,
Kibbutz Revivim, Israel; Paul M. Harms, North Newton, KS; Kenneth
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Korbin, New York, NY; Boris Rays, Brooklyn, NY; Raúl A. Simón,
Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA;
The Taylor University Problem Solving Group, Upland, IN, and the
proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2010

• 5122: Proposed by Kenneth Korbin, New York, NY

Partition the first 32 non-negative integers from 0 to 31 into two sets A and B so that
the sum of any two distinct integers from set A is equal to the sum of two distinct
integers from set B and vice versa.

• 5123: Proposed by Kenneth Korbin, New York, NY

Given isosceles triangle ABC with AB = BC = 2011 and with cevian BD. Each of the
line segments AD, BD, and CD have positive integer length with AD < CD.

Find the lengths of those three segments when the area of the triangle is minimum.

• 5124: Proposed by Michael Brozinsky, Central Islip, NY

If n > 2 show that
n∑

i=1

sin2
(
2πi

n

)
=
n

2
.

• 5125: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

ab

2(c+ a) + 5b
+

bc

2(a+ b) + 5c
+

ca

2(b+ c) + 5a
<

11

32
.

• 5126: Proposed by Pantelimon George Popescu, Bucharest, Romania and José Luis
Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be positive real numbers and f : [a, b]→ [c, d] be a function such that
|f(x)− f(y)| ≥ |g(x)− g(y)|, for all x, y ∈ [a, b], where g : R→ R is a given injective
function, with g(a), g(b) ∈ {c, d}.
Prove

(i) f (a) = c and f (b) = d , or f (a) = d and f (b) = c.

(ii) If f (a) = g(a) and f (b) = g(b), then f (x ) = g(x ) for a ≤ x ≤ b.
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• 5127: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let Tn(x) =
n∑

k=1

(−1)k−1 x2k−1

(2k − 1)!
, denote the (2n− 1)th

Taylor polynomial of the sine function at 0. Calculate
∫ ∞

0

Tn(x)− sinx

x2n+1
dx.

Solutions

• 5104: Proposed by Kenneth Korbin, New York, NY

There are infinitely many primitive Pythagorean triangles with hypotenuse of the form
4x4 + 1 where x is a positive integer. Find the dimensions of all such triangles in which
at least one of the sides has prime integer length.

Solution by Brian D. Beasley, Clinton, SC

It is well-known that a primitive Pythagorean triangle (a, b, c) satisfies a = 2st,
b = s2 − t2, and c = s2 + t2 for integers s > t > 0 of opposite parity with gcd(s, t) = 1.
Then a is never prime. Letting x be a positive integer and taking

c = 4x4 + 1 = (2x2 + 2x+ 1)(2x2 − 2x+ 1),

we see that c can only be prime if 2x2 − 2x+ 1 = 1, meaning x = 1. Thus s = 2 and
t = 1, which produces the triangle (4, 3, 5). Similarly, b = (s+ t)(s− t) can only be
prime if s− t = 1, which would yield

4x4 + 1 = 2t2 + 2t+ 1 and hence 2x4 = t(t+ 1).

But this would force one of the consecutive positive integers t or t+ 1 to be a fourth
power and the other to be twice a fourth power, meaning t = 1. Once again, our only
solution is the triangle (4, 3, 5).

Also solved by Paul M. Harms, North Newton, KS; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer

• 5105: Proposed by Kenneth Korbin, New York, NY

Solve the equation

x+ y −
√
x2 + xy + y2 = 2 +

√
5

if x and y are of the form a+ b
√
5 where a and b are positive integers.

Solution by Shai Covo, Kiryat-Ono, Israel

We let x = a+ b
√
5 and y = c+ d

√
5, with a, b, c, d ∈ N . Since the solution of

x+ y −
√
x2 + xy + y2 = 2 +

√
5 (1)

is symmetric in x and y, it suffices to consider the case x ≤ y. Hence, we let y = xα
with α ≥ 1. Substituting into (1) gives

(a+ b
√
5)
[
(1 + α)−

√
1 + α+ α2

]
= 2 +

√
5 (2)
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It is immediately verified by taking the derivative that the function

ϕ(α) = (1 + α)−
√
1 + α+ α2 is increasing . From ϕ(α)

[
(1 + α) +

√
1 + α+ α2

]
= α it

is readily seen that ϕ(α)→ 1

2
as α→∞. On the other hand, ϕ(1) = 2−

√
3. We thus

conclude from (2) that

4 + 2
√
5 < a+ b

√
5 ≤ 2 +

√
5

2−
√
3
.

We verify numerically that this leaves us with the following set of pairs (a,b):

{(1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 2),
(5, 3), (5, 4), (6, 2), (6, 3), (6, 4), (7, 1), (7, 2),
(7, 3), (8, 1), (8, 2), (8, 3), (9, 1), (9, 2), (9, 3),
(10, 1), (10, 2), (11, 1), (11, 2), (12, 1), (13, 1)}.

It follows straightforwardly from (1) that

y =

(
4 + 2

√
5
)
x− 9− 4

√
5

x− 4− 2
√
5

.

Substituting x = a+ b
√
5 and multiplying the numerator and denominator on the right

hand side by (a− 4)− (b− 2)
√
5 gives, after some algebra,

y =
4a2 − 5a+ 20b− 20b2 − 4

(a− 4)2 − 5(b− 2)2
+

2a2 − 4a+ 13b− 10b2 − 2

(a− 4)2 − 5(b− 2)2

√
5. (3)

This determines the constants c and d forming y in an obvious manner, since
a, b, c, d ∈ N . In particular, we see that

c− 2d =
3a− 6b

(a− 4)2 − 5(b− 2)2
. (4)

From this, noting that c− 2d is an integer, it follows readily that a and b cannot be both
odd; furthermore if a and b are both even, then a must be divisible by 4. This restricts
the set of all possible pairs (a, b)given above to

{(1, 4), (1, 6), (2, 3), (2, 5), (3, 4), (4, 3), (4, 4),
(4, 5), (5, 2), (5, 4), (6, 3), (7, 2), (8, 1), (8, 2),
(8, 3), (9, 2), (10, 1), (11, 2), (12, 1)}.

The requirement that the right-handside of (4) be an integer further restricts the set to

{(2, 3), (5, 2), (6, 3), (7, 2)}.

With these values of a and b, calculating c and d according to (3) give the following x, y
pairs:

x = 2 + 3
√
5, y = 118 + 53

√
5

x = 5 + 2
√
5, y = 31 + 14

√
5
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x = 6 + 3
√
5, y = 10 + 5

√
5

x = 7 + 2
√
5, y = 13 + 6

√
5.

Substituting into (1) show that these x, y pairs constitute the solution of (1) for x ≤ y.
The complete solution then follows by symmetry in x and y.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro,GA, and the proposer.

• 5106: Proposed by Michael Brozinsky, Central Islip, NY

Let a, b, and c be the sides of an acute-angled triangle ABC. Let H be the orthocenter
and let da, db and dc be the distances from H to the sides BC,CA, and AB respectively.

Show that

da + db + dc ≤
3

4
D

where D is the diameter of the circumcircle.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

From the published solution of SSM problem 5066 and Gerretsen and Euler’s inequality,
we have that

da + db + dc =
r2 + s2 − 4R2

2R
≤ r2 + 4Rr + 3r2

2R
=

2

R
(r +R) ≤ 1

(
R

2
+R

)
=

3

4
D,

with equality if and only if 4ABC is equilateral.

Solution 2 by Ercole Suppa, Teramo, Italy

Let Ha, Hb, Hc be the feet of A, B, C onto the sides BC, CA, AB respectively and let
R be the circumradius of 4ABC. We have

da = BHa · tan(90◦ − C) = c cosB cotC.

Hence, taking into account the extended sine law, we get

da = 2R sinC cosB cotC = 2R cosB cosC. (1)

Now, by using (1) and its cyclic permutations, the given inequality rewrites as

2R cosB cosC + 2R cosC cosA+ 2R cosA cosB ≤ 3

4
· 2R

cosB cosC + cosC cosA+ cosA cosB ≤ 3

4
(2)

which is true. In fact, from the well known formulas

∑
cos2A = 1− 2 cosA cosB cosC

and

0 ≤ cosA cosB cosC ≤ 1

8
,

each of which is valid for an acute-angled triangle, we immediately obtain
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∑
cos2A ≥ 3

4
. (3)

Hence, by applying the known inequality

1 < cosA+ cosB + cosC ≤ 3

2
,

we obtain

(cosA+ cosB + cosC)2 ≤ 9

4
⇒

∑
cos2A+ 2

∑
cosB cosC ≤ 9

4
⇒

2
∑

cosB cosC ≤ 9

4
−
∑

cos2A ≤ 9

4
− 3

4
=

3

2
⇒

∑
cosB cosC ≤ 3

4
,

and the conclusion follows. Equality holds for a = b = c.

Also solved by Scott H. Brown, Montgomery, AL; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China;

• 5107: Proposed by Tuan Le (student, Fairmont, H.S.), Anaheim, CA

Let a, b, c be positive real numbers. Prove that

√
a3 + b3

a2 + b2
+

√
b3 + c3

b2 + c2
+

√
c3 + a3

c2 + a2
≥ 6(ab+ bc+ ac)

(a+ b+ c)
√
(a+ b)(b+ c)(c+ a)

Solution by Kee-Wai Lau, Hong Kong, China

By the Cauchy-Schwarz inequality, we have

a2 + b2 ≤
√
(a+ b) (a3 + b3), b2 + c2 ≤

√
(b+ c) (b3 + c3), c2 + a2 ≤

√
(c+ a) (c3 + a3).

Hence it suffices to show that

1√
a+ b

+
1√
b+ c

+
1√
c+ a

≥ 6(ab+ bc+ ac)

(a+ b+ c)
√
(a+ b)(b+ c)(c+ a)

or

√
(a+ b)(b+ c) +

√
(b+ c)(c+ a) +

√
(c+ a)(a+ b) ≥ 6(ab+ bc+ ac)

(a+ b+ c)
.

By the arithmetic mean-geometric mean-harmonic inequalities, we have

√
(a+ b)(b+ c) +

√
(b+ c)(c+ a) +

√
(c+ a)(a+ b)

≥ 3 3

√
(a+ b)(b+ c)(c+ a)
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≥ 9
1

a+ b
+

1

b+ c
+

1

c+ a

=
9(a+ b)((b+ c)(c+ a)

a2 + b2 + c2 + 3(ab+ bc+ ca)
.

It remains to show that

3(a+ b+ c)(a+ b)(b+ c)(c+ a) ≥ 2(ab+ bc+ ca)
(
a2 + b2 + c2 + 3 (ab+ bc+ ca)

)
.

But this follows from the fact that

3(a+ b+ c)(a+ b)(b+ c)(c+ a)− 2(ab+ bc+ ca)
(
a2 + b2 + c2 + 3(ab+ bc+ ca)

)

= a3b+ ab3 + a3c+ ac3 + b3c+ bc3 − 2a2bc− 2ab2c− 2abc2

= a(b+ c)(b− c)2 + b(c+ a)(c− a)2 + c(a+ b)(a− b)2

≥ 0,

and this completes the solution.

Also solved by Pedro H.O. Pantoja (student, UFRN), Natal, Brazil; Paolo
Perfetti, Department of Mathematics, University of Rome, Italy, and the
proposer.

• 5108: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Compute

lim
n→∞

1

n
tan

[ 4n+1∑

k=1

arctan

(
1 +

2

k(k + 1)

)]
.

Solution 1 by Ovidiu Furdui, Cluj, Romania

The limit equals 4. A calculation shows that

arctan

(
1 +

2

k(k + 1)

)
= arctan(1) + arctan

1

k2 + k + 1
,

=
π

4
+ arctan

1

k
− arctan

1

k + 1
.

And it follows that

4n+1∑

k=1

arctan

(
1 +

2

k(k + 1)

)
= (4n+ 1)

π

4
+ arctan 1− arctan

1

4n+ 2

= (4n+ 1)
π

4
+ arctan

4n+ 1

4n+ 3
.

Thus,

tan

[
4n+1∑

k=1

arctan

(
1 +

2

k(k + 1)

)]
= tan

(
(4n+ 1)

π

4
+ arctan

4n+ 1

4n+ 3

)
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=
tan((4n+ 1)

π

4
) +

4n+ 1

4n+ 3

1− tan((4n+ 1)
π

4
)
4n+ 1

4n+ 3

=
1 +

4n+ 1

4n+ 3

1− 4n+ 1

4n+ 3

= 4n+ 2.

So the limit equals 4, and the problem is solved.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

We will show that

lim
n→∞

1

n
tan

[ 4n+1∑

k=1

arctan

(
1 +

2

k(k + 1)

)]
= 4. (1)

From the identity tan(x+mπ) = tan(x), m integer, it follows that the equality (1) will
be proved if we show that

4n+1∑

k=1

arctan

(
1 +

2

k(k + 1)

)
= arctan(4n+ 2) +mπ, (2)

for some integer m. In fact, as we will see at the end, the m in (2) is equal to n. We first
prove the following lemma.

Lemma. Define a sequence (ak)k≥1 recursively by a1 = 2 and, for k ≥ 2,

ak =

ak−1 +

(
1 +

2

k(k + 1)

)

1− ak−1

(
1 +

2

k(k + 1)

) . (3)

If ak−1 = k, for some k ≥ 2, then

ak = −k + 2

k
, ak+1 = −

1

k + 2
, ak+2 =

k + 2

k + 4
, ak+3 = k + 4.

Hence, in particular, a4n+1 = 4n+ 2 for all n ≥ 0.

Proof. Suppose that ak−1 = k, k ≥ 2. Substituting this into (3) gives

ak = −(k2 + 1)(k + 2)

(k2 + 1)k
= −k + 2

k
. (4)

From (3) and (4) we find

ak+1 = −
k2 + 2k + 2

(k2 + 2k + 2)(k + 2)
= − 1

k + 2
. (5)
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From (3) and (5) we find

ak+2 =
(k2 + 4k + 5)(k + 2)

(k2 + 4k + 5)(k + 4)
=
k + 2

k + 4
. (6)

Finally, from (3) and (6) we find

ak+3 =
(k2 + 6k + 10)(k + 4)

k2 + 6k + 10
= k + 4.

The lemma is thus established.

We make use of the addition formula for arctan:

arctan(x) + arctan(y) =





arctan

(
x+ y

1− xy

)
, if xy < 1,

arctan

(
x+ y

1− xy

)
+ πsign(x), if xy > 1, (7)

the case where xy = 1 being irrelevant here. Now, let (ak)k≥1 be the sequence defined in
the above lemma. If follows readily from (7) and the lemma that, for all k ≥ 2,

arctan(ak−1) + arctan

(
1 +

2

k(k + 1)

)
= arctan(ak) + πσk,

where σk = 1 or 0 accordingly, as k is or is not of the form k = 4j + 2, j ≥ 0 integer.
From this it follows that

l∑

k=1

arctan

(
1 +

2

k(k + 1)

)
= arctan(al) + π

l∑

k=1

σk.

Recalling the conclusion in the lemma, it thus follows that (2) holds with m = n, and so
we are done.

Remark: From (2), where m = n, and the fact that

∫
arctan

(
1 +

2

x(x+ 1)

)
dx =

1

2
log(x2 + 1)− 1

2
log(x2 + 2x+ 2)

+ arctan

(
1 +

2

x(x+ 1)

)
+ arctan(x+ 1) + C,

it follows readily the following interesting result:

∫ 4n+1

0
arctan

(
1 +

2

x(x+ 1)

)
dx−

4n+1∑

k=1

arctan

(
1 +

2

k(k + 1)

)
−→ 1

2
log 2, as n→∞.

Also solved by Kee-Wai, Hong Kong, China, and the proposer.

• 5109: Proposed by Ovidiu Furdui, Cluj, Romania

Let k ≥ 1 be a natural number. Find the value of

lim
n→∞

(k n
√
n− k + 1)n

nk
.
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Solution 1 by Angel Plaza and Sergio Falcon, Las Palmas de Gran Canaria,
Spain

Let

xn =
(k n
√
n− k + 1)n

nk
. Then,

lnxn = ln(k n
√
n− k + 1)n − lnnk = n ln(k n

√
n− k + 1)− k lnn

= n
(
ln(k n
√
n− k + 1)− k ln n

√
n
)

=

ln
k n
√
n− k + 1

( n
√
n)k

1

n

≈

k n
√
n− k + 1

( n
√
n)k

− 1

1

n

=
k n
√
n− k + 1− ( n

√
n)

k

( n
√
n)

k 1

n

.

Now, taking into account that lim
n→∞

n
√
n = 1 and the equivalence of the infinitesimals

k(x− 1) + 1− xk ≈ k(k − 1)

2
(x− 1)2 when x→ 1, we have

lim
n→∞ lnxn = lim

n→∞

k(k − 1)

2

(
n
√
n− 1

)2

1

n

=
k(k − 1)

2
lim
n→∞

(lnn)2

1

n

=
k(k − 1)

2
lim
n→∞

(lnn)2

n
= 0. Therefore,

lim
n→∞xn = 1.

Solution 2 by Kee-Wai Lau of Hong Kong, China

As n→∞, we have n
√
n = elnn/n = 1 +

lnn

n
+O

(
ln2 n

n2

)
. Since ln(1 + x) = x+O

(
x2
)

as x→ 0, so

n ln
(
1 + k

(
n
√
n− 1

))− k lnn = n

(
k lnn

n
+O

(
ln2 n

n2

))
− k lnn = O

(
ln2 n

n

)
,

where the constant implied by the last O depends at most on k. It follows that the limit
of the problem equal 1, independent of k.

Also solved by Shai Covo, Kiryat-Ono, Israel; Paolo Perfetti, Department of
Mathematics, University of Rome, Italy, and the proposer.

Late Solution

A late solution to 5099 was received from Charles McCracken of Dayton, OH.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2011

• 5128: Proposed by Kenneth Korbin, New York, NY

Find all positive integers less than 1000 such that the sum of the divisors of each integer
is a power of two.

For example, the sum of the divisors of 3 is 22, and the sum of the divisors of 7 is 23.

• 5129: Proposed by Kenneth Korbin, New York, NY

Given prime number c and positive integers a and b such that a2 + b2 = c2, express in
terms of a and b the lengths of the legs of the primitive Pythagorean Triangles with
hypotenuses c3 and c5, respectively.

• 5130: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, calculus has not been discovered. A bride
and groom start out from A(−a, 0) and B(b, 0) respectively where a 6= b and a > 0 and
b > 0 and walk at the rate of one unit per second to an altar located at the point P on
line L : y = mx such that the time that the first to arrive at P has to wait for the other
to arrive is a maximum. Find, without calculus, the locus of P as m varies through all
nonzero real numbers.

• 5131: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a+ b+ 3c

3a+ 3b+ 2c
+

a+ 3b+ c

3a+ 2b+ 3c
+

3a+ b+ c

2a+ 3b+ 3c
≥ 15

8
.

• 5132: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all all functions f : C → C such that f(f(z)) = z2 for all z ∈ C.

• 5133: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be a natural number. Calculate

In =

∫ 1

0

∫ 1

0
(x− y)ndxdy.
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Solutions

• 5110: Proposed by Kenneth Korbin, New York, NY.

Given triangle ABC with an interior point P and with coordinates A(0, 0), B(6, 8), and
C(21, 0). The distance from point P to side AB is a, to side BC is b, and to side CA is
c where a : b : c = AB : BC : CA.

Find the coordinates of point P

Solution 1 by Boris Rays, Brooklyn, NY

From the given triangle we have AB = 10, BC = 17 and CA = 21. Also
a : b : c = 10 : 17 : 21.

Let a = 10t, b = 17t, and c = 21t, where t is real number, t > 0. (1)

Area 4ABC = Area 4APB+Area 4BPC+Area 4CPA. (2)

Express all of the terms in (2) by using formulas in (1).

1

2
· 21 · 8 =

1

2
· 10 · 10t+ 1

2
· 17 · 17t+ 1

2
· 21 · 21t

=
1

2
t
(
102 + 172 + 212

)
=

1

2
830t

From the above we find that t =
84

415
=

22 · 3 · 7
5 · 83 .

The y-coordinate of point P is c, the distance to side CA.

yP = c = 21t = 21 · 84
415

=
1764

415
.

Let points E and F lie on side CA, where PE ⊥ CA and BF ⊥ CA.

Hence we have PE = C =
422

415
, BF = 8, and AF = 6.

Area 4APB+Area 4APE+Area BPEF = Area 4ABF.

Letting AE = x we have EF = 6− x. Therefore,
1

2
· 10 · a+ 1

2
· x · c+ 1

2

(
PE +BF

)
· EF =

1

2
AF ·BF

1

2
· 100 · 84

415
+

1

2
· x · 42

2

415
+

1

2

(
422

415
+ 8

)
(6− x) =

1

2
6 · 8.

From the above equation we find x.

x =
1

8

(
8400 + 6(42)2

415

)
=

2373

415
.

Hence, the coordinates of point P are

(
2373

415
,
1764

415

)
.
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Solution 2 by Charles McCracken, Dayton, OH

AB = 10 BC = 17 CA = 21

The equations of AB,BC and CA are respectively,

4x− 3y = 0 8x+ 15y − 168 = 0 y = c

Then,

a =
4x− 3y

5
b =

8x+ 15y − 168

17
c = y

(
4x− 3y

5

)

y
=

10

21

(
8x+ 15y − 168

−17

)

y
=

17

21

21 (4x− 3y) = 50y 21 (8x+ 15y − 168) = −289y

84x− 113y = 0 168x+ 604y = 3528

These last two equations give:

(x, y) =

(
2373

415
,
1764

415

)

Note that P is the Lemoine point of 4ABC, that is, the intersection of the symmedians.
(Editor: A symmedian is the reflection of a median about its corresponding angle
bisector.)

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky, Central
Islip, NY; Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie
(jointly), San Angelo, TX; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; John Nord, Spokane, WA; Raúl A. Simón,
Santiago, Chile; Danielle Urbanowicz, Jennie Clinton, and Bill Solyst
(jointly; students at Taylor University), Upland, IN; David Stone and John
Hawkins (jointly), Satetesboro, GA, and the proposer.

• 5111: Proposed by Michael Brozinsky, Central Islip, NY.

In Cartesianland where immortal ants live, it is mandated that any anthill must be
surrounded by a triangular fence circumscribed in a circle of unit radius. Furthermore, if
the vertices of any such triangle are denoted by A,B, and C, in counterclockwise order,
the anthill’s center must be located at the interior point P such that
6 PAB = 6 PBC = 6 PCA.

Show PA · PB · PC ≤ 1.

Solution by Kee-Wai Lau, Hong Kong, China

It is easy to check that 6 APB = 180◦ −B, 6 BPC = 180◦ − C, and 6 CPA = 180◦ −A.
It is well known that the area of 4ABC = 2R2 sinA sinB sinC, where R is the
circumradius of the triangle. Here we have R = 1. Since the area of 4ABC equals the
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sum of the areas of triangles APB,BPC and CPA, we have

Area 4ABC = Area 4APB+Area 4BPC+Area 4CPA

2 sinA sinB sinC =
1

2

(
PA · PB sinB + PB · PC sinC + PC · PA sinA

)
.

By the arithmetic mean-geometric mean inequality, we have

PA·PB sinB+PB·PC sinC+PC·PA sinA ≥ 3
(
PA · PB · PC

)2/3
(sinA sinB sinC)1/3 .

It follows that
(
PA · PB · PC

)2/3
≤ 4

3
(sinA sinB sinC)2/3 . (1)

By the concavity of the function ln (sinx) for 0 < x < π, we obtain

ln(sinA) + ln(sinB) + ln(sinC) ≤ 3

(
sin

(
A+B + C

3

))
= 3 ln

(√
3

2

)
.

Therefore,

sinA sinB sinC ≤ 3
√
3

8
. (2)

The result PA · PB · PC ≤ 1 now follows easily from (1) and (2) immediately above.

Comments: The proposer, Michael Brozinsky, mentioned in his solution that point P
is precisely the Brocard point of the triangle, and David Stone and John Hawkins
noted in their solution that given an inscribed triangle and letting
θ = 6 PAB = 6 PBC = 6 PCA, then the identity

sin θ =
abc

2
√
a2b2 + a2c2 + b2c2

allows one to find the unique angle θ and thus sides PA,PB, and PC.

Also solved by David Stone and John Hawkins (jointly), Satetesboro, GA,
and the proposer.

• 5112: Proposed by Juan-Bosco Romero Márquez, Madrid, Spain

Let 0 < a < b be real numbers with a fixed and b variable. Prove that

lim
b→a

∫ b

a

dx

ln
b+ x

a+ x

= lim
b→a

∫ b

a

dx

ln
b(a+ x)

a(b+ x)

.

Solution by Shai Covo, Kiryat-Ono, Israel

We begin with the left-hand side limit. Writing ln
b+ x

a+ x
as ln(b+ x)− ln(a+ x), we have

by the mean value theorem that this expression is equal to
1

ξ
(b− a) where ξ = ξ(a, b, x)

is some point between (a+ x) and (b+ x). Since x varies from a to b, it thus follows that

b− a
2b
≤ ln

b+ x

a+ x
≤ b− a

2a
.

4X
ia
ng
’s
T
ex
m
at
h



Hence,

2a =

∫ b

a

2a

b− adx ≤
∫ b

a

dx

ln
b+ x

a+ x

≤
∫ b

a

2b

b− adx = 2b,

and so

lim
b→a

∫ b

a

dx

ln
b+ x

a+ x

= 2a.

Applying this technique to the computation of the right-hand side limit gives

a(b− a)
ab+ b2

≤ ln
b(a+ x)

a(b+ x)
≤ b(b− a)
ab+ a2

,

from which it follows immediately that also

lim
b→a

∫ b

a

dx

ln
b(a+ x)

a(b+ x)

= 2a.

Also solved by Michael Brozinsky, Central Islip, NY; Kee-Wai Lau, Hong
Kong, China; Paolo Perfetti, Department of Mathematics, University of
Rome, Italy; David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 5113: Proposed by Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy

Let x, y be positive real numbers. Prove that

2xy

x+ y
+

√
x2 + y2

2
≤ √xy + x+ y

2
+

(
x+ y

6
−
√
xy

3

)2

2xy

x+ y

.

Solution 1 by Kee-Wai Lau, Hong Kong, China

By homogeneity, we may assume without loss of generality that xy = 1. Let
t = x+ y ≥ 2

√
xy = 2. Then the inequality of the problem is equivalent to

2

t
+

√
t2 − 2

2
≤ 1 +

t

2
+
t(t− 2)2

72

⇔ 36t
√
2 (t2 − 2) ≤ t4 − 4t3 + 40t2 + 72t− 144

⇔
(
t4 − 4t3 + 40t2 + 72t− 144

)
− 2592t2

(
t2 − 2

)
≥ 0

⇔ t8 − 8t7 + 96t6 − 176t5 − 1856t4 + 6912t3 − 1152t2 − 20376t+ 20376 ≥ 0

⇔ (t− 2)2
(
t6 − 4t5 + 76t4 + 144t3 − 1584t2 + 5184

)
≥ 0.
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Since

t6 − 4t5 + 76t4 + 144t3 − 1584t2 + 5184

= t4(t− 2)2 + 72(t− 2)4 +
16(3t− 8)2(15t+ 11) + 832

3
> 0,

the inequality of the problem holds.

Solution 2 by Paul M. Harms, North Newton, KS

Le w =
x+ y

2
√
xy

and z =
√
xy. For x and y positive

(√
x−√y)2 = x+ y − 2

√
xy ≥ 0 =⇒ w =

x+ y

2
√
xy
≥ 1. Also z > 0 .

From the substitutions we have the following expressions :

2xy = 2z2

x+ y = 2zw
x2 + y2 = (x+ y)2 − 2xy = 4z2w2 − 2z2 = 2z2(2w2 − 1)

The inequality becomes

2z2

2zw
+

√
2z2 (2w2 − 1)

2
≤ z + 2zw

2
+

(
2zw − 2z

6

)2

2z2

2zw

Simplifying and dividing both sides of the inequality by z yields the inequality

1

w
+
√
2w2 − 1 ≤ 1 + w +

1

9
(w − 1)2w.

After multiplying both sides by 9w and isolating the square root term we get

9w
√
2w2 − 1 ≤ −9 + 9w + 9w2 + (w − 1)2w2 = w4 − 2w3 + 10w2 + 9w − 9.

Now let w = L+ 1. Since w ≥ 1, we check the resulting inequality for L ≥ 0. Replacing
w by L+ 1 and squaring both sides of the inequality we obtain

81 (L+ 1)2
[
2L2 + 4L+ 1

]
= 81

(
2L4 + 8L3 + 11L2 + 6L+ 1

)

≤
(
L4 + 2L3 + 10L2 + 27L+ 9

)2

= L8 + 4L7 + 24L6 + 94L5 + 226L4 + 576L3 + 909L2 + 486L+ 81

Moving all terms to the right side, we need to show for L ≥ 0, that

0 ≤ L2
[
L6 + 4L5 + 24L4 + 94L3 + 64L2 − 72L+ 18

]
.

Let
g(L) = 94L3 + 64L2 − 72L+ 18.
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If g(L) ≥ 0 for L ≥ 0, then the inequality holds since all other terms and factors of the
inequality not involved with g(L) are non-negative.

The derivative g′(L) = 2
[
141L2 + 64L− 36

]
. The zeroes of g′(L) are L = −0.7810 and

L = 0.3297 with a negative derivative between these two L values. It is easy to check
that g(0.3297) > 0 is the only relative minimum and that g(L) > 0 for all L ≥ 0. Thus
the inequality holds.

A comment by the editor: David Stone and John Hawkins of Statesboro, GA
sent in a solution path that was dependent on a computer, and this bothered them.
They let y = ax in the statement of the problem and then showed that the original
inequality was equivalent to showing that

2a

1 + a
+

√
1 + a2

2
≤ (
√
a+ 1)

2

2
+

(a+ 1) (
√
a− 1)

4

72a
.

They then had Maple graph the left and right hand sides of the inequality respectively;
they analyzed the graphs and concluded that the inequality held (with equality holding
for a = 1.) But this approach bothered them and so they let a = z2 in the above
inequality and they eventually obtained the following:

(z − 1)4
(
z12 − 4z11 + 82z10 + 124z9 − 1265z8

+392z7 + 2492z6 + 392z5 − 1265z4 + 124z3 + 82z2 − 4z + 1

)
≤ 0.

Again they called on Maple to factor the above polynomial, and it did into linear and
irreducible quadratic factors. They then showed that there were no positive real zeros
and so the inequality must be true. They also noted that equality holds if and only if
z = 1; that is, equality holds for the original statement if and only if x = y. They ended
their submission with the statement:

“The bottom line: with the use of a machine’s assistance, we believe the original
inequality to be true.”

In their letter submitting the above to me David wrote:

“Last week I mentioned that our solution to Problem 5113 was dependent upon machine
help. We are still in that position, so I send this to you as a comment, not as a solution.
There is a nice reduction to an inequality in a single variable, but we never found an
analytic verification for the inequality.”

All of this reminded me of the comments in 1976 surrounding Appel and Haken’s proof
of the four color problem which was done with the aid of a computer. The concerns
raised then, still exist today.

Also solved by Shai Covo, Kiryat-Ono, Israel; Boris Rays, Brooklyn, NY,
and the proposer.

• 5114: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let M be a point in the plane of triangle ABC. Prove that

MA
2
+MB

2
+MC

2

AB
2
+BC

2
+ CA

2 ≥
1

3
.
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When does equality hold?

Solution by Michael Brozinsky, Central Islip, NY

Without loss of generality let the vertices of the triangle be A(0, 0), B(a, 0), and C(b, c)
and let M be (x, y). Now completing the square shows

AM
2
+BM

2
+ CM

2 − 1

3

(
AB

2
+BC

2
+AC

2
)

=

(
x2 + y2 + (x− a)2 + y2 + (x− b)2 + (y − c)2 − 1

3

(
a2 +

(
b− a)2 + c2 + b2 + c2

))

= 3 ·
((

x− a+ b

3

)
+

(
y − c

3

)2
)

and thus the given inequality follows at once and equality holds iff M is
2

3
of the way

from vertex C to side AB. Relabeling thus implies that M is the centroid of the triangle.

Comments in the solutions of others: 1) From Kee-Wai Lau, Hong Kong,
China. The inequality of the problem can be found at the top of p. 283, Chapter XI in
Recent Advances in Geometric Inequalities by Mitrinovic, Pecaric, and Volenec, (Kluwer
Academic Press), 1989.

The inequality was obtained using the Leibniz identity

MA
2
+MB

2
+MC

2
= 3MG

2
+

1

3

(
AB

2
+BC

2
+ CA

2
)

where G is the centroid of triangle ABC. Equality holds if and only if M = G.

2) From Bruno Salgueiro Fanego, Viveiro Spain. This problem was solved for
any point M in space using vectors. (See page 303 in Problem Solving Strategies by
Arthur Engel, (Springer-Verlag), 1998.) Equality holds if, and only if, M is the centroid
of ABC.

Another solution and a discussion of where the problem mostly likely originated can be
found on pages 41 and 42 of

http : //www.cpohoata.com/wp− conent/uploads/2008/10/inf081019.pdf.

Also, a local version of the Spanish Mathematical Olympiad of 1999 includes a version
of this problem and it can be seen at
http : //platea.pntic.mec.es/ ∼ csanchez/local99.htm.

3) From David Stone and John Hawkins (jointly), Statesboro, GA. Because
the given problem has the sum of the squares of the triangle’s sides as the denominator,
one might conjecture the natural generalization

n∑

i=1

MAi
2

n∑

i=1

AiAi+1
2
≥ 1

n
,
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but this is not true. Instead, we must also allow all squares of diagonals to appear in the
sum in the denominator. Of course, a triangle has no diagonals.

Also solved by Shai Covo, Kiryat-Ono, Israel; Michael N. Fried, Kibbutz
Revivim, Israel; Paul M. Harms, North Newton, KS; Michael N. Fried,
Kibbutz Revivim, Israel; Raúl A. Simón, Santiago, Chile, and the proposer.

• 5115: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon,
Canada

Let G be a finite cyclic group. Compute the number of distinct composition series of G.

Solution 1 by Kee-Wai Lau,Hong Kong, China

Denote the order of a group S by |S|. Let E = G0, < G1 < G2 < . . . < Gm = G be a
composition series for G, where E is the subgroup of G consisting of the identity
element only. A composition series is possible if and only if the factor groups
G1/G0, G2/G1, . . . , Gm/Gm−1 are simple. For cyclic group G, where all these factor
groups are also cyclic, this is equivalent to saying that

|G1/G0| = p1, |G2/G1| = p2, . . . , |Gm/Gm−1| = pm,

where p1, p2, . . . , pm are primes, not necessarily distinct. By the Jordan-Hölder theorem,
m is uniquely determined and the prime divisors, p1, p2, · · · , pm themselves are unique.
Any other composition series therefore correspond with a permutation of the primes
p1, p2, . . . , pm. Note that

|G| = |Gm| =
|Gm|
|Gm−1|

|Gm−1|
|Gm−2|

. . .
|G2|
|G1|
|G1|
1

= pmpm−1 . . . p2p1.

We rewrite |G| in standard form |G| = qa11 q
a2
2 . . . qakk , where a1, a2, . . . , ak are positive

integers and q1 < q2 < . . . qk are primes. The number of distinct composition series of G
then equals

(a1 + a2 + · · ·+ ak)!

a1!a2! . . . ak!
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Solution 2 by David Stone and John Hawkins (jointly), Statesboro, GA

Let G have order n, where n has prime factorization n =
m∏

i=1

peii . Then the number of

distinct composition series of G is the multinomial coefficient

(
e1 + e2 + e3 + . . .+ em

e1, e2, e3, . . . , em

)
.

Letting e=e1 + e2 + e3 + . . .+ em, this can be computed as

(
e

e1

)(
e− e1
e2

)(
e− e1 − e2

e3

)
· · ·
(
em−1 + em
em−1

)(
em
em

)
=

e!

(e1!)(e2!)(e3!) · · · (em!)
.

Our rationale follows.

We’ll simply let G be Zn, written additively and denote the cyclic subgroup generated
by a as < a >= {ka| ∈ Z}.
Note that < a > is a subgroup of < b > if and only if a = bc for some c in G. We’ll
denote this by < a > ≤ < b >. That is, to enlarge the subgroup < a > to < b >, we
divide a by some group element c to obtain b. In particular, if we divide a by a prime p
to obtain b, then the factor group < b > / < a > is isomorphic to the simple group Zp.

In the lattice of subgroups of G, any two subgroups have a greatest lower bound, given
by intersection , and a least upper bound, given by summation.The maximal length
(ascending) chains are the distinct composition series. All such chain have the same
length (by the Jordan-Hölder Theorem).

For a specific example, let n = 12 = 22 · 31. In Z12, the distinct subgroups are:

0 = {0},

< 2 > = {0, 2, 4, 6, 8, 10},

< 4 > = {0, 4, 8},

< 3 > = {0, 3, 6, 9},

< 6 > = {0, 6},

< 1 > = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} = Z12,

and the maximal length ascending chains (composition series) are

0 ≤ < 4 > ≤ < 2 > ≤ < 1 >,

0 ≤ < 6 > ≤ < 2 > ≤ < 1 >,

0 ≤ < 6 > ≤ < 3 > ≤ < 1 > .

Note that the composition factors (the simple factor groups) of the first chain are

< 4 > /0 ∼= Z3

< 2 > / < 4 > ∼= Z2, and
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< 1 > / < 2 > ∼= Z2.

Thus, the sequence of composition factors is Z3, Z2, Z2.

Similarly for the second chain, the sequence of composition factors is Z2, Z3, Z2, and for
the third chain the sequence of composition factors is Z2, Z2, Z3. The three elements of
each chain are Z2, Z2, and Z3, forced by the factorization of 12. The number of possible
chains is simply the number of ways to arrange these three simple groups: 3. Note that

(
2 + 1

2, 1

)
=

(
3

2, 1

)
=

(
3

2

)
·
(
1

1

)
= 3.

Method: For arbitrary n =
m∏

i=1

peii , this example demonstrates a constructive method for

generating (and counting) all such maximal chains:

(i) Start with 0 =< n >.

(ii) Divide (in the usual sense, not mod n) by one of n′s prime divisors, p, to obtain

k =
n

p
, so that 0 =< n > ≤ < k > and the factor group < k > / < n >∼= Zp.

(iii) Next, divide k by any unused prime divisor, say q of n to obtain h =
k

q
,

so that < k > ≤ < h > and the factor group < h > / < k >∼= Zq.

(In this process, each prime factor p will be used ei times, so there will be
e = e1 + e2 + e3 = . . .+ em steps.)

We now have the beginning of a composition series: 0 ≤ < k > ≤ < h >. Continue with
the division steps until the supply of prime divisors of n is exhausted, so the final
division will produce the final element of the chain: < 1 > = Zn. We will have thus
constructed a composition series. In the procedure there will be e1 divisions by p1, e2
divisions by p2, etc.

Therefore, the number of ways to carry out this procedure is the number of ways to
carry out these dvisions: choose e1 places from e possible spots to divide by p,
choose e2 places from the remaining e− e1 possible spots to divide by p2 etc.
So we can count the total number of ways to carry out the process:

(
e

e1

)(
e− e1
e2

)(
e− e1 − e2

e3

)
· · ·
(
em−1 + em
em−1

)(
em
em

)
.

Moreover, if we let S be the sequence of simple groups consisting of e1 copies of Zp1 , e2
copies of Zp2 , etc., then S will have e = e1 + e2 + e3 + · · ·+ em elements and each of our
composition series will have some rearrangement of S as its sequence of compositions
factors.

Example: Let n = 360 = 23 · 32 · 51.
Then the sequence of divisors 3, 5, 2, 2, 3, 2 will produce he composition series

0 =< 360 > ≤ < 120 > ≤ < 24 > ≤ < 12 > ≤ < 6 > ≤ < 2 > ≤ < 1 > = Z360,

with composition factors Z3, Z5, Z2, Z2, Z3, Z2.
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There are

(
3 + 2 + 1

3, 2, 1

)
=

(
6

3

)
·
(
3

2

)
·
(
1

1

)
= 60 different ways to construct a divisors

sequence from 2, 2, 2, 3, 3, 5, so Z360 has 60 distinct composition series.

Also solved by the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2011

• 5134: Proposed by Kenneth Korbin, New York, NY

Given isosceles 4ABC with cevian CD such that 4CDA and 4CDB are also isosceles,
find the value of

AB

CD
− CD

AB
.

• 5135: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that 


ab+ bc+ ca = −3
a2b2 + b2c2 + c2a2 = 9
a3b3 + b3c3 + c3a3 = −24

with a < b < c.

• 5136: Proposed by Daniel Lopez Aguayo (student, Institute of Mathematics, UNAM),
Morelia, Mexico

Prove that for every positive integer n, the real number
(√

19− 3
√
2
)1/n

+
(√

19 + 3
√
2
)1/n

is irrational.

• 5137: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive numbers such that abc ≥ 1. Prove that

∏

cyclic

1

a5 + b5 + c2
≤ 1

27
.

• 5138: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let n ≥ 2 be a positive integer. Prove that

n

FnFn+1
≤ 1

(n− 1)F 2
1 + F 2

2

+ · · ·+ 1

(n− 1)F 2
n + F 2

1

≤ 1

n

n∑

k=1

1

F 2
k

,

where Fn is the nth Fibonacci number defined by F0 = 0, F1 = 1 and for all
n ≥ 2, Fn = Fn−1 + Fn−2.
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• 5139: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate ∞∑

n=1

∞∑

m=1

ζ(n+m)− 1

n+m
,

where ζ denotes the Riemann Zeta function.

Solutions

• 5116: Proposed by Kenneth Korbin, New York, NY

Given square ABCD with point P on side AB, and with point Q on side BC such that

AP

PB
=
BQ

QC
> 5.

The cevians DP and DQ divide diagonal AC into three segments with each having
integer length. Find those three lengths, if AC = 84.

Solution by David E. Manes, Oneonta, NY

Let E and F be the points of intersection of AC with DP and DQ respectively. Then
AE = 40, EF = 37 and FC = 7.

Since ABCD is a square with diagonal of length 84, it follows that the sides of the

square have length 42
√
2. Let

AP

PB
=
BQ

QC
= t > 5. Then AP = t · PB and

AP + PB = AB = 42
√
2. Therefore,

PB(t+ 1) = 42
√
2

PB =
42
√
2

1 + t
, and

AP =
42
√
2 · t

1 + t
.

Similarly, QC =
42
√
2

1 + t
and BQ =

42
√
2 · t

1 + t
.

Coordinatize the problem so that

A = (0, 0), B = (42
√
2, 0), C = (42

√
2, 42
√
2), D = (0, 42

√
2),

P =

(
42
√
2 · t

1 + t
, 0

)
, and Q =

(
42
√
2,

42
√
2 · t

1 + t

)
.

Let L1 be the line through the points D and P . Then the equation of L1 is

y − 42
√
2 = −

(
1 + t

t

)
x. The point of intersection of L1 and the line y = x is the point

E. Therefore,

x− 42
√
2 = −

(
1 + t

t

)
x, and so
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x =
42
√
2 · t

2t+ 1
. Thus,

E =

(
42
√
2 · t

2t+ 1
,
42
√
2 · t

2t+ 1

)
so that

AE =

√√√√2

(
42
√
2 · t

2t+ 1

)2

=
84 · t
2t+ 1

.

Let L2 be the line through D and Q. Then the equation of L2 is

y − 42
√
2 = −

(
1

1 + t

)
x. Since F is the point of intersection of L2 and y = x, we obtain

x =
42
√
2(t+ 1)

t+ 2
. Thus,

F =

(
42
√
2(t+ 1)

t+ 2
,
42
√
2(t+ 1)

t+ 2

)
so that

AF =
84(t+ 1)

t+ 2
.

Using the distance formula, one obtains

CF =

√√√√2

(
42
√
2− 42

√
2(t+ 1)

t+ 2

)2

=
84

t+ 2
.

As a result,

AE =
84 · t
2t+ 1

, AF =
84(t+ 1)

t+ 2
, and CF =

84

t+ 2

If t = 10, then AE = 40, AF = 77, and CF = 7. Therefore EF = AF −AE = 37,
yielding the claimed values. Finally, one checks that for these values all triangles in the
figure are defined.

Also solved by Shai Covo, Kiryat-Ono, Israel; Paul M. Harms, North
Newton, KS; Boris Rays, Brooklyn, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5117: Proposed by Kenneth Korbin, New York, NY

Find positive acute angles A and B such that

sinA+ sinB = 2 sinA · cosB.

Solution by David Stone and John Hawkins (jointly), Statesboro, GA

There are infinitely many solutions, given by
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A = sin−1

(√
1− t2

2t − 1

)
, B = cos−1 t , where

4

5
< t < 1 .

Here’s why.

The given condition is equivalent to

2 sinA(2 cosB − 1) = sinB

so we see that 2 cosB − 1 > 0, that is, 0 < B <
π

3
.

Solving for sinA, we must have sinA =
sinB

2 cosB − 1
, which requires 0 ≤ sinB

2 cosB − 1
≤ 1.

Upon squaring, this is equivalent to

sin2B ≤ 4 cos2B − 4 cosB + 1

1− cos2B ≤ 4 cos2B − 4 cosB + 1

cosB ≥ 4

5
.

So if we choose angle B to make cosB ≥ 4

5
, then we can choose angle A to make

sinA =
sinB

2 cosB − 1
.

Since cosine is decreasing in the first quadrant, the size condition on cosB forces

B ≤ cos−1

(
4

5

)
≈ 36.87◦.

In fact, for any t, with
4

5
≤ t ≤ 1, we can let B = cos−1 t, in which case

sinB =
√
1− t2 , and let A = sin−1

(√
1− t2

2t − 1

)
.

Note that the endpoint “solution” given by t = 1 is A = 0, B = 0, which we disregard.

Also, the endpoint solution given by t =
4

5
is A =

π

2
, B = cos−1 4

5
.

It is worth noting that we thus have a right triangle solution, but it doesn’t quite meet
the problem’s criteria, so we’ll disregard this one. Thus, there are infinitely many

solutions, given in terms of the parameter t for
4

5
< t < 1.

We also note that one could also say that all solutions are given by sinA =
sinB

2 cosB − 1
,

where angle B is chosen so that cosB >
4

5
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Michael Brozinsky, Central Islip, NY; Shai Covo,
Kiryat-Ono, Israel; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Charles McCracken, Dayton, OH; Raúl A. Simón, Santiago,
Chile; Taylor University Problem Solving Group; Upland, IN, and the
proposer.
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• 5118: Proposed by David E. Manes, Oneonta, NY

Find the value of
√

2011 + 2007

√
2012 + 2008

√
2013 + 2009

√
2014 + · · ·

Solution 1 by Shai Covo, Kiryat-Ono, Israel

The value is 2009. More generally, for any integer n ≥ 3 we have

n =

√√√√
(n+ 2) + (n− 2)

√

(n+ 3) + (n− 1)

√
(n+ 4) + n

√
(n+ 5) + · · ·

(n = 2009 corresponds to the original problem.) The claim follows from an iterative
application of the identity n =

√
(n+ 2) + (n− 2)(n+ 1), as follows:

n =
√
(n+ 2) + (n− 2)(n+ 1)

=

√
(n+ 2) + (n− 2)

√
(n+ 3) + (n− 1)(n+ 2)

=

√

(n+ 2) + (n− 2)

√
(n+ 3) + (n− 1)

√
(n+ 4) + n(n+ 3)

= · · · .

Solution 2 by Taylor University Problem Solving Group, Upland, IN

We use Ramanujan’s nested radical approach. Beginning with

(x+ n+ a)2 = x2 + n2 + a2 + 2ax+ 2nx+ 2an,

we see that

x+ n+ a =
√
x2 + n2 + a2 + 2ax+ 2nx+ 2an

=
√
ax+ n2 + a2 + 2an+ x (x+ 2n+ a)

=
√
ax+ (n+ a)2 + x (x+ 2n+ a).

However, the (x+ 2n+ a) term on the right is basically of the same form as the left
(with n replaced by 2n). We can make the corresponding substitution, and continue this
process indefinitely, until we are left with x+ n+ a =

√

ax+ (n+ a)2 + x

√
a(x+ n) + (n+ a)2 + (x+ n)

√
a (x+ 2n) + (n+ a)2 + (x+ 2n)

√· · ·

Substituting in x = 2007, n = a = 1 produces

2009 =

√

2007 + 4 + 2007

√
2008 + 4 + 2008

√
2009 + 4 + 2009

√· · ·

=

√

2011 + 2007

√
2012 + 2008

√
2013 + 2009

√· · ·.
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Hence, the value is 2009.

Also solved by Scott H. Brown, Auburn University, Montgomery, AL; G. C.
Greubel, Newport News, VA; Paul M. Harms, North Newton, KS: Kenneth
Korbin, NY, NY; Charles McCracken, Dayton, OH; Paolo Perfetti,
Department of Mathematics, University of Rome, Italy; Boris Rays,
Brooklyn, NY; David Stone and John Hawkins (jointly), Stateboro GA, and
the proposer.

• 5119: Proposed by Isabel Dı́az-Iriberri and José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a non-negative integer. Prove that

2 +
1

2n+1

n∏

k=0

csc

(
1

Fk

)
< Fn+1

where Fn is the nth Fermat number defined by Fn = 22
n
+ 1 for all n ≥ 0.

Solution by Charles R. Diminnie, San Angelo, TX

To begin, we note that for x ∈
(
0,
π

3

)
, cosx is decreasing and the Mean Value Theorem

for Derivatives implies that there is a point cx ∈ (0, x) such that

sinx = sinx− sin 0

= cos cx (x− 0)

> cos
π

3
· x

=
x

2
.

As a result, when x ∈
(
0,
π

3

)
,

x cscx < 2.

Since Fn ≥ F0 = 3 for all n ≥ 0, it follows that 0 <
1

Fn
≤ 1

3
<
π

3
and hence,

1

Fn
csc

(
1

Fn

)
< 2, or

csc

(
1

Fn

)
< 2Fn (1)

Let P (n) be the statement

n∏

k=0

csc

(
1

Fk

)
< 2n+1 (Fn+1 − 2) (2)

By (1),

csc

(
1

F0

)
< 2F0 = 2 · 3 = 2 (F1 − 2)
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and P (0) is true. If P (n) is true for some n ≥ 0, then by (1),

n+1∏

k=0

csc

(
1

Fk

)
= csc

(
1

Fn+1

) n∏

k=0

csc

(
1

Fk

)

< csc

(
1

Fn+1

)
· 2n+1 (Fn+1 − 2)

< 2Fn+1 · 2n+1 (Fn+1 − 2)

= 2n+2
(
22

n+1
+ 1

) (
22

n+1 − 1
)

= 2n+2
(
22

n+2 − 1
)

= 2n+2 (Fn+2 − 2)

and P (n+ 1) follows. By Mathematical Induction, P (n) is true for all n ≥ 0.

Since (2) is equivalent to the given inequality, the proof is complete.

Also solved by Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro Fanego,
Viveiro, Spain; David Stone and John Hawkins (jointly), Statesboro, GA,
and the proposers.

• 5120: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Calculate

lim
n→∞

1

2n

n∑

k=0

(−1)k
(
n

k

)
log

(
2n− k
2n+ k

)
.

Solution 1 by Ovidiu Furdui, Cluj, Romania

The limit equals 0. More generally, we prove that if f : [0, 1]→ < is a continuous
function then

lim
n→∞

1

2n

n∑

k=0

(−1)k
(
n

k

)
f

(
k

n

)
= 0.

Before we give the solution of the problem we collect the following equality from [1]
(Formula 0.154(3), p.4): If p ≥ 0 is a nonnegative integer, then the following equality
holds

n∑

k=0

(−1)k
(
n

k

)
kp = 0. (1)

Now we are ready to solve the problem. First we note that for a polynomial

P (x) =
m∑

j=0

ajx
j we have, based on (1), that

1

2n

n∑

k=0

(−1)k
(
n

k

)
P

(
k

n

)
=

m∑

j=0

aj
nj
· 1
2n

(
n∑

k=0

(−1)k
(
n

k

)
kj
)

= 0. (2)

Let ε > 0 and let Pε be the polynomial that uniformly approximates f , i.e.
|f(x)− Pε(x)| < ε for all x ∈ [0, 1]. We have, based on (2), that
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1

2n

n∑

k=0

(−1)k
(
n

k

)
Pε

(
k

n

)
= 0. Thus,

∣∣∣∣
1

2n

n∑

k=0

(−1)k
(
n

k

)
f

(
k

n

) ∣∣∣∣ =

∣∣∣∣
1

2n

n∑

k=0

(−1)k
(
n

k

)(
f

(
k

n

)
− Pε

(
k

n

)) ∣∣∣∣

≤ 1

2n

n∑

k=0

(
n

k

) ∣∣∣∣ f
(
k

n

)
− Pε

(
k

n

) ∣∣∣∣

≤ ε

2n

n∑

k=0

(
n

k

)

= ε.

Thus, the limit is 0 and the problem is solved.

[1] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Sixth Edition,
Alan Jeffrey, Editor, Daniel Zwillinger, Associate Editor, 2000.

Solution 2 by Shai Covo, Kiryat-Ono, Israel

We will show that

lim
n→∞

1

2n

n∑

k=0

(−1)k
(
n

k

)
log

(
2n− k
2n+ k

)
= 0. (1)

(The log function in (1) has no significant role in the analysis below, we could replace it by
any other continuous function.)

The lemma below follows straightforwadly from the Central Limit Theorem (CLT). We recall
that, according to the CLT, if X1, X2, . . . is a sequence of independent and identically
distributed (i.i.d) random variables with expectation µ and variance σ2, then

P

(
a <

X1 + · · ·+Xn − nµ
σ
√
n

≤ b
)
→ Φ(b)− Φ(a) (2)

as n→∞, for any a, b ∈ < with a < b where Φ is the distribution function of the Normal
(0, 1) distribution (i.e., Φ(x) = (2π)−1/2

∫ x
−∞ e−µ2/2du).

Lemma: For any ε > 0, there exists an r > 0 such that

1

2n

∑

0≤k≤n/2−r
√
n

n/2+r
√
n<k≤n

(
n

k

)
< ε (3)

for all n sufficiently large.

Proof: Fix ε > 0. Choose r > 0 sufficiently large so that Φ(2r)− Φ(−2r) > 1− ε. Let
X1, X2 . . . be a sequence of i.i.d. variables with P (Xi = 0) = P (Xi = 1) = 1/2. Put
Yn =

∑n
i=1Xi. Thus Yn has a binomial (n, 1/2) distribution. The Xi’s have expectation

µ = 1/2 and variance σ2 = 1/4. Hence by (2) (with a = −2r and b = 2r),

P (n/2− r√n < Yn ≤ n/2 + r
√
n) > 1− ε
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for all n sufficiently large. In turn, by taking complements, we conclude (3), since the

distribution of Yn is given by P (Yn = k) =
1

2n

(
n

k

)
, k = 0, . . . , n.

It follows from the lemma and the fact that

∣∣∣∣(−1)k log
(
2n− k
2n+ k

) ∣∣∣∣ is bounded uniformly in k

(say, by 2) that (1) will be proved if we show that

lim
n→∞

1

2n

∑

n/2−r
√
n<k<n/2+r

√
n

(−1)k
(
n

k

)
log

(
2n− k
2n+ k

)
= 0 (4)

for any fixed r > 0. This is shown as follows. We first write

∣∣∣∣(−1)k
(
n

k

)
log

(
2n− k
2n+ k

)
+ (−1)k

(
n

k + 1

)
log

(
2n− (k + 1)

2n+ (k + 1)

) ∣∣∣∣

=

(
n

k

)∣∣∣∣ log
(
2n− k
2n+ k

)
− n− k
k + 1

log

(
2n− (k + 1)

2n+ (k + 1)

) ∣∣∣∣. (5)

Clearly, the expression multipying

(
n

k

)
on the right of the equality in (5) can be made

arbitrarily small uniformly in k ∈ [n/2− r√n, n/2 + r
√
n], where r > 0 is fixed, by choosing

n sufficiently large. Then, in view of the triangle inequality, (4) follows from
1

2n

n∑

k=0

(
n

k

)
ε = ε

(where ε > 0 is arbitrarily small) and

(
n

k

)/
2n

unif.−→ 0 (to be used if the sum in (4) consists of

an odd number of terms). The desired result (1) is thus proved.

Also proved by Boris Rays, Brooklyn, NY and the proposer.

5121: Proposed by Tom Leong, Scotrun, PA

Let n, k and r be positive integers. It is easy to show that

∑

n1+n2+···+nr=n

(
n1
k

)(
n2
k

)
· · ·
(
nr
k

)
=

(
n+ r − 1

kr + r − 1

)
, n1, n2, · · ·nr ∈ N

using generating functions. Give a combinatorial argument that proves this identity.

Solution 1 by Shai Covo, Kiryat-Ono, Israel

Suppose we have n identical boxes and kr (≤ n) identical balls. The stated equality is trivial
if r = 1, hence we can assume r > 1.

We begin with the left-hand side of the stated equality. Assuming n1, . . . , nr ≥ k, it gives the
number of ways to divide the n boxes into r groups–the ith group having ni ≥ k elements–and
put exactly k balls in each group.
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As for the right-hand side, suppose that in addition to the n boxes and the kr balls we have
r − 1 separators. This gives rise to an (n+ r − 1)-tuple of boxes and separators. We denote
this tuple by M . We identify a sequence (i1, i2, . . . , ikr+r−1) such that
1 ≤ i1 < i2 < · · · < ikr+r−1 ≤ n+ r − 1 with the following arrangement: the ijth
(j = 1, . . . , kr + r − 1) element of M is a separator if j is a multiple of k + 1 and a box
containing a ball otherwise. (The remaining n− kr elements are empty boxes.) We thus

conclude that

(
n+ r − 1

kr + r − 1

)
gives the number of ways to place r − 1 separators between the n

boxes and kr balls into the boxes, such that each of the resulting r groups contains exactly k
balls. This establishes the equality of the left-and right-hand sides.

Solution 2 by the proposer

Both sides count the number of possible ways to arrange kr+ r− 1 green balls and n− kr red
balls in a row. This is clearly true for the right side. In the left side, note that any term in the
sum with ni < k for some i is equal to zero; so we may assume ni ≥ k for all i. For each
composition n1 + · · ·+ nr = n of n, consider the row of n red and r− 1 green balls arranged as

RR · · ·R︸ ︷︷ ︸G
n1 balls

RR · · ·R︸ ︷︷ ︸G
n2 balls

RR · · ·R︸ ︷︷ ︸G · · ·
n3 balls

GRR · · ·R︸ ︷︷ ︸
nr−1 balls

GRR · · ·R︸ ︷︷ ︸
nr balls

From each block of red balls, choose k of them and paint them green. The number of ways to

do this is

(
n1
k

)(
n2
k

)
· · ·
(
nr
k

)
. This results in a row consisting of kr + r − 1 green balls and

n− kr red balls. Conversely, in any row consisting of kr + r − 1 green balls and n− kr red
balls, we can determine a unique composition n1 + n2 + · · ·+ nr = n of n by reversing the
process.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2011

• 5140: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with an interior point P such that

AP = 22 + 16
√
2

BP = 13 + 9
√
2

CP = 23 + 16
√
2.

Find AB.

• 5141: Proposed by Kenneth Korbin, New York, NY

A quadrilateral with sides 259, 765, 285, 925 is constructed so that its area is maximum.
Find the size of the angles formed by the intersection of the diagonals.

• 5142: Proposed by Michael Brozinsky, Central Islip, NY

Let CD be an arbitrary diameter of a circle with center O. Show that for each point A
distinct from O,C, and D on the line containing CD, there is a point B such that the
line from D to any point P on the circle distinct from C and D bisects angle APB.

• 5143: Proposed by Valmir Krasniqi (student), Republic of Kosova

Show that

∞∑

n=1

Cos−1 1 +
√
n2 + 2n ·

√
n2 − 1

n (n+ 1)
=

π

2
.

(Cos−1 = Arccos)

• 5144: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Compute

lim
n→∞

n∏

k=1


1 + ln

(
k +
√
n2 + k2

n

)1/n

 .

• 5145: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k ≥ 1 be a natural number. Find the sum of

∞∑

n=1

(
1

1− x − 1− x− x2 − · · · − xn
)k

, for |x| < 1.

Solutions

• 5122: Proposed by Kenneth Korbin, New York, NY

Partition the first 32 non-negative integers from 0 to 31 into two sets A and B so that
the sum of any two distinct integers from set A is equal to the sum of two distinct
integers from set B and vice versa.

Solution 1 by Michael N. Fried, Kibbutz Revivim, Israel

Suppose A contains 0. This means that any other number in A must be the sum of two
numbers in B. The next number in A, therefore, must be at least 3 since 3 is the
smallest number that is the sum of two positive integers. On the other hand, the next
number in A cannot be greater than 3, for 1 and 2 must still be in B. This group of four
numbers forms a kind of unit, which we can represent graphically as follows:

0

1
t3
2

or
1

0
u2
3

The symmetry of the unit reflects the fact that a+ b = c+ d if and only if b− d = a− c,
that is if and only if there is some number k such that c = a+ k and d = b− k. Thus
any four consecutive integers forming such a figure will have the property that the sum
of the top pair of numbers equals the sum of the bottom pair.

(This makes the problem almost a geometrical one, for arranging the numbers in set A
and B in parallel lines as in the figure above, the condition of the problem becomes that
every pair of numbers in the first line corresponds to a pair of numbers in the second
line.)

So our strategy for the problem will be to assemble units such as those above to produce
larger units satisfying in each case the condition of the problem.

Let us then start with two. The first, as before is:

0

1
t3
2

And as we have already argued, the first two numbers of A and B must be arranged in
this way. The second unit, then, will be either

4

5
t7
6

or
5

4
u6
7

The symmetrical combination,
0

1
t3
2

4

5
t7
6

fails, because the pair (0, 4) in the upper row has no matching pair in the second row.
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However, the non-symmetrical combination works:

0

1
t3
2

5

4
u6
7

Again, these two form a new kind of unit, and, as before, any eight consecutive integers
forming a unit such as the above, will have the property that any pair of numbers in the
top row will have the same sum as some pair in the bottom row.

So, let us try and fit together two units of this type, and let us call them R and S. As
before, there are two possibilities, one symmetric and one anti-symmetric.
Since the anti-symmetric option worked before, let us try it again and call the top row
A and the bottom row B.

R︷ ︸︸ ︷
0

1
t3
2

5

4
u6
7

S︷ ︸︸ ︷
8

9
u11
10

13

12
t14
15

A = {0, 3, 5, 6, 8, 11, 13, 14}
B = {1, 2, 4, 7, 9, 10, 12, 15}

Now, to check whether this combination works we do not have to check

(
8

2

)
= 28 pairs

of numbers.

All of the subunits will satisfy the condition of the problem. Indeed, we do not have to
check pairs contained in the first and second, second and third and third and fourth
terms, because they represent eight consecutive integers as discussed above. And we do
not have to check pairs from the first and fourth terms because these also behave like a
single unit R (where for example the pair (0,13) corresponds to (1,12) just as (0,5)
corresponded to (1,4). So we only have to check pairs of numbers coming from the first
and third elements and the second and fourth. But here we find a problem, for (2,10) in
B cannot have a corresponding pair in A.

Let us then check the symmetrical arrangement:

R︷ ︸︸ ︷
0

1
t3
2

5

4
u6
7

S︷ ︸︸ ︷
9

8
t10
11

12

13
u15
14

A = {0, 3, 5, 6, 9, 10, 12, 15}
B = {1, 2, 4, 7, 8, 11, 13, 14}

As in the anti-symmetrical arrangement, we need not check pairs of numbers in R or S,
or, in this case, pairs if the first and third elements or second and fourth, which behave
exactly as R and S individually. We need only check non-symmetrical pairs in the first
and fourth elements and in the second and third. For the former this means (3,15) and
(0,12) in A and (1,13) and (2,14) in B. For these we have corresponding pairs (3,15) to
(7,8), (0,12) to (4,8), (1,13) to (5,9) and (2,14) to (6,10). Similarly, corresponding pairs
exist for each non-smmetric pair in A and B in the second and third elements.

The above arrangement is then a new unit of 16 consecutive numbers satisfying the
condition that every pair in the upper row A, has a correspnding pair of numbers in the
second row B, with the same sum.
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Finally, then, we want to join together two units, each of 16 consecutive integers as
above, to partition the set of 32 consecutive integers {0, 1, 2, . . . , 31}.
Reasoning as above, and checking only the critical elements in the unit for
corresponding sums, we see that the symmetric case works.

The symmetric case :
︷ ︸︸ ︷
0

1
t 3

2

5

4
u 6

7

9

8
u 10

11

12

13
t 15

14
and

︷ ︸︸ ︷
16

17
t 19

18

21

20
u 22

23

25

24
u 26

27

28

29
t 31

30

Thus,

A = {0, 3, 5, 6, 9, 10, 12, 15, 16, 19, 21, 22, 25, 26, 28, 31}
B = {1, 2, 4, 7, 8, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30}

Editor’s comment: In Michael’s solution each element in the set of four consecutive
integers was written as being the vetex of an isosceles trapezoid. (The trapezoids were
oriented with the bases being parallel to the top and bottom edges of page; Michael then
manitpulated the trapezoids by flipping their bases.)

Adoración Mart́ınez Ruiz of the Mathematics Club of the Institute of
Secondary Education (No. 1) in Requena-Valencia, Spain also approached the
problem geometrically in an almost identical manner as Michael. I adopted Adoración
Mart́ınez’ notation of “cups” t and “caps” u instead of Michael’s isosceles trapezoids in
writing-up Michael’s solution. (If the shorter base of the trapezoid was closer to the
bottom edge of the page than the longer base, then that trapezoid became a cup, t;
whereas if the shorter base of the trapezoid was closer to the top edge of the page than
the longer base, then that trapezoid became a cap, u.
Michael’s solution and Adoración Mart́ınez’ solution were identical to one another up
until the last step. At that point Michael took the symmetric extension in moving from
the first 16 non-negative integers to the first 32 non-negative integers, whereas
Adoración Mart́ınez took the anti-symmetric extension, and surprisingly (at least to
me), each solution worked.

Adoración Mart́ınez′ anti− symmetric case :
︷ ︸︸ ︷
0

1
t 3

2

5

4
u 6

7

9

8
u 10

11

12

13
t 15

14
and

︷ ︸︸ ︷
17

16
u 18

19

20

21
t 23

22

24

25
t 27

26

29

28
u 30

31

A = {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30}
B = {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

So now we have two solutions to the problem, each motivated by geometry, and it was
assumed (at least by me) that their were no other solutions. Michael challenged Mayer
Goldberg, a colleague in CS here at BGU, to find other solutions, and he did; many of
them! Following is his approach.

Solution 2 by Mayer Goldberg, Beer-Sheva, Israel

Notation: For any set S of integers, the set aS + b is the set {ak + b : k ∈ S}.
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Construction: We start with the set A0 = {0, 4}, b0 = {1, 2}. We define An, Bn

inductively as follows:

An+1 = (2An + 1) ∪ (2Bn)

Bn+1 = (2An) ∪ (2Bn + 1)

Claim: The sets An, Bn partition the set {0, . . . , 2n+2} according to the requirements of
the problem.

Proof: By Induction. The sets A0B0 satisfy the requirement trivially, since they each
contain one pair, and by inspection, we see that the sums are the same. Assume that
An, Bn satisfy the requirement. Pick x1, x2 ∈ An+1.

• Case I: x1 = 2x3 + 1, x2 = 2x4 + 1, for x3, x4 ∈ An. Then by the induction hypothesis
(IH), there exists y3, y4 ∈ Bn, such that x3 + x4 = y3 + y4. Consequently,

x1 + x2 = 2(x3 + x4) + 2 = 2(y3 + y4) + 2 = (2y3 + 1) + (2y4 + 1).

So let y1 = 2y3 + 1, y2 = 2y4 + 1 ∈ Bn+1.

• Cases II & III: x1 = 2x3 + 1, x2 = 2y4, for x3 ∈ An, y4 ∈ Bn.

x1 + x2 = 2(x3 + 1) + 2y4 = 2x3 + (2y4 + 1).

So let y1 = 2x3, y2 = 2y4 + 1 ∈ Bn+1.

• Case IV: x1 = 2y3, x2 = 2y4, for y3, y4 ∈ Bn.Then by the IH, there exists x3, x4 ∈ An,
suc that y3 + y4 = x3 + x4. Consequently,

x1 + x2 = 2y3 + 2y4 = 2(y3 + y4) = 2(x3 + x4) = 2x3 + 2x4.

So let y1 = 2x3, y2 = 2y3 ∈ Bn+1

Editor: This leads to potentially thousands of such pairs of sets that satisfy the criteria
of the problem. Mayer listed about one hundred such examples, a few of which are
reproduced below:

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 16, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 19, 20, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 16, 19, 20, 21, 25, 26, 28, 31}
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A = {0, 3, 5, 6, 9, 10, 15, 16, 17, 18, 19, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 14, 20, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 15, 16, 17, 18, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 13, 14, 19, 20, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 13, 15, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 11, 12, 14, 16, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 11, 15, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 12, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 8, 9, 15, 16, 17, 18, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 10, 11, 12, 13, 14, 19, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 19, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 18, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 19, 20, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 18, 21, 22, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 13, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 11, 12, 14, 16, 18, 19, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 11, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = {1, 2, 4, 7, 8, 12, 13, 14, 16, 18, 19, 21, 25, 26, 28, 31}

A = {0, 3, 5, 6, 9, 10, 14, 15, 17, 20, 22, 23, 24, 27, 29, 30},
B = 1, 2, 4, 7, 8, 11, 12, 13, 16, 18, 19, 21, 25, 26, 28, 31}

Editor (again): Edwin Gray of Highland Beach, FL working together with John
Kiltinen of Marquette, MI claimed and proved by induction the following more
general theorem:

Let S = {0, 1, 2, 3, . . . , 2n − 1}, n > 1. Then there is a partition of S, say A, B such that

1) A ∪B = S, A ∩B = ∅, and

2) For all x, y ∈ A, there is an r, s ∈ B, such that x+ y = r + s, and vice versa.

That is, the sum of any two elements in B has two elements in A equal to their sum.

David Stone and John Hawkins both of Statesboro, GA also claimed and
proved a more general statement: They showed that: for n ≥ 2, the set
Sn = {0, 1, 2, . . . , 2n − 1} consists of the non-negaitve integers which can be written with
n or fewer binary digits. E.g.,

S2 = {0, 1, 2, 3} = {00, 01, 10, 11} and
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S3 = {0, 1, 2, 3, 4, 5, 6, 7} = {000, 001, 010, 011, 100, 101, 110, 111}

Their proof consisted of partitioning Sn into two subsets: En: those elements of Sn
whose binary representation uses an even number of ones, and On: those numbers in Sn
whose binary reprsentation uses an odd number of ones. Hence, for any x 6= y in
En, x+ y can be written as x+ y = w + z for some w 6= z in On, and vice versa. This
lead them to Adoración Mart́ınez’ solution, and they speculated on its uniqueness.

All of this seemed to be getting out-of-hand for me; at first I thought the solution is
unique; then I thought that there are only two solutions, and then I thought that there
are many solutions to the problem. Shai Covo’s
solutio/Users/admin/Desktop/SSM/For Jan 11/For Jan 11; Jerry.texn however, shows
that the answer can be unique if one uses a notion of sum multiplicity.

Solution 3 by Shai Covo, Kiryat-Ono, Israel

We give two solutions, the first simple and original, the second sophisticated and more
interesting, thanks to the Online Encyclopedia of Integer sequences(OEIS).

Assuming that 0 ∈ A, one checks that we must have either

{0, 3, 5, 6} ∪ {25, 26, 28, 31} ⊂ A and {1, 2, 4, 7} ∪ {24, 27, 29, 30} ⊂ B
or

{0, 3, 5, 6} ∪ {24, 27, 29, 30} ⊂ A and {1, 2, 4, 7} ∪ {25, 26, 28, 31} ⊂ B.

In view of the first possibility, it is natural to examine the following sets:

A = {0, 3, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 28, 31}

B = {1, 2, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 29, 30}.

To see why this is natural, connect the numbers with arrows, in increasing order,
starting with a vertical arrow pointing down to 1. Now, define

C = {a1 + a2 | a1, a2 ∈ A, a1 6= a2} ⊂ {3, 4, 5, . . . , 59} and

D = {b1 + b2 | b1, b2 ∈ B, b1 6= b2} ⊂ {3, 4, 5, . . . , 59}.

We want to show that C = D, or equivalently, for every x ∈ {3, 4, 5, . . . , 59} either
x ∈ C ∩D or x 6∈ C ∪D. Checking each x value, we find that

C ∩D = {3, 4, 5, . . . , 59} \ {4, 7, 55, 58} and {4, 7, 55, 58} ∩ (C ∪D) = ∅.

Thus, C = D, and so the problem is solved with A and B as above.

We now turn to the second solution. OEIS sequences A001969 (numbers with an even
number of 1’s in their binary expansion) and A000069 (numbers with an odd number of
1’s in their binary expansion) “give the unique solution to the problem of splitting the
nonnegative integers into two classes in such a way that sums of pairs of distinct
elements from either class occur with the same multiplicities. [Lambek and Moser].” We
have verified (by computer) that, in the case at hand, the sets

A = {A001969(n) : A001969(n) ≤ 30}
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= {0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30} and

B = {A000069(n) : A000069(n) ≤ 31}
= {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31}

split the first 32 nonnegative integers from 0 to 31 in the manner stated for splitting the
nonnegative integers. (The number 32 plays an important role here.) However, this is
not the case for the sets A and B from the previous solution (consider, for
example,12=3+9 versus 12=1+11, 12=4+8; there are seven more such examples.)

Editor (still again): I did not understand the notion about sums having the same
multiplicity, but this is the key for having a unique solution to the problem, as it states
in the OEIS. So I asked Shai to elaborate on this notion. Here is what he wrote:

—————–

The point is that “given the unique solution to the problem of splitting the nonnegative
integers...” refers to the infinite set {0, 1, 2, 3, ...} and not the finite set {0, 1, 2, ..., 31}. I
should have stressed this point in my solution. As far as I can recall, I considered doing
so, but decided not to, based on the following: “... the manner stated for splitting the
nonnegative integers” only refers to “splitting the nonnegative integers into two classes
in such a way that sums of pairs of distinct elements from either class occur with the
same multiplicities,” and not to “give the unique solution to the problem of splitting the
nonnegative integers...”.

—————–

In explaining the notion of itself, Shai wrote:

—————–

Consider Michael Fried’s sets:

A = {0, 3, 5, 6, 9, 10, 12, 15, 16, 19, 21, 22, 25, 26, 28, 31}

B = {1, 2, 4, 7, 8, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30}.

For set A, the number 16 can be decomposed as 0+16 and 6+10; hence the multiplicity
is 2. For set B, on the other hand, 16 can only be decomposed as 2+14 (8+8 does not
count, since we consider distinct elements only); hence the multiplicity is 1.

——————

Also solved by Brian D. Beasley, Clinton, SC; Edwin Gray, Highland Beach,
FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
John Kiltinen, Marquette, MI; Charles McCracken, Dayton, OH; Adoración
Mart́ınez Ruiz, Requena-Valencia, Spain; R. P. Sealy, Sackville, New
Brunswick, Canada; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5123: Proposed by Kenneth Korbin, New York, NY

Given isosceles triangle ABC with AB = BC = 2011 and with cevian BD. Each of the
line segments AD, BD, and CD have positive integer length with AD < CD.

8X
ia
ng
’s
T
ex
m
at
h



Find the lengths of those three segments when the area of the triangle is minimum.

Solution by Shai Covo, Kiryat-Ono, Israel

We begin by observing that AC ∈ {3, 4, . . . , 4021}. This follows from
AC < AB +BC = 4022 and the assumption that AC = AD + CD is the sum of the
distinct positive integers. The area S of triangle ABC can be expressed in terms of AC
as

S = S
(
AC

)
=
AC

2

√√√√20112 −
(
AC

2

)2

.

Define f(x) = x2(20112 − x2), x ∈ [0, 2011]. Then S
(
AC

)
=

√
f
(
AC/2

)
. It is readily

verified that the function f (and hence
√
f) is unimodal with mode m = 2011/

√
2; that

is, it is increasing for x ≤ m and decreasing for x ≥ m. If thus follows from
f(4021/2) < f(127/2) that S(4021) < S(k) for any integer 127 ≤ k ≤ 4020. Next by the
law of cosines, we find that

BD
2
= 20112 +AD

2 − 2 · 2011 ·AD · AC/2
2011

.

Hence,

AD
2 −AC ·AD +

(
20112 −BD2

)
= 0.

The roots of this quadratic equation are given by the standard formula as

AD1,2 =
AC ±

√
AC

2 − 4
(
20112 −BD2

)

2
.

However, we are given that AD < CD; hence AD = AD2 and CD = AD1, and we must

have AC
2
> 4

(
20112 −BD2

)
. Since, obviously, BD ≤ 2010, we must have

AC2 > 4
(
20112 − 20102

)
= 4 · 4021; hence, 127 ≤ AC ≤ 4021.

Thus, under the condition that S is minimum, we wish to find an integer value of
BD(≤ 2010) that makes AD1,2 (that is, CD and AD) distinct integers when AC is set
to 4021.

We thus look for BD ∈ {1, 2, . . . , 2010} for which the discriminant
∆ = 40212 − 4(20112 −BD2) is a positive perfect square, say ∆ = j2 with j ∈ N
(actually, j =CD −AD). This leads straightforwardly to the following equation:

(
2BD + j

) (
2BD − j

)
= 3 · 7 · 383.

Since 3,7, and 383 are primes, we have to consider the following four cases:

•
(
2BD − j

)
= 1 and

(
2BD + j

)
= 3 · 7 · 383. This leads to BD = 2011; however, BD

must be less than 2011.

•
(
2BD − j

)
= 3 and

(
2BD + j

)
= 7 · 383. This leads to BD = 671 and j = 1339, and

hence to our first solution:

AD = 1341, BD = 671, CD = 2680.
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•
(
2BD − j

)
= 7 and

(
2BD + j

)
= 3 · 383. This leads to BD = 289 and j = 571, and

hence to our second solution:

AD = 1725, BD = 289, CD = 2296.

•
(
2BD − j

)
= 3 · 7 and

(
2BD + j

)
= 383. This leads to BD = 101 and j = 181, and

hence to our third solution:

AD = 1920, BD = 101, CD = 2101.

Editor: David Stone and John Hawkins made two comments in their solution. They
started off their solution by letting r = AC, the length of the triangle’s base. By Heron’s

formula, they obtained the triangle’s area: K =
r

4

√
40222 − r2 and then they made the

following observations.

• a) BD = 1 and CD = 2011 gives us a triangle ABC with

area

(
1

2
− 1

4 (2011)2

)√
4 (20112)− 1 ≈ 2010.999689 which is the smallest value that can

be obtained not requiring AD to be an integer.

• b) Letting m = AD,n = CD, k = BD, (where 1 ≤ m < n and AC = m+ n ≤ 4021),
and letting α be the base angle at vertex A (and at C), and dropping an altitude from B
to side AC, we obtain a right triangle and see that

cosα =
AC/2

2011
=

m+ n

2 · 2011 .

Using the Law of Cosines in triangle BDC, we have

k2 = n2 + 20112 − 2 · 2011 · n cosα = 20112 + n2 − n(m+ n),

so we have a condition which the integers m,n and k must satisfy

k2 = 20112 −mn (1)

There are many triangles satisfying condition (1), some with interesting characteristics.
There are no permissible triangles with base 4020, five with base 4019 and six with base
4018. All have larger areas than the champions listed above.

The altitude of each triangle in our winners group is 44.8 so the “shape ratio”,
altitude/base, is very small: 0.011. A wide flat triangle indeed!

One triangle with base 187 has a relatively small area: 187,825.16. This is as close as we
can come to a tall, skinny triangle with small area. Its altitude/base ratio is 10.7.

In general, the largest isosceles triangle is an isosceles right triangle. With side lengths
2011, this would require a hypotenuse (our base) of 2011

√
2 ≈ 2843.98. There are no

permissible triangles with r = 2844. Letting r = 2843, we find the two largest
permissible triangles:

m = 291, n = 2552, cevian = 1817 and area 2, 022, 060.02

m = 883, n = 1960, cevian = 1521 and area 2, 022, 060.02
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The triangle with m = 3, n = 2680 (hence base =2683) has a large area: 2,009,788,52.
The cevian has length 2009; it is very close to the side AB.

The triangle with m = 1524, n = 1560 and cevian=1291, comes closer than any other we
found to having the cevian bisect the base. Its area is 1,990,528.49

Also solved by Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5124: Proposed by Michael Brozinsky, Central Islip, NY

If n > 2 show that
n∑

i=1

sin2
(
2πi

n

)
=
n

2
.

Solution 1 by Piriyathumwong P. (student, Patumwan Demonstration
School), Bangkok, Thailand

Since cos 2θ = 1− 2 sin2 θ, we have

n∑

i=1

sin2
(
2πi

n

)
=

1

2

n∑

i=1

(
1− cos

(
4πi

n

))

=
n

2
− 1

2

n∑

i=1

cos

(
4πi

n

)

We now have to show that S =
n∑

i=1

cos

(
4πi

n

)
= 0.

Multiplying both sides of S by 2 sin

(
2π

n

)
, gives

2 sin

(
2π

n

)
· S = 2 sin

(
2π

n

)
cos

(
4π

n

)
+ 2 sin

(
2π

n

)
cos

(
8π

n

)
+ . . .+ 2 sin

(
2π

n

)
cos

(
4nπ

n

)

=

(
sin

(
6π

n

)
− sin

(
2π

n

))
+

(
sin

(
10π

n

)
− sin

(
6π

n

))
+ . . .

+

(
sin

(
(4n+ 2)π

n

)
− sin

(
(4n− 2)π

n

))

= sin

(
(4n+ 2)π

n

)
− sin

(
2π

n

)

= 0

Hence, S = 0, and we are done.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

To avoid confusion with the complex number i =
√
−1, we will consider

n∑

k=1

sin2
(
2πk

n

)
.
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If R = e
(
4πi/n

)
, with n > 2, then R 6= 1 and Rn = e4πi = 1. Then, using the formula

for a geometric sum, we get

n∑

k=1

Rk = R
Rn − 1

R− 1
= 0,

and hence,

n∑

k=1

cos

(
4πk

n

)
=

n∑

k=1

Re
(
Rk
)
= Re

(
n∑

k=1

Rk

)
= 0.

Therefore, by the half-angle formula,

n∑

k=1

sin2
(
2πk

n

)
=

1

2

n∑

k=1

[
1− cos

(
4πk

n

)]
=
n

2
.

Also solved by Daniel Lopez Aguayo (student, Institute of Mathematics,
UNAM), Morelia, Mexico; Valmir Bucaj (student, Texas Lutheran
University), Seguin, TX; Shai Covo, Kiryat-Ono, Israel; Bruno Salgueiro
Fanego, Viveiro, Spain; Michael N. Fried, Kibbutz Revivim, Israel; G.C.
Greubel, Newport News, VA; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; Pedro H. O. Pantoja, Natal-RN, Brazil; Paolo
Perfetti, Department of Mathematics, University of Rome, Italy; Boris Rays,
Brooklyn, NY; Raúl A. Simón, Santiago, Chile; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5125: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove that

ab

2(c+ a) + 5b
+

bc

2(a+ b) + 5c
+

ca

2(b+ c) + 5a
<

11

32
.

Solution by Kee-Wai Lau, Hong Kong, China

We prove the sharp inequality

ab

2(c+ a) + 5b
+

bc

2(a+ b) + 5c
+

ca

2(b+ c) + 5a
<

1

3
. (1)

Let x =
a

a+ b+ c
, y =

b

a+ b+ c
, z =

c

a+ b+ c
so that (1) can be written as

(a+ b+ c)

(
xy

3y + 2
+

yz

3z + 2
+

zx

3x+ 2

)
≤ 1

3
. (2)

Since

a+ b+ c =
√
3 (a2 + b2 + c2)− (a− b)2 − (b− c)2 − (c− a)2 ≤

√
3 (a2 + b2 + c2) = 3

so to prove (2), we need only prove that

12X
ia
ng
’s
T
ex
m
at
h



xy

3y + 2
+

yz

3z + 2
+

zx

3x+ 2
≤ 1

9
. (3)

whenever x, y, z are positive and x+ y + z = 1. It is easy to check that (3) is equivalent
to

x

3y + 2
+

y

3z + 2
+

z

3x+ 2
≥ 1

3
. (4)

By the convexity of the function
1

t
, for t > 0 and Jensen’s inequality, we have

x

3y + 2
+

y

3z + 2
+

z

3x+ 2
≥ 1

x(3y + 2) + y(3z + 2) + z(3x+ 2)
=

1

3 (xy + yz + zx) + 2
.

Now

xy + yz + zx =
2 (x+ y + z)2 − (x− y)2 − (y − z)2 − (z − x)2

6
≤ 1

3

and so (4) holds. This proves (1) and equality holds when a = b = c = 1.

Also solved by Shai Covo, Kiryat-Ono, Israel; Paolo Perfetti, Department of
Mathematics, University of Rome, Italy, and the proposer.

• 5126: Proposed by Pantelimon George Popescu, Bucharest, Romania and José Luis
Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be positive real numbers and f : [a, b]→ [c, d] be a function such that
|f(x)− f(y)| ≥ |g(x)− g(y)|, for all x, y ∈ [a, b], where g : R→ R is a given injective
function, with g(a), g(b) ∈ {c, d}.
Prove

(i) f (a) = c and f (b) = d , or f (a) = d and f (b) = c.

(ii) If f (a) = g(a) and f (b) = g(b), then f (x ) = g(x ) for a ≤ x ≤ b.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

To avoid trivial situations, we will assume that a < b. Then, since g (x) is injective and
g (a) , g (b) ∈ {c, d}, it follows that c < d also.

First of all, the fact that f (x) ∈ [c, d] for all x ∈ [a, b] implies that

|f (x)− f (y)| ≤ d− c

for all x, y ∈ [a, b].

(i) In particular, since g (a) , g (b) ∈ {c, d}, we have

d− c ≥ |f (a)− f (b)| ≥ |g (a)− g (b)| = d− c.

Hence, |f (a)− f (b)| = d− c with c ≤ f (a) , f (b) ≤ d, and we get f (a) = c and
f (b) = d, or f (a) = d and f (b) = c.
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(ii) Suppose f (a) = g (a) = c and f (b) = g (b) = d. The proof in the other case is
similar. Then, since c ≤ f (x) ≤ d for all x ∈ [a, b], we obtain

d− c = (d− f (x)) + (f (x)− c)
= |d− f (x)|+ |f (x)− c|
= |f (b)− f (x)|+ |f (x)− f (a)|
≥ |g (b)− g (x)|+ |g (x)− g (a)|
= |d− g (x)|+ |g (x)− c|
≥ |d− c|
= d− c.

Thus, for all x ∈ [a, b],

|d− f (x)| = |d− g (x)| and |f (x)− c| = |g (x)− c| .

If there is an x0 ∈ [a, b] such that f (x0) 6= g (x0), then

d− f (x0) = g (x0)− d and f (x0)− c = c− g (x0)

and hence,
2d = f (x0) + g (x0) = 2c.

This is impossible since c 6= d. Therefore, f (x) = g (x) for all x ∈ [a, b].

Remark. The condition that a, b, c, d > 0 seems unnecessary for the solution of this
problem.

Editor: Shai Covo suggested that the problem can be made more interesting by
adding a third condition. Namely:

iii) Iff(a) 6= g(a) (or equivalently, f(b) 6= g(b)), then f(x) + g(x) = c+ d for all x ∈ [a, b]

and, hence, f(x)− f(y) = g(y)− g(x) for all x, y ∈ [a, b].

Also solved by Shai Covo, Kiryat-Ono, Israel; Paolo Perfetti, Department of
Mathematics, University of Rome, Italy; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposers.

• 5127: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let Tn(x) =
n∑

k=1

(−1)k−1 x2k−1

(2k − 1)!
, denote the (2n− 1)th

Taylor polynomial of the sine function at 0. Calculate

∫ ∞

0

Tn(x)− sinx

x2n+1
dx.

Solution by Paolo Perfetti, Department of Mathematics, University of
Rome, Italy

Answer:
π(−1)n−1

2(2n)!
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Proof: Integrating by parts:

∫ ∞

0

Tn(x)− sinx

x2n+1
dx = − 1

2n

∫ ∞

0
(Tn(x)− sinx)(x−2n)′dx

=
Tn(x)− sinx

−2nx2n
∣∣∣
∞
0
+

1

2n

∫ ∞

0

T ′
n(x)− cosx

x2n
dx

=
1

2n

∫ ∞

0

T ′
n(x)− cosx

x2n
dx

using Tn(x)− sinx = −
∞∑

k=n+1

(−1)k−1 x2k−1

(2k − 1)!
in the last equality.

After writing T ′
n(x)− cosx = −

∞∑

k=n+1

(−1)k−1 x2k−2

(2k − 2)!
, we do the second step.

∫ ∞

0

T ′
n(x)− cosx

(2n)x2n
dx =

−1
2n(2n− 1)

∫ ∞

0
(T ′

n(x)− cosx)(x−2n+1)′dx

=
T ′
n(x)− cosx

−2n(2n− 1)x2n−1

∣∣∣
∞
0
+

1

2n(2n− 1)

∫ ∞

0

T ′′
n (x) + sinx

x2n−1
dx

=
1

2n(2n− 1)

∫ ∞

0

T ′′
n (x) + sinx

x2n−1
dx.

After 2n steps we obtain

(−1)n−1

(2n)!

∫ ∞

0

sin

x
dx =

π(−1)n−1

2(2n)!

Also solved by Shai Covo, Kiryat-Ono, Israel; Kee-Wai Lau, Hong Kong,
China; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2011

• 5146: Proposed by Kenneth Korbin, New York, NY

Find the maximum possible value of the perimeter of an integer sided triangle with
in-radius r =

√
13.

• 5147: Proposed by Kenneth Korbin, New York, NY

Let {
x = 5N2 + 14N + 23 and
y = 5(N + 1)2 + 14(N + 1) + 23

where N is a positive integer. Find integers ai such that

a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 = 0.

• 5148: Proposed by Pedro Pantoja (student, UFRN), Natal, Brazil

Let a, b, c be positive real numbers such that ab+ bc+ ac = 1. Prove that

a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

≥ 1.

• 5149: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

A regular n-gon A1, A2 · · · , An (n ≥ 3) has center F , the focus of the parabola y2 = 2px,
and no one of its vertices lies on the x axis. The rays FA1, FA2, · · · , FAn cut the
parabola at points B1, B2, · · · , Bn.

Prove that
1

n

n∑

k=1

FB2
k > p2.

• 5150: Proposed by Mohsen Soltanifar(student, University of Saskatchewan), Saskatoon,
Canada

Let {An}∞n=1, (An ∈Mn×n(C)) be a sequence of matrices such that det(An) 6= 0, 1 for all
n ∈ N . Calculate:

lim
n→∞

nn ln(|det(An)|)
ln (|det (adj◦n (An)) |)

,

where adj◦n refers to adj ◦ adj ◦ · · · ◦ adj, n times, the nth iterate of the classical adjoint.
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• 5151: Proposed by Ovidiu Furdui, Cluj, Romania

Find the value of
∞∏

n=1

(√
π

2
· (2n− 1)!!

√
2n+ 1

2nn!

)(−1)n

.

More generally, if x 6= nπ is a real number, find the value of

∞∏

n=1

(
x

sinx

(
1− x2

π2

)
· · ·
(
1− x2

(nπ)2

))(−1)n

.

Solutions

• 5128: Proposed by Kenneth Korbin, New York, NY

Find all positive integers less than 1000 such that the sum of the divisors of each integer
is a power of two.

For example, the sum of the divisors of 3 is 22, and the sum of the divisors of 7 is 23.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

For n ≥ 1, let σ (n) denote the sum of the positive divisors of n. The problem is to find
all positive integers n < 1000 such that σ (n) = 2k for some integer k ≥ 0. We note first
that n = 1 is a solution since σ (1) = 1 = 20. For the remainder, we will assume that
n ≥ 2. Our key result is the following:

Lemma. If p is prime and k and e are positive integers such that σ (pe) = 2k, then
e = 1 and p = 2k − 1 (i.e., p is a Mersenne prime).

Proof. First of all, p 6= 2 since σ (2e) = 1 + 2 + . . .+ 2e, which is odd. Further, since p
must be odd,

2k = σ (pe) = 1 + p+ . . .+ pe

implies that e is also odd. It follows that

2k = (1 + p) +
(
p2 + p3

)
+
(
p4 + p5

)
+ . . .+

(
pe−1 + pe

)

= (1 + p)
(
1 + p2 + p4 + . . .+ pe−1

)
. (∗)

Then, 1 + p divides 2k and 1 + p > 1, which leads us to conclude that 1 + p = 2m, with
1 ≤ m ≤ k. Statement (*) reduces to

2k−m = 1 + p2 + p4 + . . .+ pe−1.

If e ≥ 3, then m < k and using the same reasoning as above, we get

2k−m =
(
1 + p2

)
+
(
p4 + p6

)
+ . . .+

(
pe−3 + pe−1

)

=
(
1 + p2

) (
1 + p4 + . . .+ pe−3

)
,

which implies that 1 + p2 = 2i, for some positive integer i ≤ k −m. Thus,

2i = 1 + p2 = 1 + (2m − 1)2 = 22m − 2m+1 + 2,
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or
2i−1 = 22m−1 − 2m + 1 = 2m

(
2m−1 − 1

)
+ 1.

This requires i = m = 1, which is impossible since this would entail
p = 2m − 1 = 2− 1 = 1. Therefore, e = 1 and 2k = σ (p) = p+ 1, i.e., p = 2k − 1.

To return to our problem, we may write

n = pe11 p
e2
2 · · · pemm

for distinct primes p1, . . . , pm and positive integers e1, . . . , em. Since σ is multiplicative
and pe11 , . . . , p

em
m are pairwise relatively prime,

2k = σ (n) = σ (pe11 )σ (pe22 ) · · ·σ (pemm ) .

Further, for i = 1, . . . ,m, σ (peii ) ≥ pi + 1 > 1. Hence, there are positive integers
k1, . . . , km such that

σ (peii ) = 2ki

for i = 1, . . . ,m. By the Lemma, e1 = e2 = . . . = em = 1 and

pi = 2ki − 1

for i = 1, . . . ,m. Therefore, n = p1p2 · · · pm, where each pi is a distinct Mersenne prime.

To solve our problem, we need to find all Mersenne primes < 1000 and all products of
distinct Mersenne primes for which the product < 1000. The Mersenne primes < 1000
are 3, 7, 31, and 127. All solutions of σ (n) = 2k, with n < 1000, are listed below.

n σ (n)

1 20

3 22

7 23

21 = 3 · 7 25

31 25

93 = 3 · 31 27

127 27

217 = 7 · 31 28

381 = 3 · 127 29

651 = 3 · 7 · 31 210

889 = 7 · 127 210

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; Boris
Rays, Brooklyn, NY; Harry Sedinger, St. Bonaventure, NY; Raúl A. Simón,
Santiago, Chile; David Stone and John Hawkins (jointly), Statesboro, GA;
Tran Trong Hoang Tuan (student, Bac Lieu High School for the Gifted), Bac
Lieu City, Vietnam, and the proposer.

• 5129: Proposed by Kenneth Korbin, New York, NY
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Given prime number c and positive integers a and b such that a2 + b2 = c2, express in
terms of a and b the lengths of the legs of the primitive Pythagorean Triangles with
hypotenuses c3 and c5, respectively.

Solution 1 by Howard Sporn, Great Neck, NY

A Pythagorean Triple (a, b, c) can be represented by the complex number a+ bi, with
modulus c. By multiplying two Pythagorean Triples in this form, one can generate
another Pythagorean Triple. For instance, the complex representation of the 3-4-5
triangle is 3 + 4i. By multiplying the complex number by itself, (and taking the absolute
value of the real and imaginary parts), one obtains the 7-24-25 triangle:

(3 + 4i)(3 + 4i) = −7 + 24i

72 + 242 = 252

By cubing a+ bi, one can obtain a Pythagorean Triple whose hypotenuse is c3.

(a+ bi)3 = (a+ bi)2(a+ bi)

= (a2 − b2 + 2abi)(a+ bi)

= a3 − 3ab2 + i
(
3a2 − b3

)

One can verify that the modulus of this complex number is
(
a2 + b2

)3
= c3. Thus we

obtain the Pythagorean Triple
(∣∣a3 − 3ab2

∣∣ ,
∣∣3a2b− b3

∣∣ , c3
)
.

That this Pythagorean Triangle is primitive can be seen by factoring the lengths of the
legs:

a3 − 3ab2 = a
(
a2 − 3b2

)
, and

3a2b− b3 = b
(
3a2 − b2

)
,

generally have no factors in common.

Example: If we let (a, b, c) = (3, 4, 5), we obtain the Pythagorean Triple (117, 44, 125).

By a similar procedure , one can obtain a Pythagorean Triple whose hypotenuse is c5.

(a+ bi)5 = (a+ bi)3 (a+ bi) (a+ bi)

=
[
a3 − 3ab2 + i

(
3a2b− b3

)]
(a+ bi) (a+ bi)

=
[
a4 − 6a2b2 + b4 + i

(
4a3b− 4ab3

)]
(a+ bi)

= a5 − 10a3b2 + 5ab4 + i
(
5a4b− 10a2b3 + b5

)
.

Thus we obtain the Pythagorean Triple
(∣∣∣a5 − 10a3b2 + 5ab4

∣∣∣ ,
∣∣∣5a4b− 10a2b3 + b5

∣∣∣ , c5
)
.

Example: If we let (a, b, c) = (3, 4, 5), we obtain the Pythagorean Triple
(237, 3116, 3125).
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Solution 2 by Brian D. Beasley, Clinton, SC

Given positive integers a, b, and c with c prime and c2 = a2 + b2, we may assume
without loss of generality that a < b < c. Also, we note that c must be odd and that c
divides neither a nor b. Using the classic identity

(w2 + x2)(y2 + z2) = (wy + xz)2 + (wz − xy)2,
we proceed from c2 = a2 + b2 to obtain c4 = (−a2 + b2)2 + (2ab)2. Similarly, we have

c6 = (−a3 + 3ab2)2 + (3a2b− b3)2

and

c10 = (a5 − 10a3b2 + 5ab4)2 + (−5a4b+ 10a2b3 − b5)2.
Thus the leg lengths for the Primitive Pythagorean Triangle (PPT) with hypotenuse c3

are

m = | − a3 + 3ab2| and n = |3a2b− b3|,
while the leg lengths for the PPT with hypotenuse c5 are

q = |a5 − 10a3b2 + 5ab4| and r = | − 5a4b+ 10a2b3 − b5|.

To show that these triangles are primitive, we first note that (−a2 + b2, 2ab, c2) is a
PPT, since c cannot divide 2ab. Next, we prove that (m,n, c3) is also a PPT: If not,
then c divides both a(−a2 + 3b2) and b(3a2 − b2), so c divides −a2 + 3b2 and 3a2 − b2;
thus c divides the linear combination (−a2 + 3b2) + 3(3a2 − b2) = 8a2, a contradiction.
Similarly, we prove that (q, r, c5) is a PPT: If not, then c divides both
a(a4 − 10a2b2 + 5b4) and b(−5a4 + 10a2b2 − b4), so c divides a4 − 10a2b2 + 5b4 and
−5a4 + 10a2b2 − b4; thus c divides the linear combinations

(a4 − 10a2b2 + 5b4) + 5(−5a4 + 10a2b2 − b4) = 8a2(−3a2 + 5b2)

and

5(a4 − 10a2b2 + 5b4) + (−5a4 + 10a2b2 − b4) = 8b2(−5a2 + 3b2).

But this means that c divides the linear combination
3(−3a2 + 5b2)− 5(−5a2 + 3b2) = 16a2, a contradiction.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; David E. Manes, Oneonta, NY, and the proposer.

• 5130: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, calculus has not been discovered. A bride
and groom start out from A(−a, 0) and B(b, 0) respectively where a 6= b and a > 0 and
b > 0 and walk at the rate of one unit per second to an altar located at the point P on
line L : y = mx such that the time that the first to arrive at P has to wait for the other
to arrive is a maximum. Find, without calculus, the locus of P as m varies through all
nonzero real numbers.

Solution 1 by Michael N. Fried, Kibbtuz Revivim, Israel

Let OQ be the line y = mx. Since it is the total time which must be a minimum, we
might as well consider the minimum time from A to a point P on OQ and then from P
to B. But since the speed is equal and constant for both the bride and groom the
minimum time will be achieved for the path having the minimum distance. This, as is
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well-known, occurs when 6 APO = 6 BPQ. Accordingly, OP is the external angle

bisector of angle APB, and, thus,
BP

AP
=
BO

OA
= a constant ratio. So, P lies on a circle

(an Apollonius circle) whose diameter is OAC, where OC is the harmonic mean between
OA and OB.

Solution 2 by the proposer

Since the bride and groom go at the same rate, then for a given m, P is the point such
that the maximum of ||AQ| − |BQ|| for points Q on L occurs when Q is P . Let A′

denote the reflection of A about this line.

Now since ||AQ| − |BQ|| = ||A′Q| − |BQ|| ≥ |A′B| (from the triangle inequality) we have
this maximum must be |A′B| since it is attained when P is the point of intersection of
the line through B and A′, with L. (Note that the line through A′ and B is not parallel
to L because that would imply that the origin is the midpoint of AB because the line
through the midpoint of AA′ and the midpoint of AB is parallel to the line through A′

and B.)

Let M be the midpoint of segment AA′. Now, since triangles A′PM and APM are
congruent, L is the angle bisector at P in triangle ABP , and since an angle bisector of
an angle of a triangle divides the opposite side into segments proportional to the

adjacent sides we have
AP

BP
=
a

b
(1).

Denoting P by P (X,Y ) we thus have Y 6= 0 and thus X 6= 0 and so from (1)

√
(X + a)2 + (mX)2√
(X − b)2 + (mX)2

=
a

b
,

and since X 6= 0, we have by squaring both sides and solving for X, that

X =
2ab

(a− b)(m2 + 1)
, and thus

Y =
2mab

(a− b)(m2 + 1)

are parametric equations of the locus. Now replacing m by
Y

X
and simplifying, we obtain

X =
2abX2

(X2 + Y 2)(a− b)

which is just the circle
(X2 + Y 2)(a− b) = 2abX

with the endpoints of the diameter deleted. The endpoints of the diameter occur when

Y = 0; that is, at (0, 0), and at

(
2ab

a− b , 0
)
.

Note that if the line x = 0 were a permissible altar line, then we would add (0, 0) to the
locus, while if the x−axis were a permissible altar line, then the union of the rays

(−∞,−a] ∪ [b,∞) would be part of the locus, and in particular, this includes

(
2ab

a− b , 0
)
.
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• 5131: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers. Prove that

a+ b+ 3c

3a+ 3b+ 2c
+

a+ 3b+ c

3a+ 2b+ 3c
+

3a+ b+ c

2a+ 3b+ 3c
≥ 15

8
.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

The inequality is homogeneous, so we can assume without loss of generality that
a+ b+ c = 1, being equivalent to

1 + 2c

3− c +
1 + 2b

3− b +
1 + 2a

3− a ≥
15

8
,

which is Jensen’s inequality f(c) + f(b) + f(a) ≥ 3f

(
c+ b+ a

3

)
applied to the convex

function f (x) =
1 + 2x

3− x and the numbers c, b, a on the interval (0, 1); equality occurs if

and only if a = b = c.

Solution 2 by Javier Garćıa Cavero (student, Mathematics Club of the
Instituto de Educación Secundaria- No 1), Requena-Valencia, Spain

Changing the variables, that is to say, calling

x = 2a+ 3b+ 3c,
y = 3a+ 2b+ 3c, and
z = 3a+ 3b+ 2c

it is easy to see, solving the corresponding system of equations, that

a+ b+ c =
x+ y + z

8
and that

a =
−5x+ 3y + 3z

8

b =
3x− 5y + 3z

8
, and

c =
3x+ 3y − 5z

8
.

The numerators of the fractions will thus be:

a+ b+ 3c =
7x+ 7y − 9z

8
, a+ 3b+ c =

7x− 9y + 7z

8
, 3a+ b+ c =

−9x+ 7y + 7z

8

Replacing everything in the initial expression:

a+ b+ 3c

3a+ 3b+ 2c
+

a+ 3b+ c

3a+ 2b+ 3c
+

3a+ b+ c

2a+ 3b+ 3c

=
7x+ 7y − 9z

8z
+

7x− 9y + 7z

8y
+
−9x+ 7y + 7z

8x
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=

(
7x

8z
+

7y

8z
+
−9
8

)
+

(
7x

8y
+
−9
8

+
7z

8y

)
+

(−9
8

+
7y

8x
+

7z

8x

)

= 3 ·
(−9

8

)
+

7

8

(
x

z
+
y

z
+
x

y
+
z

y
+
y

x
+
z

x

)

−27
8

+
7

8

((
x

z
+
z

x

)
+

(
y

z
+
z

y

)
+

(
x

y
+
y

x

))

≥ −27
8

+
42

8

=
15

8
,

since r +
1

r
≥ 2. Equality occurs for x = y = z and, therefore, for a = b = c.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Since

a+ b+ 3c

3a+ 3b+ 2c
+

b+ c+ 3a

3b+ 3c+ 2a
+

c+ a+ 3b

3c+ 3a+ 2b
− 15

8

=
7
(
6a3 + 6b3 + 6c3 − a2b− ab2 − b2c− bc2 − c2a− ca2 − 12abc

)

8 (3a+ 3b+ 2c) (3b+ 3c+ 2a) (3c+ 3a+ 2b)

=
7

(
(3a+ 3b+ 2c)(a− b)2 + (3b+ 3c+ 2a)(b− c)2 + (3c+ 3a+ 2b)(c− a)2

)

8(3a+ 3b+ 2c)(3b+ 3c+ 2a)(3c+ 3a+ 2b)

≥ 0,

the inequality of the problem follows.

Solution 4 by P. Piriyathumwong (student, Patumwan Demonstration
School), Bangkok, Thailand

The given inequality is equivalent to the following:

∑

cyc

(
a+ b+ 3c

3a+ 3b+ 2c
− 5

8

)
≥ 0 ⇔

∑

cyc

(−a− b+ 2c

3a+ 3b+ 2c

)
≥ 0

⇔
∑

cyc

(
(c− a) + (c− b)
3a+ 3b+ 2c

)
≥ 0

⇔
∑

cyc

(a− b)
(

1

2a+ 3b+ 3c
− 1

3a+ 2b+ 3c

)
≥ 0

⇔
∑

cyc

(a− b)2
(2a+ 3b+ 3c)(3a+ 2b+ 3c)

≥ 0,
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which is obviously true.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie
(jointly), San Angelo, TX; Valmir Bucaj (student, Texas Lutheran
University), Seguin, TX; Paul M. Harms, North Newton, KS; David E.
Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics,
University “Tor Vergata”, Rome, Italy; Boris Rays, Brooklyn, NY; Tran
Trong Hoang Tuan (student, Bac Lieu High School for the Gifted), Bac Lieu
City, Vietnam, and the proposer.

• 5132: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all all functions f : C → C such that f(f(z)) = z2 for all z ∈ C.

Solution by Kee-Wai Lau, Hong Kong, China

We show that no such functions f(z) exist by considering the values of
f(1), f(−1), f(i), f(−i), where i =

√
−1.

From the given relation
f(f(z)) = z2 (1)

we obtain f(f(f(z))) = f(z2) so that

(f(z))2 = f
(
z2
)
. (2)

Replacing z by z2 in (2), we get

f(z4) = (f(z))4 . (3)

By putting z = 1 into (2), we obtain f(1) = 0 or 1. If f(1) = 0, then by putting z = i
into (3), we get 0 = f(i4) = (f(i))4, so that f(i) = 0. Putting z = i into (1) we get
f(0) = −1 and putting z = 0 into (2) we obtain (−1)2 = −1 which is false. It follows
that

f(1) = 1. (4)

By putting z = −1 into (2) we get (f(−1))2 so that f(−1) = −1 or 1.

If f(−1) = −1 then by (1), −1 = f(f(−1)) = (−1)2 = 1, which is false.

Hence,
f(−1) = 1. (5)

By putting z = i into (3), we are (f(i))4 = 1, so that f(i) = −1, 1, i,−i.
If f(i) = ±1, then by (1), (4) and (5), 1 = f(f(i)) = i2 = −1, which is false.

If f(i) = i, then by (1), i = f (f((i)) = −1, which is also false. Hence,

f(i) = −i (6)

By putting z = −i into (3), we have (f(−i))4 = 1, so that f(−i) = −1, 1, i,−i.
If f(−i) = ±1, then by (1), (4), and (5) 1 = f(f(−i)) = (−i)2 = −1, which is false.

If f(−i) = ±i, then by (1) and (6) −i = f(f(−i)) = (−i)2 = −1, which is also false.
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Thus f(−i) can take no value, showing that no such f(z) exists.

Also solved by Howard Sporn and Michael Brozinsky (jointly), of Great
Neck and Central Islip, NY (respectively), and the proposer.

• 5133: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be a natural number. Calculate

In =

∫ 1

0

∫ 1

0
(x− y)ndxdy.

Solutions 1 and 2 by Valmir Bucaj (student, Texas Lutheran University),
Seguin, TX

Solution 1) We first calculate

∫ 1

0
(x− y)ndx .

Letting u = x− y we get

∫ 1

0
(x− y)n =

∫ 1−y

−y
undu

=
1

n+ 1

[
(1− y)n+1 + (−1)n yn+1

]
.

Now,

In =

∫ 1

0

∫ 1

0
(x− y)ndxdy

=
1

n+ 1

∫ 1

0

[
(1− y)n+1 + (−1)n yn+1

]
dy

=





2

(n+ 1)(n+ 2)
: n even

0 : n odd

Solution 2) Using the fact that

(x− y)n =
n∑

k=0

Ck
n

(
−1
)
kxn−kyk,

we get

In =

∫ 1

0

∫ 1

0
(x− y)ndxdy

=

∫ 1

0

∫ 1

0

n∑

k=0

Ck
n (−1)k xn−kykdxdy
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=
n∑

k=0

Ck
n (−1)k

1

(n− k + 1)(k + 1)
.

Comment: Comparing Solution 1 with Solution 2, we obtain an interesting side-result:
namely the identity

n∑

k=0

Ck
n (−1)k

1

(n− k + 1)(k + 1)
=





2

(n+ 1)(n+ 2)
: n even

0 : n odd

,

which one can verify directly, as well.

Solution 3 by Paul M. Harms, North Newton, KS

Let f(x, y) = (x− y)n. The integration region is the square in the x, y plane with
vertices at (0, 0), (1, 0), (1, 1), and (0, 1). The line y = x divides this region into two
congruent triangles. I will use the terms lower triangle and upper triangle, for these two
congruent triangles.

The points (x, y) and (y, x) are symmetric with respect to the line y = x. Let n be an
odd integer. For each point (x, y) in the lower (upper) triangle we have a point (y, x) in
the upper (lower) triangle such that f(y, x) = −f(x, y). Thus the value of In = 0 when
n is an odd integer.

When n is an even integer, f(y, x) = f(x, y) and the value of the original double integral
should equal 2

∫ 1
0

∫ 1
y (x− y)ndxdy where the region of the integration is the lower

triangle. The first integration of the last double integral yields

(x− y)n+1

n+ 1

∣∣∣∣
1

y
=

(1− y)n+1

n+ 1
.

The second integration of the double integral then yields the expression

−2(1− y)n+2

(n+ 1)(n+ 2)

∣∣∣∣
1

0
=

2

(n+ 1)(n+ 2)
= In

when n is an even integer.

Also solved by Brian D. Beasley, Clinton, SC; Michael C. Faleski, University
Center, MI; G. C. Greubel, Newport News, VA; David E. Manes, Oneonta,
NY; Paolo Perfetti, Department of Mathematics, University “Tor Vergata,”
Rome, Italy; James Reid (student, Angelo State University), San Angelo,
TX; Raúl A. Simón, Santiago, Chile; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2011

• 5152: Proposed by Kenneth Korbin, New York, NY

Given prime numbers x and y with x > y. Find the dimensions of a primitive
Pythagorean Triangle which has hypotenuse equal to x4 + y4 − x2y2.

• 5153: Proposed by Kenneth Korbin, New York, NY

A trapezoid with sides (1, 1, 1, x) and a trapezoid with sides (1, x, x, x) are both
inscribed in the same circle. Find the diameter of the circle.

• 5154: Proposed by Andrei Răzvan Băleanu (student, George Cosbuc National College)
Motru, Romania

Let a, b, c be the sides, ma,mb,mc the lengths of the medians, r the in-radius, and R the
circum-radius of the triangle ABC. Prove that:

m2
a

1 + cosA
+

m2
b

1 + cosB
+

m2
c

1 + cosC
≥ 6Rr

(
a

b+ c
+

b

c+ a
+

c

a+ b

)
.

• 5155: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be the roots of the equation x4 + 6x3 + 7x2 + 6x+ 1 = 0. Find the value of

3− 2a

1 + a
+

3− 2b

1 + b
+

3− 2c

1 + c
+

3− 2d

1 + d
.

• 5156: Proposed by Yakub N. Aliyev, Khyrdalan, Azerbaijan

Given two concentric circles with center O and let A be a point different from O in the
interior of the circles. A ray through A intersects the circles at the points B and C. The
ray OA intersects the circles at the points B1 and C1, and the ray through A
perpendicular to line OA intersects the circles at the points B2 and C2. Prove that

B1C1 ≤ BC ≤ B2C2.

• 5157: Proposed by Juan-Bosco Romero Márquez, Madrid, Spain

Let p ≥ 2, λ ≥ 1 be real numbers and let ek(x) for 1 ≤ k ≤ n be the symmetric
elementary functions in the variables x = (x1, . . . , xn) and xp = (xp1, . . . x

p
n), with n ≥ 2

and xi > 0 for all i = 1, 2, . . . , n.
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Prove that

e(pk/n)n (x) ≤ ek(xp) + λ
(
epk(x)− ek(xp)

)
(n
k

)
+ λ

((n
k

)p − (nk
)) ≤

(
e1(x)

n

)pk

, 1 ≤ k ≤ n.

Solutions

• 5134: Proposed by Kenneth Korbin, New York, NY

Given isosceles 4ABC with cevian CD such that 4CDA and 4CDB are also isosceles,
find the value of

AB

CD
− CD

AB
.

Solution 1 by David Stone and John Hawkins, Statesboro, GA,

Because the cevian origiantes at the vertex C, angle C plays a special role. We consider
two cases. Then, ignoring degenerate triangles, we have the following solutions. Note
that solving simple algebraic equations involving the angles (and a little trig) are all
that is needed.

Case 1 – Angle C is one of the base angles of our isosceles triangle

6 A 6 B 6 C 6 ACD 6 BCD 6 ADC 6 BDC
AB

CD
− CD

AB

2π

5

π

5

2π

5

π

5

π

5

2π

5

3π

5
1

3π

7

π

7

3π

7

2π

7

π

7

2π

7

5π

7
2 cos

(
π

7

)
− 1

2 cos

(
π

7

)

≈ 1.24698

Case 2 – Angles A and B are the base angles

6 A 6 B 6 C 6 ACD 6 BCD 6 ADC 6 BDC
AB

CD
− CD

AB

π

4

π

4

π

2

π

4

π

4

π

2

π

2

3

2

π

5

π

5

3π

5

π

5

2π

5

3π

5

2π

5

√
5

The derivation:

Case 1: 6 C is one of the base angles

Without loss of generality we may assume 6 A = 6 C. For convenience, let 6 A = α and
6 ADC=β.
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4CDA must be isosceles, so we have three possibilities:

(a) α = 6 ACD
(b) α = β
(c) 6 ACD = β

Subcase (a) is impossible because 6 ACD < the base angle 6 C = α,

Subcase (b):

Because α = β, we have 6 ACD=π − 2α, so

6 BCD = 6 C − 6 ACD = α− (π − 2α) = 3α− π.
We also see that α = β must be acute angles forcing 6 BDC to be obtuse. Thus the
isosceles triangle 4BDC must have 6 B = 6 BCD; i.e. π − 2α = 3α− π.

Hence, α =
2π

5
= β. The values of all angles then follow.

Applying the Law of Sines, we learn that
AB

CD
=

1

2 cosα
. Because α =

2π

5
and

cos

(
2π

5

)
=
−1 +

√
5

2
, we calculate

AB

CD
− CD

AB
=

1

2 cosα
− 2 cosα = 1.

Subcase (c):

Because 6 ACD = β, we have α = π − 2β, and because 6 A = 6 C = α, we have

6 B = π − 2α = π − 2 (π − 2β) = 4β − π.
Since β is the size of two angles in the triangle it must be acute. Thus the supplement
6 BDC is obtuse. Therefore the equal angles in the isosceles triangle 4CDB must be
6 B and 6 DCB which equals 4β − π.

Hence, in 4BDC, we have

π = 6 B + 6 DCB + 6 BDC = (4β − π) + (4β − π) + (π − β) ,

forcing β =
2π

7
.

Thus α = π − 2β = π − 2

(
2π

7

)
=

3π

7
. The other angles follow and by the Law of Sines

in 4CDB, we see that
CD

AB
=

1

2 cos

(
π

7

) .

Thus
AB

CD
− CD

AB
= 2 cos

(
π

7

)
− 1

2 cos

(
π

7

) ≈ 1.24698

Case 2: Angles A and B are the base angles.

We let 6 A = 6 B = α and 6 ADC = β. Again, 4CDA must be isosceles, so we have
three possibilities:

(a) α = 6 ACD
(b) α = β
(c) β = 6 ACD
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In an analysis similar to that above, subcases (b) and (c) lead to degenerate triangles.
Subcase (a) must be spit again, depending upon the isosceles nature of 4CDB, but the
two possibilities lead to the two triangles presented in the table.

Editor’s comment: Most of the solutions received to this problem essentially followed
the above track, but the solvers often missed one of the possible answers; Michael
Fried’s solution and Boris Rays’ solution were exceptions, they too were complete. But
Paul M. Harms took a different approach. He placed the isosceles triangle on a
coordinate system and then considered cevians from a given vertex to various points on
the opposite side. The conditions of the problem led him to solving a system of
equations which then enabled him to find the lengths of the sides. His method also
missed one of the solutions and I spent hours in vain trying to understand why, but for
the sake of seeing an alternative analysis, I present his solution.

Solution 2 by Paul M. Harms, North Newton, KS

Since some similar triangles would give the same ratios required in the problem, I will
fix one side of the large triangle and check for cevians which make the small triangles
isosceles.

Case 1: Let A be at (−1, 0), B be at (1, 0), and let C be at (0, c) where c > 0. If D is
at (0, 0) and C is at (0, 1), then the conditions of the problem are satisfied with

AB

CD
− CD

AB
=

2

1
− 1

2
=

3

2
.

Case 2: Keeping the coordinates A,B as above and letting C having the coordinates
(0, c), we let D be at (d, 0) where 0 < d < 1. To get the two smaller triangles to be
isosceles we need AD = AC and CD = DB.

The distance equations that need to be satisfied are

{√
c2 + d2 = 1− d

1 + d =
√
c2 + 1.

Solving this system:

d = −2 +
√

5, c =

√
5− 2

√
5.

Hence, CD =
√

14− 6
√

5 and
AB

CD
− CD

AB
=
√

5.

Case 3: Now consider C at a vertex other than the intersection of the equal sides.

Let C be at (2, 0), A be at (0, 0) and B be at (1, b).

a) If AC > AB = BC, then CD > BC > DB and 4CDB cannot be isosceles.

b) If AB = BC > AC, then the smaller triangles would be isosceles when CD = DB
and AC = AD. Let D be at (d, bd). From the distance equations we have

{
(d− 1)2 + (bd− b)2 = b2d2 + (d− 2)2

b2d2 + d2 = 4.

From the second equation
(
b2 + 1

)
=

4

d2
. The first equation is

4
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(d− 1)2
(
b2 + 1

)
=
(
b2 + 1)d2 − 4d+ 4. Substituting for b2 + 1 we obtain

d3 − d2 − 2d+ 1 = 0.

Using approximations, the value of d between 0 and 1 is approximately d = 0.4451.

Then b = 4.3807, AB =
√
b2 + 1 = 4.4934 and CD =

√
(2− d)2 + b2d2 = 2.4939. Then

AB

CD
− CD

AB
= 1.2467.

Also solved by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX; Michael N. Fried, Kibbutz Revivim, Israel; Enkel Hysnelaj, University
of Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel, Germany
(jointly); Antonio Ledesma López, Mathematical Club of the Instituto de
Educación Secundaria-No 1, Requena-Valencia, Spain; Boris Rays, Brooklyn,
NY; Raúl A. Simón, Santiago, Chile; Ercole Suppa, Teramo, Italy, and the
proposer.

• 5135: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that 


ab+ bc+ ca = −3
a2b2 + b2c2 + c2a2 = 9
a3b3 + b3c3 + c3a3 = −24

with a < b < c.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let x = ab, y = bc, z = ca, so that x+ y + z = −3, x2 + y2 + z2 = 9 and
x3 + y3 + z3 = −24. We have

xy + yz + zx =
(x+ y + z)2 − x2 − y2 − z2

2
= 0 and

xyz =
x3 + y3 + z3 − (x+ y + z)

(
x2 + y2 + z2 − xy − yz − zx)

3
= 1.

Thus abc(a+ b+ c) = 0 and (abc)2 = 1. Hence, either




a+ b+ c = 0
ab+ bc+ ca = −3
abc = 1

or




a+ b+ c = 0
ab+ bc+ ca = −3
abc = −1.

In the former case, a, b, c are the roots of the equation t3 − 3t− 1 = 0 and in the latter
case, the roots of the equation t3 − 3t+ 1 = 0. By standard formula, we obtain
respectively

a = −2 cos

(
2π

9

)
, b = −2 cos

(
4π

9

)
, c = 2 cos

(
π

9

)

and

a = −2 cos

(
π

9

)
, b = 2 cos

(
4π

9

)
, c = 2 cos

(
π

9

)
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Solution 2 by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
San Angelo, TX

If a = 0, then the given system of equations becomes

bc = −3, b2c2 = 9, b3c3 = −24,

which is impossible. Thus, a 6= 0, and similarly b 6= 0 and c 6= 0.
Let x = ab, y = bc, and z = ca, then

(ab+ bc+ ca)2 = (x+ y + z)2

= x2 + y2 + z2 + 2(xy + yz + zx)

= a2b2 + b2c2 + c2a2 + 2(ab2c+ bc2a+ ca2b)

= a2b2 + b2c2 + c2a2 + 2abc(a+ b+ c) (1)

and (ab+ bc+ ca)3 = (x+ y + z)3

= x3 + y3 + z3 + 3(xy2 + xz2 + yx2 + yz2 + zx2 + zy2) + 6xyz

= 3(x3 + xy2 + xz2 + yx2 + y3 + yz2 + zx2 + zy2 + z3)− 2(x3 + y3 + z3) + 6xyz

= 3x(x2 + y2 + z2) + 3y(x2 + y2 + z2) + 3z(x2 + y2 + z2)− 2(x3 + y3 + z3) + 6xyz

= 3(x+ y + z)(x2 + y2 + z2)− 2(x3 + y3 + z3) + 6xyz

= 3(ab+ bc+ ca)(a2b2 + b2c2 + c2a2)− 2(a3b3 + b3c3 + c3a3) + 6a2b2c2. (2)

Using (1) and (2), it can easily be shown that the given system of equations is
equivalent to





a+ b+ c = 0
ab+ bc+ ca = −3
a2b2c2 = 1 (3)

If abc = 1, then the solutions of (3) are roots of the cubic equation

0 = (t− a)(t− b)(t− c)
= t3 − (a+ b+ c)t2 + (ab+ bc+ ca)t− abc
= t3 − 3t− 1, (4)

and must be strictly between −2 and 2 by the Upper and Lower Bound theorem.

Let t = 2 cos θ, with 0 < θ < π, by (4),

0 = 8 cos3 θ − 6 cos θ − 1

1

2
= 4 cos3 θ − 3 cos θ

1

2
= cos(3θ)

θ =
π

9
,
5π

9
,
7π

9
.

6

X
ia
ng
’s
T
ex
m
at
h



Thus,

a = 2 cos

(
7π

9

)
= −2 cos

(
2π

9

)
, b = 2 cos

(
5π

9

)
= −2 cos

(
4π

9

)
, c = 2 cos

(
π

9

)
.

Similarly, when abc = −1,

a = −2 cos

(
π

9

)
, b = 2 cos

(
4π

9

)
, c = 2 cos

(
2π

9

)
.

Also solved by Brian D. Beasley, Clinton, SC; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; Enkel Hysnelaj,
University of Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel,
Germany (jointly); Antonio Ledesma López, Mathematical Club of the
Instituto de Educación Secundaria-No 1, Requena-Valencia, Spain; David E.
Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics,
University “Tor Vergata,” Rome, Italy; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5136: Proposed by Daniel Lopez Aguayo (student, Institute of Mathematics, UNAM),
Morelia, Mexico

Prove that for every natural n, the real number

(√
19− 3

√
2
)1/n

+
(√

19 + 3
√

2
)1/n

is irrational.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let x =
(√

19− 3
√

2
)1/n

, y =
(√

19 + 3
√

2
)1/n

and z = x+ y.

It is easy to check that y > x, xy = 1 and that x and y are the two roots of the

equation, t+
1

t
= z. Solving for t, we obtain x =

z −
√
z2 − 4

2
and y =

z +
√
z2 − 4

2
.

Applying the binomial theorem, we have

2n+1
√

19

= 2n (xn + yn)

=
(
z −

√
z2 − 4

)n
+
(
z −

√
z2 + 4

)n

=
n∑

k=0

(−1)k
(
n

k

)
zn−k

(
z2 − 4

)k/2
+

n∑

k=0

(
n

k

)
zn−k

(
z2 − 4

)k/2

= 2
m∑

j=0

(
n

2j

)
zn−2j

(
z2 − 4

)j
,

where m is the greatest integer not exceeding
n

2
. Hence, if z is rational, then

√
19 is also

rational, which is false. Thus z is in fact irrational and this completes the solution.
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Solution 2 by Valmir Bucaj (student, Texas, Lutheran University), Seguin,
TX

To contradiction, suppose that

(√
19− 3

√
2
)1/n

+
(√

19 + 3
√

2
)1/n

is rational.

Then it is easy to see that both
(√

19− 3
√

2
)1/n

and
(√

19 + 3
√

2
)1/n

have to be

rational. Let

(√
19− 3

√
2
)1/n

=
a

b
and

(√
19 + 3

√
2
)1/n

=
c

d
(1)

where a, b, c, d ∈ Z.

Raising both expressions in (1) to the power of n, we get

(√
19− 3

√
2
)

=

(
a

b

)n

and
(√

19 + 3
√

2
)

=

(
c

d

)n

(2)

Adding the left sides and the right sides of the expressions in (2) and dividing by 2 we
get

√
19 =

1

2

[(
a

b

)n

+

(
c

d

)n]
. (3)

However, since
a

b
∈ Q and

c

d
∈ Q, it follows that

1

2

[(
a

b

)n

+

(
c

d

)n]
∈ Q; that is, the

right-hand side of the expression in (3) is a rational number, while the left-hand side,
namely

√
19, is an irrational number.

Therefore, the contradiction that we arrived at shows that our initial assumption

that
(√

19− 3
√

2
)1/n

+
(√

19 + 3
√

2
)1/n

is a rational number is not correct, hence the

statement of the problem holds.

Solution 3 by Pedro H.O. Pantoja (student, UFRN), Natal, Brazil;

Using the identity

xn+1 +
1

xn+1
=

(
x+

1

x

)(
xn +

1

xn

)
−
(
xn−1 +

1

xn−1

)

if x+
1

x
is rational, then so would be xn +

1

xn
, where x =



√

19 +
√

18




1

n

⇒ 1

x
=
(√

19−
√

18
) 1

n .

Hence,

xn +
1

xn
=
√

19 +
√

18 +
√

19−
√

18 = 2
√

19

which is irrational.

It follows that x+
1

x
must be irrational too.
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Editor’s comment: David E. Manes cited the paper “On A Substitution Made In
Solving Reciprocal Equations” by Arnold Singer that appeared in the Mathematics
Magazine [38(1965), p. 212] as being helpful in solving such equations. This paper
starts off as follows: “The standard procedure employed in solving reciprocal equations
requires the substitution y = x+ 1/x. One is then required to write
x2 + 1/x2, x3 + 1/x3 . . ., as polynomials in y. Many texts give the relationships up to
x4 + 1/x4 or so, and some give the recurrence relation....... This note derives the
expression for xn + 1/xn as a polynomial in y for general n.”

Also solved by Michael N. Fried, Kibbutz Revivim, Israel: David E. Manes,
Oneonta, NY, and the proposer.

• 5137: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive numbers such that abc ≥ 1. Prove that

∏

cyclic

1

a5 + b5 + c2
≤ 1

27
.

Solution 1 by Ercole Suppa, Teramo, Italy

By AM-GM inequality we have:

a5 + b5 + c2 ≥ 3
3
√
a5b5c2

a2 + b5 + c5 ≥ 3
3
√
a2b5c5

a5 + b2 + c5 ≥ 3
3
√
a5b2c5

Therefore ∏

cyclic

(
a5 + b5 + c2

)
≥ 27

3
√
a12b12c12 = 27(abc)4 ≥ 27 ⇒

∏

cyclic

1

a5 + b5 + c2
≤ 1

27

and the conclusion follows.

Solution 2 by Valmir Bucaj (student, Texas Lutheran University), Seguin TX

Editor’s comment: All solutions received were similar to the above. But Valmir Bucaj
submitted two solutions to the problem. One solution was similar to the above, the
other is listed below.

The inequality to be proved is equivalent to

(a5 + b5 + c2)(a5 + c5 + b2)(b5 + c5 + a2) ≥ 27.

Multiplying out the left-hand side and using the fact that abc ≥ 1, after rearranging we
get

(a5 + b5 + c2)(a5 + c5 + b2)(b5 + c5 + a2) ≥
(
a5

b5
+
b5

c5
+
c5

a5

)
+

(
a5

c5
+
c5

b5
+
b5

a5

)

9

X
ia
ng
’s
T
ex
m
at
h



+

(
a2

b5
+
b5

a2

)
+

(
a5

c2
+
c2

a5

)
+

(
a2

c5
+
c5

a2

)

+

(
b2

c5
+
c5

b2

)
+

(
c2

b5
+
b5

c2

)
+

(
a5

b2
+
b2

a5

)

+ a12 + b12 + c12 + 3 +
1

a3
+

1

b3
+

1

c3

≥ 21 + a12 + b12 + c12 +
1

a3
+

1

b3
+

1

c3
.

The last inequality follows from the fact that
x

y
+
y

z
+
z

x
≥ 3 and from

x

y
+
y

x
≥ 2,

where x, y, z are positive real numbers.

It remains to show that

a12 + b12 + c12 +
1

a3
+

1

b3
+

1

c3
≥ 6.

But this follows immediately from the AM-GM inequality and from the fact that
abc ≥ 1. That is

a12 + b12 + c12 +
1

a3
+

1

b3
+

1

c3
≥ 6 · 6

√
(a · b · c)12 · 1

(a · b · c)3 = 6 · 6

√
(abc)9

︸ ︷︷ ︸
≥1

≥ 6.

This proves (a5 + b5 + c2)(a5 + c5 + b2)(b5 + c5 + a2) ≥ 27, and thus the statement of the
problem.

Also solved by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany (jointly); Kee-Wai Lau, Hong Kong,
China; David E. Manes, Oneonta, NY; Pedro H.O. Pantoja (student,
UFRN), Natal, Brazil; Paolo Perfetti, Department of Mathematics,
University “Tor Vergata,” Rome, Italy; Boris Rays, Brooklyn, NY, and the
proposer.

• 5138: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let n ≥ 2 be a positive integer. Prove that

n

FnFn+1
≤ 1

(n− 1)F 2
1 + F 2

2

+ · · ·+ 1

(n− 1)F 2
n + F 2

1

≤ 1

n

n∑

k=1

1

F 2
k

,

where Fn is the nth Fibonacci number defined by F0 = 0, F1 = 1 and for all
n ≥ 2, Fn = Fn−1 + Fn−2.

Solution 1 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany
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First we prove the LHS inequality. The function f(x) =
1

x
is a convex function since the

second derivative is positive, and so according to Jensen’s inequality we have

n∑

k=1

f(x) ≥ nf




n∑

k=1

x

n




and implying this together with the known fact that

n∑

k=1

F 2
k = FnFn+1 we have

1

(n− 1)F 2
1 + F 2

2

+ ...+
1

(n− 1)F 2
n + F 2

1

≥ n
1

(n−1)F 2
1+F 2

1+...+(n−1)F 2
n+F 2

1
n

=
n

n∑

k=1

F 2
k

=
n

FnFn+1

Now we will prove the RHS inequality. First using the AM-GM inequality we have

1

(n− 1)F 2
1 + F 2

2

+ ...+
1

(n− 1)F 2
n + F 2

1

≤ 1

n
n
√
F

2(n−1)
1 F 2

2

+ ...+
1

n
n
√
F

2(n−1)
n F 2

1

=

∑

cyclic

F
2
n
1 F

2(n−1)
n

2 ...F 2
n

n
n∏

k=1

F 2
k

Now since the sequence [2, 0, 2, ..., 2] majorizes the sequence [
2

n
,
2(n− 1)

n
, 2, ..., 2], using

Muirhead’s Inequality we have

1

(n− 1)F 2
1 + F 2

2

+ ...+
1

(n− 1)F 2
n + F 2

1

≤

∑

cyclic

F
2
n
1 F

2(n−1)
n

2 ...F 2
n

n
n∏

k=1

F 2
k

≤

∑

cyclic

F 2
1F

0
2 ...F

2
n

n
n∏

k=1

F 2
k

=
n∑

k=1

1

F 2
k
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and this is the end of the proof.

Solution 2 by the Proposer

Applying AM-HM inequality to the positive numbers
1

x1
,

1

x2
, . . . ,

1

xn
, we have

n

(n− 1)xk + xk+1
=

n

xk + . . .+ xk︸ ︷︷ ︸
n−1

+xk+1
≤ 1

n




1

xk
+

1

xk
+ . . .+

1

xk︸ ︷︷ ︸
n−1

+
1

xk+1




or
n

(n− 1)xk + xk+1
≤ 1

n

(
n− 1

xk
+

1

xk+1

)

Adding the preceding inequalities for 1 ≤ k ≤ n, and putting xn+1 = x1, yields

n∑

k=1

n

(n− 1)xk + xk+1
≤ 1

n

n∑

k=1

(
n− 1

xk
+

1

xk+1

)
=

n∑

k=1

1

xk

On the other hand, applying again AM-HM inequality to the positive numbers
1

(n− 1)xk + xk+1
, 1 ≤ k ≤ n, (xn+1 = x1) we have

n∑

k=1

1

(n− 1)xk + xk+1
≥ n2

n∑

k=1

(n− 1)xk + xk+1

=
n

n∑

k=1

xk

Combining the preceding results, we obtain

(
1

n2

n∑

k=1

xk

)−1
≤

n∑

k=1

n

(n− 1)xk + xk+1
≤

n∑

k=1

1

xk

Setting xk = F 2
k , 1 ≤ k ≤ n, in the preceding inequalities, we get

(
1

n2

n∑

k=1

F 2
k

)−1
≤

n∑

k=1

n

(n− 1)F 2
k + F 2

k+1

≤
n∑

k=1

1

F 2
k

or (
FnFn+1

n2

)−1
≤

n∑

k=1

n

(n− 1)F 2
k + F 2

k+1

≤
n∑

k=1

1

F 2
k

on account of the well-known formulae
n∑

k=1

F 2
k = FnFn+1. From the above the statement

follows. Equality holds when n = 2, and we are done.

Editor’s comment: Valmir Bucaj (student, Texas Lutheran University), Seguin
TX, solved a slight variation of the given inequality. He showed that

n

FnFn+1
≤ 1

(n− 1)F 2
1 + F 2

n

+ · · ·+ 1

(n− 1)F 2
n + F 2

1

≤ 1

n

n∑

k=1

1

F 2
k

.
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• 5139: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate ∞∑

n=1

∞∑

m=1

ζ(n+m)− 1

n+m
,

where ζ denotes the Riemann Zeta function.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the value of the required sum is γ = 0.577 . . ., the Euler constant.

Since
1

(n+m)kn+m
> 0 for positive integers, m,n and k, we have

∞∑

n=1

∞∑

m=1

ζ(n+m)− 1

n+m
=
∞∑

n=1

∞∑

m=1

1

n+m

∞∑

k=2

1

kn+m
=
∞∑

k=2

∞∑

n=1

∞∑

m=1

1

(n+m)kn+m
.

For each integer t > 1, the number of solutions of the equation n+m = t in positive

integers n and m is t− 1. Hence,
∞∑

k=2

∞∑

n=1

∞∑

m=1

1

(n+m)kn+m
=
∞∑

k=2

∞∑

t=2

t− 1

tkt
.

For real x > 1, we have the well known series
∞∑

t=1

1

xt
=

1

x− 1
and

∞∑

t=1

1

txt
= − ln

(
1− 1

x

)
so that

∞∑

t=1

t− 1

tkt
=

1

k − 1
+ ln

(
k − 1

k

)
.

It follows that for any integer M > 1, we have

M∑

k=2

∞∑

t=2

t− 1

tkt
=

M−1∑

k=1

1

k
− ln(M),

which tends to γ as M tends to infinity. This proves our claim.

Solution 2 by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy

Answer: γ

Proof: We will need the well known
n∑

k=1

1

k
= lnn+ γ + o(1) and γ is of course the

Euler–Mascheroni constant.

Setting n+m = k the series is

∞∑

k=2

k−1∑

m=1

ζ(k)− 1

k
=
∞∑

k=2

(k − 1)
ζ(k)− 1

k
=
∞∑

k=2

(ζ(k)− 1)−
∞∑

k=2

ζ(k)− 1

k

∞∑

k=2

(ζ(k)− 1) =
∞∑

k=2

∞∑

p=2

1

pk
=
∞∑

p=2

∞∑

k=2

1

pk
=
∞∑

p=2

1

p2
p2

p2 − 1
=
∞∑

p=2

(
1

p− 1
− 1

p+ 1

)
= 1

−
∞∑

k=2

ζ(k)− 1

k
= −

∞∑

k=2

∞∑

p=2

1

k

1

pk
=
∞∑

p=2

(
ln(1− 1

p
) +

1

p

)
= lim

N→∞

N∑

p=2

(
ln(1− 1

p
) +

1

p

)
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= lim
N→∞

N∑

p=2

(
ln(p− 1)− ln p) +

1

p

)
= lim

N→∞
((− lnN) + lnN + γ + o(1)) = γ

Thus the result easily follows

Also solved by the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2011

• 5158: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with integer length sides AB = BC = x, and
CD = DA = x+ 1.

Find the distance between the incenter and the circumcenter.

• 5159: Proposed by Kenneth Korbin, New York, NY

Given square ABCD with point P on diagonal AC and with point Q at the midpoint of
side AB.

Find the perimeter of cyclic quadrilateral ADPQ if its area is one unit less than the area
of square ABCD.

• 5160: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, there are n (where n ≥ 2) roads {li} whose
equations are

li : x cos

(
2πi

n

)
+ y sin

(
2πi

n

)
= i,where i = 1, 2, 3, . . . ,n.

Any anthill must be located so that the sum of the squares of its distances to these n

lines is
n(n+ 1)(2n+ 1)

6
. Two queen ants are (im)mortal enemies and have their anthills

as far apart as possible. If the distance between these queens’ anthills is 4 units, find n.

• 5161: Proposed by Paolo Perfetti, Department of Mathematics, University “Tor Vergata,
Rome, Italy

It is well known that for any function f : < → <, continuous or not, the set of points
on the y-axis where it attains a maximum or a minimum can be at most denumerable.
Prove that any function can have at most a denumerable set of inflection points, or give
a counterexample.

• 5162: Proposed by José Luis Dı́az-Barrero and José Gibergans-Báguena, Barcelona, Spain
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Let a, b, c be the lengths of the sides of an acute triangle ABC. Prove that

√
b2 + c2 − a2
a2 + 2bc

+

√
c2 + a2 − b2
b2 + 2ca

+

√
a2 + b2 − c2
c2 + 2ab

≤
√

3.

• 5163: Proposed by Pedro H. O. Pantoja, Lisbon, Portugal

Prove that for all n ∈ N
∫ ∞

0

xn

2


coth

x

2
− 1


dx =

∞∑

k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn (k1 + · · ·+ kn)
.

Solutions

• 5140: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with an interior point P such that

AP = 22 + 16
√

2
BP = 13 + 9

√
2

CP = 23 + 16
√

2.

Find AB.

Solution 1 Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, San
Angelo, TX

Let α be the length of each side of triangle ABC with vertices A

(
0,

√
3

2
α

)
, B

(
−α

2
, 0

)
,

and C

(
α

2
, 0

)
, and let P (x, y) be an interior point of the triangle. Then,

AP
2

= (22 + 16
√

2)2 = x2 + (y −
√

3

2
α)2, (1)

BP
2

= (13 + 9
√

2)2 = (x+
α

2
)2 + y2, (2)

CP
2

= (23 + 16
√

2)2 = (x− α

2
)2 + y2. (3)

Using (2)and (3), it follows that

(13 + 9
√

2)2 − (23 + 16
√

2)2 = 2αx,

and

x =
(13 + 9

√
2)2 − (23 + 16

√
2)2

2α

2
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=
−710− 502

√
2

2α

= −355 + 251
√

2

α
. (4)

Therefore, using (1), (2), and (3),

(13 + 9
√

2)2 + (23 + 16
√

2)2 − 2(22 + 16
√

2)2 = 2
√

3αy − α2, and

y =
α2 + (13 + 9

√
2)2 + (23 + 16

√
2)2 − 2(22 + 16

√
2)2

2
√

3α

=
α2 − 620− 438

√
2

2
√

3α
(5)

Hence, using (2), (4), and (5),

(13 + 9
√

2)2 =

(
−355 + 251

√
2

α
+
α

2

)2

+

(
α2 − 620− 438

√
2

2
√

3α

)2

331 + 234
√

2 =
(α2 − 710− 502

√
2)2

4α2
+

(α2 − 620− 438
√

2)2

12α2

12(331 + 234
√

2)α2 = 3(α2 − 710− 502
√

2)2 + (α2 − 620− 438
√

2)2

0 = 4α4 − (9472 + 6696
√

2)α2 + (3, 792, 412 + 2, 681, 640
√

2)

0 = α4 − (2368 + 1674
√

2)α2 + (948, 103 + 670, 410
√

2).

Thus, using the quadratic formula and a computer algebra system, the solutions are

α2 = 2147 + 1518
√

2 or α2 = 221 + 156
√

2

⇒ α = 33 + 23
√

2 or α =
√

13(3 + 2
√

2).

The solution α =
√

13(3 + 2
√

2) is extraneous since this will make y < 0. Thus,

AB = α = 33 + 23
√

2.

Remark: If we substitute α = 33 + 23
√

2 into (4) and (5), we obtain

x = −169 + 118
√

2

31
and y =

√
3

62
(237 + 173

√
2).

Solution 2 by Valmir Bucaj (student, Texas Lutheran University), Seguin, TX

This problem is of the same nature as Problem 5081. It can be solved using Tripolar
Coordinates and a result from Euler.
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Here, we us another method and instead solve the more general problem: Let ABC be
an equilateral triangle and P an interior point such that AB = a,BO = b, CP = c. We
will give a general formula for the dimensions of 4ABC

Let (x, y), (s, 0), (0, 0),

(
s

2
,

√
3

2
s

)
, be the coordinates of the points P,A,B,C respectively.

Then,

d(P,B) =
√
x2 + y2 = b, (1)

d(P,A) =
√

(x− s)2 + y2 = a, (2)

d(C,P ) =

√√√√
(
s

2
− x

)2

+

(√
3

2
s− y

)2

= c. (3)

Solving (1) for y and substituting into (2) we obtain an expression for x:

x =
s2 + b2 − a2

2s
.

Now, substituting in for y =
√
b2 − x2 and x in (3) we eventually obtain the following

biquadratic equation on s:

s4 − (a2 + b2 + c2)s2 + (a4 + b4 + c4 − a2b2 − a2c2 − b2c2) = 0. (4)

s = ±

√√√√a2 + b2 + c2

2
±
√

b2c2 −
(
b2 + c2 − a2

2

)2

·
√

3.

Finally, the length of the sides of the given equilateral triangle are calculated by

s =

√√√√a2 + b2 + c2

2
+

√

b2c2 −
(
b2 + c2 − a2

2

)2

·
√

3.

For the given problem we have

s =

√
1518

√
2 + 2147 =

√(
33 + 23

√
2
)2

= 33 + 23
√

2.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that AB = 33 + 23
√

2.

We first note that the given conditions determine AB uniquely. Suppose that AB = x and
AB = y are two distinct solutions, say y > x. Then all the angles 6 APB, 6 BPC, 6 CPA
for the solutionAB = y will be greater than the corresponding angles 6 APB, 6 BPC, 6 CPA
for the solution AB = x. Ths is impossible because 6 APB + 6 BPC + 6 CPA = 2π for
both solutions.

We now need only show that AB = 33 + 23
√

2 is a solution. We let

cos 6 APB =
−5

7
, cos 6 BPC =

−
(
5 + 3

√
2
)

14
, cos 6 CPA =

−
(
5− 3

√
2
)

14
, and
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sin 6 APB =

√
24

7
, sin 6 BPC =

√
150−

√
3

14
, sin 6 CPA =

√
150 +

√
3

14
.

By the standard compound angle formula, we readily check that

cos (6 APB + 6 BPC + 6 CPA) = 1, so in fact

6 APB + 6 BPC + 6 CPA = 2π.

By the cosine formula, we obtain, AB = BC = CA = 33+23
√

2 as well and this completes
the solution.

Editor’s comment: Several other solution paths were used in solving this problem. One
used a theorem that states that in any equilateral triangle ABC with side length a and
with P being any point in the plane whose distances to the vertices A,B,C are respectively
p, q and t, then 3(p4 + q4 + t4 + a4) = (p2 + q2 + t2 + a2)2. Bruno Salgueiro Fanego
stated that a reference for this theorem can be found in the article Curious properties
of the circumcircle and incircle of an equilateral triangle, by Prithwijit De, Mathematical
Spectrum 41(1), 2008-2009, 32-35. This solution path works but one ends up solving the
following equation:

13108182 + 9268884
√

2 + 3AB
4

=
(
2368 + 1674

√
2
)2

+ 2
(
2368 + 1674

√
2
)
AB

2
+AB

4
.

Another solution path dealt with using Heron’s formula for the area of a triangle and
using the fact that the area of ABC equals the sum of the areas of the three interior
triangles APB,BPC, and CPA.

Also solved by Brian D. Beasley, Clinton, SC; Enkel Hysnelaj, University of
Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel, Germany; Paul
M. Harms, North Newton, KS; Edwin Gray, Highland Beach, FL; Bruno
Salgueiro, Fanego (two solutions), Viveiro, Spain; David E. Manes, Oneonta,
NY; John Nord, Spokane, WA; Boris Rays, Brooklyn, NY; David Stone and
John Hawkins (jointly), Statesboro, GA; Ercole Suppa, Teramo, Italy, and
the proposer.

• 5141: Proposed by Kenneth Korbin, New York, NY

A quadrilateral with sides 259, 765, 285, 925 is constructed so that its area is maximum.
Find the size of the angles formed by the intersection of the diagonals.

Solution by David E. Manes, Oneonta, NY

Given the four sides of a quadrilateral, the one with maximum area is the convex, cyclic
quadrilateral. However, the four sides can be permuted to give different quadrilateral
shapes. Furthermore, there are only three different shapes that yield maximized convex
quadrilaterals; all others are simply rotations and reflections of these three.

For the given problem these three quadrilaterals can be denoted by

I : a = 259, b = 765, c = 285, d = 925

II : a = 259, b = 285, c = 765, d = 925
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III : a = 259, b = 765, c = 925, d = 285

All three quadrilaterals yield the same maximum area A given by Brahmagupta’s formula;
that is , if

s =
1

2
(a+ b+ c+ d) =

1

2
(259 + 765 + 285 + 925) = 1117 is the semiperimeter, then

A =
√

(s− a) (s− b) (s− c) (s− d)

=
√

(1117− 259) (1117− 765) (1117− 285) (1117− 9250)

= 219648

Let θ denote the intersection angle of the diagonals. If θ 6= 90◦, then

A =
| tan θ|

4

∣∣∣a2 + b2 − b2 − d2
∣∣∣ .

For the quadrilateral in case I,

θ = tan−1
(

4A

|a2 + c2 − b2 − d2|

)

= tan−1
(

4 · 219648

|2592 + 2852 − 7652 − 9252|

)
= 34.21◦.

Similarly, for case II, θ = 72.05◦ and in case III, θ = 73.74◦.

Also solved by Scott H. Brown, Montgomery, AL; Bruno Salgueiro, Fanego,
Viveiro, Spain; Edwin Gray, Highland Beach, FL; Enkel Hysnelaj, University
of Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel, Germany; Boris
Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.

• 5142: Proposed by Michael Brozinsky, Central Islip, NY

Let CD be an arbitrary diameter of a circle with center O. Show that for each point A
distinct from O,C, and D on the line containing CD, there is a point B such that the
line from D to any point P on the circle distinct from C and D bisects angle APB.

Solution by Paul M. Harms, North Newton, KS

Consider the unit circle with its center at the origin C at (−1, 0) and D at (1, 0). Let A
be at (a, 0) were 0 < a < 1 and let B be at (b, 0), where b > 1.

To find the point B which satisfies the problem first consider P at (a,
√

1− a2) just above

point A. From the right triangle APD, tan 6 APD =
1− a√
1− a2

. The right triangle APB
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has 6 APB = 26 APD. We have

tan 6 APB =
b− a√
1− a2

= tan 26 APD

= 2




1− a√
1− a2

1− (1− a)2

1− a2




=

√
1− a2
a

.

Then, b− a =
1− a2
a

, and b =
1

a
.

Now we check whether B(1/a, 0) satisfies the problem for all points P on the upper half
of the circle.

Let P be at
(
t,
√

1− t2
)

and let T be at (t, 0) where −1 < t < a. Then

tan 6 APD = tan ( 6 TPD − 6 TPA) =

1− t√
1− t2

− a− t√
1− t2

1 +
(1− t)(a− t)

1− t2

=
(1− a)

√
1− t2

(1 + a)(1− t) .

Also

tan 6 DPB = tan ( 6 TPB − 6 TPD) =

1

a
− t

√
1− t2

− 1− t√
1− t2

1 +

(
1

a
− t
)

(1− t)
√

1− t2

=

(
1

a
− 1

)√
1− t2

1 +
1

a
− t− t

a

=
(1− a)

√
1− t2

(1 + a)(1− t)

Since the tangents of the angles are equal we conclude that for the points P given above,
6 APD bisects 6 APB.
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Now consider points P (t,
√

1− t2) where a < t < 1. The tangent of 6 DPB is the same
as above,

it is still
(1− a)

√
1− t2

(1 + a)(1− t) . Now

tan 6 APD = tan ( 6 TPD + 6 APT ) =

1− t√
1− t2

+
t− a√
1− t2

1− (1− t)(t− a)

1− t2

=
(1− a)

√
1− t2

(1 + a)(1− t) .

From this we see that problem is also satisfied for these points. When P is on the bottom

half of the circle at
(
t,−
√

1− t2
)
, the triangles and angles used with P at

(
t,
√

1− t2
)
,

on the top half of the circle are congruent with those on the bottom half of the circle and
should satisfy the problem.

If A is at (a, 0), were −1 < a < 0, then using symmetry with respect the y-axis and point

B at

(
1

a
, 0

)
satisfies the problem since all angles and triangles are congruent to those

with A at (|a|, 0).

If the circle has a radius of R, then we expect the same conclusion looking at similar
triangles to those we used above. Consider C at (−R, 0), D at (R, 0), A at (aR, 0), P
at (tR,R

√
1− t2), T at (tR, 0), and B at (R/a, 0) with the same restrictions on a and

t as above. Using the new points, the tangents of the given lettered angles would have
the same value as those given earlier since R would cancel for all the ratios involved with
these tangents.

Also solved by Bruno Salgueiro, Fanego, Viveiro, Spain; Michael N. Fried,
Kibbutz Revivim, Israel; Enkel Hysnelaj, University of Technology, Sydney,
Australia and Elton Bojaxhiu, Kriftel, Germany; Boris Rays, Brooklyn, NY;
David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5143: Proposed by Valmir Krasniqi (student), Republic of Kosova

Show that

∞∑

n=1

Cos−1
1 +
√
n2 + 2n ·

√
n2 − 1

n (n+ 1)
=

π

2
.

(
Cos−1 = Arccos

)

Solution 1 by Bruno Sagueiro Fanego, Viveiro, Spain

For each n = 1, 2, . . . ,
1

n+ 1
∈ (0, 1] and

1

n
∈ (0, 1], there exists αn, βn ∈

[
0,
π

2

)
such that
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cos αn =
1

n+ 1
, and cos βn =

1

n
. That is, αn = Cos−1

1

n+ 1
, and βn = Cos−1

1

n
. Hence,

sin αn =
√

1− cos2 αn =

√
1− 1

(n+ 1)2
=

√
n2 + 2n

n+ 1
and

sin βn =
√

1− cos2 βn =

√
1− 1

(n)2
=

√
n2 − 1

n
.

Therefore,

1 +
√
n2 + 2n ·

√
n2 − 1

n (n+ 1)
=

1

n · (n+ 1)
+

√
n2 + 2n ·

√
n2 − 1

n · (n+ 1)

=
1

n+ 1
· 1

n
+

√
n2 − 1

n
·
√
n2 + 2n

n+ 1

= cos αn · cos βn + sin αn · sin βn

= cos (αn − βn) .

So,

Cos−1
1 +
√
n2 + 2n ·

√
n2 − 1

n (n+ 1)
= Cos−1cos(αn−βn) = αn−βn = Cos−1

1

n+ 1
−Cos−1 1

n
, from where

∞∑

n=1

Cos−1
1 +
√
n2 + 2n ·

√
n2 − 1

n (n+ 1)
=
∞∑

n=1

Cos−1
1

n+ 1
−Cos−1 1

n
= lim

m→∞

m∑

n=1

Cos−1
1

n+ 1
−Cos−1 1

n

= lim
m→∞Cos

−1 1

2
−Cos−1 1

1
+Cos−1

1

3
−Cos−1 1

2
+· · ·+Cos−1 1

m
−Cos−1 1

m− 1
+Cos−1

1

m+ 1
−Cos−1 1

m

= lim
m→∞Cos

−1 1

m+ 1
− Cos−1 1

1
= Cos−10− Cos−11 =

π

2
− 0 =

π

2
.

Solution 2 by Angel Plaza, University of Las Palmas de Gran Canaria, Spain
Let

θn = cos−1
(

1

n

)
= sin−1

(√
n2 − 1

n

)

so that

N∑

n=1

cos−1
(

1 +
√
n2 + 2n ·

√
n2 − 1

n(n+ 1)

)
=

N∑

n=1

cos−1 (cos θn+1 cos θn + sin θn+1 sin θn)

=
N∑

n=1

cos−1 (cos(θn+1 − θn)) = θn+1 − θ1.

which converges to π/2− 0 = π/2 as N →∞.
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Solution 3 by Kee-Wai Lau, Hong Kong, China

Since Cos−1
1 +
√
n2 + 2n ·

√
n2 − 1

n (n+ 1)
= Cos−1

(
1

n+ 1

)
− Cos−1

(
1

n

)
, so for any posi-

tive integers N,
∞∑

n=1

Cos−1
1 +
√
n2 + 2n ·

√
n2 − 1

n (n+ 1)
= Cos−1

(
1

N + 1

)
.

The result of the problem follows as we allow N to tend to infinity.

Solution 4 by G. C. Greubel, Newport News, VA

Let cosx =
1

n+ 1
and cos y =

1

n
. Using sin θ =

√
1− cos2 θ with the corresponding cosine

values leads to

1 +
√
n2 + 2n

√
n2 − 1

n(n+ 1)
= cosx cos y + sinx sin y = cos(x− y).

From these reductions, now consider a finite version of the series in question.

Sm =
m∑

n=1

cos−1
(

1 +
√
n2 + 2n

√
n2 − 1

n(n+ 1)

)

=
m∑

n=1

cos−1(cos(x− y))

=
m∑

n=1

(x− y).

Now using the values for x and y the finite series becomes

Sm =
m∑

n=1

(
cos−1

(
1

n+ 1

)
− cos−1

(
1

n

))

= cos−1
(

1

m+ 1

)
− cos−1(1).

The series stated in the problem can be obtained by taking the limit m goes to infinity.
Considering this leads to

S∞ = lim
m→∞Sm

= lim
m→∞

[
cos−1

(
1

m+ 1

)
− cos−1(1)

]

= cos−1(0)− cos−1(1) =
π

2
− 0 =

π

2
.

That is,
∞∑

n=1

cos−1
(

1 +
√
n2 + 2n

√
n2 − 1

n(n+ 1)

)
=
π

2
.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell
and Charles Diminnie, Angelo State University, San Angelo, TX; Valmir Bu-
caj (student, Texas Luthern University), Seguin, TX; Edwin Gray, Highland
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Beach, FL; David E. Manes, Oneonta, NY; Pedro H. O. Pantoja, Natal-RN,
Brazil; Paolo Perfetti, Department of Mathematics, University “Tor Vergata,
Rome, Italy; Boris Rays, Brooklyn, NY, and the proposer.

• 5144: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Compute

lim
n→∞

n∏

k=1


1 + ln

(
k +
√
n2 + k2

n

)1/n

 .

Solution 1 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany

Let A =
∫ 1
0 ln(x+

√
1 + x2) and doing easy calculations we have

A =

∫ 1

0
ln(x+

√
1 + x2)

=

∫ 1

0
sinh−1 (x)

=
[
−
√

1 + x2 + x sinh−1 (x)
]1
0

= 1−
√

2 + sinh−1 (1)

' 0.46716

Using the Riemann sums we have

lim
n→∞

n∏

k=1


1 + ln

(
k +
√
k2 + n2

n

)1/n

 = lim

n→∞

n∏

k=1

[
1 +

1

n
ln

(
k +
√
k2 + n2

n

)]

= lim
n→∞

n∏

k=1


1 +

1

n
ln


k
n

+

√

1 +
k2

n2






= lim
n→∞

n∑

k=0

Ak

k!

=
∞∑

k=0

Ak

k!

= eA

= e1−
√
2+sinh−1 (1)

' 1.5956
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Solution 2 by Ovidiu Furdui, Cluj, Romania

More generally, we prove that if f : [0, 1]→ < is an integrable function then

lim
n→∞

n∏

k=1

(
1 +

1

n
f

(
k

n

))
= e

∫ 1

0
f(x)dx.

Let

xn =
n∏

k=1

(
1 +

1

n
f

(
k

n

))
.

Then,

lnxn =
n∑

k=1

ln

(
1 +

1

n
f

(
k

n

))
=

n∑

k=1

ln

(
1 +

1

n
f

(
k

n

))

1

n
f

(
k

n

) · ln
(

1 +
1

n
f

(
k

n

))
,

and it follows that

(1) min
1≤k≤n

ln

(
1 +

1

n
f

(
k

n

))

1

n
f

(
k

n

) · 1
n

n∑

k=1

f

(
k

n

)
≤ lnxn ≤ max

1≤k≤n

ln

(
1 +

1

n
f

(
k

n

))

1

n
f

(
k

n

) · 1
n

n∑

k=1

f

(
k

n

)
.

Since lim
x→0

ln(1 + x)

x
= 0, one has that

(2) lim
n→∞ min

1≤k≤n

ln

(
1 +

1

n
f

(
k

n

))

1

n
f

(
k

n

) = 1 and lim
n→∞ max

1≤k≤n

ln

(
1 +

1

n
f

(
k

n

))

1

n
f

(
k

n

) = 1.

Letting n→∞ in (1) and using (2) one has that

lim
n→∞ lnxn =

∫ 1

0
f(x)dx,

and the problem is solved.

In particular, when f(x) = ln(x+
√

1 + x2) one has that

lim
n→∞

n∏

k=1


1 + ln

(
k +
√
k2 + n2

n

)1/n

 = e

∫ 1

0
ln(x+

√
1+x2) = eln(1+

√
2)+1−

√
2 = (1+

√
2)e1−

√
2.

Solution 3 by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy

Answer: (1 +
√

2)e1−
√
2

Proof: By taking the logarithm we obtain
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ln





n∏

k=1


1 + ln

(
k +
√
n2 + k2

n

)1/n




 =

n∑

k=1

ln

[
1 +

1

n
ln

(
k +
√
n2 + k2

n

)]

We observe that
k +
√
n2 + k2

n
≤ n+

√
2n

n
= 1 +

√
2

thus the increasing monotonicity implies

1

n
ln

(
k +
√
n2 + k2

n

)
≤ ln(1 +

√
2)

n

By employing
ln(1 + x) = x+O(x2), x→ 0

we may write

ln

[
1 +

1

n
ln

(
k +
√
n2 + k2

n

)]
=

1

n
ln

(
k +
√
n2 + k2

n

)
+O(n−2)

and this in turn implies

lim
n→∞

n∑

k=1

ln

[
1 +

1

n
ln

(
k +
√
n2 + k2

n

)]
= lim

n→∞

n∑

k=1

[
1

n
ln

(
k +
√
n2 + k2

n

)
+O(

1

n2
)

]

lim
n→∞

n∑

k=1

1

n
ln

(
k +
√
n2 + k2

n

)
= lim

n→∞

n∑

k=1

1

n
ln


k
n

+

√

1 +
k2

n2




Of course we have

n∑

k=1

1

n
O(

1

n2
) = O(

1

n2
)

Now it is easy to recognize that the last limit is actually the Riemann sum of the following
integral

∫ 1

0
ln(x+

√
1 + x2)dx

and the integral is easily calculated by the standard methods. Integrating by parts

∫ 1

0
ln(x+

√
1 + x2)dx = x ln(x+

√
1 + x2)|10−

∫ 1

0

x√
1 + x2

dx

= ln(1 +
√

2)− (1 + x2)1/2|10= ln(1 +
√

2)−
√

2 + 1 = ln
(
1 +
√

2
)
e1−
√
2

By exponentiating we obtain the desired result.

Solution 4 by Bruno Salgueiro Fanego, Viveiro, Spain
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Let us denote P =lim
n→ Pn and Pn =

n∏

k=1


1 + ln

(
k +
√
n2 + k2

n

)1/n

.

Then

lnP = lim
n→∞ lnPn = lim

n→∞

n∑

k=1

ln


1 + ln

(
k +
√
n2 + k2

n

)1/n



= lim
n→∞

n∑

k=1

ln


1 +

1

n
ln


k
n

+

√

1 +

(
k

n

)2



 .

Taking, for each k = 1, 2, . . . , n, x =
1

n
ln


k
n

+

√

1 +

(
k

n

)2

 in the

inequalities
x

1 + x
≤ ln(1 + x) ≤ x (for any x > 0), and being, for any k = 1, 2, . . . , n,

k

n
+

√

1 +

(
k

n

)2

≤ 1 +
√

1 + 12 = 1 +
√

2, we obtain:

1

n
ln


k
n

+

√

1 +

(
k

n

)2



1 +
1

n
ln
(
1 +
√

2
) ≤

1

n
ln


k
n

+

√

1 +

(
k

n

)2



1 +
1

n
ln


k
n

+

√

1 +

(
k

n

)2



≤ ln


1 +

1

n
ln


k
n

+

√

1 +

(
k

n

)2





≤ 1

n
ln


k
n

+

√

1 +

(
k

n

)2

 . (1)

From (1) we obtain:

n∑

k=1

1

n
ln


k
n

+

√

1 +

(
k

n

)2



1 +
1

n
ln
(
1 +
√

2
) ≤

n∑

k=1

ln


1 +

1

n
ln


k
n

+

√

1 +

(
k

n

)2





≤
n∑

k=1

1

n
ln


k
n

+

√

1 +

(
k

n

)2

 (2)

And from (2) we obtain:
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lim
n→∞

1

1 +
1

n
ln
(
1 +
√

2
) lim

n→∞
1

n

n∑

k=1

ln


k
n

+

√

1 +

(
k

n

)2

 ≤ lnP ≤ lim

n→∞
1

n

n∑

k=1

ln


k
n

+

√

1 +

(
k

n

)2

 .

That is:
1

1 + 0

∫ 1

0
ln
(
x+

√
1 + x2

)
dx ≤ lnP ≤

∫ 1

0
ln
(
x+

√
1 + x2

)
dx

So,

lnP =

∫ 1

0
ln
(
x+

√
1 + x2

)
dx =

[
x ln

(
x+

√
1 + x2

)
−
√

1 + x2
]1
0

= ln(1 +
√

2) + 1−
√

2,

and therefore,

P = eln(1+
√
2)+1−

√
2 =

(
1 +
√

2
)
e1−
√
2.

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China, and
the proposer.

• 5145: Proposed by Ovidiu Furdui, Cluj, Romania

Let k ≥ 1 be a natural number. Find the sum of

∞∑

n=1

(
1

1− x − 1− x− x2 − · · · − xn
)k

, for |x| < 1.

Solution by Michael C. Faleski, University Center, MI

The summation can be rewritten as

∞∑

n=1

(
1

1− x −
(
1 + x+ x2 + · · ·+ xn

))k

where we can write the second term in the parentheses using the geometric series expression.

That is, (1 + x+ x2 + · · ·+ xn) =
1− xn+1

1− x . Substitution of this result yields the original sum

to

∞∑

n=1

(
1

1− x −
(
1 + x+ x2 + · · ·+ xn

))k

=
∞∑

n=1

(
1

1− x −
1− xn+1

1− x

)k

=
∞∑

n=1

(
xn+1

1− x

)k

.

Since the denominator has no “n” dependence, we now have

∞∑

n=1

(
xn+1

1− x

)k

=

(
1

(1− x)k

) ∞∑

n=1

x(n+1)k.
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Once again, we use the geometric series relation with multiplicative term xk yielding a result
of

p∑

n=1

x(n+1)k =
x2k − x(p+2)k

1− xk .

Now, as the upper limit of the sum is p→∞, then x(p+2)k → 0 since |x| < 1 and k ≥ 1. Hence

∞∑

n=1

x(n+1)k =
x2k

1− xk .

So, finally, we have our result of the original sum as

∞∑

n=1

(
1

1− x − 1− x− x2 − · · · − xn
)k

=
x2k

(1− x)k(1− xk)
.

Also solved by Dionne Bailey, Elsie Campbell, Charles Diminnie and Andrew
Siefker (jointly), San Angelo, TX; Valmir Bucaj (student, Texas Lutheran Uni-
versity), Seguin, TX; Bruno Salgueiro, Fanego, Viveiro,Spain; Edwin Gray, High-
land Beach, FL; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University
of Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel, Germany; Kee-Wai
Lau, Hong Kong, China; Angel Plaza, Gran Canaria, Spain; Paolo Perfetti, Depart-
ment of Mathematics, University “Tor Vergata, Rome, Italy; Boris Rays, Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

From the Editor; Mea Culpa

In the March 2011 issue of the column I inadvertently forgot to mention that Enkel Hysnelaj,
of the University of Technology, in Sydney, Australia and Elton Bojaxhiu of Kriftel,
Germany had also solved problems 5136 and 5139. Sorry.

Mistakes happen to all of us; they are embarrassing, but they are part of life. Albert Stadler
of Herrliberg, Switzerland pointed out an error in the first solution to 5138 that appeared
in last month’s column. The problem challenged us to prove for all natural numbers n ≥ 2 that

n

FnFn+1
≤ 1

(n− 1)F 2
1 + F 2

2

+ · · ·+ 1

(n− 1)F 2
n + F 2

1

≤ 1

n

n∑

k=1

1

F 2
k

,

where Fn is the nth Fibonacci number defined in the usual way with F0 = 0, F1 = 1. At a
crucial step in the proof Muirhead’s inequality was employed and this is what triggered Albert’s
suspicions; the conditions to use the inequality were not met. (Muirhead’s inequality generalizes
the arithmetic-geometric means inequality. See: http://en.wikipedia.org/wiki/Muirhead) In
further correspondence with Albert he pointed out a paper by Yufei Zhao (yufeiz@mit.edu) on
Inequalities that contains two practical notes with respect to the Muirhead inequality. Zhao
wrote: “Don’t try to apply Muirhead when there are more than 3 variables, since mostly likely
you won’t succeed (and never, ever try to use Muirhead when the inequality is only cyclic but not
symmetric, since it is incorrect to use Muirhead there) (2) when writing up your solution, it is
probably safer to just deduce the inequality using weighted AM-GM by finding the appropriate
weights, as this can always be done. The reason is that it is not always clear that Muirhead
will be accepted as a quoted theorem.” The second solution listed for 5138 is correct.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://ssmj.tamu.edu>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2011

• 5164: Proposed by Kenneth Korbin, New York, NY

A triangle has integer length sides (a, b, c) such that a− b = b− c. Find the dimensions
of the triangle if the inradius r =

√
13.

• 5165: Proposed by Thomas Moore, Bridgewater, MA

“Dedicated to Dr. Thomas Koshy, friend, colleague and fellow Fibonacci enthusiast.”

Let σ(n) denote the sum of all the different divisors of the positive integer n. Then n is
perfect, deficient, or abundant according as σ(n) = 2n, σ(n) < 2n, or σ(n) > 2n. For
example, 1 and all primes are deficient; 6 is perfect, and 12 is abundant. Find infinitely
many integers that are not the product of two deficient numbers.

• 5166: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be lengths of the sides of a triangle ABC. Prove that
(

3a+b +
c

b
3−b

)(
3b+c +

a

c
3−c

)(
3c+a +

b

a
3−a

)
≥ 8.

• 5167: Paolo Perfetti, Department of Mathematics, University “Tor Vergata,” Rome,
Italy

Find the maximum of the real valued function

f(x, y) = x4 − 2x3 − 6x2y2 + 6xy2 + y4

defined on the set D = {(x, y) ∈ <2 : x2 + 3y2 ≤ 1}.

• 5168: Proposed by G. C. Greubel, Newport News, VA

Find the value of an in the series

7t+ 2t2

1− 36t+ 4t2
= a0 +

a1
t

+
a2
t2

+ · · ·+ an
tn

+ · · · .

• 5169: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let i be such that 1 ≤ i ≤ n. Calculate:
∫ 1

0
· · ·
∫ 1

0

xi
x1 + x2 + · · ·+ xn

dx1 · · · dxn.
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Solutions

• 5146: Proposed by Kenneth Korbin, New York, NY

Find the maximum possible value of the perimeter of an integer sided triangle with
in-radius r =

√
13.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let the lengths of the sides of the triangle be a, b, and c with c ≤ b ≤ a.

Let x = b+ c− a, y = c+ a− b, z = a+ b− c so that x, y, z are integers and
0 < x ≤ y ≤ z.

It is well known that
1

2

√
xyz

x+ y + z
or

xyz

x+ y + z
= 52.

From xyz < xy(x+ y + z), we see that xy > 52 and from xy <
3xyz

x+ y + z
, we have

xy ≤ 156. Since a =
y + z

2
, b =

z + x

2
, c =

x+ y

2
, so we have to find positive integers

x, y satisfying 



x ≤ y
1 ≤ x ≤ 12
52 < xy ≤ 156

such that z =
52(x+ y)

xy − 52
is a positive integer greater than or equal to y and that x, y, z

are of the same parity. With the help of a computer we find that

(x, y, z) = (2, 28, 390), (2, 30, 208), (2, 40, 78), (2, 52, 54), (4, 14, 234), (4, 26, 30), (6, 10, 104), (6, 16, 26)

are the only solutions. Since a+ b+ c = x+ y + z, so the maximum possible value of the
perimeter of an integer sided triangle with in-radius r =

√
13 is 420.

Solution 2 by Brian D. Beasley, Clinton, SC

We designate the integer side lengths of the triangle by a, b, and c. We also let
x = a+ b− c, y = c+ a− b, and z = b+ c− a and note that x+ y + z = a+ b+ c. Then
the formula for the in-radius r of a triangle becomes

r =
1

2

√
(a+ b− c)(c+ a− b)(b+ c− a)

a+ b+ c
=

1

2

√
xyz

x+ y + z
.

For the given triangle, we thus have 52(x+ y + z) = xyz. Then xyz is even; combined
with the fact that x, y, and z have the same parity, this implies that all three are even.
Writing x = 2u, y = 2v, and z = 2w, we obtain 13(u+ v + w) = uvw. Then 13 divides
uvw, so without loss of generality, we assume w = 13k for some natural number k. This
produces v = (u+ 13k)/(uk − 1). Using this equation, a computer search reveals eight
solutions for (u, v, w) (with u ≤ v) and hence for (a, b, c):

(u, v, w) = (2, 15, 13) =⇒ (a, b, c) = (17, 15, 28) =⇒ perimeter = 60
(u, v, w) = (3, 8, 13) =⇒ (a, b, c) = (11, 16, 21) =⇒ perimeter = 48

(u, v, w) = (1, 27, 26) =⇒ (a, b, c) = (28, 27, 53) =⇒ perimeter = 108
(u, v, w) = (1, 20, 39) =⇒ (a, b, c) = (21, 40, 59) =⇒ perimeter = 120
(u, v, w) = (3, 5, 52) =⇒ (a, b, c) = (8, 55, 57) =⇒ perimeter = 120

(u, v, w) = (1, 15, 104) =⇒ (a, b, c) = (16, 105, 119) =⇒ perimeter = 240
(u, v, w) = (2, 7, 117) =⇒ (a, b, c) = (9, 119, 124) =⇒ perimeter = 252

(u, v, w) = (1, 14, 195) =⇒ (a, b, c) = (15, 196, 209) =⇒ perimeter = 420
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Thus the maximum value of the perimeter is 420.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5147: Proposed by Kenneth Korbin, New York, NY

Let {
x = 5N2 + 14N + 23 and
y = 5(N + 1)2 + 14(N + 1) + 23

where N is a positive integer. Find integers ai such that

a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 = 0.

Solution 1 by G. C. Greubel, Newport News, VA

The equations for x and y are given by x = 5n2 + 14n+ 23 and y = 5n2 + 24n+ 42. We
are asked to find the values of ai such that the equation

a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 = 0

is valid. In order to do so we need to calculate the values of x2, y2, and xy. For this we
have

x2 = 25n4 + 140n3 + 426n2 + 644n+ 529

y2 = 25n4 + 240n3 + 996n2 + 2016n+ 1764

xy = 25n4 + 190n3 + 661n2 + 1140n+ 966.

Using the above results we then have the equation

0 = 25(a1 + a2 + a3)n
4 + 10(14a1 + 24a2 + 19a3)n

3

+(426a1 + 996a2 + 661a3 + 5a4 + 5a5)n
2

+2(322a1 + 1008a2 + 570a3 + 7a4 + 12a5)n

+(529a1 + 1764a2 + 966a3 + 23a4 + 42a5 + a6).

From this we have five equations for the coefficients ai given by

0 = a1 + a2 + a3

0 = 14a1 + 24a2 + 19a3

0 = 426a1 + 996a2 + 661a3 + 5a4 + 5a5

0 = 322a1 + 1008a2 + 570a3 + 7a4 + 12a5

0 = 529a1 + 1764a2 + 966a3 + 23a4 + 42a5 + a6.

From 0 = 14a1 + 24a2 + 19a3 we have 0 = 14(a1 + a2 + a3) + 10a2 + 5a3 = 5(2a2 + a3),
where we used the fact that 0 = a1 + a2 + a3. This yields a3 = −2a2. Using this result
in 0 = a1 + a2 + a3 yields a2 = a1. The three remaining equations can be reduced to

0 = 20a1 + a4 + a5

0 = 190a1 + 7a4 + 12a5

0 = 361a1 + 23a4 + 42a5 + a6.
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Solving this system we see that

a1 = a1, a2 = a1, a3 = −2a1, a4 = −10a1, a5 = −10a1, a6 = 289a1.

We now verify that the above coefficients work.

a1x
2 + a2y

2 + a3xy + a4x+ a5y + a6 = 0, becomes

a1
(
x2 + y2 − 2xy − 10x− 10y + 289

)
= 0, and since a1 6= 0

x2 + y2 − 2xy − 10x− 10y + 289 = 0, and

(x− y)2 − 10(x+ y) + 289 = 0.

From the values of x and y presented to us in terms of n at the start of the problem, we
see that x− y = −(10n+ 19) and x+ y = 10n2 + 38n+ 65.
Substituting these values into the above equations we obtain:

0 = (x− y)2 − 10(x+ y) + 289

= (10n+ 19)2 − 10(10n2 + 38n+ 65) + 289

= (100n2 + 380n+ 361)− (100n2 + 380n+ 650) + 289

= 361− 650 + 289

= 0.

We have thus verified that for the coefficients we have obtained, and for the vaules of x
and y that are given, a1x

2 + a2y
2 + a3xy + a4x+ a5y + a6 = 0.

Solution 2 by Kee-Wai Lau, Hong Kong, China

By putting N = 1, 2, 3, 4, 5, we obtain the system of equations





1764a1 + 5041a2 + 2982a3 + 42a4 + 71a5 + a6 = 0
5041a1 + 12100a2 + 7810a3 + 71a4 + 110a5 + a6 = 0
12100a1 + 25281a2 + 17490a3 + 110a4 + 159a5 + a6 = 0 (1)
25281a1 + 47524a2 + 34662a3 + 159a4 + 218a5 + a6 = 0
47524a1 + 82369a2 + 62566a3 + 218a4 + 287a5 + a6 = 0.

If a1 = 0, then (1) reduces to





5041a2 + 2982a3 + 42a4 + 71a5 + a6 = 0
12100a2 + 7810a3 + 71a4 + 110a5 + a6 = 0
25281a2 + 17490a3 + 110a4 + 159a5 + a6 = 0 (2)
47524a2 + 34662a3 + 159a4 + 218a5 + a6 = 0
82369a2 + 62566a3 + 218a4 + 287a5 + a6 = 0.

Since the determinant

∣∣∣∣∣∣∣∣∣∣∣

5041 2982 42 71 1
12100 7810 71 110 1
25281 17490 110 159 1
47524 34662 159 218 1
82369 62566 218 287 1

∣∣∣∣∣∣∣∣∣∣∣

= −18000000, so (2) has the

unique solution a2 = a3 = a4 = a5 = a6 = 0.
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If a1 6= 0, we write a2 = a1b2, a3 = a1b3, a4 = a1b4, a5 = a1b5, a6 = a1b6, so that (1)
becomes





1764 + 5041b2 + 2982b3 + 42b4 + 71b5 + b6 = 0
5041 + 12100b2 + 7810b3 + 71b4 + 110b5 + b6 = 0
12100 + 25281b2 + 17490b3 + 110b4 + 159b5 + b6 = 0 (3)
25281 + 47524b2 + 34662b3 + 159b4 + 218b5 + b6 = 0
47524 + 82369b2 + 62566b3 + 218b4 + 287b5 + b6 = 0.

By Cramer’s rule, we find the unique solution of (3) to be

b2 = 1, b3 = −2, b4 = −10, b5 = −10, b6 = 289.

It follows that the general solution to (1) is

a1 = k, a2 = k, a3 = −2k, a4 = −10k, a5 = −10k, a6 = 289k, (4)

where k is any integer. It can be checked readily by direct expansion that
kx2 + ky2 − 2kxy − 10kx− 10ky + 289k = 0 for any positive integer N , and so the
general solution to the equation of the problem is given by (4).

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

As in the published solutions to SSMJ problem 5144, we first compute

y−x = 5
[
(N + 1)2 −N2

]
+14 (N + 1−N)+23−23 = 5 (2N + 1)+14 = 10N+19 (1)

From x = 5N2 + 14N + 23 that is 5N2 + 14N + 23− x = 0, one obtains

N1,2, =
−14±

√
142 − 20(23− x)

10
=
−7±

√
5x− 66

5

and since N is a positive integer, we choose N =
−7 +

√
5x− 66

5
(2).

Substituting (2) into (1) gives

y − x = 2
(
−7 +

√
5x− 66

)
+ 19 = 5 + 2

√
5x− 66. (3)

From (3) one obtains

(y − x− 5)2 =
(
2
√

5x− 66
)2
, that is

x2 + y2 − 2xy − 10x− 10y + 289 = 0 (4)

Relation (4) shows that it suffices to take the following integers for ai

a1 = a2 = 1; a3 = −2; a4 = a5 = −10; a6 = 289

Comment: Relation (4) shows that for any positive integer N , all of the points with
coordinates (x, y)=(uN , uN+1) for uN = 5N2 + 14N + 23, are points situated on the
parabola (*) with equation

(1 X Y )




289 −5 −5
−5 1 −1
−5 −1 1






1
X
Y


 = 0.
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(∗) Because det




289 −5 −5
−5 1 −1
−5 −1 1


 = 100 6= 0 and det

(
1 −1
−1 1

)
= 0.

Solution 4 by David Stone and John Hawkins, Statesboro, GA

We will show that the proscribed points (x, y) lie on the conic

x2 + y2 − 2xy − 10xy − 10y + 289 = 0.

This is a parabola. In fact, it is the parabola x =
1

2
√

2
y2 roatated counterclockwise

π

4

and translated “up the diagonal y = x” by a distance
289

20

√
2, having its vertex at

(
289

20
,
289

20

)
.

We will actually consider the more general problem
{
x = aN2 + bN + c
y = a (N + 1)2 + b(N + 1) + c

with the restrictions on N removed.
Treating these as parametric equations, we can eliminate the parameter N (without
getting bogged down in the quadratic formula).

Expanding the expression for y gives

y = aN2 + 2aN + a+ bN + b+ c

=
(
aN2 + bN + c

)
+ 2aN + a+ b

= x+ 2aN + a+ b.

Solving for N gives N =
y − x− (a+ b)

2a
.

Substituting back into the expression for x:

x = a

(
y − x− a− b

2a

)2

+ b

(
y − x− a− b

2a

)
+ c,

which simplifies to

(1) x2 + y2 − 2xy − 2ax− 2ay +
(
a2 − b2 + 4ac

)
= 0.

This is our solution for the general problem. So we do indeed have a quadratic equation
for our figure; the discriminate equals zero.

From calculus,we know that a 45◦ rotation will remove the xy term. The transformation
equations are

x =
1√
2

(
x′ − y′) and y =

1√
2

(
x ′ + y ′

)

Substituting these into Equation (1), we get

(x′ − y′)2
2

+
(x′ + y′)2

2
−2

(x′ − y′)(x′ + y′)
2

− 2a√
2

(
x′ − y′)− 2a√

2

(
x′ + y′

)
+
(
a2 − b2 + 4ac

)
= 0.
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This simplifies to

2
(
y′
)2 − 4a√

2
x′ +

(
a2 − b2 + 4ac

)
= 0.

This becomes more familiar as

x′ − a2 − b2 + 4ac

2a
√

2
=

1

a
√

2

(
y′
)2
.

We recognize a nice parabola in the x′, y′ plane. In fact, if we translate to the new

origin,

(
a2 − b2 + 4ac

2a
√

2
, 0

)
(in the x′, y′ plane) and let

x′′ = x′ − a2 − b2 + 4ac

2a
√

2
and y ′′ = y ′

our equation becomes

x′′ =
1

a
√

2

(
y′′
)2
.

Substituting the values a = 5, b = 14, c = 23 produces the solution to the given problem.

Comment 1: We see that x and y are interchangeable in Equation (1), reflecting the
fact that the line y = x is the axis of symmetry of our parabola. Therefore, more lattice
points than originally mandated fall on the parabola.

For convenience, let un = aN2 + bN + c. By the given condition, for any integer N , the
point (uN , uN+1) lies on the parabola. By symmetry, (uN+1, uN ) also lies on the
parabola.

Comment 2: We see that this sequence satisfies the first order non-linear recurrence:
uN+1 = uN + (2N + 1) a+ b. We have shown that the points (uN , uN+1), N ∈ Z, lie on
the parabola given by Equation (1) (as do the points (uN+1, uN )). This is reminiscent of
the result that pairs of Fibonacci numbers (FN , FN+1) lie on the hyperbolas
y2 − xy − x2 = ±1. In fact, such pairs are the only lattice points on these hyperbolas.

So we wonder if the points (uN , uN+1) and (uN+1, uN ) are the only lattice points on the
parabola given by Equation (1).

Also solved by Brian D. Beasley, Clinton, SC; Edwin Gray, Highland Beach,
FL; Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY;
Boris Rays, Brooklyn, NY; Raúl A. Simón, Santiago, Chile, and the
proposer.

• 5148: Proposed by Pedro Pantoja (student, UFRN), Natal, Brazil

Let a, b, c be positive real numbers such that ab+ bc+ ac = 1. Prove that

a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

≥ 1.

Solution 1 by David E. Manes, Oneonta, NY

Let L =
a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

. To prove that L ≥ 1, we will use
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Jensen’s inequality that states if λ1, λ2 . . . , λn are positive numbers satisfying

λ1 + λ2 + . . .+ λn = 1, and x1, x2, . . . , xn are any n points in an interval where f is
continuous and convex, then

λ1f(x1) + λ2f(x2) + · · ·+ λnf(xn) ≥ f
(
λ1x1 + λ2x2 + · · ·+ λnxn

)
.

The function f(x) =
1
3
√
x

is continuous and convex on the interval (0,∞). Let

α = a2 + b2 + c2 λ1 =
a2

α
λ2 =

b2

α
λ3 =

c2

α

x1 = b2 + 2bc x2 = c2 + 2ac x3 = a2 + 2ab

Then λ1 + λ2 + λ3 = 1 and Jensen’s inequality implies

1

α
L =

a2

α
f
(
b2 + 2bc

)
+
b2

α
f
(
c2 + 2ac

)
+
c2

α
f
(
a2 + 2ab

)

≥ f

(
a2
(
b2 + 2bc

)
+ b2

(
c2 + 2ac

)
+ c2

(
a2 + 2ab

)

α

)

= 3

√
α

a2b2 + b2c2 + c2a2 + 2a2bc+ 2ab2c+ 2abc2

= 3

√
α

(ab+ bc+ ac)2
= 3
√
α.

Hence, L ≥ α4/3=
(
a2 + b2 + c2

)4/3 ≥ 1 since the inequality

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0 with the constraint ab+ bc+ ac = 1 implies

a2 + b2 + c2 ≥ 1. Note that equality occurs if and only if a = b = c =
1√
3

.

Solution 2 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany

Using Cauchy-Schwarz inequality we have,

(
3

√
b(b+ 2c) + 3

√
c(c+ 2a) + 3

√
a(a+ 2b)

)(
a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

)
≥ (a+b+c)2,

which implies that,

a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

≥ (a+ b+ c)2

3
√
b(b+ 2c) + 3

√
c(c+ 2a) + 3

√
a(a+ 2b)

.

Using the fact that the function f(x) = 3
√
x is a concave function, since the second

derivative is negative, we have that any three numbers x, y, z, according to Jensen’s
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inequality, satisfy the inequality f(x) + f(y) + f(z) ≤ 3f

(
x+ y + z

3

)
and applying this

we have

a2

3
√
b(b+ 2c)

+
b2

3
√
c(c+ 2a)

+
c2

3
√
a(a+ 2b)

≥ (a+ b+ c)2

3
√
b(b+ 2c) + 3

√
c(c+ 2a) + 3

√
a(a+ 2b)

≥ (a+ b+ c)2

3 3

√(
b(b+ 2c) + c(c+ 2a) + a(a+ 2b)

3

)

=
(a+ b+ c)2

3
3
√

3

3

√
(a+ b+ c)2

So it is enough to prove that

(a+ b+ c)2

3
3
√

3
3

√
(a+ b+ c)2

≥ 1, which implies

(a+ b+ c)2

3

√
(a+ b+ c)2

≥ 3
3
√

3

(a+ b+ c)2 ≥ 3

Using the given condition and the AM-GM inequality we have

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ac

≥ 3ab+ 3bc+ 3ac

= 3(ab+ bc+ ac)
= 3

and this is the end of the proof.

Solution 3 by Andrea Fanchini, Cantú, Italy

Recall Holder’s inequality that states that if aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are positive real
numbers, then:

m∏

i=1




n∑

j=1

aij


 ≥




n∑

j=1

m

√√√√
m∏

i=1

aij




m

.

Setting n = 3 and m = 4 and using this inequality we have

(∑

cyc

a2

3
√
b2 + 2bc

)(∑

cyc

a2

3
√
b2 + 2bc

)(∑

cyc

a2

3
√
b2 + 2bc

)(∑

cyc

a2
(
b2 + 2bc

))
≥
(
a2 + b2 + c2

)4
,
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and being that a2 + b2 + c2 ≥ ab+ bc+ ca,

(∑

cyc

a2

3
√
b2 + 2bc

)(∑

cyc

a2

3
√
b2 + 2bc

)(∑

cyc

a2

3
√
b2 + 2bc

)(∑

cyc

a2
(
b2 + 2bc

))
≥ (ab+ bc+ ca)4 = 1

because (∑

cyc

a2
(
b2 + 2bc

))
= (ab+ bc+ ca)2 = 1,

and so the proposed inequality holds.

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
Paolo Perfetti, Department of Mathematics, University “Tor Vergata,”
Rome, Italy, and the proposer.

• 5149: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

A regular n-gon A1, A2 · · · , An (n ≥ 3) has center F , the focus of the parabola y2 = 2px,
and no one of its vertices lies on the x axis. The rays FA1, FA2, · · · , FAn cut the
parabola at points B1, B2, · · · , Bn.

Prove that
1

n

n∑

k=1

FB2
k > p2.

Solution by Ángel Plaza (University of Las Palmas de Gran Canaria) and
Javier Sánchez-Reyes (University of Castilla-La Mancha), Spain

In polar coordinates (r, θ) centered at the focus the parabola is given by
r = p/(1 + cos θ). Defining the arguments θk = θn + 2kπ/n for k = 1, 2, . . . , n
corresponding to the vertices Ak of the polygon, we have to prove that

1

n

n∑

k=1

p2

(1 + cos θk)2
> p2,

1

n

n∑

k=1

1

(1 + cos θk)2
> 1,

where θk 6= 0 and θk 6= π. Since the function f(x) = 1/x2 is strictly convex and∑n
k=1 cos θk = 0, for example because the sum of all the nth complex roots of unity is

zero, it follows that

1

n

n∑

k=1

1

(1 + cos θk)2
>




1 +

n∑

k=1

cos θk

n




−2

= 1.

Also solved by Raúl A. Simón, Santiago, Chile; David Stone and John
Hawkins (jointly), Statesboro, GA and the proposer.
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• 5150: Proposed by Mohsen Soltanifar (student, University of Saskatchewan), Saskatoon,
Canada

Let {An}∞n=1, (An ∈Mn×n(C))be a sequence of matrices such that det(An) 6= 0, 1 for all
n ∈ N . Calculate:

lim
n→∞

nn ln(|det(An)|)
ln (| det (adj◦n (An)) |) ,

where adj◦n refers to adj ◦ adj ◦ · · · ◦ adj, n times, the nth iterate of the classical adjoint.

Solved 1 by the proposer

A simple calculation of adj◦n (A) , m = 1, 2, · · · , 5 using equalities:

(i) adj(A) ·A = A · adj(A) = det(A) · In×n.

(ii) det(A−1) = (det(A))−1

(iii) det(kA) = kn det(A)

suggests the following conjecture:

adjom (A) = det (A)Pm(n)A(−1)m ; Pm(n) =
(n− 1)m + (−1)m−1

n
, m, n ∈ N (∗∗)

We prove the conjecture by induction on the positive integer m. The assertion trivially
holds for the case m = 1. Let it hold for some positive integer m > 1. Then

adjom+1 (A) = adj (adjom (A))

= det (adjom (A)) (adjom (A))−1

= det
(
det(A)Pm(n)A(−1)m

) (
det (A)Pm(n)A(−1)m

)−1

= det (A)(n−1)Pm(n)+(−1)m (A)(−1)
m+1

.

Besides,

Pm+1(n) = (n− 1)Pm(n) + (−1)m =
(n− 1)m+1 + (−1)m

n
,

proving the assertion for positive integer m+ 1. Accordingly, using (∗∗) we have

lim
n→∞

nn ln (|det(An)|)
ln (|det(adjon(An))|) = lim

n→∞
nn ln (| det(An)|)

ln
(
| det(det(An)Pn(n)A

(−1)n
n )|

)

= lim
n→∞

nn ln (|det(An)|)
ln
(
|(det(An)nPn(n) det (An

(−1)n)|
)

= lim
n→∞

nn ln (|det(An)|)
ln
(|(det(An)nPn(n)+(−1)n|)
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= lim
n→∞

nn

nPn(n) + (−1)n

= lim
n→∞

(
n

n− 1

)n

= e.

Solution 2 by David Stone and John Hawkins, Statesboro, GA

We shall find a formula for adj◦n (nA) and then show the limit is e.

First recall some properties of the inverse and the classical adjoint, where A is n× n and
invertible and c a non-zero scalar.

(1) adj(A) = det(A)A−1

(2) adj (A)−1 =
1

det(A)
A = adj

(
A−1

)

(3) det [adj(A)] = [detA)]n−1

(4) det(cA) = cn det(A)

(5) (cA)−1 =
1

c
A−1

(6) adj(cA) = cn−1adj(A)

Then we see

(7) adj◦2 (A) = adj [adj(A)]

= det [adj(A)] [adj(A)]−1 by (1)

= [det(A)]n−1
1

det(A)
A by (3) and (2)

= [det(A)]n−2A.

Continuing with our calculations, we have

(8) adj◦3 (A) = adj
[
adj◦2(A)

]

= adj
[
[det(A)]n−2A

]
by (7)

=
{

[det(A)]n−2
}n−1

adj(A) by (6)

= [det(A)](n−1)(n−2) det(A)A−1by (1)

= [det(A)]n
2−3n+3A−1
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We observe that repeated applications of adj will produce terms of the form
[det(A)][pk(n)A(−1)k, where pi(n) is a polynomial of degree k − 1 in n.

Specifically, for k = 1, 2, 3, . . . , n− 1, we have

(9) adj◦(k+1) (A) = adj
[
adj◦k(A)

]

= adj
[
[det(A)]pk(n)A(−1)k

]
by induction

=
{

[det(A)]pk(n)
}n−1

adj
(
A(−1)k

)
by (6)

= [det(A)](n−1)pk(n) det
(
A(−1)k

) [
A(−1)k

]−1
by (1)

= [det(A)](n−1)pk(n)+(−1)k A(−1)k+1

Therefore, we can recursively compute the polynomials which give the exponent on
det(A) and obtain a concrete formula for adj(A) : pk+1(n) = (n− 1)pk(n) + (−1)k.

By (1) adj(A) = det(A)A−1, so p1(n) = 1.

By (7) adj◦2 (A) = [det(A)]n−2A, so p2(n) = n − 2.

Then p3(n) = (n− 1)p2(n) + (−1)2 = (n− 1)(n− 2) + 1 = n2− 3n+ 3, agreeing with (8).

Continuing, we find that

p4(n) = n3 − 4n2 + 6n− 4 and

p5(n) = n4 − 5n3 + 10n2 − 10n+ 5.

The appearance of the binomial coefficients is unmistakable. We deduce that, for
k = 1, 2, 3, . . . , n,

pk(n) =
(n− 1)k + (−1)k−1

n
, a polynomial of degree k − 1.

The capstone of this sequence of polynomials: pn(n) =
(n− 1)n + (−1)n−1

n
, allows us to

calculate adj◦n(A) as:

(10) adj◦n (A) = [det(A)]

(n− 1)n + (−1)n−1

n
A(−1)n .

Therefore, An ∈Mn×n(C),

det (adj◦n (An)) = det





[det(A)]

(n− 1)n + (−1)n−1

n A(−1)n





by(10)

=


[det(A)]

(n− 1)n + (−1)n−1

n




n

det
[
A(−1)n

]
by (4)

= [det(A)](n− 1)n + (−1)n−1 det
[
A(−1)n

]
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= [det(A)](n− 1)n + (−1)n−1 + (−1)n

= [det(A)](n− 1)n.

Thus,

ln (|det (adj◦n (An))|) = ln
∣∣∣[det(An)](n−1)

n
∣∣∣ = (n− 1)n ln |det(An)|,

so, for n ≥ 2,

nn ln (|det(An)|)
ln (|det (adj◦n(An))|) =

nn ln (|det(An)|)
(n− 1)n ln (|det(An))| =

nn

(n− 1)n
=

(
n

n− 1

)n

.

That is, the individual An has disappeared and our complex fraction has become very
simple.

Now it is easy to show by calculus that the limit is e.

• 5151: Proposed by Ovidiu Furdui, Cluj, Romania

Find the value of
∞∏

n=1

(√
π

2
· (2n− 1)!!

√
2n+ 1

2nn!

)(−1)n

.

More generally, if x 6= nπ is a real number, find the value of

∞∏

n=1

(
x

sinx

(
1− x2

π2

)
· · ·
(

1− x2

(nπ)2

))(−1)n

.

Solution by the proposer

The first product equals

√
2
√

2

π
and the second one equals

2 sin
x

2
x

. Recall the infinite

product representation for the sine function

sinx = x
∞∏

n=1

(
1− x2

n2π2

)
.

Since the first product can be obtained from the second one, when x = π/2, we
concentrate on the calculation of the second product. Let

S2n =
2n∑

k=1

(−1)k
(

ln

(
1− x2

π2

)
+ · · ·+ ln

(
1− x2

k2π2

)
+ ln

x

sinx

)

= −
(

ln

(
1− x2

π2

)
+ ln

x

sinx

)
+

(
ln

(
1− x2

π2

)
+ ln

(
1− x2

22π2

)
+ ln

x

sinx

)

· · ·
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−
(

ln

(
1− x2

π2

)
+ ln

(
1− x2

22π2

)
+ · · ·+ ln

(
1− x2

(2n− 1)2π2

)
+ ln

x

sinx

)

+

(
ln

(
1− x2

π2

)
+ ln

(
1− x2

22π2

)
+ · · ·+ ln

(
1− x2

(2n− 1)2π2

)
+ ln

(
1− x2

(2n)2π2

)
+ ln

x

sinx

)

= ln

((
1− x2

(2π)2

)(
1− x2

(4π)2

)
· · ·
(

1− x2

(2nπ)2

))

= ln

((
1− (x/2)2

π2

)(
1− (x/2)2

(2π)2

)
· · ·
(

1− (x/2)2

(nπ)2

))
.

Letting n tend to infinity in the preceding equality we get that lim
n→∞S2n = ln

2 sin (x/2)

x
,

and the problem is solved

Also solved by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2011

• 5170: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral DEFG has coordinates D(−6,−3) and E(2, 12). The midpoints of
the diagonals are on line l.

Find the area of the quadrilateral if line l intersects line FG at point P

(
672

33
,
−9

11

)
.

• 5171: Proposed by Kenneth Korbin, New York, NY

A triangle has integer length sides x, x+ y, and x+ 2y.

Part I: Find x and y if the inradius r = 2011.

Part II: Find x and y if r =
√

2011.

• 5172: Proposed by Neculai Stanciu, Buzău, Romania

If a, b and c are positive real numbers, then prove that,

a (b− c)
c (a+ b)

+
b (c− a)

a (b+ c)
+
c (a− b)
b (c+ a)

≥ 0.

• 5173: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Find all triples x, y, z of non-negative real numbers that satisfy the system of equations,





x2(2x2 + x+ 2) = xy(3x+ 3y − z)
y2(2y2 + y + 2) = yz(3y + 3z − x)
z2(2z2 + z + 2) = xz(3z + 3x− y)

• 5174: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a positive integer. Compute:

lim
n→∞

n2

2n

n∑

k=0

k + 4

(k + 1)(k + 2)(k + 3)

(
n

k

)
.

• 5175: Proposed by Ovidiu Furdui, Cluj, Romania
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Find the value of,

lim
n→∞

1

n

n∑

i,j=1

i+ j

i2 + j2
.

Solutions

• 5152: Proposed by Kenneth Korbin, New York, NY

Given prime numbers x and y with x > y. Find the dimensions of a primitive
Pythagorean Triangle which has hypotenuse equal to x4 + y4 − x2y2.

Solution 1 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany

We will use the Euclid’s formula for generating Pythagorean triples given an arbitrary
pair of positive integers m and n with m > n, which states that the integers
(a, b, c) = (m2 − n2, 2mn,m2 + n2) form a Pythagorean triple. The triple generated by
Euclid’s formula is primitive if and only if m and n are coprime and one of them is even.
Obviously c will be the hypotenuse, since it is the largest side.

Now using the fact that the hypotenuse is equal to x4 + y4 − x2y2 we have

c = x4 + y4 − x2y2 =
(
x2 − y2

)2
+ x2y2

and this implies that (m,n) = (x2− y2, xy) since x > y. Using the fact that the numbers
x and y are primes with x > y, we have gcd(m,n) = gcd(x2 − y2, xy) = 1, so the
numbers m and n are coprime.

Now if one of the numbers x or y is even, then xy is even, and if both are odd then
x2 − y2 is even; the case when both x and y are even is not possible since
gcd(x2 − y2, xy) = 1. So at least one of the numbers m or n is even.

By Euclid’s formula we produce primitive Pythagorean Triangles which will have side
lengths:

a = m2 − n2 =
(
x2 − y2

)2
− x2y2 = x4 + y4 − 3x2y2

b = 2mn = 2
(
x2 − y2

)
xy = 2x3y − 2xy3

c = m2 + n2 =
(
x2 − y2

)2
+ x2y2 = x4 + y4 − x2y2

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

Recall that (a, b, c) is a primitive Pythagorean triple (with a even) if and only if there
are positive integers m,n with m > n, gcd (m,n) = 1, and m 6≡ n (mod 2) such that
a = 2mn, b = m2 − n2, and c = m2 + n2.

Let m = max
{
x2 − y2, xy} and n = min

{
x2 − y2, xy}. Since x and y are distinct

primes, it is easily shown that gcd (m,n) = 1 and m > n. If y = 2, then since x is prime

2X
ia
ng
’s
T
ex
m
at
h



and x > y = 2, x must be odd and consequently, xy is even and x2 − y2 is odd. If y > 2,
then since x and y are primes and x > y > 2, x and y must be odd. In this case, xy is
odd and x2 − y2 is even. It follows that m 6≡ n (mod 2) in all cases.

As a result, a = 2mn = 2xy
(
x2 − y2), b = m2 − n2 =

∣∣∣
(
x2 − y2)2 − x2y2

∣∣∣,
c = m2 + n2 =

(
x2 − y2)2 + x2y2 = x4 + y4 − x2y2 yields a primitive Pythagorean triple

(a, b, c). Some examples are listed in the following
table:

x y a b c
3 2 60 11 61
5 2 420 341 541
7 2 1260 1829 2221
5 3 480 31 481
7 3 1680 1159 2041
7 5 1680 649 1801

.

Also solved by Brian D. Beasley, Clinton, SC; Paul M. Harms, North
Newton, KS; David E. Manes, Oneonta, NY; Boris Rays, Brooklyn, NY;
Raul A. Simon, Santiago, Chile; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5153: Proposed by Kenneth Korbin, New York, NY

A trapezoid with sides (1, 1, 1, x) and a trapezoid with sides (1, x, x, x) are both
inscribed in the same circle. Find the diameter of the circle.

Solution 1 by David E. Manes, Oneonta, NY

Let D be the diameter of the circle. If x = 1, then D =
√

2. If x =
3 +
√

5

2
or

x =
3−
√

5

2
, then D =

√
6 + 2

√
5 or

√
6− 2

√
5 respectively.

Given a cyclic quadrilaterals with successive sides a, b, c, d and semiperimeter s, then the
diameter D of the circumscribed circle is given by

D =
1

2

√
(ab+ cd)(ac+ bd)(ad+ bc)

(s− a)(s− b)(s− c)(s− d)
.

For the trapezoid with sides (1, 1, 1, x),

D =
1

2

√√√√√
(1 + x)(1 + x)(1 + x)(

1 + x

2

)(
1 + x

2

)(
1 + x

2

)(
3− x

2

) =
2√

3x− 1
.

For the trapezoid with sides (1, x, x, x),

D =
1

2

√√√√√
(x+ x2)(x+ x2)(x+ x2)(

3x− 1

2

)(
x+ 1

2

)(
x+ 1

2

)(
x+ 1

2

) =
2x
√
x√

3− x.

Setting the two expressions for D equal and simplifying,one obtains the quartic equation

x4 − 3x3 + 3x− 1 =
(
x2 − 1

) (
x2 − 3x+ 1

)
= 0
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whose positive roots are x = 1, or x =
3±
√

5

2
.

If x = 1, then D =
2√
2

=
√

2.

If x =
3 +
√

5

2
, then D =

2√√√√3−
(

3 +
√

5

2

) =

√
6 + 2

√
5.

If x =
3−
√

5

2
, then D =

√
6− 2

√
5.

Finally, note that if x = 1, then the two trapezoids are the same unit square.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Call the first trapezoid ABCD such that AB = BC = CD = 1 and DA = x.

Let 6 ABC = θ so that 6 ADC = π − θ. Applying the cosine formula to triangles ABC
and ADC, we obtain respectively

AC2 = 2(1− cos θ) and AC 2 = x 2 + 2x cos θ + 1.

Eliminating AC from these two equations, we obtain cos θ =
1− x

2
and hence

AC =
√
x+ 1.

Let the diameter of the circle be d. By the sine formula, we have

d =
AC

sin θ
=

2√
3− x. (1)

Call the second trapezoid PQRS such PQ = QR = RS = x and SP = 1.

Let 6 PQR=φ so that 6 PSR = π − φ. By the procedure similar to that for trapezoid
ABCD, we obtain

d =
PR

sinφ
=

2x
√
x√

3x− 1
. (2)

From (1) and (2), we obtain x4 − 3x3 + 3x− 1 = 0, whose positive roots are

1,
3−
√

5

2
,

3 +
√

5

2
. The corresponding values of d are

√
2,
√

5− 1, and
√

5 + 1.

Also solved by Paul M. Harms, North Newton, KS; Enkel Hysnelaj,
University of Technology, Sydney, Australia (jointly with) Elton Bojaxhiu,
Kriftel, Germany; Charles McCracken, Dayton, OH; John Nord, Spokane,
WA; Boris Rays, Brooklyn, NY; Raul A. Simon, Santiago, Chile; Trey
Smith, San Angelo, TX; Jim Wilson, Athens, GA, and the proposer.

• 5154: Proposed by Andrei Răzvan Băleanu (student, George Cosbuc National College)
Motru, Romania

Let a, b, c be the sides, ma,mb,mc the lengths of the medians, r the in-radius, and R the
circum-radius of the triangle ABC. Prove that:

m2
a

1 + cosA
+

m2
b

1 + cosB
+

m2
c

1 + cosC
≥ 6Rr

(
a

b+ c
+

b

c+ a
+

c

a+ b

)
.
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Solution by Arkady Alt, San Jose, California, USA

Since

m2
a

1 + cosA
=

m2
a

2 cos2 A2
=
m2
a

2

(
1 + tan2 A

2

)
=
m2
a

2
+
m2
a

2
tan2 A

2

=
m2
a

2
+
m2
a

2
· r2

(s− a)2
=

2
(
b2 + c2

)− a2
8

+
(b+ c)2 − a2 + (b− c)2

8
· r2

(s− a)2

≥ 2
(
b2 + c2

)− a2
8

+
s (s− a) r2

2 (s− a)2
=

2
(
b2 + c2

)− a2
8

+
sr2

2 (s− a)
,

then
∑

cyc

m2
a

1 + cosA
≥ 3

(
a2 + b2 + c2

)

8
+
sr2

2

∑

cyc

1

s− a.

Noting that

sr2

2

∑

cyc

1

s− a =
(s− a) (s− b) (s− c)

2

∑

cyc

1

s− a =
1

2

∑

cyc

(s− b) (s− c)

=
2ab+ 2bc+ 2ca− a2 − b2 − c2

8
,

we obtain

3
(
a2 + b2 + c2

)

8
+
sr2

2

∑

cyc

1

s− a =
ab+ bc+ ca+ a2 + b2 + c2

4
.

Hence,
∑

cyc

m2
a

1 + cosA
≥ A, where A =

ab + bc + ca + a2 + b2 + c2

4
.

Also since,

6Rr =
12Rrs

2s
=

3abc

2s
and

a

b + c
≤ a2 (b + c)

4abc
,

we have,

B ≥ 6Rr
∑

cyc

a

b+ c
, where B =

3abc

2s

∑

cyc

a2 (b + c)

4abc
=

3

4 (a + b + c)

∑

cyc

a2 (b + c) .

Thus, it suffices to prove inequality A ≥ B.

Since
∑
cyc
a (a− b) (a− c) ≥ 0 ( by the Schur Inequality), we have

4 (a+ b+ c) (A−B) = (a+ b+ c)
(
ab+ bc+ ca+ a2 + b2 + c2

)
− 3

∑

cyc

a2 (b+ c)
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= (a+ b+ c)
(
(a+ b+ c)2 − ab− bc− ca

)

− 3 (a+ b+ c) (ab+ bc+ ca) + 9abc

⇐⇒ 9abc+ (a+ b+ c)3 ≥ 4 (a+ b+ c) (ab+ bc+ ca)

⇐⇒
∑

cyc

a (a− b) (a− c) ≥ 0.

Also solved by Kee-Wai Lau, Hong Kong, China, and the proposer.

• 5155: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be the roots of the equation x4 + 6x3 + 7x2 + 6x+ 1 = 0. Find the value of

3− 2a

1 + a
+

3− 2b

1 + b
+

3− 2c

1 + c
+

3− 2d

1 + d
.

Solution 1 by Valmir Bucaj (student, Texas Lutheran University), Seguin,
TX

Since a, b, c, d are the roots of the equation x4 + 6x3 + 7x2 + 6x+ 1 = 0, by Viéte’s
formulas we have

a+ b+ c+ d = −6
ab+ ac+ ad+ bc+ bd+ cd = 7

abc+ abd+ acd+ bcd = −6
abcd = 1.

For convenience we adopt the following notation:

x = a+ b+ c+ d
y = ab+ ac+ ad+ bc+ bd+ cd
z = abc+ abd+ acd+ bcd
w = abcd.

Finally, we have:

3− 2a

1 + a
+

3− 2b

1 + b
+

3− 2c

1 + c
+

3− 2d

1 + d
=
−(8w + 3z − 2y − 7x− 12)

w + z + y + x+ 1

=
−(8× 1 + 3× (−6)− 2× 7− 7× (−6)− 12)

1− 6 + 7− 6 + 1

= 2.

Solution 2 by Brian D. Beasley, Clinton, SC

Since x4 + 6x3 + 7x2 + 6x+ 1 = (x2 + x+ 1)(x2 + 5x+ 1) = 0, we calculate the four
roots and assign the values a = (−1 + i

√
3)/2, b = (−1− i

√
3)/2, c = (−5 +

√
21)/2, and

d = (−5−
√

21)/2. This yields:
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3− 2a

1 + a
=

1− 5i
√

3

2
;

3− 2b

1 + b
=

1 + 5i
√

3

2
;

3− 2c

1 + c
=

3 + 5
√

21

6
;

3− 2d

1 + d
=

3− 5
√

21

6
.

Hence the desired sum is 2.

Solution 3 by David E. Manes, Oneonta, NY

The value of the expression is 2.

Note that if r is a root of the equation, then r 6= 0 and moreover
1

r
also satisfies the

equation since

1

r4
+

6

r3
+

7

r2
+

6

r
+ 1 =

1 + 6r + 7r2 + 6r3 + r4

r4
= 0.

Therefore, the roots of the equation can be labeled a, b =
1

a
, c, and d =

1

c
. Then

3− 2a

1 + a
+

3− 2b

1 + b
=

3− 2a

1 + a
+

3− 2

a

1 +
1

a

=
3− 2a

1 + a
+

3a− 2

1 + a
= 1.

Similarly,
3− 2c

1 + c
+

3− 2d

1 + d
= 1. Hence,

3− 2a

1 + a
+

3− 2b

1 + b
+

3− 2c

1 + c
+

3− 2d

1 + d
= 2.

Solution 4 by Michael Brozinsky, Central Islip, New York

We first note that if f(x) =
3− 2x

1 + x
, then f−1 (x) =

−x+ 3

x+ 2
.

If we denote the given polynomial by P (x), then the given expression is just the sum of
the roots of the equation −3x4 + 6x3 − 17x2 + 14x+ 817 = 0, obtained by clearing
fractions in the equation P

(
f−1 (x)

)
= 0. So the answer is −6/(−3) = 2.

Solution 5 by Pedro H. O. Pantoja, UFRN, Brazil

Let a, b, c, d be the roots of equation x4 + 6x3 + 7x2 + 6x+ 1 = 0, then
1 + a, 1 + b, 1 + c, 1 + d will be the roots of the equation x4 + 2x3 − 5x2 + 6x− 3 = 0. So,

1

1 + a
,

1

1 + b
,

1

1 + c
,

1

1 + d
,

will be the roots of the equation 3x4 − 6x3 + 5x2 − 2x− 1 = 0.

Then,

1

1 + a
,

1

1 + b
,

1

1 + c
,

1

1 + d
=
−(−6)

3
= 2, implies

3− 2a

1 + a
+

3− 2b

1 + b
+

3− 2c

1 + c
+

3− 2d

1 + d
= 5 · 2− 4 · 2 = 2.
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Comments by David Stone and John Hawkins of Statesboro, GA

(1) If we fix h and j = k and define G(x) =
h+ kx

1 + x
, then

G(r) +G

(
1

r

)
=
h+ kr

1 + r
+
h+ k

1

r

1 +
1

r

=
h+ kr

1 + r
+
rh+ k

r + 1
=
h+ rh+ k + kr

1 + r
= h+ k.

Thus, in the setting of the posed problem,

G(a) +G(b) +G(c) +G(d) = G(a) +G

(
1

a

)
+G(b) +G

(
1

b

)
= 2 (h+ k) .

In fact, if p(x) =
2n∑

i=0

aix
k is any palindromic polynomial (i.e., ak = a2n−k) of even degree

with distinct zeros unequal to ±1 and G(x) =
h+ kx

1 + x
, then

∑
G(r) = n(h+ k), where

the sum is taken over all zeros of p(x).

(2) We had to be careful with the pairing of the zeros because it is conceivable that

some r is being paired with multiple reciprocals−say all the zeros were 2, 2, 2, and
1

2
.

Actually, the polynomial given in the problem has a pair of real zeros (both negative
and reciprocals of each other) and a pair or complex zeros (which must lie on the unit
circle since the reciprocal equals the conjugate).

(3) We wonder if the expression
3− 2x

1 + x
and the total sum have some deep connection

to the polynomial. Perhaps there is some algebraic relationship, since algebraists
carefully analyze properties of the zeros of polynomials.

Also solved by Daniel Lopez Aguayo (student, Institute of Mathematics,
UNAM), Morelia, Mexico; Brian D. Beasley (two solutions), Clinton, SC;
Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie (jointly),
Angelo TX; Bruno Salgueiro Fanego, Viveiro, Spain; G. C. Greubel,
Newport News, VA; Paul M. Harms, North Newton, KS; Enkel Hysnelaj,
University of Technology, Sydney, Australia with Elton Bojaxhiu, Kriftel,
Germany; Talbot Knighton, Stephen Chou and Tom Peller (jointly, students
at Taylor University). Upland, IN; Bradley Luderman, San Angelo, TX;
Kee-Wai Lau, Hong Kong, China; Sugie Lee, Jon Patton, and Matthew Fox
(jointly, students at Taylor University), Upland, IN; Paolo Perfetti,
Department of Mathematics, “Tor Vergata” University, Rome, Italy; Aaron
Milauskas, Daniel Perrine, and Kari Webster (jointly, students at Taylor
University), Upland, IN; John Nord, Spokane WA; Boris, Rays, Brooklyn,
NY, and the proposer.

• 5156: Proposed by Yakub N. Aliyev, Khyrdalan, Azerbaijan

Given two concentric circles with center O and let A be a point different from O in the
interior of the circles. A ray through A intersects the circles at the points B and C. The
ray OA intersects the circles at the points B1 and C1, and the ray through A
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perpendicular to line OA intersects the circles at the points B2 and C2. Prove that

B1C1 ≤ BC ≤ B2C2.

Solution 1 by Charles McCracken, Dayton, OH

B1C1 < BC

(because the shortest path between two concentric circle is along a ray from the center.)

Rotate 4OBC until C is at C2, and let D be the new position of B.

4ODC2
∼= 4OBC

OD = OB, OC2 = OC, 6 DOC = 6 BOC

4ODC lies inside 4OB2C2

DC2 < B2C2

DC2 = BC

BC < B2C2

B1C1 < BC < B2C2.

This is almost a proof without words!

Solution 2 by David Stone and John Hawkins, Statesboro, GA

We will employ the line through the point A, rather than a ray. This is satisfactory
because the two line segments formed by the line intersecting the given annulus have the
same length. So if we impose a coordinate system with origin at the circles’ center and
assume that the point A is on the non-negative y−axis, we can restrict our attention to
the right half plane.

Suppose the two concentric circles have radii r1 < r2. By a rotation we can position A
at (0, b), where b ≥ 0 in the case where the line is vertical, the distance BC is
B1C1 = r2 − r1.
A non-vertical line though A has equation y = mx+ b where m may vary from −∞ to
+∞.

It is straight forward to determine that the line that intersects the right half circle of

radius r at the point (x,mx+ b), where x =
−mb+

√
(1 +m2)r2 − b2
1 +m2

. Now we have

B = (x1, y1) the point in the right half plane where the line y = mx+ b intersects the
inner circle of radius r1 and C = (x2, y2) the point in the right half pane where the line
y = mx+ b intersects the outer circle of radius r2.

Thus, x1 =
−mb+

√
(1 +m2)r21 − b2
1 +m2

and x2 =
−mb+

√
(1 +m2)r22 − b2
1 +m2

. Note that

x1 < x2.
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We compute the distance BC, which depends only upon m by the distance formula:

d(m) =
√

(x2 − x1)2 + (mx2 + b−mx1 − b)2

=
√

(x2 − x1)2 +m2 (x2 − x1)2

=
√

(1 +m2) (x2 − x1)2

=
√

(1 +m2) (x2 − x1)

Because x2 − x1 =

√
(1 +m2) r22 − b2 −

√
(1 +m2) r21 − b2

1 +m2
, we see that

d(m) =

√
(1 +m2) r22 − b2 −

√
(1 +m2) r21 − b2√

1 +m2
=

√

r22 −
b2

1 +m2
−
√

r21 −
b2

1 +m2
.

Our goal is to show that the length of the line segment BC is a maximum when m = 0
and is a minimum when the line is vertical, using BC = d(m) for all non-vertical lines.

Note the behavior of the function d:

(1) d is even, so its graph is symmetric about the y−axis.

(2) As m grows to positive or negative infinity, d(m) approaches r2 − r1.

(3) d(0) =
√
r22 − b2 −

√
r21 − b2 = B2C2.

(4) d′(m) = − mb2

(1 +m2)2

√
r21 −

b2

1 +m2

√
r22 −

b2

1 +m2

d(m).

By the expression for the derivative, we see:

for m < 0, d′(m) > 0, so d is increasing;

for m > 0, d′(m) < 0, so d is decreasing.

Therefore, d achieves its maximum, given in (3), when m = 0; that is, in the direction
perpendicular to the line along OA. The minimum value of BC is B1C1 = r2 − r1. All
other values of BC lie between these extremes.

Also solved by Michael Brozinsky, Central Islip, NY; Michael N. Freid,
Kibbutz Revivim, Israel; Raul A. Simon, Santiago, Chile, and the proposer.

• 5157: Proposed by Juan-Bosco Romero Márquez, Madrid, Spain

Let p ≥ 2, λ ≥ 1 be real numbers and let ek(x) for 1 ≤ k ≤ n be the symmetric
elementary functions in the variables x = (x1, . . . , xn) and xp = (xp1, . . . , x

p
n), with n ≥ 2

and xi > 0 for all i = 1, 2, . . . , n.

Prove that

e(pk/n)n (x) ≤ ek(x
p) + λ

(
epk(x)− ek(xp)

)
(n
k

)
+ λ

((n
k

)p − (nk
)) ≤

(
e1(x)

n

)pk
, 1 ≤ k ≤ n.
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Solution by the proposer

The elementary symmetric functions in the real variables x1, x2, . . . , xn for 1 ≤ k ≤ n are
defined as follows:

e1(x) = e1(x1, x2, . . . , xn) =
n∑

i=1

xi =
∑

1≤i≤n
xi =

∑

1≤i≤(n1)

xi

e2(x) =
∑

1≤i<j≤n
xixj =

∑

1≤i≤(n2)

x∗i ,

where x∗i = xi1xi2 , 1 ≤ i1 < i2 ≤ n; and similarly,

ek(x) =
∑

1≤i≤(nk)

x∗i =
∑

1≤i1<i2...<kk≤n
xi1xi2 . . . xik

where x∗i = xi1xi2 . . . xik , 1 ≤ i1 < i2 < . . . < ik ≤ n,
. . .

en(x) = x1x2 . . . xn.

We present some results, that we will need:

Theorem 1 (Mac Laurin’s Inequalities)

If Ek(x) =
ek(x)(n
k

) , 1 ≤ k ≤ n, is the kth symmetric function mean, then

(En(x))1/n ≤ . . . ≤ (Ek(x))1/k ≤ . . . ≤ (E2(x))1/2 ≤ E1(x).

Theorem 2 (Power Means Inequality)

Ifxi > 0, i = 1, 2, . . . , n, p > 1 are real numbers then,

n∑

i=1

xpi <

(
n∑

i=1

xi

)p
≤ np−1

n∑

i=1

xpi .

See, reference [1].

And by reference [2], we have:

Corollary (Shanse Wu)

If xi > 0, i = 1, 2, . . . , n; n ≥ 2, p ≥ 2, 1 ≤ k ≤ n are real numbers, then

(ek(x))p − ek (xp) ≥
((

n

k

)p
−
(
n

k

))
(en(x))pk/n .

We denote the homographic function of the real variable λ ≥ 1, with x ∈ <n+ and p ≥ 2
fixed as follows:

f (λ) =
a+ λ(b− a)(n

k

)
+ λ

((n
k

)p − (nk
))

where a = ek(x
p) and b = epk(x), 1 ≤ k ≤ n.

Properties of the function f
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1) f is a positive function for λ ≥ 1 since by Corollary 1, we have

b− a = epk(x)− ek(xp) ≥
((

n

k

)p
−
(
n

k

))
epk/nn (x) > 0, for 1 ≤ k ≤ n,

and so by the definition of f we obtain, f(λ) ≥ 0, for λ ≥ 1.

2) f is an infinitely differentiable continuous function for λ ≥ 1.

Monotonicity of f .

We have:

f(1) =
a+ b− a(n

k

)p =
b(n
k

)p =
epk(x)(n
k

)p =

(
ek(x)(n
k

)
)p

= Epk(x) ≤ (Ek1 (x)p = [E1(x)]pk

by application of the Theorem 1 (MacLaurin’s Inequalities).

Now by computing and evaluating the first derivative of the function f we obtain:

f ′(λ) =

[(n
k

)
+ λ

((n
k

)p − (nk
))

(b− a)
]− [a+ λ(b− a)]

[(n
k

)p − (nk
)]

[(n
k

)
+ λ

[(n
k

)p − (nk
)]]2 =

(n
k

)
b− a(nk

)p

D

=

(n
k

)

D


b− a

(
n

k

)p−1


=

(n
k

)

D


(

∑

1≤j1<j2<...<jk≤n
xj1xj2 . . . xjk)p −

(
n

k

)p−1 ∑

1≤j1<j2<...<jk≤n
(xj1xj2 . . . xjk)p




=

(n
k

)

D







∑

1≤j≤(nk)

x∗j




p

−
(
n

k

)p−1 ∑

1≤j≤(nk)

xpj


 ≤ 0.

by application of Theorem 2 and where D =
[(n
k

)
+ λ

[(n
k

)p − (nk
)]]2

> 0, and where the
products are defined as: x∗j = xj1xj2 . . . xjk where j is the number of elements in (or
cardinality of) each set J = {j1, j2, . . . , jk} with k elements. The number of all the
products is also equal to all subsets of k elements of the set {1, 2, . . . , n} which is in
total

(n
k

)
.

Using Theorem 2 (the power means inequality), function f is decreasing for λ ≥ 1. And
so,

f(+∞) = lim
λ→+∞

f(λ) ≤ f(λ) ≤ f(1), for λ ≥ 1.

From the above corollary we have:

f(+∞) = lim
λ→+∞

f(λ) =
b− a(n

k

)p − (nk
) =

epk(x)− ek(xp)(n
k

)p − (nk
) ≥

(
n∏

i=1

x
p/n
i

)k
= epk/nn (x)).

And so, for the conditions of the problem, we have shown that the original inequality
holds.

epk/nn (x) ≤ ek(x
p) + λ

(
epk(x)− ek(xp)

)
(n
k

)
+
((n
k

)p − (nk
)) ≤

(
e1(x)

n

)pk
.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2012

• 5176: Proposed by Kenneth Korbin, New York, NY

Solve: 


x2 + xy + y2 = 32

y2 + yz + z2 = 42

z2 + xz + x2 = 52.

• 5177: Proposed by Kenneth Korbin, New York, NY

A regular nonagon ABCDEFGHI has side 1.

Find the area of 4ACF .

• 5178: Proposed by Neculai Stanciu, Buzău, Romania

Prove: If x, y and z are positive real numbers such that xyz ≥ 7 + 5
√

2, then

x2 + y2 + z2 − 2(x+ y + z) ≥ 3.

• 5179: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all positive real solutions (x1, x2, . . . , xn) of the system




x1 +
√
x2 + 11 =

√
x2 + 76,

x2 +
√
x3 + 11 =

√
x3 + 76,

· · · · · · · · ·
xn−1 +

√
xn + 11 =

√
xn + 76,

xn +
√
x1 + 11 =

√
x1 + 76.

• 5180: Paolo Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Italy

Let a, b and c be positive real numbers such that a+ b+ c = 1. Prove that

1 + a

bc
+

1 + b

ac
+

1 + c

ab
≥ 4√

a2 + b2 − ab
+

4√
b2 + c2 − bc

+
4√

a2 + c2 − ac
.
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• 5181: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate: ∞∑

n=1

∞∑

m=1

n ·m
(n+m)!

.

Solutions

• 5158: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with integer length sides AB = BC = x, and
CD = DA = x+ 1.

Find the distance between the incenter and the circumcenter.

Solution by Michael Brozinsky, Central Islip, NY

Since the perpendicular bisector of the base of an isosceles triangle passes through the
vertex angle and the circumcenter of that triangle, it follows (by considering isosceles
triangles CBA and CDA) that the line segment joining B and D is a diameter of the
circumcircle, and thus the inscribed angles A and C are right angles.

The circumcenter E is also the circumcenter of right triangle BAC, and thus it is the

midpoint of the hypotenuse BD, and so it is

√
x2 + (x+ 1)2

2
from B. The incenter F

(being equidistant from BA and BD) is on the angle bisector of angle A and also on

BD (by symmetry as triangles ABD and CBD are congruent), and so
BF

FD
=

x

x+ 1
(since an angle bisector of a triangle divides the opposite side into segments proportional
to the adjacent sides).

Since BF + FD =
√
x2 + (x+ 1)2 we have BF =

x

2x+ 1
·
√
x2 + (x+ 1)2 and hence the

distance between E and F is

√
x2 + (x+ 1)2 ·

(
1

2
− x

2x+ 1

)
=

√
2x2 + 2x+ 1

4x+ 2
.

Comments: Most of the solvers realized that there is no need to restrict x to being an
integer; x can be any positive real number. David Stone and John Hawkins also
mentioned in their solution that even though the inradius (ρ) and the circumradius (r)
grow large with x, as does the difference r − ρ, the distance d between the centers has

the limiting value of

√
2

4
≈ 0.35355339. So for large x, the incircle and the circumcircle

are relatively concentric.

Also solved by Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Charles McCracken, Dayton, OH; Boris Rays of Brooklyn,
NY; David Stone and John Hawkins (jointly), Statesboro, GA, and the
proposer.
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• 5159: Proposed by Kenneth Korbin, New York, NY

Given square ABCD with point P on diagonal AC and with point Q at the midpoint of
side AB.

Find the perimeter of cyclic quadrilateral ADPQ if its area is one unit less than the
area of square ABCD.

Solution by Trey Smith, San Angelo, TX

Fix a point E on AB such that PE is perpendicular to AB. Similarly, fix a point F on
AD such that PF is perpendicular to AD. Let k =length(AB). AQPD is a cyclic
quadrilateral, so it must be the case that 6 QPD is a right angle, since it and 6 DAQ are
supplementary. Now 6 FPE is also a right angle which forces 6 QPE ∼= 6 DPF . And
since 4EPQ and 4FPD are both right triangles with PE ∼= PF , it is the case that
4FPD ∼= 4EPQ. Finally, observing that EQ ∼= FD ∼= EB we have that E is the

midpoint of QB and so the length of AE is
3k

4
.

Since 4FPD ∼= 4EPQ, it is easy to see that the area of AQPD is the same as the area

of square AEPF . Thus, the area of AQPD is
9k2

16
and so the difference in the area of

ABCD and AQPD is
7k2

16
. Setting this equal to 1 and solving, we obtain k =

4√
7

.

Now

length(AQ) =
k

2
=

2√
7
,

length(QP ) = length(PD) =

√(
k

4

)2

+

(
3k

4

)2

=
k
√

10

4
=

√
10√
7
, and

length(DA) = k =
4√
7
.

Summing these, we obtain the perimeter
6 + 2

√
10√

7
=

6
√

7 + 2
√

70

7
.

Comment by David Stone and John Hawkins. It is easy to show that the point P

must be located
3

4
of the way from A to C along the diagonal AC in order to make

ADPQ a cyclic quadrilateral.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Tania Moreno
Garćıa, UHO, Cuba jointly with Jose P. Suárez, ULPGC, Spain; Paul M.
Harms, North Newton, KS; Caleb Hemmick, Kaleb Davis, Logan Belgrave
and Brianna Leever (jointly, students at Taylor University), Upland, IN;
Kee-Wai Lau, Hong Kong, China; Sugie Lee, Jon Patton, and Matthew Fox
(jointly, students at Taylor University), Upland, IN; David E. Manes,
Oneonta, NY; Aaron Milauksas, Daniel Perrine, Kari Webster (jointly,
students at Taylor University), Upland, IN; Tom Peller, Stephen Chou and
Tal Knighton (jointly, students at Taylor University), Upland, IN; Boris
Rays, Brooklyn, NY; David Stone and John Hawkins (jointly), Statesboro,
GA, and the proposer.
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• 5160: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, there are n (where n ≥ 2) roads {li} whose
equations are

li : x cos

(
2πi

n

)
+ y sin

(
2πi

n

)
= i,where i = 1, 2, 3, . . . ,n.

Any anthill must be located so that the sum of the squares of its distances to these n

lines is
n(n+ 1)(2n+ 1)

6
. Two queen ants are (im)mortal enemies and have their anthills

as far apart as possible. If the distance between these queens’ anthills is 4 units, find n.

Solution by Kee-Wai Lau, Hong Kong, China

We show that the anthills are 2 csc

(
π

n

)
units apart for n ≥ 3. In the present case that

they are 4 units apart, we see that n = 6. If n = 2, then the anthill can be located
anywhere on the y−axis, so that the distance between them can be as large as possible.

For simplicity, we denote π/n by m. Let the coordinates of an anthill be (r cos θ, r sin θ),
where r ≥ 0 and 0 ≤ θ ≤ 2π. Its distance to li is given by

|r cos θ cos (2mi) + r sin θ sin (2mi)− i| = |r cos (2mi− θ)− i|.

Since
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
, so according to the rule for location , we have

n∑

i=1

(r cos(2mi− θ)− i)2 =
n∑

i=1

i2. Clearly the origin satisfies the rule. If r 6= 0, then

n∑

i=1

(
r cos2 (2mi− θ)− 2i cos(2mi− θ)) = 0. (1)

As cos2 (2mi− θ) =
1

2
(1 + cos (4mi− 2θ)) , so (1) is equivalent to

rn+ r cos 2θ
n∑

i=1

cos(4mi) + r sin 2θ
n∑

i=1

(4mi)

−4 cos θ
n∑

i=1

i cos(2mi) − 4 sin θ
n∑

i=1

i sin(2mi) = 0. (2)

For sin(x/2) 6= 0 and positive integers k, we have the following known results,

k∑

i=1

cos(ix) =
sin(kx/2) cos(k + 1)x/2

sin(x/2)
,

k∑

i=1

sin(ix) =
sin(kx/2) sin(k + 1)x/2

sin(x/2)
,

k∑

i=1

i cos(ix) =
(k + 1) cos(kx)k cos(k + 1)x− 1

4 sin2(x/2)
,

k∑

i=1

i sin(ix) =
(k + 1) sin(kx)− k sin(k + 1)x

4 sin2(x/2)
,
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which can be proved readily by induction on k. Thus for n ≥ 3, we have

n∑

i=1

cos(4mi) =
n∑

i=1

sin(4mi) = 0,
n∑

i=1

i cos(2mi) =
n

2
,

n∑

i=1

sin(2mi) =
−n cot(m)

2
,

and from (2) we deduce that for m− π < θ < m,

r =
2 sin(m− θ)

sinm
. (3)

Together with the origin, (3) represents the locus of a circle. In rectangular coordinates
the equation of the circle is (x− 1)2 (y + cotm)2 = csc2m. Thus the distance between
the anthills equals the diameter 2 cscm of the circle and this completes the solution.

Also solved by Paul M. Harms, North Newton, KS; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5161: Proposed by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy

It is well known that for any function f : < → <, continuous or not, the set of points on
the y-axis where it attains a maximum or a minimum can be at most denumerable.
Prove that any function can have at most a denumerable set of inflection points, or give
a counterexample.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let C be the Cantor ternary set, defined by

C = [0, 1]−
∞⋃

m=1

3m−1−1⋃

k=0

(
3k + 1

3m
,
3k + 2

3m

)

(see [1] as a reference). It is well known that C is uncountable and has Lebesgue
measure zero. (Therefore C does not contain any interval).

For any point x ∈ [0, 1] define the distance from x to C by d(x,C) = inf
y∈C
|x− y|. If

x ∈ [0, 1] there is (at least) one point y(x) ∈ C such that d(x,C) = |x− y(x)|, since C is
closed. Furthermore d(x,C) = 0 if and only if x ∈ C.

Define a real function f : [0, 1] −→ R by f(x) = (x− y(x))3, if the point y(x) ∈ C that is
closest to x is unique, and put f(x) = 0 if there is not a unique closest point to x.
Extend f to a 1-periodic function to the whole of the real line. f is a piecewise cubic
polynomial (and therefore f is piecewise differentiable). Any point of the form n+ y
where n is an integer and y ∈ C is an inflection point.

We produce a second counterexample and show that there is even a continuously
differentiable function with uncountably many inflection points by “lifting” the previous
example to a continuously differentiable function. We put C∗ = {n+ y|n an integer,
y ∈ C} and define

f(x) =

∫ x

0
d2 (t, C∗) dt.

f is differentiable and f ′(x) = d2(x,C∗) where f ′(x is continuous, since d(x,C∗) is. The
derivative is zero if and only if x ∈ C∗. The points of zero derivatives are uncountable,
since C∗ is uncountable, and every point of C∗ is an inflection point.
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Reference: [1] <http://en.wikipedia.org/wiki/Cantor set>

Solution 2 by proposer

We propose the counter example.

Let f(x) =

∫ x

0
ρ(t, C)dt where 0 ≤ x ≤ 1, C is a Cantor set (ternary for example) and

let ρ(t, C) = inft′∈C |t− t′| = mint′∈C |t− t′| (the equality due to the
closeness of C = C).

We know that C is non-denumerable and nowhere dense. The nowhere density means
that for any t ∈ C, t ∈ C, there exists an open interval I = (a, b) such that t < a < b < t′

and I ∩ C = ∅.
Now we observe that:

1) f(x) is differentiable since ρ(t, C) is continuous, and

2) f ′(x) = 0 if x ∈ C and f ′(x) > 0 if x 6∈ C, (this is due to the closeness of C).

The non-denumerability of C implies the non-denumerability of set of points x where
f ′(x) = 0 and moreover they are inflection points because f ′(x) > 0 if x 6∈ C.
The nowhere density of C together with ρ(t, C) > 0 imply that the ordinates of two
different points are necessarily different so getting the non-denumerability of the
ordinates of these inflection points.

Editor’s comment: Several readers stated that at most there can be a denumerable
number of inflection points. Michael Fried of Kibbutz Revivim in Israel was one
them, but upon seeing Paolo’s proof he wrote:

Yes, Paolo is right. The mistake in my objection was to assume implicitly that the
inflection points corresponded to distinct maximum/minimum values of the derivative
function. This would indeed imply that the distinct ordinates of the inflection points
were as numerous as the those of the maximum/minimum, and, therefore, at most
denumerable.

But think about what this function ρ(t, C) = inf
t′∈C
|t− t′| looks like.

The set of all points at which the function ρ has a minimum is precisely the Cantor set,
as Paolo claimed, so that set is non-denumerable. All its minimum values, which occur
at every point of the Cantor set, however, are all equal to zero. As for its maximum
values, there is one for each step in the process producing the ternary Cantor set (i.e.
one maximum value for each “removal of the middle third”), so that the ordinates of the
maximum values of ρ are denumerable. There is no contradiction, then, of the fact that
the maximum/minimum values of the functions can be at most denumerable.

Hence, we have the following situation:

1) ρ is the derivative function of f(x) =

∫ x

0
ρ(t, C)dt where 0 ≤ x ≤ 1. Therefore, f has

a non-denumerable set of infection points.

2) Since f is defined as an integral, it is an increasing function. Therefore, the value of f
at each inflection point is unique.

Very interesting!

———————–
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Each of the other solvers came up with the opposite conclusion, namely that the number
of inflection points must be at most denumerable. Their reasoning is reflected in Michael
Brozinsky’s argument. He stated: “If a function f(x) has an inflection point at x = x0
then there is an open interval ax0 < x < bx0 containing x0 such that the concavity on
(ax0 , x0) and (x0, bx0) is different and thus (ax0 , bx0) cannot contain another inflection
point of f(x). Thus the inflection points of f(x) are isolated points and hence at most
denumerable. (We can, without loss of generality, take ax0 and bx0 to be rational since
the rational numbers are dense and then associate to x0 the midpoint of the

aforementioned interval, i.e., the rational number
ax0 + bx0

2
. Since the rationals are

denumerable, the inflection points of f(x) are at most denumerable.”

David Stone and John Hawkins were in correspondence with me about this
problem because I took issue with their solution, which was in the spirit of Michael
Brozinsky’s. I sent them Paolo’s proof and Michael Fried’s comment about it, and they
responded as follows:

John and I looked at Paolo’s counterexample and Michael’s comment and now the
reason for the confusion is clear. We’re using the standard calculus notion – an
inflection point is a place where the concavity changes. Moreover, concavity is defined
over an interval, not at a point. You can see our meaning in the proof we sent you. . ..
But Paolo and Michael seem to be using a different definition, more like “an inflection
point is a place where the derivative achieves a max or min”. Their work never mentions
“concavity” – not in their mind at all. Wikipedia mostly agrees with this notion. (It’s
not an issue here, but what if the derivative didn’t exist? What would be meant by
“inflection point”?) I think we are all correct, subject to the differing definitions (and
the problem statement proscribed no particular meaning of the term “inflection point”).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

As editor of this column, I agree with them, that both solutions are correct, depending
upon which definition of inflection point is used. But using the change in concavity
definition of an inflection point makes this problem much less challenging than using the
extremities of the first derivative definition. Here is what Albert (proof #1) wrote about
his initial thoughts on the problem.

I have given problem 5161 a few thoughts. It is clear that the number of inflection
points is countable if the function f(x) is sufficiently smooth, let’s say two times
continuously differentiable. The inflection points are then the extrema of the function
f ′(x), and the set of (local) extrema of a function is countable. So if we want to find a
counterexample we should concentrate on more “exotic” functions. I have in mind to
construct a counterexample that is based on the Cantor set. We start from the function
f(x) = x defined on the interval [0, 1] and replace linear segments by cubics in the
following sense: if 0 < a < b < 1 then we replace the function f(x) = x by

g(x) = a+ 3
(x− a)2

(b− a)
− 2

(x− a)3

(b− a)2
. Then g(a) = a, g(b) = b, g′(a) = g′(b) = 0. In the first

iteration we take a = 1/3, b = 2/3 and do the replacement for the third in the middle.
We continue the Cantor construction and do similar replacements for the first and third
third. Continuing this way we get a continuous function that is piecewise differentiable
(multiple times). We now have to analyze in more detail what happens at the points of
the Cantor set, and see whether all these points are inflection points. Kind regards -
Albert
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Also solved by: Michael Brozionsky, Central Islip, NY; Michael N. Fried,
Kibbtuz Revivim, Israel, and David Stone and John Hawkins (jointly),
Statesboro, GA,

• 5162: Proposed by José Luis Dı́az-Barrero and José Gibergans-Báguena, Barcelona,
Spain

Let a, b, c be the lengths of the sides of an acute triangle ABC. Prove that

√
b2 + c2 − a2
a2 + 2bc

+

√
c2 + a2 − b2
b2 + 2ca

+

√
a2 + b2 − c2
c2 + 2ab

≤
√

3.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

Using the Law of Cosines and the Arithmetic - Geometric Mean Inequality, we get

b2 + c2 − a2 = 2bc cosA

and
a2 + 2bc = b2 + c2 − 2bc cosA+ 2bc ≥ 4bc− 2bc cosA = 2bc (2− cosA) .

Since 0 < A <
π

2
, we have

b2 + c2 − a2
a2 + 2bc

≤ 2bc cosA

2bc (2− cosA)
=

cosA

2− cosA
=

1

2 secA− 1

and hence, √
b2 + c2 − a2
a2 + 2bc

≤ 1√
2 secA− 1

.

Further, equality is attained if and only if b = c.

Similar steps show that

√
c2 + a2 − b2
b2 + 2ca

≤ 1√
2 secB − 1

and

√
a2 + b2 − c2
c2 + 2ab

≤ 1√
2 secC − 1

,

with equality if and only if a = b = c.

Consider the function f (x) =
1√

2 secx− 1
on

(
0,
π

2

)
. Since

f ′′ (x) =
− secx

(
sec3 x− 2 sec2 x+ secx+ 1

)

(2 secx− 1)
5
2

=
− secx

[
secx (secx− 1)2 + 1

]

(2 secx− 1)
5
2

< 0
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on

(
0,
π

2

)
, it follows that f (x) is concave down on

(
0,
π

2

)
. Then, by Jensen’s Theorem

and our comments above,

√
b2 + c2 − a2
a2 + 2bc

+

√
c2 + a2 − b2
b2 + 2ca

+

√
a2 + b2 − c2
c2 + 2ab

≤ f (A) + f (B) + f (C)

≤ 3f

(
A+B + C

3

)

= 3f

(
π

3

)

= 3 · 1√
3

=
√

3,

with equality if and only if a = b = c. That is, if and only if 4ABC is equilateral.

Also solved by Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta,
NY; Charles McCracken, Dayton, OH, and the proposers.

• 5163: Proposed by Pedro H. O. Pantoja, Lisbon, Portugal

Prove that for all n ∈ N
∫ ∞

0

xn

2


coth

x

2
− 1


dx =

∞∑

k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn (k1 + · · ·+ kn)
.

Solution 1 by G. C. Greubel, Newport News, VA

It can be seen that

coth
x

2
− 1 =

2

ex − 1
.

With this the integral in question becomes

I =

∫ ∞

0

xn

2

(
coth

x

2
− 1

)
dx

=

∫ ∞

0

xn

ex − 1
dx

I = Γ(n+ 1)ζ(n+ 1).

Now we have to show that the n− sums are equal to the same value. This can be done
by considering the integral ∫ ∞

0
e−axdx =

1

a
.

Using this we then have

S =
∞∑

k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn (k1 + · · ·+ kn)
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=

∫ ∞

0

∞∑

k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn
e−(k1+···+kn)xdx

=

∫ ∞

0



∞∑

k1=1

e−k1x

k1


 · · ·



∞∑

kn=1

e−knx

kn


 dx

=

∫ ∞

0



∞∑

k1=1

e−kx

k1




n

dx

S =

∫ ∞

0

(
− ln

(
1− e−x)

)n
dx.

By making the substitution t = − ln(1− e−x) we then have

S =

∫ ∞

0

tn

et − 1
dt = Γ(n+ 1)ζ(n+ 1).

We have shown that

∫ ∞

0

xn

2

(
coth

x

2
− 1

)
dx and

∞∑

k1=1

· · ·
∞∑

kn=1

1

k1 · · · kn (k1 + · · ·+ kn)
is

each equal to Γ(n+ 1)ζ(n+ 1), thus they are equal to each other.

Solution 2 by Paolo Perfetto, Department of Mathematics, “Tor Vergatta”
University, Rome, Italy

Proof: We write

1

k1 + · · ·+ kn
=

∫ 1

0
tk1+···+kn−1dt

and then

∞∑

k1,...,kn=1

1

k1k2 · · · kn

∫ 1

0
tk1+···+kn−1dt =

∫ 1

0
t−1

∞∑

k1,...,kn=1

tk1+···+kn

k1k2 · · · kn
dt

=

∫ 1

0
t−1(−1)n(ln(1− t))ndt

= (−1)n
∫ 1

0
(1− t)−1(ln t)ndt.

Now we change variables letting ln t = −x. Therefore,

(−1)n
∫ ∞

0

(−x)n

1− e−xdx =

∫ ∞

0

xn

1− e−xdx.

The proof concludes by observing that

coth
x

2
− 1 =

e
x
2 + e

−x
2

e
x
2 − e−x

2

− 1 =
2e
−x
2

e
x
2 − e−x

2

=
2

1− e−x .
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Comment by Paolo: Apart from p = 0 the series in the statement is the same as in
problem #174 in the Missouri Journal of Mathematical Sciences, 22(1);
downloadable at < http : //www.math− cs.ucmo.edu/mjms/2010.1/Prob7.pdf >

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We find that:

∫ ∞

0

xn

2

(
coth

x

2
− 1

)
dx =

∫ ∞

0

xn

2

(
e

x
2 + e

−x
2

e
x
2 − e−x

2

− 1

)
dx =

∫ ∞

0

xne−x

1− e−xdx. (1)

We perform a change of variables: y = 1− e−x, dy = e−xdx. So

∫ ∞

0

xne−x

1− e−xdx =

∫ 1

0

(− log(1− y))n

y
dy =

∫ 1

0

( ∞∑

k=1

yk

k

)n

y
dy

=

∫ 1

0

∑

k1≥1,k2≥1...,kn≥1

yk1+k2+...+kn−1

k1 · k2 · · · kn
dy

=
∑

k1≥1,k2≥1...,kn≥1

yk1+k2+...+kn−1

k1 · k2 · · · kn

∫ 1

0
yk1+k2+...+kn−1dy

=
∑

k1≥1,k2≥1...,kn≥1

1

k1 · k2 · · · kn (k1 + k2 + . . .+ kn)
.

The interchange of summation and integration is allowed becasue of absolute
convergence (all involved terms are positive).

It is noteworthy that the integral (1) can be explicitly evaluated in terms of the
Riemann zeta function:

∫ ∞

0

xne−x

1− e−xdx =
∞∑

k=1

∫ ∞

0
xne−kxdx =

∞∑

k=1

1

kn+1

∫ ∞

0
xne−xdx = n!

∞∑

k=1

1

kn+1
= n!ζ(n+ 1).

It is well known that ζ(n+ 1) is a rational multiple of πn+1, if n is odd.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2012

• 5182: Proposed by Kenneth Korbin, New York, NY

Part I: An isosceles right triangle has perimeter P and its Morley triangle has
perimeter x. Find these perimeters if P = x+ 1.

Part II: An isosceles right triangle has area K and its Morley triangle has area y. Find
these areas if K = y + 1

• 5183: Proposed by Kenneth Korbin, New York, NY

A convex pentagon ABCDE, with integer length sides, is inscribed in a circle with
diameter AE.

Find the minimum possible perimeter of this pentagon.

• 5184: Proposed by Neculai Stanciu, Buzău, Romania

If x, y and z are positive real numbers, then prove that

(x+ y)(y + z)(z + x)

(x+ y + z)(xy + yz + zx)
≥ 8

9
.

• 5185: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Calculate, without using a computer, the value of

sin

[
arctan

(
1

3

)
+ arctan

(
1

5

)
+ arctan

(
1

7

)
+ arctan

(
1

11

)
+ arctan

(
1

13

)
+ arctan

(
111

121

)]
.

• 5186: Proposed by John Nord, Spokane, WA

Find k so that

∫ k

0

(
− b
a
x+ b

)n
dx =

1

2

∫ a

0

(
− b
a
x+ b

)n
dx.

• 5187: Proposed by Ovidiu Furdui, Cluj, Romania
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Let f : [0, 1]→ (0,∞) be a continuous function. Find the value of

lim
n→∞




n

√
f( 1

n) + n

√
f( 2

n) + · · ·+ n

√
f(nn)

n




n

.

Solutions

• 5164: Proposed by Kenneth Korbin, New York, NY

A triangle has integer length sides (a, b, c) such that a− b = b− c. Find the dimensions
of the triangle if the inradius r =

√
13.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

If a, b and c are the side lengths of the triangle then the inradius r is given by the
formula

r =
1

2

√
(b+ c− a)(c+ a− b)(a+ b− c)

a+ b+ c
. (see, e.g.,http//mathworld.wolfram.com/Inradius.html).

By assumption, c = 2b− a. So

√
13 =

1

2

√
(3b− 2a)(2a− b)

3
, or equivalently

(3b− 2a)(2a− b) = 156.

Obviously b is even. (If b were odd, then both 3b− 2a and 2a− b are odd, and therefore
their product would be odd, which is not true.) So b = 2b′ and this gives the equation

(3b′ − a)(a− b′) = 39.

Note that 39 = xy is the product of two integers. So,

(x, y) ∈ {(1, 39), (3, 13), (13, 3), (39, 1), (−1,−39), (−3,−13), (−13,−3), (−39,−1)} .

If 3b′ − a = x and a− b′ = y, then

b′ =
x+ y

2
, and

a =
x+ 3y

2
.

We find (a, b, c) ∈ {(59, 40, 21), (21, 16, 11), (11, 16, 21), (21, 40, 59)}, and we easily verify
that each triplet satisfies the triangle inequality.

Solution 2 by Arkady Alt, San Jose, CA

Let F and s be the area and semiperimeter. Since a+ c = 2b then s =
a+ b+ c

2
=

3b

2
,
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and using F =
√
s (s− a) (s− b) (s− c) = sr we obtain

(s− a) (s− b) (s− c) = sr2 ⇐⇒
(

3b

2
− a

)(
3b

2
− b
)(

3b

2
− c
)

= 13 · 3b

2

⇐⇒
(

3b

2
− a

)(
3b

2
− c
)

= 39

⇐⇒
(

9b2

4
− (a+ c)

3b

2
+ ac

)
= 39 ⇐⇒

(
9b2

4
− 2b · 3b

2
+ ac

)
= 39

⇐⇒ 4ac− 3b2 = 12 · 13.

Thus we have

{
a+ c = 2b

4ac− 3b2 = 156
=⇒

{
4a (2b− a)− 3b2 = 156

c = 2b− a if, and only if,

{
4a (2b− a)− 3b2 = 156

c = 2b− a ⇐⇒
{

8ab− a2 − 3b2 = 156
c = 2b− a.

Since 8ab− a2 − 3b2 = (3b− 2a) (2a− b) and





a < s
b < s
c < s

⇐⇒
{

2a < 3b
c < s

⇐⇒
{

2a < 3b
2 (2b− a) < 3b

⇐⇒ b < 2a < 3b

then the problem is equivalent to the system

(1)

{
(3b− 2a) (2a− b) = 156

b < 2a < 3b.

Since 3b− 2a ≡ 2a− b (mod 2) and 156 = 22 · 3 · 13 = 2 · 78 = 6 · 26 then (1)
in positive integers is equivalent to

{
3b− 2a = k
2a− b = m

⇐⇒
{

2b = k +m
4a = k + 3m

⇐⇒





a =
k + 3m

4

b =
k +m

2

,

where (k,m) ∈ {(2, 78) , (78, 2) , (6, 26) , (26, 6)} .

Noting that the inequality b < 2a < 3b ⇐⇒ k +m

2
<
k + 3m

2
<

3 (k +m)

2
holds for any positive k,m we finally obtain

(a, b) ∈ {(59, 40) , (21, 40) , (21, 16) , (11, 16)} .
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Thus, (a, b, c) ∈ {(59, 40, 21) , (21, 40, 59) , (21, 16, 11) , (11, 16, 21)} are
all solutions of the problem.

Comment by David Stone and John Hawkins, Statesboro, GA. In their
featured solutions to SSM 5146 (May 2011 issue) both Kee-Wai Lau and Brian Beasley
found all integral triangles with in-radius

√
13. Note that the condition a− b = b− c is

equivalent to b = (a+ c)/2. That is, irrespective of how one might label or order the
sides, the side b must be the “middle-length” side , the average of the other two sides.

Also solved by Brain D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Elsie M. Campbell, Dionne T. Bailey and
Charles Diminnie (jointly), San Angelo TX; Bruno Salgueiro Fanego,
Viveiro, Spain; Tania Moreno Garćıa, University of Holgúın (UHO),
Holgúın, Cuba jointly with José Pablo Suárez Rivero, University of Las
Palmas de Gran Canaria (ULPGC), Spain; Paul M. Harms, North Newton,
KS; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly with
Elton Bojaxhiu, Kriftel, Germany; Sugie Lee, John Patton, and Matthew
Fox (jointly; students at Taylor University), Upland, IN; Kee-Wai Lau, Hong
Kong, China; David E. Manes, Oneonta, NY; Charles McCracken, Dayton,
OH; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA; Jim Wilson, Athens, GA, and the proposer.

• 5165: Proposed by Thomas Moore, Bridgewater, MA

“Dedicated to Dr. Thomas Koshy, friend, colleague and fellow Fibonacci enthusiast.”

Let σ(n) denote the sum of all the different divisors of the positive integer n. Then n is
perfect, deficient, or abundant according as σ(n) = 2n, σ(n) < 2n, or σ(n) > 2n. For
example, 1 and all primes are deficient; 6 is perfect, and 12 is abundant. Find infinitely
many integers that are not the product of two deficient numbers.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes. We show that for any

positive integer n, the integer
n+10∏

k=1

pk is not the product of two deficient numbers.

Suppose , on the contrary, that
n+10∏

k=1

pk = ab, where both a and b are deficient numbers.

Clearly a and b are relatively prime and so

4

(
n+10∏

k=1

pi

)
= 4ab > σ(a)σ(b) = σ(ab) = σ

(
n+10∏

k=1

pk

)
=

n+10∏

k=1

(1 + pk) .

Hence,

4 >
n+10∏

k=1

(
1 +

1

pk

)
≥

11∏

k=1

(
1 +

1

pk

)
=

3822059520

955049953
= 4.0019 . . . ,

which is a contradiction. This completes the solution.

Solution 2 by Stephen Chou, Talbot Knighton, and Tom Peller (students at
Taylor University), Upland, IN

All negative numbers have the same numerical divisors as their positive counterparts;
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however, the negatives also include all the negative forms of those divisors. For instance,
−6 has divisor of 1, 2, 3, 6,−1− 2,−3,−6. Therefore σ(n) = 0 because the divisors will
all negate themselves. Knowing that 2n of any negative will result in a lower negative,
we see that all the negatives are abundant. Since the negatives are all abundant
numbers and the only way to have a negative product is to multiply a negative by a
positive, then at most a negative number can have only one deficient factor. Therefore,
there are infinitely many integers, namely the negatives, that are not the product of two
deficient numbers.

Editor’s comment: Once again the students have out smarted the professors; the
intent of the problem was to find infinitely many positive integers that are not the
product of two deficient numbers. But the problem wasn’t explicitly stated that way,
and so the students win; mea culpa.

Solution 3 by Pat Costello, Richmond, KY

Let n = 2k · 3780 = 2k+2 · 33 · 5 · 7 = 2k+2 · 945 for any non-negative integer k. We want
to show that for any divisor d of n and pair (d, n/d), one of the two values is either
perfect or abundant. Since the σ function is multiplicative, we have

σ(945) = σ(33 · 5 · 7)
= σ(33) · σ(5) · σ(7)
= 40 · 6 · 8
= 1920
> 2 · 945.

So 945 is abundant. Then in the pair (945, n/945), the 945 is abundant.

By multiplicativity,

σ
(
2k+2 · 945

)
= σ

(
2k+2) · σ(945)

> σ
(
2k+2

)
· 2 · 945,by the above

> 2k+2 · 2 · 945, since σ(m) > m for m > 1

= 2
(
2k+2 · 945

)
.

This means all the n values are themselves abundant so in the pair (1, n), the value n is
the abundant value. This argument also shows that in the pair (2j , n/2j), the second
value is the abundant value.

In the following table, we list the divisors d > 1 of 945 and the values of the fractions
σ(d)/d.

d 3 5 7 9 15 21 27 35 45 63 105 135 189 315 945

σ(d)/d 1.3 1.2 1.14 1.4 1.6 1.5 1.48 1.37 1.73 1.65 1.82 1.77 1.69 1.98 2.03

The key thing we want to see from the table is that the minimum value in the second
row corresponds to d = 7.

Suppose that d is a divisor of 2k+2 · 945 that is of the form 2j ·m where j ≥ 2 and m is a
divisor of 945 greater than 1. The fractions σ(2j)/2j are easily seen to be strictly
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increasing with a limit of 2. Then

σ
(
2j ·m

)
/2j ·m = σ

(
2j
)
· σ(m)/2j ·m

= σ(2j)/2j · σ(m)/m

≥ 7

4
· 8

7
from the table and that j ≥ 2

= 2.

Hence the divisor 2j ·m is perfect or abundant.

Suppose that d is a divisor of 945 and less than 945, say d = 945/m for an m ≥ 1. Then
the pair is (945/m, 2k+2 ·m) and the second value is perfect or abundant.

All pairs (d, n/d) have at least one value which is perfect or abundant. Since k is an
arbitrary nonnegative integer, we have the desired infinite set.

Solution 4 by Brian D. Beasley, Clinton, SC

We make use of the following three facts:

(1) 945 is abundant (in fact, it is the smallest odd abundant number);

(2) any nontrivial multiple of a perfect number is abundant;

(3) any multiple of an abundant number is abundant.

Given any integer k ≥ 2, we show that nk = 2k · 945 is not the product of two deficient
numbers. For contradiction, if nk = 2k · 33 · 5 · 7 = xy for deficient numbers x and y,
then the perfect number 6 divides neither x nor y, so without loss of generality, we
assume that 2k divides x and 33 divides y. Next, we consider cases:

(a) If 5 divides x, then x is abundant, since it is a multiple of the abundant number 20.

(b) If 7 divides x, then x is either perfect or abundant, since it is a multiple of the
perfect number 28.

(c) If neither 5 nor 7 divides x, then y = 33 · 5 · 7 = 945 is abundant.

Since each case leads to a contradiction, we are done. In fact, it follows that for k ≥ 3, if
nk = xy, then at least one of x or y is abundant.

Addendum. Facts (1) and (2) above may be found in Burton’s Elementary Number
Theory (6th edition) on page 235, while fact (3) follows by applying an argument similar
to that used to prove fact (2).

Solution 5 by proposer

A computer program shows that there are 55 such numbers below 105, the smallest
being 3780. The canonical factorization of these numbers is revealing. One notices that
the list includes all numbers of the from 3780p were p ∈ {11, 13, 17, 19, 23}. This suggest
that N = 3780p is such a number, for all primes p ≥ 11.

To prove this, lent N = 3780p = ab with 1 ≤ a ≤ b ≤ N . Now 3780p = 22 · 33 · 5 · 7 · p
has 96 divisors, many of which are multiples of 12. But 12 is an abundant number and
so is any multiple of 12. (More generally, any multiple of an abundant number is also
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abundant.) So we need only consider factorizations N = ab where neither a nor b is a
multiple of 12. We list all these factorizations in the tables below showing the
companion factors a and b, along with their type (P: perfect; D: deficient; A: abundant).

a type b type a type b type
1 D 3780p A p D 3780 A
2 D 1890p A 2p D 1890 A
4 D 945p A 4p D 945 A
6 P 630p A 6p A 630 A
10 D 378p A 10p D 378 A
14 D 270p A 14p D 270 A
18 A 210p D 18p A 210 D
20 A 189p D 20p A 189 D
27 D 140p A 27p D 140 A
28 P 135p D 28p A 135 D
30 A 126p D 30p A 126 D
42 A 90p A 42p A 90 A
54 A 70p A 54p A 70 A

Also solved by David E. Manes, Oneonta, NY; Albert Stadler, Herrliberg,
Switzerland, and David Stone and John Hawkins (jointly), Statesboro, GA.

• 5166: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be lengths of the sides of a triangle ABC. Prove that

(
3a+b +

c

b
3−b

)(
3b+c +

a

c
3−c

)(
3c+a +

b

a
3−a

)
≥ 8.

Solution by Boris Rays, Brooklyn, NY

By the Arithmetic-Geometric-Mean Inequality for each expression in the parentheses
above we have:

3a+b +
c

b
3−b ≥ 2

√
3a+b · c

b
3−b = 2

√
c

b
3a

3b+c +
a

c
3−c ≥ 2

√
3b+c · a

c
3−c = 2

√
a

c
3b

3c+a +
b

a
3−a ≥ 2

√

3c+a · b
a

3−a = 2

√
b

a
3c.

Therefore,

(
3a+b +

c

b
3−b

)(
3b+c +

a

c
3−c

)(
3c+a +

b

a
3−a

)
≥ 8

√
c

b
· a
c
· b
a
· 3a · 3b · 3c

= 8
√

3a+b+c
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= 8 · 3
a+ b+ c

2
.

The factor 3(a+b+c)/2 is an exponential expression with base 3 (3 > 1) and exponent
(a+ b+ c)/2 > 0. Hence, 3(a+b+c)/2 > 1. Therefore,

(
3a+b +

c

b
3−b

)(
3b+c +

a

c
3−c

)(
3c+a +

b

a
3−a

)
≥ 8.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego Viveiro
Spain; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly
with Elton Bojaxhiu, Kriftel, Germany; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Elsie M. Campbell, Dionne T. Bailey and
Charles Diminnie (jointly), San Angelo TX; Kee-Wai Lau, Hong Kong,
China; David E. Manes, Oneonta, NY; Paolo Perfetti, Department of
Mathematics, University “Tor Vergata,” Rome, Italy; Albert Stadler,
Herrliberg, Switzerland: Neculai Stanciu, Buzău, Romania; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5167: Paolo Perfetti, Department of Mathematics, University “Tor Vergata,” Rome,
Italy

Find the maximum of the real valued function

f(x, y) = x4 − 2x3 − 6x2y2 + 6xy2 + y4

defined on the set D = {(x, y) ∈ <2 : x2 + 3y2 ≤ 1}.

Solution 1 by Michael Brozinsky, Central Islip, NY

We note that the given constraint x2 + 3y2 ≤ 1 implies that −1 ≤ x ≤ 1 and y2 ≤ 1

3
.

Now, f(−1, 0) = 3, and to show that 3 is the maximum it suffices to show that
f(x, y) ≤ 3 · (x2 + 3y2

)
. That is

x4 − 2x3 − 6x2y2 + 6xy2 + y4 ≤ 3 · (x2 + 3y2) or equivalently,

x2 ·
(
x2 − 2x− 3

)
+ y2 ·

(
y2 + 6x

)
≤ y2

(
6x2 + 9

)
when (x , y) is in D . (1)

Now x2 − 2x− 3 ≤ 0 if −1 ≤ x ≤ 3 and y2 + 6x ≤ 1

3
+ 6x ≤ 6x2 + 9 for all x, (as the

minimum of 6x2 − 6x+ 9 is 7.5), and so (1) is obvious as x2
(
x2 − 2x− 3

) ≤ 0 and
y2 · (y2 + 6x

) ≤ y2 · (x2 + 9
)

when (x, y) is in D.

Solution 2 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany

First we will look for extreme points inside the region, which is the set
{(x, y) ∈ <2 : x2 + 3y2 < 1}, and such points will be the critical points of the function
f(x, y). The partial derivatives of the function f(x, y) will be

{
fx = 4x3 − 6x2 − 12xy2 + 6y2

fy = −12x2y + 12xy + 4y3
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Solving the system of the equations
{

4x3 − 6x2 − 12xy2 + 6y2 = 0
−12x2y + 12xy + 4y3 = 0,

we have that the only critical point inside the region will be (x, y) = (0, 0), which will be
considered a point where the function might get the maximum value.

Now we will find the extremes on the contour of the region, which is

{(x, y) ∈ <2 : x2 + 3y2 = 1}. For any point on the contour we have y2 =
1− x2

3
and

substituting this into the formula of f(x, y) we obtain the function g(x) such that

g(x) = x4 − 2x3 − 6x2
1− x2

3
+ 6x

1− x2
3

+

(
1− x2

3

)2

=
1

9
+ 2x− 20x

9
− 4x3 +

28x4

9

so, we have to find the extremes of the function g(x) on the segment [−1, 1].

If x = ±1 we have f(−1, 0) = 3 and f(1, 0) = 1, and so far, we shown that a local
maximum point is when (x, y) = (−1, 0). Now we much check to see if there is a
maximum point inside the segment [−1, 1]. Taking the derivative of the function g(x) we
obtain

g′(x) = 2− 40x

9
− 12x2 +

112x3

9
.

The equation g′(x) = 0 has no solution inside the segment [−1, 1], which implies that
there is no extreme point inside this segment. And so we may conclude that 3 is the
absolute maximum of the real valued function f(x, y) on the given domain and that it is
achieved at the point (x, y) = (−1, 0).

Solution 3 byÁngel Plaza, University of Las Palmas de Gran Canaria, Spain

Function f(x, y) is harmonic. Then, by the maximum principle its maximum (and
minimum) is attained at the boundary of compact subset D. Since the boundary of D is
an ellipse, by using its parametrization the problem is reduced to a one variable
optimization problem.

The parametric equations of the given ellipse are

x = cos t; y =
1√
3

sin t

and the problem yields to maximizing the function

g(t) = cos4 t− 2 cos3 t− 2 cos2 t sin2 t+ 2 cos2 t sin2 t+
sin4 t

9
= −2 cos3 t+ cos4 t+

sin4 t

9
.

Since g′(t) = −2
9 cos t sin t

(−27 cos t+ 18 cos2 t− 2 sin2 t
)

it is deduced that the
maximum is attained at t = π with the value f(π) = 3.

Also solved by Pat Costello, Richmond, KY; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; David E. Manes, Oneonta, NY; Boris Rays, Brooklyn, NY;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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• 5168: Proposed by G. C. Greubel, Newport News, VA

Find the value of an in the series

7t+ 2t2

1− 36t+ 4t2
= a0 +

a1
t

+
a2
t2

+ · · ·+ an
tn

+ · · · .

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

By direct division, 4t2 − 36t+ 1|2t2 + 7t we see that a0 =
1

2
, a1 =

25

4
. Moreover, the

characteristic equation of the denominator is 1− 36r + 4r2 = 0, whose roots are

r1 =
9− 4

√
5

2
, r2 =

9 + 4
√

5

2
, so an = Arn1 +Brn2 for some real numbers A and B .

Taking n = 0, we obtain

A+B = A · 1 +B · 1 = Ar01 +Br02 = a0 =
1

2
,

and taking n = 1 we obtain

A
9 + 4

√
5

2
+B

9− 4
√

5

2
= Ar11 +Br12 = a1 =

25

4
.

So, by solving the system of equations





A+B =
1

2

18(A+B) + 8
√

5(A−B) = 25

we obtain

A =
5− 4

√
5

20
, B =

5 + 4
√

5

20
.

Hence,

an = Arn1 +Brn2 =
5− 4

√
5

20

(
9− 4

√
5

2

)n
+

5 + 4
√

5

20

(
9 + 4

√
5

2

)n
.

Solution 2 by Kee-Wai Lau, Hong Kong, China

It can be checked readily that

7t+ 2t2

1− 36t+ 4t2
=

5 + 4
√

5

20




1

1− 9 + 4
√

5

2t


+

5− 4
√

5

20




1

1− 9− 4
√

5

2t


 .

For t >
9 + 4

√
5

2
, we have

1

1− 9 + 4
√

5

2

=
∞∑

n=0

(
9 + 4

√
5

2t

)n
and

1

1− 9− 4
√

5

2t

=
∞∑

n=0

(
9− 4

√
5

2t

)n
. Hence for positive integer n

an =
5 + 4

√
5

20

(
9 + 4

√
5

2

)n
+

5− 4
√

5

20

(
9− 4

√
5

2

)n
.

10X
ia
ng
’s
T
ex
m
at
h



Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

Let {fn} be the Fibonacci sequence defined by f0 = 0, f1 = 1, and fn+2 = fn+1 + fn for

n ≥ 0. Also, let φ =
1 +
√

5

2
and φ =

1−
√

5

2
. Then, we will use Binet’s Formula

fn =
φn − φn√

5

for n ≥ 0 and the known results

φn = fnφ+ fn−1,φ
n

= fnφ+ fn−1, and φφ = −1 (1)

for n ≥ 1.

To begin, make the change of variable s =
1

t
and simplify to get

7t+ 2t2

1− 36t+ 4t2
=

7s+ 2

s2 − 36s+ 4
.

Note that (1) implies that φ6 = f6φ+ f5 = 8φ+ 5 = 9 + 4
√

5 and similarly,

φ
6

= 9− 4
√

5. Then, the roots of s2 − 36s+ 4 are s = 18± 8
√

5 = 2φ6, 2φ
6

and we have

7s+ 2

s2 − 36s+ 4
=

7s+ 2

(s− 2φ6)
(
s− 2φ

6
) .

If we perform a partial fraction expansion and use Binet’s Formula, (1), and the formula
for a geometric series, we obtain

7s+ 2

s2 − 36s+ 4
=

7φ6 + 1

8
√

5

1

s− 2φ6
− 7φ

6
+ 1

8
√

5

1

s− 2φ
6

=
1

8
√

5


−

7φ6 + 1

2φ6
1

1−
(

s
2φ6

) +
7φ

6
+ 1

2φ
6

1

1−
(

s

2φ
6

)




=
1

16
√

5



(
7 + φ6

) ∞∑

n=0

1(
2φ

6
)n sn −

(
7 + φ

6
) ∞∑

n=0

1

(2φ6)n
sn




=
1

16
√

5

∞∑

n=0

1

2n

[
7 + φ6

φ
6n − 7 + φ

6

φ6n

]
sn

=
1

16
√

5

∞∑

n=0

1

2n

(
7 + φ6

)
φ6n −

(
7 + φ

6
)
φ
6n

(−1)6n
sn

=
∞∑

n=0

1

2n+4

[
7

(
φ6n − φ6n√

5

)
+

(
φ6n+6 − φ6n+6

√
5

)]
sn
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=
∞∑

n=0

7f6n + f6n+6

2n+4
sn

=
∞∑

n=0

2f6n+1 + 3f6n
2n+2

sn

=
∞∑

n=0

2f6n+1 + 3f6n
2n+2

1

tn
.

Also, since
∣∣∣φ
∣∣∣ < φ, the series converges when

|s| < min

{
2
∣∣∣φ
∣∣∣
6
, 2φ6

}
= 2

∣∣∣φ
∣∣∣
6
,

i.e., when

|t| > 1

2
∣∣∣φ
∣∣∣
6 =

φ6

2
.

Therefore,

an =
2f6n+1 + 3f6n

2n+2

for n ≥ 0.

Also solved by Arkady Alt, San Jose, CA; Brian D. Beasley, Clinton, SC;
Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; David E. Manes, Oneonta, NY; Ángel Plaza (University of Las
Palmas de Gran Canaria), Spain; Boris Rays, Brooklyn, NY; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins (jointly),
Statesboro, GA; Boris Rays, Brooklyn, NY, and the proposer.

• 5169: Proposed by Ovidiu Furdui, Cluj, Romania

Let n ≥ 1 be an integer and let i be such that 1 ≤ i ≤ n. Calculate:

∫ 1

0
· · ·
∫ 1

0

xi
x1 + x2 + · · ·+ xn

dx1 · · · dxn.

Solutions 1 and 2 by Albert Stadler, Herrliberg, Switzerland

1) Let Ii =

∫ 1

0
· · ·
∫ 1

0

xi
x1 + x2 + · · ·+ xn

dx1 · · · dxn. Then by symmetry,

I1 = I2 = · · · In. So,

I1 + I2 + · · ·+ In =

∫ 1

0
· · ·
∫ 1

0

x1 + x2 + · · ·xn
x1 + x2 + · · ·+ xn

dx1 · · · dxn = 1,

and Ii =
1

n
for 1 ≤ i ≤ n.

12X
ia
ng
’s
T
ex
m
at
h



2) Another albeit less elegant proof runs as follows:

∫ 1

0
· · ·
∫ 1

0

xi
x1 + x2 + · · ·+ xn

dx1 · · · dxn =

∫ ∞

0

∫ 1

0
· · ·
∫ 1

0
xie
−t(x1+x2+···xn)dx1 · · · dxndt

=

∫ ∞

0

(
1− e−t)n−1 (1− (1 + t)e−t

)

tn+1
dt

= − 1

n

∫ ∞

0

d

dt

(1− e−t)n
tn

dt

=
1

n
lim
t→0

(1− e−t)n
tn

=
1

n
.

The above is so because:

∫ 1

0
e−txjdxj =

1− e−t
t

,

∫ 1

0
xie
−txidxi =

1− (1 + t)e−t

t2
,

d

dt

(1− e−t)n
tn

= −n(1− e−t)n
tn+1

+
n(1− e−t)n−1e−t

tn
= −n(1− e−t)n−1(1− (1 + t)e−t)

tn+1
.

Also solved by Michael N. Fried, Kibbutz Revivim, Israel; Enkel Hysnelaj,
University of Technology, Sydney, Australia jointly with Elton Bojaxhiu,
Kriftel, Germany; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti,
Department of Mathematics, University “Tor Vergata,” Rome, Italy; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2012

• 5188: Proposed by Kenneth Korbin, New York, NY

Given 4ABC with coordinates A(−5, 0), B(0, 12) and C(9, 0). The triangle has an
interior point P such that 6 APB = 6 APC = 120◦. Find the coordinates of point P .

• 5189: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with integer length sides and with 6 A = 60◦ and with (a, b, c) = 1.

Find the lengths of b and c if

i) a = 13, and if

ii) a = 132 = 169, and if

iii) a = 134 = 28561.

• 5190: Proposed by Neculai Stanciu, Buzău, Romania

Prove: If x, y and z are positive integers such that
x(y + 1)

x− 1
∈ N,

y(z + 1)

y − 1
∈ N, and

z(x+ 1)

z − 1
∈ N, then xyz ≤ 693.

• 5191: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers such that ab+ bc+ ca = 3. Prove that

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
≤ 1.

• 5192: Proposed by G. C. Greubel, Newport News, VA

Let [n] = [n]q =
1− qn
1− q be a q number and lnq(x) =

∞∑

n=1

xn

[n]
be a q-logarithm. Evaluate

the following series:

i)
∞∑

k=0

qmk

[mk + 1][mk +m+ 1]
and
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ii)
∞∑

k=1

xk

[k][k +m]
.

• 5193: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Let f be a function which has a power series expansion at 0 with radius of convergence
R.

a) Prove that
∞∑

n=1

nf (n)(0)

(
ex − 1− x

1!
− x2

2!
· · · − xn

n!

)
=

∫ x

0
ex−ttf ′(t)dt, |x| < R.

b) Let α be a non-zero real number. Calculate
∞∑

n=1

nαn

(
ex − 1− x

1!
− x2

2!
· · · − xn

n!

)
.

Solutions

• 5170: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral DEFG has coordinates D(−6,−3) and E(2, 12). The midpoints of
the diagonals are on line l.

Find the area of the quadrilateral if line l intersects line FG at point P

(
672

33
,
−9

11

)
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the area of the quadrilateral is 378

Let H and I be respectively the midpoints of the diagonals DF and EG. Let

F = (p, q) and G = (r , s) so that

H =

(
p− 6

2
,
q − 3

2

)
and I =

(
r + 2

2
,

s + 12

2

)
.

Using the facts that the points H, I, and P lie on l and that P lies on FG, we obtain
respectively the relations

(150 + 11s)p+ (426− 11r) q = 7590− 15r + 514s (1)

(9 + 11s) p+ (224− 11r) q = 9r + 224s. (2)

By the standard formula, we find the area of the quadrilateral to be

(12− s)p+ (r − 2)q + 3r − 6s+ 66

2
,

which can be written as
(

(150 + 11s)p+ (426− 11r)q

)
− 2

(
(9 + 11s)p+ (224− 11r)q

)
+ 33r − 66s+ 726

22
.
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By (1) and (2), the last expression equals

(7590− 15r + 514s)− 2(9r + 224s) + 33r − 66s+ 726

22
= 378,

and this completes the solution.

Solution 2 by the proposer

Area of Quadrilateral DEFG

= 2

[
Area 4DEP

]

=

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

2 12 1

−6 −3 1

224

11
− 9

11
1

∣∣∣∣∣∣∣∣∣∣∣

= 378.

Reference, problem number 5033.

Comment by editor: David Stone and John Hawkins of Statesboro, GA showed
in their solution that there are infinitely many quadrilaterals satisfying the given
conditions of the problem, and that each has an area of 378. Their solution started off
by showing that the simplest configuration occurs when the quadrilateral is a
parallelogram so that the diagonals coincide. They then exhibited all such
parallelograms and showed that each one has the stated area. Their solution of nine
pages is too lengthy to reproduce here, but if you would like to see it, please contact me
and I will send their solution to you in pdf format.

• 5171: Proposed by Kenneth Korbin, New York, NY

A triangle has integer length sides x, x+ y, and x+ 2y.

Part I: Find x and y if the inradius r = 2011.

Part II: Find x and y if r =
√

2011.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

For convenience, let a = x, b = x+ y, c = x+ 2y be the sides of the triangle. Then, since
a, b, c are positive integers, it follows that x is a positive integer and y is an integer
(which is not necessarily positive). The semiperimeter s is given by

s =
a+ b+ c

2
=

3

2
(x+ y)
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and we have

s− a = s− x =
x+ 3y

2

s− b = s− (x+ y) =
x+ y

2
(1)

s− c = s− (x+ 2y) =
x− y

2
.

If K is the area of the triangle, then

sr = K =
√
s (s− a) (s− b) (s− c)

which reduces to

3

2
(x+ y) r2 = sr2 = (s− a) (s− b) (s− c) =

x+ 3y

2

x+ y

2

x− y
2

,

i.e.,
(x+ 3y) (x− y) = 12r2.

Note also that (1) implies that x+ 3y and x− y are positive integers since x and y are
integers and s− a and s− c are positive. Further, if

x+ 3y = k1

x− y = k2

for positive integers k1 and k2 such that k1k2 = 12r2, then at least one of k1, k2 is even.
Finally, since 4y = k1 − k2, it follows that k1 and k2 must both be even.

Part I: If r = 2011, then 12r2 = 12 (2011)2 and the possibilities for k1 and k2 are

(k1, k2) ∈ {
(
2, 6 · 20112

)
,
(
6 · 20112, 2

)
, (4022, 12066) , (12066, 4022) ,

(
6, 2 · 20112

)
,
(
2 · 20112, 6

)}.

If

x− y = 2

x+ 3y = 6 · 20112

then x = 6, 066, 183, y = 6, 066, 181, while if

x− y = 6 · 20112

x+ 3y = 2

then x = 18, 198, 545, y = −6, 066, 181. The steps in the remaining cases are similar and
the results are summarized in the following table:

x y a b c
6, 066, 183 6, 066, 181 6, 066, 183 12, 132, 364 18, 198, 545
18, 198, 545 −6, 066, 181 18, 198, 545 12, 132, 364 6, 066, 183
2, 022, 065 2, 022, 059 2, 022, 065 4, 044, 124 6, 066, 183
6, 066, 183 −2, 022, 059 6, 066, 183 4, 044, 124 2, 022, 065

6, 033 2, 011 6, 033 8, 044 10, 055
10, 055 −2, 011 10, 055 8, 044 6, 033

.
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Part II: If r =
√

2011, then 12r2 = 12 · 2011 and the possibilities for k1, k2 are

(k1, k2) ∈ {(2, 12066) , (12066, 2) , (6, 4022) , (4022, 6)}.

If we solve the system

x− y = k1

x+ 3y = k2

for each of these possibilities, the results are:

x y a b c
3, 018 3, 016 3, 018 6, 034 9, 050
9, 050 −3, 016 9, 050 6, 034 3, 018
1, 010 1, 004 1, 010 2, 014 3, 018
3, 018 −1, 004 3, 018 2, 014 1, 010

.

Remark: In each situation where the assignments for k1 and k2 were reversed, we
obtained different values for x and y but the triangle was essentially the same (with the
values of a and c reversed).

Comment by editor: David Stone and John Hawkins of Statesboro, GA solved
the more general problem for a triangle having its sides in the arithmetic progression of
x, x+ y, and x+ 2y by finding x and y if the inradius r = pm/2 where p is an odd prime
and m ≥ 1. For p ≥ 5 they showed that there are m+ 1 solutions and they described
them. For p = 3 they showed that there are bm+2

2 c and also described them.

Also solved by Brian D. Beasley, Clinton, SC; Valmir Bucaj (student, Texas
Lutheran University), Seguin, TX; Bruno Salgueiro Fanego, Viveiro, Spain;
Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY;
Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA; Titu Zvonaru, Comănesti, Romania jointly with Neculai
Stanciu, Buzău, Romania, and the proposer.

• 5172: Proposed by Neculai Stanciu, Buzău, Romania

If a, b and c are positive real numbers, then prove that,

a (b− c)
c (a+ b)

+
b (c− a)

a (b+ c)
+
c (a− b)
b (c+ a)

≥ 0.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We have

a(b− c)
c(a+ b)

+
b(c− a)

a(b+ c)
+
c(a− b)
b(c+ a)

=
a3b3 + b3c3 + c3a3 − a3b2c− b3c2a− c3a2b

abc(a+ b)(b+ c)(c+ a)
. (1)

By the weighted AM-GM inequality,

2

3
a3b3 +

1

3
c3a3 ≥ a3b2c,
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2

3
b3c3 +

1

3
a3b3 ≥ b3c2a,

2

3
c3a3 +

1

3
b3c3 ≥ c3a2b.

If we these inequalities up we that the numerator of (1) is nonnegative, and the problem
statement follows.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Since

a(b− c)
c(a+ b)

+
b(c− a)

a(b+ c)
+
c(a− b)
b(c+ a)

=
a3b3 + b3c3 + c3a3 − a3b3c− b3c2a− c3a2b

abc(a+ b)(b+ c)(c+ a)

=
a3(b− c)2(2b+ c) + b3(c− a)2(2c+ a) + c3(a− b)2(2a+ b)

3abc(a+ b)(b+ c)(c+ a)
,

the inequality of the problem follows.

Also solved by Arkady Alt, San Jose, CA; Michael Brozinsky, Central Islip,
NY; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly
with Elton Bojaxhiu, Kriftel, Germany; Paul M. Harms, North Newton, KS;
David E. Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics,
“Tor Vergatta” University, Rome, Italy, and the proposer.

• 5173: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Find all triples x, y, z of non-negative real numbers that satisfy the system of equations,





x2(2x2 + x+ 2) = xy(3x+ 3y − z)
y2(2y2 + y + 2) = yz(3y + 3z − x)
z2(2z2 + z + 2) = xz(3z + 3x− y)

Solution by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Assume for the moment that x 6= 0, y 6= 0, z 6= 0.
Without loss of generality, we may assume that x ≥ y. Looking at equations (1) and (2)
in the statement of the problem and using the fact that x, y, z are non-negative real
numbers, we observe

x2(2x2 + x+ 2) ≥ y2(2y2 + y + 2) ⇒ xy(3x+ 3y − z) ≥ yz(3y + 3z − x)

⇒ x(3x+ 3y − z) ≥ z(3y + 3z − x)
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⇒ 3x2 + 3xy − xz ≥ 3yz + 3z2 − xz
⇒ 3(x− z)(x+ y + z) ≥ 0

⇒ x ≥ z

Looking at equations (1) and (3) and using the fact that x, y, z are non-negative real
numbers, we observe

x2(2x2 + x+ 2) ≥ z2(2z2 + z + 2) ⇒ xy(3x+ 3y − z) ≥ zx(3z + 3x− y)

⇒ y(3x+ 3y − z) ≥ z(3z + 3x− y)

⇒ 3xy + 3y2 − yz ≥ 3z2 + 3xz − yz
⇒ 3(y − z)(x+ y + z) ≥ 0

⇒ y ≥ z

Similarly, focusing on equations (2) and (3) and using the fact that x, y, z are
non-negative real numbers, we observe

y2(2y2 + y + 2) ≥ z2(2z2 + z + 2) ⇒ yz(3y + 3z − x) ≥ zx(3z + 3x− y)

⇒ y(3y + 3z − x) ≥ x(3z + 3x− y)

⇒ 3y2 + 3yz − xy ≥ 3xz + 3x2 − xy
⇒ 3(y − x)(x+ y + z) ≥ 0

⇒ y ≥ x.

This implies that x = y. In a similar manner we can prove that y = z and substituting
this into equation (1) we obtain

x2(2x2 + x+ 2) = x2(3x+ 3x− x) = 0⇒ 2(x− 1)2 = 0⇒ x = 1.

So a solution will be (x, y, z) = (1, 1, 1).

Substituting x = 0 into equation (3) implies that z2(2z2 + z + 2) = 0, so either z = 0 or
2z2 + z + 2 = 0. It is easy to see that 2z2 + z + 2 = 0 does not have real roots, so we are
left with the option that z = 0. Similarly, substituting z = 0 into equation (2) gives
y = 0.

Therefore the set of real valued solutions for the given system is
(x, y, z) = {(0, 0, 0), (1, 1, 1)}.

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Paolo Perfetti, Department of Mathematics,
“Tor Vergatta” University, Rome, Italy; Albert Stadler, Herrliberg,
Switzerland; Neculai Stanciu with Titu Zvonaru (jointly), from Buzău and
Comănesti, Romania respectively, and the proposer.

• 5174: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let n be a positive integer. Compute:

lim
n→∞

n2

2n

n∑

k=0

k + 4

(k + 1)(k + 2)(k + 3)

(
n

k

)
.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain
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(1 + x)n =
n∑

k=0

(
n

k

)
xk, and by integration

(1 + x)n+1 − 1

n+ 1
=

n∑

k=0

(
n

k

)
xk+1

k + 1
.

Iterating the same technique, it is obtained:

(1 + x)n+2 − (n+ 2)x− 1

(n+ 1)(n+ 2)
=

n∑

k=0

(
n

k

)
xk+2

(k + 1)(k + 2)
.

(1 + x)n+3 − (n+ 2)(n+ 3)x2/2− (n+ 3)x− 1

(n+ 1)(n+ 2)(n+ 3)
=

n∑

k=0

(
n

k

)
xk+3

(k + 1)(k + 2)(k + 3)
.

Now, multiplying each term of the preceding equation by x, differentiating with respect
to x and letting x = 1, we obtain

(n+ 5)2n+2 − 3(n+ 2)(n+ 3)/2− 2(n+ 3)− 1

(n+ 1)(n+ 2)(n+ 3)
=

n∑

k=0

(
n

k

)
(k + 4)

(k + 1)(k + 2)(k + 3)
.

And therefore, the proposed limit becomes

L = lim
n→∞

n2

2n
(n+ 5)2n+2 − 3(n+ 2)(n+ 3)/2− 2(n+ 3)− 1

(n+ 1)(n+ 2)(n+ 3)

= lim
n→∞

n2

2n
(n+ 5)2n+2

n3
= 4.

Solution 2 by Anastasios Kotronis, Athens, Greece

For n ∈ N and and x ∈ < we have (1 + x)n =
n∑

k=0

(
n

k

)
xk so x4(1 + x)n =

n∑

k=0

(
n

k

)
xk+4.

Now differentiate to obtain

4x3(1 + x)n + nx4(1 + x)n−1 =
n∑

k=0

(k + 4)

(
n

k

)
xk+3, so

4(1 + x)n + nx(1 + x)n−1 =
n∑

k=0

(k + 4)

(
n

k

)
xk.

Now integrate on [0, x] to obtain

3(1 + x)n+1

n+ 1
+ x(1 + x)n − 3

n+ 1
=

n∑

k=0

(k + 4)

k + 1

(
n

k

)
xk+1.

Integrating once again gives us

2(1 + x)n+2

(n+ 1)(n+ 2)
+
x(1 + x)n+1

n+ 1
− 3x

n+ 1
− 2

(n+ 1)(n+ 2)
=

n∑

k=0

(k + 4)

(k + 1)(k + 2)

(
n

k

)
xk+2.

And by integrating still again gives us

n∑

k=0

(k + 4)

(k + 1)(k + 2)(k + 3)

(
n

k

)
xk+3 =
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(1 + x)n+3

(n+ 1)(n+ 2)(n+ 3)
+

x(1 + x)n+2

(n+ 1)(n+ 2)
− 3x2

2(n+ 1)
− 2x

(n+ 1)(n+ 2)
− 1

(n+ 1)(n+ 2)(n+ 3)
.

Setting x = 1 above, we easily see that

n2

2n

n∑

k=0

(k + 4)

(k + 1)(k + 2)(k + 3)

(
n

k

)
n→+∞−→ 4.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie (jointly), San Angelo, TX; Enkel Hysnelaj, University
of Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY;
Paolo Perfetti, Department of Mathematics, “Tor Vergatta” University,
Rome, Italy; Albert Stadler, Herrliberg, Switzerland; David Stone and John
Hawkins (jointly), Statesboro, GA, and the proposer.

• 5175: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the value of,

lim
n→∞

1

n

n∑

i,j=1

i+ j

i2 + j2
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We first note by symmetry that

n∑

i=1

n∑

j=1

i+ j

i2 + j2
= 2

n∑

i=1

n∑

j=1

i+ j

i2 + j2
−

n∑

i=1

1

i
. (1)

It is well known that for a sequence {an} such that lim
n→∞ an = l then lim

n→∞

n∑

i=1

ai

n
= l as

well. Hence, it follows from (1) that

lim
n→∞

1

n

n∑

i=1

n∑

j=1

i+ j

i2 + j2

= 2 lim
n→∞

n∑

j=1

n+ j

n2 + j2
− lim

n→∞
1

n

= 2 lim
n→∞

n∑

j=1

1 +
j

n

n

(
1 +

(
j

n

)2
)

= 2

∫ 1

0

1 + x

1 + x2
dx
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=

[
2 arctan(x) + ln(1 + x2)

]∣∣∣∣
1

0

=
π

2
+ ln 2.

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergatta”
University, Rome, Italy

Answer:
π

2
+ ln 2

Proof: The limit is actually

lim
n→∞

1

n2

n∑

i,j=1

i

n
+
j

n
i2

n2
+
j2

n2

which is the Riemann–sum of

∫ ∫

[0,1]2

x+ y

x2 + y2
dxdy = 2

∫ ∫

[0,1]2

x

x2 + y2
dxdy = I

I =

∫ 1

0

[(
ln(x2 + y2)

) ∣∣∣
1

0

]
dy =

∫ 1

0

(
ln(1 + y2)− 2 ln y

)
dy.

Integrating by parts,

∫ 1

0
ln(1 + y2)dy = y ln(1 + y2)

∣∣∣∣
1

0
− 2

∫ 1

0

y2

1 + y2
dy

= ln 2− 2

∫ 1

0

(
1− 1

1 + y2

)
dy

= ln 2− 2 + 2 arctan y

∣∣∣∣
1

0
= ln 2− 2 + 2

(
π

4

)
.

Moreover,

−2

∫ 1

0
ln ydy = −2(y ln y − y)

∣∣∣∣
1

0
= 2

from which the result follows by summing the two integrals.

Comment by editor: Many of the solvers approached the problem in a similar manner as
Paolo, by showing that

1

n2

n∑

i,j=1

i

n
+
j

n(
i

n

)2

+

(
j

n

)2 =⇒
∫ 1

0

∫ 1

0

x+ y

x2 + y2
dxdy as n →∞,
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but they raised the caveat that we must be careful in applying the limit because the

function φ(x, y) =
x+ y

x2 + y2
is not continuous at (x, y) = (0, 0). They then showed that in

this case, the limit does indeed hold.

Also solved by Arkady Alt, San Jose, CA; Anastasios Kotronis, Athens,
Greece; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly
with Elton Bojaxhiu, Kriftel, German; David E. Manes, Oneonta, NY;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2012

• 5194: Proposed by Kenneth Korbin, New York, NY

Find two pairs of positive integers (a, b) such that,

14

a
+
a

b
+

b

14
= 41.

• 5195: Proposed by Kenneth Korbin, New York, NY

If N is a prime number or a power of primes congruent to 1 (mod 6), then there are
positive integers a and b such that 3a2 + 3ab+ b2 = N with (a, b) = 1.

Find a and b if N = 2011, and if N = 20112, and if N = 20113.

• 5196: Proposed by Neculai Stanciu, Buzău, Romania

Determine the last six digits of the product (2010)
(
52014

)
.

• 5197: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Let x, y, z be positive real numbers such that x2 + y2 + z2 = 4. Prove that,

1

6− x2 +
1

6− y2 +
1

6− z2 ≤
1

xyz
.

• 5198: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let m,n be positive integers. Calculate,

2n∑

k=1

m∏

i=0

(
bk +

1

2
c+ a+ i

)−1
,

where a is a nonnegative number and bxc represents the greatest integer less than or
equal to x.

• 5199: Proposed by Ovidiu Furdui, Cluj, Romania
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Let k > 0 and n ≥ 0 be real numbers. Calculate,

∫ 1

0
xn ln

(√
1 + xk −

√
1− xk

)
dx.

————————————————————–

Solutions

• 5176: Proposed by Kenneth Korbin, New York, NY

Solve: 


x2 + xy + y2 = 32

y2 + yz + z2 = 42

z2 + xz + x2 = 52.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let 


A = x2 + xy + y2 − 9
B = y2 + yz + z2 − 16
C = z2 + xz + x2 − 25

By assumption A = B = C = 0. So, 0 = A+B −C = xy+ yz− xz + 2y2 or equivalently
z(x− y) = y(x+ 2y). Obviously x 6= y, since if x = y then 0 = B = x2 + xz + z2 − 16
and 0 = C = z2 + xz + x2 − 25 which is a contradiction. So,

z =
y (x+ 2y)

x− y . (1)

We insert this value of z into the equation B = 0 and obtain

16 = y2 + y · y(x+ 2y)

x− y +

(
y(x+ 2y)

x− y

)2

= y2 · (x− y)2 + (x− y)(x+ 2y) + (x+ 2y)2

(x− y)2

= y2 · x
2 − 2xy + y2 + x2 + xy − 2y2 + x2 + 4xy + 4y2

(x− y)2

= y2 · 3x2 + 3xy + 3y3

(x− y)2
=

27y2

(x− y)2
.

So,

4(x− y) = ±3
√

3y or equivalently,

x =

(
1 +

3
√

3

4

)
y or x =

(
1− 3

√
3

4

)
y . (2)
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A = 0 then implies




(
1± 3

√
3

4

)2

+

(
1± 3

√
3

4

)
+ 1



 y

2 = 9.

Taking into account (1) and (2) we conclude that

(x, y, z) ∈





 9 + 4

√
3√

25 + 12
√

3
,

4
√

3√
25 + 12

√
3
,

4(4 +
√

3)√
25 + 12

√
3


 ,


− 9 + 4

√
3√

25 + 12
√

3
,− 4

√
3√

25 + 12
√

3
,− 4(4 +

√
3)√

25 + 12
√

3


 ,


 −9 + 4

√
3√

25− 12
√

3
,

4
√

3√
25− 12

√
3
,

4(−4 +
√

3)√
25− 12

√
3


 ,


 9− 4

√
3√

25− 12
√

3
,
−4
√

3√
25− 12

√
3
,

4(4−
√

3)√
25− 12

√
3





 .

The system of equations in the statement of the problem has an interesting geometric
interpretation. Let ABC be a triangle all of whose angles are smaller than 120◦. The
Fermat point (or Torricelli point) of the triangle ABC is a point P such that the total
distance from the three vertices of the triangle to the point is the minimum possible (see
http://en.wikipedia.org/wiki/Fermat point).

Let AB = c,BC = a,CA = b, AP = x,BP = y, CP = z. Then

6 APB = 6 APC = 6 BPC = 120◦ and

x2 + xy + y2 = c2,

y2 + yz + z2 = a2,

z2 + xz + x2 = b2,

by the law of cosines. So x, y and z are the distances from the three vertices of the
triangle to the Fermat point of the triangle.

• Solution 2 by José Luis Dı́az-Barrero, Barcelona, Spain

Subtracting the equations term by term, we obtain

(x2 − y2) + z(x− y) = 9,
(x2 − z2) + y(x− z) = −7,

⇔ (x− y)(x+ y + z) = 9,
(x− z)(x+ y + z) = −7.

Putting u = x+ y + z, then we obtain (x− y)u = 9 and (x− z)u = −7. Adding both

equations yields (3x− (x+ y + z))u = 2 from which follows x =
u2 + 2

3u
. Likewise, we
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obtain y =
u2 − 25

3u
, and z =

u2 + 23

3u
. Substituting the values of x, y, z into one of the

equations of the given system, yields

(
u2 + 2

3u

)2

+

(
u2 + 2

3u

)(
u2 − 25

3u

)
+

(
u2 − 25

3u

)2

= 32

or equivalently,
3u4 − 150u2 + 579 = 0.

Solving the preceding equation, we have the solutions:

±
√

25− 12
√

3, ±
√

25 + 12
√

3.

Substituting these values in the expressions of x, y, z yields four triplets of solutions for
the system. Namely,

(x1, y1, z1) =


 27− 12

√
3

3
√

25− 12
√

3
,
−4
√

3√
25− 12

√
3
,

48− 12
√

3

3
√

25− 12
√

3




= (1.009086173,−3.374440097, 4.418495493)

(x2, y2, z2) =


− 27− 12

√
3

3
√

25− 12
√

3
,

4
√

3√
25− 12

√
3
,− 48− 12

√
3

3
√

25− 12
√

3




= (−1.009086173, 3.374440097,−4.418495493)

(x3, y3, z3) =


 27 + 12

√
3

3
√

25 + 12
√

3
,

4
√

3√
25 + 12

√
3
,

48 + 12
√

3

3
√

25− 12
√

3




= (2.354003099, 1.023907822, 3.388521646)

(x4, y4, z4) =


− 27 + 12

√
3

3
√

25 + 12
√

3
,− 4

√
3√

25 + 12
√

3
,− 48 + 12

√
3

3
√

25− 12
√

3




= (−2.354003099,−1.023907822,−3.388521646)

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel,
Germany; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of
Mathematics, University “Tor Vergata,” Rome, Italy; Boris Rays, Brooklyn,
NY; Titu Zvonaru, Comănesti, Romania jointly with Neculai Stanciu,
Buzău, Romania, and the proposer.
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• 5177: Proposed by Kenneth Korbin, New York, NY

A regular nonagon ABCDEFGHI has side 1.

Find the area of 4ACF .

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
San Angelo, TX

We begin with the following known facts:

1. Each angle in a regular nonagon is 140◦.

2. cos 140◦ = cos(180◦ − 40◦) = − cos 40◦.

3. cos 100◦ = − cos 80◦.

4. 1 + cos 2θ = 2 cos2 θ.

5. A = 1
2ab sinC in 4ABC.

Hence, 4ABC ∼= 4HIA ∼= 4HGF by SAS. Using Fact 1, since 6 B = 6 I = 6 G = 140◦,
it follows that 6 BAC = 6 IAH = 6 IHA = 6 GHF = 6 GFH = 20◦. Thus,
6 AHF = 100◦. Since 4AHF is an isosceles triangle, 6 HAF = 6 HFA = 40◦.
Therefore, 6 CAF = 60◦. In 4ABC, using the Law of Cosines and Facts 2 and 4,

AC2 = 1 + 1− 2 cos 140◦

= 2(1− cos 140◦)

= 2(1 + cos 40◦)

= 4 cos2 20◦ Then,

AC = 2 cos 20◦.

Similarly, since AC = HA = HF = 2 cos 20◦, using the Law of Cosines and Facts 3 and
4 in 4HAF ,

AF 2 = (2 cos 20◦)2 + (2 cos 20◦)2 − 2(2 cos 20◦)2 cos 100◦

= 8 cos2 20◦(1− cos 100◦)

= 8 cos2 20◦(1 + cos 80◦)

= 16 cos2 20◦ cos2 40◦ Thus,

AF = 4 cos 20◦ cos 40◦.

In 4ACF , using Fact 5,

A =
1

2
(AC)(AF ) sin 60◦

=
1

2
(2 cos 20◦)(4 cos 20◦ cos 40◦)

(√
3

2

)

= 2
√

3 cos2 20◦ cos 40◦

≈ 2.343237.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Denote the circumcenter and the circumradius of the nonagon by O and r, respectively.
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The nonagon can be oriented within the Cartesian plane so that its vertices are

A (r cos 0◦, r sin 0◦) B (r cos 40◦, r sin 40◦) C (r cos 80◦, r sin 80◦)

D (r cos 120◦, r sin 120◦) E (r cos 160◦, r sin 160◦) F (r cos 200◦, r sin 200◦)

G (r cos 240◦, r sin 240◦) H (r cos 280◦, r sin 2800◦) I (r cos 320◦, r sin 320◦) .

Then,

12 = AB
2

= (r cos 40◦ − r cos 0◦)2 + (r sin 40◦ − r sin 0◦)2

= r2
(
cos2 40◦ − 2 cos 40◦ + 1 + sin2 40◦

)2

= 2r2 (1− cos 40◦)⇒ r2 =
1

2 (1− cos 40◦)
.

The area of 4ACF is

[4ACF ] =
1

2

∣∣∣∣∣∣∣∣∣∣∣

det




1 1 1

r r cos 80◦ r cos 200◦

0 r sin 80◦ r sin 200◦




∣∣∣∣∣∣∣∣∣∣∣

=
1

2

∣∣∣r2 cos 80◦ sin 200◦ + r2 sin 80◦ − r2 cos 200◦ sin 80◦ − r2 sin 200◦
∣∣∣

=
1

2

∣∣∣r2 (cos 80◦ sin 200◦ − sin 80◦ cos 200◦) + r2 sin 80◦ − r2 sin 200◦
∣∣∣

=
r2

2
|(sin(200◦ − 80◦) + sin 80◦ − sin 200◦|

=
1

4 (1− cos 40◦)
|sin 120◦ + sin 80◦ − sin 200◦|

≈ 2.343237.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is easy to check that 6 BAC = 20◦, 6 IAF = 6 FAC = 60◦ and AC = 2 cos 20◦.
Suppose that the perpendicular from I to AF meets AF at J , the perpendicular from H
to AF meets AF at K, and the perpendicular from I to HK meets HK at L. Then
6 HIL = 20◦ and

AF = 2(AJ + JK) = 2(AJ + IL) = 2(cos 60◦ + cos 20◦) = 1 + 2 cos 20◦.

Hence the area of 4ACF equals

(AC)(AF ) sin 6 FAC
2
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=
cos 20◦(1 + 2 cos 20◦)

√
3

2

=
(1 + cos 20◦ + cos 40◦)

√
3

2

=

√
3(1 +

√
3 cos 10◦)

2

≈ 2.343237.

Solution 4 by proposer

Area of 4ACF =
sin 40◦ · sin 60◦ · sin 80◦

2 sin2 20◦

=

√
3

16

[
3 tan2 70◦ − 1

]

≈ 2.343237.

Comment by editor: Sines and cosines of angles of 10◦, 20◦, 40◦ and their complements
often appear in the above solutions. David Stone and John Hawkins of
Statesboro, GA noted in their solution that: “It may be possible to express the result
(
√

3 cos 40◦ (1 + cos 40◦)) in terms of radicals, even though cos 40◦ itself cannot be
expressed in terms of surds; it (along with sin 10◦ and − sin 70◦) is a zero of the famous
casus irreducibilis cubic 8x3 − 6x+ 1 = 0.”

Also solved by Scott H. Brown, Montgomery, AL; Brian D. Beasley, Clinton,
SC; Kenneth Day and Michael Thew (jointly, students at Saint George’s
School), Spokane, WA; Paul M. Harms, North Newton, KS; Enkel Hysnelaj,
University of Technology, Sydney, Australia jointly with Elton Bojaxhiu,
Kriftel, Germany; David E. Manes, Oneonta, NY; Charles McCracken,
Dayton, OH; John Nord, Spokane, WA; Boris Rays, Brooklyn, NY, and
Albert Stadler, Herrliberg, Switzerland.

• 5178: Proposed by Neculai Stanciu, Buzău, Romania

Prove: If x, y and z are positive real numbers such that xyz ≥ 7 + 5
√

2, then

x2 + y2 + z2 − 2(x+ y + z) ≥ 3.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

By the AM-GM inequality,
x+ y + z

3
≥ 3
√
xyz ≥ 3

√
7 + 5

√
2 = 1 +

√
2. Let

f(x) = x2 − 2x− 1. f(x) is a convex function that is monotonically increasing for x ≥ 1.
By Jensen’s inequality,

x3+y3+z3−2 (x+ y + z)−3 = f(x)+f(y)+f(z) ≥ 3f

(
x+ y + z

3

)
≥ 3f

(
1 +
√

2
)

= 0.
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Solution 2 by David E. Manes, Oneonta, NY

Note that for positive real numbers if x ≥ 1 +
√

2, then (x− 1)2 ≥ 2 with equality if and
only if x = 1 +

√
2. Therefore, if x, y, z ≥ 1 +

√
2, then xyz ≥ 7 + 5

√
2 and

(x− 1)2 + (y − 1)2 + (z − 1)2 ≥ 6. Expanding this inequality yields
x2 + y2 + x2 − 2(x+ y + z) ≥ 3 with equality if and only if x = y = z = 1 +

√
2.

Solution 3 by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy

We know tht x2 + y2 + z2 ≥ (x+ y + z)2

3
thus the inequality is implied by

S2 − 6S − 9 ≥ 0, S = x+ y + z

yielding S ≥ 3(1 +
√

2). Moreover by the AGM we have S ≥ 3(xyz)1/3 ≥ 3(7 + 5
√

2)1/3,
thus we need to check that 3(7 + 5

√
2)1/3 ≥ 3(1 +

√
2) or 7 + 5

√
2 ≥ (1 +

√
2)3 which is

actually an equality, and we are done.

Also solvled by Arkady Alt, San Jose California; Bruno Salgueiro Fanego,
Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; Boris Rays, Brooklyn, NY, and the proposer.

• 5179: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Find all positive real solutions (x1, x2, . . . , xn) of the system





x1 +
√
x2 + 11 =

√
x2 + 76,

x2 +
√
x3 + 11 =

√
x3 + 76,

· · · · · · · · ·
xn−1 +

√
xn + 11 =

√
xn + 76,

xn +
√
x1 + 11 =

√
x1 + 76.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

If f (t) =
√
t+ 76−

√
t+ 11 on (0,∞), then

f ′ (t) =
1

2

(
1√
t+ 76

− 1√
t+ 11

)
, and hence,

∣∣f ′ (t)
∣∣ =

1

2

(
1√
t+ 11

− 1√
t+ 76

)

<
1

2

1√
t+ 11

<

√
11

22

< 1

for t > 0. It follows that f (t) is a contraction mapping on (0,∞) and therefore, f (t) has
a unique fixed point t∗ ∈ (0,∞). Further, it is well-known that for any t ∈ (0,∞), the
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sequence defined recursively by t1 = t and tk+1 = f (tk) for k ≥ 1 must converge to t∗.
By trial and error, we find that t∗ = 5.

In this problem,

x1 = f (x2) ,
x2 = f (x3) ,

...
xn−1 = f (xn) ,
xn = f (x1) .

If we let t1 = x1 and define tk+1 = f (tk) for k ≥ 1, then (x1, xn, . . . , x3, x2) is a cycle in
the sequence {tk}. However, as described above, tk → 5 as k →∞. These conditions
force x1 = x2 = · · · = xn = 5 and therefore, this must be the unique solution for this
system.

Also solved by Arkady Alt, San Jose, CA; Scott H. Brown, Montgomery,
AL; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department
of Mathematics, “Tor Vergata” University, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland; Neculai Stanciu, Buzău Romania, jointly with Titu
Zvonaru, Comănesti, Romania, and the proposer.

• 5180: Paolo Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Italy

Let a, b and c be positive real numbers such that a+ b+ c = 1. Prove that

1 + a

bc
+

1 + b

ac
+

1 + c

ab
≥ 4√

a2 + b2 − ab
+

4√
b2 + c2 − bc

+
4√

a2 + c2 − ac
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Multiplying both sides of the desired inequality by abc, we see that it is equivalent to

1 + a2 + b2 + c2 ≥ 4abc

(
1√

a2 + b2 − ab
+

1√
b2 + c2 − bc

+
1√

a2 + c2 − ac

)
. (1)

Since

a2 + b2 − ab = (a− b)2 + ab ≥ ab, b2 + c2 − bc ≥ bc, a2 + c2 − ac ≥ ac,

the right hand side of (1) is less than or equal to

4
(√

abc+
√
bca+

√
cab
)

≤ 2 ((a+ b)c+ (b+ c)a+ (c+ a)b)

= 4 (ab+ bc+ ca)

= 2
(
(a+ b+ c)2 − a2 − b2 − c2

)
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= 2− 2
(
a2 + b2 + c2

)
.

Now

a2 + b2 + c2 =

(
a− 1

3

)2

+

(
b− 1

3

)2

+

(
c− 1

3

)2

+
2(a+ b+ c)

3
− 1

3
≥ 1

3
,

so that 1 + a2 + b2 + c2 ≥ 2− 2
(
a2 + b2 + c2

)
.

This proves (1) and completes the solution.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

By the AM-GM inequality,

1 + a

bc
+

1 + b

ca
+

1 + c

ab
=

a+ a2 + b+ b2 + c+ c2

abc

=
1 + a2 + b2 + c2

abc

=
(a+ b+ c)2 + a2 + b2 + c2

abc

=
(2a2 + 2bc) + (2b2 + 2ca) + (2c2 + 2ab)

abc

≥ 4
a
√
bc+ b

√
ca+ c

√
ab

abc

=
4√
bc

+
4√
ca

+
4√
ab
.

The conclusion follows since

1√
xy
≥ 1√

x2 + y2 − xy
.

(Note that this inequality is equivalent to x2 + y2 − xy ≥ xy which is obviously true.)

Also solved by Arkady Alt, San Jose, CA; Dionne T. Bailey, Elsie M.
Campbell, and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro
Fanego, Viveiro, Spain; David E. Manes, Oneonta, NY; Titu Zvonaru,
Comănesti, Romania jointly with Neculai Stanciu, Buzău, Romania, and the
proposer.

• 5181: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate: ∞∑

n=1

∞∑

m=1

n ·m
(n+m)!

.

10X
ia
ng
’s
T
ex
m
at
h



Solution 1 by Anastasios Kotronis, Athens, Greece The summands being all
positive we can sum by triangles :

+∞∑

n=1

+∞∑

m=1

nm

(n+m)!
=

∑

k,`,n∈∧ k+`=n

nm

(n+m)!
=

+∞∑

n=2

∑n−1
`=1 (n− `)`

n!

=
1

6

+∞∑

n=2

(n− 1)n(n+ 1)

n!
=

1

6

+∞∑

n=2

(n+ 1)

(n− 2)!

=
1

6

+∞∑

n=0

(n+ 3)

n!
=

1

6

+∞∑

n=0

1

n!

dxn+3

dx

∣∣∣
x=1

=
1

6

d

dx

(
+∞∑

n=0

xn+3

n!

) ∣∣∣
x=1

=
1

6

d
(
x3ex

)

dx

∣∣∣
x=1

=
2e

3
.

Solution 2 by Arkady Alt, San Jose, CA

Let k = m+ n. Then m = k − n and domain of summation

{
1 ≤ n
1 ≤ m can be represented

as





2 ≤ k
1 ≤ n ≤ k − 1
m = k − n

. Hence,

∞∑

n=1

∞∑

m=1

nm

(n+m)!
=
∞∑

k=2

k−1∑

n=1

n (k − n)

k!
=
∞∑

k=2

1

k!

k−1∑

n=1

n (k − n) =
∞∑

k=2

1

k!

k−1∑

n=1

n (k − n) .

Since

k−1∑

n=1

n (k − n) =
k2 (k − 1)

2
− (k − 1) k (2k − 1)

6

=
k

6

(
3k2 − 3k − 2k2 + 3k − 1

)

=
k
(
k2 − 1

)

6
,

then

∞∑

n=1

∞∑

m=1

nm

(n+m)!
=

1

6

∞∑

k=2

k + 1

(k − 2)!
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=
1

6

∞∑

k=0

k + 3

k!

=
1

6

( ∞∑

k=0

3

k!
+
k

k!

)

=
1

2

∞∑

k=0

1

k!
+

1

6

∞∑

k=1

1

(k − 1)!

=
1

2

∞∑

k=0

1

k!
+

1

6

∞∑

k=0

1

k!

=
∞∑

k=0

1

k!

(
1

2
+

1

6

)

=
2

3

∞∑

k=0

1

k!

=
2e

3
.

Solution 3 by the proposer

The series equals
2e

3
. First we note that for m ≥ 0 and n ≥ 1 one has that

∫ 1

0
xm(1− x)n−1dx = B(m+ 1, n) =

m! · (n− 1)!

(n+m)!
.

Thus,

∞∑

n=1

∞∑

m=1

n ·m
(n+m)!

=
∞∑

n=1

∞∑

m=1

n

(n− 1)!
· 1

(m− 1)!

∫ 1

0
xm(1− x)n−1dx

=

∫ 1

0

( ∞∑

n=1

n

(n− 1)!
(1− x)n−1

)
·
( ∞∑

m=1

xm

(m− 1)!

)
dx

=

∫ 1

0

(
1 +

∞∑

n=2

n

(n− 1)!
(1− x)n−1

)
· xexdx

=

∫ 1

0

(
1 +

∞∑

n=2

(1− x)n−1

(n− 2)!
+
∞∑

n=2

(1− x)n−1

(n− 1)!

)
· xexdx

=

∫ 1

0

(
1 + (1− x)e1−x + e1−x − 1

)
· xexdx

= e

∫ 1

0
(2− x)xdx =

2e

3
,
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and the problem is solved.

Also solved by Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department
of Mathematics, “Tor Vergata” University, Rome, Italy, and Albert Stadler,
Herrliberg, Switzerland.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2012

• 5200: Proposed by Kenneth Korbin, New York, NY

Given positive integers (a, b, c, d) such that,

(a+ b+ c+ d)2 = 2
(
a2 + b2 + c2 + d2)

with a < b < c < d. Find positive integers x, y and z such that

x =
√
ab+ ad+ bd−

√
ab+ ac+ bc,

y =
√
bc+ bd+ cd−

√
bc+ ab+ ac,

z =
√
bc+ bd+ cd−

√
ac+ ad+ cd.

• 5201: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with integer length sides where(
AB,BC,CD

)
= 1 and with AB < BC < CD.

The inradius, the circumradius, and both diagonals have rational lengths. Find the
possible dimensions of the quadrilateral.

• 5202: Proposed by Neculai Stanciu, Buzău, Romania

Solve in <2, 



ln
(
x+
√
x2 + 1

)
= ln

1

y +
√
y2 + 1

2y−x
(
1− 3x−y+1

)
= 2x−y+1 − 1.

• 5203: Proposed by Pedro Pantoja, Natal-RN, Brazil

Evaluate, ∫ π/4

0
ln

(
1 + sin2 2x

sin4 x+ cos4 x

)
dx.
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• 5204: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let f : < → < be a non-constant function such that,

f(x+ y) =
f(x) + f(y)

1 + f(x)f(y)

for all x, y ∈ <. Show that −1 < f(x) < 1 for all x ∈ <.

• 5205: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the sum,

∞∑

n=1

(
1− 1

2
+

1

3
+ · · ·+ (−1)n−1

n
− ln 2

)
· ln n+ 1

n
.

Solutions

• 5182: Proposed by Kenneth Korbin, New York, NY

Part I: An isosceles right triangle has perimeter P and its Morley triangle has
perimeter x. Find these perimeters if P = x+ 1.

Part II: An isosceles right triangle has area K and its Morley triangle has area y. Find
these areas if K = y + 1

Solution by David E. Manes, Oneonta, NY

For part I, P =
2(2 +

√
2)

4− 4
√

2 + 3
√

6
and x =

3
√

2
(
2−
√

3
)

4− 4
√

2 + 3
√

6
.

For part II, K =
4
(
16 + 7

√
3
)

109
and y =

28
√

3− 45

109
.

Denote the isosceles right triangle by ABC with the right angle at vertex C and sides
a, b, c opposite the vertices A,B,C respectively. Then a = b and c =

√
2a, whence

P = (2 +
√

2)a. The side length s of the Morley triangle of ABC is given by

s = 8R sin
A

3
sin

B

3
sin

C

3
where R is the circumradius of triangle ABC. Then

R =
abc√

(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c)

=

√
2a3√

a(2 +
√

2)
(√

2a
)2
a
(
2−
√

2
)

=

√
2a

2
.

Using the identity sin2 z

2
=

1− cos z

2
, one calculates

sin
A

3
· sin B

3
= sin2 15◦ =

1− cos 30◦

2
=

2−
√

3

4
.
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Therefore,

s = 8R sin2 15◦ sin 30◦ = 8

(√
2a

2

)(
2−
√

3

4

)
1

2
=

√
2

2

(
2−
√

3
)
a

so that the perimeter x of the Morley triangle is given by x = 3s =
3
√

2

2

(
2−
√

3
)
a.

The equation P = x+ 1 implies
(
2 +
√

2
)
a =

3
√

2

2

(
2−
√

3
)
a+ 1 or

a =
2

4− 4
√

2 + 3
√

6
. Hence,

P = (2 +
√

2)a =
2(2 +

√
2)

4− 4
√

2 + 3
√

6
and

x =
3
√

2

2

(
2−
√

3
)
a =

3
√

2
(
2−
√

3
)

4− 4
√

2 + 3
√

6
.

In part II,

K =
a2

2
and

y =

√
3

4
s2 =

√
3

4

[√
2

2

(
2−
√

3
)
a

]2

=

√
3

8

(
7− 4

√
3
)
a2.

The equation K = y + 1 implies
a2

2
=

√
3

8

(
7− 4

√
3
)
a2 + 1; that is, a2 =

8(16 + 7
√

3)

109
.

Hence,

K =
4
(
16 + 7

√
3
)

109
and y =

28
√

3− 45

109
.

Also solved by Enkel Hysnelaj, University of Technology, Sydney, Australia
jointly with Elton Bojaxhiu, Kriftel, Germany; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; Charles McCracken, Dayton,
OH; Boris Rays, Brooklyn, NY; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5183: Proposed by Kenneth Korbin, New York, NY

A convex pentagon ABCDE, with integer length sides, is inscribed in a circle with
diameter AE.

Find the minimum possible perimeter of this pentagon.

Solution by Kee-Wai Lau, Hong Kong, China

We show that the minimum possible perimeter of this pentagon is 164.
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Suppose that O is the center of the circle. Let AB = p,BC = q, CD = r,DE = s,AE =
d, 6 AOB = 2α, 6 BOC = 2β, 6 COD = 2γ, 6 DOE = 2δ, where p, q, r, s, d are positive

integers and α, β, γ, δ are positive numbers such that α+ β + γ + δ =
π

2
.

We have

sinα =
p

d
, cosα =

√
d2 − p2
d

, sinβ =
q

d
, cosβ =

√
d2 − q2
d

,

sin γ =
r

d
, cos γ =

√
d2 − r2
d

, and sin δ =
s

d
.

Since sin δ = cos(α+ β + γ), so

d2s =
√
d2 − p2

√
d2 − q2

√
d2 − r2 −

(√
d2 − p2

)
qr −

(√
d2 − q2

)
rp−

(√
d2 − r2

)
pq.

It is not hard to see that if at least one of the
√
d2 − p2

√
d2 − q2

√
d2 − r2 is irrational,

then d2s is also irrational. Hence we seek the primitive Pythagorean triples with
d = m2 + n2, p ∈ {2mn,m2 − n2} such that

√
d2 − p2

√
d2 − q2

√
d2 − r2 −

(√
d2 − p2

)
qr −

(√
d2 − q2

)
rp−

(√
d2 − r2

)
pq

d2

is a positive integer. We now find with a computer that the minimum perimeter is 164,
given by (d, p, q, s) = (65, 16, 25, 25, 33) and other combinations.

Comment by Editor. David Stone and John Hawkins of Statesboro, GA
approached the problem in the above manner. They ran a MATLAB program checking
all integer combinations for p, q, r, s, and d ≤ 5000, and using the data from this
program they showed that they, like Kee-Wai, had actually found the smallest solution.
They then went on to list some additional pentagons satisfying the requirements of the
problem, but with larger perimeters. (I have substituted Kee-Wai’s notation into David
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and John’s matrix.)
d p q r s perimeter

85 13 36 40 40 214
125 35 35 44 75 314
130 32 50 50 66 328
145 17 24 87 87 360
170 26 72 80 80 428
185 57 60 60 104 466
195 48 75 75 99 492
205 45 45 84 133 512
221 21 85 85 140 552
250 70 70 88 150 628
255 39 108 120 120 642
260 64 100 100 132 656
265 23 96 140 140 664
290 34 48 174 174 720
305 55 55 136 207 758
325 36 80 91 260 792
325 36 80 165 204 810
325 36 91 253 91 796
325 36 91 165 195 812
325 80 80 125 204 814
325 36 125 165 165 816
325 80 125 195 91 816
325 80 125 125 165 820

David and John went on to state that they didn’t know if an analytical proof exists (as
opposed to a computer one) that shows that the minimum perimeter is given by
(d, p, q, s) = (65, 16, 25, 25, 33). They then made the following comments.

There is interesting territory for further exploration of these integer-valued, convex,
pentagons inscribed in a semi-circle (“Korbin pentagons”?). We could define (p, q, r, s, d)
to be primitive if there is no common factor and hope to find a parametric-type formula
for generating the primitive ones. Based on our few examples, it appears that in a
primitive pentagon, s must be the non-prime hypotenuse of a primitive Pythagorean
triple, that d is the product of primes congruent to 1(mod 4) and p, q, r and s must be
legs of some right triangle having d as its hypotenuse. It also seems that d must be
expressible in more than one way as the sum of squares. It looks like many primitive
pentagons exist. For example with d = 325 = 52 · 13, there are several primitive
pentagons (and one multiple of our minimal example). Two of these primitive pentagons
even have the same perimeter!

Also solved by David Stone and John Hawkins of Statesboro, GA, the
proposer.

• 5184: Proposed by Neculai Stanciu, Buzău, Romania
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If x, y and z are positive real numbers, then prove that

(x+ y)(y + z)(z + x)

(x+ y + z)(xy + yz + zx)
≥ 8

9
.

Solution 1 by Pedro Pantoja, Natal-RN, Brazil

If x, y, z are positive real numbers then,

(x+ y)(y + z)(z + x) = (xy + yz + zx)(x+ y + z)− xyz.

So,
(x+ y)(y + z)(z + x)

(xy + yz + zx)(x+ y + z)
= 1− xyz

(xy + yz + zx)(x+ y + z)
.

By the AM-GM inequality,

x+ y + z ≥ 3 3
√
xyz and xy + yz + zx ≥ 3 3

√
(xyz)2,

which implies that (xy + yz + zx)(x+ y + z) ≥ 9xyz. And this implies that

xyz

(xy + yz + zx)(x+ y + z)
≤ 1

9
. So,

1− xyz

(xy + yz + zx)(x+ y + z)
≥ 1− 1

9
=

8

9
. Therefore,

(x+ y)(y + z)(z + x)

(xy + yz + zx)(x+ y + z)
≥ 8

9
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro Spain

9(x+ y)(y + z)(z + x)

8(x+ y + z)(xy + yz + zx)

=
9(xy + yz + zx+ y2)(z + x)

8(x+ y + z)(xy + yz + zx)

= 9
(xy + yz + zx)(z + x) + y2(z + x)

8(z + y + z)(xy + yz + zx)

= 9
(x+ y + z)(xy + yz + zx)− (xy + yz + zx)y + y2(z + x)

8(x+ y + z)(xy + yz + zx)

= 9
(x+ y + z)(xy + yz + zx)− (xy2 − y2z − xyz + y2z + xy2)

8(x+ y + z)(xy + yz + zx)
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=
9(x+ y + z)(xy + yz + zx)− 9xyz

8(x+ y + z)(xy + yz + zx)

=
8(x+ y + z)(xy + yz + zx) + (x+ y + z)(xy + yz + zx)− 8xyz − xyz

8(x+ y + z)(xy + yz + zx)

=
8(x+ y + z)(xy + yz + zx)− 8xyz + (x+ y + z)(xy + yz + zx)− xyz

8(x+ y + z)(xy + yz + zx)

≥ 8(x+ y + z)(xy + yz + zx)− 8xyz + 3 3
√
xyz3 3

√
xyyzzx− xyz

8(x+ y + z)(xy + yz + zx)

=
8(x+ y + z)(xy + yz + zx)− 8xyz + 9xyz − xyz

8(x+ y + z)(xy + yz + zx)

=
8(x+ y + z)(xy + yz + zx)

8(x+ y + z)(xy + yz + zx)

= 1,

which is equivalent to the proposed inequality, where the AM −GM inequality has been
applied. We note that equality holds if, and only if, x = y = z.

Solution 3 by Paul M. Harms, North Newton, KS

Let y = tx and z = rx where x, r, and t are positive teal numbers. Then the inequality
to be proved becomes

(1 + t)(t+ r)(1 + r)

(1 + r + t)(r + rt+ t)
≥ 8

9
.

The following inequalities are equivalent to the above inequality.

9(1 + t)(t+ r)(1 + r) ≥ 8(1 + r + t)(r + rt+ t)

9(t+ t+ 2rt+ t2 + r2 + rt2 + r2t) ≥ 8(r + 3rt+ t+ r2 + t2 + rt2 + r2t

r + t− 6rt+ t2 + r2 + rt2 + r2t ≥ 0.

To prove the last inequality we write the left side of this inequality as follows:

(t2 − 2rt+ r2) + r(t2 − 2t+ 1) + t(r2 − 2r + 1) = (t− r)2 + r(t− 1)2 + t(r − 1)2.

Since all three terms are non-negative, the above inequalities are correct. Thus the
inequality in the problem has been proved.

Solution 4 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany
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Normalizing the LHS one can assume that x+ y + z = 1 and so our inequality will
become equivalent to proving

(x+ y)(y + z)(z + x)

(xy + yz + zx)
≥ 8

9

subject to x+ y + z = 1 and the fact that x, y and z are positive real numbers.

We will use the Lagrange Multiplier method to find the minimum of the function

f(x, y, z) =
(x+ y)(y + z)(z + x)

(xy + yz + zx)
subject to g(x, y, z) = x+ y + z = 1 and the fact that

x, y and z are positive real numbers.

Doing easy manipulations we have that

5f(x, y, z) = < fx, fy, fz >

<
x(y + z)(xy + 2yz + zx

(xy + yz + zx)2
,
y(z + x)(xy + yz + 2zx

(xy + yz + zx)2
,
z(x+ y)(2xy + yz + zx

(xy + yz + zx)2
>

and
5g(x, y, z) =< gx, gy, gz >=< 1, 1, 1 >

applying the Lagrange Multiplier method, the extremes will be the solutions of the
system of the equations {5f(x, y, z) = λ5 g(x, y, z)

g(x, y, z) = 1

which is equivalent to 



x(y + z)(xy + 2yz + zx)

(xy + yz + zx)2
= λ

y(z + x)(xy + yz + 2zx)

(xy + yz + zx)2
= λ

z(x+ y)(2xy + yz + zx)

(xy + yz + zx)2
= λ

x+ y + z = 1

where λ is a real number.
Solving this easy system of equations we have that the solutions will be

(x, y, z, λ) = {(1, 1,−1, 0), (1,−1, 1, 0), (−1, 1, 1, 0),

(
1

3
,
1

3
,
1

3
,
8

9

)
}

Using the fact that x, y and z are positive real numbers, the only point of interest will be

(x, y, z) =

(
1

3
,
1

3
,
1

3

)

and the value of the function at that point will be

f

(
1

3
,
1

3
,
1

3

)
=

(
1
3 + 1

3

) (
1
3 + 1

3

) (
1
3 + 1

3

)

(
1
3 × 1

3 + 1
3 × 1

3 + 1
3 × 1

3

) =
8

9
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Getting the value of the function f(x, y, z) at another point, let say (x, y, z) =

(
1

2
,
1

4
,
1

4

)

we have

f

(
1

2
,
1

4
,
1

4

)
=

(
1
2 + 1

4

) (
1
4 + 1

4

) (
1
4 + 1

2

)

(
1
2 × 1

4 + 1
4 × 1

4 + 1
4 × 1

2

) =
9

10
>

8

9

we have that the extreme point (x, y, z) =

(
1

3
,
1

3
,
1

3

)
is a minimum and this is the end

of the proof.

Solution 5 by Kee-Wai Lau, Hong Kong, China

It can be checked readily that

(x+ y+)(y + z)(z + x)

(x+ y + z)(xy + yz + zx)
=
x(y − z)2 + y(z − x)2 + z(x− y)2

9(x+ y + z)(xy + yz + zx)
+

8

9
,

and the inequality of the problem follows.

Solution 6 by Andrea Fanchini, Cantú Italy

Let p = x+ y + z, q = xy + yz + zx and r = xyz. Then the given inequality becomes

pq − r
pq

≥ 8

9
.

I.e.,
pq ≥ 9r,

that we can prove easily using the AM -GM inequality,

pq = (x+ y + z)(xy + yz + zx) ≥ 3 3
√
xyz · 3 3

√
x2y2z2 = 9r.

So the proposed inequality is proved.

Comment by Albert Stadler of Herrliberg, Switzerland

I tried to generalize this problem to n variables and conjectured the following statement:
Let x1, x2, . . . , xn be n real positive numbers , n ≥ 2. Then

n∏

i=1

(xi + xi+1)

x1 · x2 · · ·xn
n∑

i=1

xi ·
n∑

i=1

1

xi

≥ 2n

n2
, with the assumption that xn+1 = x1.

For n = 2 this says that
(x1 + x2)

2

(x1 + x2)2
≥ 22

22
which is true.

For n = 3 we have the statement of problem 5184.

For n = 4 this says that
(x1 + x2)(x2 + x3)(x3 + x4)(x4 + x1)

(x1 + x2 + x3 + x4)(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)
≥ 24

42
,

which is equivalent to (x1x3 − x2x4)2 ≥ 0, and this is obviously true.

However it turns out that the statement is false for n = 5 as is evidenced by the
counterexample (x1, x2, x3, x4, x5) = (8, 3, 1, 2, 8).
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Also solved by Daniel Lopez Aguayo, Institute of Mathematics (UNAM)
Morelia, Mexico; Dionne Bailey, Elsie Campbell and Charles Diminnie, San
Angelo, TX; Scott H. Brown, Montgomery, AL; Michael Brozinsky, Central
Islip, NY; David E. Manes, Oneonta NY; Ángel Plaza, University of Las
Palmas de Gran Canaria, Spain; Paolo Perfetti (two solutions), Department
of Mathematics, University “Tor Vergata,” Rome, Italy; David Stone and
John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5185: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Calculate, without using a computer, the value of

sin

[
arctan

(
1

3

)
+ arctan

(
1

5

)
+ arctan

(
1

7

)
+ arctan

(
1

11

)
+ arctan

(
1

13

)
+ arctan

(
111

121

)]
.

Solution 1 by Andrea Fanchini, Cantú, Italy

Knowing that the argument of the product of complex numbers is the sum of the
arguments of the factors, we can see that

θ = arctan

(
1

3

)
+arctan

(
1

5

)
+arctan

(
1

7

)
+arctan

(
1

11

)
+arctan

(
1

13

)
+arctan

(
111

121

)

is the argument of the following multiplication

(3 + i) (5 + i) (7 + i) (11 + i) (13 + i) (121 + 111i)

multiplying in the usual way, we obtain the pure imaginary number 2696200i, so θ =
π

2

and then finally we have sin

(
π

2

)
= 1.

Solution 2 by Anastasios Kotronis, Athens, Greece

The following identities are well known:

arctan a+ arctan b =





arctan
a+ b

1− ab , ab < 1

arctan
a+ b

1− ab + π , ab > 1 ∧ a > 0

arctan
a+ b

1− ab − π , ab > 1 ∧ a < 0

arctan a+ arctan
1

a
=





π

2
, a > 0

−π
2

, a < 0

Applying these formulas to the pair arctan

(
1

3

)
, arctan

(
1

5

)
, and then repeating to

arctan

(
1

7

)
, arctan

(
1

11

)
and to arctan

(
1

13

)
, we obtain that
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sin

(
arctan

(
1

3

)
+ arctan

(
1

5

)
+ arctan

(
1

7

)
+ arctan

(
1

11

)
+ arctan

(
1

13

)
+ arctan

(
111

121

))

= sin

(
arctan

(
121

111

)
+ arctan

(
111

121

))

= sin
π

2

= 1.

Also solved by Brian D. Beasley, Clinton, SC; Dionne Bailey, Elsie Campbell
and Charles Diminnie, San Angelo, TX; Michael C. Faleski (two solutions),
University Center, MI; Paul M. Harms, North Newton, KS; Enkel Hysnelaj,
University of Technology, Sydney, Australia jointly with Elton Bojaxhiu,
Kriftel, Germany; Kenneth Korbin, New York, NY; David E. Manes,
Oneonta NY; Kee-Wai Lau, Hong Kong, China; Ángel Plaza, University of
Las Palmas de Gran Canaria, Spain; Paolo Perfetti, Department of
Mathematics, University “Tor Vergata,” Rome, Italy; Boris Rays (two
solutions), Brooklyn, NY; Neculai Stanciu, Buzău, Romania with Titu
Zvonaru, Comănesti, Romania; David Stone and John Hawkins (jointly),
Statesboro, GA; Albert Stadler, Herrilberg, Switzerland, and the proposer.

• 5186: Proposed by John Nord, Spokane, WA

Find k so that

∫ k

0

(
− b
a
x+ b

)n
dx =

1

2

∫ a

0

(
− b
a
x+ b

)n
dx.

Solution by Ángel Plaza, Department of Mathematics, University of Las
Palmas de Gran Canaria, Spain

It is clear that if b = 0, then the equation holds for every k. Assuming that the
parameter b 6= 0, it may be removed, and the problem then becomes to find k so that

∫ k

0

(
a− x
a

)n
dx =

1

2

∫ a

0

(
a− x
a

)n
dx.

We may assume that a > 0. Integrating we obtain:
(
a− x
a

)n]k

0
=

1

2

(
a− x
a

)n]a

0
⇒

(
a− k
a

)n
− 1 = −1

2
.

And, therefore k = a

(
1− 1

n+1
√

2

)
if n is even, while k = a

(
1± 1

n+1
√

2

)
if n is odd.

Comment by David Stone and John Hawkins of Statesboro, GA. When a and
b are positive, we have the usual area interpretation of our result. The problem asks us
to determine how far along we should move to capture half of the area from 0 to a.

In this case, the graph of y =

(−b
a

)
(x− a)n has y−intercept (0, b), and drops off to its

x−intercept (a, 0), so the integral

∫ a

0

(
− b
a
x+ b

)n
dx actually represents the area under

the curve.
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For n even, the graph bottoms out at (a, 0) and stays above the x-axis and we see that

k =

(
1− 1

n+1
√

2

)
a is the “magical” spot where we halve the area.

For n odd, the graph slices through the x−axis at (a, 0) and is symmetric about this

x−intercept, so we have two values of k. The first k1 = a− a
n+1
√

2
, actually marks the

spot where half of the area from 0 to a is achieved, while the second k2 = a+
a

n+1
√
a

marks the spot where the net area once again equals half of the area from 0 to a.

Note that the geometrical interpretation is more complicated when a and/or b is
negative, but the same values of k provide the correct area interpretation.

Also solved by Daniel Lopez Aguayo, Institute of Mathematics (UNAM)
Morelia, Mexico; Brian D. Beasley, Clinton, SC; Michael C. Faleski,
University Center, MI; Paul M. Harms, North Newton, KS; Enkel Hysnelaj,
University of Technology, Sydney, Australia jointly with Elton Bojaxhiu,
Kriftel, Germany; Kee-Wai Lau, Hong Kong, China; David E. Manes,
Oneonta NY; Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy; Boris Rays, Brooklyn, NY; Neculai Stanciu, Buzău,
Romania; David Stone and John Hawkins (joinlty), Statesboro, GA and the
proposer.

• 5187: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Let f : [0, 1]→ (0,∞) be a continuous function. Find the value of

lim
n→∞




n

√
f( 1

n) + n

√
f( 2

n) + · · ·+ n

√
f(nn)

n




n

.

Solution by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata,” Rome, Italy

The answer is e
∫ 1

0
ln(f(x))dx

Proof.

n

√

f(
k

n
) = exp{ 1

n
ln[f(

k

n
)]} = 1 +

1

n
ln

(
f(
k

n
)

)
+O(

1

n2
).

We observe that being the function continuous, it is bounded above and below and the
lower bound is positive by the positivity of the function namely 0 < m ≤ f(x) ≤M for
any x ∈ [a, b]. This allowed us to write O(1/n2) in the last term regardless the presence
of the function f(x). Thus,

n

√
f( 1

n) + n

√
f( 2

n) . . . n

√
f( kn)

n
= 1 +

1

n2

n∑

k=1

ln(f(
k

n
)) +O(

1

n2
)
.
= 1 +

pn
n

+O(
1

n2
)

and (use ln(1 + x) = x+O(x2)).

(1 +
pn
n

+O(
1

n2
))n = exp{n ln(1 +

pn
n

+O(
1

n2
)} = exp{pn +O(

pn
n

) +O(
1

n2
) +O(

p2n
n2

)}.
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The quantity pn is clearly the Riemann sum of
∫ 1
0 ln(f(x))dx and then the last

exponential is bounded below and above since ln(m) ≤ ∫ 10 ln(f(x))dx ≤ ln(M). We
obtain

exp{pn +O(
pn
n

) +O(
1

n2
) +O(

p2n
n2

)} → e
∫ 1

0
ln(f(x))dx.

Also solved by Kee-Wai Lau, Hong Kong, China; Neculai Stanciu, Buzău,
Romania; Albert Stadler, Herrilberg, Switzerland, and the proposer.

Addendum

The name of Brian D. Beasley of Clinton, SC was inadvertently left off the list of
having solved problem 5176. Sorry Brian, mea culpa.

Also, Albert Stadler of Herrilberg, Switzerland noticed two typos in the February,
2012 issue of the column. In his solution to 5176, the fourth line in the first equation
array lists the term y3, but it should be y2. And in his solution to 5178, the last line
should have been x2 + y2 + z2 and not x3 + y3 + z3. Again, sorry, mea culpa.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2012

• 5206: Proposed by Kenneth Korbin, New York, NY

The distances from the vertices of an equilateral triangle to an interior point P are√
a,
√
b, and

√
c respectively, where a, b, and c are positive integers.

Find the minimum and the maximum possible values of the sum a+ b+ c if the side of
the triangle is 13.

• 5207: Proposed by Roger Izard, Dallas, TX

Consider the following four algebraic terms:

T1 = a2 (b+ c) + b2 (a+ c) + c2 (a+ b)

T2 = (a+ b)(a+ c)(b+ c)

T3 = abc

T4 =
b+ c− a

a
+
a+ c− b

b
+
a+ b− c

c

Suppose that
T1 · T2
(T3)

2 =
616

9
. What values would then be possible for T4?

• 5208: Proposed by D. M. Bătinetu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania

Let the sequence of positive real numbers {an}n≥1, N ∈ Z+ be such that

lim
n→∞

an+1

n2 · an
= b. Calculate:

lim
n→∞

(
n+1
√
an+1

n+ 1
−

n
√
an
n

)
.

• 5209: Proposed by Tom Moore, Bridgewater, MA

We noticed that 27 is a cube and 28 is an even perfect number. Find all pairs of
consecutive integers such that one is cube and the other is an even perfect number.
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• 5210: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be four positive real numbers. Prove that

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
>

2
√

3

3
.

• 5211: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Let n ≥ 1 be a natural number and let

fn(x) = xx
··
·x

,

where the number of x’s in the definition of fn is n. For example

f1(x) = x, f2(x) = xx, f3(x) = xx
x
, . . . .

Calculate the limit

lim
x→1

fn(x)− fn−1(x)

(1− x)n
.

Solutions

• 5188: Proposed by Kenneth Korbin, New York, NY

Given 4ABC with coordinates A(−5, 0), B(0, 12) and C(9, 0). The triangle has an
interior point P such that 6 APB = 6 APC = 120◦. Find the coordinates of point P .

Solution 1 by Ercole Suppa, Teramo, Italy

Let us construct equilateral triangles 4ABD, 4AEC externally on the sides AB, AC of
triangle 4BAC and denote by ω1, ω2 the circumcircles of 4ABD, 4AEC. The point P
is the intersection point of ω1, ω2 different from O. In order to find the coordinates of
D, E we use complex numbers. If we denote respectively by a = −5, b = 12i, c = 9 the
affixes of A, B, C we get:

d = a+ (b− a)e

π

3
i

=
−5− 12

√
3

2
+

12 + 5
√

3

2
i

e = a+ (c− a)e

π

3
i

= 2− 7
√

3i

so the coordinates of D, E are D

(
−5− 12

√
3

2
,
12 + 5

√
3

2

)
and E

(
2,−7

√
3
)
.

The equations of ω1, ω2 are:

ω1 : 169
√

3x2 + 169
√

3y2 +
(
2028 + 845

√
3
)
x+

(
−845− 2028

√
3
)
y + 10140 = 0

ω2 : 196
√

3x2 + 196
√

3y2 − 784
√

3x+ 2744y − 8820
√

3 = 0
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and, after some calculations, we obtain

P = ω1 ∩ ω2 =


−

2
(
−981 + 112

√
3
)

2353
,−

21
(
−896 + 263

√
3
)

2353


 .

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

The isogonic center P is the point from which we see the sides of ABC under equal
angles (that is 120◦ mod 180◦). The isogonic center is the common intersection point of
the three circumcircles to the equilateral triangles constructed on the sides of 4ABC
(Napoleon’s theorem).

Let 4AC ′B, 4BA′C, 4ACB′ be equilateral triangles constructed on the outside on the
edges of 4ABC, then AA′, BB′, CC ′ intersect in the isogonic center P . Of course, it is
enough to find two of these lines. In our case,

B′ = −5 + (14, 0) · 1−π/3 = 2− 7
√

3i

C ′ = −5 + (5, 12) · 1π/3 = −5/2− 6
√

3 + (6 + 5
√

3/2)i.

The intersection of lines BB′ and CC ′ gives the solution

P =

(
6(56 + 33

√
3)

504 + 295
√

3
,
21(93 + 56

√
3)

504 + 295
√

3

)
=

(
1962− 224

√
3

2353
,
18816− 5523

√
3

2353

)
.

Solution 3 by Michael Brozinsky, Central Islip, NY

Clearly AC = 14, and AB = 13. Consider the circumscribed circle of 4APC. If we
denote its center by O1 and the midpoint of AC by M(2, 0), then, since an inscribed
angle is measured by one half of its intercepted arc, and a radius perpendicular to a
chord bisects the chord and its arc, it readily follows that 4AO1M is a 30, 60, 90 degree

right triangle and so since MA = 7, the radius is 14

√
3

3
, O1M = 7

√
3

3
, and P lies on the

circle

(x− 2)2 +

(
y +

7

3

√
3

)2

=
196

3
. (1)

(Note that since the segment of this circle having minor arc AC contains P , the center
O1 is below AC.)

Similarly, consider the circumscribed circle of 4APB. If we denote its center by O2 and

the midpoint of AB by N

(
−5

2
, 6

)
, then 4AO2N is a 30, 60, 90 degree right triangle

and so since NA =
13

2
the radius is 13

√
3

3
and O2N = 13

√
3

6
.

The perpendicular bisector of AB is

y − 6 = − 5

12
·
(
x+

5

2

)
=⇒ y = − 5

12
x+

119

24
. (2)

If (X,Y ) are the coordinates of O2 we have

(
X +

5

2

)2

+

(
− 5

12
X +

119

24
− 6

)2

=

(
13

√
3

6

)2

,
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and thus, X = −5

2
± 2
√

3. We choose X = −5

2
− 2
√

3 since O2 is to the left of AB, and

from (2), Y = 6 +
5

6

√
3.

Thus P also lies on the circle
(
x+

5

2
+ 2
√

3

)2

+

(
y − 6− 5

6

√
3

)2

=
169

3
. (3)

If we subtract equation (3) from equation (1) we obtain the line

−9x− 36 +
19

3
y
√

3− 4x
√

3− 20
√

3 + 12y = 9 (4)

or equivalently,

y = − 3

71

(
−32 + 9

√
3
)

(x+ 5). (5)

This line just found passes through the points of intersections of these two circles and
thus P is that point that is interior to 4ABC. Substituting (1) into (5), solving the
resulting quadratic equation and rejecting x = −5, gives the (x, y) coordinates of P .

(x, y) =

(
1962

2353
− 224

2353

√
3,

18816

2353
− 5523

2353

√
3

)
.

Also solved by Brian D. Beasley, Clinton, SC; Michael Brozinsky (two
solutions), Central Islip, NY; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Charles
McCracken, Dayton, OH; John Nord, Spokane, WA; Titu Zvonaru,
Comănesti, Romania jointly with Neculai Stanciu, Buzău, Romania; Albert
Stadler, Herrliberg, Switzerland; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5189: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with integer length sides and with 6 A = 60◦ and with (a, b, c) = 1.

Find the lengths of b and c if

i) a = 13, and if

ii) a = 132 = 169, and if

iii) a = 134 = 28561.

Solution 1 by Kee-Wai Lau, Hong Kong, China

By the cosine formula formula, we have a2 = b2 + c2 − bc so that c =
b±
√

4a2 − 3b2

2

with 1≤ b < 2
√

3a

3
. A computer search yields the following solutions with (a, b, c) = 1:

i) (b, c) = (7, 15), (8, 15), (15, 7), (15, 8).
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ii) (b, c) = (15, 176), (161, 176), (176, 15), (176, 161).

iii) (b, c) = (5055, 30751), (25696, 30751), (30751, 5055), (30751, 25696).

Solution 2 by Albert Stadler, Herrliberg, Switzerland

( Editor: Albert gave two solutions to this problem; in the first solution he used the
above computer-aided approach. But in his second solution he used the complex roots of
unity.)

A more inspired approach is based on Eisenstein integers (see e.g.,
http : //en.wikipedia.org/wiki/Eisenstein integer).

Let ω =
−1 + i

√
3

2
. The set of Eisenstein integers Z[ω] = {a+ bω|a, b ∈ Z} has the

following properties:

• (i) Z[ω] forms a commutative ring of algebraic integers in the real number field Q(ω)

• (ii) Z[ω] is an Euclidean domain whose norm N is given by N(a+ bω) = a2 − ab+ b2.
As a result of this Z[ω] is a factorial ring.

• (iii) The group of units in Z[ω] is the cyclic group formed by the sixth root of unity in
the complex plane. Specifically, they are {±1,±ω,±ω2}. These are just the Eisenstein
integers of norm one.

• (iv) An ordinary prime number (or rational prime) which is 3 or congruent to 1 mod 3
is of the form x2 − xy + y2 for some integers x, y and may therefore be factored into
(x+ yω)(x+ yω2) and because of that it is not prime in the Eisenstein integers.
Ordinary primes congruent to 2 mod 3 cannot be factored in this way and they are
primes in the Eisenstein integers as well.

Based on the above we find the factorization 13 = (4 + ω)(4 + ω2), where 4 + ω and
4 + ω2 are two Eisenstein primes that are conjugate to each other . So
13n = (4 + ω)n(4 + ω2)n, and this is (up to units) the only factorization into two factors
of the form b+ cω with b and c coprime. We find

(4 + ω)2 = 16 + 8ω + ω2 = 15 + 7ω,

(4 + ω)2(−ω2) = −15ω2 − 7 = 8 + 15ω,

(4 + ω)4 = (15 + 7ω)2 = 225 + 210ω + 49ω2 = 176 + 161ω,

(4 + ω)4(−ω2) = (176 + 161ω)(−ω2) = −176ω2 − 161 = 15 + 176ω,

(4 + ω)8 = (176 + 161ω)2 = 30976 + 56672ω + 25921ω2 = 5055 + 30751ω

(4 + ω)8(−ω) = (5055 + 30751ω)(−ω) = −5055ω − 30751ω2 = 30751 + 25696ω.
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We note that

N((4 + ω)2) = N((4 + ω)2(−ω2)) = 132

N((4 + ω)4) = N((4 + ω)4(−ω2)) = 134

N((4 + ω)8) = N((4 + ω)8(−ω2)) = 138

N(x+ yω) = x2 − xy + y2,

and we get the same solutions as with the exhaustive computer search.

Also solved by Brian D. Beasley, Clinton, SC; Dionne T. Bailey, Elsie M.
Campbell, and Charles Diminnie, San Angelo TX; Bruno Salgueiro Fanego,
Viveiro Spain; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; David Stone and John Hawkins (jointly), Statesboro, GA, and
the proposer.

• 5190: Proposed by Neculai Stanciu, Buzău, Romania

Prove: If x, y and z are positive integers such that
x(y + 1)

x− 1
∈ N,

y(z + 1)

y − 1
∈ N, and

z(x+ 1)

z − 1
∈ N, then xyz ≤ 693.

Solution by Kee-Wai Lau, Hong Kong, China

Since two consecutive positive integers are relatively prime, so in fact

y + 1 = a(x− 1), z + 1 = b(y − 1), x+ 1 = c(z − 1), (1)

where a, b, c ∈ N and abc < 1. Solving (1) for x, y, z we obtain

x =
1 + 2c+ 2bc+ abc

abc− 1
, y =

1 + 2a+ 2ac+ abc

abc− 1
,

1 + 2b+ 2ab+ abc

abc− 1
. (2)

Also, we have from (1) that

abc =

(
x+ 1

x− 1

)(
y + 1

y − 1

)(
z + 1

z − 1

)
≤ (3)(3)(3) = 27. (3)

Using (3), we check with a computer that x, y, and z of (2) are positive integers if and
only if

(a, b, c) = (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 1, 7), (1, 2, 1), (1, 2, 3), (1, 3, 1), (1, 3, 5)(1, 4, 1),
(1, 7, 1), (2, 1, 1), (2, 2, 2, )(2, 3, 1), (3, 1, 1), (3, 1, 2), (3, 3, 3), (3, 5, 1), (4, 1, 1),
(5, 1, 3), (7, 1, 1).

Correspondingly,

(x, y, z) = (11, 9, 7), (8, 6, 4), (7, 5, 3), (6, 4, 2), (9, 7, 11), (5, 3, 3), (6, 4, 8), (4, 2, 2), (5, 3, 7),
(4, 2, 6), (7, 11, 9), (3, 3, 3), (3, 3, 5), (4, 8, 6), (3, 5, 3), (2, 2, 2), (2, 2, 4), (3, 7, 5),
(2, 4, 2), (2, 6, 4).
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Hence, xyz ≤ 693 as desired.

Also solved by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
San Angelo TX; Paul M. Harms, North Newton, KS; Albert Stadler,
Herrilberg, Switzerland; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.

• 5191: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c be positive real numbers such that ab+ bc+ ca = 3. Prove that

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
≤ 1.

Solution 1 by Paul M. Harms, North Newton, KS

From inequalities of the type
√
bc ≤ b+ c

2
we see that

a
√
bc+ b

√
ca+ c

√
ab ≤ a

b+ c

2
+ b

c+ a

2
+ c

a+ b

2
= ab+ bc+ ca.

If we can show that the last expression is less than or equal to
(
a4 + b4 + c4

)
, then the

inequality of the problem is correct.

From the condition in the problem ab+ bc+ ca = 3, so we will prove that
3

(a4 + b4 + c4)
≤ 1.

Let a ≤ b ≤ c with b = ta and c = sa where 1 ≤ t ≤ s. Then

3 ≤ a4 + b4 + c4 =
(
a2
)2 (

1 + t4 + s4
)
.

ab+ bc+ ca = 3 =⇒ a2 =
3

t+ ts+ s
. We must prove that

3 ≤
[

3

t+ ts+ s

]2 (
1 + t4 + s4

)
or equivalently,

(t+ ts+ s)2 = t2 + 2st2 + s2t2 + 2st+ 2s2t+ s2 ≤ 3
(
1 + t4 + s4

)
for 1 ≤ t ≤ s, i.e.,

0 ≤ 3t4 + 3s4 − t2 − s2 − 2t2s− 2s2t− st2 − 2st+ 3 for 1 ≤ t ≤ s.

Let f(t, s) be the right side of the last inequality. We use partial derivatives to help find
the minimum of the function in the appropriate domain.

Subtracting the equations ft(t, s) = 0 and fs(t, s) = 0 we obtain:

12(t3−s3)−2(t−s)−2(s2−t2)−2st(s−t)−2(s−t) = 0 = 2(t−s)
[
6t2 + 7st+ 6s2 + s+ t

]
.

The part in the brackets is clearly positive for 1 ≤ t ≤ s so we must check t = s and
other boundary points of the domain for a minimum of the function.
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When t = s,

f(t, s) = f(s, s) = 5s4 − 4s3 − 4s2 + 3 = (s− 1)2
[
5s2 + 6s+ 3

]
.

The function has a minimum in this case for t = s = 1. For the boundary t = 1 with
t=1≤ s,

f(1, s) = (s− 1)2
[
3s2 + 6s+ 5

]

which again has a minimum for t = s = 1. Since f(s, t) ≥ f(1, 1) = 0 for 1 ≤ t ≤ s, the
inequality of the problem has been proved.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San
Angelo, TX

Using the well-known result x2 + y2 ≥ 2xy, with equality if and only if x = y, we obtain

xy + yz + zx ≤ 1

2

[(
x2 + y2

)
+
(
y2 + z2

)
+
(
z2 + x2

)]

= x2 + y2 + z2, (1)

and consequently,

(x+ y + z)2 = x2 + y2 + z2 + 2 (xy + yz + zx)

= ≤ 3
(
x2 + y2 + z2

)
. (2)

Further, equality is attained in (1) or (2) if and only if x = y = z.

By (1),

a
√
bc+ b

√
ca+ c

√
ab =

√
ab
√
ca+

√
bc
√
ab+

√
ca
√
bc

≤ ab+ bc+ ca

= 3, (3)

with equality if and only if
√
ab =

√
bc =

√
ca, i.e., if and only if a = b = c = 1.

Also, since a, b, c > 0, (1) and (2) imply that

9 = (ab+ bc+ ca)2

≤
(
a2 + b2 + c2

)2

≤ 3
(
a4 + b4 + c4

)

and hence,

a4 + b4 + c4 ≥ 3. (4)

Once again, equality is achieved in (4) if and only if a = b = c = 1.
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Therefore, by (3) and (4),

a
√
bc+ b

√
ca+ c

√
ab

a4 + b4 + c4
≤ 3

3
= 1,

with equality if and only if a = b = c = 1.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

The homogeneous form of this inequality reads as

(
a
√
bc+ b

√
ca+ c

√
ab
)

(ab+ bc+ ca) ≤ 3
(
a4 + b4 + c4

)
or equivalently as

a2b
3
2 c

1
2 +a

3
2 b2c

1
2 +a

3
2 b

3
2 c+ab

3
2 c

3
2 +a

1
2 b2c

3
2 +a

1
2 b

3
2 c2+a2b

1
2 c

3
2 +a

3
2 bc

3
2 +a

3
2 b

1
2 c2 ≤ 3

(
a4 + b4 + c4

)
. (1)

By the weighted AM-GM inequality

a4rb4sc4t ≤ ra4 + sb4 + tc4 (1)

for all tuples (r, s, t) of positive real numbers r, s, and t such that r+ s+ t = 1. We write
down the nine inequalities that result from (1) by choosing:

(r, s, t) =

(
1

2
,
3

8
,
1

8

)
,

(
3

8
,
1

2
,
1

8

)
,

(
3

8
,
3

8
,
1

4

)
,

(
1

4
,
3

8
,
3

8

)
,

(
1

8
,
1

2
,
3

8

)
,

(
1

8
,
3

8
,
1

2

)
,

(
1

2
,
1

8
,
3

8

)
,

(
3

8
,
1

4
,
3

8

)
,

(
3

8
,
1

8
,
1

2

)
.

and add them up. The result follows.

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Ercole Suppa, Teramo, Italy; Paolo Perfetti,
Department of Mathematics, University “Tor Vergata,” Rome, Italy; Boris
Rays, Brooklyn, NY; Titu Zvonaru, Comănesti, Romania jointly with
Neculai Stanciu, Buzău, Romania, and the proposer.

• 5192: Proposed by G. C. Greubel, Newport News, VA

Let [n] = [n]q =
1− qn
1− q be a q number and lnq(x) =

∞∑

n=1

xn

[n]
be a q-logarithm. Evaluate

the following series:

i)
∞∑

k=0

qmk

[mk + 1][mk +m+ 1]
and

ii)
∞∑

k=1

xk

[k][k +m]
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

For 0 < |q| < 1 and for 0 < |x| < 1, we have
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i)

∞∑

k=0

qmk

[mk + 1][mk +m+ 1]

=
1

q[m]

∞∑

k=0

(
1

[mk + 1]
− 1

[mk +m+ 1]

)

=
1

q[m]
(1− (1− q))

=
1

[m]
.

and ii)

∞∑

k=1

xk

[k][k +m]

=
1

[m]

∞∑

k=1

(
xk

[k]
− qmxk

[k +m]

)

=
1

[m]

( ∞∑

k=1

xk

[k]
−
(
q

x

)m ∞∑

k=1

xk+m

[k +m]

)

=
1

[m]

(
lnq(x)−

(
q

x

)m
lnq(x) +

(
q

x

)m m∑

k=1

xk

[k]

)
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

i)

∞∑

k=0

qmk

[mk + 1] [mk +m+ 1]
= (1− q)2

∞∑

k=0

qmk

(1− qmk+1) (1− qmk+m+1)

= (1− q)2
∞∑

k=0

qmk
(

1

1− qmk+1
− 1

1− qmk+m+1

)
1

qmk+1 − qmk+m+1

=
(1− q)2
q − qm+1

∞∑

k=0

(
1

1− qmk+1
− 1

1− qmk+m+1

)

=
(1− q)2
q − qm+1

∞∑

k=0

(
1

1− qmk+1
− 1

1− qm(k+1)+1

)
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=
(1− q)2
q − qm+1

·
(

(1)

1− q − 1

)

=
(1− q)
1− qm

ii)

∞∑

k=1

xk

[k][k +m]
= (1− q)2

∞∑

k=1

xk

(1− qk)(1− qk+m)

= (1− q)2
∞∑

k=1

xk
(

1

1− qk −
1

1− qk+m
)

1

qk − qk+m

=
(1− q)2
1− qm

∞∑

k=1

(
x

q

)k ( 1

1− qk −
1

1− qk+m
)

=
(1− q)2
1− qm

∞∑

k=1

[
xk
(

1

qk
+

1

1− qk
)
− xkqm

(
1

qk+m
+

1

1− qk+m
)]

=
(1− q)2
1− qm

∞∑

k=1

[
xk
(

1

1− qk
)
− xkqm

(
1

1− qk+m
)]

=
(1− q)
1− qm

∞∑

k=1

xk

[k]
− (1− q)2qm

(1− qm)xm

∞∑

k=1

xk+m
(

1

1− qk+m
)

=
(1− q)
1− qm

∞∑

k=1

xk

[k]
− (1− q)2qm

(1− qm)xm

[
− x

1− q −
x2

1− q2 − · · · −
xm

1− qm +
∞∑

k=1

xk
(

1

1− qk
)]

=
1− q

1− qm
∞∑

k=1

xk

[k]
+

(1− q)2qm
(1− qm)xm

[
x

1− q +
x2

1− q2 + · · ·+ xm

1− qm

]
− (1− q)qm

(1− qm)xm

∞∑

k=1

xk

[k]

=
1− q

1− qm
(

1−
(
q

x

)m)
lnq(x) +

(1− q)qm
(1− qm)

[
x1−m

1
+
x2−m

1 + q
+ · · ·+ 1

1 + q + q2 + · · · qm−1

]
.

Also solved by Arkady Alt, San Jose, CA, and the proposer.

• 5193: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Let f be a function which has a power series expansion at 0 with radius of convergence
R.

a) Prove that
∞∑

n=1

nf (n)(0)

(
ex − 1− x

1!
− x2

2!
· · · − xn

n!

)
=

∫ x

0
ex−ttf ′(t)dt, |x| < R.
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b) Let α be a non-zero real number. Calculate
∞∑

n=1

nαn
(
ex − 1− x

1!
− x2

2!
· · · − xn

n!

)
.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

a) Let S(x) be the sum of the series. Then, by differentiation, and for |x| < R,

S′(x) =
∞∑

n=1

nf (n)(0)

(
ex − 1− x

1!
− x2

2!
. . .− xn−1

(n− 1)!

)
= S(x) +

∞∑

n=1

nf (n)(0) · x
n

n!
.

It follows that S′(x) = S(x) + xf ′(x), and hence

S(x) =

∫ x

0
ex−ttf ′(t)dt+ Cex,

where C is a constant of integration. Because S(0) = 0, we have C = 0 and

S(x) =

∫ x

0
ex−ttf ′(t)dt.

b) Note that if f(x) = eαx then f (n)(0) = αn, for n ≥ 1. Hence, by part a), the sum of

the given series is

∫ x

0
ex−ttetdt =

x2e2

2
if α = 1. If α 6= 1, the sum of the series is

∫ x

0
ex−ttαeαtdt =

αxeαx

α− 1
+
α(ex − eαx)

(α− 1)2
.

Solution 2 by Anastasios Kotronis, Athens, Greece

a) From the problem’s assumptions we have that

f(x) =
+∞∑

n=0

f (n)(0)

n!
xn and f ′(x ) =

+∞∑

n=1

f (n)(0)

(n − 1)!
xn−1 for |x | < R,

so, for |x| < R we obtain

∫ x

0
ex−ttf ′(t) dt =

∫ x

0
ex−t

+∞∑

n=1

f (n)(0)

(n− 1)!
tn dt

= ex
+∞∑

n=1

f (n)(0)

(n− 1)!

∫ x

0
tne−t dt

= ex
+∞∑

n=1

f (n)(0)

(n− 1)!
In. (1)

Now In = −
∫ x

0
tn(e−t)′ dt = −xne−x + nIn−1, so it is easily verified by induction

that

In = −e−x
(
xn + nxn−1 + · · ·+ n!x0

)
+ n!

With the above, (1) will give
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∫ x

0
ex−ttf ′(t) dt = ex

+∞∑

n=1

f (n)(0)

(n− 1)!

(
−e−x

(
xn + nxn−1 + · · ·+ n!x0

)
+ n!

)

=
+∞∑

n=1

f (n)(0)

(n− 1)!

(
n!ex − xn − nxn−1 − · · · − n!x0

)

=
+∞∑

n=1

nf (n)(0)

(
ex − 1− x

1!
− · · · − xn

n!

)
.

2) From (1) with f(x) = eαx we obtained that

+∞∑

n=1

nαn
(
ex − 1− x

1!
− · · · − xn

n!

)
=

∫ x

0
ex−tαteαt dt

= Iα.

So,





∫ x

0
ex−ttet dt =

x2ex

2
, for α = 1

Iα = αex
(∫ x

0 t
(
e(α−1)t

α−1
)
dt
)
, forα 6= 1

= αeαx

α−1
(
x− 1

α−1
)

+ αex

(α−1)2 .

Solution 3 by Arkady Alt, San Jose, CA

a) Let

an (x) = ex − 1− x
1! − x2

2! − ...− xn

n! , n ∈ N ∪ {0} and F (x) =
∞∑
n=1

nf (n) (0) an (x) .

Noting that

a′n (x) = ex − 1− x

1!
− x2

2!
− ...− xn−1

(n− 1)!

= an−1 (x) , n ∈ N

we obtain

F ′ (x) =

( ∞∑

n=1

nf (n) (0) an (x)

)′

=
∞∑

n=1

nf (n) (0) a′n (x)

=
∞∑

n=1

nf (n) (0) an−1 (x) .
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Therefore,

F(x)− F ′ (x) =
∞∑

n=1

nf (n) (0) (an (x)− an−1 (x))

=
∞∑

n=1

nf (n) (0)

(
−x

n

n!

)

= −
∞∑

n=1

f (n) (0)
xn

(n− 1)!

= −x
∞∑

n=0

f (n+1) (0)
xn

n!

= −xf ′ (x) .

Multiplying equation F ′ (x)− F (x) = xf ′ (x) by e−x we obtain

F ′ (x) e−x − F (x) e−x = e−xxf ′ (x) ⇐⇒ (
F (x) e−x

)′

= e−xxf ′ (x) .

Hence,

F (x) e−x =

∫ x

o
e−ttf ′ (t) dt

⇐⇒ F (x) =

∫ x

o
ex−ttf ′ (t) dt.

b) Let f (x) = eαx then f (n) (0) = αn and, using the result we obtained in part (a)
we get,

∞∑

n=1

nαn
(
ex − 1− x

1!
− x2

2!
− ...− xn

n!

)
=

∫ x

0
ex−ttαeαtdt

= αex
∫ x

0
tet(α−1)dt.

If α = 1 then

∫ x

0
tet(α−1)dt =

x2

2
and, therefore,

∞∑

n=1

nαn
(
ex − 1− x

1!
− x2

2!
− ...− xn

n!

)
=

∞∑

n=1

n

(
ex − 1− x

1!
− x2

2!
− ...− xn

n!

)

=
αexx2

2
.

If α 6= 1 then

∫ x

0
tet(α−1)dt =

xe(α−1)x

α− 1
− e(α−1)x

(α− 1)2
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=
e(α−1)x (x (α− 1)− 1)

(α− 1)2
.

Hence,

∞∑

n=1

nαn
(
ex − 1− x

1!
− x2

2!
− ...− xn

n!

)
=
αeαx (x (α− 1)− 1)

(α− 1)2
.

Solution 4 by Paolo Perfetti, Department of Mathematics, University
“Tor Vergata,” Rome, Italy

a) We need the two lemmas:

Lemma 1 m!n! ≤ (n+m)!

Proof by Induction. Let m be fixed. If n = 0 evidently holds true. Let’s suppose
that the statement is true for any 1 ≤ n ≤ r. For n = r + 1 we have

m!(r + 1)! = m!r!(r + 1) ≤ (m+ r)!(r + 1) ≤ (m+ r)!(m+ r + 1) = (m+ r + 1)!

which clearly holds for any m ≥ 0. Since the inequality is symmetric, the induction
on m proceeds along the same lines. q.e.d.

Lemma 2 The power series

∞∑

n=1

nf (n)(0)

(
ex − 1− x

1!
− x2

2!
− . . .− xn

n!

)
=
∞∑

n=1

nf (n)(0)
∞∑

k=n+1

xk

k!

converges for |x| < R and is differentiable.

Proof:

∞∑

k=n+1

xk

k!
=

xn+1

(n+ 1)!

∞∑

k=n+1

xk−n−1
(n+ 1)!

k!
.

By using the Lemma 1 we can bound

∞∑

k=n+1

|x|k−n−1 (n+ 1)!

k!
≤

∞∑

k=n+1

|x|k−n−1
(k − n− 1)!

=
∞∑

k=0

|x|k
k!

= e|x| ≤ eR.

Thus we can write

∞∑

n=0

n|f (n)(0)|
∞∑

k=n+1

|x|k
k!
≤ eR|x|

∞∑

n=0

n|f (n)(0)| |x|
n

n!

n!

(n+ 1)!

Since

lim sup
n→∞

∣∣∣∣∣
f (n)(0)

n!

∣∣∣∣∣

1/n

= R−1 =⇒ lim sup
n→∞

∣∣∣∣∣
f (n)(0)

n!

n

n+ 1

∣∣∣∣∣

1/n

= R−1

the series

∞∑

n=1

nf (n)(0)
∞∑

k=n+1

xk

k!
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converges for any |x| < R. Its differentiability is a consequence of the standard
theory on power–series so we don’t write it here. q.e.d.

The function

∫ x

0
ex−ttf ′(t)dt is also differentiable by the fundamental theorem of

calculus and the derivative yields

(∫ x

0
ex−ttf ′(t)dt

)′
= xf ′(x) +

∫ x

0
ex−ttf ′(t)dt

namely it satisfies the ordinary differential equation Q′(x) = Q(x) + xf ′(x),
Q(0) = 0.

The derivative of the series in question a) is

∞∑

n=1

nf (n)(0)

(
ex − 1− x

1!
− x2

2!
− . . .− xn−1

(n− 1)!

)

that is

∞∑

n=1

nf (n)(0)
∞∑

k=n+1

xk

k!
+
∞∑

n=1

nf (n)(0)
xn

n!

which is in turn equals

=
∞∑

n=1

nf (n)(0)
∞∑

k=n+1

xk

k!
+ xf ′(x)

Moreover



∞∑

n=1

nf (n)(0)
∞∑

k=n+1

xk

k!



∣∣∣
x=0

= 0 thus the functions

∫ x

0
ex−ttf ′(t)dt and

∞∑

n=1

nf (n)(0)

(
ex − 1− x

1!
− x2

2!
. . .− xn

n!

)
satisfy the same differential equation

with the same initial condition. By the uniqueness theorem for ODE, they are the
same function. This concludes the proof.

b) αn = (eαx)(n)
∣∣∣
x=0

thus

∞∑

n=1

nαn
(
ex − 1− x

1!
− x2

2!
. . .− xn

n!

)
=

∫ x

0
ex−ttαeαtdt

If α = 1 we obtain

∫ x

0
texαdt = α

x2

2
ex.

If α 6= 1 we obtain integrating by parts

αex
∫ x

0
tet(α−1)dt = αex

(
1

α− 1
tet(α−1)

∣∣∣
x

0
− 1

α− 1

∫ x

0
et(α−1)dt

)

=
αxeαx

α− 1
− αeαx

(α− 1)2
+

αex

(α− 1)2
.
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Also solved by Dionne T. Bailey, Elsie M. Campbell, Charles Diminnie,
and Andrew Siefker, San Angelo, TX; Kee-Wai Lau, Hong Kong, China;
Albert Stadler, Herrliberg, Switzerland, and the proposer.

Mea Culpa

The name of Achilleas Sinefakopoulos of Larissa, Greece was inadvertently
omitted in the March issue of the column as having solved problem 5184. I am
terrible sorry for this oversight–Ted.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2012

• 5212: Proposed by Kenneth Korbin, New York, NY

Solve the equation

2x+ y −
√

3x2 + 3xy + y2 = 2 +
√

2

if x and y are of the form a+ b
√

2 where a and b are positive integers.

• 5213: Proposed by Tom Moore, Bridgewater, MA

The triangular numbers Tn begin 1, 3, 6, 10, . . . and, in general,

Tn =
n(n+ 1)

2
, n = 1, 2, 3, . . ..

For every positive integer n > 1, prove that n4 is a sum of four triangular numbers.

• 5214: Proposed by Pedro H. O. Pantoja, Natal-RN, Brazil

Let a, b, c be positive real numbers. Prove that

a3(b+ c)2 + 1

1 + a+ 2b
+
b3(c+ a)2 + 1

1 + b+ 2c
+
c3(a+ b)2 + 1

1 + c+ 2a
≥ 4abc(ab+ bc+ ca) + 3

a+ b+ c+ 1
.

• 5215: Proposed by Neculai Stanciu, Buzău, Romania

Evaluate the integral

∫ 1

−1

2x1004 + x3014 + x2008 sinx2007

1 + x2010
dx.

• 5216: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let f : < → <+ be a function such that for all a, b ∈ <

f(ab) = f(a)bf(b)a
2

and f(3) = 64. Find all real solutions to the equation

f(x) + f(x+ 1)− 3x− 2 = 0.
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• 5217: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the value of:

lim
n→∞

∫ 1

0

∫ 1

0

n
√

(xn + yn)kdxdy,

where k is a positive real number.

————————————————————–

Solutions

• 5194: Proposed by Kenneth Korbin, New York, NY

Find two pairs of positive integers (a, b) such that,

14

a
+
a

b
+

b

14
= 41.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
San Angelo, TX

Multiplying 14/a+ a/b+ b/14 = 41 by the LCM of the denominators, it follows that
14a2 + b(b− 574)a+ 196b = 0.

To get positive integer solutions, b− 574 < 0. Using MATLAB, we obtain the solutions
(252, 567) and (980, 25). It is easily checked that these are solutions.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

If one intends to make the search amenable to a manual search then the search space
needs to be narrowed down by exploiting divisibility properties of the numbers a and b.

Equation (1)

(
14

a
+
a

b
+

b

14
= 41

)
is equivalent to

14a2 + 196b = ab(574− b). (2)

By (2), 14|ab2, which implies firstly that (2|a or 2|b) and secondly that (7|a or 7|b).
If 2|b, then, again by (2), 4|14a2, which implies that 2|a. So 2|a.

If 7|b, then, again by (2), 49|14a2, which implies that 7|a. So 7|a.

So a is a multiple of 14 and we write a = 14c. (2) then reads as

196c2 + 14b = bc(574− b). (3)

Let p be a prime different from 2 and 7. Let pβ||b, pγ ||c.
(
pf ||n means that pf |n and

pf+1 6 |n or in words: f is the exact exponent of p in the prime factorization of n.)

We claim that β = 2γ.

If pβ||b, then by (3), pβ|c2. So, γ ≥ dβ/2e.
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If pγ ||c, then by (3), pγ |b. Then, again by (3), p2γ |b. So β ≥ 2γ.

So γ ≥ dβ/2e ≥ γ which indeed implies that β = 2γ.

So b and c are of the form b = 2r7sk2, c = 2u7vk (4),
where r, s, u, v are nonnegative integers 0 ≤ r ≤ 9, 0 ≤ u ≤ 8, 0 ≤ s, v ≤ 3,
k ∈ {1, 3, 5, 9, 11, 13, 15, 17, 19, 23}, because b < 573, c < 421.

We plug (4) into (3) and get

14
(
21+2u71+2v + 2r7s

)
= 2r+u7s+vk

(
574− 2r7sk2

)
. (5).

A manual check reveals that (5) can hold only for k = 5 and k = 9. They give rise to the
two pairs (b, c) = (25, 70) and (b, c) = (567, 18) which in turn yield the two solutions
(a, b) ∈ {(980, 25), (252, 567)}.

Yet another approach to solve (1) consists in solving (3) for b. We find

b =
7

(
−1 + 41c±

√
(1− 41c)2 − 4c3

)

c
.

Obviously 4c3 ≤ (41c− 1)2 < (41c)2 . So c < 420 (as above). The term under the root
sign equals the square of an integer. We are left with a finite set of values of c for which
we need to check this condition. We find that the only values of c are c = 18 and c = 70.
They give rise to the solutions already mentioned.

Comment by editor: When Ken submitted this problem he accompanied it with the
following explanation.

Let K be a factor of 14, and let a = K2y and let b = y2. Then

K

a
+
a

b
+

b

K
=

1 +K3 + y3

Ky

which is equal to an integer if K is a factor of y3 + 1 and if y is a factor of K3 + 1.

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, Oneonta, NY; Titu Zvonaru, Comănesti, Romania jointly
with Neculai Stanciu, Buzău, Romania; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5195: Proposed by Kenneth Korbin, New York, NY

If N is a prime number or a power of primes congruent to 1 (mod 6), then there are
positive integers a and b such that 3a2 + 3ab+ b2 = N with (a, b) = 1.

Find a and b if N = 2011, and if N = 20112, and if N = 20113.

Solution 1 by Kee-Wai Lau, Hong Kong, China

From 2a2 + 3ab+ b2 = N , we obtain b =

√
4N − 3a2 − 3a

2
, so that a <

√
N

3
.

A computer search yields the following results.

For N = 2011, we have (a, b) = (10, 29)
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For N = 20112, we have (a, b) = (880, 541)
For N = 20113, we have (a, b) = (46619, 10711)

Solution 2 by Albert Stadler, Herrliberg, Switzerland

This problem is best put in the context of Eisenstein integers. Let ω =
−1 + i

√
3

2
. The

set of Eisenstein integers Z[ω] = {a+ bω|a, b ∈ Z} has the following properties:

• (i) Z[ω] forms a commutative ring of algebraic integers in the real number field Q(ω)

• (ii) Z[ω] is an Euclidean domain whose norm N is given by N(a+ bω) = a2 − ab+ b2.
As a result of this Z[ω] is a factorial ring.

• (iii) The group of units in Z[ω] is the cyclic group formed by the sixth root of unity in
the complex plane. Specifically, they are {±1,±ω,±ω2}. These are just the Eisenstein
integers of norm one.

• (iv) An ordinary prime number (or rational prime) which is 3 or congruent to 1 (mod
3) is of the form x2 − xy + y2 for some integers x, y and may therefore be factored into
(x+ yω)(x+ yω2) and because of that it is not prime in the Eisenstein integers.
Ordinary primes congruent to 2 (mod 3) cannot be factored in this way and they are
primes in the Eisenstein integers as well.

So based on this, if p is a prime number congruent to 1 (mod 6) then p factors as
p = (c+ dω)(c+ dω2) where c+ dω and c+ dω2 are two Eisenstein primes that are
complex conjugates to each other. Of course (c, d) = 1, since c+ dω and c+ dω2 are
both Eisenstein primes. By assumption N = pk for some natural number k. Then
N = pk = (c+ dω)k(c+ dω2)k. Let (c+ dω)k = e+ fω. We claim that e and f are
coprime.

Assume that there is a prime q that divides both e and f . Then
q|(c+ dω)k|(c+ dω)k(c+ dω2)k = pk. So q = p and therefore q = (c+ dω)(c+ dω2).
Then (c+ dω2)|(c+ dω)k−1 which implies firstly that k > 1, (since an Eisenstein prime
cannot divide 1) and secondly that (c+ dω2)|(c+ dω), (since (c+ dω2) is an Eisenstein
prime). Because |c+ dω2| = |c+ dω| we conclude that there is a unit u such that
(c+ dω2) = u(c+ dω). So c, d ∈ {0,±1} which cannot be, since
N(c+ dω) = p ≡ 1 (mod 6).

So there is a factorization N = pk = (e+ fω)(e+ fω2), where e and f are coprime
integers. We claim that we can assume in addition that either (i) 0 < e < f < 2e or
(ii) 0 < e < −f .

Indeed, since

(+1)(+1) = (−1)(−1) = (+ω)(+ω2) = (+ω2)(+ω) = (−ω)(−ω2) = (−ω2)(−ω)

we conclude that

N(e+ fω) = N(−e− fω) = N(f + eω) = N(−f − eω)

= N(f + (f − e)ω) = N(−f + (e− f)ω) = N(f − e+ fω) = N(e− f − fω).
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So if we consider the eight Eisenstein integers

e+ fω, −e− fω, f + eω, −f − eω, f + (f − e)ω, −f + (e− f)ω, f − e+ fω, e− f − fω

there is one among these of the form g + hω such that either 0 < g < h < 2g or
0 < g < −h, for if g and h have the same sign we can first assume that g > 0 and h > 0
(by replacing, if necessary g by −g and h by −h). Next we can assume that h > g (by
replacing, if necessary g by h and h by g). Next we can assume that h < 2g (by
replacing, if necessary, g by h− g). If g and h have different signs then we can first
assume that g > 0, h < 0 (by replacing , if necessary, g by −g and h by −h). Next we
can assume that g < −h (by replacing, if necessary g by −h and h by −g).

In case (i) we define: a := f − e > 0, b := 2e− f > 0. Then

N = pk = (e+ fω)(e+ fω2) = e2 − ef + f2 = (a+ b)2 − (a+ b)(2a+ b) + (2a+ b)2

= a2 + 2ab+ b2 − (2a2 + 3ab+ b2) + 4a2 + 4ab+ b2 = 3a2 + 3ab+ b2.

In case (ii) we define: a = e > 0, b := −e− f > 0. Then

N = pk = (e+ fω)(e+ fω2) = e2 − ef + f2 = a2 + a(a+ b) + (a+ b)2

= a2 + a2 + ab+ a2 + 2ab+ b2 = 3a2 + 3ab+ b2.

We find (upon using that ω3 = 1, ω2 + ω + 1 = 0),

2011 = (10 + 49ω)(10 + 49ω2), (1)

20112 = (10 + 49ω)2(10 + 49ω2)2 = (2301 + 1421ω)(2301 + 1421ω2), (2)

20113 = (10 + 49ω)3(10 + 49ω2)3 = (46619− 57330ω)(46619− 57330ω2). (3)

We note that 39 + 49ω2 is an associate of 10 + 49ω since
−(39 + 49ω2) = −(39− 49− 49ω) = 10 + 49ω.

So, 2011 = (39 + 49ω)(39 + 49ω2), and 0 < 39 < 49 < 78. We are in case (i) and find
a = 10, b = 29. Indeed, if we define f(a, b) = 3a2 + 3ab+ b2, then f(10, 29) = 2011.

We note that 2301 + 1421ω2 is an associate of 1421 + 2301ω since
ω(2301 + 1421ω2) = 1421 + 2301ω. So, 20112 = (1421 + 2301ω)(1421 + 2301ω2), and
0 < 1421 < 2301 < 2842. We are in case (i) and find a = 880, b = 541. Indeed,
f(880, 541) = 20112.

We note that 20113 = (46619− 57330ω)(46619− 57330ω2), and 0 < 46619 < 57330. We
are in case (ii) and find a = 46619, b = 10711. Indeed, f(46619, 10711) = 20113.

Also solved by Brian D. Beasley, Clinton, SC; Pat Costello, Richmond, KY;
Paul M. Harms, North Newton, KS; David E. Manes, Oneonta, NY; David
Stone and John Hawkins (jointly), Statesboro, GA, and the proposer.

• 5196: Proposed by Neculai Stanciu, Buzău, Romania

Determine the last six digits of the product (2010)
(
52014

)
.

Solution 1 by Robert Howard Anderson, Chesapeake, VA
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To determine the last six digits of a product you must know the last six digits of each
number you plan to multiply.

To do this the last six digits of 52014 we need to look at the patterns of the solutions to
lower powers.

All power of 5 end in 5, and all even powers of five end in 25, then all even powers
greater than 2 end in 625. The 4th digit is either 5 or 0; the digit can be determined by
using 2008 (mod 4) as 5.

The 5th digit is either 1,9,6, or 4; the digit can be determined by using 2008 (mod 8) as
1.

The 6th digit is either 3,7,1,5,8,2,6,or 0; the digit can be determined by using 2006 (mod
16) as 5.

The last six digits of 52014 are 515625.

The last six digits of (2010)(515625) are 406250; so the last six digits of (2010)52014 are
406250.

Solution 2 by Ercole Suppa, Teramo, Italy

Clearly the last digit of N = (2010)
(
52014

)
is 0. Therefore in order to find the last six

digits of N it is enough to calculate the last five digits of (201)
(
52014

)
.

Let us first calculate a few powers of 5, and to do it we need to know just the last five
digits of the previous power of 5:

51 = 5 52 = 25 53 = 25 54 = 625
55 = 3125 56 = 15625 57 = 78125 58 = · · · 90625
59 = · · · 53125 510 = · · · 65625 511 = · · · 28125 512 = · · · 40625
513 = · · · 03125 514 = · · · 15625

Observe that the last five digits of 514 are the same as those of 56. Therefore, starting
with 56 the last five digits of powers of 5 will repeat periodically:

15625, 78125, 90625, 53125, 65625, 28125, 40625, 0325, 15625, · · · .

This means that increasing the exponent of eight does not change the last five digits of
powers of 5. Since 2014 = 6 + 8 · 251, it follows that 56 and 52014 have the same last five
digits, so

201 · 52014 ≡ 201 · 56 ≡ 201 · 15625 ≡ 40625 (mod 105)

and this implies that the last six digits of (2010)
(
52014

)
are 406250.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

By Fermat’s Little Theorem, 5ϕ(32) = 516 ≡ 1(mod 32). So,

52009 ≡ 52009−16·125 ≡ 59 ≡ (−3)3 ≡ 5(mod 32),

which means that there is an integer k such that

52009 − 5 = 32k.

We multiply this equation by 2010 · 55 and get

2010 · 52014 − 2010 · 56 = 201 · 106k.
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But
2010 · 56 = 31406250.

So the last six digits are 406250.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that (2010)
(
52014

)
= · · · 406250.

It is easy to check that

(2010)
(
52014

)
= 406250 +

(
24
) (

56
) (

52011 − 1
)

+ (2)
(
57
) (

52008 − 1
)
.

Hence to prove our result, we need only show that 52011 − 1 is a multiple of 4 and
52008 − 1 is a multiple of 32.

In fact,

52011 − 1 ≡ 12011 − 1 ≡ 0 (mod 4), and

52008 − 1 = 390625251 − 1 ≡ 1251 − 1 ≡ 0 (mod 32),

and this completes the solution.

Also solved by Daniel Lopez Aguayo, UNAM Morelia, Mexico; Brian D.
Beasley, Clinton, SC; Pat Costello, Richmond, KY; Bruno Salgueiro Fanego,
Viveiro Spain; Paul M. Harms, North Newton, KS; David E. Manes,
Oneonta, NY; Boris Rays, Brooklyn, NY; David Stone and John Hawkins
(jointly), Statesboro, GA, and the proposer.

• 5197: Proposed by Pedro H. O. Pantoja, UFRN, Brazil

Let x, y, z be positive real numbers such that x2 + y2 + z2 = 4. Prove that,

1

6− x2 +
1

6− y2 +
1

6− z2 ≤
1

xyz
.

Solution 1 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

The inequality is evidently

∑

cyc

1

2 + x2 + y2
≤ 1

xyz
.

a2 + 1 ≥ 2|a| yields

∑

cyc

1

2 + x2 + y2
≤
∑

cyc

1

2x+ 2y
≤ 1

xyz

and (
√
x−√y)2 ≥ 0 yields

∑

cyc

1

2x+ 2y
≤
∑

cyc

1

4
√
xy
≤ 1

xyz
⇐⇒

∑

cyc

z
√
xy ≤ 4
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which is implied by

∑

cyc

z
1

2
(x+ y) ≤ 4 ⇐⇒ xy + yz + zx ≤ 4.

But this follows by the well known xy + yz + zx ≤ x2 + y2 + z2, thus concluding the
proof.

Soluiton 2 by David E. Manes, Oneonta, NY

Let L =
1

6− x2 +
1

6− y2 +
1

6− z2 . Since x2 + y2 + z2 = 4, it follows that

6− x2 = 2 + y2 + z2, 6− y2 = 2 + x2 + z2, 6− z2 = 2 + x2 + y2.

Therefore,

L =
1

6− x2 +
1

6− y2 +
1

6− z2 =
1

2 + y2 + z2
+

1

2 + x2 + z2
+

1

2 + x2 + y2
.

Using the Arithmetic Mean-Geometric Mean Inequality twice, one obtains

L =
1

2 + (y2 + z2)
+

1

2 + (x2 + z2)
+

1

2 + (x2 + y2)

≤ 1

2 + (2yz)
+

1

2 + (2xz)
+

1

2 + (2xy)

=
1

2

(
1

1 + yz
+

1

1 + xz
+

1

1 + xy

)

≤ 1

2

(
1

2
√
yz

+
1

2
√
xz

+
1

2
√
xy

)

=
1

4

(√
x+
√
y +
√
z

√
xyz

)
.

As a result, to show that L ≤ 1

xyz
it suffices to show that

1

4

(√
x+
√
y +
√
z

√
xyz

)
≤ 1

xyz
, if and only if

1

4

(√
x+
√
y +
√
z
) ≤ 1√

xyz
, if and only if

1

4

(
x
√
yz + y

√
xz + z

√
xy
) ≤ 1.

However, the Cauchy-Schwarz inequality, and the inequality xy + yz + zx ≤ x2 + y2 + z2

(which also follows from the C-S inequality; editor’s comment) imply that

1

4

(
x
√
yz + y

√
xz + z

√
xy
) ≤ 1

4

√
x2 + y2 + z2

√
yz + xz + xy
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≤ 1

4

√
x2 + y2 + z2

√
x2 + y2 + z2 = 1.

Accordingly, if x, y, z > 0, and x2 + y2 + z2 = 4, then

1

6− x2 +
1

6− y2 +
1

6− z2 ≤
1

xyz
.

Solution 3 by Arkady Alt, San Jose, CA

Let a :=
x2

4
b :=

y2

4
, c :=

z2

4
then inequality becomes

1

6− 4a
+

1

6− 4b
+

1

6− 4c
≤ 1

8
√
abc

,

where a+ b+ c = 1.

Let E = E (a, b, c) :=
√
abc

∑

cyc

1

3− 2a
, p := ab+ bc+ ca, q := abc.

Since
∑
cyc

(3− 2b) (3− 2c) =
∑
cyc

(9− 6 (b+ c) + 4bc) = 15 + 4p,

(3− 2a) (3− 2b) (3− 2c) = 9 + 12p− 8q then E =
(15 + 4p)

√
q

9 + 12p− 8q
.

Since q ≤ p2

3

∗
and E is increasing in q then

E√
3
≤ (15 + 4p) p

27 + 36p− 8p2

≤

(
15 + 4 · 13

)
· 13

27 + 36 · 13 − 8 · 19
=

1

7

because
(15 + 4p) p

27 + 36p− 8p2
is increasing in positive p and

p ≤ 1

3
⇐⇒ ab+ bc+ ca ≤ (a+ b+ c)2

3
.

Thus,

E ≤
√

3

7
⇐⇒ 4E ≤ 4

√
3

7

⇐⇒ 8
√
abc

∑

cyc

1

6− 4a
≤ 4
√

3

7

⇐⇒ xyz
∑

cyc

1

6− x2 ≤
4
√

3

7
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⇐⇒
∑

cyc

1

6− x2 ≤
4
√

3

7xyz
.

1

6− x2 +
1

6− y2 +
1

6− z2 ≤ 4
√

3

7xyz
.

Remark: Since
4
√

3

7
< 1 we have

1

6− x2 +
1

6− y2 +
1

6− z2 ≤
4
√

3

7xyz
<

1

xyz
.

So, the inequality in the formulation of problem could have been stated with the
stronger statement

1

6− x2 +
1

6− y2 +
1

6− z2 ≤ 4
√

3

7xyz
, instead of with the weaker one of

1

6− x2 +
1

6− y2 +
1

6− z2 ≤ 1

xyz
.

∗ Editor’s comment: The inequality q ≤ p2

3
is equivalent to

3abc(a+ b+ c) ≤ (ab+ bc+ ca)2 which is equivalent to abc(a+ b+ c) ≤ a2b2 + b2c2 + c2a2

which is implied by adding up a2bc ≤ 0.5a2(b2 + c2) and its cyclic variants.

Also solved by Kee-Wai Lau∗, Hong Kong, China; Ecole Suppa, Teramo,
Italy; Albert Stadler∗, Herrliberg, Switzerland; Titu Zvonaru, Comănesti,
Romania jointly with Neculai Stanciu, Buzău, Romania, and the proposer.
(∗ Observed, specifically stated and proved the stricter inequality.)

• 5198: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let m,n be positive integers. Calculate,

2n∑

k=1

m∏

i=0

(
bk + 1

2
c+ a+ i

)−1
,

where a is a nonnegative number and bxc represents the greatest integer less than or
equal to x.

Solution 1 by Arkady Alt, San Jose, CA

2n∑

k=1

m∏

i=0

(⌊
k + 1

2

⌋
+ a+ i

)−1

=
n∑

k=1

m∏

i=0

(⌊
2k − 1 + 1

2

⌋
+ a+ i

)−1
+

n∑

k=1

m∏

i=0

(⌊
2k + 1

2

⌋
+ a+ i

)−1

= 2
n∑

k=1

m∏

i=0

(k + a+ i)−1

10X
ia
ng
’s
T
ex
m
at
h



= 2
n∑

k=1

1

(k + a) (k + 1 + a) ... (k +m+ a)

=
2

m

n∑

k=1

(
1

(k + a) (k + 1 + a) ... (k +m− 1 + a)
− 1

(k + 1 + a) (k + 2 + a) ... (k +m+ a)

)

=
2

m

(
1

(1 + a) (2 + a) ... (m+ a)
− 1

(n+ 1 + a) (n+ 2 + a) ... (n+m+ a)

)
.

Solution 2 by Anastasios Kotronis, Athens, Greece

By a direct calculation, using the identity Γ(x+ 1) = xΓ(x), x > 0 for the Γ function,
we can see that

m∏

i=0

1

b+ i
=

Γ(b)

Γ(b+m+ 1)
=

1

m

(
Γ(b)

Γ(b+m)
− Γ(b+ 1)

Γ(b+m+ 1)

)
b > 0. (1)

Now

2n∑

k=1

m∏

i=0

([
k + 1

2

]
+ a+ i

)−1

=
∑

k=1,3,...,2n−1

m∏

i=0

(
k + 1

2
+ a+ i

)−1
+

∑

k=2,4,...,2n

m∏

i=0

(
k

2
+ a+ i

)−1

= 2
n∑

k=1

m∏

i=0

(k + a+ i)−1

(1)
=

2

m

n∑

k=1

(
Γ(a+ k)

Γ(a+ k +m)
− Γ(a+ k + 1)

Γ(a+ k +m+ 1)

)

=
2

m

(
Γ(a+ 1)

Γ(a+ 1 +m)
− Γ(a+ n+ 1)

Γ(a+ n+m+ 1)

)
.

Also solved by Albert Stadler, Herrliberg, Switzerland and the proposer.

• 5199: Proposed by Ovidiu Furdui, Cluj, Romania

Let k > 0 and n ≥ 0 be real numbers. Calculate,

∫ 1

0
xn ln

(√
1 + xk −

√
1− xk

)
dx.

Solution by Anastasios Kotronis, Athens, Greece
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I =
xn+1 ln

(√
1 + xk −

√
1− xk

)

n+ 1

∣∣∣∣∣

1

0

− k

2(n+ 1)

∫ 1

0

xn+k
(

1√
1+xk

+ 1√
1−xk

)

√
1 + xk −

√
1− xk

dx

=
ln 2

2(n+ 1)
− k

2(n+ 1)

∫ 1

0

xn+k
(√

1− xk +
√

1 + xk
)

(√
1 + xk −

√
1− xk

)√
1− x2k

dx

=
ln 2

2(n+ 1)
− k

4(n+ 1)

∫ 1

0

xn
(√

1− xk +
√

1 + xk
)2

√
1− x2k

dx

=
ln 2

2(n+ 1)
− k

2(n+ 1)

∫ 1

0

(
xn√

1− x2k
+ xn

)
dx

=
ln 2

2(n+ 1)
− k

2(n+ 1)2
− k

2(n+ 1)

∫ 1

0

xn√
1− x2k

dx

x2k=u
=====

ln 2

2(n+ 1)
− k

2(n+ 1)2
− 1

4(n+ 1)
B

(
n + 1

2k
,
1

2

)
(B(u, v) denotes the Euler beta function)

=
ln 2

2(n+ 1)
− k

2(n+ 1)2
− 1

4(n+ 1)

√
πΓ
(
n+1
2k }

)

Γ
(
n+k+1

2k

) .

Also solved by Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department
of Mathematics, “Tor Vergata” University, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins (jointly),
Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2012

• 5218: Proposed by Kenneth Korbin, New York, NY

Find positive integers x and y such that,

2x− y −
√

3x2 − 3xy + y2 = 2013

with (x, y) = 1.

• 5219: Proposed by David Manes and Albert Stadler, SUNY College at Oneonta,
Oneonta, NY and Herrliberg, Switzerland (respectively)

Let k and n be natural numbers. Prove that:

n∑

j=1

cosk
(

(2j − 1)π

2n+ 1

)
=





2n+ 1

2k+1

(
k

k/2

)
− 1

2
, k even

1

2
, k odd.

• 5220: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The pentagonal numbers begin 1, 5, 12, 22 . . . and are generally defined by

Pn =
n(3n− 1)

2
, ∀n ≥ 1. The triangular numbers begin 1, 3, 6, 10, . . . and are generally

defined by Tn =
n(n+ 1)

2
,∀n ≥ 1. Find the greatest common divisor, gcd(Tn, Pn).

• 5221: Proposed by Michael Brozinsky, Central Islip, NY

If x, y and z are positive numbers find the maximum of
√

(x+ y + z) · xyz
(x+ y)2 + (y + z)2 + (x+ z)2

.

• 5222: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain
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Calculate without the aid of a computer the following sum

∞∑

n=0

(−1)n (n+ 1)(n+ 3)

(
1

1 + 2
√

2i

)n
, where i =

√
−1.

• 5223: Proposed by Ovidiu Furdui,Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

a) Find the value of

∞∑

n=0

(−1)n
(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · ·

)
.

b) More generally, if x ∈ (−1, 1] is a real number, calculate

∞∑

n=0

(−1)n
(
xn+1

n+ 1
− xn+2

n+ 2
+
xn+3

n+ 3
− · · ·

)
.

Solutions

• 5200: Proposed by Kenneth Korbin, New York, NY

Given positive integers (a, b, c, d) such that,

(a+ b+ c+ d)2 = 2
(
a2 + b2 + c2 + d2)

with a < b < c < d. Find positive integers x, y and z such that

x =
√
ab+ ad+ bd−

√
ab+ ac+ bc,

y =
√
bc+ bd+ cd−

√
bc+ ab+ ac,

z =
√
bc+ bd+ cd−

√
ac+ ad+ cd.

Solution by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

The first equation can be treated as a quadratic in d and solved:

d = (a+ b+ c)± 2
√
ab+ ac+ bc.

The simplest way to force d to be an integer is to find a, b and c such that the
discriminate ab+ ac+ bc is a square. (Note that we must use the + sign, because the
negative choice would make d < c.) (Note also that we could cast a slightly wider net
and look for a, b and c such that ab+ ac+ bc has the form n2/4.)

Suppose ab+ ac+ bc = N2, so that d = (a+ b+ c) + 2N . Then we need
x =
√
ab+ ad+ bd−N to be an integer, so ab+ ad+ bd must be a square. Successively,

bc+ bd+ cd and ac+ ad+ cd must also be squares.
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Thus we look for values of a, b, c and d such that ab+ ac+ bc, ab+ ad+ bd, bc+ bd+ cd
and ac+ ad+ cd are all squares.

Surprisingly, there are many such. We used MATLAB to find a sampling and conjecture
that there are infinitely many of them. The smallest set is a = 1, b = 4, c = 9, d = 28
which give x = 5, y = 13, z = 3.

Editor’s note: David and John then listed about 145 different 4-tuplets (a, b, c, d) which
produce positive integer values for x, y, z. Listed below is a sampling of the values they
listed. 



a b c d x y z

1 4 9 28 5 13 3

1 4 12 33 5 16 3

1 4 28 57 5 32 3

1 4 33 64 5 37 3

1 4 57 96 5 61 3

1 4 64 105 5 68 3

1 4 96 145 5 100 3

1 9 16 52 10 25 8

1 9 28 72 10 37 8

1 9 52 108 10 61 8

1 9 72 136 10 81 8

1 12 24 73 13 36 11

...
...

...
...

...
...

...




David and John also asked if there were an infinite number of such integers and Paul
M. Harms of North Newton, KS answered this affirmatively in his solution by
showing that for any positive integer a, (a, b, c, d) = (a, 4a, 9a, 28a) satisfies the
conditions of the problem and yields positive integers for x, y, z. Note that Paul’s
parameterization of the simplest solution (1, 4, 9, 28) produces an infinite number of
solutions to the problem, but not all solutions. E.g., there is no integer value of a for
which (a, 4a, 9a, 28a) will give (1, 4, 12, 33, ), the second tuple in the above listing.

Most solvers showed that if the conditions of the problem are satisfied then two cases
exist: {

x = d− c, y = d− a, z = b− a if a+b+c−d > 0,
x = a+ b, y = b+ c, z = b− a if a+b+c−d < 0.

So the main question becomes: when is (a+ b+ c+ d)2 = 2(a2 + b2 + c2 + d2) solvable?
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Albert Stadler of Herrliberg, Switzerland stated that by labeling the equation
(a+ b+ c+ d)2 = 2(a2 + b2 + c2 + d2) as (1), we see that (1) is equivalent to
(a− b)2 + (c− d)2 = 2(a+ b)(c+ d). So if we choose odd integers u and v such that

u2 + v2 = 2rs with r ≥ u and s ≥ v

then r and s are both odd and (a, b, c, d) = ((r − u)/2, (r + u)/2, (s− v)/2, (s+ v)/2)
satisfies (1).

Also solved by Brian D. Beasley, Clinton, SC; Samuel Judge, Justin Wydra
and Karen Wydra (jointly, students at Taylor University), Upland, IN;
Adrian Naco, Polytechnic University, Tirana, Albania; Albert Stadler,
Herrliberg, Switzerland, and the proposer.

• 5201: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with integer length sides where(
AB,BC,CD

)
= 1 and with AB < BC < CD.

The inradius, the circumradius, and both diagonals have rational lengths. Find the
possible dimensions of the quadrilateral.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

A Brahmagupta quadrilateral [1] is a cyclic quadrilateral with integer sides, integer
diagonals, and integer area. All Brahmagupta quadrilaterals with sides a, b, c, d,
diagonals e, f , area K, and circumradius R can be obtained by clearing denominators
from the following expressions involving rational parameters t, u, and v:

a =

(
t(u+ v) + 1− uv

)(
u+ v − t(1− uv)

)
,

b = (1 + u2)(v − t)(1 + tv),

c = t(1 + u2)(1 + v2),

d = (1 + v2)(u− t)(1 + tv),

e = u(1 + t2)(1 + v2),

f = v(1 + t2)(1 + u2),

K =

∣∣∣∣uv
(

2t(1− uv)− (u+ v)(1− t2)
)(

2(u+ v)t+ (1− uv)(1− t2)
)∣∣∣∣,

4R = (1 + u2)(1 + v2)(1 + t2).

(Source: http://en.wikipedia.org/wiki/Cyclic quadrilateral; we have corrected a minor
slip in the formula for K as we must take the absolute value of the defining expression
of K.)

The condition max

(
0,
uv − 1

u+ v

)
< t < min(u, v) ensures that a > 0, b > 0, c > 0, and

d > 0.
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If the cyclic quadrilateral is in addition tangential (as in the problem statement) then
a+ c = b+ d. So ,

t+ tu2 + 2tuv − u2v + t2u2v + tv2 − uv2 + t2uv2 − tu2v2 = 0, or,

t =

(uv − 1)(uv + 1)− (u+ v)2 +

√
(1 + u2)(1 + v2)

(
(1 + uv)2 + (u+ v)2

)

2uv(u+ v)

There are many tuples (u, v) of rational numbers such that

√
(1 + u2)(1 + v2)

(
(1 + uv)2 + (u+ v)2

)

is rational. Here are a few examples:
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t u v

31/384 4/3 124/957

31/384 4/3 496/3828

1443/1276 4/3 1914/248

1443/1276 4/3 7656/992

93/1924 6/8 124/957

93/1924 6/8 496/3828

216/319 6/8 1914/248

44/273 14/48 156/133

171/1372 14/48 266/312

31/384 16/12 124/957

1443/1276 16/12 1914/248

2816/3705 20/21 912/215

93/1924 24/32 124/957

896/1053 24/7 156/133

152/231 24/7 266/312

896/1053 24/7 624/532

896/1053 96/28 156/133

2625/1664 140/51 260/69




In what follows we consider only the first entry in this table.

The triple (t, u, v) = (31/384, 4/3, 124/957) yields the quadruple

(a, b, c, d) =

(
23280625

17639424
,

13885495975

101285572608
,

721699375

3165174144
,
447919225

317509632

)
.

Clearing denominators yields

(a, b, c, d) = (143550, 14911, 24800, 153439)
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which is equivalent to

(a
′
, b
′
, c
′
, d
′
) = (14911, 24800, 153439, 143550).

Obviously a
′
< b

′
< c

′
and these numbers are coprime.

We see that a
′
+ c

′
= b

′
+ d

′
, so the quadrilateral is tangential. We have

s =
(a+ b+ c+ d)

2
= 168350,

K =
√

(s− a)(s− b)(s− c)(s− d) = 2853965400 =
√
abcd,

r =
2K

a+ b+ c+ d
=
K

s
=

118668

7
,

R =
1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

(s− a)(s− b)(s− c)(s− d)
=

3710425

48
,

e =

√
(ac+ bd)(ad+ bc)

ab+ cd
= 148417,

f =

√
(ab+ cd)(ac+ bd)

ad+ bc
=

7604641

193
.

References: [1] Sastry, K.R.S., “Brahmagupta quadrilaterals” Forum Geometricorum, 2,
2002, 167-173.

Solution 2 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We let b = AB, c = BC, d = CD, a = DA.

From Wolfram Math World at http://mathworld.wolfram.com/CyclicQuadrilateral.html
and http://mathworld.wolfram.com/Bicentri Quadrilateral.html, we find
for a bicentric quadrilateral with sides a, b, c, and d (in order around the quadrilateral),
having inradius r circumradius R and area A, semiperimeter s, the following conditions
must be fulfilled:

a+ c = b+ d,

A =
√
abcd =

√
(s− a)(s− b)(s− c)(s− d),

r =

√
abcd

s
,
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R =
1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

abcd
=

1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

(s− a)(s− b)(s− c)(s− d)
.

Diagonal lengths are given by

√
(ab+ cd)(ac+ bd)

ad+ bc
and

√
(ad+ bc)(ac+ bd)

ab+ cd
.

We are requiring b < c < d (which also forces b < a < d), and (b, c, d) = 1, which forces
any three sides to be coprime.

Rationalizing the denominator in the expressions for the diagonals, we see that√
(ad+ bc)(ab+ cd)(ac+ bd) must be an integer if the diagonals are to have rational

length.

Since the circumradius must also be rational, we deduce that the area must also be
rational. Since it is the square root of a product of integers, it must be an integer.

Using the two formulas for the area A =
√

(s− a)(s− b)(s− c)(s− d) and A =
√
abcd

were s is its semiperimeter, we see that 8abcd+ 2(a4 + b4 + c4 + d4) = (a2 + b2 + c2 + d2)2.
Thus the side lengths of the quadrilateral must satisfy the following:

• 8abcd+ 2(a4 + b4 + c4 + d4) = (a2 + b2 + c2 + d2)2,
• a+ c = b+ d,
• the product abcd must be a perfect square,

•
√

(ad+ bc)(ab+ cd)(ac+ bd) must be an integer.

We wrote a MATLAB program to search through integers b, c, and d where b < c < d
from 1 to 4000 where these conditions were satisfied. The results give us the possible
dimensions of the cyclic quadrilaterals satisfying the requirements of the problem. We
found 7 solutions.

Note that the position of the side can be rearranged as long as opposing pairs have the
same sum. In the following table we have re-lettered to let a be the smallest entry.
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Results are shown below with rational numbers in lowest terms:

a b c d 2s Area Inradius circumradius diag1 diag2

21 85 140 204 450 7140 476/15 221/2 195 104

91 36 260 315 702 16380 140/3 325/2 280 125

190 231 399 440 1260 87780 418/3 1885/8 13650/29 377

2397 483 1316 1564 5760 1543668 128639/240 2405/2 22015/13 11544/5

4756 123 1428 3451 9758 1697892 348 7565/2 7743/5 414715/89

3256 629 1080 2805 7770 2490840 71224/111 1628 1653 15973/5

4828 1060 2125 3763 11776 6397100 3400 2414 3025 23551/5

2849 1480 2145 2184 8658 4444440 4070 3145/2 2975 15703/5

Comment: It is helpful to look at the prime-power decomposition of a, b, c and d. For
instance,

21 = 3 · 7, 85 = 5 · 17, 140 = 22 · 5 · 7, and 204 = 22 · 3 · 17.

Thus the product abcd = 24 · 32 · 52 · 72 · 172 is clearly a square. But recognizing such
patterns does not help us in generating solutions. In fact, it would seem so difficult to
satisfy the required conditions that no solutions could exist.

Conjectures: Each of our solutions consists of two even integers and two odd ones, so
that would be a reasonable conjecture. We suspect there are infinitely many solutions.

Also solved by the proposer.

• 5202: Proposed by Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Solve in <2, 



ln
(
x+
√
x2 + 1

)
= ln

1

y +
√
y2 + 1

2y−x
(
1− 3x−y+1

)
= 2x−y+1 − 1.

Solution 1 by Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany.

From the first equation, considering the fact that functions f(x) =
√
x2 + 1 + x and

g(x) =
√
x2 + 1− x are symmetric with respect to the y-axis, one can easily observe

that this is satisfied for x = −y.

Replacing x = −y in the second equation we have

22y
(
1− 3−2y+1

)
= 2−2y+1 − 1.
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Let’s consider the function f(y) = 22y
(
1− 3−2y+1

)− 2−2y+1 + 1 and find the roots of
f(y) = 0. One can easily observe that f(0.5) = 0.

If y > 0.5 then

f(y) = 22y
(
1− 3−2y+1

)
− 2−2y+1 + 1 > 21

(
1− 30

)
− 20 + 1 = 0.

And if y < 0.5 then

f(y) = 22y
(
1− 3−2y+1

)
− 2−2y+1 + 1 < 21

(
1− 30

)
− 20 + 1 = 0.

So the only solution of the system is (x, y) = (−0.5, 0.5) and this is end of the proof.

Solution 2 by Kee-Wai Lau, Hong Kong, China

The simultaneous equations have the unique solution (x, y) =

(
−1

2
,
1

2

)
.

For s ∈ < let f(s) = 2

(
3s
)

+ 4s − 2s − 2, so that

df(s)

ds
= 2 ln 3

(
3s
)

+ ln 4

(
4s
)
− ln 2

(
2s
)
.

It is easy to check that the second equation of the system is equivalent to
f(1 + x− y) = 0. We need to show that f(s) = 0 if and only if s = 0.

Since f(s) < 2

(
3−1

)
+ 4−1 − 2 < 0 for s < −1 and f(0) = 0, it suffices to show that

f(s) is strictly increasing for s > −1.

But this follows immediately from the facts that

df(s)

ds
> 2 ln 3

(
3−1

)
+ln 4

(
4−1

)
−ln 2 > 0 for −1 < s ≤ 0, and

df (s)

ds
> 2 ln 3 > 0 for s > 0.

Hence 1 + x− y = 0 and the first equation of the system can now be written as

x+
√
x2 + 1 =

1

y +
√
y2 + 1

=
√
y2 + 1− y =

√
x2 + 2x+ 2− x− 1, or

(
2x+ 1 +

√
x2 + 1

)2

= x2 + 2x+ 2.

Expanding and simplifying the last equation, we obtain 2(2x+ 1)

(
x+
√
x2 + 1

)
= 0, so that

x = −1

2
and y =

1

2
as claimed.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Arcshx = ln

(
x+

√
x2 + 1

)
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= ln
1

y +
√
y2 + 1

= ln 1− ln

(
y +

√
y2 + 1

)

= −Arshy = Arsh(−y) ⇐⇒

x = −y.

If x− y + 1 < 0, then 1− 3x−y+1 > 1− 30 = 0 and 2x−y+1 − 1 < 20 − 1 = 0. So, since

2y−x > 0, we have that 0 < 2y−x
(

1− 3x−y+1

)
= 2x−y+1 − 1 < 0, which is a contradiction.

And if x− y + 1 > 0, then 1− 3x−y+1 < 1− 30 = 0, and 2x−y+1 − 1 > 20 − 1 = 0, so, since

2y−x > 0, we have 0 > 2y−x
(

1− 3x−y+1

)
= 2x−y+1 − 1 > 0, which is a contradiction, so

x− y + 1 = 0.

Hence the given system is equivalent to

x+ y = 0
x− y = −1,

whose only solution in <2 is (x, y) = (−1/2, 1/2).

Solution 4 by David Manes, SUNY College at Oneonta, Oneonta, NY

The unique solution for the system of equations is x = −1

2
, y =

1

2
.

Note that ln
1

y +
√
y2 + 1

= ln

(√
y2 + 1− y

)
and the natural logarithm function is

one-to-one.

Therefore, x+
√
x2 + 1 =

√
y2 + 1− y. Squaring both sides of the equation yields

x
√
x2 + 1 + y

√
y2 + 1 = y2 − x2.

Squaring this equation one obtains

x2 + y2 + 2x2y2 = −2xy
√
x2 + 1

√
y2 + 1,

an equation that also implies that x and y have opposite signs. Finally, squaring this
equation, we get (

x2 − y2
)2

= 0 ⇐⇒ |x| = |y|.

Therefore, y = −x, since y = x is impossible. With y = −x, the second equations reduces to

1

2x

(
1− 32x+1

)
= 22x+1 − 1.
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If t = 2x+ 1, then this equation can be written as 4t + 2 · 3t − 2t = 2, whose only solution is

t = 0; hence, x = −1

2
and y =

1

2
as claimed.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro Spain
(two solutions); Paul M. Harms, North Newton, KS; Adrian Naco, Polytechnic
University, Tirana, Albania; Paolo Perfetti, Department of Mathematics, “Tor
Vergata Roma,” Italy; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5203: Proposed by Pedro Pantoja, Natal-RN, Brazil

Evaluate, ∫ π/4

0
ln

(
1 + sin2 2x

sin4 x+ cos4 x

)
dx.

Solution 1 by Marius Damian, Brăila, “Nicolae Balcescu” College, Brailia,
Romania and Neculai Stanciu, “George Emil Palade” Secondary School, Buzau,
Romania

First, we have:

1 =

(
sin2 x+ cos2 x

)2

= sin4 x+ cos4 x+ 2 sin2 x cos2 x = sin4 x+ cos4 x+
1

2
sin2 2x,

so

sin4 x+ cos4 x = 1− 1

2
sin2 2x.

Then the integral becomes:

I =

∫ π/4

0
ln

(
1 + sin2 2x

1− 1
2 sin2 2x

)
dx =

∫ π/4

0
ln

[
2

(
1 + sin2 2x

2− sin2 2x

)]
dx

=

∫ π/4

0

[
ln 2 + ln

(
1 + sin2 2x

2− sin2 2x

)]
dx

=
π ln 2

4
+

∫ π/4

0
ln

(
1 + sin2 2x

2− sin2 2x

)
dx.

We denote:

J =

∫ π/4

0
ln

(
1 + sin2 2x

2− sin2 2x

)
dx,

and we substitute t =
π

4
− x, therefore we deduce that J = −J , so J = 0.
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Hence I =
π ln 2

4
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We have

sin2 x =
1− cos(2x)

2
, cos2 x =

1 + cos(2x)

2
.

So

sin4 x+ cos4 x =

(
1− cos(2x)

2

)2

+

(
1 + cos(2x)

2

)2

=
1 + cos2(2x)

2

and
∫ π/4

0
ln

(
1 + sin2 2x

sin4 x+ cos4 x

)
dx =

∫ π/4

0
ln 2dx+

∫ π/4

0
ln

(
1 + sin2(2x)

1 + cos2(2x)

)
dx

=
π

4
ln 2 +

1

2

∫ π/2

0
ln

(
1 + sin2 y

1 + cos2 y

)
dy

=
π

4
ln 2,

since

∫ π/2

0
ln

(
1 + sin2 y

1 + cos2 y

)
dy =

∫ π/2

0
ln
(
1 + sin2 y

)
dy −

∫ π/2

0
ln
(
1 + cos2 y

)
dy = 0.

Also solved by Arkady Alt, San Jose, CA; Paul M. Harms, North Newton, KS;
Enkel Hysnelaj, Sydney Australia jointly with Elton Bojaxhiu, Kriftel, Germany;
Anastasios Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China; David E,
Manes, Oneonta, NY; Adrian Naco, Polytechnic University, Tirana, Albania;
Paolo Perfetti, Department of Mathematics, University “Tor Vergata Roma,”
Italy; Luke Sly, Joseph Kasper, and Daniel Crane (jointly, students at Taylor
University), Upland, IN, and the proposer.

5204: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let f : < → < be a non-constant function such that,

f(x+ y) =
f(x) + f(y)

1 + f(x)f(y)

for all x, y ∈ <. Show that −1 < f(x) < 1 for all x ∈ <.

Solution 1 by Michael Brozinsky, Central Islip, NY

The functional equation implies f(0) +

(
f(0)

)3

= 2f(0) and so f(0) = 0, 1 or −1. The two

latter possibilities lead to similar contradictions. For example if f(0) = 1 then

f(x) = f(x+ 0) =
f(x) + 1

1 + f(x) · 1 = 1, a constant.
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Thus we must have f(0) = 0.

Now since (u+ 1)2 ≥ 0 and (u− 1)2 ≥ 0 we have

−1 ≤ 2u

1 + u2
≤ 1 (∗)

with equalities (on the side) occurring only if u = 1 or u = −1.

If there exits an x0 such that f(x0) = 1 then

f(x) = f ((x− x0) + x0) =
f(x− x0) + 1

1 + f(x− x0)
= 1

contrary to the stated condition that f(x) is not constant. A similar contradiction follows if
there exits an x0 such that f(x0) = −1.

Finally, since f(x) =
2f

(
x

2

)

1 +

(
f

(
x

2

))2
we have the given inequality follows upon setting

u = f

(
x

2

)
, and using (∗) and the last two results.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

Since f(0) = 2f(0)/(1 + (f(0))2), we have f(0) ∈ {0,±1}. But f(0) = 1 would imply
f(x) = (f(x) + 1)/(1 + f(x)) = 1 for each real x, contradicting the non-constant condition of
the hypothesis. Similarly, f(0) = −1 would imply f(x) = (f(x)− 1)/(1− f(x)) = −1 for each
real x, another contradiction. Thus f(0) = 0. This yields

0 =
f(x) + f(−x)

1 + f(x)f(−x)

and hence f(−x) = −f(x) for each real x. Also, given any real x, we have
f(x) = 2f(x/2)/(1 + (f(x/2))2).

If f(x) ≥ 1 for some real x, then 2f(x/2) ≥ 1 + (f(x/2))2, so 0 ≥ (f(x/2)− 1)2 and thus
f(x/2) = 1. Then f(x) = 1 and f(2x) = 1, but f(−x) = −1, which would mean that

f(x) =
f(2x) + f(−x)

1 + f(2x)f(−x)

is undefined.

Similarly, if f(x) ≤ −1 for some real x, then 2f(x/2) ≤ −1− (f(x/2))2, so (f(x/2) + 1)2 ≤ 0
and thus f(x/2) = −1. Then f(x) = −1 and f(2x) = −1, but f(−x) = 1, which would again
mean that f(x) is undefined.

Hence −1 < f(x) < 1 for each real x.
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Solution 3 by Arkady Alt, San Jose, CA

First note that f (x) · f (y) 6= −1 for any x, y ∈ R.

Since f (x) = f

(
x

2
+
x

2

)
=

2f

(
x

2

)

1 + f2
(
x

2

) ⇒ |f (x)| =
2

∣∣∣∣f
(
x

2

)∣∣∣∣

1 +

∣∣∣∣ f
(
x

2

)∣∣∣∣
2

and then we have

(∣∣∣∣f
(
x

2

)∣∣∣∣− 1

)2

≥ 0 ⇐⇒
2

∣∣∣∣f
(
x

2

)∣∣∣∣

1 +

∣∣∣∣ f
(
x

2

)∣∣∣∣
2 ≤ 1 ⇐⇒ |f (x)| ≤ 1.

If we suppose |f (x0)| = 1, for some x0, then

∣∣∣∣f
(
x0
2

)∣∣∣∣ = 1 and f (x) becomes a constant

function. Indeed, if f (x0) = 1, then for any x ∈ R we have f (x+ x0) =
f (x) + 1

1 + f (x)
= 1,

because f (x) = f (x) · f (x0) 6= −1.

If f (x0) = −1, then for any x ∈ R we have f (x+ x0) =
f (x)− 1

1− f (x)
= −1,

because −f (x) = f (x) · f (x0) 6= −1. Thus, |f (x)| < 1 ⇐⇒ −1 < f (x) < 1 for any x.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo
TX; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, Sydney Australia
jointly with Elton Bojaxhiu, Kriftel, Germany; Kee-Wai Lau, Hong Kong, China;
David Manes, Oneonta, NY; Adrian Naco, Polytechnic University, Tirana,
Albania; Paolo Perfetti, Department of Mathematics, University “Tor Vergata
Roma,” Italy; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland; David Stone and John Hawkins, Statesboro, GA; Titu Zvonaru,
Comănesti, Romania and Neculai Stanciu, Buzău, Romania, and the proposer.

5205: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the sum,

∞∑

n=1

(
1− 1

2
+

1

3
+ · · ·+ (−1)n−1

n
− ln 2

)
· ln n+ 1

n
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

For each integer m > 1, is easy to prove by induction that

m∑

n=1

(
1− 1

2
+

1

3
+ · · ·+ (−1)n−1

n

)
ln
n+ 1

n
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=

(
1− 1

2
+

1

3
+ · · ·+ (−1)m−1

m

)
ln(m+ 1) +

m∑

n=2

(−1)n lnn

n
.

Since
∣∣∣∣∣1−

1

2
+

1

3
+ · · ·+ (−1)m−1

m
− ln 2

∣∣∣∣∣

=
1

m+ 1

(
1− m+ 1

m+ 2
+
m+ 1

m+ 3
− m+ 1

m+ 4
+ · · ·

)
<

1

m+ 1
,

so

lim
m→∞

(
1− 1

2
+

1

3
+ · · ·+ (−1)m−1

m
− ln 2

)
ln(m+ 1) = 0.

It is known [ E. R. Hansen: A Table of Series and Products, Prentice-Hall, Inc., 1975, p. 288

entry (44.1.8)] that
∞∑

n=2

(−1)n lnn

n
= γ ln 2− (ln 2)2

2
, where γ is Euler’s constant. Hence the

sum of the problem equals γ ln 2− (ln 2)2

2
= 0.1598 . . . .

Solution 2 by Paolo Perfetti, Department of Mathematics, University “Tor
Vergata Roma,” Italy

By writing qn = 1− 1
2 + 1

3 + . . .+ (−1)n−1

n − ln 2 the series is

∞∑

n=1

qn ln
n+ 1

n
=
∞∑

n=1

((qn ln(n+ 1)− qn−1 lnn) + lnn(qn−1 − qn))

∞∑

n=1

(qn ln(n+ 1)− qn−1 lnn) = lim
n→∞ qn ln(n+ 1).

The series

∞∑

n=1

(−1)n−1

n

is Leibniz and converges to ln 2 thus it satisfies

∣∣∣∣∣ln 2−
r∑

n=1

(−1)n−1

n

∣∣∣∣∣ ≤
1

r + 1
.

Since this is a well known property of all Leibniz series present in all books on the subject, we
omit it. The immediate consequence is

lim
n→∞ qn ln(n+ 1) = 0.
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We remain with

∞∑

n=1

lnn(qn−1 − qn) =
∞∑

n=1

(−1)n

n
lnn = γ ln 2− 1

2
ln2 2

where γ is the Euler–Mascheroni constant. Also
∞∑

n=1

(−1)n

n
lnn = γ ln 2− 1

2
ln2 2 is a well

known result. Nevertheless we write it here. For p ≥ 4,

2p∑

k=2

(−1)k
ln k

k
=

p∑

k=1

ln 2

2k
+

p∑

k=1

ln k

2k
−

p−1∑

k=1

ln(2k + 1)

2k + 1
.

−
p−1∑

k=1

ln(2k + 1)

2k + 1
= −

2p−1∑

k=2

ln k

k
+

p−1∑

k=1

ln(2k)

2k
= −

2p−1∑

k=2

ln k

k
+

p−1∑

k=1

ln 2

2k
+

p−1∑

k=1

ln k

2k
.

By summing we get

p−1∑

k=1

ln 2

k
+

ln 2

2p
+

ln p

2p
−

2p−1∑

k=p

ln k

k
.

Now we employ the well known

n∑

k=1

1

k
= lnn+ γ + o(1). Moreover we observe that

∫ 2p

p

lnx

x
dx ≤

2p−1∑

k=p

ln k

k
=

∫ 2p−1

p−1

lnx

x
dx,

(Editor’s note: We note that the function
lnx

x
is decreasing for x ≥ e. So

∫ k+1

k

lnx

x
dx ≤ ln k

k
≤
∫ k

k−1

lnx

x
dx. The claimed inequalities follow by summing over k from

k = p to k = 2p− 1.)

thus

2p−1∑

k=p

ln k

k
=

∫ 2p−1

p

lnx

x
dx+ o(1) =

1

2
(ln2(2p− 1)− ln2 p) + o(1)

=
ln2 2

2
+

ln2 p

2
+ ln 2 ln p+ ln(2p) ln(1− 1

2p
) +

1

2
ln2(1− 1

2p
)− ln2 p

2
+ o(1)

=
ln2 2

2
+ ln 2 ln p+ o(1).

We get
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p−1∑

k=1

ln 2

k
+

ln 2

2p
+

ln p

2p
−

2p−1∑

k=p

ln k

k
= ln 2(ln(p− 1) + γ)− ln2 2

2
− ln 2 ln p+ o(1)

= γ ln 2− ln2 2

2
, as p →∞.

Solution 3 by Anastasios Kotronis, Athens, Greece

We set

fm(x) =
m∑

n=1

(
−

n∑

k=1

xk

k
− ln(1− x)

)
ln

(
n+ 1

n

)
x < 1,

and we wish to find

lim
m→+∞

fm(−1).

For x < 1 we have

f
′
m(x) =

(
m∑

n=1

(
−

n∑

k=1

xk

k
− ln(1− x)

)
ln

(
n+ 1

n

))′

=
m∑

n=1

(
−
n−1∑

k=0

xk +
1

1− x

)
ln

(
n+ 1

n

)

=
m∑

n=1

(
−1− xn

1− x +
1

1− x

)
ln

(
n+ 1

n

)

=
1

1− x
m∑

n=1

xn (ln (n+ 1)− lnn)

=
1

1− x

(
m∑

n=2

(
xn−1 − xn

)
lnn+ xm ln(m+ 1)

)

=
m∑

n=2

xn−1 lnn+
xm

1− x ln(m+ 1).

So we integrate from 0 to y, where y < 1, to get

fm(y) =
m∑

n=2

yn

n
lnn+ ln(m+ 1)

∫ y

0

xm

1− x dx

and set y = −1 to get
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fm(−1) =
m∑

n=2

(−1)n

n
lnn+ ln(m+ 1)

∫ −1

0

xm

1− x dx

x=−t
===

m∑

n=2

(−1)n

n
lnn+ (−1)m+1 ln(m+ 1)

∫ 1

0

tm

1 + t
dt

= Am + (−1)m+1 ln(m+ 1)Bm. (1)

Now integrating by parts,

Bm =
tm+1

(m+ 1)(1 + t)

∣∣∣∣∣

1

0

+
1

m+ 1

∫ 1

0

tm+1

(1 + t)2
dt

≤ 1

2(m+ 1)
+

1

m+ 1

∫ 1

0

1

(1 + t)2
dt

=
1

m+ 1
<

1

m
(2)

and for Am, since it converges from Leibniz Criterion, (see:
http://mathworld.wolfram.com/Leibniz Criterion.html) we can write

lim
m→+∞

Am = lim
m→+∞

A2m

and

A2m =
2m∑

n=1

(−1)n

n
lnn

=
m∑

n=1

ln 2n

2n
−

m∑

n=1

ln(2n− 1)

2n− 1

=
ln 2

2

m∑

n=1

1

n
+

1

2

m∑

n=1

lnn

n
−
(

2m∑

n=1

lnn

n
−

m∑

n=1

ln 2n

2n

)

= ln 2Hm +
m∑

n=1

lnn

n
−

2m∑

n=1

lnn

n

= ln 2Hm −
m∑

n=1

ln(m+ n)

m+ n

= ln 2Hm −
m∑

n=1

lnm+ ln(1 + n/m)

m+ n

= ln 2Hm − lnm(H2m −Hm)− 1

m

m∑

n=1

ln(1 + n/m)

1 + n/m
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= Hm ln(2m)−H2m lnm− 1

m

m∑

n=1

ln(1 + n/m)

1 + n/m

Hm=lnm+γ+O(1/m)
= γ ln 2 +O(1/m)− 1

m

m∑

n=1

ln(1 + n/m)

1 + n/m
(3)

Now with (2) and (3), (1) will give

fm(−1)→ γ ln 2−
∫ 1

0

ln(1 + x)

1 + x
dx = γ ln 2− ln2 2

2
.

Comment: In fact, one can easily show that

1

m

m∑

n=1

ln(1 + n/m)

1 + n/m
=

ln2 2

2
+O(1/m), so

m∑

n=1

(
1− 1

2
+

1

3
− · · ·+ (−1)n−1

n
− ln 2

)
· ln

(
n+ 1

n

)
= γ ln 2− ln2 2

2
+O

(
m−1 lnm

)
.

Editor’s comment: The sum in (3) is a Riemann sum whose limit as m tends to infinity
equals the Riemann integral.

Solution 4 by Arkady Alt, San Jose, CA

Let hn =
n∑
k=1

1
k , an =

n∑
k=1

(−1)k−1

k − ln 2, and S =
∞∑
n=1

an ln n+1
n .

Note that

n∑

k=1

ak ln
k + 1

k
=

n∑

k=1

ak (ln (k + 1)− ln k)

=
n∑

k=1

ak ln (k + 1)−
n∑

k=1

ak ln k

=
n+1∑

k=2

ak−1 ln k −
n∑

k=2

ak ln k

= an ln (n+ 1)−
n∑

k=2

(ak − ak−1) ln k

= an ln (n+ 1)−
n∑

k=2

(−1)k−1 ln k

k

= an ln (n+ 1) +
n∑

k=2

(−1)k ln k

k
.
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First we will prove lim
n→∞ an ln (n+ 1) = 0.

Since a2n+1 = a2n +
1

2n+ 1
then it suffices to prove

lim
n→∞ a2n ln (2n+ 1) = 0.

We have a2n = h2n − hn − ln 2 and, since lnn+ γ < hn < ln (n+ 1) + γ, where
γ = lim

n→∞ (hn − lnn) is Euler’s constant, then

ln 2n− ln (n+ 1)− ln 2 < a2n < ln (2n+ 2)− lnn− ln 2

⇐⇒ − ln
n+ 1

n
< a2n < ln

n+ 1

n

⇐⇒ |a2n| < ln
n+ 1

n
<

1

n
(

1 +
1

n

)n
< e ⇐⇒ ln

n+ 1

n
<

1

n
.

Hence, 0 < |a2n| ln (2n+ 1) < ln(2n+1)
n yields lim

n→∞
ln(2n+1)

n = 0, and, therefore

lim
n→∞ a2n ln (2n+ 1) = 0.

Thus, S = lim
n→∞

n∑
k=2

sn, where sn :=
n∑
k=2

(−1)k ln k
k .

Since s2n+1 = s2n − ln(2n+1)
2n+1 and lim

n→∞
ln(2n+1)
2n+1 = 0 then S = lim

n→∞ s2n.

Let bn :=
n∑
k=1

ln k
k then

s2n =
2n∑

k=1

(−1)k ln k

k

=
n∑

k=1

ln 2k

2k
−

n∑

k=1

ln (2k − 1)

2k − 1

= 2
n∑

k=1

ln 2k

2k
−

2n∑

k=1

ln k

k

=
n∑

k=1

ln 2k

k
− b2n

=
n∑

k=1

ln 2

k
+

n∑

k=1

ln k

k
− b2n

= ln 2 · hn + bn − b2n.
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Consider now two sequences
(
bn − ln2(n+1)

2

)
n≥1

and
(
bn − ln2 n

2

)
n≥1

.

Since bn − ln2(n+1)
2 is increasing and bn − ln2 n

2 is decreasing in n then

b1 −
ln2 2

2
≤ bn −

ln2 (n+ 1)

2
< bn −

ln2 n

2
≤ b1

and, therefore, both sequences converges to the same limit.

Let δ = lim
n→∞

(
bn − ln2(n+1)

2

)
= lim

n→∞

(
bn − ln2 n

2

)
then

bn −
ln2 (n+ 1)

2
< δ < bn −

ln2 n

2
⇐⇒ ln2 n

2
+ δ < bn <

ln2 (n+ 1)

2
+ δ, n ∈ N.

Hence,

ln2 2n− ln2 (n+ 1)

2
< b2n − bn <

ln2 (2n+ 2)− ln2 n

2
⇐⇒

βn < b2n − bn − ln 2 · lnn < αn,

where αn =
ln2 (2n+ 2)− ln2 n

2
− ln 2 · lnn and βn =

ln2 2n− ln2 (n+ 1)

2
− ln 2 · lnn.

Noting that

ln2 2n− ln2 n

2
− ln 2 · lnn =

ln 2 (ln 2 + 2 lnn)

2
− ln 2 · lnn =

ln2 2

2
,we obtain

lim
n→∞

(
αn −

ln2 2

2

)
= lim

n→∞

(
ln2 (2n+ 2)− ln2 2n

2

)
=

1

2
lim
n→∞ ln

(
n+ 1

n

)
ln (4n (n+ 1)) = 0, and

lim
n→∞

(
βn −

ln2 2

2

)
= lim

n→∞
ln2 n− ln2 (n+ 1)

2
= −1

2
lim
n→∞ ln

(
n+ 1

n

)
ln (n (n+ 1)) = 0.

This gives us

lim
n→∞ (b2n − bn − ln 2 · lnn) = lim

n→∞αn = lim
n→∞βn =

ln2 2

2
.

Since lim
n→∞ (hn − lnn) = γ then

S = lim
n→∞ (bn − b2n + ln 2 · hn)

= lim
n→∞ (bn − b2n + ln 2 · lnn+ ln 2 · (hn − lnn))

= lim
n→∞ (bn − b2n + ln 2 · lnn) + lim

n→∞ ln 2 · (hn − lnn)
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= ln 2 ·
(
γ − ln 2

2

)
.

Also solved by Adrian Naco, Polytechnic University, Tirana, Albania; Albert
Stadler, Herrliberg, Switzerland, and the proposer.

Editor’s comment: Mea Culpa once again. I inadvertently gave credit to David Stone and
John Hawkins for having solved problem 5199 when they should have been credited for having
solved 5198. And I inadvertently forgot to acknowledge Achilleas Sinefakopoulos of
Larissa, Greece for having correctly solved 5184.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2013

• 5224: Proposed by Kenneth Korbin, New York, NY

Let T1 = T2 = 1, T3 = 2, and Tn = Tn−1 + Tn−2 + Tn−3. Find the value of

∞∑

n=1

Tn
πn
.

• 5225: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find infinitely many integer squares x that are each the sum of a square and a cube and
a fourth power of positive integers a, b, c. That is, x = a2 + b3 + c4.

• 5226: Proposed by D. M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Calculate:
∫ b

a

n
√
x− a

(
1 + n
√
b− x

)

n
√
x− a+ 2 n

√
−x2 + (a+ b)x− ab+ n

√
b− xdx,

where 0 < a < b and n > 0.

• 5227: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Compute

lim
n→∞

n∏

k=1

(
(n+ 1) +

√
nk

n+
√
nk

)
.

• 5228: Proposed by Mohsen Soltanifar, University of Saskatchewan, Saskatoon, Canada

Given a random variable X with non-negative integer values. Assume the nth moment
of X is given by

E (Xn) =
∞∑

k=1

fn(k)P (X ≥ k) n = 1, 2, 3, · · · ,
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where fn is a non-negative function defined on N . Find a closed form expression for fn.

• 5229: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let β > 0 and let (xn)n∈N be the sequence defined by the recurrence relation

x1 = a > 0, xn+1 = xn +
n2β

x1 + x2 · · ·+ xn
.

1) Prove that lim
n→∞xn =∞.

2) Calculate lim
n→∞

xn
nβ
.

Solutions

• 5206: Proposed by Kenneth Korbin, New York, NY

The distances from the vertices of an equilateral triangle to an interior point P are√
a,
√
b, and

√
c respectively, where a, b, and c are positive integers.

Find the minimum and the maximum possible values of the sum a+ b+ c if the side of
the triangle is 13.

Solution 1 by Brian D. Beasley, Presbyterian College, Clinton ,SC

We show that a+ b+ c has a minimum value of 170 and a maximum value of 296. We

model the given triangle using vertices A(0, 0), B(13, 0), and C(13/2, 13
√

3/2). Then
the centroid of triangle ABC is G(13/2, 13

√
3/6). Let P (x, y) be a point interior to

4ABC. We denote AP =
√
a, BP =

√
b, and CP =

√
c for positive integers a, b, and c;

due to the symmetry of the equilateral triangle, we may assume without loss of
generality that a ≤ b ≤ c. It is then straightforward to verify that

a+ b+ c = AG2 +BG2 + CG2 + 3PG2 = 169 + 3PG2.

Since AG2 = 169/3 is not an integer, we know P 6= G, so the minimum value of a+ b+ c
is greater than 169 and thus must be at least 170. In fact, taking P to be (6, 2

√
3)

achieves this minimum value of 170, with (a, b, c) = (48, 61, 61).

Next, we note that x2 + y2 = a and (13− x)2 + y2 = b, so x = (a− b+ 169)/26. If a = 1,
then P lies on the circle x2 + y2 = 1, so 1/2 < x < 1 and hence 14 ≤ a− b+ 169 ≤ 25. A
quick check produces (a, b, c) = (1, 147, 148) for x = 23/26 and y = 7

√
3/26, so the

maximum value of a+ b+ c is no smaller than 296. If a ≥ 2, then PG is less than the
distance from G to either (

√
2/2,
√

6/2) or (
√

2, 0), the intersections of the circle
x2 + y2 = 2 with the triangle. This yields

PG2 <
175

3
− 13
√

2 < 40,

so a+ b+ c < 169 + 3(40) = 289. Hence the maximum value of a+ b+ c is 296.

Solution 2 by Paul M. Harms, North Newton, KS
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Put the equilateral triangle of the problem on a coordinate system with

A(−6.5, 0), B(0, 6.5
√

3), C(6.5, 0) with P(x , y).

Then

a = (x+ 6.5)2 + y2,
b = x2 + (y − 6.5

√
3)2,

c = (x− 6.5)2 + y2.

Let L = a+ b+ c and, temporarily, consider the domain of L to be the triangle and its
interior. Using partial derivatives we find that L has a minimum of 169 at x = 0, and

y =
13
√

3

6
. At this point a = b = c =

169

3
. Other extremes may occur along the

boundary of the domain. Checking for extremes along AC, we find an absolute
maximum of 338 at each vertex and a minimum of 211.25 when x = 0. The absolute

minimum is then 169 and occurs at the one point

(
0,

13
√

3

6

)
. At this point for a

minimum L, the numbers a, b,and c are not integers. Then to satisfy the problem L
must be at least 170. Also, the absolute maximum found above occurs at the vertices,
and not at a point interior to the triangle, so this maximum will not satisfy the problem.

Consider L along (0, y) where 0 < y < 6.5
√

3. Here

a = c = (6.5)2 + y2

b =
(
y − 6.5

√
3
)2
.

Then y = 6.5
√

3−
√
b, so a = c = 4 (6.5)2 + b2 − 13

√
3b with 0 <

√
b < 6.5

√
3.

We see that a, b and c will be integers when b is three times a perfect square. For these
values of b, L is a minimum of 170 when b = 3(16) = 48, a = c = 61. For these values of
b, L is a maximum of 269, when b = 3(1) = 3, a = c = 133. This minimum value of L
satisfies the problem since the point is interior to the triangle with integer values for a, b,
and c.

To check interior points for a maximum L, we check points close to a vertex, since for
the general domain, the maximum occurs at a vertex.

Let us consider circles with radius
√
b where b is an integer and the center of the circle is

B.
For the problem, we only need to consider the portion of the circle interior to the
triangle and in the first quadrant. Consider a first quadrant point P , interior to the
triangle and on the circle with center at B and radius

√
b. Using the law of cosines for

4ABP and 4PBC, we have





a = 132 + b− 2(13)
√
b cos θ and

c = 132 + b− 2(13)
√
b cos (60◦ − θ) ,where 0 < θ < 60◦.

When θ = 60◦, we have integers for a, b, and c when b is a perfect square, but P is then
on a side of the triangle and not interior to the triangle. When b = 1, the possible
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integers for c are 145, 146, and 147. We find that when c = 147, and b = 1, a = 148 with
L = 296. For a fixed positive integer b and 30◦ < θ < 60◦, the maximum (a+ c) occurs
at 60◦. Checking other values of b, we find that the maximum L is less than 296 for
integers b > 1.

Thus for positive integers, a, b and c with P interior to the triangle, the minimum L is
170 and the maximum L is 296.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the minimum is 170 and the maximum is 296. The minimum occurs when
a = 61, b = 48 and c = 61 and the maximum occurs when a = 148, b = 1 and c = 147.

Denote the triangle by ABC with PA =
√
a, PB =

√
b, PC =

√
c. Let 6 PBA = θ and

6 PBC=φ. Applying the cosine formula respectively to triangle PBA and PBC we
obtain

cos θ =
169 + b− a

26
√
b

and cosφ =
169 + b − c

26
√

b
.

Hence sin θ =

√
676b− (169 + b− a)2

26
√
b

and sinφ =

√
676b− (169 + b− c)2

26
√
b

.

Since

sin θ sinφ = cos θ cosφ− cos(θ + φ) = cos θ cosφ− 1

2
, so

(√
676b− (169 + b− a)2

)(√
676b− (169 + b− c)2

)
= (169 + b− a)(169 + b− c)− 338b.

Squaring both sides, expanding and simplifying, we obtain the equation

a2 − (169 + b+ c)a+ b2 + c2 − bc− 169b− 169c+ 28561 = 0. Hence

a =
1

2

(
169 + b+ c±

√
3

√(√
b+
√
c+ 13

) (√
b+
√
c− 13

) (√
b−√c+ 13

) (√
c−
√
b+ 13

))
.

By considering the special case a = b = c =
169

3
, we see that in fact

a =
1

2

(
169 + b+ c−

√
3

√(√
b+
√
c+ 13

) (√
b+
√
c− 13

) (√
b−√c+ 13

) (√
c−
√
b+ 13

))
.

We now obtain the minimum and maximum values of a+ b+ c stated above with the
help of a computer. Here we impose the restrictions 1 ≤ b ≤ 168, b ≤ c ≤ a ≤ 168 by
symmetry,

√
a+
√
b > 13,

√
b+
√
c > 13,

√
c+
√
a > 13, and that a is a positive integer.

This completes the solution.

Solution 4 by Albert Stadler of Herrliberg, Switzerland

Let α = 6 APB, β = 6 BPC, γ = 6 CPA. Then by the law of cosines,

cosα =
a+ b− 169

2
√
ab

, cosβ =
b+ c− 169

2
√
bc

, cos γ =
c+ a− 169

2
√
ca

.

Obviously α+ β + γ = 2π. So

cos γ = cos(α+ β) = cosα cosβ − sinα sinβ,
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(cos γ − cosα cosβ)2 = (1− cos2 α)(1− cos2 β),

cos2 α+ cos2 β + cos2 γ − 2 cosα cosβ cos γ − 1 = 0,

(
a+ b− 169

2
√
ab

)2

+

(
b+ c− 169

2
√
bc

)2

+

(
c+ a− 169

2
√
ca

)2

−2

(
a+ b− 169

2
√
ab

)(
b+ c− 169

2
√
bc

)(
c+ a− 169

2
√
ca

)
= 1,

which is equivalent to

3
(
a2 + b2 + c2 + 134

)
=
(
a+ b+ c+ 133

)2
, (1)

as is seen when multiplying out.

A computer search on the set {(a, b, c)|1 ≤ a, b, c ≤ 169} reveals that only the tuples of
the table in the appendix satisfy (1) The minimal value of a+ b+ c is 170 and the
maximal value is 296.

Editor’s note: Ken Korbin, proposer of the problem, also worked with the formula:

3
(
a2 + b2 + c2 + 134

)
=
(
a+ b+ c+ 133

)2
.

Albert presented a table listing all possible values satisfying the conditions of the
problem. His appendix consisted of a table containing 258 rows for the various values of
a, b and c; a few of rows are reproduced below.

David Stone and John Hawkins of Statesboro, GA noted that it can be shown
that the quantity

√
a+
√
b+
√
c, the sum of the distances from P to the three vertices,

achieves its minimum of
√

3s at the centroid of the triangle, and it achieves its
maximum of 2s at any vertex (where “s” is a positive integer representing the side
length of the equilateral triangle.)

They also observed that because it is defined as the sum of the square of the distances to
the vertices, the quantity a+ b+ c can properly be called the moment of inertia of the
triangle about the point P . They showed that this moment of inertia of an
equilateral triangle is minimized when P is the centroid and maximized at any vertex.
The same conclusion holds for a square and, they hypothesize, for any regular polygon.

Stadler′s Table
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a b c a+ b+ c

48 61 61 170

49 57 64 170

49 64 57 170

...
...

...
...

1 147 148 296

147 1 148 296

157 1 144 302

157 144 1 302

Also solved by Farideh Firoozbakht and Jahangeer Kholdi (jointly), Isfahan,
Iran; Adrian Naco, Polytechnic University, Tirana, Albania, David Stone
and John Hawkins (jointly), Georgia Southern University, Statesboro GA,
and the proposer.

• 5207: Proposed by Roger Izard, Dallas, TX

Consider the following four algebraic terms:

T1 = a2 (b+ c) + b2 (a+ c) + c2 (a+ b)

T2 = (a+ b)(a+ c)(b+ c)

T3 = abc

T4 =
b+ c− a

a
+
a+ c− b

b
+
a+ b− c

c

Suppose that
T1 · T2
(T3)

2 =
616

9
. What values would then be possible for T4?

Solution by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We show the possible values of T4 are
13

3
and −37

3
.

For convenience, let T5 =
a+ b

c
+
b+ c

a
+
a+ c

b
.

Note that

T4 =
b+ c− a

a
+
a+ c− b

b
+
a+ b− c

c

=
b+ c

a
− 1 +

a+ c

b
− 1 +

a+ b

c
− 1
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= T5 − 3.

Now we expand and simplify:

T2 = (a+ b)(a+ c)(b+ c) = a2b+ abc+ ab2 + b2c+ a2c+ ac2 + abc+ bc2

=
a

c
T3 + 2T3 +

b

c
T3 +

b

a
T3 +

a

b
T3 +

c

b
T3 +

c

a
T3

= T3

(
2 +

a+ b

c
+
b+ c

a
+
a+ c

b
)

= T3 (2 + T5) .

Therefore,
T2
T3

= T5 + 2.

Similarly, T1 = T3T5, so
T1
T3

= T5.

Therefore,
616

9
=
T1 · T2
(T3)

2 =
T1
T3

T2
T3

= T5 (T5 + 2).

Hence,

T 2
5 + 2T5 −

616

9
= 0

(
T5 +

28

3

)(
T5 −

22

3

)
= 0. Thus,

T5 = −28

3
or T5 =

22

3
, so,

T4 = −28

3
− 3 = −37

3
or T4 =

22

3
− 3 =

13

3
.

Comment: The question still unanswered—do there exist values of a, b, and c which
make all of this happen?

Editor’s remark: The above question was answered by Albert Stadler of Herrliberg,
Switzerland. In his solution to this problem he stated that both values obtained for T4

are actually assumed: for instance for (a, b, c) =

(
1, 1,
−17 +

√
253

6

)
and for

(a, b, c) =

(
1, 1,

4 +
√

7

3

)
.

Also solved by Arkady Alt, San Jose, CA; Brian D. Beasley, Presbyterian
College, Clinton, SC; Elsie M. Campbell, Dionne T. Bailey, and Charles
Diminnie, Angelo State University, San Angelo, TX; Ben Carani, Jordan
Melendez, Caleb Stevenson (students at Taylor University), Upland, IN;
Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of
Technology, Sydney Australia and Elton Bojaxhiu, Kriftel, Germany;
Samuel David Judge, Justin Wydra, and Karen Wydra (students at Taylor
University), Upland, IN; Kee-Wai Lau, Hong, Kong, China; Adrian Naco,
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Polytechnic University, Tirana, Albania; Paolo Perfetti, Department of
Mathematics “Tor Vergata University,” Rome, Italy; Jungmin Song, Nate
Armstrong and Alex Senyshyn (students at Taylor University), Upland IN;
Howard Sporn, Great Neck, NY, and the proposer.

• 5208: Proposed by D. M. Bătinetu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania

Let the sequence of positive real numbers {an}n≥1, N ∈ Z+ be such that

lim
n→∞

an+1

n2 · an
= b. Calculate:

lim
n→∞

(
n+1
√
an+1

n+ 1
−

n
√
an
n

)
.

Solution 1 by Anastasios Kotronis, Athens, Greece

Setting zn := an
n2n , we have

zn+1

zn
=
an+1

n2an

[(
1 +

1

n

)n]−2 (
1 +

1

n

)−2
→ be−2, (1)

and by Cesàro Stolz:

lim
n→+∞

z1/nn = exp

(
lim

n→+∞
ln zn
n

)

= exp

(
lim

n→+∞
ln
zn+1

zn

)

= exp

(
ln lim
n→+∞

zn+1

zn

)

= be−2. (2)

On account of (1) and (2):




(n+ 1)z
1

n+1

n+1

nz
1/n
n




n

=

(
1 +

1

n

)n zn+1

zn
z
− 1

n+1

n+1 → e,

so

n+1
√
an+1

n+ 1
−

n
√
an
n

= z1/nn




(n+1)z
1

n+1
n+1

nz
1/n
n

− 1

ln


 (n+1)z

1
n+1
n+1

nz
1/n
n




ln




(n+ 1)z
1

n+1

n+1

nz
1/n
n




n



→ be−2,

since

lim
n→+∞

(n+1)z
1

n+1
n+1

nz
1/n
n

− 1

ln


 (n+1)z

1
n+1
n+1

nz
1/n
n




= lim
n→+∞

exp


ln


 (n+1)z

1
n+1
n+1

nz
1/n
n




− 1

ln


 (n+1)z

1
n+1
n+1

nz
1/n
n
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= lim
x→0

ex − 1

x
= 1.

Solution 2 by proposers

We have

(1) lim
n→∞

n
√
an
n2

= lim
n→∞

n

√
an
n2n

= lim
n→∞

an+1

(n+ 1)2n+2 ·
n2n

an
= lim

n→∞
an+1

(n+ 1)2 an
· 1

e2n
=

b

e2
, where

en =
(
1 + 1

n

)n
. (The second equality in the chain follows from the Cauchy-D’Alembert

criteria.)

(2) Denote un =
n+1
√
an+1

n
√
an

· n

n+ 1
, ∀n ≥ 2 and we deduce that

(3) lim
n→∞un = lim

n→∞

(
n+1
√
an+1

(n+ 1)2
· n2

n
√
an
· n+ 1

n

)
=

b

e2
· e

2

b
· 1 = 1, respectively

(4) lim
n→∞

un − 1

lnun
= 1.

(5) lim
n→∞u

n
n = lim

n→∞

(
an+1

an
· 1

n+1
√
an+1

·
(

n

n+ 1

)n)
=

lim
n→∞

(
an+1

n2an
· (n+ 1)2

n+1
√
an+1

· 1

en
·
(

n

n+ 1

)2
)

= b · e
2

b
· 1

e
· 1 = e.

(6) Denote xn =

(
n+1
√
an+1

n+ 1
−

n
√
an
n

)
=

n
√
an
n
·
(

n+1
√
an+1

n
√
an

· n

n+ 1
− 1

)
=

n
√
an
n

(un − 1) =
n
√
an
n
· un − 1

lnun
· lnun =

n
√
an
n2
· un − 1

lnun
· lnunn.

By (1), (4), (5) and (6) we obtain

(7) L = lim
n→∞

(
n+1
√
an+1

n+ 1
−

n
√
an
n

)
= lim

n→∞xn =
b

e2
· 1 · ln e =

b

e2
.

Also solved by Arkady Alt, San-Jose, CA; Kee-Wai Lau, Hong Kong, China;
Adrian Naco, Polytechnic University, Tirana, Albania; and Albert Stadler,
Herrliberg, Switzerland.

• 5209: Proposed by Tom Moore, Bridgewater, MA

We noticed that 27 is a cube and 28 is an even perfect number. Find all pairs of
consecutive integers such that one is cube and the other is an even perfect number.

Solution by Kee-Wai Lau, Hong Kong, China

We show that 27 and 28 are the only consecutive integers such that one is cube and the
other is an even perfect number.

It is well known that every even perfect number is of the form 2p−1 (2p − 1), where
2p − 1 is a prime. Suppose 2p−1 (2p − 1) = a3 + 1, where a is an odd integer, then since
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a3 + 1 = (a+ 1)(a2 − a+ 1), we have a+ 1 = 2p−1 and a2 − a+ 1 = 2p − 1. Hence
a2 − a+ 1 = 2a+ 1 or a = 3. This gives the pair 27 and 28.

Next we suppose that 2p−1 (2p − 1) = b3 − 1, where b is an odd integer, then since
b3 − 1 = (b− 1)

(
b2 + b− 1

)
, we have b− 1 = 2p−1 and b2 + b+ 1 = 2p − 1. Hence

b2 + b+ 1 = 2b− 3 or b2 − b+ 4 = 0, which gives no real solutions.

This completes the solution.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie, Angelo
Sate University, San Angelo TX; Brian D. Beasley, Presbyterian College,
Clinton, SC; Farideh Firoozbakht and Jahangeer Kholdi (jointly), Isfahan,
Iran; Paul M. Harms, North Newton, KS; David E. Manes, SUNY College
at Oneonta, Oneonta, NY; David Stone and John Hawkins (jointly), Georgia
Southern University, Statesboro, GA; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5210: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let a, b, c, d be four positive real numbers. Prove that

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
>

2
√

3

3
.

Solution by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Andrew
Siefker, Angelo State University, San Angelo, TX

We will establish the slightly improved inequality

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
>

7

6
.

This is a little better than the given result because

7

6
− 2
√

3

3
=

7− 4
√

3

6
=

1

6
(
7 + 4

√
3
) > 0.

We begin with the following known inequality:
If x1, x2, . . . , xn > 0, then

(x1 + x2 + . . .+ xn)

(
1

x1
+

1

x2
+ . . .+

1

xn

)
≥ n2. (1)

This follows from applying the Cauchy-Schwarz Inequality to the vectors

x =
(√

x1,
√

x2, . . . ,
√

xn
)

and y =

(
1√
x1
,

1√
x2
, . . . ,

1√
xn

)
.

If we let x1 = a+ b+ c, x2 = b+ c+ d, x3 = c+ d+ a, and x4 = d+ a+ b, then since
a, b, c, d > 0, statement (1) implies that

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
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>
a

b+ c+ d
+

b

c+ d+ a
+

c

d+ a+ b
+

d

a+ b+ c

=

(
a

b+ c+ d
+ 1

)
+

(
b

c+ d+ a
+ 1

)
+

(
c

d+ a+ b
+ 1

)
+

(
d

a+ b+ c
+ 1

)
− 4

= (a+ b+ c+ d)

(
1

a+ b+ c
+

1

b+ c+ d
+

1

c+ d+ a
+

1

d+ a+ b

)
− 4

=
1

3
(x1 + x2 + x3 + x4)

(
1

x1
+

1

x2
+

1

x3
+

1

x4

)
− 4

≥ 16

3
− 4

=
4

3
.

Therefore,

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
> 1 +

1

8

(
4

3

)
=

7

6
,

and our proof is complete.

Comments: Kee-Wai Lau of Hong Kong, China remarked that D.S. Mitrinović(
Analytic Inequalities, Springer Verlag (1970; p. 132)

)
and L. J. Mordell

(
On the

inequality
∑
xr/(xr+ + xr+2) ≥

1

2
n Abh. Math. Sem. Univ. Hamburg 22, (1958; pp

229-241)

)
shown that

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
≥ 2.

So the present problem can be sharpened to

1 +
1

8

(
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b

)
≥ 5

4
.

Albert Stadler of Herrliberg, Switzerland noted that the problem statement is a
generalization of Nesbitt’s inequality to four variables (see
http://en.wikipedia.org/wiki/Nesbitt’s inequality). However this generalization is well
known: see e.g., Pham Kim Hung’s text “Secrets in Inequalities” (GIL Publishing House
2007.) Albert also noted that the inequality can be sharpened to ≥ 1.25, and he
presented the proof in Kim Hung’s text.

Prove that for all non-negative real numbers a,b,c,d,

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
≥ 2.

Consider the following expressions

S =
a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
;

M =
b

b+ c
+

c

c+ d
+

d

d+ a
+

a

a+ b
;

N =
c

b+ c
+

d

c+ d
+

a

d+ a
+

b

a+ b
;
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We have M +N = 4. According to AM-GM, we get

M+S =
a+ b

b+ c
+
b+ c

c+ d
+
c+ d

d+ a
+
d+ a

a+ b
≥ 4;

N+S =
a+ c

b+ c
+
b+ d

c+ d
+
a+ c

d+ a
+
b+ d

a+ b

=
a+ c

b+ c
+
a+ c

a+ d
+
b+ d

c+ d
+
b+ d

a+ b

≥ 4(a+ c)

a+ b+ c+ d
+

4(b+ d)

a+ b+ c+ d
= 4.

Therefore, M +N + 2S ≥ 8, and S ≥ 2. The equality holds if a = b = c = d or
a = c, b = d = 0 or a=c=0, b=d.

Also solved by Arkady Alt, San Jose, CA; D.M. Bătinetu-Giurgiu,
Bucharest, Neculai Stanciu Buzău and Titu Zvonaru Comănesti, all from
Romania (two solutions); Bruno Salgueiro Fanego, Viveiro, Spain; David E.
Manes, SUNY College at Oneonta, Oneonta, NY; Adrian Naco, Polytechnic
University, Tirana, Albania; Paolo Perfetti, Department of Mathematics,
Tor Vergata University, Rome, Italy; Ángel Plaza, University of Las Palmas
de Gran Canaria, Spain, and the proposer.

• 5211: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Let n ≥ 1 be a natural number and let

fn(x) = xx
··
·x

,

where the number of x’s in the definition of fn is n. For example

f1(x) = x, f2(x) = xx, f3(x) = xx
x
, . . . .

Calculate the limit

lim
x→1

fn(x)− fn−1(x)

(1− x)n
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show the limit equals (−1)n. Define f0(x) = 1. For n ≥ 2 and x > 0, we have
fn(x) = efn−1(x) lnx. Hence by the mean value theorem, we have

fn(x)− fn−1(x) = lnx (fn−1(x)− fn−2(x)) eξ,

where ξ lies between fn−1(x) lnx and fn−2(x) lnx.

Since lim
x→1

fn−1(x) lnx = lim
x→1

fn−2(x) lnx = 0 and lim
x→1

lnx

1− x = −1, so

lim
x→1

fn(x)− fn−1(x)

(1− x)n
= − lim

x→1

fn−1(x)− fn−2(x)

(1− x)n−1
.
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Clearly lim
x→1

f1(x)− f0(x)

1− x = −1. Hence by induction we have

lim
x→1

fn(x)− fn−1(x)

(1− x)n
= (−1)n,

as claimed.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We will use induction to prove that an = lim
x→1

fn(x)− fn−1(x)

(1− x)n
= (−1)n.

We have by applying L’Hôpital’s rule twice,

a2 = lim
x→1

f2(x)− f1(x)

(1− x)2
= lim

x→1

xx − x
(1− x)2

= lim
x→1

xx(1 + log x)− 1

−2(1− x)
= lim

x→1

xx
[
(1 + log x)2 +

1

x

]

2
= 1.

So the assertion holds for n = 2.

We have
d

dx
fn(x) =

d

dx
efn−1(x) log x = fn(x)

(
f
′
n−1(x) log x+

fn−1(x)

x

)
. In particular,

f
′
n(1) = fn(1)

(
f
′
n−1(1) log(1) +

fn−1(1)

1

)
= 1.

So, by L’Hôpital’s rule,

an = lim
x→1

fn(x)− fn−1(x)

(1− x)n
= lim

x→1

f
′
n(x)− f ′n−1(x)

−n(1− x)n−1

= lim
x→1

fn(x)
(
f
′
n−1(x) log x+ fn−1(x)

x

)
− fn−1(x)

(
f
′
n−2(x) log x+ fn−2(x)

x

)

−n(1− x)n−1

= lim
x→1

(
fn(x)− (fn−1(x))

(
f
′
n−1(x) log x+ fn−1(x)

x

)

−n(1− x)n−1

+ lim
x→1

(
fn−1(x)

(
f
′
n−1(x) log x+ fn−1(x)

x − f ′n−2(x) log x− fn−2(x)
x

)

−n(1− x)n−1
.

So

an = lim
x→1

fn(x)− fn−1(x)

(1− x)n


1 +

(
f
′
n−1(x) log x+ fn−1(x)

x

)
(1− x)

n




= lim
x→1

fn−1(x)
(
f
′
n−1(x) log x+ fn−1(x)

x − f ′n−2(x) log x− fn−2(x)
x

)

−n(1− x)n−1
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= lim
x→1

f
′
n−1(x)− f ′n−2(x)

−n(1− x)n−2
· log x

1− x + lim
x→1

fn−1(x)− fn−2(x)

−n(1− x)n−1x

=
n− 1

n
lim
x→1

fn−1(x)− fn−2(x)

(1− x)n−1
· (−1) +

1

(−n)
lim
x→1

fn−1(x)− fn−2(x)

(1− x)n−1

= −an−1 = −(−1)n−1 = (−1)n.

Solution 3 by Adrian Naco, Polytechnic University, Tirana, Albania

At first we observe that the function is of the form

fn(x) = xfn−1(x) = efn−1(x) lnx

and that

fn(x)− fn−1(x)

(1− x)n
=

efn−1(x) lnx − efn−2(x) lnx

(1− x)n
= efn−2(x) lnx

(
e[fn−1(x)−fn−2(x)] lnx − 1

(1− x)n

)

= efn−2(x) lnx· [fn−1(x)− fn−2(x)] lnx

(1− x)n
· e

[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2(x)] lnx
. (2)

The function f1(x) = x is continuous everywhere for x > 0 and

lim
x→1

f1(x) = lim
x→1

x = 1.

One easily comes to the conclusion that the function fn(x) = efn−1(x) lnx is continuous
everywhere for x > 0 as a composition of a product of two continuous functions
u(x) = fn−1(x) lnx and the exponential function fn(x) = eu(x) and as a logical result
implies that

lim
x→1

fn(x) = e
lim
x→1

[fn−1(x) lnx]
= e

[
lim
x→1

fn−1(x)
]
·
[
lim
x→1

lnx
]

= e1·0 = 1. (3)

Using the known limit rule

lim
α→0

eα − 1

α
= 1⇒ lim

x→1

e[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2 (x)] lnx
= 1 (4)

since

lim
x→1

α(x) = lim
x→1

[fn−1(x)− fn−2(x)] lnx

=

[
lim
x→1

fn−1(x)− lim
x→1

fn−2(x)

](
lim
x→1

lnx

)

= (1− 1) · 0 = 0
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So from formula (2) and (4) we derive the inductive result for one step.

lim
x→1

fn(x)− fn−1(x)

(1− x)n

= lim
x→1

efn−2(x) lnx · [fn−1(x)− fn−2(x)] lnx

(1− x)n
· e

[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2(x)] lnx

=

(
lim
x→1

efn−2(x) lnx
)
·
(

lim
x→1

[fn−1(x)− fn−2(x)] lnx

(1− x)n

)
·
(

lim
x→1

e[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2 (x)] lnx

)

=

(
e

lim
x→1

fn−2(x) lnx
)
·
(

lim
x→1

[fn−1(x)− fn−2(x)] lnx

(1− x)n

)
·
(

lim
x→1

e[fn−1(x)−fn−2(x)] lnx − 1

[fn−1(x)− fn−2 (x)] lnx

)

= 1 ·
(

lim
x→1

[fn−1(x)− fn−2(x)] lnx

(1− x)n

)
· 1 = lim

x→1

[fn−1(x)− fn−2(x)] lnx

(1− x)n
(5)

Inductively we derive the general formula

lim
x→1

fn(x)− fn−1(x)

(1− x)n
= lim

x→1

fn(x)− fn−1(x)

(1− x)n
ln0 x

= lim
x→1

[fn−1(x)− fn−2(x)] ln1 x

(1− x)n

= lim
x→1

[fn−2(x)− fn−3(x)] ln2 x

(1− x)n

. . . . . . . . .

= lim
x→1

[f2(x)− f1(x)] lnn−2 x
(1− x)n

= lim
x→1

[xx − x] lnn−2 x
(1− x)n

= lim
x→1

[
ex lnx − elnx

]
lnn−2 x

(1− x)n
= lim

x→1

elnx
[
e(x−1) lnx − 1

]
lnn−2 x

(1− x)n

= lim
x→1

elnx

[
e(x−1) lnx − 1]

]

(x− 1) lnx
(x− 1)

lnn−1 x
(1− x)n

= (−1)

(
lim
x→1

elnx
)
 lim
x→1

[
e(x−1) lnx − 1]

]

(x− 1) lnx



[

lim
x→1

lnx

(1− x)

]n−1

= (−1) · e0 · 1 ·
[

lim
x→1

lnx

(1− x)

]n−1
= −

[
lim
x→1

lnx

(1− x)

]n−1
.
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Applying L’Hôpital’s rule we have that

lim
x→1

fn(x)− fn−1(x)

(1− x)n
= −

[
lim
x→1

lnx

(1− x)

]n−1
= −

[
lim
x→1

(lnx)
′

(1− x)′

]n−1

= −
[

lim
x→1

1
x

(−1)

]n−1
= (−1)(−1)n−1 = (−1)n.

Editor’s comment: There was a mistake in the statement of the problem when it first

appeared on the web. That version asked for the lim
x→1

fn(x)− fn−1(x)

(1− x)n+1
. This mistake was

corrected almost immediately but not before a few of the readers started working with the
incorrect statement of the problem; although those readers noted the error and corrected
it in their solutions, once again, mea culpa. Most all who submitted solutions to this
problem approached it with induction.

Also solved by Arkady Alt, San Jose, CA; Anastasios Kontronis, Athens,
Greece; Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2013

• 5230: Proposed by Kenneth Korbin, New York, NY

Given positive numbers x, y, z such that

x2 + xy +
y2

3
= 41,

y2

3
+ z2 = 16,

x2 + xz + z2 = 25.

Find the value of xy + 2yz + 3xz.

• 5231: Proposed by Panagiote Ligouras, “Leonardo da Vinci” High School, Noci, Italy

The lengths of the sides of the hexagon ABCDEF satisfy AB = BC,CD = DE, and
EF = FA. Prove that √

AF

CF
+

√
CB

EB
+

√
ED

AD
> 2.

• 5232: Proposed by D. M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Prove that: If a, b, c > 0, then,

2

√
a2 + b2 + c2

3
· sinx

x
+
a+ b+ c

3
· tanx

x
> a+ b+ c,

for any x ∈
(

0,
π

2

)
.

• 5233: Proposed by Anastasios Kotronis, Athens, Greece

Let x ≥ 1 + ln 2

2
and let f(x) be the function defined by the relations:

f2(x)− ln f(x) = x
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f(x) ≥
√

2

2
.

• 1. Calculate lim
x→+∞

f(x)√
x

, if it exists.

• 2. Find the values of α ∈ < for which the series
+∞∑

k=1

kα
(
f(k)−

√
k
)

converges.

• 3. Calculate lim
x→+∞

√
xf(x)− x

lnx
, if it exists.

• 5234: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let a < b be positive real numbers and let f1 : [a, b]→ < (i = 1, 2) be continuous
functions in [a, b] and differentiable in (a, b). If f2 is strictly decreasing then prove that
there exists an α ∈ (a, b) such that

f2(b) < f2(α) + 2

(
f

′
2(α)

f
′
1(α)

)
< f2(a).

• 5235: Proposed by Albert Stadler, Herrliberg, Switzerland

On December 21, 2012 (“12− 21− 12”) the Mayan Calendar’s 13th Baktun cycle will
end. On this date the world as we know it will also change (see <http://www.
mayan-calendar.org/2012/end-of-the-world.html>). Since every end is a new beginning
we are looking for natural numbers n such that the decimal representation of 2n starts
and ends with the digit sequence 122112. Let S be the set of natural numbers n such
that 2n = 122112....122112. Let s(x) be the number of elements of S that are ≤ x.

Prove that lim
x→∞

s(x)

x
exists and is positive. Calculate the limit.

————————————————————–

Solutions

• 5212: Proposed by Kenneth Korbin, New York, NY

Solve the equation

2x+ y −
√

3x2 + 3xy + y2 = 2 +
√

2

if x and y are of the form a+ b
√

2 where a and b are positive integers.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

In a similar way to the published solution to SSM problem 5105, we let
x = a+ b

√
2, y = c+ d

√
2 and y = αx, where a, b, c and d are positive integers and α is a

positive real number. Substituting into the given equation gives

2+
√

2 = 2x+αx−
√

3x2 + 3αx2 + α2x2 =
(
2 + α−

√
3 + 3α+ α2

)
x = ϕ(α)

(
a+ b

√
2
)
,

where ϕ(α) =
(2 + α)2 −

(√
3 + 3α+ α2

)2

2 + α+
√

3 + 3α+ α2
is increasing (editor’s note:
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ϕ′(α) = 1− 3 + 2α

2
√

3 + 3α+ α2
> 0, for 3 + 3α+ α2 > (1.5 + α)2.) and such that

lim
α→+∞

ϕ(α) = lim
α→+∞

1/α+ 1

2/α+ 1 +
√

3/α2 + 3/α+ 1
=

0 + 1

0 + 1 +
√

0 + 0 + 1
=

1

2
.

On the other hand,

ϕ(0) = 2−
√

3, so ϕ(0) ≤ ϕ(α) < lim
α→+∞

ϕ(α) and hence,

4 + 2
√

2 <
2 +
√

2

ϕ(α)
≤ 2 +

√
2

2−
√

3
, that is,

4 + 2
√

2 < a+ b
√

2 ≤ 2 +
√

2

2−
√

3
.

From this it follows that b ≤ 9 and that





if b=0 then 7≤ a ≤ 12,
if b=1 then 6≤ a ≤ 11,
if b=2 then 5≤ a ≤ 9,
if b=3 then 3≤ a ≤ 8,
if b=4 then 2≤ a ≤ 7,
if b=5 then 0≤ a ≤ 5,
if b=6 then 0≤ a ≤ 4,
if b=7 then 0≤ a ≤ 2,
if b=8 then 0≤ a ≤ 1, and
if b=9 then a=0.

The given equation is equivalent to

[
2x+ y −

(
2 +
√

2
)]2

=

(√
3x2 + 3xy + y2

)2

, that is,

4x2 + 4xy + y2 −
(
8 + 4

√
2
)
x−

(
4 + 2

√
2
)
y + 4 + 4

√
2 + 2 = 3x2 + 3xy + y2.

So,

c+ d
√

2 = y =
x2 −

(
8 + 4

√
2
)
x+ 6 + 4

√
2

4− x+ 2
√

2

=
a2 + 2b2 − 8a− 8b+ 6 + (2ab− 4a− 8b+ 4)

√
2

(4− a) + (2− b)
√

2

=

[
a2 + 2b2 − 8a− 8b+ 6 + (2ab− 4a− 8b+ 4)

√
2
] [

4− a+ (b− 2)
√

2
]

[
4− a+ (2− b)

√
2
] [

4− a+ (b− 2)
√

2
]

=
−a3 + 2ab2 + 12a2 − 8b2 − 8ab− 22a+ 8b+ 8

(4− a)2 − 2 (2− b)2
+
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2b3 − a2b+ 8ab+ 2a2 − 12b2 − 4a− 10b+ 4

(4− a)2 − 2 (2− b)2
√

2.

So,

c =
−a3 + 2ab2 + 12a2 − 8b2 − 8ab− 22a+ 8b+ 8

(4− a)2 − 2 (2− b)2
and

d =
2b3 − a2b+ 8ab+ 2a2 − 12b2 − 4a− 10b+ 4

(4− a)2 − 2 (2− b)2
, where c and d are positive integers.

Restricting a, b, c, and d to be positive integers we see that there are eleven solutions
(x, y) to the problem. These are obtained by letting x = a+ b

√
2 and y = c+ d

√
2, where

(a, b) ∈
{

(6, 1), (5, 2), (6, 2), (7, 2), (3, 3), (4, 3), (5, 3), (6, 3), (2, 4)(6, 4), (1, 5)

}
and respectively,

(c, d) ∈
{

(28, 22), (17, 12), (7, 6), (3, 4), (43, 29), (12, 8), (5, 5), (4, 2), (23, 13), (1, 1), (17, 7)

}
.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

If we re-write the equation in the form

2x+ y −
(
2 +
√

2
)

=
√

3x2 + 3xy + y2

and then square both sides and simplify, we get successively

x2 − 4
(
2 +
√

2
)
x+ xy − 2

(
2 +
√

2
)
y + 2

(
3 + 2

√
2
)

= 0 and

[
x− 2

(
2 +
√

2
)]2

+
[
x− 2

(
2 +
√

2
)]
y = 6

(
3 + 2

√
2
)
.

To simplify further, substitute w = x− 2
(
2 +
√

2
)

to obtain

w2 + wy = 6
(
3 + 2

√
2
)
. (1)

From the given instructions for x and y, we have

w = a1 + b1
√

2 and y = a2 + b2
√

2,

where a1, b1, a2, b2 are integers with a2, b2 ≥ 1, a1 ≥ −3, and b1 ≥ −1. If these are substituted
into (1) and we use the fact that for integers a, b, c, d, a+ b

√
2 = c+ d

√
2 if and only if a = c

and b = d we obtain the following system:

(b1 + b2) a1 + (a1 + a2) b1 = 12 (2)

4X
ia
ng
’s
T
ex
m
at
h



(a1 + a2) a1 + 2 (b1 + b2) b1 = 18. (3)

Note that from the above information about a1, b1, a2, b2, it follows that
a1 + a2 ≥ −2 and b1 + b2 ≥ 0.

If b1 + b2 = 0, then we must have b1 = −1 and b2 = 1. Equation (2) becomes a1 + a2 = −12,
which is clearly impossible. If b1 + b2 = 1, then either b1 = −1 and b2 = 2 or b1 = 0 and
b2 = 1. When b1 = −1 and b1 + b2 = 1, equation (2) reduces to −a2 = 12, which is impossible.
When b1 = 0 and b1 + b2 = 1, (2) yields a1 = 12 and (3) becomes 12 (a1 + a2) = 18, which is
also impossible. Therefore, we will assume hereafter that b1 + b2 ≥ 2.

If a1 + a2 = −2, then since a1 ≥ −3 and a2 ≥ 1, we get a1 = −3 and a2 = 1. Equation (3)
becomes (b1 + b2) b1 = 6. Since b1 + b2 ≥ 2, it follows that b1 ≥ 1. Then, (2) is of the form

−3 (b1 + b2)− 2b1 = 12,

which is clearly impossible with b1 ≥ 1 and b1 + b2 ≥ 2.

If a1 + a2 = −1, then since a2 ≥ 1, it follows that a1 < 0. However, equations (2) and (3) are

(b1 + b2) a1 − b1 = 12
−a1 + 2 (b1 + b2) b1 = 18

and we get

a1 = 6
4 (b1 + b2) + 3

2 (b1 + b2)
2 − 1

> 0

(since b1 + b2 ≥ 2). Hence, this case is impossible .

If a1 + a2 = 0, (2) and (3) reduce to

(b1 + b2) a1 = 12
(b1 + b2) b1 = 9.

Since b1 + b2 ≥ 2, this makes a1 > 0, which is inconsistent with a1 + a2 = 0.

If a1 + a2 = 1, then a2 ≥ 1 implies that a1 ≤ 0. However, (2) and (3) become

(b1 + b2) a1 + b1 = 12
a1 + 2 (b1 + b2) b1 = 18

and hence,

a1 = 6
4 (b1 + b2)− 3

2 (b1 + b2)
2 − 1

> 0

(since b1 + b2 ≥ 2). Therefore, this case is also impossible and we may assume in the
remainder of this solution that a1 + a2 ≥ 2.

In (2) and (3), if we treat a1 and b1 as coefficients and use Cramer’s Rule, we obtain

a1 + a2 = 6
4b1 − 3a1
2b21 − a21

, b1 + b2 = 6
3b1 − 2a1
2b21 − a21

or

5X
ia
ng
’s
T
ex
m
at
h



a2 = 6
4b1 − 3a1
2b21 − a21

− a1, b2 = 6
3b1 − 2a1
2b21 − a21

− b1. (4)

If a1 = −3, then

a2 = 6
4b1 + 9

2b21 − 9
+ 3 = 3

(
2

4b1 + 9

2b21 − 9
+ 1

)

and

b2 = 18
b1 + 2

2b21 − 9
− b1 =

−2b31 + 27b1 + 36

2b21 − 9
.

Using elementary calculus, it is straightforward to show that when b1 ≥ 5,
−2b31 + 27b1 + 36 < 0 and 2b21 − 9 > 0, and hence, b2 < 0. Also, by direct substitution, b2 < 0
when b1 = 0,±1, or 2. Therefore, we are left with b1 = 3 or 4. Of these, b1 = 4 yields
fractional values for a2 and b2, while b1 = 3 gives the solution a1 = −3, b1 = 3, a2 = 17, b2 = 7.

Therefore, our first solution is w = −3 + 3
√

2, x = w + 2
(
2 +
√

2
)

= 1 + 5
√

2, y = 17 + 7
√

2.

If a1 = −2, (4) becomes

a2 = 2

(
3

2b1 + 3

b21 − 2
+ 1

)
and b2 =

3b1 + 4

2b21 − 4
− b1 =

−b31 + 11b1 + 12

b21 − 2
.

Proceeding as before, we see that b2 < 0 for b1 ≥ 4 and a2 < 0 for b1 = 0 or ±1. If b1 = 3,
then a2 is a fraction. However, b1 = 2 yields the solution
a1 = −2, b1 = 2, a2 = 23, b2 = 13. Therefore, our next solution is
w = −2 + 2

√
2, x = 2 + 4

√
2, y = 23 + 13

√
2.

If a1 = −1, (4) reduces to

a2 = 6
4b1 + 3

2b21 − 1
+ 1 and b2 = 6

3b1 + 2

2b21 − 1
− b1 =

−2b31 + 19b1 + 12

2b21 − 1
.

If b1 ≥ 4, then b2 < 0. Also, if b1 = −1 or 0, a2 < 0. Of the remaining choices, b1 = 2 or 3 give
fractional answers for a2. When b1 = 1, we get the solution a1 = −1, b1 = 1, a2 = 43, b2 = 29.
This contributes w = −1 +

√
2, x = 3 + 3

√
2, y = 43 + 29

√
2 to our list of solutions.

If a1 = 0, (4) becomes a2 =
12

b1
and b2 =

9

b1
− b1 =

9− b21
b1

. In this case, b1 6= 0 and we get

a2 < 0 when b1 = −1 and b2 ≤ 0 when b1 ≥ 3. Also, b1 = 2 yields a fractional value for b2.
Hence, we are left with b1 = 1, which gives the solution a1 = 0, b1 = 1, a2 = 12, b2 = 8 and we
add w =

√
2, x = 4 + 3

√
2, y = 12 + 8

√
2 to our solution set.

We can now assume that a1 ≥ 1 in the remainder of this solution.

If b1 = −1, (4) is of the form

a2 = 6
3a1 + 4

a21 − 2
− a1 =

−a31 + 20a1 + 24

a21 − 2
and b2 = 6

2a1 + 3

a21 − 2
+ 1.
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As before, we get a2 < 0 if a1 ≥ 5 and b2 < 0 if a1 = 1. When a1 = 3 or 4, we get fractional
values for b2. Finally, a1 = 2 gives the solution a1 = 2, b1 = −1, a2 = 28, b2 = 22, which yields
w = 2−

√
2, x = 6 +

√
2, y = 28 + 22

√
2.

If b1 = 0, (4) becomes

a2 =
18

a1
− a1 =

18− a21
a1

and b2 =
12

a1
.

If a1 ≥ 5, we get a2 < 0 and a1 = 4 gives a fractional value for a2. The remaining values
a1 = 1, 2, 3 produce the solutions listed below.

a1 b1 a2 b2 w x y

1 0 17 12 1 5 + 2
√

2 17 + 12
√

2

2 0 7 6 2 6 + 2
√

2 7 + 6
√

2

3 0 3 4 3 7 + 2
√

2 3 + 4
√

2

.

Finally, we are down to the situation where a1 ≥ 1, b1 ≥ 1, a1 + a2 ≥ 2, and b1 + b2 ≥ 2.
Then, (2) implies that 1 ≤ a1 ≤ 6 and 1 ≤ b1 ≤ 6. By trying the 36 possibilities this presents
for the system consisting of (2) and (3), we find that the remaining solutions are as follows:

a1 b1 a2 b2 w x y

1 1 5 5 1 +
√

2 5 + 3
√

2 5 + 5
√

2

2 1 4 2 2 +
√

2 6 + 3
√

2 4 + 2
√

2

2 2 1 1 2 + 2
√

2 6 + 4
√

2 1 +
√

2

.

Our conclusion is that the full solution set for this problem is displayed below. With some
algebraic fortitude, it can be checked that all are solutions to the original equation.

x y

1 + 5
√

2 17 + 7
√

2

2 + 4
√

2 23 + 13
√

2

3 + 3
√

2 43 + 29
√

2

4 + 3
√

2 12 + 8
√

2

5 + 2
√

2 17 + 12
√

2

5 + 3
√

2 5 + 5
√

2

6 +
√

2 28 + 22
√

2

6 + 2
√

2 7 + 6
√

2

6 + 3
√

2 4 + 2
√

2

6 + 4
√

2 1 +
√

2

7 + 2
√

2 3 + 4
√

2

.

Comments: David Stone and John Hawkins of Statesboro GA noted that the solutions
(x, y) lie on the hyperbola

y =
x2 − 4

(
2 +
√

2
)
x+

(
2 +
√

2
)2

x− 2
(
2 +
√

2
)
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and it is not evident that there should be only finitely many solutions. However, imposing the
specific form a+ b

√
2 on x and y forces this to be the case.

And Ken Korbin (the proposer of the problem) characterized the solutions as follows:
Letting

(c, d) = (1, 2 +
√

2), (2 +
√

2, 1), (
√

2, 1 +
√

2), (1 +
√

2,
√

2)

then 



x = c(2d+ 1)

y = c(3d2 − 1) with x < y,
and





x = c(2d+ 3)

y = c(d2 − 3) with x < y.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Paul M.
Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Titu Zvonaru and Comănesti Romania,
Neculai Stanciu, Buzău, Romania (jointly); David Stone and John Hawkins of
Georgia Southern University, Statesboro, GA (jointly), and the proposer.

5213: Proposed by Tom Moore, Bridgewater, MA

The triangular numbers Tn begin 1, 3, 6, 10, . . . and, in general, Tn =
n(n+ 1)

2
, n = 1, 2, 3, . . ..

For every positive integer n > 1, prove that n4 is a sum of four triangular numbers.

Solution by Boris Rays, Brooklyn, NY

n4 = n4 − n2 + n2 = 2
n4 − n2

2
+ 2

n2

2

= 2
n2

2
+ 2

n4 − n2
2

=
n2 − n+ n2 + n

2
+ 2

n2(n2 − 1)

2

=
(n− 1)n

2
+
n(n+ 1)

2
+

(n2 − 1)n2

2
+

(n2 − 1)n2

2

= Tn−1 + Tn + Tn2−1 + Tn2−1.

Comments: Albert Stadler of Herrliberg, Switzerland. A.M. Legendre concluded from
formulas in his treatise on elliptic functions [1] that the number of ways in which n is a sum of
four triangular numbers equals the sum of the divisors of 2n+ 1. As a result of this, every
natural number can be represented as a sum of four triangular numbers. Reference: [1] Adrien
Marie Legendre, Fonctions elliptiques et des intégrales Eulériennes: avec des tables pour en
faciliter le calcul numérique; Vol 3 (1828), 133-134.

David Stone and John Hawkins of Statesboro, GA noted in their solution that n4 is
also the sum of two triangular numbers: n4 = Tn2−1 + Tn2 .
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Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Elsie
Campbell, Dionne Bailey, and Charles Diminnie, Angelo State University, San
Angelo, TX; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York,
NY; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at
Oneonta, Oneonta, NY; Adrian Naco, Tirana, Albania; Ángel Plaza, University of
Las Palmas de Gran Canaria, Spain; Armend Sh. Shabani, (student, University of
Prishtina), Republic of Kosova; Howard Sporn, Great Neck, NY; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA (jointly); Titu Zvonaru, Comănesti, Romania and
Neculai Stanciu Buzău, Romania (jointly), and the proposer.

5214: Proposed by Pedro H. O. Pantoja, Natal-RN, Brazil

Let a, b, c be positive real numbers. Prove that

a3(b+ c)2 + 1

1 + a+ 2b
+
b3(c+ a)2 + 1

1 + b+ 2c
+
c3(a+ b)2 + 1

1 + c+ 2a
≥ 4abc(ab+ bc+ ca) + 3

a+ b+ c+ 1
.

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

Let L =
a3(b+ c)2 + 1

1 + a+ 2b
+
b3(c+ a)2 + 1

1 + b+ 2c
+
c3(a+ b)2 + 1

1 + c+ 2a
. Note that by the AM −GM

inequality, (b+ c)2 ≥ 4bc, (c+ a) ≥ 4ca, and (a+ b)2 ≥ 4ab with equality if and only if
a = b = c. Therefore,

L ≥ 4a3bc+ 1

1 + a+ 2b
+

4b3ca+ 1

1 + b+ 2c
+

4c3ab+ 1

1 + c+ 2a

= 4abc

(
a2

(1 + a+ 2b)
+

b2

(1 + b+ 2c)
+

c2

(1 + c+ 2a)

)
+

(
12

(1 + a+ 2b)
+

12

(1 + b+ 2c)
+

12

(1 + c+ 2a)

)
.

The Cauchy-Schwarz inequality implies

a√
1 + a+ 2b

·
√

1 + a+ 2b+
b√

1 + b+ 2c
·
√

1 + b+ 2c+
c√

1 + c+ 2a
·
√

1 + c+ 2a
2 ≤

(
a2

1 + a+ 2b
+

b2

1 + b+ 2c
+

c2

1 + c+ 2a

)
(3a+ 3b+ 3c+ 3) ;

hence,
a2

1 + a+ 2b
+

b2

1 + b+ 2c
+

c2

1 + c+ 2a
≥ (a+ b+ c)2

3 (a+ b+ c+ 1)
.

Similarly,

12

1 + a+ 2b
+

12

1 + b+ 2c
+

12

1 + c+ 2a
≥ (1 + 1 + 1)2

3(a+ b+ c+ 1)
=

3

a+ b+ c+ 1
.

Therefore,

L ≥ 4abc

(
(a+ b+ c)2

3(a+ b+ c+ 1)

)
+

3

a+ b+ c+ 1
.
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Furthermore, the Cauchy-Schwarz inequality also implies a2 + b2 + c2 ≥ ab+ bc+ ca using
vectors 〈a, b, c〉 and 〈b, c, a〉. Therefore,

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ca

≥ ab+ bc+ ca+ 2(ab+ bc+ ca)

= 3(ab+ bc+ ca).

Hence,
(a+ b+ c)2

3(a+ b+ c+ 1)
≥ ab+ bc+ ca

a+ b+ c+ 1
.

Accordingly,

L ≥ 4abc

(
(a+ b+ c)2

3(a+ b+ c+ 1)

)
+

3

a+ b+ c+ 1

≥ 4abc(ab+ bc+ ca)

a+ b+ c+ 1
+

3

a+ b+ c+ 1

=
4abc(ab+ bc+ ca) + 3

a+ b+ c+ 1
,

with equality if and only if a = b = c.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

We prove that

1

1 + a+ 2b
+

1

1 + b+ 2c
+

1

1 + c+ 2a
≥ 3

a+ b+ c+ 1

and

a3(b+ c)2

1 + a+ 2b
+
b3(c+ a)2

1 + b+ 2c
+
c3(a+ b)2

1 + c+ 2a
≥ 4abc(ab+ bc+ ca)

a+ b+ c+ 1

By Cauchy–Schwarz

1

1 + a+ 2b
+

1

1 + b+ 2c
+

1

1 + c+ 2a
≥ (1 + 1 + 1)2

3 + 3(a+ b+ c)

thus we prove

(1 + 1 + 1)2

3 + 3(a+ b+ c)
≥ 3

a+ b+ c+ 1

which is actually an equality. As for the second inequality we have
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∑

cyc

a3(b+ c)2

1 + a+ 2b
≥
∑

cyc

a34bc

1 + a+ 2b
≥ 4abc(ab+ bc+ ca)

a+ b+ c+ 1

or

∑

cyc

a2

1 + a+ 2b
≥ ab+ bc+ ca

a+ b+ c+ 1

Cauchy–Schwarz again yields

∑

cyc

a2

1 + a+ 2b
≥ (a+ b+ c)2

3 + 3(a+ b+ c)
≥ ab+ bc+ ca

a+ b+ c+ 1

or

S3 + S2 ≥ 3P + 3PS, S = a+ b+ c, P = ab+ bc+ ca

Now S2 ≥ 3P since it is equivalent to

a2 + b2 + c2 ≥ ab+ bc+ ca

which is a well known inequality.

Solution 3 by Adrian Naco, Polytechnic University,Tirana, Albania.

Editor’s comment: The following is a generalization of the stated problem.

Based on Cauchy-Schwarz inequality, for ai, bi ∈ R∗+ we have that

( n∑

i=1

ai

)2

=

[ n∑

i=1

(
ai√
bi

)
(
√
bi)

]2
≤

[ n∑

i=1

(
ai√
bi

)2][ n∑

i=1

(
√
bi)

2
]

=

( n∑

i=1

ai
2

bi

)( n∑

i=1

bi

)

⇒
n∑

i=1

ai
2

bi
≥

( n∑

i=1

ai

)2

n∑

i=1

bi

(1)

where the equality holds for
a1
b1

=
a2
b2

=
an
bn

.

Let us split the original inequality in two separate inequalities (2) and (3) as follows
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n∑

i=1

1

1 + xi + 2xi+1
≥ n2

n+ 3
n∑

i=1

xi

(2)

and

n∑

i=1

xi
3(xi+1 + xi+2)

2

1 + xi + 2xi+1)
≥

4

[ n∑

i=1

(xixi+1xi+2)xi
2 + 2

∑

1≤i<j≤n
(xixjxi+1xj+1xi+2xj+2)

1
2xixj

]

n+ 3
n∑

i=1

xi

(3)

Applying the above Cauchy-Schwarz inequality for each of the inequalities (2) and (3) we have
that

n∑

i=1

12

1 + xi + 2xi+1
≥

( n∑

i=1

1

)2

n∑

i=1

(1 + xi + 2xi+1)

=

(1 + 1 + +1︸ ︷︷ ︸
ntimes

)2

n∑

i=1

1 +
n∑

i=1

xi + 2
n∑

i=1

xi+1

=
n2

n+ 3
n∑

i=1

xi

(4)

where the equality holds for x1 = x2 = . . . = xn. Thus we prove (2). Analogously we have that

n∑

i=1

xi
3(xi+1 + xi+2)

2

1 + xi + 2xi+1)
=

n∑

i=1

[
xi

3
2 (xi+1 + xi+2)

]2

1 + xi + 2xi+1)

≥

[ n∑

i=1

xi
3
2

xi+1+xi+2≥2√xi+1xi+2︷ ︸︸ ︷
(xi+1 + xi+2)

]2

n∑

i=1

(1 + xi + 2xi+1)

≥
4

[ n∑

i=1

xi(xixi+1xi+2)
1
2

]2

n∑

i=1

1 +
n∑

i=1

xi + 2
n∑

i=1

xi+1

=

4

[ n∑

i=1

xi
2(xixi+1xi+2) + 2

n∑

1≤i<j≤n
xixj(xixjxi+1xj+1xi+2xj+2)

1
2

]

n+ 3
n∑

i=1

xi
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=

4

[
S + 3

n∑

1≤i<j≤n
xixj(xixjxi+1xj+1xi+2xj+2)

1
2

]

n+ 3
n∑

i=1

xi

where

S =
n∑

i=1

xi
2(xixi+1xi+2) −

n∑

1≤i<j≤n
xixj(xixjxi+1xj+1xi+2xj+2)

1
2

The problem proposed is a special case of the above generalized problem for

x1 = a x2 = b x3 = c.

Thus, we have that

S = abca2 + bcab2 + cabc2 −
[
(abbcca)

1
2ab+ (acbacb)

1
2ac+ (bccaab)

1
2 bc

]

= abc(a2 + b2 + c2 − ab− ac− bc) = abc
1

2

[
(a− b)2 + (b− c)2 + (c− a)2

]
≥ 0

with the equality holding for a = b = c. The inequality proposed gets the simplified form

∑

cyc

a3(b+ c)2 + 1

1 + a+ 2b)
≥

4

{
S + 3

[
(abbcca)

1
2ab+ (acbacb)

1
2ac+ (bccaab)

1
2 bc

]}
+ 32

3 + 3(a+ b+ c)

=
4

[
S + 3abc

(
ab+ ac+ bc

)]
+ 32

3 + 3(a+ b+ c)
≥

4

[
0 + 3abc

(
ab+ ac+ bc

)]
+ 32

3 + 3(a+ b+ c)

=
4abc

(
ab+ ac+ bc

)
+ 3

1 + a+ b+ c

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell, and
Charles Diminnie, Angelo State University, San Angelo TX; Andrea Fanchini,
Cantú, Italy; Kee-Wai Lau, Hong Kong, China; Albert Stadler, Herrliberg,
Switzerland; Titu Zvonaru, Comănesti, Romania and Neculai Stanciu Buzău,
Romania (jointly); and the proposer.
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5215: Proposed by Neculai Stanciu, Buzău, Romania

Evaluate the integral ∫ 1

−1

2x1004 + x3014 + x2008 sinx2007

1 + x2010
dx.

Solution by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

∫ 1

−1

2x1004 + x3014 + x2008 sinx2007

1 + x2010
dx =

∫ 1

−1

2x1004 + x3014

1 + x2010
dx+

∫ 1

−1

x2008 sinx2007

1 + x2010
dx

=

∫ 1

−1

2x1004 + x3014

1 + x2010
dx

Note that

∫ 1

−1

x2008 sinx2007

1 + x2010
dx = 0, since the integrand function is odd and the interval of

integration is centered at the origin.

The remaining integral may be solved using the change of variable x1005 = t.

∫ 1

−1

2x1004 + x3014

1 + x2010
dx =

1

1005

∫ 1

−1

2 + t2

1 + t2
dt

=
1

1005

(
2 +

∫ 1

−1

1

1 + t2
dt

)

=
1

1005
(2 + arctan(1)− arctan(−1))

=
1

1005

(
2 +

π

2

)
=

4 + π

2010
.

Also solved by Daniel Lopez Aguayo, Institute of Mathematics, UNAM, Morelia,
Mexico; Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell and Charles
Diminnie, Angelo Sate University, San Angelo, TX; Michael C. Faleski,
University Center, MI; Paul M. Harms, North Newton, KS; Fotini Kotroni and
Anastasios Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China; David E.
Manes, SUNY College at Oneonta, Oneonta, NY; Adrian Naco, Department of
Mathematics, Polytechnic University of Tirana, Albania; Paolo Perfetti,
Department of Mathematics, “Tor Vergata” University, Rome, Italy; Boris Rays,
Brooklyn, NY; Armend Sh. Shabani, (student, University of Prishtina), Republic
of Kosova; Albert Stadler, Herrliberg, Switzerland; Howard Sporn, Great Neck,
NY, and the proposer.
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5216: Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

Let f : < → <+ be a function such that for all a, b ∈ <
f(ab) = f(a)bf(b)a

2

and f(3) = 64. Find all real solutions to the equation

f(x) + f(x+ 1)− 3x− 2 = 0.

Solution by Armend Sh. Shabani, (Graduate Student) University of Prishtina,
Republic of Kosova.

Since f(a · b) = f(b · a) we have

f(a)b · f(b)a
2

= f(b)a · f(a)b
2 ⇔ f(a)b · f(b)a

[
f(b)a

2−a − f(a)b
2−b
]

= 0

⇔ f(b)a
2−a − f(a)b

2−b = 0⇔ f(b)a
2−a = f(a)b

2−b.

Taking b = x; a = 3, one obtains:

f (x)3
2−3 = f(3)x

2−x

f(x)6 = (64)x
2−x

f(x)6 = (43)x
2−x ⇒ f(x) = 2x

2−x = 2x(x−1).

Substituting into f(x) + f(x+ 1)− 3x− 2 = 0 we obtain:

2x
2−x + 2x

2+x − (3x+ 2) = 0. (1)

Clearly x = 0; x = 1 are solutions of equation (1).

We show that there are no other solutions.

Let g(x) = 2x
2−x + 2x

2+x. One easily finds that

g′(x) = ln 2 ·
(
(2x+ 1) · 2x2+x + (2x− 1) · 2x2−x

)
and

g′′(x) = ln 2 ·
(
2x

2+x+1 + 2x
2−x+1

)
+ (ln 2)2 ·

(
(2x+ 1)2 · 2x2+x + (2x− 1)2 · 2x2−x

)
.

So g′′(x) > 0, and this means that g is a convex function, So the line h(x) = 3x+ 2 can meet
function g in at most 2 points. Therefore equation (1) has no other solutions. (Note that this
can also be seen by drawing the graphs of functions g and h.)

Also solved by Dionne Bailey, Elsie Campbell, and Charles Dominnie, Angelo
State University, San Angelo, TX; Paul M. Harms, North Newton, KS; Kee-Wai
Lau, Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta,
NY; Adrian Naco, Department of Mathematics, Polytechnic University of Tirana,
Albania; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins, Georgia Southern University Statesboro, GA
(jointly), and the proposer.
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5217: Proposed by Ovidiu Furdui, Cluj-Napoca, Romania

Find the value of:

lim
n→∞

∫ 1

0

∫ 1

0

n
√

(xn + yn)kdxdy,

where k is a positive real number.

Solution 1 by Anastasios Kotronis, Athens, Greece

It is easily shown that
n
√

(xn + yn)k →
{
xk, y ≤ x
yk, x < y

and since 0 ≤ n
√

(xn + yn)k ≤ 2k, by

the dominated convergence theorem we have

lim
n→+∞

∫ 1

0

∫ 1

0

n
√

(xn + yn)kdydx =

∫ 1

0

∫ 1

0
lim

n→+∞
n
√

(xn + yn)kdydx

=

∫ 1

0

∫ x

0
xk dy dx+

∫ 1

0

∫ 1

x
yk dy dx

=

∫ 1

0
xk+1 dx+

∫ 1

0

1− xk+1

k + 1
dx

=
2

k + 2
.

Solution 2 by Howard Sporn, Great Neck, NY

We use the fact that for n going to ∞, when x < y, the yn term dominates over xn, and when
x > y, the xn term dominates over yn.

We break up the inner integral into two integrals, like so:

∫ 1

0

n

√
(xn + yn)kdx =

∫ y

0

n

√
(xn + yn)kdx+

∫ 1

y

n

√
(xn + yn)kdx.

Note that for the first integral x ≤ y, and for the second integral x ≥ y. By factoring,

∫ 1

0

n

√
(xn + yn)kdx =

∫ y

0

n

√[
yn
((

x

y

)n
+ 1

)]k
dx+

∫ 1

y

n

√[
xn
(

1 +

(
y

x

)n)]k
dx.

For the first integral, in which x, we first consider the case x < y. In that case,

(
x

y

)n
→ 0 for

n→∞. Then the integrand becomes n

√
[yn (0 + 1)]k = yk.
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If, on the other hand, x = y, then the integrand

becomes
n

√

(

[
yn
((

y

y

)n
+ 1

)]k
= n

√[
yn (1 + 1)]k = yk

n
√

2k, which approaches yk (once again)

as n→∞.

Similarly, the integrand in the second integral approaches xk.

The quantity we are seeking is now

∫ 1

0

(∫ y

0
ykdx+

∫ 1

y
xkdx

)
dy

which is straight-forward to compute.

The solution is ∫ 1

0

((
ykx

) ∣∣∣∣
y

x=0
+
xk+1

k + 1

∣∣∣∣
1

x=y

)
dy

=

∫ 1

0

(
yk+1 +

1

k + 1
− yk+1

k + 1

)
dy

=

(
yk+2

k + 2
+

y

k + 1
− yk+2

(k + 1)(k + 2)

) ∣∣∣∣
1

0

=
1

k + 2
+

1

k + 1
− 1

(k + 1)(k + 2)

=
(k + 1) + (k + 2)− 1

(k + 1)(k + 2)

=
2k + 2

(k + 1)(k + 2)

=
2

k + 2
.

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
Adrian Naco, Department of Mathematics, Polytechnic University of Tirana,
Albania; Paolo Perfetti, Department of Mathematics, “Tor Vergata” University,
Rome, Italy; Albert Stadler, Herrliberg, Switzerland, and the proposer.
——————— t
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2013

• 5236: Proposed by Kenneth Korbin, New York, NY

Given positive numbers (a, b, c, x, y, z) such that

x2 + xy + y2 = a,
y2 + yz + z2 = b,
z2 + zx+ x2 = c.

Express the value of the sum x+ y + z in terms of a, b, and c.

• 5237: Proposed by Michael Brozinsky, Central Islip, NY

Let 0 < R < 1 and 0 < S < 1, and define

a =

√
−2
√

1− S2
√

1−R2 + 2 + 2RS,

b =
√
−R− S + 1 +RS, and

c =
√
R+ S + 1 +RS.

Determine whether there is tuple (R,S) such that a, b, and c are sides of a triangle.

• 5238: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

It is fairly well-known that (1111 . . . 1)9, a number written in base 9 with an arbitrary
number of digits 1, always evaluates decimally to a triangular number. Find another
base b and a single digit d in that base, such that (ddd . . . d)b, using k digits d, has the
same property, ∀k ≥ 1.

• 5239: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Determine all functions f : <− {−3,−1, 0, 1, 3} → <, which satisfy the relation

f(x) + f

(
13 + 3x

1− x

)
= ax+ b,

where a and b are given arbitrary real numbers.
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• 5240: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let x be a positive real number. Prove that

x[x]

(x+ {x})2
+

x{x}
(x+ [x])2

>
1

8
,

where [x] and {x} represent the integral and fractional part of x, respectively.

• 5241: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let α ≥ 0 be a real number. Calculate

lim
n→∞

(∫ 1

0

n
√
xn + α dx

)n
.

————————————————————–

Solutions

• 5218: Proposed by Kenneth Korbin, New York, NY

Find positive integers x and y such that,

2x− y −
√

3x2 − 3xy + y2 = 2013

with (x, y) = 1.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If we re-write the equation in the form 2x− y − 2013 =
√

3x2 − 3xy + y2 (1) and then
square both sides and simplify, we get successively

x2 − 8052x+ (2013)2 + 4026y − xy = 0, and

(x− 4026)2 − (x− 4026) y = 3 (2013)2 .

To simplify further, substitute w = x− 4026 to obtain

w2 − wy = 3 (2013)2 (2)
or w (w − y) = 3 (2013)2 . (3)

Since w and w − y are integers, the problem can be solved by considering all
factorizations of

3 (2013)2 = 33112612 (4)

into a product of two integers. Also, since y > 0, we have w − y < w in each instance.

Before proceeding, we note that (2) implies that

y =
w2 − 3 (2013)2

w
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and we get

2x− y − 2013 = 2 (w + 4026)− w2 − 3 (2013)2

w
− 2013

=
w2 + 6093w + 3 (2013)2

w
.

Since

w2 + 6093w + 3 (2013)2 =

(
w +

6039

2

)2

+
3

4
(2013)2 > 0

for all w, we end up with 2x− y − 2013 < 0 when w < 0. Hence, when w − y < w < 0,
(1) implies that we will get extraneous solutions.

Next, suppose that (w,w − y) > 1. Then, there is a prime p which is a divisor of both w
and w − y. Conditions (3) and (4) tell us that p = 3, 11, or 61 and hence, p divides
2013. First of all, p divides both w and w − y implies that p divides w − (w − y) = y.
Also, since p divides both w and 2013, it follows that p divides w + 2 (2013) = x. As a
result, when (w,w − y) > 1, we have (x, y) > 1 as well. Therefore, we may restrict our
work to the case where (w,w − y) = 1.

Finally then, we need only consider (3) and (4) with 0 < w − y < w and (w,w − y) = 1.
The full set of solutions is given in the following table.

w − y w x = w + 4026 y = w − (w − y)

1 33112612 12, 160, 533 12, 156, 506

33 112612 454, 267 450, 214

112 33612 104, 493 100, 346

33112 612 7, 747 454

With a good software package, it’s possible to check that all of these are solutions of (1)
with (x, y) = 1.

Solution 2 by Adrian Naco, Polytechnic University, Tirana, Albania

The left side of the equation can be transformed to

2x− y −
√

(2x− y)2 − x(x− y) = 2013 ⇒ x(x− y) > 0 ⇒ 0 < y < x. (1)

(since x and y are positive integers). Further more,

√
3x2 − 3xy − y2 = 2x− y − 2013 ⇒ 2x− y − 2013 ≥ 0 ⇔ 2x− y ≥ 2013. (2)

Solving the equation we have that

3x2 − 3xy − y2 = (2x− y − 2013)2 ⇒ x2 − xy − 2 · 2013y − 4 · 2013x+ 20132 = 0

⇒ y = x− 2 · 2013− 3 · 20132

x− 2 · 2013
. (3)
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where

3 · 20132

x− 2 · 2013
= r ∈ Z ⇒ x = 2 · 2013 +

3 · 20132

r
, (4)

and since
3 · 20132

r
= s ∈ Z ⇒ rs = 3 · 20132 = 33 · 112 · 612. (5)

Considering (3), (4), (5) we have that,

x = 2 · 2013 + s
y = s− r
rs = 3 · 20132 = 33 · 112 · 612 where r , s ∈ Z .

The general structure of r and s is

r = 3α111α261α3 and s = 3β111β261β3 where

α1 + β1 = 3, α2 + β2 = 2, α3 + β3 = 2.

From (1) and (2)

x > y > 0 ⇒ s > r > −2 · 2013

2x− y − 2013 > 0 ⇒ s+ r > −3 · 2013

⇒ s+
3 · 20132

s
> −3 · 2013

⇒ s2 + 3 · 2013s+ 3 · 20132

s
> 0

⇒ s > 0 ⇒ r > 0.

Furthermore, if (r, s) = p then p|2013 and consequently p|x and p|y. Since
(x, y) = 1 then p = 1, resulting that there are only eight possible combinations
for r and s (since for each combination we have αi = 0 or βi = 0, ∀i ∈ {1, 2, 3})

r = 30110610 and s = 33112612
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r = 33110610 and s = 30112612

r = 30112610 and s = 33110612

r = 30110612 and s = 33112610

r = 33112610 and s = 30110612

r = 33110612 and s = 30112610

r = 30112612 and s = 33110610

r = 33112612 and s = 33112612,

and since s > r, there are only four possible combinations, each of them generates a solution
for the given equation. More concretely the four solutions are

r = 30110610, s = 33112612 ⇒ x = 12160533, y = 12156506

r = 33110610, s = 30112612 ⇒ x = 454267, y = 450214

r = 30112610, s = 33110612 ⇒ x = 104493, y = 100346

r = 33112610, s = 30110612 ⇒ x = 7747, y = 454.

Comment by David Stone and John Hawkins of Georgia Southern University, Statesboro, GA.
The above four points (x, y) are called visible points (i.e., the view from the origin is not blocked
by any other lattice point.)

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach,
FL; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of Technol-
ogy, Sydney Australia and Elton Bojaxhiu, Kriftel, Germany; Kee-Wai Lau, Hong
Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Albert
Stadler Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

5219: Proposed by David Manes and Albert Stadler, SUNY College at Oneonta, Oneonta, NY
and Herrliberg, Switzerland (respectively)

Let k and n be natural numbers. Prove that:

n∑

j=1

cosk
(

(2j − 1)π

2n+ 1

)
=





2n+ 1

2k+1

(
k

k/2

)
− 1

2
, k even

1

2
, k odd.

Solution by Kee-Wai Lau, Hong Kong, China
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Since the stated result is not true for (k, n) = (3, 1), (6, 1), we modify it to

n∑

j=1

cosk
(

(2j − 1)π

2n+ 1

)
=





2n+ 1

2k+1

(
k

k/2

)
− 1

2
, k = 2, 4, 6, . . . , 4n

1

2
, k = 1, 3, 5, . . . , 2n− 1.

Let i =
√
−1 and θ = θ(j, n) =

(2j − 1)π

2n+ 1
. By the binomial theorem we have

n∑

j=1

cosk θ =
1

2

n∑

j=−n
cosk θ +

(−1)k−1

2

=
1

2k+1

n∑

j=−n

(
eiθ + e−iθ

)
+

(−1)k−1

2

=
1

2k+1

n∑

j=−n

k∑

t=0

(
k

t

)
ei(k−2t)θ +

(−1)k−1

2

=
1

2k+1

k∑

t=0

(
k

t

)
n∑

j=−n
ei(k−2t)θ +

(−1)k−1

2
.

For k = 2, 4, 6, . . . , 4n and t = 0, 1, 2, . . . , k,
2(k − 2t)

2n+ 1
is not an integer unless t =

k

2
. So for

t =
k

2
, we have

n∑

j=−n
ei(k−2)θ = 2n + 1 and for t = 0, 1, 2, . . . ,

k − 2

2
,
k + 2

2
, . . . , k, we have

n∑

j=−n
ei(k−2t)θ =

1− e2(k−2t)πi
1− e(2(k−2t)πi)/(2n+1)

= 0.

This proves the first part of the modified statement of the problem.

For k = 1, 3, 5, . . . , 2n− 1 and t = 0, 1, 2, . . . , k,
2(k − 2t)

2n+ 1
is not an integer and so

n∑

j=−n
ei(k−2t)θ =

0, and this proves the second part of the modified statement of the problem.

Editor’s note: David Manes and Anastasios Kotronis, noted the error in the statement of the
problem, but the problem had already been posted. Each went on to correct the mistake and
each made reference to a general technique for solving such problems that is discussed in a
paper by Mircea Merca (of the University of Craiova in Romania) entitled: “A Note on Cosine
Power Sums” that appeared in the Journal of Integer Sequences, Vo. 15(2012); Article 12.5.3.
Other solvers of 5219 parenthetically referenced the need to modify of the original statement.
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Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Anastasios Kotronis, Athens,
Greece; Adrian Naco, Polytechnic University, Tirana, Albania; Paolo Perfetti, De-
partment of Mathematics, “Tor Vergata” University, Rome, Italy, and the pro-
posers.

5220: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The pentagonal numbers begin 1, 5, 12, 22 . . . and are generally defined by Pn =
n(3n− 1)

2
, ∀n ≥

1. The triangular numbers begin 1, 3, 6, 10, . . . and are generally defined by Tn =
n(n+ 1)

2
,∀n ≥

1. Find the greatest common divisor, gcd(Tn, Pn).

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Case 1: If n is even, n = 2k for some k ≥ 1, so, using properties of the gcd, the Euclidean
algorithm, and the fact that 2k + 1 is odd =⇒ gcd(2k + 1, 4) = 1, we obtain

gcd(Pn, Tn) = gcd (k (6k − 1) , k (2k + 1))

= k gcd (6k − 1, 2k + 1)

= k gcd (2k + 1,−4)

= k gcd (2k + 1, 4)

= k =
n

2
.

Case 2: If n is odd, then
n

4
gives a remainder of 1 or 3; so n ≡ 1 (mod 4) or n ≡ 3 (mod 4).

We have two cases to consider.

Case 2.1: n = 4k + 1 for some k ≥ 0; then

gcd(Pn, Tn) = gcd (n(2k + 1), n (6k + 1))

= n gcd (2k + 1, 6k + 1)

= n gcd (−2, 2k + 1)

= n gcd (2, 2k + 1)

= n.

Case 2.2 n = 4k + 3 for some k ≥ 0; then

gcd(Pn, Tn) = gcd (n(6k + 4), n (2k + 2))
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= 2n gcd (3k + 2, k + 1)

= 2n gcd (k + 1,−1)

= 2n gcd (k + 1, 1)

= 2n.

Hence,

gcd (Pn, Tn) =





n

2
n even

n n≡ 1 (mod 4)
2n n≡ 3 (mod 4)

Solution 2 by Albert Stadler, Herrliberg, Switzerland

If n is even then,

(Pn, Tn) =
n

2
(3n− 1, n+ 1) =

n

2
(3n− 1− 3(n+ 1), n+ 1) =

n

2
(−4, n+ 1) =

n

2
.

If n ≡ 1 (mod 4) then,

(Pn, Tn) = n

(
3n− 1

2
,
n+ 1

2

)
= n

(
3n− 1

2
− 3 · n+ 1

2
,
n+ 1

2

)
= n

(
−2,

n+ 1

2

)
= n.

If n ≡ 3 (mod 4) then

(Pn, Tn) = n

(
3n− 1

2
,
n+ 1

2

)
= n

(
3n− 1

2
− 3 · n+ 1

2
,
n+ 1

2

)
= n

(
−2,

n+ 1

2

)
= 2n.

These three lines can be summarized in one formula by, e.g.,

(Pn, Tn) =
n

2

(
2 sin2 πn

2
− sin

πn

2
+ 1

)
.

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Editor’s comment: Brian generalized the problem for the nth r-gonal number.

Given integers n ≥ 1 and r ≥ 3, the nth r-gonal number is defined by

prn = 1
2n[(r − 2)n− (r − 4)].

Find the following greatest common divisors for a) gcd(prn, p
r+1
n ) b) gcd(prn, p

r+2
n ), r even,

and c) gcd(prn, p
r+2
n ), r odd.
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a) We show that gcd(prn, p
r+1
n ) =

{
n/2 if n is even
n if n is odd

.

If n = 2m for some positive integer m, then prn = m(2mr−4m−r+4) and pr+1
n = m(2mr−2m−

r+3). Since 2mr−2m−r+3 = (2mr−4m−r+4)+(2m−1), 2mr−4m−r+4 = (2m−1)(r−2)+2,
and gcd(2m − 1, 2) = 1, we also have gcd(2mr − 2m − r + 3, 2mr − 4m − r + 4) = 1. Hence
gcd(prn, p

r+1
n ) = m = n/2.

If n = 2m+ 1 for some nonnegative integer m, then prn = (2m+ 1)(mr − 2m+ 1) and pr+1
n =

(2m+ 1)(mr−m+ 1). Since mr−m+ 1 = mr−2m+ 1 + (m) and mr−2m+ 1 = m(r−2) + 1,
we have gcd(mr −m+ 1,mr − 2m+ 1) = 1. Hence gcd(prn, p

r+1
n ) = 2m+ 1 = n.

b) We show that for even r, gcd(prn, p
r+2
n ) = n.

Write r = 2m for some positive integer m. Then prn = n(mn − m − n + 2) and pr+2
n =

n(mn−m+1). Sincemn−m+1 = (mn−m−n+2)+(n−1) andmn−m−n+2 = (n−1)(m−1)+1,
we have gcd(mn−m+ 1,mn−m− n+ 2) = 1. Hence gcd(prn, p

r+2
n ) = n.

c) We show that for odd r, gcd(prn, p
r+2
n ) =





n/2 if n is even
n if n ≡ 1 (mod 4)
2n if n ≡ 3 (mod 4)

.

Write r = 2m + 1 for some nonnegative integer m. Then prn = n(2mn − n − 2m + 3)/2 and
pr+2
n = n(2mn + n − 2m + 1)/2. Since 2mn + n − 2m + 1 = (2mn − n − 2m + 3) + (2n − 2),

2mn− n− 2m+ 3 = (2n− 2)(m− 1) + (n+ 1), and 2n− 2 = (n+ 1)(2)− (4), we have three
cases:

If n is even, then gcd(n+ 1, 4) = 1, so gcd(prn, p
r+2
n ) = (n/2)(1) = n/2.

If n ≡ 1 (mod 4), then gcd(n+ 1, 4) = 2, so gcd(prn, p
r+2
n ) = (n/2)(2) = n.

If n ≡ 3 (mod 4), then gcd(n+ 1, 4) = 4, so gcd(prn, p
r+2
n ) = (n/2)(4) = 2n.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX; Ed Gray, Highland Beach, FL; Paul M. Harms, North
Newton, KS; Enkel Hysnelaj, University of Technology, Sydney Australia and El-
ton Bojaxhiu, Kriftel, Germany; Kee-Wai Lau, Hong Kong, China; David Manes,
SUNY College at Oneonta, Oneonta, NY; Melfried Olson, University of Hawaii,
Honolulu, HI; Boris Rays, Brooklyn, NY; Neculai Stanciu “George Emil Palade”
Secondary School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David
Stone and John Hawkins of Georgia Southern University, Statesboro, GA, and the
proposer.

5221: Proposed by Michael Brozinsky, Central Islip, NY
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If x, y and z are positive numbers find the maximum of
√

(x+ y + z) · x · y · z
(x+ y)2 + (y + z)2 + (x+ z)2

.

Solution 1 by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Normalising the expression, the problem will be equivalent to finding the maximum of
√
xyz

(x+ y)2 + (y + z)2 + (x+ z)2

subject to x+ y + z = 1.
Using the AM-GM Inequality we have

3
√
xyz ≤ x+ y + z

3
=

1

3
⇒ √xyz ≤

(
1

3

) 3
2

and

(x+ y)2 + (y + z)2 + (x+ z)2 ≥ 1

3
((x+ y) + (y + z) + (x+ z))2 =

4

3

Applying these two results we have

√
xyz

(x+ y)2 + (y + z)2 + (x+ z)2
≤

(
1

3

)3

2

4

3

=
1

4
√

3
.

So the maximum value of the required expression is
1

4
√

3
, and this is achieved when x = y = z.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Denote the expression of the problem by f . We show that the maximum of f is

√
3

12
.

Since f equals the constant

√
3

12
whenever x = y = z > 0, so it suffices to show that for

x, y, z > 0, we have

f ≤
√

3

12
. (1)

From f =

√
(x+ y + z) · xyz

(x− y)2 + (y − z)2 + (x− z)2 + 4(xy + yz + zx)
≤
√

(x+ y + z) · xyz
4(xy + yz + zx)

, we see

that (1) will follow from
(x+ y + z)xyz

(xy + yz + zx)2
≤ 1

3
, or equivalently

(xy + yz + zx)2 − 3xyz(x+ y + z) ≥ 0. (2)
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But (2) in fact holds because its left side equals

x2(y − z)2 + y2(z − x)2 + z2(x− y)2

2
.

This completes the solution.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Since x, y, z > 0, the Arithmetic - Geometric Mean Inequality implies that

xyz ≤
(
x+ y + z

3

)3

=
(x+ y + z)3

27
,

with equality if and only if x = y = z. Hence,

√
(x+ y + z) · xyz ≤

√
(x+ y + z)4

27
=

√
3

9
(x+ y + z)2 , (1)

with equality if and only if x = y = z.

Next, we use the strict convexity of f (t) = t2 and Jensen’s Theorem to get

(x+ y)2 + (y + z)2 + (x+ z)2 ≥ 3

[
(x+ y) + (y + z) + (x+ z)

3

]2

=
4

3
(x+ y + z)2 . (2)

Here, equality results if and only if x+ y = y + z = x+ z, i.e., if and only if x = y = z.

Therefore, by (1) and (2),

√
(x+ y + z) · xyz

(x+ y)2 + (y + z)2 + (x+ z)2
≤
√

3

9
· 3

4
· (x+ y + z)2

(x+ y + z)2
=

√
3

12
,

with equality if and only if x = y = z. It follows that the maximum value of

√
(x+ y + z) · xyz

(x+ y)2 + (y + z)2 + (x+ z)2

is

√
3

12
and this is attained precisely when x = y = z.

Solution 4 by Paolo Perfetti, Department of Mathematics, “Tor Vergata” Univer-
sity, Rome, Italy

We prove that the maximum is
√

3/12. To this end

√
(x+ y + z)xyz

(x+ y)2 + (y + z)2 + (z + x)2
=

√
(x+ y + z)xyz

(x+ y + z)2 + (x2 + y2 + z2)
≤
√

3

12
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and this is implied by

√
(x+ y + z)

(x+ y + z)3/2

33/2

(x+ y + z)2 +
(x+ y + z)2

3

≤
√

3

12

which is actually an identity and this completes the proof.

Also solved by Bruno Salgueiro Fanego (two solutions), Viveiro, Spain; Ed Gray,
Highland Beach, FL; Paul M. Harms, North Newton, KS; Adrian Naco, Polytechnic
University,Tirana, Albania; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5222: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia, Barcelona,
Spain

Calculate without the aid of a computer the following sum

∞∑

n=0

(−1)n (n+ 1)(n+ 3)

(
1

1 + 2
√

2i

)n
, where i =

√
−1.

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, NY

The sum of the series is
164 + 103

√
2i

108
.

Consider the complex function f(z) =
1

1 + z
that is represented by the power series

f(z) =
1

1 + z
=
∞∑

n=0

(−1)nzn

on the interior of the unit circle |z| < 1. Since

∣∣∣∣
1

1 + 2
√

2i

∣∣∣∣ =
1

3
, the power series and all of its

derivatives converge absolutely for z =
1

1 + 2
√

2i
. For the first derivative

f ′ (z) =
−1

(1 + z)2
=
∞∑

n=1

(−1)nnzn−1 =
∞∑

n=0

(−1)n+1 (n+ 1) zn.

Therefore,
1

(1 + z)2
=
∞∑

n=0

(−1)n(n+ 1)zn.

Differentiating again, one obtains

−2

(1 + z)3
=
∞∑

n=1

(−1)n(n+ 1)zn−1 =
∞∑

n=0

(−1)n+1(n+ 2)(n+ 1)zn.
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Therefore,
2

(1 + z)3
=
∞∑

n=0

(−1)n(n2 + 3n+ 2)zn.

Let z =
1

1 + 2
√

2i
. Then

1

1 + z
=

1

1 + 1
1+2
√
2i

=
1 + 2

√
2i

2(1 +
√

2i)
=

(1 + 2
√

2i)(1−
√

2i)

2(1 +
√

2i)(1−
√

2i)
=

5 +
√

2i

6
.

1

(1 + z)2
=

(
1

1 + z

)2

=
1

36
(5 +

√
2i)2 =

23 + 10
√

2i

36
,

2

(1 + z)3
=

(
23 + 10

√
2i

36

)(
5 +
√

2i

3

)
.

Consequently, if z =
1

1 + 2
√

2i
, then

∞∑

n=0

(−1)n(n+ 1)(n+ 3)

(
1

1 + 2
√

2i

)n
=

∞∑

n=0

(−1)n(n2 + 3n+ 2)zn +
∞∑

n=0

(−1)n(n+ 1)zn

=
2

(1 + z)3
+

1

(1 + z)2

=

(
23 + 10

√
2i

36

)(
5 +
√

2i

3

)
+

(
23 + 10

√
2i

36

)

=

(
23 + 10

√
2i

36

)(
1 +

5 +
√

2i

3

)

=

(
23 + 10

√
2i

36

)(
8 +
√

2i

3

)

=

(
164 + 103

√
2i

108

)
,

as claimed.

Also solved by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain;
Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San
Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Enkel Hysnelaj, University of
Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel, Germany; Anastasios
Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China; Adrian Naco, Poly-
technic University,Tirana, Albania; Paolo Perfetti, Department of Mathematics,
“Tor Vergata” University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland;
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David Stone and John Hawkins of Georgia Southern University, Statesboro, GA,
and the proposer.

5223: Proposed by Ovidiu Furdui,Technical University of Cluj-Napoca, Cluj-Napoca, Romania

a) Find the value of
∞∑

n=0

(−1)n
(

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · ·

)
.

b) More generally, if x ∈ (−1, 1] is a real number, calculate

∞∑

n=0

(−1)n
(
xn+1

n+ 1
− xn+2

n+ 2
+
xn+3

n+ 3
− · · ·

)
.

Solution by Albert Stadler, Herrliberg, Switzerland

We have

k−1∑

j=0

(−1)j
xn+1+j

n+ 1 + j
=

k−1∑

j=0

(−1)j
∫ x

0
tn+jdt

=

∫ x

0
tn

1− (−t)k
1 + t

dt

=

∫ x

0

tn

1 + t
dt+O

(∫ x

0
tn+kdt

)

=

∫ x

0

tn

1 + t
dt+O

(
1

n+ k + 1

)
.

We let k tend to infinity and get

∞∑

j=0

(−1)j
xn+1+j

n+ 1 + j
=

∫ x

0

tn

1 + t
dt.

Then

k−1∑

j=0

(−1)n
∫ x

0

tn

1 + t
dt =

∫ x

0

1

1 + t
· 1− (−1)k

1 + t
dt

=

∫ x

0

1

(1 + t)2
dt+O

(∫ x

0
tkdt

)

=

[ −1

1 + t

]x

0
+O

(
1

k + 1

)
.
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So,
∞∑

n=0

(−1)n



∞∑

j=0

(−1)j
xn+1+j

n+ 1 + j


 =

x

1 + x
.

Letting x = 1 implies that the sum of the first series is
1

2
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach,
FL; Anastasios Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China; Adrian
Naco, Polytechnic University, Tirana, Albania; Paolo Perfetti, Department of
Mathematics, “Tor Vergata” University, Rome, Italy, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2013

• 5242: Proposed by Kenneth Korbin, New York, NY

Let N be any positive integer, and let x = N(N + 1). Find the value of

x/2∑

K=0

(
x−K
K

)
xK .

• 5243: Proposed by Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

If a, b, c are consecutive Pythagorean numbers, then solve in the integers the equation:

x2 + bx

ay − 1
= c.

(A consecutive Pythagorean triple is a Pythagorean triple that is composed of
consecutive integers.)

• 5244: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let Ta and Sb denote the ath triangular and the bth square number, respectively. Find
explicit instances of such numbers to prove that every Fibonacci number Fn occurs
among the values gcd(Ta, Sb).

• 5245: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Determine all functions f : < → <− {−2,−1

2
,−1, 0,

1

2
, 2}, which satisfy the relation

f(x) + f

(−x− 5

2x+ 1

)
+ f

(
4x+ 5

−2x+ 2

)
= ax+ b

where a, b,∈ <.

• 5246: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain
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Let a1, a2, . . . an, (n ≥ 3) be distinct complex numbers. Compute the sum

n∑

k=1

sk
∏

j 6=k

(−1)n

aj − ak
,

where sk =

(
n∑

i=1

ai

)
− ak, 1 ≤ k ≤ n.

• 5247: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate

lim
n→∞

1

n
n

√∫ 1

0
ln(1 + ex) ln(1 + e2x) · · · ln(1 + enx) dx.

Solutions

• 5224: Proposed by Kenneth Korbin, New York, NY

Let T1 = T2 = 1, T3 = 2, and TN = TN−1 + TN−2 + TN−3. Find the value of

∞∑

N=1

TN
πN

.

Solution 1 by Arkady Alt, San Jose, CA

Noting that {Tn}n≥1 is an increasing sequence of positive integers we obtain:

Tn+1

Tn
= 1 +

Tn−1
Tn

+
Tn−2
Tn

= 1 +
Tn−1
Tn

+
Tn−2
Tn−1

· Tn−1
Tn

< 1 + 1 + 1 · 1 = 3, n ∈ N.

Hence,

Tn+1

Tn
< 3 ⇐⇒ Tn+1

3n+1
<
Tn
3n
, n ∈ N =⇒ Tn

3n
<
T1
31
⇐⇒ Tn < 3n−1, n ∈ N.

and therefore, by the comparison test for series,
n∑

i=1

Tix
i−1 is convergent for any

x ∈
(

0,
1

3

)
because for such x it is bounded by

∞∑

n=1

(3x)n−1 =
1

1− 3x
.

Since

(
1− x− x2 − x3

) ∞∑

n=1

Tnx
n−1 = T1 + x(T2 − T1) + x2(T3 − T2 − T1)
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+
∞∑

n=1

xn+2 (Tn+3 − Tn+2 − Tn+2 − Tn)

= T1 + x(1− 1) + x2(2− 1− 1) +
∞∑

n=1

xn+2 · 0 = 1

then ∞∑

n=1

Tnx
n−1 1

1− x− x2 − x3 ⇐⇒
∞∑

n=1

Tnx
n =

x

1− x− x2 − x3

and therefore, for x =
1

π
< 3, we obtain

∞∑

n=1

Tn
πn

=
1
π

1− 1
π − 1

π2 − 1
π3

=
π2

π3 − π2 − π − 1
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We first claim that 1 ≤ Tn ≤ 2n−1 for n ≥ 1. Indeed this is true for n = 1, 2, and 3 and

1 ≤ Tn = Tn−1+Tn−2+Tn−3 ≤ 2n−2+2n−3+2n−4 < 2n−2+2n−3+2n−3 = 2n−1, as claimed.

So, S =
∞∑

n=1

Tn
πn

is convergent and

S =
∞∑

n=1

Tn
πn

=
1

π
+

1

π2
+

2

π3
+
∞∑

n=1

Tn−1 + Tn−2 + Tn−3
πn

=
1

π
+

1

π2
+

2

π3
+

1

π

∞∑

n=3

Tn
πn

+
1

π2

∞∑

n=2

Tn
πn

+
1

π3

∞∑

n=1

Tn
πn

=
1

π
+

1

π2
+

2

π3
+

1

π

(
S − 1

π
− 1

π2

)
+

1

π2

(
S − 1

π

)
+

1

π3
S

=
1

π
+ S

(
1

π
+

1

π2
+

1

π3

)
. So,

S =
π2

π3 − π2 − π − 1

Solution 3 by Adrian Naco, Polytechnic University, Tirana, Albania

Let us pose, an =
Tn
πn

, T0 = 0. We prove by induction that, Tn ≤ Tn+1 ≤ 2Tn.

Tn ≤ Tn+1 = Tn + Tn−1 + Tn−2 ≤ 2Tn−1 + 2Tn−2 + 2Tn−3 = 2Tn.

Thus, it implies that,

∀n ∈ N :
1

π
an ≤ an+1 =

Tn+1

πn+1
=

1

π
· Tn+1

Tn
· Tn
πn
≤ 2

π
an,
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and by induction it results that
(

1

π

)n
=

(
1

π

)n
a1 ≤ an+1 ≤

(
1

π

)n
a1 =

(
2

π

)n
.

Thus, the given series converges, and

1

π − 1
=
∞∑

n=1

(
1

π

)n
≤
∞∑

n=1

an =
∞∑

n=1

Tn
πn
≤
∞∑

n=1

(
2

π

)n
=

1

π − 2
.

Considering the given difference equation for Tn we transform it to a difference equation
for an

Tn = Tn−1 + Tn−2 + Tn−3 ⇔ Tn
πn

=
1

π
· Tn−1
πn−1

+
1

π2
· Tn−2
πn−2

+
1

π3
· Tn−3
πn−3

⇔ an =
1

π
· an−1 +

1

π2
· an−2 +

1

π3
· an−3.

The respective characteristic equation is the following one, the left side of which is a
nonnegative polynomial,

p(λ) = 0 ⇔ λ3 − 1

π
· λ2 − 1

π2
· λ− 1

π3
= 0.

Studying its derivative, p′(λ) = 3(λ+ 1
3)(λ− 1), we come to the conclusion that the

characteristic polynomial has a unique positive real root, α ∈ (0; 1), and two complex
conjugate roots, β, γ ∈ C .

Recall the Theorem for the dominance of the unique positive root of a nonnegative
polynomial that states:

Theorem. If λ0 is a positive root of a nonnegative polynomial p(x), then λ0 is a
dominant root, in the sense that any other root λ ∈ C satisfies the relation |λ| ≤ λ0.
Thus, 0 < |β| = |γ| < α < 1.

The general structure of the term an is,

∀n = 0, 1, 2, : an = c1 · αn + c2 · βn + c3 · γn, where c1, c2, c3 ∈ C.

To define the constants we consider the initial conditions,

a0 = 0 = c1 · α0 + c2 · β0 + c3 · γ0

a1 =
1

π
= c1 · α1 + c2 · β1 + c3 · γ1

a2 =
1

π2
= c1 · α2 + c2 · β2 + c3 · γ2

And these imply:

c1 =
(β − γ)(β + γ − 1

π
)

π(α− β)(β − γ)(γ − α)
, c2 =

(γ − α)(γ + α− 1

π
)

π(α− β)(β − γ)(γ − α)
, c3 =

(α− β)(α+ β − 1

π
)

π(α− β)(β − γ)(γ − α)
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Since, α, β, γ ∈ {z ∈ C : |z| < 1} ⇒ lim
n→∞α

n = lim
n→∞β

n = lim
n→∞ γ

n = 0

Doing some simple operations and based on Vieta’s formulas

αβγ =
1

π3
, αβ + βγ + γα = − 1

π2
, α+ β + γ =

1

π3

implies that

⇒
∞∑

n=0

an =
∞∑

n=0

(c1 · αn + c2 · βn + c3 · γn) = c1 ·
∞∑

n=0

αn + c2 ·
∞∑

n=0

βn + c3 ·
∞∑

n=0

γn

=
c1

1− α +
c2

1− β +
c3

1− γ =
c1

1− α +
c2

1− β +
c3

1− γ

=
1

π(1− α)(1− β)(1− γ)
=

1

π

(
1− 1

π
− 1

π2
− 1

π3

)

=
π2

π3 − π2 − π − 1

since p(1) = (1− α)(1− β)(1− γ) = 1− 1

π
− 1

π2
− 1

π3
is the value of the characteristic

polynomial for λ = 1.

Comment: Let us prove that an = (c1 · αn + c2 · βn + c3 · γn) ∈ R, even if c1, c2, c3 are
complex constants.

The first term c1α
n is a real number since c1 ∈ R and α ∈ R. Indeed,

c1 =
(β − γ)(β + γ − 1

π )

π(α− β)(β − γ)(γ − α)
=

−α
π(α− β)(γ − α)

=
−α

π[α(β + γ)− α2 − βγ]
∈ R

since
α

π
∈ R, (β + γ) = 2Reβ ∈ R and βγ = |β|2 ∈ R.

To prove that the summation of the other two terms in the expression for an is a real

number, we need to prove by induction in n that ∀n ∈ N ,
(βn − γn)

(β − γ)
∈ R.

Indeed, supposing that the given expression is a real number ∀ k < n. Then

(βn − γn)

(β − γ)
=

(βn−1 − γn−1)(β + γ)− βγ(βn−2 − γn−2)
(β − γ)

= (β + γ)
(βn−1 − γn−1)

(β − γ)
− βγ (βn−2 − γn−2)

(β − γ)
∈ R since

(β + γ) = 2Reβ ∈ R , βγ = |β|2 ∈ R.

Thus,

c2 · βn + c3 · γn =
(γ − α)(γ + α− 1

π )

π(α− β)(β − γ)(γ − α)
· βn +

(α− β)(α+ β − 1
π )

π(α− β)(β − γ)(γ − α)
· γn
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=
(γ − α)(−β)βn + (α− β)(−γ)γn

π(α− β)(β − γ)(γ − α)

=
α(βn+1 − γn+1)− βγ(βn−1 − γn−1)

π(α− β)(β − γ)(γ − α)

=
1

π[α(β + γ)− α2 − βγ)]

[
α

(βn+1 − γn+1)

(β − γ)
− βγ (βn−1 − γn−1)

(β − γ)

]
∈ R

∀n ∈ N ,
(βn − γn)

(β − γ)
∈ R , α ∈ R, (β + γ) = 2Reβ ∈ R , βγ = |β|2 ∈ R.

Editor’s Comment: David Stone and John Hawkins of Georgia Southern
University, Statesboro, GA noted in their solution that the π in the statement of
the problem is simply a stand in. They found the characteristic equation for the linear
recurrence to be p(x) = x3 − x2 − x− 1. Letting z, z, and r be the roots of the

characteristic polynomial they observed that
∞∑

n=0

Tn
πn

=
∞∑

n=0

k1z
n + k2 (z)n + k3r

n

πn
is the

sum of three geometric series, each of which must necessarily converge. They then found
the values of z, z, and r.

p(x) = x3 − x2 − x− 1, and also
= (x− z) (x− z) (x− r)
= x3 − (z + z + r)x2 − (zz + zr + zr)x− zzr,

and by equating coefficients
z + z = 1− r and

|z|2 = zz =
1

r
.

Using a calculator they approximated r ≈ 1.87 so |z| = |z| ≈ 0.54. They went on to say
that they could have solved the characteristic equation with Cardan’s formula, but all
they needed to know about the roots is that each, in absolute value, is smaller than π,

which they just saw; so that the three geometric series in
∞∑

n=0

Tn
πn

converge. By Cardan’s

formula, the root r equals
1

3
− C

3
− 4

3C
where C =

3
√

3
√

33− 19. They calculated

r ≈ 1.839286755.

They then noted that if t is any real constant larger than r, the same calculations hold,
thus showing

∞∑

n=0

Tn
tn

=
t2

p(t)
=

t2

t3 − t2 − t− 1
.

For instance,
∞∑

n=0

Tn
2n

=
22

p(t)
=

4

1
.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Bruno
Salgueiro Fanego Viveiro, Spain; Michael N. Fried, Ben-Gurion University, Beer
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Sheva, Israel; Noel Evens, Dionne Bailey, Elsie Campbell, and Charles Diminnie,
Angelo State University, San Angelo TX; Paul M. Harms, North Newton, KS;
Kee-Wai Lau, Hong Kong, China; Enkel Hysnelaj, University of Technology,
Sydney, Australia together with Elton Bojaxhiu, Kriftel, Germany; Anastasios
Kotronis, Athens, Greece; David E. Manes, SUNY College at Oneonta, Oneonta,
NY; Paolo Perfetti, Department of Mathematics, “Tor Vergata” University,
Rome, Italy; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins of Georgia Southern University, Statesboro, GA
and the proposer.

• 5225: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find infinitely many integer squares x that are each the sum of a square and a cube and a
fourth power of positive integers a, b, c. That is, x = a2 + b3 + c4.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

By observation, we conclude that for n ≥ 1,

(2n3)4 + (2n2)3 + 12 = 16n12 + 8n6 + 1

= (4n6 + 1)2.

Also, it can be observed for n ≥ 1,

14 + (2n2)3 + (4n6)2 = 1 + 8n6 + 16n12

= (4n6 + 1)2.

Thus, for n ≥ 1, x2 = (4n6 + 1)2 generates infinitely many integer squares such that
x2 = a2 + b3 + c4 where a, b, c are positive integers

Solution 2 by Ángel Plaza, University of Las Palmas de gran, Canaria, Spain

Since (a+ c2)2 = a2 + c4 + 2ac2 it is enough to consider b = 2a = c to obtain infinitely many
integer squares x = (a+ c2)2 = a2 + c4 + 2ac2 = a2 + b3 + c4.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Let m and n be any positive integers. Using the identity

(
4m3 + 4n3 + n

)2
=
(
4m3 − 4n3 + n

)2
+ (4mn)3 + (2n)4 ,

we find infinitely many such x.

Solution 4 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

For each positive integer n, let a = 23n−2 + 3, b = 2n, and c = 2. Then

a2 + b3 + c4 =
(
23n−2 + 3

)2
+ 23n + 24

= 26n−4 + 10 · 23n−2 + 25

=
(
23n−2 + 5

)2
= x.
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Note that if b = 2n, c = 2 and x = y2, then y2 = a2 + 23n + 24. Therefore,

y2 − a2 = 23n + 24 or (y + a)(y − a) = 2(23n−1 + 23).

Let {
y + a = 23n−1 + 23 and
y − a = 2 .

The simultaneous solution for this system of equations is y = 23n−2 + 5 and a = 23n−2 + 3.

Accordingly, the infinitely many integer squares x = a2 + b3 + c4 are x =
(
23n−2 + 5

)2
for

each positive integer n.

Solution 5 by Ken Korbin, New York, NY

There are infinitely many pairs of positive integers b and c such that b+ c is odd. If

a =
b3 + c4 − 1

2
then a2 + b3 + c4 = (a+ 1)2 = x. Examples:

a b c x = (a+ 1)2

316 2 5 (317)2

70 5 2 (71)2

128 1 4 (129)2

72 4 3 (73)2

If a, b, and c are positive integers such that a2 + b3 + c4 = (a+ 1)2 and if k is a positive integer
then

a2 · k12 + b3 · k12 + c4 · k12 = (a+ 1)2 · k12

=
(
a · k6

)2
+
(
b · k4

)3
+
(
c · k3

)4

=
(
(a+ 1) · k6

)2
= x.

Solution 6 by Brian D. Beasley, Presbyterian College, Clinton, SC

In order to have x = k2 = a2 + b3 + c4 for positive integers k, a, b, and c, we need b3 + c4 to be
expressible as the difference of two squares. As Burton notes (Elementary Number Theory ,
7th ed., Theorem 13-4, p. 269), a positive integer n has such an expression if and only if n is
not congruent to 2 modulo 4. Thus as long as b3 + c4 is not congruent to 2 modulo 4, we may
solve for k and a.

In particular, when b3 + c4 is odd, we may take a = (b3 + c4 − 1)/2 and k = a+ 1, as seen in
the following two cases:

One infinite set of solutions occurs when c = 1 and b = 2n for any positive integer n, which
makes b3 + c4 = 8n3 + 1 odd. We then take a = 4n3 to produce k = 4n3 + 1 and hence
x = (4n3 + 1)2 = 16n6 + 8n3 + 1.
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Another infinite set of solutions occurs when b = 1 and c = 2n for any positive integer n,
which makes b3 + c4 = 16n4 + 1 odd. We then take a = 8n4 to produce k = 8n4 + 1 and hence
x = (8n4 + 1)2 = 64n8 + 16n4 + 1.

Also solved by Farideh Firoozbakht and Jahangeer Kholdi University of Isfahan,
Khansar, Iran; Enkel Hysnelaj, University of Technology, Sydney, Australia
together with Elton Bojaxhiu, Kriftel, Germany; Paul M. Harms, North Newton,
KS; Charles McCracken, Dayton, OH; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins, Southern Georgia University, Statesboro, GA,
and the proposer.

• 5226: Proposed by D. M. Bătinetu-Giurgiu, “Matei Basarab” National College, Bucharest and
Neculai Stanciu, “George Emil Palade” Secondary School, Buzău, Romania

If a and b, a < b are real-valued positive numbers, then calculate:

∫ b

a

n
√
x− a

(
1 + n
√
b− x

)

n
√
x− a+ 2 n

√
−x2 + (a+ b)x− ab+ n

√
b− x dx,

where n is a positive integer greater than one, (n > 1).

Solution 1 by Adrian Naco, Polytechnic University, Tirana, Albania

Let

I1 =

∫ b

a

n
√
x− a(1 + n

√
b− x)

n
√
x− a+ 2 n

√
x− a n

√
b− x+ n

√
b− xdx and

I2 =

∫ b

a

n
√
b− x(1 + n

√
x− a)

n
√
x− a+ 2 n

√
x− a n

√
b− x+ n

√
b− xdx.

Setting y = b+ a− x, we have

I1 =

∫ b

a

n
√
x− a(1 + n

√
b− x)

n
√
x− a+ 2 n

√
x− a n

√
b− x+ n

√
b− xdx

=

∫ a

b

n
√
b− y(1 + n

√
y − a)

n
√
y − a+ 2 n

√
y − a n

√
b− y + n

√
b− yd(b+ a− y)

=

∫ b

a

n
√
b− y(1 + n

√
y − a)

n
√
y − a+ 2 n

√
y − a n

√
b− y + n

√
b− ydy = I2

So,

I1 + I2 =

∫ b

a
dx = b− a, and therefore,

∫ b

a

n
√
x− a(1 + n

√
b− x)

n
√
x− a+ 2 n

√
x− a n

√
b− x+ n

√
b− xdx =

b− a
2

Solution 2 by Anastasios Kotronis, Athens, Greece

9X
ia
ng
’s
T
ex
m
at
h



∫ b

a

n
√
x− a(1 + n

√
b− x)

n
√
x− a+ 2 n

√
−x2 + (a+ b)x− ab+ n

√
b− x dx; letting x = y +

a + b

2
,we obtain

∫ b−a
2

− b−a
2

n

√
y + b−a

2

(
1 + n

√
b−a
2 − y

)

n

√
y + b−a

2 + 2 n

√(
y + b−a

2

) (
b−a
2 − y

)
+ n

√
b−a
2 − y

− 1

2
+

1

2
dy

=

∫ b−a
2

− b−a
2

g(y) +
1

2
dy

=

∫ b−a
2

− b−a
2

g(y) dy +
b− a

2
.

Now it is easy to see that g(y) is odd so the given integral equals
b− a

2
.

Solution 3 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Answer:
b− a

2
Proof: The integral is actually

∫ b

a

n
√
x− a(1 + n

√
b− x)

(
n
√
x− a+ n

√
b− x

)2dx =

∫ b

a

1

1 + n

√
b−x
x−a

dx

Setting t = (b− x)/(x− a) we get

(b− a)

∫ ∞

0

1

(1 + t)2
1

1 + t1/n
dt

The further change t = yn yields

(b− a)

∫ ∞

0

1

(1 + yn)2
1

1 + y
nyn−1dy

Integrating by parts

(b− a)
1

1 + y

1

1 + yn

∣∣∣
0

∞
−
∫ ∞

0

b− a
(1 + y)2

1

1 + yn
dy = b− a−

∫ ∞

0

b− a
(1 + y)2

1

1 + yn
dy.

To compute the last integral we set y = 1/z and obtain

∫ ∞

0

1

(1 + y)2
1

1 + yn
dy =

∫ ∞

0

z2

(1 + z)2
zn

1 + zn
1

z2
dz =

∫ ∞

0

1

(1 + z)2
zn

1 + zn
dz =

=

∫ ∞

0

1

(1 + z)2
dz −

∫ ∞

0

1

(1 + z)2
1

1 + zn
dz
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that is, ∫ ∞

0

1

(1 + y)2
1

1 + yn
dy =

1

2

∫ ∞

0

1

(1 + z)2
dz =

1

2
.

The final result is
1

2
(b− a.)

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell, and
Charles Diminnie, Angelo State University, San Angelo, TX; Paul M. Harms,
North Newton, KS; Kee-Wai Lau, Hong Kong, China; Ángel Plaza, University of
Las Palmas de Gran Canaria, Spain; Albert Stadler, Herrliberg, Switzerland, and
the proposer.

• 5227: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia, Barcelona,
Spain

Compute

lim
n→∞

n∏

k=1

(
(n+ 1) +

√
nk

n+
√
nk

)
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Since ln(1 + x) = x+O
(
x2
)

as x −→ 0, so

n∑

k=1

ln

(
1 +

1

n+
√
nk

)
=

n∑

k=1

1

n+
√
nk

+O

(
1

n

)
.

Hence,

lim
n→∞

n∑

k=1

ln

(
1 +

1

n+
√
nk

)
= lim

n→∞

n∑

k=1

1

n

1(
1 +

√
k
n

) =

∫ 1

0

dx

1 +
√
x
.

By the substitution x = y2, we easily evaluate the last integral to be 2(1− ln 2).

Now by exponentiation, we find the limit of the problem to be
e2

4
.

Solution 2 by Arkady Alt, San Jose, CA

First note that for any positive real x we have

ex
(

1− x2

2

)
< 1 + x < ex. (1)

Indeed, for any positive x we can obtain from the Taylor representation of ex that:

1 + x < ex = 1 + x+
x2

2!
+
∞∑

n=1

xn+2

(n+ 2)!

= 1 + x+
x2

2

(
1 +

∞∑

n=1

2xn

(n+ 2)!

)
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< 1 + x+
x2

2

(
1 +

∞∑

n=1

xn

n!

)

= 1 + x+
x2ex

2
and then we have

ex < 1 + x+
x2ex

2
⇐⇒ ex

(
1− x2

2

)
< 1 + x.

Applying inequality (1) to x =
1

n+
√
nk
, k = 1, 2, ..., n we obtain

eaknbkn < 1 +
1

n+
√
nk

< eakn , k = 1, 2, ..., n, (2)

where akn =
1

n+
√
nk

and bkn = 1− 1

2
(
n+
√
nk
)2 .

Let Sn =
∑n
k=1 akn. Hence,

eSn
n∏

k=1

bkn <
n∏

k=1

(
(n+ 1) +

√
nk

n+
√
nk

)
< eSn .

Note that lim
n→∞

n∏

k=1

bkn = 1. Indeed, since n < n+
√
nk < 2n, k = 1, 2, ..., n then

1− 1

2n2
< 1− 1

2
(
n+
√
nk
)2 < 1− 1

8n2
, k = 1, 2, ..., n

and we obtain

(
1− 1

2n2

)n
<

n∏

k=1

bkn <

(
1− 1

8n2

)n
< 1.

Since

lim
n→∞

(
1− 1

2n2

)n2

=
1√
e

then

lim
n→∞

(
1− 1

2n2

)n
= lim

n→∞
n

√(
1− 1

2n2

)n2

= 1.

Since

lim
n→∞Sn = lim

n→∞
1

n

n∑

k=1

1

1 +
√

k
n

=

∫ 1

0

1

1 +
√
x
dx =

[
x = t2; dx = 2tdt

]
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= 2

∫ 1

0

t

1 + t
dt = 2 (t− ln (1 + t)) |10 = 2 (1− ln 2) , then

lim
n→∞ e

Sn = lim
n→∞ e

Sn
n∏

k=1

bkn = e2(1−ln 2) =
e2

4
.

By the Squeeze Principle we see that

lim
n→∞

n∏

k=1

(
(n+ 1) +

√
nk

n+
√
nk

)
=
e2

4
.

Solution 3: by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

The proposed limit may be written as L = lim
n→∞

n∏

k=1


1 +

1
n

1 +
√

k
n


. So,

lnL = lim
n→∞

n∑

k=1

ln


1 +

1
n

1 +
√

k
n


 . Now we expand each of the logs according to its power

series and write this as a double sum. Then we change order of summation and sum up by
columns. This is allowed because both directions provide convergent sums. So

ln


1 +

1
n

1 +
√

1
n


 =

1
n

1 +
√

1
n

−

(
1
n

1+
√

1
n

)2

2
+

(
1
n

1+
√

1
n

)3

3
+ · · · .

ln


1 +

1
n

1 +
√

2
n


 =

1
n

1 +
√

2
n

−

(
1
n

1+
√

2
n

)2

2
+

(
1
n

1+
√

2
n

)3

3
+ · · · .

ln


1 +

1
n

1 +
√

3
n


 =

1
n

1 +
√

3
n

−

(
1
n

1+
√

3
n

)2

2
+

(
1
n

1+
√

3
n

)3

3
+ · · · .

Note that

lim
n→∞

n∑

k=1

1
n

1 +
√

k
n

=

∫ 1

0

1

1 +
√
x
dx = ln

(
e2

4

)
,

lim
n→∞

n∑

k=1

(
1
n

1+
√

k
n

)m

m
= 0, for m > 1.

From where lnL = ln

(
e2

4

)
, and therefore L =

e2

4
.

Also solved by Bruno Salgueiro Fanego Viveiro, Spain; Enkel Hysnelaj,
University of Technology, Sydney, Australia and Elton Bojaxhiu, Kriftel,
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German; Anastasios Kotronis, Athens, Greece; Adrian Naco, Polytechnic
University, Tirana, Albania; Paolo Perfetti, Department of Mathematics, “Tor
Vergata” University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland;

• 5228: Proposed by Mohsen Soltanifar, University of Saskatchewan, Saskatoon, Canada

Given a random variable X with non-negative integer values. Assume the nth moment of X is
given by

E (Xn) =
∞∑

k=1

fn(k)P (X ≥ k) n = 1, 2, 3, · · · ,

where fn is a non-negative function defined on N . Find a closed formula for fn.

Solution by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany.

From the first principle we have

E(Xn) =
∞∑

k=1

knP (X = k)

Doing easy manipulations we have

E(Xn) =
∞∑

k=1

fn(k)P (X ≥ k)

= fn(1)P (X ≥ 1) + fn(2)P (X ≥ 2) + ...+ fn(k)P (X ≥ k) + ...

= fn(1)(P (X = 1) + P (X = 2) + ...) + fn(2)(P (X = 2) + P (X = 3) + ...) + ...

+fn(k)(P (X = k) + P (X = k + 1) + ...) + ...

= fn(1)P (X = 1) + (fn(1) + fn(2))P (X = 2) + ...

+(fn(1) + fn(2) + ...+ fn(k))P (X = k) + ...

=
∞∑

k=1

k∑

i=1

fn(i)P (X = k)

Comparing this with the expression we have from the first principle we have

k∑

i=1

fn(i) = kn

for any non-negative integers k and n.

Finally, using the above result implies

fn(k) =
k∑

i=1

fn(i)−
k−1∑

i=1

fn(i) = kn − (k − 1)n

and this is the end of the proof.

Also solved by Kee-Wai Lau, Hong Kong, China, and the proposer.
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• 5229: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let β > 0 be a real number and let (xn)n∈N be the sequence defined by the recurrence relation

x1 = a > 0, xn+1 = xn +
n2β

x1 + x2 · · ·+ xn
.

1) Prove that lim
n→∞xn =∞.

2) Calculate lim
n→∞

xn
nβ
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

1) By induction, we have xn > 0 for positive integers n. Hence xn is strictly increasing.

Suppose, on the contrary that, lim
x→∞ sn = L, where 0 < L <∞.

Since 0 < x1 + x2 + . . .+ xn < nL, so, xn+1 > xn +
n2β−1

L
.

Hence for any positive integer N , we have
N∑

n=1

xn+1 >
N∑

n=1

xn +
1

L

N∑

n=1

n2β−1, so that

L > xN+1 > a+
1

L

N∑

n=1

n2β−1. Since
N∑

n=1

n2β−1 −→∞ as N −→∞, this is a

contradiction. It follows that lim
n→∞xn =∞.

2) To find the leading behavior of xn as n→∞, we try

xn ∼ knα (1)

for some positive constants k and α. We then have x1 + x2 + . . .+ xn ∼
knα+1

α+ 1
.

Hence xn+1 − xn ∼
(α+ 1)n2β−α−1

k
. If α > 2β, then xn+1 is bounded, which is not true.

If α = 2β, then xn+1 ∼
(α+ 1) lnn

k
, which is inconsistent with (1) . So

0 < α < 2β, and we we have

xn+1 ∼
(α+ 1)n2β−α

k(2β − α)
.

By (1) and (2), we see that α = 2β − α and k =
α+ 1

k(2β − α)
. Hence α = β and k =

√
β + 1

β
. It

follows that lim
n→∞

sn
nβ

=

√
β + 1

β
.

Solution 2 by proposer

(1) It is easy to see that xn > 0, for all n ∈ N . Also, xn+1 − xn = n2β

x1+x2+···+xn > 0, and hence
the sequence is strictly increasing. By way of contradiction, we assume that limn→∞ xn = l.
We have, since (xn) increases, that l 6= 0 and xn < l for all n ∈ N . Iterating the recurrence
relation we get that

xn+1 = x1 +
1

x1
+

22β

x1 + x2
+ · · ·+ n2β

x1 + x2 + · · ·+ xn
> x1 +

1

l
+

22β

2l
+ · · ·+ n2β

nl
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= x1 +
1

l

(
1 + 22β−1 + · · ·+ n2β−1

)
.

Passing to the limit in the preceding inequality we get that l ≥ ∞, which is a contradiction.

2) The limit equals
√

(β + 1)/β. We apply Cesaro-Stolz Lemma and we have that

L = lim
n→∞

xn
nβ

= lim
n→∞

xn+1 − xn
(n+ 1)β − nβ = lim

n→∞

n2β

x1+x2+···+xn
(n+ 1)β − nβ

= lim
n→∞

(
nβ+1

x1 + x2 + · · ·+ xn
· nβ−1

(n+ 1)β − nβ

)

=
1

β
· lim
n→∞

(
nβ+1

x1 + x2 + · · ·+ xn

)

Cesaro− Stolz again =
1

β
· lim
n→∞

(n+ 1)β+1 − nβ+1

xn+1

=
1

β
lim
n→∞

(
(n+ 1)β

xn+1
· (n+ 1)β+1 − nβ+1

(n+ 1)β

)

=
(β + 1)

β · L .

Thus, L =
√

(β + 1)/β and the problem is solved.

Solution 3: by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

1) Since x1 = 1 > 0 it is easy to see that sequence {xn}n∈N is increasing and also that

xn+1 = x1 +
1

x1
+

22β

x1 + x2
+ · · ·+ n2β

x1 + x2 + · · ·+ xn

> x1 +
1

xn
+

22β

2xn
+ · · ·+ n2β

nxn

= x1 +
1

xn
Hn

where, Hn = 1 + 22β−1 + · · ·+ n2β−1. Since {xn}n∈N is increasing, then either {xn}n∈N is
convergent if bounded, or lim

n→∞xn =∞.

Now, since lim
n→∞Hn =∞, the hypothesis of {xn}n∈N convergent gives a contradiction with the

fact that x1 + 1
xn
Hn < xn+1. Therefore lim

n→∞xn =∞.

2. Note that since xn+1 = x1 +
1

x1
+

22β

x1 + x2
+ · · ·+ n2β

x1 + x2 + · · ·+ xn
, then, by

Stolz-Cezaro criteria

L = lim
n→∞

xn+1

(n+ 1)β
= lim

n→∞

n2β

x1+x2+···+xn
(n+ 1)β − nβ = lim

n→∞

1
βn

β+1

x1 + x2 + · · ·+ xn
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= lim
n→∞

1

β

nβ+1 − (n− 1)β+1

xn
= lim

n→∞
1

β
· (β + 1)nβ

xn

=
β + 1

β
· 1

L
,

from where L =
√

β+1
β .

Also solved by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Notes and Comments

From Charles McCracken of Dayton, OH:

In their solution to Problem 5213 David Stone and John Hawkins note that n4 is always the
sum of two triangular numbers. But n2 is also the sum of two (consecutive) triangular
numbers:

Tn + Tn+1 =
n(n+ 1)

2
+

(n+ 1)(n+ 2)

2

=
n2 + n+ n2 + 3n+ 2

2
=

2n2 + 4n+ 2

2

= n2 + 2n+ 1 = (n+ 1)2.

Thus, adding the triangular numbers in sequential pairs generates all the squares; which
generates all the fourth powers.

Mea Culpa

The names of Brian D. Beasley of Presbyterian College in Clinton, SC and of
Arkady Alt of San Jose, CA were inadvertently left off the list of having solved problem
5218. Arkady also solved 5220 and 5221, and I missed listing his name for those too. To Brian
and Arkardy, mea culpa, sorry.

Additionally, David Stone and John Hawkins of Georgia Southern University in
Statesboro, GA should receive credit for having solved 5215. I am happy to report that this
time the “senior moment” is theirs and not mine; they forgot to send me their solution!
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2013

• 5248: Proposed by Kenneth Korbin, New York, NY

A triangle with sides (a, a, b) has the same area and the same perimeter as a triangle
with sides (c, c, d) where a, b, c and d are positive integers and with

b2 + bd+ d2

b+ d
= 76.

Find the sides of the triangles.

• 5249: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

(a) Let n be an odd positive integer. Prove that an + bn is the square of an integer for
infinitely many integers a and b.

(b) Prove that a2 + b3 is the square of an integer for infinitely many integers a and b.

• 5250: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a ∈
(

0,
π

2

)
and b, c ∈ (1,∞). Calculate:

∫ a

−a
ln
(
bsin

3 x + csin
3 x
)
· sinx · dx.

• 5251: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Compute the following sum:

∞∑

m=1

∞∑

n=1

(−1)m+n cos(m+ n)

(m+ n)2
.

• 5252: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain
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Let {an}n≥1 be the sequence of real numbers defined by a1 = 3, a2 = 5 and for all

n ≥ 2, an+1 =
1

2

(
a2n + 1

)
. Prove that

1 + 2

(
n∑

k=1

√
Fk

1 + ak

)2

< Fn+2,

where Fn represents the nth Fibonacci number defined by F1 = F2 = 1 and for
n ≥ 3, Fn = Fn−1 + Fn−2.

• 5253: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy dxdy.

Solutions

• 5230: Proposed by Kenneth Korbin, New York, NY

Given positive numbers x, y, z such that

x2 + xy +
y2

3
= 41,

y2

3
+ z2 = 16,

x2 + xz + z2 = 25.

Find the value of xy + 2yz + 3xz.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Note that the given system is equivalent to

x2 − 2x
y√
3

cos 150◦ +

(
y√
3

)2

=
(√

41
)2
,

(
y√
3

2
)

+ z2 = 42,

x2 + 2xz cos 120◦ + z2 = 52.

Let us take the right triangle ABC with 6 B = 90◦, AB = 4 and BC = 5 and let P be
the interior point of ABC obtained as the intersection of the semicircle with diameter
AB and the spanning arc of angle 120◦ (this is the locus of the points from which the
segment BC is seen from an angle of 120◦. Note that 6 APB = 90◦, 6 BPC = 120◦ and
6 CPA = 150◦. If we denote x = CP, y =

√
3AP, z = BP , we obtain the equations in the

given system by applying the law of cosines to triangles ACP, ABP , and BCP .
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Denoting the area of a triangle by [· · ·] we have:

[ACP ] + [ABP ] + [BCP ] = [ABC], or equivalently,

(
1

2
· PC · PA sin 150◦

)
+

(
1

2
· PA · PB

)
+

(
1

2
· PC · PB · sin 120

)
=

1

2
·AB ·BC.

That is,

(
1

2
· x · y√

3
· 1

2

)
+

(
1

2
· y√

3
z

)
+

(
1

2
· x · z ·

√
3

2

)
=

1

2
· 4 · 5.

Multiplying by 4
√

3, gives us that

xy + 2yz + 3xz = 40
√

3.

Comment by Bruno: Very similar problems to this one are problems #12 of the 1984
All-Soviet Union Mathematical Olympiad and problem # E1 in Problem Solving
Strategies by Arthur Engel (Springer-Verlag), 1998, pp. 380-381

Solution 2 by Arkady Alt, San Jose, California, USA

Let S = xy + 2yz + 3xz. By replacing y in the original problem with y
√

3 we obtain:

x2 + xy
√

3 + y2 = a2 + b2,

y2 + z2 = a2, and

x2 + xz + z2 = b2,where a = 4, b = 5, and

S = xy
√

3 + 2
√

3yz + 3xz, or

x2 + y2 − 2 cos
5π

6
xy = a2 + b2,

y2 + z2 − 2 cos
π

2
yz = a2,

x2 + z2 − 2 cos
2π

3
xz = b2,

S

2
√

3
= xy sin

5π

6
+ yz sin

π

2
+ zx sin

2π

3
.

Consider four points A,B,C, P on a plane such that PA = x, PB = y, PM = z and

6 APB =
5π

6
, 6 BPC =

π

2
, 6 CPA =

2π

3
.

Since
5π

6
+

2π

3
+
π

2
= 2π then, accordingly to the equalities

x2 + y2 − 2 cos
5π

6
xy = a2 + b2,
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y2 + z2 − 2 cos
π

2
yz = a2,

x2 + z2 − 2 cos
2π

3
xz = b2,where

P is the interior point of the right triangle ABC with right angle at C, and sides
BC = a, AC = b.

Then we have [ABC] = [APB] + [BPC] + [CPA] ⇐⇒

AC ·BC
2

=
PA · PB

2
sin

5π

6
+
PB · PC

2
sin

π

2
+
PC · PA

2
sin

2π

3
⇐⇒

a · b = xy sin
5π

6
+ yz sin

π

2
+ zx sin

2π

3
⇐⇒

ab =
S

2
√

3
⇐⇒ S = 2

√
3ab.

For a = 4 and b = 5 we obtain S = 40
√

3.

Remark: The original problem is a particular case of a more general problem.

Given positive numbers x, y, z, α, β, γ, a, b, c such that α+ β + γ = 2π, a, b, c and





x2 + y2 − 2 cos γxy = c2

y2 + z2 − 2 cosαyz = a2

x2 + z2 − 2 cosβxz = b2.

Find the value of |xy sin γ + yz sinα+ zx sinβ| . This problem has a simple vector
interpretation.

Indeed, let x,y, z be three pairwise non-collinear vectors on a plane such that

‖x‖ = x, ‖y‖ = y, ‖z‖ = z

the oriented angles between the pairs of vectors are

6 (x,y) = γ, 6 (y, z) = α, 6 (z,x) = β.

Then according to the conditions of problem, we also have

‖x− y‖2 = (x− y) (x− y)

= ‖x‖2 − 2 (x · y) + ‖y‖2

= x2 + y2 − 2 cos γ · xy

= c2 and similarly,

‖y − z‖2 = a2,

‖z− x‖2 = b2.
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It is easy to see that

a+ b = ‖y − z‖+ ‖z− x‖ ≥ ‖x− y‖ = c,

and since y − z and z− x aren’t collinear then a+ b > c.

Similarly, b+ c > a and c+ a > b. Thus the positive numbers a, b, c define a triangle
with area with semi-perimeter s and area F =

√
s (s− a) (s− b) (s− c).

Definition

For any two vectors x = (x1, x2) ,y = (y1, y2) we define the “exterior product” of two
vectors in the plane as follows:

x ∧ y =x1y2 − x2y1.

From this definition we can immediately obtain the following properties of the exterior
product:

• 1. x∧y = −y ∧ x,

• 2. x∧x = 0,

• 3. x∧ (y + z) = x ∧ y + x ∧ z and (x + y)∧z = x ∧ z + y ∧ z,

• 4. (k x)∧y = x ∧ ky =k (x ∧ y) .

One more property expresses the geometric essence of the exterior product in a plane.

Let
e = (0, 1) , ϕ = 6 (e,x) , ψ = 6 (e,y) , 6 (x,y) = ψ − ϕ

and since

(x1, x2) = ‖x‖ (cosϕ, sinϕ) ,

(y1, y2) = ‖y‖ (cosψ, sinψ) , then

x ∧ y = x1y2 − x2y1

= ‖x‖ ‖y‖ (cosϕ sinψ − sinϕ cosψ)

= ‖x‖ ‖y‖ sin 6 (x,y) .

Hence, x ∧ y is the oriented area of the parallelogram defined by (x,y), and |x ∧ y| is
area of this parallelogram.

Coming back to our problem we obtain

xy sin γ + yz sinα+ zx sinβ = ‖x‖ ‖y‖ sin 6 (x,y) + ‖y‖ ‖z‖ sin 6 (y, z) + ‖z‖ ‖x‖ sin 6 (z,x)

= x ∧ y + y ∧ z + z ∧ x.

Using properties 1− 4 we have

(x− y)∧ (x− z) = x ∧ x−y ∧ x− x ∧ z+y ∧ z = x ∧ y + z ∧ x+y ∧ z.
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Thus,
|xy sin γ + yz sinα+ zx sinβ| = |(x− y)∧ (x− z)| and since

|(x− y)∧ (x− z)| is the area of the parallelogram defined by vectors x− y,x− z which
is equal to 2F . So, we obtain finally that

|xy sin γ + yz sinα+ zx sinβ| = 2
√
s (s− a) (s− b) (s− c).

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that xy + 2yz + 3xz = 40
√

3.

Denote the given equations by (1), (2), and (3) in given order. Then (2) + (3)− (1) gives
2z2 + xz − xy = 0, so that

y =
2z2

x
+ z. (4)

Substitute y of (4) into (2) and simplifying gives

z4 + xz3 + x2z2 = 12x2. (5)

From (5) and (3) we have

z2 =
12x2

25
. (6)

Substitute z2 of (6) into (3) and simplifying, we obtain

z =
625− 37x2

25x
. (7)

Substitute z of (7) into (6) and simplifying, we obtain

1069x4 − 46250x2 + 390625 = 0. (8)

Now (8) gives

x2 =
625

(
37− 10

√
3
)

1069
, and

625
(
37 + 10

√
3
)

1069
.

If x2 =
625

(
37 + 10

√
3
)

1069
, then by (6), we have z2 =

300
(
37 + 10

√
3
)

1069
. Then using (3),

we see that xz = −
250

(
30 + 37

√
3
)

1069
< 0, must be rejected. Hence by (6) and (2), we

have

x2 =
625

(
37− 10

√
3
)

1069
, z2 =

300
(
37− 10

√
3
)

1069
, y2 =

12
(
1501 + 750

√
3
)

1069
.

By (1) and (3) we obtain

xy =
50
(
294 + 65

√
3
)

1069
, xz =

250
(
−30 + 37

√
3
)

1069
.
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Since yz =
(xy)(xz)

x2
=

60
(
65 + 98

√
3
)

1069
, we have xy + 2yz + 3xz = 40

√
3.

Remark: David Stone and John Hawkins, Georgia Southern University,
Statesboro GA noted that “the problem poses three nice cylinders in space and asks
for their intersection. In the first quadrant, this consists of exactly one point. Perhaps
the desired expression has a geometric significance and it is possible to make use of the
geometry and compute its value without actually solving for x, y and z. There are other
points that satisfy the three given equations. For instance, negating the x, y and z gives
us another solution (which produces the identical value for xy + 2yz + 3xz ). But there
are others which produce xy + 2yz + 3xz = −69.282”

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed
Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Enkel
Hysnelaj, University of Technology, Sydney Australia and Elton Bojaxhiu,
Kriftel, Germany; Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

• 5231: Proposed by Panagiote Ligouras, “Leonardo da Vinci” High School, Noci, Italy

The lengths of the sides of the hexagon ABCDEF satisfy AB = BC,CD = DE, and
EF = FA. Prove that √

AF

CF
+

√
CB

EB
+

√
ED

AD
> 2.

Solution by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany.

The inequality will be equivalent to

√
EF

CF
+

√
AB

EB
+

√
CD

AD
> 2 Using Ptolemy’s

Inequality (http://mathworld.wolfram.com/PtolemyInequality.html) for quadrilateral
ABCE we have

AB · CE +BC ·AE > EB ·AC ⇒ AB

EB
=

AC

CE +AE

Using the Ptolemy’s Inequality for quadrilateral EFAC and quadrilateral CDEA we
obtain

EF

CF
=

AE

CA+ CE

CD

AD
=

CE

AE + CA

Now if CA = a,CE = b, AE = c, it is enough to prove that

√
a

b+ c
+

√
b

c+ a
+

√
c

a+ b
> 2.

Normalizing this we can assume that a+ b+ c = 1, so we require to prove
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√
a

1− a +

√
b

1− b +

√
c

1− c > 2.

It is obvious we just need to prove that

√
a

1− a > 2
a

a+ b+ c
= 2a.

Squaring both sides and doing easy manipulations we have

a

1− a > 4a2 ⇒ −4a2 + 4a− 1 < 0⇒ −(2a− 1)2 < 0.

which obviously is true for any a ∈ (0, 1).

Finally we have

√
a

1− a +

√
b

1− b +

√
c

1− c > 2a+ 2b+ 2c = 2(a+ b+ c) = 2.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China, and the proposer

• 5232: Proposed by D. M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Prove that: If a, b, c > 0, then,

2

√
a2 + b2 + c2

3
· sinx

x
+
a+ b+ c

3
· tanx

x
> a+ b+ c,

for any x ∈
(

0,
π

2

)
.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If f (x) = 2 sinx+ tanx− 3x, then for x ∈
(

0,
π

2

)
,

f ′ (x) = 2 cosx+ sec2 x− 3

=
2 cos3 x− 3 cos2 x+ 1

cos2 x

=
(2 cosx+ 1) (cosx− 1)2

cos2 x

> 0.

Since f (x) is continuous on

[
0,
π

2

)
and f (0) = 0, it follows that f (x) > 0 for all

x ∈
(

0,
π

2

)
. Therefore, for all x ∈

(
0,
π

2

)
,

2 sinx+ tanx > 3x
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or
2 sinx+ tanx

3x
> 1. (1)

By the Arithmetic Mean - Root Mean Square Inequality,

√
a2 + b2 + c2

3
≥ a+ b+ c

3
(2)

when a, b, c > 0. Since sinx > 0 on

(
0,
π

2

)
, we may combine (1) and (2) to get

2

√
a2 + b2 + c2

3
· sinx

x
+
a+ b+ c

3
· tanx

x

≥ 2 sinx+ tanx

3x
· (a+ b+ c)

> a+ b+ c

for any x ∈
(

0,
π

2

)
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

By the Cauchy-Schwarz inequality

√
3
√
a2 + b2 + c2 ≥ a+ b+ c.

So

3

a+ b+ c


2

√
a2 + b2 + c2

3
· sinx

x
+
a+ b+ c

3
· tanx

x
− a− b− c




≥ 2
sinx

x
+

tanx

x
− 3

=
1

x
(2 sinx+ tanx− 3x)

=
1

x

∫ x

0

(
2 cos t+

1

cos2 t
− 3

)
dt

=
1

x

∫ x

0

2 cos3 t− 3 cos2 t+ 1

cos2 t
dt

=
1

x

∫ x

0

(2 cos t+ 1)(1− cos t)2

cos2 t
dt > 0, for any x ∈

(
0,
π

2

)
.

2

√
a2 + b2 + c2

3
· sinx

x
+
a+ b+ c

3
· tanx

x
> a+ b+ c for any x ∈

(
0,
π

2

)
.
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Solution 3 by Paul M. Harms, North Newton, KS

A convergent series for
sinx

x
is 1− x2

3!
+
x4

5!
− . . ., and a convergent series for

tanx

x
is

1 +
x2

3
+

2

15
x4 + . . . for the interval

(
0,
π

2

)
.

In this interval,
sinx

x
< 1− x2

6
and

tanx

x
<1+

x2

3
.

The inequality in the problem holds if we can show that

2

√
a2 + b2 + c2

3

(
1− x2

6

)
+
a+ b+ c

3

(
1 +

x2

3

)
− (a+ b+ c) > 0.

Let the left hand side of the inequality be f(x). Then

f ′(x) = 2

√
a2 + b2 + c2

3

(−x
3

)
+
a+ b+ c

3

(
2x

3

)
.

The only place where f ′(x) = 0 on the interval

[
0,
π

2

]
is at x = 0, if a = b = c is not true

as in shown below.

To check where f ′(x) < 0 we check where

2

√
a2 + b2 + c2

3

(
x

3

)
>
a+ b+ c

3

(
2x

3

)
.

Simplifying we see:

a2 + b2 + c2

3
>

(
a+ b+ c

9

)2

which is equivalent to

3a2 + 3b2 + 3c2 − (a+ b+ c)2 = (a− b)2 + (b− c)2 + (c− a)2 > 0.

Then f ′(x) < 0 on the interval

(
0,
π

2

]
where a, b, and c are not all the same positive

number. If a = b = c is not true, then the inequality will be correct provided

f

(
π

2

)
> 0. We see that:

f

(
π

2

)
=

√
a2 + b2 + c2

3

(
24− π2

12

)
+
a+ b+ c

3

(
π2 − 24

12

)
.

To show that f

(
π

2

)
≥ 0 is suffices to show that

√
a2 + b2 + c2

3
≥ a+ b+ c

3
.

This last inequality was shown previously. The inequality in the problem then is correct
when a, b, c are not all the same positive number.
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Now consider the case when a = b = c > 0. The inequality of the problem is then
equivalent to

a

(
2 sinx

x
+

tanx

x
− 3

)
> 0.

We have

2 sinx

x
= 2− x2

3
+
x4

60
− . . . and

tanx

x
= 1 +

x2

3
+

2x4

15
+

17x6

315
+ . . . .

Then the left side of the inequality is

a

[(
2− x2

3
+
x4

60
− . . .

)
+

(
1 +

x2

3
+

2x4

15
+

17x6

315
+ . . .

)
− 3

]
,

and the inequality of the problem can be written as

a

[(
x4

60
− 2x6

7!
+ . . .

)
+

(
2x4

15
+

17x6

315
+ . . .

)]
> 0.

On the interval

(
0,
π

2

)
, the alternating series part is a convergent series whose terms in

absolute value are decreasing and whose first term is positive. Thus both series inside
the brackets are positive and the inequality of the problem is correct for positive

numbers a, b, and c for x in the interval

(
0,
π

2

)
.

Also solved by Arkady Alt, San Jose, CA; Ed Gray, Highland Beach, FL;
Kee-Wai Lau, Hong Kong, China; Adrian Naco, Polytechnic University,
Tirana, Albania; Paolo Perfetti, Department of Mathematics, “Tor
Vergata,” University,Rome, Italy; Ángel Plaza, University of Las Palmas de
Gran Canaria, Spain; Boris Rays, Brooklyn, NY, and the proposer.

• 5233: Proposed by Anastasios Kotronis, Athens, Greece

Let x ≥ 1 + ln 2

2
and let f(x) be the function defined by the relations:

f2(x)− ln f(x) = x

f(x) ≥
√

2

2
.

• 1. Calculate lim
x→+∞

f(x)√
x

, if it exists.

• 2. Find the values of α ∈ < for which the series
+∞∑

k=1

kα
(
f(k)−

√
k
)

converges.

• 3. Calculate lim
x→+∞

√
xf(x)− x

lnx
, if it exists.
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Solution 1 by Arkady Alt, San Jose, CA

1. Since x ≥ 1 + ln 2

2
and f(x) ≥

√
2

2
then

ln f(x) + x ≥ x+ ln

(√
2

2

)
≥ 1 + ln 2

2
− ln 2

2
=

1

2

and, therefore, for such x and f(x) we have

f2(x)− ln f(x) = x ⇐⇒

f(x) =
√
x+ ln f(x) and

f(x) ≥

√√√√x+ ln

(√
2

2

)
=

√

x− ln 2

2
.

Hence, lim
x→+∞

f(x) =∞

Since f(x) > 0 then

f2(x)− ln f(x) = x ⇐⇒ f (x) =
x

f (x)
+

ln f(x)

f (x)

and, therefore,

f (x) ≤ x√
x− ln 2

2

+
ln f(x)

f (x)
.

Hence, √
x− ln 2

2√
x

≤ f(x)√
x
≤

√
x√

x− ln 2

2

+
ln f(x)√
xf (x)

.

Since

lim
x→+∞

√
x− ln 2

2√
x

= 1, lim
x→+∞

√
x√

x− ln 2

2

= 1 and lim
x→+∞

ln f (x )

f (x )
= 0.

Then by the squeeze principle we obtain

lim
x→+∞

f(x)√
x

= 1.

2. First note that series
∞∑
n=1

lnn

np
is convergent if p > 1 and divergent if p ≤ 1.

(Let p > 1 and ε =
1− p

2
. Since p− ε = 3p−1

2 > 1 then series
∞∑
n=1

1

np−ε
is convergent.

There is n0 ∈ N such that lnn < nε for all n > n0 (because lim
n→∞

lnn

nq
= 0 for any q > 0).
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Hence,

∞∑

n=1

lnn

np
=

n0∑

k=1

ln k

kp
+

∞∑

n=n0+1

lnn

np
<

n0∑

k=1

ln k

kp
+

∞∑

n=n0+1

nε

np
=

n0∑

k=1

ln kkp +
∞∑

n=n0+1

1

np−ε
.

If p ≤ 1 then
∞∑
n=3

lnn

np
>
∞∑

n=3

1

np
, where by p test

∞∑
n=3

1

np
is divergent series and, therefore,

the series
∞∑
n=1

lnn

np
is divergent.)

Also note that lim
x→+∞

ln f(x)

lnx
=

1

2
. Indeed,

lim
x→+∞

(
2 ln f(x)

lnx
− 1

)
= 2 lim

x→+∞

ln

(
f (x)√
x

)

lnx

= 2 lim
x→+∞.

1

lnx
· lim
x→+∞

ln

(
f (x)√
x

)

= 2 lim
x→+∞

1

lnx
· ln

(
lim

x→+∞
f (x)√
x

)
= 2 · 0 · ln 1 = 0.

Since

f2(x)− ln f(x) = x ⇐⇒ f(x)−√x =
ln f(x)

f(x) +
√
x
, then

nα (f(n)−√n) =
nα ln f(n)

f(n) +
√
n

and, therefore,

lim
n→∞

nα (f(n)−√n)

nα−1/2 lnn
= lim

n→∞

(
1

nα−1/2 lnn
· n

α ln f(n)

f(n) +
√
n

)
= lim

n→∞

√
n ln f(n)

(f(n) +
√
n) lnn

= lim
n→∞

ln f(n)(
f(n)√
n

+ 1

)
lnn

= lim
n→∞

ln f(n)

lnn
· lim
n→∞

1(
f(n)√
n

+ 1

) =
1

4
.

Thus, by the limit convergency test, both series
∞∑
n=1

nα (f(n)−√n) and

∞∑
n=1

lnn

n1/2−α
have the same character of convergency.

Since
∞∑
n=1

lnn

n1/2−α
converges if 1/2− α > 1 ⇐⇒ α < −1/2 and diverges if

1/2− α ≤ 1 ⇐⇒ −1/2 ≤ α we may conclude that series
∞∑
n=1

nα (f(n)−√n) is

convergent if α < −1/2 and divergent if −1/2 ≤ α.
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3. Since

f(x)−√x =
ln f(x)

f(x) +
√
x

then

lim
x→+∞

√
xf(x)− x

lnx
= lim

x→+∞

√
x (f(x)−√x)

lnx

= lim
x→+∞

√
x ln f(x)

lnx (f(x) +
√
x)

= lim
x→+∞

√
x ln f(x)

lnx (f(x) +
√
x)

= lim
x→+∞

ln f(x)

lnx
· lim
x→+∞

1

f(x)√
x

+ 1

=
1

2
· 1

2
=

1

4
.

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

• 1. The function t2 − ln t is strictly increasing for t ≥ 1/
√

2 thus the equation
t2 − ln t = x admits a unique solution for any x ≥ (1 + ln 2)/2. This defines the function
f(x) of the problem which is strictly increasing and then it admits the limit L which can
be finite of infinite. If L is finite the equation f2(x) = ln f(x) + x cannot hold thus
L = +∞. Moreover the differentiability of t2 − ln t assures the differentiability of f(x)
and in particular

2ff ′ =
f ′

f
+ 1 =⇒ f ′(x) =

f

2f2 − 1

whence using l’Höpital

lim
x→∞

f2

x
= lim

x→∞ 2ff ′ = lim
x→∞ 2f

f

2f2 − 1
= 1 =⇒ lim

x→∞
f√
x

= 1

• 2. We have f(x) =
√
x+ o(

√
x) thus ln f(x) =

1

2
lnx+ ln(1 + o(1)) =

1

2
lnx+ o(1) and

f(x) =
√
x+ ln f =

√
x+

1

2
lnx+ o(1) =

√
x

√

1 +
1

2

lnx

x
+
o(1)

x

whence

f(x) =
√
x

(
1 +

1

4

lnx

x
+ o

(
lnx

x

))

and then

∞∑

k=1

kα(f(k)−
√
k) =

∞∑

k=1

[
kα−

1
2

ln k

4
+ kα+

1
2 o

(
ln k

k

)]
=
∞∑

k=1

kα−
1
2

ln k

4

(
1 + o

(
1

k

))
.
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Thus the series converges if and only if converges the series
∞∑

k=1

kα−
1
2 ln k and this occurs

if and only if α < −1/2.
This may be seen for instance by using the Cauchy–condensation test after observing
that kα ln k decreases definitively in k for α < 0. Thus we investigate the convergence of
the series ∞∑

k=1

2k2k(α−
1
2
)k

ln 2

2
=

ln 2

2

∞∑

k=1

2k(α+
1
2
)k

Here we can use any of the countless method to study such a series. For instance the
ratio test

lim
n→∞

2(k+1)(α+ 1
2
)(k + 1)

2k(α+
1
2
)k

= 2α+
1
2

If α+ 1/2 < 0 the series converges. If α+ 1/2 > 0 the series diverges. If α = −1/2 we
have the series

ln 2

2

∞∑

k=1

2k(α+
1
2
)k =

ln 2

2

∞∑

k=1

k

thus diverges.

• 3. By employing f(x) =
√
x
(
1 + 1

4
lnx
x + o

(
lnx
x

))

lim
x→∞

√
xf(x)− x

lnx
= lim

x→∞

1
4 lnx+ o(lnx)

lnx
=

1

4
.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Firstly we have f(x) =
√
x+ ln f(x) ≥

√

x− ln 2

2
.

Using the well-known inequality ex ≥ 1 + x for real x, we obtain ln f(x) ≤ f(x)− 1.
Hence

f2(x)− 1 + f(x), so that f(x ) ≤ 1 +
√

4x − 3

2
.

So by the squeezing principle, we have lim
x+∞

f(x)√
x

= 1. This answers part one.

Suppose that f(x) =
√
x+ g(x), where lim

x→+∞
(x)√
x
− 0. From

(√
x+ g(x)

)
− ln
√
x− ln

(
1 +

g(x)√
x

)
= x,

we see that g(x) ∼ lnx

4
√
x

as x→ +∞.

Thus
+∞∑

k=1

kα
(
f(k) =

√
k
)

converges for α <
−1

2
, diverges for α ≥ −1

2
and that

lim
x→+∞

√
xf(x)− x

lnx
= lim

x→+∞

√
xg(x)

lnx
=

1

4
.
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These answer parts two and three.

Also solved by Adrian Naco, Polytechnic University, Tirana, Albania; Albert
Stadler, Herrliberg, Switzerland, and the proposer.

• 5234: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let a < b be positive real numbers and let fi : [a, b]→ < (i = 1, 2) be continuous
functions in [a, b] and differentiable in (a, b). If f2 is strictly decreasing then prove that
there exists an α ∈ (a, b) such that

f2(b) < f2(α) + 2

(
f
′
2(α)

f
′
1(α)

)
< f2(a).

Comment by Editor: Paolo Perfetti of the Department of Mathematics at Tor
Vergata University in Rome, Italy provided a counter-example to the above
statement. The incompleteness of the statement was acknowledged by José Luis and he
revised the problem. Following is his solution to the revised statement.

5234 (Revised:) Proposed by José Luis Dı́az-Barrero, BARCELONA TECH,
Barcelona, Spain.

Let a < b be positive real numbers and let fi : [a, b]→ < (i = 1, 2) be continuous
functions in [a, b] and differentiable in (a, b). (1) If f1 and f2 are strictly decreasing, then
prove that there exists α ∈ (a, b) such that

f2(b) < f2(α) + 2

(
f ′2(α)

f ′1(α)

)

(2) If f1 is strictly increasing and f2 is strictly decreasing, then prove that there exists
α ∈ (a, b) such that

f2(α) + 2

(
f ′2(α)

f ′1(α)

)
< f2(a)

Solution by the proposer

Consider the function f : [a, b]→ < defined by

f(x) =
(
f2(a)− f2(x)

)(
f2(b)− f2(x)

)
ef1(x)

Since f is continuous in [a, b], differentiable in (a, b), and f(a) = f(b) = 0, then on
account of Rolle’s theorem there exists α ∈ (a, b) such that f ′(α) = 0. That is,

f ′1(α)ef1(α)
(
f2(a)− f2(α)

)(
f2(b)− f2(α)

)
− f ′2(α)

(
f2(a) + f2(b)− 2f2(α)

)
ef1(α) = 0

from which follows

f ′2(α)

f ′1(α)
=

(
f2(a)− f2(α)

)(
f2(b)− f2(α)

)

f2(a) + f2(b)− 2f2(α)

(1) Now we prove the first part of the statement. Indeed, we have that

f2(b) < f2(α) + 2

(
f ′2(α)

f ′1(α)

)
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is equivalent to

(f2(b)− f2(α) < 2

(
f2(a)− f2(α)

)(
f2(b)− f2(α)

)

f2(a) + f2(b)− 2f2(α)
,

where f2(b)− f2(α) < 0, f2(a)− f2(α) > 0 and f2(a) + f2(b)− 2f2(α) < 0 because the
RHS of the preceding inequality is positive. Then, after division by f2(b)− f2(α) < 0

and multiplication by
1

f2(a) + f2(b)− 2f2(α)
< 0 yields

f2(a) + f2(b)− 2f2(α) < 2
(
f2(a)− f2(α)

)

or f2(b) < f2(a). The preceding trivially holds because f2 is strictly decreasing.

(2) To prove the second part of the statement, we have

f2(α) + 2

(
f ′2(α)

f ′1(α)

)
< f2(a)

is equivalent to

f2(a)− f2(α) < 2

(
f2(a)− f2(α)

)(
f2(b)− f2(α)

)

f2(a) + f2(b)− 2f2(α)
,

where f2(a)− f2(α) > 0, f2(b)− f2(α) < 0 and f2(a) + f2(b)− 2f2(α) > 0 because the
RHS of the preceding inequality is negative. Then, after rearranging terms we get

2
(
f2(b)− f2(α)

)
< f2(a) + f2(b)− 2f2(α)

from which follows f2(b) < f2(a) that again holds on account that f2 is strictly
decreasing. This completes the proof.

• 5235: Proposed by Albert Stadler, Herrliberg, Switzerland

On December 21, 2012 (“12-21-12”) the Mayan Calendar’s 13th Baktun cycle will end.
On this date the world as we know it will also change. Since every end is a new
beginning we are looking for natural numbers n such that the decimal representation of
2n starts and ends with the digit sequence 122112. Let S be the set of natural numbers
n such that 2n = 122112 . . . 122112. Let s(x) be the number of elements of S that are
≤ x.

Prove that lim
x→∞

s(x)

x
exists and is positive. Calculate the limit.

Solution 1 by Brian D. Beasley, Presbyterian College, Clinton, SC

First, we determine the probability that a power of 2 begins with 122112. As noted in
[1] and [2], Benford’s Law may be generalized as follows: The probability that the
decimal representation of a number begins with the string of digits n is log10(1 + 1/n).
Since the sequence of the powers of 2 satisfies Benford’s Law (see [1]), we conclude that
the probability that a power of 2 begins with 122112 is log10(1 + 1/122112).

Next, we determine the probability that a power of 2 ends with 122112. We start by
noting that 289 ≡ 562112 (mod 106), which is the first occurrence of a power of 2 that is
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congruent to 112 modulo 1000. The next occurrence of such a power of 2 is 2189, with
each successive occurrence at 2100k+89. We find that the first power of 2 that is
congruent to 122,112 modulo 106 is

23089 ≡ 122112 (mod 106),

and the sequence becomes periodic modulo 106 at

212589 ≡ 289 ≡ 562112 (mod 106).

Hence every 12500th term of the sequence of powers of 2 is congruent to 122,112 modulo
106, so the probability that a power of 2 ends with 122112 is 1/12500.

Finally, we calculate

lim
x→∞

s(x)

x
=

1

12500
log10

(
1 +

1

122112

)
≈ 2.845× 10−10.

References.

[1] “Benford’s Law,” Wikipedia web page, http://en.wikipedia.org/wiki/Benford’s law

[2] Theodore P. Hill, The Significant-Digit Phenomenon, The American Mathematical
Monthly, Vol. 102, No. 4 (Apr. 1995), pp. 322-327

Solution 2 by proposer

We first claim that 2n ≡ 122112 (mod 106) if and only if n = 3089 (mod 12500).

We first note that 122112 = 28 · 32 · 53. Of course n ≥ 6. So 2n = 122112(mod 106) is
equivalent to 2n−6 ≡ 1908 (mod 56).

We note that 20 ≡ 1 mod(5), 21 ≡ 2 mod(5), 22 ≡ 4 mod(5), 23 ≡ 3 mod(5), 24 ≡ 1
mod(5).

So 2n ≡ 3 mod(5) if and only if n ≡ 3 mod(4).

Then 23 ≡ 8 mod(25), 27 ≡ 3 mod(25), 211 ≡ 23 mod(25), 215 ≡ 18 mod(25), 219 ≡ 13
mod(25), 223 ≡ 8 mod(25).

So 2n ≡ 8 mod(25) if and only if n ≡ 3 mod(20)

Then 23 ≡ 8 mod(125), 223 ≡ 108 mod(125), 243 ≡ 83 mod(125), 263 ≡ 58 mod(125),
283 ≡ 33 mod(125), 2103 ≡ 8 mod(125)

So 2n ≡ 33 mod(125) if and only if n ≡ 83 mod(100)

Then 283 ≡ 33 mod(625), 2183 ≡ 533 mod(625), 2283 ≡ 408 mod(625), 2383 ≡ 283
mod(625), 24833 ≡ 158 mod(625), 2583 ≡ 33 mod(625)

So 2n ≡ 33 mod(625) if and only if n ≡ 83 mod(500).

Then 283 ≡ 2533 mod(3125), 2583 ≡ 1908 mod(3125), 21083 ≡ 1283 mod(3125),
21583 ≡ 658 mod(3125), 22083 ≡ 33 mod(3125), 22583 ≡ 2533 mod(3125).

So 2n ≡ 1908 mod(3125) if and only if n ≡ 583 mod(2500).

Then 2583 ≡ 5033 mod(56), 23083 ≡ 1908 mod(56), 25583 ≡ 14408 mod(56), 28083 ≡ 11283
mod(56), 210583 ≡ 8158 mod(56), 213083 ≡ 5033 mod(56).

So 2n ≡ 1908 mod(56) if and only if n ≡ 3083 mod(12500).
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2n−6 ≡ 1908 (mod 56) if and oinly if n ≡ 3089 (mod 12500).

2n ≡ 122112 (mod 106) if and only if n ≡ 3089 (mod 12500).

Therefore we can assume that n = 3089 + 12500k for some nonnegative integer k.

The fact that 2n=3089+12500k starts with the digits 122112 implies that there is an integer
m such that

1.22112 · 10m < 23089+12500k < 1.22113 · 10m.

This is equivalent to saying that

{3089 + 12500k) log10 2} ∈ (log10 1.22112, log10 1.22113),

where {x} denotes the fractional part of the real number x.

log10 2 is irrational, for the assumption that log10 2 = p/q for some coprime natural
numbers p ≥ 1 and q ≥ 1 would imply that 10p = 2q, which cannot be due to the
uniqueness of the prime number factorization. Therefore the sequence {12500k log10 2}
is equidistributed mod 1, and we conclude that the portion of natural numbers that
satisfy the condition 2n = 122112 . . . 122112 equals

lim
x→∞

1

x




∑

n≤x
2n=122112...122112

1


 = lim

x→∞
1

x




∑

3089+12500k≤x
{(3089+12500k) log10 2}∈(log10 1.22112,log10 1.22113)

1




= lim
x→∞

1

x




∑

k≤ x
12500

{12500k log10 2}∈(log10 1.22112 log10 1.22113

1




=
1

12500
lim
y→∞

1

y




∑

k≤y
{12500k log10 2}∈(log10 1.22112,log10 1.22113)

1




=
log10

122113
122112

12500
=

log
(
1 + 1

122112

)

12500 log 10
≈ 2.8 · 10−10.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2013

• 5254: Proposed by Kenneth Korbin, New York, NY

Five different triangles, with integer length sides and with integer area, each have a side
with length 169. The size of the angle opposite 169 is the same in all five triangles. Find
the sides of the triangles.

• 5255: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let n be a natural number. Let φ(n), σ(n) and τ(n) be the Euler phi-function, the sum
of the different divisors of n and the number of different divisors of n, respectively.
Prove:
(a) ∀n ≥ 2, ∃ natural numbers a and b such that φ(a) + τ(b) = n.
(b) ∀k ≥ 1, ∃ natural numbers a and b such that φ(a) + σ(b) = 2k.
(c) ∀n ≥ 2, ∃ natural numbers a and b such that τ(a) + τ(b) = n.
(d) ∀k ≥ 1, ∃ natural numbers a and b such that σ(a) + σ(b) = 2k.
(e) ∀n ≥ 3, ∃ natural numbers a, b and c such that φ(a) + σ(b) + τ(c) = n
(f ) ∃ infinitely many natural numbers n such that φ(τ(n)) = τ(φ(n)).

• 5256: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a be a positive integer. Compute:

lim
n→∞n


a− e

1

n+ 1
+

1

n+ 2
+ . . .+

1

na


 .

• 5257: Proposed by Pedro H.O. Pantoja, UFRN, Brazil

Prove that:

1 +
1

2
·
√

1 +
1

2
+

1

3
· 3

√
1 +

1

2
+

1

3
+ · · ·+ 1

n
· n
√

1 +
1

2
+ · · ·+ 1

n
∼ ln(n),

where f(x) ∼ g(x) means lim
x→∞

f(x)

g(x)
= 1.
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• 5258: Proposed by José Luis Dı́az-Barrero and José Gibergans-Báguena, Polytechnical
University of Catalonia, Barcelona, Spain

Let α1, α2, . . . , αn be real numbers such that 1 +
n∑

k=1

cos2 αk = n. Prove that:

∑

1≤i<j≤n
tanαi tanαj ≤

n

2
.

Solutions

• 5236: Proposed by Kenneth Korbin, New York, NY

Given positive numbers (a, b, c, x, y, z) such that

x2 + xy + y2 = a,
y2 + yz + z2 = b,
z2 + zx+ x2 = c.

Express the value of the sum x+ y + z in terms of a, b, and c.

Solution 1 by David Diminnie, Texas Instruments, Inc., Dallas, TX and
Charles R. Diminnie, Angelo State University, San Angelo, TX

From the first two equations, we get

a− b = x2 − z2 + xy − yz

= (x− z) (x+ y + z) .

Similarly, combining other pairs of equations yields

b− c = (y − x) (x+ y + z)

and
c− a = (z − y) (x+ y + z) .

Hence,

(a− b)2 + (b− c)2 + (c− a)2 = (x+ y + z)2
[
(x− y)2 + (y − z)2 + (z − x)2

]
. (1)

Also, by adding the three equations, we obtain

a+ b+ c = 2
(
x2 + y2 + z2

)
+ (xy + yz + zx)

= (x+ y + z)2 +
1

2

[
(x− y)2 + (y − z)2 + (z − x)2

]
. (2)

Then, by (1) and (2),

(a+ b+ c)2 = (x+ y + z)4 + (x+ y + z)2
[
(x− y)2 + (y − z)2 + (z − x)2

]
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+
1

4

[
(x− y)2 + (y − z)2 + (z − x)2

]2

= (x+ y + z)4 +
[
(a− b)2 + (b− c)2 + (c− a)2

]

+
1

4

[
(x− y)2 + (y − z)2 + (z − x)2

]2
.

This in turn implies that

(a+ b+ c)2 − 2
[
(a− b)2 + (b− c)2 + (c− a)2

]

= (x+ y + z)4 −
[
(a− b)2 + (b− c)2 + (c− a)2

]

+
1

4

[
(x− y)2 + (y − z)2 + (z − x)2

]2

= (x+ y + z)4 − (x+ y + z)2
[
(x− y)2 + (y − z)2 + (z − x)2

]

+
1

4

[
(x− y)2 + (y − z)2 + (z − x)2

]2

=

[
(x+ y + z)2 − 1

2

(
(x− y)2 + (y − z)2 + (z − x)2

)]2

= [3 (xy + yz + zx)]2 .

Since x, y, z > 0,

3 (xy + yz + zx) =

√
(a+ b+ c)2 − 2

[
(a− b)2 + (b− c)2 + (c− a)2

]
.

As a result,

a+ b+ c+

√
(a+ b+ c)2 − 2

[
(a− b)2 + (b− c)2 + (c− a)2

]

=
[
2
(
x2 + y2 + z2

)
+ (xy + yz + zx)

]
+ 3 (xy + yz + zx)

= 2
[(
x2 + y2 + z2

)
+ 2 (xy + yz + zx)

]

= 2 (x+ y + z)2 .

Finally, since x, y, z > 0,

x+ y + z =

√√√√√a+ b+ c+

√
(a+ b+ c)2 − 2

[
(a− b)2 + (b− c)2 + (c− a)2

]

2
.

Solution 2 by David Diminnie, Texas Instruments, Incorporated, Dallas, TX

By summing the three equations in the problem statement we obtain

2x2 + 2y2 + 2z2 + xy + yz + zx = a+ b+ c. (1)
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The cross terms may be eliminated from (1) via the change of variables

x =
1√
3
x′ − 1√

2
y′ − 1√

6
z′,

y =
1√
3
x′ +

1√
2
y′ − 1√

6
z′,

z =
1√
3
x′ +

√
2

3
z′,

yielding

3x′2 +
3

2
y′2 +

3

2
z′2 = a+ b+ c. (2)

Note that the sum x+ y + z becomes

x+ y + z =
√

3x′ (3)

in the new variables, and since x, y, and z are positive x′ must also be positive.
We may now rewrite the original problem statement in our new variables:

x′2 −
√

2x′z′ +
1

2
y′2 +

1

2
z′2 = a,

x′2 +

√
3

2
x′y′ +

1√
2
x′z′ +

1

2
y′2 +

1

2
z′2 = b, (4)

x′2 −
√

3

2
x′y′ +

1√
2
x′z′ +

1

2
y′2 +

1

2
z′2 = c.

By subtracting the third equation from the second equation in (4) we obtain an
expression for y′ in terms of x′:

√
6x′y′ = b− c, or

y′ =
b− c√

6x′
. (5)

Similarly, we may obtain an expression for z′ in terms of x′ by subtracting half the sum
of the second and third equations from the first equation in (4): − 3√

2
x′z′ = a− 1

2(b+ c),
or

z′ = −
√

2

3x′

(
a− 1

2
(b+ c)

)
. (6)

Substituting (5) and (6) into (2), we arrive at an equation for x′ in terms of a, b, and c,

a2 + b2 + c2 − (ab+ ac+ bc)

3x′2
+ 3x′2 = a+ b+ c,

or
9x′4 − 3 (a+ b+ c)x′2 + a2 + b2 + c2 − (ab+ ac+ bc) = 0. (7)

The left side of (7) is quadratic in x′2, so by applying the quadratic formula (or, if one
prefers, by completing the square) we may solve for x′2:

x′2 =
a+ b+ c

√
−3 (a2 + b2 + c2) + 6(ab+ ac+ bc)

6
. (8)
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If we substitute the values of a, b, and c from the original problem statement into (8)
and simplify the result, we see that the discriminant is positive (the discriminant
simplifies to 9 (xy + xz + yz)2 in the original variables) and that the solution involving
the negative radical is spurious (since from (3)

x′2 =
1

3
(x+ y + z)2 =

1

3

(
x2 + y2 + z2 + 2xy + 2yz + 2xz

)
,

while the offending solution simplifies to

1

3

(
x2 + y2 + z2 − xy − xz − yz

)

in the original variables).

We may now solve for x′ in a straightforward manner (after rejecting the spurious
solution) by taking square roots of both sides of (8):

x′ =

√
a+ b+ c+

√
−3 (a2 + b2 + c2) + 6(ab+ ac+ bc)

6
, (9)

where this time we have rejected the negative branch because x′ is positive. (Note that
the quantity under the outermost radical is positive because each of its terms is
positive.) By substituting (9) into (3) we finally obtain the desired sum,

x+ y + z =

√
a+ b+ c+

√
−3 (a2 + b2 + c2) + 6(ab+ ac+ bc)

2
.

Solution 3 by Brian Beasley and Doug Daniel (jointly), Presbyterian
College, Clinton, SC

Adding the three equations produces

2(x2 + y2 + z2) + (xy + yz + zx) = a+ b+ c.

Since (x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx), we seek to express xy + yz + zx in
terms of a, b, and c. By the Law of Cosines, we note that x, y, and

√
a may represent

the lengths of the three sides of a triangle, with the angle between x and y having
measure 120◦. Similarly, we have two more triangles containing angles of measure 120◦,
one with sides of lengths y, z, and

√
b, and the other with sides of lengths z, x, and

√
c.

Then we may combine these three triangles to create one triangle with sides of lengths√
a,
√
b, and

√
c. By Heron’s Formula, this new triangle has area

A =
√
s(s−√a)(s−

√
b)(s−√c),

where s = (
√
a+
√
b+
√
c)/2. By adding the areas of the three smaller triangles, we also

obtain A = (
√

3/4)(xy + yz + zx). Hence

(x+ y + z)2 =
a+ b+ c− 4A/

√
3

2
+ 2

(
4A√

3

)
=
a+ b+ c

2
+ 2
√

3A,

so

x+ y + z =

√
a+ b+ c

2
+ 2
√

3A
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with A as given previously as a function of
√
a,
√
b, and

√
c.

Editor’s comments: David Stone and John Hawkins approached the problem as in
solution 3 above, and made the following comments about the problem and its solution.

The common vertex of our three interior triangles is often referred to the as the Steiner
Point of the large triangle. The sides x, y, z form a minimal Spanning Tree (MST) of the
large triangle, so the sum x+ y + z is the length of the MST. One would think that the
length of this MST (in terms of the sides of the larger triangle is common knowledge,
but we could not find it referenced.

We know that the larger triangle is actually the union of three interior triangles because
we know the x, y, z and a, b, c are all given to satisfy the original equations. If we were
simply given a, b, c then we might not have a triangle (or a solution x, y, z), or the
Steiner point might be exterior to the triangle formed.

Also solved by Arkady Alt (two solutions), San Jose, CA; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Roberto de la Cruz Moreno, Centre de Recerca Matemàtica, Campus
de Bellaterra, Barcelona, Spain; Adrian Naco, Polytechnic University,
Tirana, Albania; Boris Rays, Brooklyn, NY; David Stone and John Hawkins
(jointly), Georgia Southern University, Statesboro, GA, and the proposer.

• 5237: Proposed by Michael Brozinsky, Central Islip, NY

Let 0 < R < 1 and 0 < S < 1, and define

a =

√
−2
√

1− S2
√

1−R2 + 2 + 2RS,

b =
√
−R− S + 1 +RS, and

c =
√
R+ S + 1 +RS.

Determine whether there is tuple (R,S) such that a, b, and c are sides of a triangle.

Solution 1 by Ed Gray, Highland Beach, FL

Consider the squares of a, b, and c.

1) c2 = 1 +RS +R+ S = (1 +R)(1 + S)

2) b2 = 1 +RS −R− S = (1−R)(1− S), so

3) b2 + c2 = 2 + 2RS

4) a2 = 2 + 2RS − 2
√

1− S2)
√

1−R2)

5) b2c2 = (1−R)(1− S)(1 +R)(1 + S) = (1−R2)(1− S2)

6) bc =
√

(1−R2) (1− S2). So combining (3), (4), (6);

7) a2 = b2 + c2 − 2bc = (c− b)2, since c > b. Then
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8) a = c− b or

9) c = a+ b

So there can be no triangle since the sum of two legs of a triangle is greater than the
third.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that no such tuples exist. Suppose, on the contrary, that there is a tuple (R,S)
such that a, b, and c are the sides of a triangle. By the triangle inequality, we have
a > c− b > 0. Hence,

a2 > c2 + b2 − 2cb

=⇒ −2
√

1− S2
√

1−R2 + 2 + 2RS > −2
√
R+ S + 1 +RS

√
−R− S + 1 +RS + 2 + 2RS

=⇒
√

(1− S)(1 + S)
√

(1−R)(1 +R) <
√

(1 +R)(1 + S)
√

(1−R)(1− S),

which is not true. Thus we obtain a contradiction and complete the solution.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie, Angelo State University, San Angelo, TX; Paul M.
Harms, North Newton, KS; Roberto de la Cruz Moreno, Centre de Recerca
Matemàtica, Campus de Bellaterra, Barcelona, Spain; Adrian Naco,
Polytechnic University, Tirana, Albania; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

• 5238: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

It is fairly well-known that (1111 . . . 1)9, a number written in base 9 with an arbitrary
number of digits 1, always evaluates decimally to a triangular number. Find another
base b and a single digit d in that base, such that (ddd . . . d)b, using k digits d, has the
same property, ∀k ≥ 1.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We begin by noting that triangular numbers are of the form

T (m) =
m (m+ 1)

2
for integers m ≥ 1. Also, for decimally evaluating a base b number

(ddd . . . d)b, with k digits, we use the formula for a geometric sum to get

(ddd . . . d)b = d+ d · b+ d · b2 + · · ·+ d · bk−1 = d · b
k − 1

b− 1
. (1)

Further, for n ≥ 1,

(2n+ 1)2 − T (n) = 4n (n+ 1) + 1− 1

2
n (n+ 1)
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=
7

2
n (n+ 1) + 1

> 0.

Hence, for n ≥ 1, we may consider T (n) as a digit in base (2n+ 1)2.

Then, there are an infinite number of choices for b and d which have the desired
property for all k ≥ 1. For n ≥ 1, choose dn = T (n) and bn = (2n+ 1)2. Since (2n+ 1)
is odd, (1) implies that when k digits are used, with k ≥ 1, we have

(T (n)T (n)T (n) . . . T (n))(2n+1)2 = T (n) · (2n+ 1)2k − 1

(2n+ 1)2 − 1

=
n (n+ 1)

2
·

[
(2n+ 1)k − 1

] [
(2n+ 1)k + 1

]

4n (n+ 1)

=

[
(2n+ 1)k − 1

] [
(2n+ 1)k − 1 + 2

]

8

=
1

2

[
(2n+ 1)k − 1

2

] [
(2n+ 1)k − 1

2
+ 1

]

= T

(
(2n+ 1)k − 1

2

)
.

E. g., when n = 1, 2, 3, this yields

(111 . . . 1)9 = T

(
3k − 1

2

)
,

(333 . . . 3)25 = T

(
5k − 1

2

)
,

(666 . . . 6)49 = T

(
7k − 1

2

)
,

when k digits are used in each situation.

Solution 2 by Roberto de la Cruz Moreno, Centre de Recerca Matemàtica,
Campus de Bellaterra, Barcelona, Spain

We have:

(1111...1)9 = 1 + 1 · 9 + ...+ 1 · 9k−1 = 1 · 9k − 1

8
=

1

2
· 3k − 1

2
· 3k + 1

2
=
m(m+ 1)

2

Thus, just search b, d such that b = x2, x ∈ Z+, and (b− 1) = 8d, i.e., x ∈ Z+ such that
(x2 − 1) ≡ 0 (mod 8). But, (x2 − 1) ≡ 0 (mod 8) ⇔ x is odd.

Therefore, ∀x = 2n+ 1, n ∈ Z+, b = x2 and d =
b− 1

8
satisfy the property.

Examples: (333...3)25, (666...6)49.

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC
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Given a positive integer k, we seek a base b, a digit d in base b, and a positive integer n
such that

(ddd . . . d)b = d

(
bk − 1

b− 1

)
=
n(n+ 1)

2
.

Solving the resulting quadratic for n yields a discriminant of (b− 1)2 + 8d(b− 1)(bk − 1),
and taking d = (b− 1)/8 reduces this expression to bk(b− 1)2. To make this a perfect
square and to ensure that d is an integer, we let b be an odd square. Given any integer
m > 1, we may take b = (2m− 1)2, so that d = m(m− 1)/2. Then

(ddd . . . d)b = d

(
bk − 1

b− 1

)
=
bk − 1

8
=
n(n+ 1)

2
,

where n = [(2m− 1)k − 1]/2. In particular, letting m = 3 produces b = 25, d = 3, and

(333 . . . 3)25 =
25k − 1

8
=
n(n+ 1)

2

for n = (5k − 1)/2; also, letting m = 4 produces b = 49, d = 6, and

(666 . . . 6)49 =
49k − 1

8
=
n(n+ 1)

2

for n = (7k − 1)/2.

Also solved by Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; David Stone and John Hawkins (jointly), Georgia Southern
University, Statesboro, GA, and the proposer.

• 5239: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Determine all functions f : <− {−3,−1, 0, 1, 3} → <, which satisfy the relation

f(x) + f

(
13 + 3x

1− x

)
= ax+ b,

where a and b are given arbitrary real numbers.

Solution 1 by Adrian Naco, Polytechnic University, Tirana, Albania

If we let, g(x) =
13 + 3x

1− x , then we have that,

(g ◦ g)(x) = g(g(x)) =
13 + 3g(x)

1− g(x)
=
x− 13

x+ 3
(1)

and (g ◦ g ◦ g)(x) = g(g(g(x))) =
g(x)− 13

g(x) + 3
= x (2)

Considering the above and the given relation, it implies that,

f(x) + (f ◦ g)(x) = ax+ b, (3)
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(f ◦ g)(x) + (f ◦ g ◦ g)(x) = ag(x) + b, (4)

(f ◦ g ◦ g)(x) + (f ◦ g ◦ g ◦ g)(x) = a(g ◦ g)(x) + b,

The last relation is simplified to

(f ◦ g ◦ g)(x) + f(x) = a(g ◦ g)(x) + b, (5)

Adding equations (3) and (4) to (5) results that,

f(x) + (f ◦ g)(x) + (f ◦ g ◦ g)(x) =
a

2
[x+ g(x) + (g ◦ g)(x)] +

3b

2
. (6)

Finally, if we subtract equation (4) from equation (6), then,

f(x) =
a

2
[x− g(x) + (g ◦ g)(x)] +

b

2
⇒

f(x) =
a

2

[
x− 13 + 3x

1− x +
x− 13

x+ 3

]
+
b

2
⇒

f(x) =
a

2
· x

3 + 6x2 + 5x+ 52

(x− 1)(x+ 3)
+
b

2

Solution 2 by Kee-Wai Lau, Hong Kong, China

Denote the given relationship by (1). Replacing x by
13 + 3x

1− x and
x− 13

x+ 3
in (1), we

obtain respectively

f

(
13 + 3x

1− x

)
+ f

(
x− 13

x+ 3

)
= a

(
13 + 3x

1− x

)
+ b (2)

and

f

(
x− 13

x+ 3

)
+ f(x) = a

(
x− 13

x+ 3

)
+ b. (3)

Now (1)− (2) + (3) gives

2f(x) = (ax+ b)−
(
a

(
13 + 3x

1− x

)
+ b

)
+

(
a

(
x− 13

x+ 3

)
+ b

)
.

Simplifying, we obtain

f(x)
ax3 + (6a+ b)x2 + (5a+ 2b)x+ 52a− 3b

2(x− 1)(x+ 3)
.

Also solved by Arkady Alt, San Jose, CA; David Diminnie, Texas
Instruments, Inc., Dallas TX and Charles Diminnie, Angelo State
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University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain;
Roberto de la Cruz Moreno, Centre de Recerca Matemàtica, Campus de
Bellaterra, Barcelona, Spain; David Stone and John Hawkins (jointly),
Georgia Southern University, Statesboro, GA, and the proposer.

• 5240: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let x be a positive real number. Prove that

x[x]

(x+ {x})2
+

x{x}
(x+ [x])2

>
1

8
,

where [x] and {x} represent the integral and fractional part of x, respectively.

Solution 1 by Armend Sh. Shabani, University of Prishtina, Republic of
Kosova

Let [x] = k. Since x = [x] + {x} we have that {x} = x− k, therefore we need to prove

that
xk

(2x− k)2
+
x(x− k)

(x+ k)2
>

1

8
, which is equivalent to

8kx(x+ k)2 + 8x(x− k)(2x− k)2 > (2x− k)2(x+ k)2.

After calculations one obtains:

28x4 + 59x2k2 − 60x3k + 2xk3 − k4 > 0

which can be written as:

27x4 + 59x2k2 − 60x3k + 2xk3 + x4 − k4 > 0.

Clearly x4 − k4 ≥ 0 and 2xk3 ≥ 0.

Consider the function
f(k) = 59x2k2 − 60x3k + 27x4.

Since 59x2 > 0 and (60x3)2 − 4 · 59x2 · 27x4 = −2772x6 < 0 we conclude that f(k) > 0
for all k, which completes the proof.

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

We prove the stronger inequality

x[x]

(x+ {x})2 +
x{x}

(x+ [x])2
>

2

5

Rewrite it as

(x[x])2

x[x](x+ {x})2 +
(x{x})2

x{x}(x+ [x])2
>

2

5

Cauchy–Schwarz yields

(x[x])2

x[x](x+ {x})2 +
(x{x})2

x{x}(x+ [x])2
≥ (x[x] + x{x})2
x[x](x+ {x})2 + x{x}(x+ [x])2

>
2

5
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Clearing the denominators and taking into account that [x] + {x} = x we come to

5[x]2 + 5{x}2 > 2x2

and this follows by

5[x]2 + 5{x}2 ≥ 5

2
([x] + {x})2 =

5

2
x2 > 2x2

Solution 3 by Adrian Naco, Polytechnic University, Tirana, Albania

If x ∈ (0; 1) then we have that [x] = 0 and x = {x}. Thus the left side of the given
inequality is valued by 1, and as a result, the inequality is true.

Suppose that x ≥ 1. Then [x] ≥ 1 and {x} ∈ [0; 1). Let {x} = q[x] where q ∈ [0; 1), then
x = (1 + q)[x]

Since, q + 2 > 2q + 1, then the left side of the inequality is transformed to

S =
x[x]

(x+ {x})2 +
x{x}

(x+ [x])2
=

q + 1

(2q + 1)2
+
q(q + 1)

(q + 2)2

≥ q + 1

(q + 2)2
+
q(q + 1)

(q + 2)2
=

(
q + 1

q + 2

)2

≥
(

1

2

)2

>
1

8
.

Editor’s note: Most of the solvers noted that the right hand side of the inequality
1

8
can

be raised to
4

9
. Adrain Naco (see solution above) restated the problem as follows:

Let x be a positive number. Prove that

a) inf
x>0

{
1 + [x]

(1 + 2[x])2
+

[x] (1 + [x])

(2 + [x])2

}
= inf

x>0

{
x[x]

(x+ {x})2
+

x{x}
(x+ [x])2

}
=

4

9
,

b) sup
x>0

{
x[x]

(x+ {x})2
+

x{x}
(x+ [x])2

}
= 1

where [x] and {x} represent the integral and fractional part of x, respectively.

Following are two additional proofs of the restated problem.

Solutions 4 and 5 by David Stone and John Hawkins of Georgia Southern
University, Statesboro GA

For convenience we let E(x) =
x[x]

(x+ {x})2 +
x{x}

(x+ [x])2
.

Note that E(n) = 1 + 0 = 1, for any integer n ≥ 1 and E(x) = 0 + 1 = 1, for any x with
0 < x < 1.

We can describe precisely how the function E behaves: on the interval [n, n+ 1), n ≥ 1,

it descends strictly from a height of 1 towards the height
(n+ 1)n

(n+ 2)2
+

n+ 1

2n+ 1)2
. Thus the
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infimum on this interval is
(n+ 1)n

n+ 2)2
+

n+ 1

2n+ 1)2
. As n increases, these greatest lower

bounds grow, so the smallest of these,
4

9
, occurs on the first interval, [1, 2).

Thus, E(x) >
4

9
for all positive x, and the lower bound is sharp because lim

x→2−
E(x) =

4

9
.

Note that E(x) barely dips below height 1 for large x.

To verify these claims, let n < x < n+ 1, with x = n+ f, n ≥ 1, 0 < f < 1.

Then E(x) =
(n+ f)n

(n+ f + f)2
+

(n+ f)f

n+ f + f)2
=

(n+ f)n

(n+ 2f)2
+

(n+ f)f

(2n+ f)2
.

By letting f −→ 1 from the left, we see that E(x) =
(n+ 1)n

(n+ 2)2
+

(n+ 1)

2n+ 1)2
.

In particular, lim
x→2−

E(x) =
(1 + 1)

(1 + 2)2
+

(1 + 1)

2 + 1)2
=

2

9
+

2

9
=

4

9
.

Also, lim
x→3−

E(x) =
(2 + 1)2

(2 + 2)2
+

(2 + 1)

2 · 2 + 1)2
=

3

8
+

3

25
=

99

200
= 0.495 >

4

9
.

To verify that the function E decreases for 0 < f < 1, we compute the derivative
dE

df
.

dE

df
=

(n+ 2f)2 − (n+ f)n · 2(n+ 2f) · 2
(n+ 2f)4

+
(2n+ f)2(n+ 2f)− (n+ f) · f · 2(2n+ f)

(n+ 2f)4

=
n(2n+ 3f)

(2n+ f)3
− n(3n+ 2f)

(n+ 2f)3

= n
(2n+ 3f)(n+ 2f)3 − (3n+ 2f)(2n+ f)3

(2n+ f)3(n+ 2f)3
.

Then we have

dE

df
< 0

⇐⇒ (2n+ 3f)(n+ 2f)3 − (3n+ 2f)(2n+ f)3 < 0

⇐⇒ (2n+ 3f)(n+ 2f)3 < (3n+ 2f)(2n+ f)3

⇐⇒ 2n+ 3f

3n+ 2f)
<

(2n+ f)3

(n+ 2f)3

⇐⇒ 1− n− f
n+ 2f

<

(
1 +

n− f
n+ 2f

)3

.
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But n ≥ 1 and 0 < f < 1, so n− f is positive. Hence the expression on the left of our
inequality is less than 1 and the expression the right is larger than 1, so the final
inequality is true.

Finally, we verify that the interval infima,
(n+ 1)n

(n+ 2)2
+

(n+ 1)

(2n+ 1)2
, form an increasing

sequence (with limit 1):

regarded as a function of n,
(n+ 1)n

(n+ 2)2
+

(n+ 1)

(2n+ 1)2
, has derivative

3n+ 2

(n+ 2)3
− 2n+ 3

(2n+ 1)3
=

(n− 1)(n+ 1)(22n2 + 37n+ 22)

(n+ 2)3(2n+ 1)3
≥ 0, for n ≥ 1.

Solution 5

This method verifies the proposed inequality, although it does not reveal as much
information about the given expressions as does the preceding solution.
Recognizing that the expression of the left equals 1 when 0 < x < 1 or when x is an
integer, we consider x > 1 and write x in terms of its integral and fractional parts: let
n < x < n+ 1 with x = n+ f, n ≥ 1, 0 < f < 1. Then we want to show

(n+ f)n

(n+ 2f)2
+

(n+ f)f

(n+ 2f)2
>

4

9

⇐⇒
{

(n+ f)n (2n+ f)2 + (n+ f) f (n+ 2f)2
}

> 4(n+ 2f)2(2 + 2f)2.

Upon division by n4, this becomes an equivalent inequality in a single variable:

⇐⇒ 9

[(
1 +

f

n

)(
2 +

f

n

)2

+

[
f

n
+

(
f

n

)2
](

1 + 2
f

n

)2
}
> 4

(
1 + 2

f

n

)2 (
2 +

f

n

)2

.

Letting t =
f

n
, so that 0 < t <

f

n
< 1, we have more equivalent inequalities:

⇐⇒ 9
{

(1 + t) (2 + t)2 +
[
t+ t2

]
(1 + 2t)2

}
> 4(1 + 2t)2(2 + t)2

⇐⇒ 9
{

4t4 + 9t3 + 10t2 + 9t+ 4
}
> 4

{
4t4 + 20t3 + 33t2 + 20t+ 4

}

⇐⇒ 20t4 + t3 − 42t2 + t+ 20 > 0

⇐⇒ (t− 1)2(20t2 + 41t+ 20) > 0,

which is certainly true.
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Also solved by Arkady Alt, San Jose, CA; Elsie Campbell, and Charles
Diminnie, Angelo State University, San Angelo, TX; David Diminnie, Texas
Instruments, Incorporated, Dallas, TX; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS;
Kee-Wai Lau, Hong Kong, China; Roberto de la Cruz Moreno, Centre de
Recerca Matemàtica,Campus de Bellaterra, Barcelona, Spain; Boris Rays,
Brooklyn NY, and the proposer.

• 5241: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let α ≥ 0 be a real number. Calculate

lim
n→∞

(∫ 1

0

n
√
xn + α dx

)n
.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria , Spain

For x ∈ [0, 1], α ≤ xn + α. Therefore,

lim
n→∞

(∫ 1

0

n
√
α dx

)n
≤ lim

n→∞

(∫ 1

0

n
√
xn + α dx

)n

α ≤ lim
n→∞

(∫ 1

0

n
√
xn + α dx

)n
.

On the other hand, since function y = xn is convex for n ≥ 1, by Jensen’s inequality

(∫ 1

0

n
√
xn + α dx

)n
≤

∫ 1

0
(xn + α) dx

lim
n→∞

∫ 1

0
xn + α dx ≤ lim

n→∞
1

n+ 1
+ α = α.

So, lim
n→∞

(∫ 1

0

n
√
xn + α dx

)n
= α.

Solution 2 by Arkady Alt, San Jose, CA

Let an =

∫ 1

0

n
√
xn + αdx. Note that lim

n→∞ an = 1.

Indeed, we have

n
√
α =

∫ 1

0

n
√
αdx ≤ an ≤

∫ 1

0

n
√

1 + αdx = n
√

1 + α and lim
n→∞

n
√
α = lim

n→∞
n
√

1 + α = 1.

Since lim
n→∞ a

n
n = lim

n→∞ e
n ln an we will find lim

n→∞n ln an.

Since

lim
n→∞ (an − 1) = 0 we have

lim
n→∞n ln an = lim

n→∞n ln (1 + (an − 1))

= lim
n→∞

(
n (an − 1) · ln (1 + (an − 1))

(an − 1)

)
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= lim
n→∞n (an − 1) because

lim
n→∞

ln (1 + (an − 1))

(an − 1)
= 1.

Thus, it suffices to find lim
n→∞n (an − 1).

Since

n (an − 1) = n

(∫ 1

0

n
√
xn + αdx− 1

)

= n

∫ 1

0

((
n
√
xn + α− n

√
α
)

+
(
n
√
α− 1

))
dx

= n
(
n
√
α− 1

)
+ n

∫ 1

0

(
n
√
xn + α− n

√
α
)
dx and

lim
n→∞n ( n

√
α− 1) = lim

n→∞n
(
elnαn − 1

)

= lnα

then it remains to find

lim
n→∞n

∫ 1

0

(
n
√
xn + α− n

√
α
)
dx.

By the Mean Value Theorem

n
√
xn + α− n

√
α

xn
=

1

n
n
√
θn−1

where θ ∈ (α, xn + α) .

Hence,
n
√
xn + α− n

√
α

xn
<

1

n
n
√
αn−1

⇐⇒ n
√
xn + α− n

√
α <

xn

n
n
√
αn−1

and, therefore,

0 < n

∫ 1

0

(
n
√
xn + α− n

√
α
)
dx < n

∫ 1

0

xn

n
n
√
αn−1

dx =
1

(n+ 1)
n
√
αn−1

.

Since

lim
n→∞

1

(n+ 1)
n
√
αn−1

= 0,

by the Squeeze Principle,

lim
n→∞n

∫ 1

0

(
n
√
xn + α− n

√
α
)
dx = 0.
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Thus,

lim
n→∞

(∫ 1

0

n
√
xn + αdx

)n
= elnα = α.

Solution 3 by Anastasios Kotronis, Athens, Greece

1. For a = 0 the limit is trivially 0 = a.

2. For a > 0. We set Inn =
(∫ 1

0
n
√
xn + a dx

)n
= exp

(
n ln

(∫ 1
0

n
√
xn + a dx

))
= eAn .

Now, considering that n ∈ [1,+∞), since 0 < n
√
xn + a ≤ 1 + a and

n
√
xn + a

n→+∞−→ 1 for x ∈ [0, 1], by dominated convergence theorem we get that

In → 1, thus ln In → 0.

Furthermore, by Leibniz’s rule we have that for n ≥ 1

∂In
∂n

=

∫ 1

0

∂

∂n
n
√
xn + a dx =

∫ 1

0
(xn + a)

1−n
n

(
nxn lnx− (xn + a) ln(xn + a)

n2

)
dx.

We also have that

∣∣∣(xn + a)
1−n
n ((xn + a) ln(xn + a)− nxn lnx)

∣∣∣ ≤ 1 + a

a
(|(xn + a) ln(xn + a)|+ |nxn lnx|

≤ 1 + a

a

(
max{e−1, (1 + a) ln(1 + a)}+ e−1

)

and since

(xn + a)
1−n
n ((xn + a) ln(xn + a)− nxn lnx)→





ln(1 + a), if x = 1

ln a, if x ∈ [0, 1)

by the dominated convergence theorem it is −n2∂In
∂n
→ ln a.

Now applying De l’ Hospital’s rule we get

lim
n→+∞

An = lim
n→+∞

ln In
n−1

= lim
R3n→+∞

ln In
n−1

0/0
= lim

n→+∞
I−1n ·

(
−n2∂In

∂n

)
→ ln a,

so the required limit in each case is a.

Solution 4 by Adrian Narco, Polytechnic University, Tirana, Albania

The function, f(x) = n
√
xn + α = (xn + α)

1
n , is strictly increasing and everywhere

continuous on [0; 1], thus we can apply the mean value theorem for integral, that is,

∃c ∈ (0; 1) :

∫ 1

0

n
√
xn + αdx = f(c)(1− 0) = (cn + α)

1
n

17X
ia
ng
’s
T
ex
m
at
h



⇒ lim
n→∞

(∫ 1

0

n
√
xn + αdx

)n

= lim
n→∞

(
(cn + α)

1
n

)n
= lim

n→∞(cn + α) = α

since c ∈ (0, 1) and cn
n→+∞−→ 0.

Also solved by Kee-Wai Lau, Hong Kong, China; Carl Libis (two solutions;
one alone and one with Tom Dunion), Ivy Bridge College of Tiffin
University, Toledo, OH and Bentley University, Waltham, MA
(respectively); Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy, and the proposer.

Mea Culpa

The names of Enkel Hysnelaj, University of Technology, Sydney, Australia
and Elton Bojaxhiu, Kriftel, Germany were inadvertently not listed as having
solved problem 5232.

The featured solutions to Problem 5229 have turned out to be in error, or perhaps more
correctly stated, incomplete. Following is a note received from Arkady Alt of San
Jose, CA.

—————————

I’m writing you about problem 5229. I think that there are some issues with the
proposed solutions and I wanted to give a few arguments to prove this point.
Also, below, I’m attaching my solution that I have not posted after realizing that
it is not complete, although I did obtain the desired limit.

There are two main approaches to finding limits. Both are in two steps.

The first way is to prove that limit exists and then find it;

The second way is to find the value of the limit assuming that it exists, and then prove
that the obtained value is indeed a limit.

The second way isn’t complete without such a proof, because there are counterexamples
of sequences which have no limit, but when assuming that it exists we can obtain a
value.

For example: let a1 = 1 and an+1 = a2n + 3an + 1, n ≥ 1 then obviously lim
n→∞ an =∞.

But assuming that (an)n≥1 is convergent and denoting a = lim
n→∞ an we immediately

obtain

a = lim
n→∞ an+1 = lim

n→∞

(
a2n + 3an + 1

)
= lim

n→∞ a
2
n+3 lim

n→∞ an+1 = a2+3a+1a2+2a+1 = 0 ⇐⇒ a = −1.
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Also, the Stolz Theorem cannot be inverted.

Example:

Let an =
n∑

k=1

sin k, then
an+1 − an
n+ 1− n = sin(n+ 1) and the sequence (sinn)n∈N isn’t

convergent, but

since
n∑

k=1

sin k =
sin

(
n+ 1

2

)
sin

n

2

sin
1

2

( 2an sin
1

2
=

n∑

k=1

(
cos

(
k − 1

2

)
− cos

(
k +

1

2

))
=

cos
1

2
− cos

(
n+

1

2

)
= 2 sin

(
n+ 1

2

)
sin

n

2
) then lim

n→∞
an
n

= 0 because
∣∣∣∣sin

(
n+ 1

2

)
sin

n

2

∣∣∣∣ ≤ 1.

Here is my solution, which I decided not to send because it is missing the crucial “proof”
points that are mentioned above and it is only based on an assumption. (Note that the
published solutions 2 and 3 for problem 5229 are incomplete for the same reason).

Solution 1 is also incomplete (for another reason) because it is based on an unproved
assumption about the asymptotic behavior of (xn)n≥1 , namely that xn ∼ knα, for some
k and α.

This assumption is basically equivalent to the problem statement.

I have a slight suspicion that a “simple” solution from the proposer was originally the
rationale for the publication of this problem.

So, in my opinion this problem has not been solved as of yet.

5229. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.

Let β, a > 0 be a real numbers and let {xn}n∈N be the sequence defined by the
recurrence
relation

x1 = a, and xn+1 = xn + n2β

x1+x2+...+xn
for n ≥ 1.

1. Prove that lim
n→∞xn =∞;

2. Calculate lim
n→∞

xn
nβ
.

Solution by Arkady Alt, San Jose ,CA

1. Let Sn := x1 + x2 + ...+ xn, n ∈ N. It is easy to see (by Math. Induction) that
xn > 0 for all n ∈ N.
Also, note that sequence {xn}n∈N is increasing, since

xn+1 − xn =
n2β

Sn
> 0 ⇐⇒ xn+1 > xn , n ∈ N.

Then x2n+1 − x2n =
n2β (xn + xn+1)

Sn
>

2n2βxn
nxn

= 2n2β−1, n ∈ N and, therefore,

x2n+1 − x21 =
n∑

k=1

(
x2k+1 − x2k

)
> 2

n∑

k=1

k2β−1 >
n2β

β
x2n+1 > a+

n2β

β
>
n2β

β
xn >

(n− 1)β√
β

.

Thus, lim
n→∞xn =∞.
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We can prove that sequence
xn
nβ

has an upper bound.

Indeed, since xn >
(n− 1)β√

β
then Sn >

n∑

k=1

(k − 1)β√
β

>
1√
β

n−1∑

k=1

kβ >
(n− 1)β+1

(β + 1)
√
β

and, therefore ,

xn+1 − xn =
n2β

Sn
<
n2β (β + 1)

√
β

(n− 1)β+1
= nβ−1 ·

(
1 +

1

n− 1

)β+1

(β + 1)
√
β < Knβ−1,

where

K = e (β + 1)
√
β, because

(
1 +

1

n− 1

)β+1

<

(
1 +

1

n− 1

)n−1
< e for any n bigger

then some n0 > 0.

Then xn+1 − xn0 <
K (n+ 1)β

β

xn
nβ

<
xn0

nβ
+
K

β
, n ≥ n0.

If I can prove that
xn
nβ

is increasing, then we can conclude that lim
n→∞

xn
nβ

exists.

Attempts to do so failed.

Or, assuming that

(
xn
nβ

)

n∈N
is convergent we can try to find L = lim

n→∞
xn
nβ
, but later

we must prove that the obtained value is really the desired limit. Value of L can be
obtained repeatedly using Stolz Theorem:

Indeed, using* lim
n→∞

(n+ 1)α − nα
αnα−1

= 1, α > 0 we obtain

L= lim
n→∞

xn
nβ

= lim
n→∞

xn+1 − xn
(n+ 1)β − nβ

= lim
n→∞

xn+1 − xn
βnβ−1

= lim
n→∞

n2β

βnβ−1Sn
=

1

β
lim
n→∞

nβ+1

Sn
=

1

β
lim
n→∞

(n+ 1)β+1 − nβ+1

Sn+1 − Sn
=

1

β
lim
n→∞

(n+ 1)β+1 − nβ+1

Sn+1 − Sn
=
β + 1

β
lim
n→∞

nβ

xn+1
=

β + 1

β
lim
n→∞

(
xn
xn+1

· n
β

xn

)
=
β + 1

β
lim
n→∞

nβ

xn
=
β + 1

β
.
1

L
L =

√
β + 1

β
.

(here, the chain of equalities according to Stolz Theorem works from the right to the
left).

But attempts to prove that lim
n→∞

xn
nβ

=

√
β + 1

β
failed as well.

(*) By Mean Value Theorem (n+ 1)α − nα = αcα−1n , where cn ∈ (n, n+ 1)

and, therefore, αmin
{
nα−1, (n+ 1)α−1

}
< (n+ 1)α − nα < αmax

{
nα−1, (n+ 1)α−1

}
.

Hence, αmin

{
1,

(n+ 1)α−1

nα−1

}
<

(n+ 1)α − nα
nα−1

< αmax

{
1,

(n+ 1)α−1

nα−1

}
.

——————————–

Editor again: I sent Arkady’s comments to Ovidiu (proposer of the problem), and he
answered as follows:
“I have read Prof. Alt’s comments on problem 5229 and he is right, namely the

applicability of the Stolz-Cesaro lemma is valid provided that lim
x{n+1} − xn

(n+ 1)β − nβ exists,

which I failed to prove. It seems hard to establish the existence of this limit. It appears
that the solution of this problem is incomplete, as Prof. Alt has observed.”
Ovidiu went on to say that he had communicated the above to some of his colleagues,
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but to date, they had not been able to solve, or circumvent the glitch.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2013

• 5259: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that with a < b < c,



ab+ bc+ ca = −2
a2b2 + b2c2 + c2a2 = 6
a3b3 + b3c3 + c3a3 = −11.

• 5260: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find all primes p and q such that apq−1 ≡ a (mod pq), for all a relatively prime to pq.

• 5261: Proposed by Michael Brozinsky, Central Islip, NY

Show without calculus or trigonometric functions that the shortest focal chord of an
ellipse is the latus rectum.

• 5262: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Prove that the equation ϕ(10x2) + ϕ(30x3) + ϕ(34x4) = y2 + y3 + y4 has infinitely many
solutions for x, y ∈ N where ϕ(x) is the Euler-ϕ function.

• 5263: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let a, b, c be positive numbers lying in the interval (0, 1]. Prove that

a ·
√

bc

1 + c+ ab
+ b ·

√
ca

1 + a+ bc
+ c ·

√
ab

1 + b+ ca
≤
√

3.

• 5264: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be positive real numbers. Show that if

∑

cyclic

(n+ 1)x3 + nx

x2 + 1
= α
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then ∑

cyclic

1

x
>

3n

α
+

(2n− 1)α

3n
+

3nα

9n2 + α2

where n is a positive integer. Cyclic means the cyclic permutation of x, y, z (and not
x, y, z and α).

Solutions

• 5242: Proposed by Kenneth Korbin, New York, NY

Let N be any positive integer, and let x = N(N + 1). Find the value of

x/2∑

K=0

(
x−K
K

)
xK .

Solution 1 by Anastasios Kotronis, Athens, Greece,

Using m instead of x for notation convenience we compute the generating function of
m/2∑

k=0

(
m− k
k

)
yk:

∑

m≥0

m/2∑

k=0

(
m− k
k

)
yktm =

∑

k≥0
yk

∑

m≥2k

(
m− k
k

)
tm

=
∑

k≥0
yk
∑

m≥0

(
m+ k

k

)
tm+2k

=
∑

k≥0
yk
∑

m≥0

(
m+ k

m

)
tm+2k

=
∑

k≥0
(yt2)k

∑

m≥0

(
−k − 1

m

)
(−t)m

=
∑

k≥0
(yt2)k(1− t)−k−1

=
1

1− t
∑

k≥0

(
yt2

1− t

)k

=
1

1− t− yt2
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It is easily shown, decomposing into partial fraction and expanding the geometric series,
that if ax2 + by + c has two distinct non negative roots ρ1, ρ2, then

1

ax2 + by + c
=
∑

m≥0

1

a(ρ1 − ρ2)
(
ρ−m−12 − ρ−m−11

)
xm,

so

∑

m≥0

m/2∑

k=0

(
m− k
k

)
yktm =

∑

m≥0

1√
1 + 4y

(( −2y

1−√1 + 4y

)m+1

−
( −2y

1 +
√

1 + 4y

)m+1
)
tm

and hence

m/2∑

k=0

(
m− k
k

)
yk =

1√
1 + 4y

(( −2y

1−√1 + 4y

)m+1

−
( −2y

1 +
√

1 + 4y

)m+1
)
.

Putting m in the place of y and then N(N + 1) in the place of m in the above relation,
and since N(N + 1) + 1 is odd, we get

N(N+1)/2∑

K=0

(
N(N + 1)−K

K

)
(N(N + 1))K =

1

2N + 1

(
(N + 1)N

2+N+1 +NN2+N+1
)
.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We will attack this problem in four steps.

1. If q > 0, let

xn =

bn2 c∑

k=0

(
n− k
k

)
qk

for n ≥ 1. Then, x1 = 1, x2 = 1 + q, and for n ≥ 1,

xn+1 + qxn =

bn+1
2 c∑

k=0

(
n+ 1− k

k

)
qk + q

bn2 c∑

k=0

(
n− k
k

)
qk

=

bn+1
2 c∑

k=0

(
n+ 1− k

k

)
qk +

bn2 c∑

k=0

(
n− k
k

)
qk+1

=

bn+1
2 c∑

k=0

(
n+ 1− k

k

)
qk +

bn2 c+1∑

k=1

(
n− k + 1

k − 1

)
qk.

Note that if n is odd, then

⌊
n+ 1

2

⌋
=

⌊
n+ 2

2

⌋
=

⌊
n

2

⌋
+ 1 =

n+ 1

2
, while if n is even,

then

⌊
n+ 1

2

⌋
=
n

2
and

⌊
n+ 2

2

⌋
=

⌊
n

2

⌋
+ 1 =

n

2
+ 1. It follows that if n is odd,

xn+1 + qxn =

n+1
2∑

k=0

(
n+ 1− k

k

)
qk +

n+1
2∑

k=1

(
n− k + 1

k − 1

)
qk
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= 1 +

n+1
2∑

k=1

[(
n+ 1− k

k

)
+

(
n+ 1− k
k − 1

)]
qk

= 1 +

n+1
2∑

k=1

(
n+ 2− k

k

)
qk

=

n+1
2∑

k=0

(
n+ 2− k

k

)
qk

=

bn+2
2 c∑

k=0

(
n+ 2− k

k

)
qk

= xn+2

while if n is even,

xn+1 + qxn =

n
2∑

k=0

(
n+ 1− k

k

)
qk +

n
2
+1∑

k=1

(
n− k + 1

k − 1

)
qk

= 1 +

n
2∑

k=1

[(
n+ 1− k

k

)
+

(
n+ 1− k
k − 1

)]
qk + q

n
2
+1

= 1 +

n
2∑

k=1

(
n+ 2− k

k

)
qk + q

n
2
+1

=

n
2
+1∑

k=0

(
n+ 2− k

k

)
qk

=

bn+2
2 c∑

k=0

(
n+ 2− k

k

)
qk

= xn+2.

Therefore, {xn} can also be described by the recursive definition x1 = 1, x2 = 1 + q, and
xn+2 = xn+1 + qxn for all n ≥ 1.

2. We can now find a closed form formula for {xn} by following the usual method for
solving homogeneous linear difference equations with constant coefficients. This entails
considering solutions of the form xn = tn for some t 6= 0. Then, the recurrence relation
xn+2 = xn+1 + qxn becomes

tn+2 = tn+1 + qtn
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or

t2 = t+ q (1)

since t 6= 0. Further, q > 0 guarantees that (1) has two distinct real solutions

t1 =
1 +
√

1 + 4q

2
and t2 =

1−√1 + 4q

2
.

In this situation, the general solution is

xn = c1t
n
1 + c2t

n
2

for some constants c1 and c2. Finally, the initial conditions x1 = 1 and x2 = 1 + q imply
that

c1 =
t1√

1 + 4q
and c2 =

−t2√
1 + 4q

.

As a result, we have

xn =
tn+1
1 − tn+1

2√
1 + 4q

for n ≥ 1.

3. By Parts 1 and 2,

bn2 c∑

k=0

(
n− k
k

)
qk

=
1√

1 + 4q



(

1 +
√

1 + 4q

2

)n+1

−
(

1−√1 + 4q

2

)n+1

 (2)

for all n ≥ 1. In particular, since n (n+ 1) is always even, we have

⌊
n (n+ 1)

2

⌋
=
n (n+ 1)

2

and (2) yields

n(n+1)
2∑

k=0

(
n (n+ 1)− k

k

)
qk

=
1√

1 + 4q



(

1 +
√

1 + 4q

2

)n(n+1)+1

−
(

1−√1 + 4q

2

)n(n+1)+1

 (3)

for n ≥ 1.

4. Finally, if we substitute q = n (n+ 1) in (3), then
√

1 + 4q = 2n+ 1 and for all n ≥ 1,
we get

n(n+1)
2∑

k=0

(
n (n+ 1)− k

k

)
[n (n+ 1)]k =

(n+ 1)n(n+1)+1 − (−n)n(n+1)+1

2n+ 1
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=
(n+ 1)n(n+1)+1 + nn(n+1)+1

2n+ 1

(since n (n+ 1) + 1 is odd for all n ≥ 1).

Solution 3 by Adrian Naco, Polytechnic University, Tirana, Albania

Based on the Solution by Dionne Bailey, Elsie Campbell, and Charles
Diminnie (jointly), San Angelo, TX. to problem 4919, SSMA,
February 2007 ,for n ∈ Z∗+ and 0 ≤ k ≤ n+ 2, we have that

(
2n+ 4− k

k

)
=

(
2n+ 2− k

k

)
+ 2

(
2n+ 3− k
k − 1

)
−
(

2n+ 2− k
k − 2

)
.

Let S(n) =
n∑

k=0

(
2n− k
k

)
zk, (z is constant) ∀n ≥ 1. Then we have that,

S(n+ 2) =
n+2∑

k=0

(
2n+ 4− k

k

)
zk = 1 + (2n+ 3)z +

n+1∑

k=2

(
2n+ 4− k

k

)
zk + zn+2

= 1 + (2n+ 3)z +
n+1∑

k=2

[(
2n+ 2− k

k

)
+ 2

(
2n+ 3− k
k − 1

)
−
(

2n+ 2− k
k − 2

)]
zk + zn+2

= 2z +
n+1∑

k=0

(
2n+ 2− k

k

)
zk + 2

n+1∑

k=2

(
2n+ 3− k
k − 1

)
zk −

n+1∑

k=2

(
2n+ 2− k
k − 2

)
zk + zn+2

= 2z + S(n+ 1) + 2
n∑

k=1

(
2n+ 2− k

k

)
zk+1 −

n−1∑

k=0

(
2n− k
k

)
zk+2 + zn+2

= 2z + S(n+ 1) + 2z
n∑

k=1

(
2n+ 2− k

k

)
zk − z2

n−1∑

k=0

(
2n− k
k

)
zk + zn+2

= 2z + S(n+ 1) + 2z [S(n+ 1)− 1− zn+1 ]− z2 [S(n)− zn ] + zn+2

= (1 + 2z)S(n+ 1)− z2S(n).

As a result, we get the following homogeneous linear difference equation with constant
coefficients,

S(n+ 2)− (1 + 2z)S(n+ 1) + z2S(n) = 0.

Solving the respective characteristic equation (considering z as constant),

r2 − (1 + 2z)r + z2 = 0

we get the solutions

r1 =
(1 + 2z) +

√
1 + 4z

2
, and r2 =

(1 + 2z )−
√

1 + 4z

2
.
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The general formula for S(n) is

S(n) = C1r
n
1 + C2r

n
2 , n ∈ Z∗+.

Considering the fact that S(1) = 1 + z and S(2) = 1 + 3z + z2 we have that

S(1) = C1r1 + C2r2 = 1 + z =
1∑

k=0

(
2− k
k

)
zk and

S(2) = C1r
2
1 + C2r

2
2 = 1 + 3z + z2 =

2∑

k=0

(
4− k
k

)
zk

from where it implies that

C1 =
(1 + 3z + z2)− r2(1 + z)

r1(r1 − r2)
and C2 =

(1 + 3z + z 2)− r1(1 + z )

r2(r2 − r1)
.

Finally,

S(n) =
n∑

k=0

(
2n− k
k

)
zk = C1 · rn1 + C2 · rn2

=
(1 + z)

√
1 + 4z + (1 + 3z)

2
√

1 + 4z
· rn−11 +

(1 + z)
√

1 + 4z − (1 + 3z)

2
√

1 + 4z
· rn−12

=
1

2
√

1 + 4z

{
[(1 + z)

√
1 + 4z + (1 + 3z)]rn−11 + [(1 + z)

√
1 + 4z − (1 + 3z)]rn−12

}
.

Thus, the general formula is,

S(n) =
1

2
√

1 + 4z

{
[(1 + z)

√
1 + 4z + (1 + 3z)]rn−11 + [(1 + z)

√
1 + 4z − (1 + 3z)]rn−12

}
.

Applying the above formula for z = x = 2n = N(N + 1), (since N(N + 1) is an
even number for N ∈ Z∗+), and after making some manipulations, we have that,

r1 = (N + 1)2, r2 = N2, C1 =
N + 1

2N + 1
, C2 =

N

2N + 1
, N =

√
1 + 4x− 1

2

⇒
x/2∑

k=0

(
x− k
k

)
xk =

N + 1

2N + 1
· (N + 1)N(N+1) +

N

2N + 1
·NN(N+1)

⇒
x/2∑

k=0

(
x− k
k

)
xk =

1

2N + 1

[
(N + 1)N(N+1)+1 +NN(N+1)+1

]

or related to x , (x = N (N + 1)), we get the formula,
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⇒
x/2∑

k=0

(
x− k
k

)
xk =

1

2x+1
√

1 + 4x

[
(
√

1 + 4x+ 1)x+1 + (
√

1 + 4x− 1)x+1
]
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China, and the proposer.

• 5243: Proposed by Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

If a, b, c are consecutive Pythagorean numbers, then solve in the integers the equation:

x2 + bx

ay − 1
= c.

(A consecutive Pythagorean triple is a Pythagorean triple that is composed of
consecutive integers.)

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, NY

There are no solutions to the equation for a consecutive Pythagorean triple.

Assume that a is a positive integer and b = a+ 1, c = a+ 2 so that a, b, c is a consecutive
Pythagorean triple. Then a2 + (a+ 1)2 = (a+ 2)2 reduces to the quadratic equation
a2 − 2a− 3 = 0 whose only positive integer solution is a = 3. Therefore
a = 3, b = 4, c = 5 is the only positive consecutive Pythagorean triple and the given
equations becomes

x2 + 4x

3y − 1
= 5.

Note that if y = 0 the the equation is undefined. If y < 0, then y = −n for some positive
integer n. The equation then reduces to 3n(x2 + 4x) = 5(1− 3n). Since 3 is a prime, it
follows that either 3 divides 5 or 3 divides 1− 3n, both contradictions.

Hence, y > 0 and x2 + 4x = 5(3y − 1) or x2 + 4x+ 5 = 3y = 5. Let p(x) = x2 + 4x+ 5. If
x ≡ 0(mod 3), then p(x) ≡ 2(mod 3). Therefore, p(x) = x2 + 4x+ 5 is never congruent
to 0 module 3 for any integer x. However, 3y5 ≡ 0(mod 3) for each integer y > 0. Hence,
there are no nonzero solutions, where y 6= 0 to the equation x2 + 4x+ 5 = 3y5 and this
completes the solution.

Editor’s comment: Some readers gave (0, 0) and (−4, 0) as solutions to the equation
x2 + 4x+ 5 = 3y5. This certainly true, but the expression x2 + 4x+ 5 = 3y5 was
obtained from the original statement of the problem under the assumption that y 6= 0.

(
x2 + 4x

3y − 1
= 5

)
⇐⇒

(
x2 + 4x+ 5 = 3y5

)
if, and only if y 6= 0.

In this case, multiplication by the denominator is not valid. Stated otherwise, the

equation
x2 + 4x

3y − 1
= 5 has no solution, but the equation x2 + 4x+ 5 = 3y5 has two

8X
ia
ng
’s
T
ex
m
at
h



integer solutions, (0, 0) and (−4, 0). The two equations are not equivalent to one
another because they have different domains of definition.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed
Gray, Highland Beach, FL; David Stone and John Hawkins (jointly),
Georgia Southern University, Statesboro, GA, and the proposer.

• 5244: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let Ta and Sb denote the ath triangular and the bth square number, respectively. Find
explicit instances of such numbers to prove that every Fibonacci number Fn occurs
among the values gcd(Ta, Sb).

Solution 1 by David Diminnie, Texas Instruments, Inc., Dallas, TX

Recall that Ta =
a (a+ 1)

2
and Sb = b2. If we set a = 2Fn and b = Fn then by applying

the identity gcd (p, q) = gcd (p− q, q) , p > q we may evaluate gcd (Ta, Sb) as follows:

gcd (T2Fn , SFn) = gcd

(
2Fn (2Fn + 1)

2
, F 2

n

)

= gcd
(
2F 2

n + Fn, F
2
n

)

= gcd
(
F 2
n + Fn, F

2
n

)

= gcd
(
Fn, F

2
n

)

= Fn.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie,
(jointly), Angelo State University, San Angelo, TX

More generally, we will show that for every positive integer n,
gcd (T2n, S2n) = n. The desired result then follows as an easy application of this
property. To do so, we will use the following elementary results from number theory.

Lemma 1. If m and n are positive integers and d is a positive common divisor of m and

n such that gcd

(
m

d
, nd

)
= 1, then d = gcd (m,n).

Proof. Since gcd (md, nd) = 1, there are integers a and b such that

1 = a

(
m

d

)
+ b

(
n

d

)

or
d = am+ bn.

Then, any positive common divisor of m and n must also divide d and it follows that
d = gcd (m,n).

Lemma 2. For every positive integer n, gcd (2n+ 1, 4n) = 1.

Proof. If d = gcd (2n+ 1, 4n), then d divides (2n+ 1) and hence, d is odd. Further, since
d is odd and d divides 4n, d must divide n. Finally, d is a common divisor of n and
(2n+ 1) implies that d divides (2n+ 1)− 2n = 1. Therefore, d = 1.
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For any positive integer n,

T2n =
2n (2n+ 1)

2
= n (2n+ 1) and S2n = 4n2.

Then, n is a positive common divisor of T2n and S2n and Lemma 2 implies that

gcd

(
T2n
n
,
S2n
n

)
= gcd (2n+ 1, 4n) = 1.

By Lemma 1, we have gcd (T2n, S2n) = n and our solution is complete.

Solution 3 by Paul M. Harms, North Newton, KS

We have Ta = a(a+ 1)/2 and Sb = b2. When the Fibonacci number Fn is an odd integer
let a = Fn = b. Then a+ 1 is even and the number a = Fn does not have any common
factor (except 1) with a+ 1 or (a+ 1)/2.

With Sb = b2 = F 2
n , the gcd(Ta, Sb) =gcd

(
Fn (Fn + 1) , F 2

n

)
= Fn. When Fn is an even

integer let a = 2Fn and b = Fn. Then a+ 1 is odd and has no common factors with
a/2 = Fn. Again we have gcd(Ta, Sb) =gcd

(
Fn (2Fn + 1) , F 2

n

)
= Fn.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; David
E. Manes, SUNY College at Oneonta, Oneonta, NY; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA and the proposer.

• 5245: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Determine all real valued functions f : <− {−2,−1

2
,−1, 0,

1

2
, 1, 2} → <, which satisfy

the relation

f(x) + f

(−x− 5

2x+ 1

)
+ f

(
4x+ 5

−2x+ 2

)
= ax+ b

where a, b,∈ <.

Solution 1 by Adrian Naco, Polytechnic University, Tirana, Albania

If we let, g(x) =
−x− 5

2x+ 1
, h(x) =

4x+ 5

−2x+ 2
, then we have that,

(g ◦ g)(x) = x (1)

(g ◦ h)(x) = (h ◦ g)(x) (2)

and (h ◦ h)(x ) = g(x) (3)

Thus the given problem can be expressed as,

f(x) + (f ◦ g)(x) + (f ◦ h)(x) = ax+ b, (4)
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Considering equation (4) and applying for g(x), it implies that,

(f ◦ g)(x) + [f ◦ (g ◦ g)](x) + (f ◦ h ◦ g)(x) = ag(x) + b, or equvalently

(f ◦ g)(x) + f(x) + (f ◦ h ◦ g)(x) = ag(x) + b, (5)

Considering typos (4) and applying for h(x), it implies that,

(f ◦ h)(x) + [f ◦ (g ◦ h)](x) + (f ◦ h ◦ h)(x) = ah(x) + b, or equivalently

(f ◦ h)(x) + [f ◦ (g ◦ h)](x) + (f ◦ g)(x) = ah(x) + b, (6)

Considering equation (5) and applying for h(x), it implies that,

(f ◦ g ◦ h)(x) + (f ◦ h)(x) + (f ◦ h ◦ g ◦ h)(x) = a(g ◦ h)(x) + b, or equivalently

(f ◦ g ◦ h)(x) + (f ◦ h)(x) + f(x) = a(g ◦ h)(x) + b, (7)

Adding (simultaneously) side by side equations in (4), (5), and (6) to equation (7), results in,

3[f(x) + (f ◦ g)(x) + (f ◦ h)(x) + (f ◦ g ◦ h)(x)] = ax+ ag(x) + ah(x) + a(g ◦ h)(x) + 4b,

f(x) + (f ◦ g)(x) + (f ◦ h)(x) + (f ◦ g ◦ h)(x) =
1

3
[ax+ ag(x) + ah(x) + a(g ◦ h)(x) + 4b], (8)

Finally, if we subtract equation (6) from equation (8), then,

f(x) =
1

3
a[x+ g(x)− 2h(x) + (g ◦ h)(x)] +

1

3
b

⇔ f(x) =
1

3
a

[
x+
−x− 5

2x+ 1
− 2

4x+ 5

−2x+ 2
+

2x− 5

2x+ 4

]
+

1

3
b

⇔ f(x) =
1

3
a

[
x− x+ 5

2x+ 1
+

4x+ 5

x− 1
+

2x− 5

2(x+ 2)

]
+

1

3
b

⇔ f(x) =
a

3
· 4x4 + 24x3 + 30x2 + 59x+ 45

2(2x3 + 3x2 − 3x− 2)
+

1

3
b

Solution 2 by David Diminnie, Texas Instruments, Inc., Dallas, TX, and Charles
Diminnie, Angelo State University, San Angelo, TX
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The restrictions on the domain and range in the problem statement appear to be swapped,
and the domain restriction appears to be both overly stringent and missing a critical value.

For the discussion below we will assume that f : <−
{
−2, −1

2 , 1
}
→ < satisfies

f(x) + f

(−x− 5

2x+ 1

)
+ f

(
4x+ 5

−2x+ 2

)
= ax+ b (1)

for given a, b ∈ <. 8pt

Consider the function g : <−
{
−2, −1

2
, 1

}
→ < with definition

g(x) =
4x+ 5

−2x+ 2
.

Since g(x) 6= −2, −1
2 , 1 when x 6= −2, −1

2 , 1 it follows that

g2(x) = (g ◦ g)(x) =
4g(x) + 5

−2g(x) + 2
=
−x− 5

2x+ 1
.

Similarly, g2(x) 6= −2, −1

2
, 1 when x 6= −2, −1

2
, 1 and we see that

g3(x) = (g ◦ g ◦ g)(x) =
−g(x)− 5

2g(x) + 1
=

2x− 5

2x+ 4
.

Finally, g3(x) 6= −2, −1

2
, 1 when x 6= −2, −1

2
, 1 implies that

g4(x) = (g ◦ g ◦ g ◦ g)(x) =
2g(x)− 5

2g(x) + 4
= x.

As a result, we can see (by Comment 1) that gn(x) = gnmod4(x) may therefore be
re-expressed as

f(x) + f
(
g2(x)

)
+ f (g(x)) = ax+ b. (2)

If we substitute g(x), g2(x), g3(x) into (2), taking advantage of the fact that
gi+j(x) = gi+jmod4(x) (with g0(x) ≡ x), we obtain the following additional relations
(respectively):

f (g(x)) + f
(
g3(x)

)
+ f

(
g2(x)

)
= ag(x) + b (3)

f
(
g2(x)

)
+ f (x) + f

(
g3(x)

)
= ag2(x) + b (4)

f
(
g3(x)

)
+ f (g(x)) + f(x) = ag3(x) + b. (5)

By adding (2), (4), and (5) and subtracting two times (3) from the result (again, with

x 6= −2, −1

2
, 1), we may find an expression for f(x):

3f(x) = a
(
x+ g2(x) + g3(x)− 2g(x)

)
+ b
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f(x) =
a

3

(
x+ g2(x) + g3(x)− 2g(x)

)
+
b

3

f(x) =
a

3

(
x− x+ 5

2x+ 1
+

2x− 5

2x+ 4
− 4x+ 5

−x+ 1

)
+
b

3
. (6)

To verify (6) is a solution, note that

f

(
4x+ 5

−2x+ 2

)
=

a

3

(
4x+ 5

−2x+ 2
+

2x− 5

2x+ 4
+ x+

2x+ 10

2x+ 1

)
+
b

3

f

(−x− 5

2x+ 1

)
=

a

3

(−x− 5

2x+ 1
+ x+

4x+ 5

−2x+ 2
− 2x− 5

x+ 2

)
+
b

3

and therefore

f(x) + f

(
4x+ 5

−2x+ 2

)
+ f

(−x− 5

2x+ 1

)
= ax+ b.

Comment 1. Note that

{
x,

4x+ 5

−2x+ 2
,
−x− 5

2x+ 1
,

2x− 5

2x+ 4

}
=
{
g0(x), g(x), g2(x), g3(x)

}
forms a

cyclic group of order 4 under function composition, with generator g(x): Function
composition is an associative operation, the identity element is g0(x) = g4(x) = x (and hence
gn(x) = gnmod4(x), as claimed above, so the set is closed under composition), and
gk ◦ g4−k(x) = g4−k ◦ gk(x) = x for k = 0, 1, 2, 3.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

Let L(x) = ax+ b, h(x) =
−x− 5

2x+ 1
= − x+ 5

2x+ 1
and k(x) =

4x+ 5

−2x+ 2
= − 4x+ 5

2(x− 1)
.

Then the given condition becomes

(1) f(x) + f (h(x)) + f (k(x)) = L(x).

Suppressing the argument x and adopting concatenation to represent composition, this
becomes a functional condition:

(1a) f + fh+ fk = L.

Straightforward computation shows that h2(x) = h(h(x)) = x, that

k2(x)=h(x) and h(k(x )) = k(h(x )) =
2x − 5

2(x + 2)
.

That is, with i denoting the identity function,

(2) h2 = i, k2 = h and kh = hk .

It follows that k4 = i and khk = hk2 = hk = i.

Applying both sides of (1a) to h(x) yields fh+ fh2 + fkh = Lh, or

(3) fh+ f + fkh = Lh.
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Applying both sides of (1a) to k(x) yields fk + fhk + fkk = Lk or

(4) fk + fhk + fh = Lk.

Finally, applying both sides of (3) to k(x) yields fhk + fk + fkhk = Lhk, or

(5) fhk + fk + f = Lhk.

Thus we have a system of 4 equations in the 4 unknowns, f, fh, fk, fhk:




f + fh+ fk = L

f + fh + fhk = Lh

fh+ fk + fhk = Lk

f + fk + fhk = Lhk

Calculations reveal that

(6) f =
1

3
{L+ Lh+ Lhk − 2Lk}.

That is,

f(x) =
1

3
{ax+ b+ ah(x) + b+ ah(k(x)) + b− 2ak(x)− 2b}

=
a

3

{
x+ h(x) + h(k(x))− 2k(x)}+

b

3

=
a

3

{
x+
−x− 5

2x+ 1
+

2x− 5

2(x+ 2)
− 2

4x+ 5

−2x+ 2

}
+
b

3

=
a

3

{
4x4 + 24x3 + 30x3 + 59x+ 45

2(2x+ 1)(x− 1)(x+ 2)

}
+
b

3
.

Comment 1. More generally, note that if h and k are any two functions such that h has order
2, k2 = h and h commute with k, then (6) gives the function f satisfying (1).

Comment 2. We believe that he domain and codomain of f , as stated in in the problem, are a
typo. The conditions on the domain and codomain of f (and h and k and kh) are probably
best summarized as “for all x for which everything makes sense.” The domain of f consists of

all reals except the obvious ones: 1,−2 and −1

2
.

Then fh is well defined because h is defined for all x except −1

2
and does not map any real to

−1

2
. Similarly fk is defined because k is defined for all reals except 1 and has range all reals

except −2.

The composed functions kh = hk both map from <− {−2} to <− {1} despite the technical
concerns with domains.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Boris Rays, Brooklyn,
NY, and the proposers.
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• 5246: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia, Barcelona,
Spain

Let a1, a2, . . . an, (n ≥ 3) be distinct complex numbers. Compute the sum

n∑

k=1

sk
∏

j 6=k

(−1)n

aj − ak
,

where sk =

(
n∑

i=1

ai

)
− ak, 1 ≤ k ≤ n.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let f : C → C be the function defined by f(a) =

(
n∑

i=1

aj

)
− a, a ∈ C. Then f is a polynomial

function such that f(ak) = sk, 1 ≤ k ≤ n. It is also known that there is only one polynomial
function p : C → C with degree less than n and such that p(ak) = sk, 1 ≤ k ≤ n which can be
obtained for example with the Lagrange interpolation formula:

p(a) =
n∑

k=1

sk
∏

j 6=k

a− aj
ak − aj

=
n∑

k=1

sk

∏

j 6=k

(a− aj)

(−1)n−1
∏

j 6=k

(aj − ak)
=
∑ (−1)n−1 sk∏

j 6=k

(aj − ak)

∏

j 6=k

(a− aj) .

So, both polynomial functions p and f , must be equal; in particular, their respective leading

coefficients must coincide, that is
n∑

k=1

(−1)n−1 sk∏

j 6=k

(aj − ak)
= 0. Thus, the required sum is

n∑

k=1

(−1)n∏

j 6=k

(aj − ak)
= 0.

Solution 2 by Paul M. Harms, North Newton, KS

Consider the polynomial

P (x) =
(x− a2)(x− a3) · · · (x− an)

(a1 − a2)(a1 − a3) · · · (a1 − an)
+

(x− a1)(x− a3) · · · (x− an)

(a2 − a1)(a2 − a3) · · · (a2 − an)

+ · · · (x− a1)(x− a2) · · · (x− an−1)
(an − a1)(an − a2) · · · (an − an−1)

− 1.

We see that the degree of p(x) is n− 1. Note that 0 = p(a1) = p(a2) = · · · = p(an).

Since n different complex number have a polynomial value of zero for the n− 1 degree
polynomial, the polynomial must be identically zero.

If p(x) (given above is expanded, then all coefficients of the different powers of x must be zero.
Consider the coefficient of xn−2. From the first fraction of p(x) the coefficient of xn−2 is

−(a2 + a3 + · · ·+ an)

(a1 − a2)(a1 − a3) · · · (a1 − an)
=

−s1
(a1 − a2)(a1 − a3) · · · (a1 − an)

.
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We see that the coefficient of xn−2 for p(x) is

−s1
(a1 − a2)(a1 − a3) · · · (a1 − an)

+
−s2

(a2 − a1)(a2 − a3) · · · (a2 − an)
+ · · ·

+
−sn

(an − a1)(an − a2) · · · (an − an−1)
= 0.

The left side of the last equality is equal to or the negative of the summation in the problem.
Thus the summation in the problem is zero.

Also solved by the proposer.

• 5247: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate

lim
n→∞

1

n
n

√∫ 1

0
ln(1 + ex) ln(1 + e2x) · · · ln(1 + enx) dx.

Solution 1 by Anastasios Konronis, Athens, Greece

For n ∈ N, x ∈ (0, 1] we have

ln(1 + ex) · ln(1 + e2x) · · · ln(1 + enx) = n!xn
n∏

k=1

(
1 +

ln(1 + e−kx)

kx

)
= n!xn

n∏

k=1

(
1 +O

(
e−kx

kx

))

= n!xn
(

1 +O
(
e−x

xn

))

= n!
(
xn +O (e−x))

so

∫ 1

0
ln(1 + ex) · ln(1 + e2x) · · · ln(1 + enx) =

n!

n+ 1
(1 +O(n)) .

Now from the above and taking into account that, from Stirling’s formula,

lnn! = n lnn− n+O(lnn)

we get that

1

n
n

√∫ 1

0
ln(1 + ex) · ln(1 + e2x) · · · ln(1 + enx) dx =

1

n
exp

(
1

n
ln

(
n!

n+ 1
(1 +O(n))

))

=
1

n
exp

(
lnn− 1 +O

(
lnn

n

))
= e−1 +O

(
lnn

n

)
→ e−1

Solution 2 by Arkady Alt, San Jose, California, USA.
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Let fn (x) =
n∏

k=1
ln
(
1 + ekx

)
. Since fn (x) >

n∏
k=1

ln
(
ekx
)

= xnn! then

∫ 1

0
fn (x) dx > n!

∫ 1

0
xndx =

n!

n+ 1
.

On the other hand, since fn (x)fn (1) ≤ 1 we have

∫ 1

0
fn (x) dx ≤ fn (1)

∫ 1

0
dx = fn (1) .

Thus,

1

n
n

√
n!

n+ 1
<

1

n
n

√∫ 1

0
fn (x) dx ≤ 1

n
n

√
fn (1).

Let an =
fn (1)

nn
.

Since

lim
n→∞

an
an−1

= lim
n→∞

(
fn (1)

nn
· (n− 1)n−1

fn−1 (1)

)

= lim
n→∞

((
1− 1

n

)n−1
· ln (1 + en)

n

)

= lim
n→∞

(
1− 1

n

)n−1
· lim
n→∞

ln (1 + e−n) + n

n

= e−1 · 1 = e−1

then by *, the Multiplicative Stolz Theorem lim
n→∞

1

n
n

√
fn (1) = lim

n→∞
n
√
an = lim

n→∞
an
an−1

= e−1.

Also we have

lim
n→∞

1

n
n

√
n!

n+ 1
= lim

n→∞

n
√
n!

n
· 1

n
√
n+ 1

= lim
n→∞

n
√
n!n · lim

n→∞
1

n
√
n+ 1

= e−1 · 1 = e−1.

(Note: lim
n→∞

n
√
n!

n
= e−1. Indeed,

(
n

e

)n

< n! <

(
n+ 1

e

)n

(n+ 1)⇒

1

e
<

n
√
n!

n
<

1

e
· n+ 1

n
· n
√
n+ 1,
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or again, applying the Multiplicative Stolz Theorem to n

√
n!

nn
).

Then by the squeeze principle,

lim
n→∞

1

n
n

√
fn (1) = lim

n→∞

n
√
n!

n
= e−1 = e−1 yields

lim
n→∞

1

n
n

√∫ 1

0
fn (x) dx = e−1.

* We use the Multiplicative Stolz Theorem in the following form:

If the sequence

(
an+1

an

)

n≥1
has a limit then the sequence

(
n
√
an
)
n≥1 has a limit and

lim
n→∞

n
√
an = lim

n→∞
an+1

an
.

Solution 3 by Kee-Wai, Hong Kong, China

We show that the limit equals
1

e
.

Denote the integrand by f(x). Since f(x) > (x)(2x) · · · (nx) = (n!)xn, so

∫ 1

0
f(x)dx >

n!

n+ 1
. (1)

For 0 ≤ x ≤ 1 and k = 1, 2, · · · , n, we have

1 + ekx ≤ 1 + ek < 2ek < e1+k, so that

f(x) < (n+ 1)! and

∫ 1

0
f(x)dx < (n+ 1)!. (2)

By Stirling’s formula for n! we have

lim
n→∞

1

n
n

√
n!

n+ 1
= lim

n→∞
1

n
n

√
(n+ 1)! =

1

e
.

Now by (1), (2) and the squeezing principle, we obtain the result we claimed.

Also solved by Paul M. Harms, North Newton, KS; Adrian Naco, Polytechnic
University, Tirana, Albania and the proposer.

Mea Culpa (yet again)

Featured solution 5241(3) that appeared in the April 2013 issue of the column was submitted
jointly by Anastasios Kotronis and Konstantinos Tsouvalas, University of Athens,
Athens, Greece. I inadvertently forgot to list Konstantinos’ name. Sorry.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2013

• 5265: Proposed by Kenneth Korbin, New York, NY

Find positive integers x and y such that

2x− y −
√

3x2 − 3xy + y2 = 2014,

with (x, y) = 1.

• 5266: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The pentagonal numbers begin 1, 5, 12, 22, · · · and in general satisfy

Pn =
n(3n− 1)

2
, ∀n ≥ 1. The positive Jacobsthal numbers, which have applications in

tiling and graph matching problems, begin 1, 1, 3, 5, 11, 21, · · · with general term

Jn =
2n − (−1)n

3
, ∀n ≥ 1. Prove that there exists infinitely many pentagonal numbers

that are the sum of three Jacobsthal numbers.

• 5267: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania, and Neculai Stanciu, “Geroge Emil Palade” General School,
Buzău, Romania

Let n be a positive integer. Prove that

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
+ (Ln + Ln+2)

2 ≥ 2
√

6
(√

LnLn+1

)
Ln+2,

where Fn and Ln represents the nth Fibonacci and Lucas Numbers defined by
F0 = 0, F1 = 1, and for all n ≥ 0, Fn+2 = Fn+1 + Fn; and L0 = 2, L1 = 1, and for all
n ≥ 0, Ln+2 = Ln+1 + Ln, respectively.

• 5268: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Let N = 121a + a3 + 24. Determine all positive integers a for which

a) N is a perfect square.

b) N is a perfect cube.
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• 5269: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let {an}n≥1 be the sequence defined by

a1 = 1, a2 = 5, a2n−1 − anan−2 + 4 = 0.

Show that all of the terms of the sequence are integers.

• 5270: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k ≥ 1 be an integer. Calculate

∫ 1

0

∫ 1

0
(x+ y)k (−1)

⌊
1
x
− 1

y

⌋
dxdy,

wherebxc denotes the integer part of x.

Solutions

• 5248: Proposed by Kenneth Korbin, New York, NY

A triangle with sides (a, a, b) has the same area and the same perimeter as a triangle
with sides (c, c, d) where a, b, c and d are positive integers and with

b2 + bd+ d2

b+ d
= 76.

Find the sides of the triangles.

Solution 1 by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX

First, note that the condition

b2 + bd+ d2

b+ d
= 76 (1)

implies that b 6= d and thus, we may assume that b > d. Further, the required equality
of the perimeters and areas of the triangles yields

2a+ b = 2c+ d, and (2)

b2(4a2 − b2) = d2(4c2 − d2) (3)

By (1), (2), and (3),

b2(2a− b) = d2(2c− d)

⇒ b2(2a+ b)− 2b3 = d2(2c+ d)− 2d3

⇒ (b2 − d2)(2a+ b) = 2(b3 − d3)
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⇒ (b+ d)(2a+ b) = 2(b2 + bd+ d2)

⇒ 2a+ b = 2c+ d = 2(76). (4)

It follows that b and d must be even.

Condition (1) can be re-written in the form

b2 + (d− 76)b+ d2 − 76d = 0

and hence,

b =
76 − d±

√
(d− 76)2 − 4(d2 − 76d)

2

=
76 − d±

√
(d+ 76)2 − 4d2

2
. (5)

Since b and d are even integers, there must exist an odd positive integer k such that

(d+ 76)2 − 4d2 = k2, or

(d+ 76)2 = 4d2 + k2.

Using known properties of Pythagorean Triples, there are positive integers s, m, and n
such that m > n, (m,n) = 1, m− n ≡ 1 (mod 2), and

d+ 76 = s(m2 + n2), k = s(m2 − n2), and 2d = s(2mn). (6)

Note that since k and m2 − n2 are odd, s must also be odd. Then (6) implies that s
divides d and s divides d+ 76 and hence, s divides 76. Therefore, s = 7r for some
r ∈ {0, 1, 2, . . . 6}.
Next it follows from (6) that

7r(m2 + n2) = d+ 76 = 7r(mn) + 76, or

m2 −mn+ n2 = 76−r. (7)

Using

m2 + n2 =
1

2

[
(m+ n)2 + (m− n)2

]
and mn =

1

4

[
(m + n)2 − (m − n)2

]
,

(7) can be re-written

(m+ n)2 + 3(m− n)2 = 4 · 76−r. (8)
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Also, (5) and (6) imply that

b =
7r(m− n)2 ± 7r(m2 − n2)

2

= 7rm(m− n) or 7rn(n −m).

Since m > n, we have b = 7rm(m− n) to go with d = 7rmn (from (6)). The fact that b
is even now forces m to be even and n to be odd.

We can now solve (8) for m and n and thereby solve for b and d. Our work is reduced by
the facts that m+ n and m− n are odd, (m+ n,m− n) = (m,n) = 1, and

4 · 76−r = (m+ n)2 + 3(m− n)2 > 4(m− n)2, i.e.,

m− n <
√

76−r.

Using these and some help from MuPAD, there are only two feasible solutions for (8),
namely

r m n b d

0 360 37 116,280 13,320
4 8 3 96,040 57,624.

Then, (4) may be employed to get the final solutions

a b c d

59,509 116,280 110,989 13,320

69,629 96,040 88,837 57,624.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

Without loss of generality, we assume b < d. Since 2a+ b = 2c+ d, we have
d− b = 2(a− c), so b and d have the same parity. But if both b and d are odd, then
b2 + bd+ d2 is odd and 76(b+ d) is even, a contradiction. Thus both b and d are even.
Letting b = 2x and d = 2y for positive integers x and y, we obtain y − x = a− c and
2(x2 + xy + y2) = 76(x+ y). Then

y =
76 − 2x±

√
(6x+ 76)(76 − 2x)

4
.

A quick search via computer program yields two possible solutions with x < y:

(x, y) = (6660, 58140) or (x , y) = (28812, 48020).

Next, since the areas of the two isosceles triangles must be equal, we have

1

2
b

√
a2 − 1

4
b2 =

1

2
d

√
c2 − 1

4
d2 and thus

b2(4a2 − b2) = d2(4c2 − d2).
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Since 2a+ b = 2c+ d, we obtain b2(2a− b) = d2(2c− d), or x2(a− x) = y2(c− y). Then
cy2 − ax2 = y3 − x3, so

c(y + x)(y − x) + x2(c− a) = (y − x)(x2 + xy + y2).

Applying y − x = a− c and x2 + xy + y2 = 76(x+ y)/2, we have

c(y + x)− x2 = 76(x+ y)/2 and hence

c = x2/(x+ y) + 76/2.

Similarly,
a = y2/(x+ y) + 76/2.

In particular, we note that this implies

2a+ b =
2(x2 + xy + y2)

x+ y
+ 76 = 2 · 76,

the perimeter of all such triangles.

Finally, we verify that the two possible solutions for (x, y) yield the required triangles:

(x, y) = (6660, 58140) ⇒ (a, b, c, d) = (110989, 13320, 59509, 116280).

(x, y) = (28812, 48020) ⇒ (a, b, c, d) = (88837, 57624, 69629, 96040).

In the first solution, both triangles have area 737,854,740. In the second solution, both
triangles have area 2,421,216,420. Also, the second solution may be written in the form
(a, b, c, d) = 74(37, 24, 29, 40).

Editor’s comments: David Stone and John Hawkins stated in their solution that it
would be nice if an analytical solution for b and d in the following could be found.

b2 + bd+ d2

b+ d
= 76,=⇒

b+
d2

b+ d
= 76, and

b2

b + d
+ d = 76, and b + d − bd

b + d
= 76.

This allowed them to put some conditions onto b and d. But then they stated: “we see
no path towards a complete solution. Finding integers b and d whose sum divides their
product seems to be a difficult problem.”

Ed Gray of Highland Beach, FL also reached the equation u2 + uv + v2 = 76 and
found that the general solution to

x2 + xy + y2 = z2

has been characterized parametrically by J. Neuburg and G.B. Mathews (See L. E.
Dickson’s, History of History of The Theory of Numbers, vol.II, 2005, Dover Books on
Mathematics, p.406). Specifically,




x = p2 − q2
y = 2pq + q2

z = x2 + pq + q2.
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He then applied this generic solution to the problem by solving

x2 + xy + y2 = (73)2 = 3432.

There are two positive integer solutions to this equation: (x, y) = (18, 1) and
(x, y) = (14, 7). With these solutions it was possible for him, by retracing his steps, to
obtain two sets, wherein each set contains two isosceles triangles with sides (a, a, b) and
(c, c, d), and for which the triangles have the same perimeter, the same area, and for

which
b2 + bd+ d2

b+ d
= 76.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; David Stone and John Hawkins (jointly), Georgia Southern
University, Statesboro GA, and the proposer.

• 5249: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

(a) Let n be an odd positive integer. Prove that an + bn is the square of an integer for
infinitely many integers a and b.

(b) Prove that a2 + b3 is the square of an integer for infinitely many integers a and b.

Solution 1 by Arkady Alt, San Jose, CA

(a) Let a = x (xn + yn) , b = y (xn + yn) where x, y ∈ N then

an + bn = xn (xn + yn)n + yn (xn + yn)n = (xn + yn)n+1

and, since n = 2m− 1,m ∈ N then

an + bn = ((xn + yn)m)2 .

(b) We will show that equation a2 + b3 = c2 have infinitely many solutions in integers.
Assuming that c = 2a we obtain b3 = 3a2. Let a = 3t3, t ∈ Z then

b3 = 3 · 9t6 ⇐⇒ b = 3t2.

Thus, for (a, b) =
(
3t3, 3t2

)
, where t is any integer we have

a2 + b3 = 9t6 + 27t6 = 36t6 =
(
6t3
)2
.

Solution 2 by Pat Costello, Eastern Kentucky University, Richmond, KY

(a) Let n be an odd positive integer. Let a = 2 · 22j and b = 2 · 22j for an arbitrary
positive integer j. Then

an + bn = (2 · 22j)n + (2 · 22j)n

= 2n · 22nj + 2n · 22nj

= 2 ·
(
2n · 22nj

)

= 2n+1 · 22nj
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=
(
2(n+1)/2 · 2nj

)2
,

the square of an integer since n is odd.

(b) Let a = 23n and b = 2 · 22n for an arbitrary positive integer n. Then

a2 + b3 =
(
23n
)2

+
(
2 · 22n

)3

= 26n + 8 · 26n

= 9 · 26n

=
(
3 · 23n

)2
,

the square of an integer.

Solution 3 by David Stone and John Hawkins (jointly), Georgia Southern
University, Statesboro, Ga

(a) Let n = 2k + 1 for k ≥ 0. Then let a = b = 2m2, for any m ≥ 1. Then

an + bn = 2an = 2
(
2m2

)2k+1
= 22k+2m2(2k+1) =

(
2k+1m2k+1

)2
, which is square.

Of course, there is also a trivial solution; let a be any square and b = 0.

(b) Let a = m2
(
16m2 − 1

)
and b = 4m2, for any integer m. Then

a2 + b3 = m4
(
16m2 − 1

)2
+
(
4m2

)3

= m4
(
256m4 − 32m2 + 1

)
+ 64m6

= 256m8 + 32m4 + 1

=
(
16m4 +m2

)2
; a square.

In addition to the trivial solution, let a be any square and b = 0, there is also a
“semi-trivial” solution: For any c,m ≥ 1, let a = c3m, b = −c2m, so that

a2 + b3 =
(
c3m

)2
+
(
−c2m

)3
= c6m − c6m = 0; a square.

Solution 4 by Ken Korbin, New York, NY

(a) Let a = N2, b = 2N2 where N is a positive integer. Then a3 + b3 =
(
3N3

)2
, and it

follows that for n odd, an + bn is a perfect square.

(b) Let a = 4N3 + 6N2 + 3N , and b = 2N + 1, where N is a positive integer. Then

a2 + b3 =
(
4N3 + 6N2 + 3N + 1

)2
.

Also solved by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX; Brian D. Beasley, Presbyterian
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College, Clinton, SC; Roberto de la Cruz Moreno, Centre de Recerca
Matematica, Campus de Bellaterra, Barcelona, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Jahangeer Kholdi and
Farideh Firoozbakht, University of Isfahan, Khansar, Iran; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Charles McCracken, Dayton, OH,
and the proposer.

• 5250: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a ∈
(

0,
π

2

)
and b, c ∈ (1,∞). Calculate:

∫ a

−a
ln
(
bsin

3 x + csin
3 x
)
· sinx · dx.

Solution 1 by Anastasios Kotronis, Athens, Greece

We have

I =

∫ a

−a
ln
(
bsin

3 x + csin
3 x
)

sinx dx
y=−x

= −
∫ a

−a
ln
(
b− sin3 x + c− sin3 x

)
sinx dx

=

∫ a

−a
ln

(
(bc)sin

3 x

bsin
3 x + csin

3 x

)
sinx dx

= ln(bc)

∫ a

−a
sin4 x dx− I.

So

I =
ln(bc)

2

∫ a

−a
sin4 x dx =

ln(bc)

2

(
3a

4
− sin(2a)

2
+

sin(4a)

16

)
.

Solution 2 by Paolo Perfetti, Department of Mathematics, University of Tor
Vergata Roma, Rome, Italy

Answer: 1
2

(
3
4a− 1

2 sin(2a) + 1
16 sin(4a)

)
ln(bc)

Proof: We observe

ln
(
bsin

3(−x) + csin
3(−x)

)
sin(−x) = − ln

(
b− sin3 x + c− sin3 x

)
sinx

= − ln
(
bsin

3 x + csin
3 x
)

sinx+ ln
(
(bc)sin

3 x
)

sinx

thus

2

∫ a

−a
ln
(
bsin

3 x + csin
3 x
)

sinx dx =

∫ a

−a
sin4 xdx ln(bc)

=

∫ a

−a
sin2 x(1− cos2 x)dx
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=
x− sinx cosx

2

∣∣∣
a

−a
−
∫ a

−a

1

4
(sin2(2x))dx

= a− 1

2
sin(2a)−

∫ 2a

−2a

1

8
(sin2 x)dx

= a− 1

2
sin(2a)− a

4
+

1

16
sin(4a)

Also solved by Arkady Alt, San Jose, CA; Roberto de la Cruz Moreno,
Centre de Recerca Matematica, Campus de Bellaterra, Barcelona, Spain;
Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania;
Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
Adrian Naco, Polytechnic University, Tirana, Albania; Boris Rays,
Brooklyn, NY, and the proposers.

• 5251: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany

Compute the following sum:

∞∑

m=1

∞∑

n=1

(−1)m+n cos(m+ n)

(m+ n)2
.

Solution 1 by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

The sum equals
π2

12
− 1

4
− ln

(
2 cos

1

2

)
.

The problem is a particular case of the following theorem (see the first citation below
[Theorem 1, p. 2]).

Theorem 1. Suppose that both series

∞∑

k=1

ak and
∞∑

k=1

kak

converge and let σ and σ̃ denote their sums, respectively. Then, the iterated series

∞∑

n=1

∞∑

m=1

an+m,

converges and its sum s equals σ̃ − σ.

The following two formulae are well-known (see citation 2, [Formula 1.441(4), p. 44])

∞∑

k=1

(−1)k−1
cos kx

k
= ln

(
2 cos

x

2

)
, −π < x < π

and (citation 2 [Formula 1.443(4), p. 45])
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∞∑

k=1

(−1)k−1
cos kx

k2
=
π2

12
− x2

4
, −π ≤ x ≤ π.

Now, we apply the Theorem in citation 1 with ak = (−1)k · cos k

k2
, and we have that

σ =
∞∑

k=1

ak =
∞∑

k=1

(−1)k
cos k

k2
=

1

4
− π2

12

and

σ̃ =
∞∑

k=1

kak =
∞∑

k=1

(−1)k
cos k

k
= − ln

(
2 cos

1

2

)
.

It follows, based on the Theorem in citation 1, that

∞∑

n=1

∞∑

m=1

an+m = σ̃ − σ =
π2

12
− 1

4
− ln

(
2 cos

1

2

)
.

Citations:

1) Ovidiu Furdui and Tiberiu Trif, On the Summation of Certain Iterated Series,
Journal of Integer Sequences, Vol. 14, 2011, Issue 6, article 11.6.1, article available
online at https://cs.uwaterloo.ca/journals/JIS/VOL14/Furdui/furdui3.pdf

2) I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products Sixth
Edition, Academic Press, 2000

Solution 2 by Kee-Wai Lau, Hong Kong, China

Denote the double sum by S. We show that

S =
π2 − 3− 6 ln (2(1 + cos 1))

12
= 0.00990 . . . .

Let m and M be positive integers with m ≤M. We have

∞∑

n=1

(−1)m+n cos(m+ n)

(m+ n)2
=

∞∑

k=m+1

(−1)k
cos k

k2
=

M2+1∑

k=m+1

(−1)k
cos k

k2
+ r,

where |r| ≤
∞∑

k=M2+2

1

k2
<

1

M2
. Hence,

M∑

m=1

∞∑

n=1

(−1)m+n cos(m+ n)

(m+ n)2
=

M2+1∑

k=2

(−1)k
(k − 1) cos k

k2
+R,

where |R| < 1

M
. By taking the limit as M tends to infinity, we have

S =
∞∑

k=2

(−1)k
(k − 1) cos k

k2
=
∞∑

k=2

(−1)k
cos k

k
−
∞∑

k=2

(−1)k
cos k

k2
.
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For −π < x < π, is known ([1], formula 17.2.6, p.239) that

∞∑

k=1

(−1)k cos kx

k
= − ln (2 (1 + cosx))

2
,

and ([1] formula 17.2.9, p.239) that

∞∑

k=1

(−1)k cos kx

k2
=

3x2 − π2
12

.

By putting x = 1, we obtain our result for S.

Reference: 1. E.R. Hansen: A Table of Series and Products, Prentice-Hall, Inc. (1975).

Also solved by Ed Gray, Highland Beach FL; Anastasios Kotronis, Athens,
Greece; Paolo Perfetti, Department of Mathematics, University of Tor
Vergata Roma, Rome, Italy, and the proposers.

• 5252: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain

Let {an}n≥1 be the sequence of real numbers defined by a1 = 3, a2 = 5 and for all

n ≥ 2, an+1 =
1

2

(
a2n + 1

)
. Prove that

1 + 2

(
n∑

k=1

√
Fk

1 + ak

)2

< Fn+2,

where Fn represents the nth Fibonacci number defined by F1 = F2 = 1 and for
n ≥ 3, Fn = Fn−1 + Fn−2.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

By the Cauchy-Schwarz inequality

(
n∑

k=1

√
Fk

1 + ak

)2

≤
(

n∑

k=1

Fk

)(
n∑

k=1

1

1 + ak

)
,

and since
n∑

k=1

Fk = Fn+2 − 1, it is enough to prove that
n∑

k=1

1

1 + ak
<

1

2
.

We will prove by induction that
n∑

k=1

1

1 + ak
=

an+1−1
2 − 1

an+1 − 1
, which is less than 1

2 .

Clearly it is true for n = 1. Let us suppose it holds for n. Then, for n+ 1 we have

n+1∑

k=1

1

1 + ak
=

n∑

k=1

1

1 + ak
+

1

1 + an+1

=
an+1−1

2 − 1

an+1 − 1
+

1

1 + an+1
by hypotesis of induction

=

a2n+1−1
2 − an+1 − 1 + an+1 − 1

a2n+1 − 1
=

a2n+1−1
2 − 2

a2n+1 − 1
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=
2an+2−2

2 − 2

2an+2 − 2
by the definition of sequence {an}

=
an+2−1

2 − 1

an+2 − 1
.

And, therefore, the conclusion follows.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

By the Cauchy-Schwarz inequality applied to the vectors
(√
F1, · · · ,

√
Fn
)

and(
1√

1+a1
, · · · , 1√

1+an

)
, we have for n ≥ 1

(
n∑

k=1

√
Fk

1 + ak

)2

=

(
n∑

k=1

√
Fk

1√
1 + ak

)2

≤
(

n∑

k=1

Fk

)(
n∑

k=1

1

1 + ak

)
(1)

The sequence {an}n≥1 is related to the Sylvester sequence {bn}n≥1 defined by b1 = 2
and for n ≥ 1, bn+1 = b2n − bn + 1, by the equality bn = 1

2 (an + 1), and it is known that
the sum of the reciprocals of the Sylvester sequence is 1. So for n ≥ 1, we have that

n∑

k=1

1

1 + ak
<

n∑

k=1

1

1 + ak
=
∞∑

k=1

1

2bk
=

1

2
. (2)

From (1) and (2) and the property 1 +
n∑

k=1

Fk = Fn+2, it follows that, for n ≥ 1

1 + 2

(
n∑

k=1

√
Fk

1 + ak

)2

≤ 1 + 2

(
n∑

k=1

Fk

)(
n∑

k=1

1

1 + ak

)
< 1 +

n∑

k=1

Fk = Fn+2.

Solution 3 by Roberto de la Cruz Moreno, Centre de Recerca Matematica,
Campus de Bellaterra, Barcelona, Spain

Lemma. Let {bn}n≥1 be the sequence of real numbers defined by b1 = 5 and for all

n ≥ 1, bn+1 = 1
2(b2n + 1). Then:

m∑

k=1

1

bk + 1
=

1

4
− 1

bm+1 − 1
, ∀m ∈ Z+

Proof. By induction:
m = 1:

1

b1 + 1
=

1

6
=

1

4
− 1

12
=

1

4
− 1

b2 − 1

m⇒ m+ 1:

m+1∑

k=1

1

bk + 1
=

m∑

k=1

1

bk + 1
+

1

bm+1 + 1
=

1

4
− 1

bm+1 − 1
+

1

bm+1 + 1

=
1

4
− 2

b2m+1 − 1
=

1

4
− 1

bm+2 − 1
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Corollary.
m∑

k=1

1

ak + 1
<

1

2
, ∀m ∈ Z+

By Cauchy-Schwarz inequality:

1 + 2

(
n∑

k=1

√
Fk

1 + ak

)2

≤ 1 + 2

(
n∑

i=1

Fi

)


n∑

j=1

1

1 + aj




= 1 + 2(Fn+2 − 1)




n∑

j=1

1

1 + aj


 < Fn+2

Also solved by Ed Gray, Highland Beach, FL; Adrian Naco, Polytechnic
University, Tirana, Albania, and the proposer.

• 5253: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy dxdy.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the double integral equals
π4

30
.

For s, t ≥ 0 we have

∫ 1

0

∫ 1

0

xs+tys

1− xydxdy =

∫ 1

0

∫ 1

0

∞∑

k=0

xk+s+tyk+sdxdy

=
∞∑

k=0

∫ 1

0

∫ 1

0
xk+s+tyk+sdxdy

=
∞∑

k=0

1

(k + s+ t+ 1)(k + s+ 1)
.

Differentiating with respect to t, then setting t = 0, we obtain

∫ 1

0

∫ 1

0

lnx.xsys

1− xy dxdy =
∞∑

k=0

−1

(k + s+ 1)3

Differentiating with respect to s, then setting s = 0, we obtain

∫ 1

0

∫ 1

0

lnx. ln(xy)

1− xy dxdy = 3
∞∑

k=0

1

(k + 1)4
.

Now it is well known that the sum
∞∑

k=0

1

(k + 1)4
equals

π4

90
. Hence the result.

Solution 2 by Anastasios Kotronis, Athens, Greece
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We have

∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy dx dy 1 =

∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy dy dx =

∫ 1

0

∫ 1

0

∑

k≥0
(xy)k lnx ln(xy) dy dx

xy=u
=

∫ 1

0

lnx

x

∫ x

0

∑

k≥0
uk lnu du dx

2 =

∫ 1

0

lnx

x

∑

k≥0

∫ x

0
uk lnu du dx

=

∫ 1

0

lnx

x

∑

k≥0

(
uk+1

k + 1
lnu

∣∣∣∣∣

x

0

− 1

k + 1

∫ x

0
uk du

)
dx

=

∫ 1

0

∑

k≥0

xk

k + 1
ln2 x dx−

∫ 1

0

∑

k≥0

xk

(k + 1)2
lnx dx

3 =
∑

k≥0

∫ 1

0

xk

k + 1
ln2 x dx−

∑

k≥0

∫ 1

0

xk

(k + 1)2
lnx dx

But integrating by parts twice and once respectively,

∫ 1

0
xk ln2 x dx =

2

(k + 1)3
and

∫ 1

0
xk lnx dx = − 1

(k + 1)2
,

so

∫ 1

0

∫ 1

0

lnx · ln(xy)

1− xy dx dy = 3
∑

k≥0

1

(k + 1)4
= 3ζ(4) =

π4

30
.

Notes:
1From Fubini’s theorem < http : //on.wikipedia.org/wiki/Fubini#27 >,
since the integrand doesn’t change sign.
2 Again from Fubini’s theorem
3 Again from Fubini’s theorem

Also solved by Ed Gray, Highland Beach, FL; Paolo Perfetti, Department of
Mathematics, University of Tor Vergata Roma, Rome, Italy, and the
proposer.

Mea Culpa

Enkel Hysnelaj of the University of Technology in Sydney Australia and
Elton Bojaxhiu of Kriftel, Germany were inadvertently omitted from the list of
those having solved problem 5232 that appeared in the April issue this column. Once
again, sorry.

14X
ia
ng
’s
T
ex
m
at
h



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2014

• 5271: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with AB = x,BC = y, and
BD = 2AD = 2CD.

Express the radius of the circum-circle in terms of x and y.

• 5272: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The Jacobsthal numbers begin 0, 1, 1, 3, 5, 11, 21, · · · with general term

Jn =
2n − (−1)n

3
, ∀n ≥ 0. Prove that there are infinitely many Pythagorean triples like

(3, 4, 5) and (13, 84, 85) that have “hypotenuse” a Jacobsthal number.

• 5273: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, “George
Emil Palade” General School, Buzău, Romania

Solve in the positive integers the equation abcd+ abc = (a+ 1)(b+ 1)(c+ 1).

• 5274: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be real positive numbers. Show that if

∑

cyclic

(n+ 1)x3 + nx

x2 + 1
= α

then ∑

cyclic

1

x
>

9n

α
− α

n
+

9nα

9n2 + α2

where n is a natural number.

• 5275: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Find all real solutions to the following system of equations

√
2 +

√
2 + . . .+

√
2 + x1

︸ ︷︷ ︸
n

+

√
2−

√
2 + . . .+

√
2 + x1

︸ ︷︷ ︸
n

= x2
√

2,

√
2 +

√
2 + . . .+

√
2 + x2

︸ ︷︷ ︸
n

+

√
2−

√
2 + . . .+

√
2 + x2

︸ ︷︷ ︸
n

= x3
√

2,

. . . . . . . . . . . . . . . . . .√
2 +

√
2 + . . .+

√
2 + xn−1

︸ ︷︷ ︸
n

+

√
2−

√
2 + . . .+

√
2 + xn−1

︸ ︷︷ ︸
n

= xn
√

2,

√
2 +

√
2 + . . .+

√
2 + xn

︸ ︷︷ ︸
n

+

√
2−

√
2 + . . .+

√
2 + xn

︸ ︷︷ ︸
n

= x1
√

2,





where n ≥ 2.

• 5276: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

(a) Let a ∈ (0, 1] be a real number. Calculate

∫ 1

0
ab 1xcdx,

where bxc denotes the integer part of x.

(b) Calculate ∫ 1

0
2−b 1xcdx.

Solutions

• 5254: Proposed by Kenneth Korbin, New York, NY

Five different triangles, with integer length sides and with integer area, each have a side
with length 169. The size of the angle opposite 169 is the same in all five triangles. Find
the sides of the triangles.

Solution 1 by Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Iran

Let a, b and c be the lengths of three sides of the triangles, A is the measure of the angle
opposite the side of length 169, and S is the area of triangle. Note that, given the
conditions in the hypothesis, cosA must be a rational number based on the Law of
Cosines. We found eleven such triangles (S, cosA, a, b, c), where

S =
√

(p(p− a)(p− b)(p− c) and p =
a+ b+ c

2
. They are as follows:
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1. (2184, 84/85, 105, 169, 272)

2. (8580, 84/85, 169, 264, 425)

3. (18720, 84/85, 169, 425, 576)

4. (26364, 84/85, 169, 520, 663)

5. (30030, 84/85, 169, 561, 700)

6. (62244, 84/85, 169, 855, 952)

7. (65910, 84/85, 169, 884, 975)

8. (73554, 84/85, 169, 943, 1020)

9. (83694, 84/85, 169, 1020, 1073)

10. (90090, 84/85, 169, 1071, 1100)

11. (92274, 84/85, 169, 1092, 1105)

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We will assume that a = 169 and b and c are the other two sides, with b ≤ c. Since b
and c are to be integers, the Law of Cosines dictates that cosA is to be rational. Also,
the requirement that each triangle is to have integral area insures that sinA must be

rational (using the formula Area =
1

2
bc sinA). One way to achieve both and still satisfy

sin2A+ cos2A = 1 is to make

cosA =
x

z
and sinA =

y

z

for some Pythagorean triple (x, y, z). After experimenting with several triples, we had
the best results by choosing

cosA =
84

85
and sinA =

13

85
.

Then, the Law of Cosines yields

1692 = b2 + c2 − 2bc

(
84

85

)

= c2 − 168

85
bc+

(
84

85
b

)2

+ b2 −
(

84

85
b

)2
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=

(
c− 84

85
b

)2

+

(
13

85
b

)2

,

which reduces to
(85c− 84b)2 + (13b)2 = [(169) (85)]2 .

(Note that the assumption b ≤ c makes 85c− 84b > 0.)

We now know that (13b, 85c− 84b, (169) (85)) must be a Pythagorean triple and hence,
there are positive integers k,m, n such that

m > n, gcd (m,n) = 1, m 6≡ n (mod 2) , and (169) (85) = k
(

m2 + n2
)
.

Then, either 13b = 2kmn and 85c− 84b = k
(
m2 − n2) or 13b = k

(
m2 − n2) and

85c− 84b = 2kmn. E. g., when k = (13) (85) = 1, 105, we get m = 3 and
n = 2. When we set 13b = 2 (1, 105) (3) (2) and 85c− 84b = 1, 105

(
32 − 22

)
, we obtain

b = 1, 020 and c = 1, 073 while the assignment 13b = 1, 105
(
32 − 22

)
and

85c− 84b = 2 (1, 105) (3) (2) yields b = 425 and c = 576. Proceeding in this way, we
found 11 feasible values for the sides b and c. Each presented an integral area for the

triangle and each resulted in cosA =
84

85
(by the Law of Cosines). Since cosx is injective

on [0, π], each of our solutions produced the same value for 6 A. Our results are
summarized in the following table.

k m n a b c Area

13 33 4 169 264 425 8, 580

13 32 9 169 943 1, 020 73, 554

5 · 13 14 5 169 855 952 62, 244

5 · 13 11 10 169 105 272 2, 184

132 7 6 169 1, 092 1, 105 92, 274

13 · 17 8 1 169 1, 071 1, 100 90, 090

13 · 17 7 4 169 561 700 30, 030

5 · 132 4 1 169 520 663 26, 364

5 · 13 · 17 3 2 169 1, 020 1, 073 83, 694

5 · 13 · 17 3 2 169 425 576 18, 720

132 · 17 2 1 169 884 975 65, 910

Comment by editor: David Stone and John Hawkins of Georgian Southern
University in Statesboro GA exhibited two families of triangles satisfying the
conditions of the problem. The first family contained 11 triangles with the angle

opposite the side of length 169 having a common value of cos−1
(

84

85

)
= 8.7974◦. The

triangles that they obtained for this family are exhibited in the above solutions. But in
their second family they listed 5 additional triangles for which the angle opposite the

side of length 169 have a common value of cos−1
(

1517

1525

)
= 5.8713◦

They obtained their triangles by denoting the sides of the triangles as (a, b, 169) with
a ≥ b and the angle θ opposite 169, and then they used the following tools:

1) Law of cosines, cos θ =
a2 + b2 − 1692

2ab
.
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2) Triangle Inequality: −169 ≤ b− a ≤ 169; thus, for any given value of a it must be
that a− 169 ≤ a.

3) Heron’s formula: with s =
a+ b+ 169

2
, and where s(s− a)(s− b)(s− 169) is a perfect

square. That is, where
[
(a+ b)2 − 1692

] [
1692 − (a+ b)2

]
is a perfect square.

4) MATLAB and Excel. They coded nested loops to find values of a and b which satisfy
(2) and (3) and then computed cos θ by (1). Then they put the results into an Excel file
and sorted by cos θ. From there they said: it was easy to see the families sharing a
common angle.
They wrote: For a, b ≤ 40, 000 we found 262 triangles with integer sides and integer area
and having 169 as a side. In our table, we have only listed the two families containing
five or more elements with a common angle opposite 169. For each triangle we also show
its area. They then listed the above table and made observations on it. They wrote: the
last triangle in the family (a = 1105, b = 1092, c = 169) is a (13,84,85) right triangle
magnified by 13. They also noted that two triangles have sides 169 and 425, while two
others have two sides of 169 and 1020 (an appearance of the SSA or Ambiguous case
from Trigonometry!).
They then listed their second table and made the following comments on it.

a b c Area

350 183 169 3276

1037 900 169 47736

1525 1452 169 113256

1582 1525 169 123396

1625 1586 169 131820

Empirically, the common angle (opposite 169) equals

cos−1
[

3502 + 1832 − 1692

2 (350) (183)

]
= cos−1

(
1517

1525

)
≈ 5.8713◦.

Comment 1: We did not have complete confidence in trusting floating point arithmetic
to give us triangles with an identical angle. For instance, to see that (272, 105, 169) and
(425, 264, 169) have the same angle opposite the side of length 169, we must have

2722 + 1052 − 1692

2(272)(105)
=

4252 + 2642 − 1692

2(425)(264)
.

Cross-multiplying, we can check this with integer arithmetic:

(425) (264)
[
2722 + 1052 − 1692

]
= 6333465600− (272) (105)

[
4252 + 2622 − 1692

]
.

In each of our families, we checked the first entry again each other triangle to verify true
equality of angles.

Comment 2: Our MATLAB file ran a and b up to 40,000, but found no solutions near
this peak value. We do not believe that there are any more such triangles (other than
the 262 we found.)

Comment 3: There is a nice geometric way to visualize each family of triangles. We
explain by focusing on the first group of 11 triangles. Let two rays OA and OB emanate
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from a vertex O, separated by our angle ≈ 8.7974◦. Starting at O, mark off the “a
values” along OA and the “b values” along OB. For instance, designate A1 as the point
272 units along OA and B1 the points 105 units along OB. We have drawn our first
triangle –the distance A1 to B1 across the “wedge” is 169. Similarly we have A2= 425
and B2=264, and the distance A2 to B2 across the “wedge” is 169.

Eventually, we will draw all eleven of our triangles in the wedge in nested fashion.
Because the distance across the wedge will eventually surpass 169, no more triangles are
possible. So we have a nice geometric argument that any such family of triangles must
be finite. (In fact, by trigonometry, the maximum value for a (and b) to form an
isosceles triangle with this angle and bridge 169 is approximately 1101.75. Note that the
largest triangle in this family is near this limiting size.)

Finally, note that each of the quadrilaterals AiAjBjBi, 1 ≤ i < j ≤ 11 has integer sides
and integer area and a pair of opposing sides equal to 169. For instance, the
quadrilateral A1A2B2B1 has sides(
A1A2, A2B2, B1B2, B1A1

)
= (A2 −A1, 169, B2 −B1, 169) = (153, 169, 159, 169) and

area Area(4A2OB2)− (4A1OB1) = 8580− 2184 = 6396. An almost unimaginable
family of 55 such quadrilaterals.

Also solved by Brian E. Beasley, Presbyterian College, Clinton, SC; Bruno
Salgueiro Fanego, Viveiro, Spain, and the proposer.

• 5255: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let n be a natural number. Let φ(n), σ(n) and τ(n) be the Euler phi-function, the sum
of the different divisors of n and the number of different divisors of n, respectively.
Prove:
(a) ∀n ≥ 2, ∃ natural numbers a and b such that φ(a) + τ(b) = n.
(b) ∀k ≥ 1, ∃ natural numbers a and b such that φ(a) + σ(b) = 2k.
(c) ∀n ≥ 2, ∃ natural numbers a and b such that τ(a) + τ(b) = n.
(d) ∀k ≥ 1, ∃ natural numbers a and b such that σ(a) + σ(b) = 2k.
(e) ∀n ≥ 3, ∃ natural numbers a, b and c such that φ(a) + σ(b) + τ(c) = n
(f ) ∃ infinitely many natural numbers n such that φ(τ(n)) = τ(φ(n)).

Solution 1 by Brian D. Beasley, Presbyterian Colleg, Clinton, SC

(a) Given n ≥ 2, let a = 1 and b = 2n−2. Then φ(a) = 1 and τ(b) = n− 1. (Note that we
may take b = pn−2 for any prime p.)

(b) Given k ≥ 1, let a = 1 and b = 2k−1. Then φ(a) = 1 and

σ(b) = 1 + 2 + 22 + · · ·+ 2k−1 = 2k − 1.

(c) We may use the same a and b as in part (a), since τ(1) = φ(1) = 1.

(d) We may use the same a and b as in part (b), since σ(1) = φ(1) = 1.

(e) Given n ≥ 3, let a = b = 1 and c = 2n−3. Then φ(a) = σ(b) = 1 and τ(c) = n− 2.
(Note that we may take c = pn−3 for any prime p.)

(f) Let p be a prime and take n = 2p−1. Then

φ(τ(n)) = φ(p) = p− 1 and τ(φ(n)) = τ(2p−2) = p− 1.
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Since there are infinitely many primes, the result follows.

Solution 2 by Kee-Wai Lau, Hong Kong, China

(a) φ(n) + τ
(
2n−φ(n)−1

)
= n.

(b) φ(2) + σ
(
2k−1

)
= 2k.

(c) τ(1) + τ(1) = 2 and τ(2) + τ
(
2n−3

)
= n for n ≥ 3.

(d) σ(1) + σ
(
2k−1

)
= 2k.

(e) φ(n− 1) + σ(1) + τ(2n−2−φ(n−1)) = n.

(f) φ(τ(2p−1)) = τ(φ(2p−1) = p− 1 for any odd prime p.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We will make use of some well-known rules, where p denotes a prime.

φ(pm) = pm−1(p− 1), σ(2m) = 2m+1 − 1, and τ(pm) = m + 1.

(a) For any prime p, φ(n) + τ
(
pn−φ(n)−1

)
= φ(n) + [n− φ(n)] = n.

(b) φ(1) + σ(2k−1) = 1 +
[
2k − 1

]
= 2k.

(c) For any pirme p, and any m with 2 ≤ m ≤ n, we have

τ(pn−m) + τ(pm−2) = (n−m+ 1) + (m− 2 + 1) = n.

(d) σ(2k−1) + σ(1) =
(
2k − 1

)
+ 1 = 2k.

(e) For any prime p, φ(1) + σ(1) + τ(pn−3) = 1 + 1 + (n− 2) = n.

(f) For any prime p, φ(τ(2p−1)) = φ(p) = p− 1 and
τ(φ(2p−1)) = τ(2p−2) = (p− 2) + 1 = p− 1. So φ(τ(2p−1)) = τ(φ(2p−1)).

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
Sate University, San Angelo, TX; Ed Gray, Highland Beach, FL; Jahangeer
Kholdi and Farideh Firoozbakht, University of Isfahan, Iran; David E.
Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

• 5256: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a be a positive integer. Compute:

lim
n→∞n


a− e

1

n+ 1
+

1

n+ 2
+ . . .+

1

na


 .

Solution 1 by Ángel Plaza and Kisin Sadarangani, University de Las Palmas,
de Gran Canaria, Spain
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Let Hn be the nth harmonic number, that is Hn = 1 + 1
2 + 1

3 + . . .+ 1
n . Note first that

e
1

n+1
+ 1

n+2
+...+ 1

na → a when n tends to infinity, because

lim
n→∞

1

n+ 1
+

1

n+ 2
+ . . .+

1

na
= lim

n→∞

1
n

1 + 1
n

+
1
n

1 + 2
n

+ . . .+
1
n

1 + (a−1)n
n

=

∫ a−1

0

1

1 + x
dx = ln a.

The proposed limit may be obtained as follows:

lim
n→∞n

(
a− e 1

n+1
+ 1

n+2
+...+ 1

na

)
= lim

n→∞−an
(
eHan−Hn−ln a − 1

)

= lim
n→∞−an (Han −Hn − ln a)

= lim
n→∞−an ·

1− a
2an

=
a− 1

2
.

Where we have used that Hn = lnn+ γ +
1

2n
− 1

12n2
+ · · ·, being γ is the

Euler-Mascheroni constant. Hence Han −Hn ∼ ln a+ 1
2an − 1

2n + o
(

1
n2

)
.

Solution 2 by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania

The limit equals −2 if a = 1 and a−1
2 if a > 1. First we consider the case when a = 1.

We have,

lim
n→∞n

(
1− e 1

n+1
+ 1

n

)
= lim

n→∞




1− exp
(

2n+1
n(n+1)

)

2n+1
n(n+1)

· 2n+ 1

n+ 1


 = −2.

Now we consider the case when a > 1. We will be using, in our analysis, the following
asymptotic expansion for the nth harmonic number (see 1, [Entry 23 p. 59])

1 +
1

n
+ · · ·+ 1

n
= γ + lnn+

1

2n
− 1

8n2
+

15

2n4
− · · · (n→∞).

Equivalently,

1 +
1

n
+ · · ·+ 1

n
= γ + lnn+

1

2n
+O

(
1

n2

)
(n→∞).

It follows that

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

na
= Hna −Hn = ln a+

1− a
2na

+O

(
1

n2

)
(n→∞).

Thus

n
(
a− e 1

n+1
+ 1

n+2
+···+ 1

na

)
= n

(
a− a · e

1−a
2na

+O
(

1
n2

))

= a ·
1− exp

(
1−a
2na +O

(
1
n2

))

1−a
2na +O

(
1
n2

) ·
(

1− a
2a

+O

(
1

n

))
,
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which in turn implies that

lim
n→∞n

(
a− e 1

n+1
+ 1

n+2
+···+ 1

na

)
=
a− 1

2
.

The problem is solved.

1 H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions,
Kluwer Academic Publishers, Dordrecht, 2001.

Solution 3 by Ed Gray, Highland Beach, FL

1) Let S = e

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

na

2) ln(S) =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

an

3) ln(S) =
na∑

k=1

1

k
−

n∑

k=1

1

k
.

We use the Euler’s approximation for the partial sum of the harmonic series. That is

4) Tm =
m∑

k=1

1

k
= ln(m) + γ +

1

2m
− 1

12m2
+

1

120m4
− · · ·, where γ is the Euler-Mascheroni

constant 0.577 · · ·

In our approximation, we will only keep the term
1

2m
to avoid unnecessary computations.

Then from (3) and (4),

5) ln(S) = ln(na) + γ +
1

2na
−
(

ln(n) + γ +
1

2n

)
or

6) ln(S) = ln(na)− ln(n) +
1

2na
− 1

2n

7) ln(S) = ln

(
na

n

)
+

1

2na
− 1

2n

8) ln(S) = ln a+
1

2na
− 1

2n

9) S = eln a · e 1
2na · e− 1

2n , or

10) S = a · e 1
2na · e− 1

2n

For large n the exponents are small, and we keep only the first two terms in the expansion for
ey

11) e
1

2na = 1 +
1

2na

9X
ia
ng
’s
T
ex
m
at
h



12) e−
1

2na = 1− 1

2n

13) The product is: 1− 1

2n
+

1

2na
− 1

4an2
, and step 10 becomes

14) S = a− a

2n
+

1

2n
− 1

4n2
. Then

15) a− S =
a

2n
− 1

2n
+

1

4n2

16) n(a− S) =
a

2
− 1

2
+

1

4n

So the limit as n approaches infinity is
a− 1

2
.

Solution 4 by Paul M. Harms, North Newton, KS

When m is a positive integer 1 +
1

2
+

1

3
+ · · ·+ 1

m
= lnm+ γ +R(m) where γ is the

Euler-Mascheroni constant and R(m) is an error term that approaches
1

2
m as m gets large.

Let a be a positive integer greater than one. We have

1

n+ 1
+

1

n+ 1
+ · · · 1

na
= 1 +

1

2
+ · · · 1

na
−
(

1 +
1

2
+ · · · 1

n

)

= lnna+ γ +R(na)− (lnn+ γ + (n))

= ln a+R(na)−R(n).

Then the limit in the problem involves

n
(
a− eln aeR(na)−R(n)

)
= na

(
1− eR(na)−R(n)

)
.

For large n this can be approximated by

a
(
1− 2

1
2
na− 1

2
n
)

1
n

.

Thinking of n as a continuous variable and using L’Hôpital’s Rule, the limit of the last

expression is the limit of
(
ae

1
2
na− 1

2
n
(
1
2a− 1

2

))
as n→∞. The result is

a− 1

2
.

Solution 5 by G. C. Greubel, Newport News, VA

We are asked to evaluate the limit
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lim
n→∞n

(
a− e 1

n+1
+ 1

n+2
+···+ 1

na

)
.

The primary difficulty is reducing the exponential to some aspect easier to work with. With
this in mind consider the series of the exponential. This is given by

φn =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

na
.

This can be quickly be seen as

φn =
an∑

k=1

1

k
−

n∑

k=1

1

k

= Han −Hn

where Hn is the Harmonic number. With this there is a basis to expand upon. In order to
proceed further the expansion of a Harmonic number in terms of factors of 1/n is required.
The required expansion is obtained from Wolfram Mathworld Harmonic numbers site1 and is
given by

Hn ∼ lnn+ γ +
1

2n
− 1

12n2
+

1

120n4
− 1

252n6
+O

(
1

n8

)
.

where γ is Euler’s constant. When use of this is made the result becomes

φn = ln(an)− ln(n) +
1

2n

(
1

a
− 1

)
− 1

12n2

(
1

a2
− 1

)

+
1

120n4

(
1

a4
− 1

)
−O

(
1

n6

)

= ln a+
(1− a)

2an
− (1− a2)

12a2n2
+

(1− a4)
120a4n4

−O
(

1

n6

)
.

Now that a valid approximation for large values of n has been obtained it can be used to
reduce the exponential portion of the limit. With this in mind the result becomes

eφn = 1 + φn +
1

2
φ2n + · · ·

≈ 1 +

[
ln a+

1− a
2an

− 1− a2
12a2n2

+O
(

1

n4

)]
+

1

2

[
ln2 a+

2(1− a) ln a

4a2n

O
(

1

n2

)]
+

1

3!

[
ln3 a+

3(1− a)

2an
ln2 a+O

(
1

n2

)]
+ · · ·

≈ eln a +
1− a
2an

(
1 +

ln a

1!
+

ln2 a

2!
+ · · ·

)
+O

(
1

n2

)

1TheWolframMathworld site for Harmonic numbers is found at http://mathworld.wolfram.com/HarmonicNumber.html
and is stated as equation (13).
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≈ eln a +
1− a
2an

eln a +O
(

1

n2

)

eφn ≈ a+
1− a

2n
+O

(
1

n2

)
.

With this result it can now be seen that

a− eφn ≈ a− 1

2n
−O

(
1

n2

)
and

n
(
a− eφn

)
≈ a− 1

2
−O

(
1

n

)
.

Now the limit is easy to compute and is given by

lim
n→∞n

(
a− e 1

n+1
+ 1

n+2
+···+ 1

an

)
=
a− 1

2
.

Also solved by Arkady Alt, San Jose, CA; Bruno Sagueiro Fanego, Viveiro, Spain;
Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics,
Tor Vergata University, Vergata, Rome, Italy; David Stone and John Hawkins,
Southern Georgia University, Statesboro, GA, and the proposer.

5257: Proposed by Pedro H.O. Pantoja, UFRN, Brazil

Prove that:

1 +
1

2
·
√

1 +
1

2
+

1

3
· 3

√
1 +

1

2
+

1

3
+ · · ·+ 1

n
· n

√
1 +

1

2
+ · · ·+ 1

n
∼ ln(n),

where f(x) ∼ g(x) means lim
x→∞

f(x)

g(x)
= 1.

Solution 1 by Arkady Alt, San Jose, CA

Let Sn = 1 +
1

2
·
√
h2 +

1

3
· 3
√
h3 + ...+

1

n
· n
√
hn,where hn = 1 +

1

2
+

1

3
+ ...+

1

n
.

Since
1

k + 1
< ln (k + 1)− ln k <

1

k
(⇐⇒

(
1 +

1

k

)k
< e <

(
1 +

1

k

)k+1

) then

n∑

k=1

(ln (k + 1)− ln k) < hn ⇐⇒ ln (n+ 1) < hn and hk − 1 <
n∑

k=2

(ln k − ln (k − 1)) ⇐⇒

hn < 1 + lnn

and, therefore,
Sn − Sn−1

lnn− ln (n− 1)
=

n
√
hn
n

ln

(
1 +

1

n− 1

) =
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n
√
hn

ln

(
1 +

1

n− 1

)n ∈




n
√

ln (n+ 1)

ln

(
1 +

1

n− 1

)n ,
n
√

lnn+ 1

ln

(
1 +

1

n− 1

)n


 .

Since lim
n→∞

n
√

ln (n+ 1) = 1, lim
n→∞

n
√

1 + lnn = 1, lim
n→∞ ln

(
1 +

1

n− 1

)n
= 1 then

lim
n→∞

Sn − Sn−1
lnn− ln (n− 1)

= 1 and by Stolz Theorem we obtain

lim
n→∞

Sn
lnn

= lim
n→∞

Sn − Sn−1
lnn− ln (n− 1)

= 1.

Solution 2 by Ángel Plaza, Department of Mathematics, Universidad de Las Palmas
de Gran Canaria, Spain

Let L be the lim
n→∞

1 + 1
2 ·
√

1 + 1
2 + 1

3 · 3

√
1 + 1

2 + 1
3 + · · ·+ 1

n · n

√
1 + 1

2 + · · ·+ 1
n

ln(n)
.

Since lim
n→∞ ln(n) =∞, by the Stolz-Cesàro theorem,

L = lim
n→∞

1
n · n

√
1 + 1

2 + · · ·+ 1
n

ln(n)− ln(n− 1)

= lim
n→∞

n

√
1 + 1

2 + · · ·+ 1
n

ln
(

n
n−1

)n .

Note that lim
n→∞

n

√
1 +

1

2
+ · · ·+ 1

n
= lim

n→∞
1 + 1

2 + · · ·+ 1
n

1 + 1
2 + · · ·+ 1

n−1
= 1, by the Stolz-Cesàro theorem,

and also that lim
n→∞ ln

(
n

n− 1

)n
= 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is well known that 1 + 1
2 + · · ·+ 1

n = lnn+O(1) as n→∞ and ln(1 + x) = x+O
(
x2
)
, ex =

1 = x+O
(
x2
)

as x→ 0. Hence

ln
(
1 + 1

2 + · · ·+ 1
n )

n
=

ln lnn

n
+O

(
1

n lnn

)

and
1

n
· n

√
1 +

1

2
+ · · ·+ 1

n
=

1

n
eln(1+

1
2
+···+ 1

n)/n =
1

n

(
1 +

ln lnn

n
+O

(
1

n lnn

))
.

13X
ia
ng
’s
T
ex
m
at
h



Since
∞∑

n=3

ln lnn

n2
and

∞∑

n=3

1

n2 lnn
converge, so

1 +
1

2
·
√

1 +
1

2
+

1

3
· 3

√
1 +

1

2
+

1

3
+ · · ·+ 1

n
· n

√
1 +

1

2
+ · · ·+ 1

n
= ln(n) +O(1),

and we are done.

Editor’s comment: D. M. Bătinetu-Giurgiu, of the “Matei Basarab” National College
in Bucharest, Romania and Neculai Stanciu, of George Emil Palade School in
Buzău, Romania, submitted two solutions to the problem. Their first solution was similar in
approach to the second solution presented above, but in their second solution they generalized
the problem as follows:

If {xn}n≥1 and {yn}n≥1 are sequences of positive real numbers such that:

• {yn}n≥1 is increasing and unbounded,

• ∃t ∈ <+ such that lim
n→∞nt {yn+1 − yn} = a ∈ <+,

• lim
n→∞n

txn = a exists ∈ <+, and zn =
n∑

k=1

xk , then

{yn}n≥1 ∼ {zn}n≥1 . I.e., lim
n→∞

zn
yn
.

Proof. By the Cesaro-Stolz theorem we have:

lim
n→∞

zn
yn

= lim
n→∞

zn+1 − zn
yn+1 − yn

= lim
n→∞

xn+1

yn+1 − yn
= lim

n→∞
(n+ 1)txn+1(

n+1
n

)t
nt(yn+1 − yn)

=
a

1 · a = 1.

Remark: If we take yn = lnn, hn =
n∑

k=1

1

k
, xn =

1

n
n
√
hn, and zn =

n∑

k=1

xk, then by the above

we obtain {yn}n≥1 ∼ {zn}n≥1 which is problem 5257.

Also solved by Bruno Sagueiro Fanego, Viveiro, Spain; Paolo Perfetti, Department
of Mathematics, Tor Vergata University, Vergata, Rome, Italy, and the proposer.

5258: Proposed by José Luis Dı́az-Barrero and José Gibergans-Báguena, Polytechnical Univer-
sity of Catalonia, Barcelona, Spain

Let α1, α2, . . . , αn be real numbers such that 1 +
n∑

k=1

cos2 αk = n. Prove that:

∑

1≤i<j≤n
tanαi tanαj ≤

n

2
.

Solution 1 by Arkady Alt, San Jose, CA
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Let xi = tan2 αi, i = 1, 2, ..., n then xi ≥ 0, i = 1, 2, ..., n, 1 +
n∑
k=1

cos2 αk = n ⇐⇒

n∑
k=1

1

1 + xi
= n− 1 and, since

n∑
1≤i<j≤n

tanαi tanαj ≤
n∑

1≤i<j≤n
|tanαi| |tanαj | =

n∑
1≤i<j≤n

√
xixj ,

then it is sufficient to prove
n∑

1≤i<j≤n
√
xixj ≤

n

2
.

Let ai =
xi

1 + xi
, 1, 2, .., n then

n∑
i=1

ai =
n∑
i=1

(
1− 1

1 + xi

)
= n−

n∑
i=1

1

1 + xi
= 1 and,

since xi =
ai

1− ai
, 1, 2, ..., n our problem is:

Prove inequality
n∑

1≤i<j≤n

√ aiaj
(1− ai) (1− aj)

≤ n

2
, for ai ≥ 0, i = 1, 2, ..., n such

that
n∑
k=1

ai = 1.

We have
n∑

1≤i<j≤n

√ aiaj
(1− ai) (1− aj)

≤
n∑

1≤i<j≤n

1

2

(
aj

1− ai
+

ai
1− aj

)
=

1

2




n∑

1≤i<j≤n

aj
1− ai

+
n∑

1≤i<j≤n

ai
1− aj


 =

1

2



n−1∑

i=1

n
j=i+1

aj
1− ai

+
n∑

j=2

j
i=1

ai
1− aj


 =

1

2



n−1∑

i=1

1

1− ai

n∑

j=i+1

aj +
n∑

j=2

1

1− aj

j−1∑

i=1

ai


 =

1

2
· 1

1− a1

n∑

j=2

aj +
1

2

n−1∑

i=2

1

1− ai

n∑

j=i+1

aj+

n−1∑
j=2

1
1−aj

j−1∑
i=1

ai +
1

1− an

n−1∑

i=1

ai = 1 +
1

2



n−1∑

i=2

1

1− ai

n∑

j=i+1

aj + n−1
j=2

1

1− aj

j−1∑

i=1

ai


 =

1 +
1

2



n−1∑

i=2

1

1− ai

n∑

j=i+1

aj +
n−1∑

i=2

1

1− ai
i−1∑

j=1

ai


 = 1 +

1

2



n−1∑

i=2

1

1− ai




n∑

j=i+1

aj +
i−1∑

j=1

ai




 =

1 +
1

2

n−1∑

i=2

1− ai
1− ai

= 1 +
n− 2

2
=
n

2
.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Vergata, Rome, Italy

Proof: We first note that if

α1 = α2 = . . . = αn−1 = 0, αn = π/2, the constraints of the problem are satisfied, but

∑

1≤i<j≤n
tanαi tanαj

is undefined; so we add the assumption αi 6= π/2 + 2kπ, k ∈ Z,

i = 1, . . . , n. Both cos2 x and tanx are π–periodic so we can assume
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αi ∈ (−π/2, π/2) and set αi = arctan ai. This yields

1 +
n∑

k=1

1

1 + a2k
= n =⇒

∑

1≤i<j≤n
aiaj ≤ n.

By defining ak =
√
bk the inequality becomes

2
∑

1≤i<j≤n

√
bibj ≤ n whenever

n∑

i=1

1

bi + 1
= n− 1.

By convexity of 1/(1 + x) for x > 0 we have

n− 1 =
n∑

i=1

1

bi + 1
≤ n

1 +
b1 + . . .+ bn

n

,

that is, b1 + . . .+ bn ≤ n/(n− 1). Now

2
∑

1≤i<j≤n

√
bibj ≤

∑

1≤i<j≤n
(bi + bj) = (n− 1)(b1 + . . .+ bn) ≤ (n− 1)n/(n− 1) = n,

and we are done.

Solution 3 Adrian Naco, Polytechnic University, Tirana, Albania.

Let xi = tanαi,∀i ∈ {1, 2, ....., n}. Applying the trigonometric formula,

cos2 αi =
1

1 + tan2 αi
, the condition and the initial inequality give respectively,

1 +
n∑

1

1

1 + x2i
= n and

∑

1≤i<j≤n
xixj ≤

n

2
.

Let us assume

ai =
1

(n− 1)(x2i + 1)
⇒ x2i = 1−(n−1)ai

(n−1)ai and
n∑

i=1

ai = 1

yi,j =
1− (n− 1)ai

(n− 1)aj
⇒ yi,jyj,i = x2ix

2
j and yi ,j ≥ 0, ∀i , j

Thus we have that

2
∑

1≤i<j≤n
xixj ≤ 2

∑

1≤i<j≤n
|xi||xj | = 2

∑

1≤i<j≤n

√
x2ix

2
j
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≤ 2
∑

1≤i<j≤n

1

2

(
x2i + x2j

)
=

∑

1≤i<j≤n

(
x2i + x2j

)

=
∑

1≤i<j≤n

[
1− (n− 1)ai

(n− 1)aj
+

1− (n− 1)aj
(n− 1)ai

]

=
1

n− 1

∑

1≤i<j≤n

[
1

aj
+

1

ai

]
−

∑

1≤i<j≤n

[
aj
ai

+
ai
aj

]

=
1

n− 1

n−1∑

i=1

n∑

j=i+1

[
1

aj
+

1

ai

]
−
n−1∑

i=1

n∑

j=i+1

[
aj
ai

+
ai
aj

]

=
1

n− 1

[n−1∑

i=1

n∑

j=i+1

1

aj
+
n−1∑

i=1

n∑

j=i+1

1

ai

]
−
n−1∑

i=1

n∑

j=i+1

aj
ai
−
n−1∑

i=1

n∑

j=i+1

ai
aj

=
1

n− 1

[n−1∑

i=1

(n− i) 1

ai
+

n∑

i=2

(i− 1)
1

ai

]
−
n−1∑

i=1

n∑

j=i+1

aj
ai
−
n−1∑

i=1

n∑

j=i+1

ai
aj

=
1

n− 1

n∑

i=1

(n− 1)
1

ai
−
n−1∑

i=1

n∑

j=i+1

aj
ai
−
n−1∑

i=1

n∑

j=i+1

ai
aj

=
n∑

i=1

1

ai
−
n−1∑

i=1

n∑

j=i+1

aj
ai
−
n−1∑

i=1

n∑

j=i+1

ai
aj

=
n∑

i=1

( n∑

j=1

aj

)

ai
−
n−1∑

i=1

n∑

j=i+1

aj
ai
−
n−1∑

i=1

n∑

j=i+1

ai
aj

=
n∑

i=1

n∑

j=1

aj
ai
−
n−1∑

i=1

n∑

j=i+1

aj
ai
−
n−1∑

i=1

n∑

j=i+1

ai
aj

=
n−1∑

i=1

n∑

j=i+1

aj
ai

+
n∑

i=1

ai
ai

+
n−1∑

i=1

n∑

j=i+1

ai
aj
−
n−1∑

i=1

n∑

j=i+1

aj
ai
−
n−1∑

i=1

n∑

j=i+1

ai
aj

=
n∑

i=1

ai
ai

=
n∑

i=1

1 = n.

Finally we have that ∑

1≤i<j≤n
tanαi tanαj =

∑

1≤i<j≤n
xixj ≤

n

2
.
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The equality holds for xi = tanαi = tanαj = xj , 1 ≤ i < j ≤ n or equivalently for αi =
kπ + αj , 1 ≤ i < j ≤ n, k ∈ Z.

Solution 4 by Bruno Salgueiro Fanego, Viveiro, Spain

Note that n = 1 +
n∑

k=1

cos2 αk = 1 +
n∑

k=1

(1 − sin2 αk) = 1 +
n∑

k=1

1 −
n∑

k=1

sin2 αk = 1 + n −
n∑

k=1

sin2 αk ⇐⇒
n∑

k=1

sin2 αk = 1 ⇐⇒
n∑

k=1

tan2 αk
1 + tan2 αk

= 1, and that the inequality to

prove is equivalent to

(
n∑

k=1

tanαk

)2

−
n∑

k=1

tan2 αk = 2
∑

1≤i<j≤n
tanαi tanαj ≤ n =

n∑

k=1

1 ⇐⇒

(
n∑

k=1

tanαk

)2

≤
n∑

k=1

1 +
n∑

k=1

tan2 αk =
n∑

k=1

(
1 + tan2 αk

)
⇐⇒

(
n∑

k=1

tanαk

)2

n∑

k=1

(
1 + tan2 αk

) ≤ 1 =

n∑

k=1

tan2 αk

+ tan2 αk
which is just Bergström′s inequality

(
n∑

k=1

ak

)2

n∑

k=1

bk

≤
n∑

k=1

a2k
bk

applied to ak = tanαk ∈

< and bk = 1 + tan2 αk ∈ <; 1 ≤ k ≤ n.

Equality occurs if and only if
a1
b1

=
a2
b2

= · · · =
an
bn

, that is if and only if
1

2
sin (2α1) =

1

2
sin (2α2) = · · · = 1

2
sin (2αn), and

n∑

k=1

sin2 αk = 1.

Also solved by the proposers.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2014

• 5277: Proposed by Kenneth Korbin, New York, NY

Find x and y if a triangle with sides (2013, 2013, x) has the same area and the same
perimeter as a triangle with sides (2015, 2015, y).

• 5278: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The triangular numbers 6 = (2)(3) and 10 = (2)(5) are each twice a prime number. Find
all triangular numbers that are twice a prime.

• 5279: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” General School, Buzu,
Romania

Let f : <+ −→ <+ be a convex function on <+, where <+ stands for the positive real
numbers. Prove that

3
(
f2(x) + f2(y)+f

2(z)
)
−9f2

(
x+ y + z

3

)
≥ (f(x)− f(y))2+(f(y)− f(z))2+(f(z)− f(x))2 .

• 5280: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a ≥ b ≥ c be nonnegative real numbers. Prove that

1

3

(
(a+ b)(c+ a)

2 +
√
a+ b

+
(c+ a)(b+ c)

2 +
√
c+ a

+
(b+ c)(a+ b)

2 +
√
b+ c

)
≤ (a+ b)2

2 +
√
b+ c

.

• 5281: Proposed by Arkady Alt, San Jose, CA

For the sequence {an}n≥1 defined recursively by an+1 =
an

1 + apn
for n ∈ N , a1 = a > 0,

determine all positive real p for which the series
∞∑

n=1

an is convergent.

• 5282: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania
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Calculate ∫ 1

0
x ln

(√
1 + x−

√
1− x

)
ln
(√

1 + x+
√

1− x
)
dx.

Solutions

• 5259: Proposed by Kenneth Korbin, New York, NY

Find a, b, and c such that with a < b < c,





ab+ bc+ ca = −2

a2b2 + b2c2 + c2a2 = 6

a3b3 + b3c3 + c3a3 = −11.

Solution 1 by Arkady Alt, San Jose, CA

Let s = a+ b+ c, p = ab+ bc+ ca, and q = abc. Then a, b, c are the roots of the
equation x3 − sx2 + px− q = 0. Since,

6 = a2b2 + b2c2 + c2a2 = p2 − 2sq = 4− 2sq and

−11 = a3b3 + b3c3 + c3a3 = 3q2 + p3 − 3spq = 3q2 − 8 + 6sq, then

sq = −1 and q2 = 1 ⇐⇒ q = 1 or q = −1.

Thus we obtain (s, p, q) = (−1,−2, 1) , (1,−2,−1) and, respectively, the two equations

x3 + x2 − 2x− 1 = 0 and x 3 − x 2 − 2x + 1 = 0.

Since,

(−x)3 + (−x)2 − 2 (−x)− 1 = 0 ⇐⇒ x3 − x2 − 2x+ 1 = 0, and
x3 + x2 − 2x− 1 = 0 ⇐⇒ x = 1.2470, −0.44504, −1.8019,

we see that,

(a, b, c) = (−1.8019, −0.44504, 1.2470) , (−1.2470, 0.44504, 1.8019) .

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

As in problem 5135, let x = ab, y = bc and z = ca, so that
x+ y + z = −2, x2 + y2 + z2 = 6, and x3 + y3 + z3 = −1. We have

abc (a+ b+ c) = xy + yz + zx =
(x+ y + z)2 − x2 − y2 − z2

2
=

(−2)3 − 6

2
= −1, and

(abc)3 = xyz =
x3 + y3 + z3 − (x+ y + z)

(
x2 + y2 + z2 − xy − yz − zx

)

3
=
−11 + 2(6 + 1)

3
= 1.
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Hence, either





a+ b+ c = −1

ab+ bc+ ca = 2

abc = 1

or





a+ b+ c = 1

ab+ bc+ ca = 2

abc = −1.

In the former case a, b, and c are the roots of the polynomial t3 + t2 − 2t− 1, and in the
latter case, the roots of the polynomial t3 − t2 − 2t+ 1. By the trigonometric method to
find the roots of a cubic polynomial equation, we obtain respectively

a =
2
√

7

3
cos




cos−1
(

1
2
√
7

)
+ 2π

3


− 1

3
≈ −1.80194,

b =
2
√

7

3
cos




cos−1
(

1
2
√
7

)
+ 4π

3


− 1

3
≈ −0.445042, and

c =
2
√

7

3
cos




cos−1
(

1
2
√
7

)

3


− 1

3
≈ 1.24698

a ≈ −1.24698, b ≈ 0.445042, and c ≈ 1.80194.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

To begin, label the equations as follows:





ab+ bc+ ca = −2 (1)

a2b2 + b2c2 + c2a2 = 6 (2)

a3b3 + b3c3 + c3a3 = −11. (3)

Then, by (1) and (2),

4 = (ab+ bc+ ca)2

= a2b2 + b2c2 + c2a2 + 2
(
ab2c+ bc2a+ ca2b

)

= 6 + 2abc (a+ b+ c) and hence,

abc (a+ b+ c) = −1. (4)

Next, use (1), (2), (3), and (4) to obtain

−12 = (ab+ bc+ ca)
(
a2b2 + b2c2 + c2a2

)

= a3b3 + b3c3 + c3a3 + ab3c2 + a3bc2 + a2b3c

+a2bc3 + a3b2c+ ab2c3

= −11 + abc [ab (a+ b) + bc (b+ c) + ca (c+ a)]

= −11 + abc [(ab+ bc+ ca) (a+ b+ c)− 3abc]
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= −11 + abc [−2 (a+ b+ c)]− 3 (abc)2

= −9− 3 (abc)2 or

(abc)2 = 1. (5)

It follows from (4) and (5) that either abc = 1 and a+ b+ c = −1 or abc = −1 and
a+ b+ c = 1. Since

(x− a) (x− b) (x− c) = x3 − (a+ b+ c)x2 + (ab+ bc+ ca)x− abc,

a, b, c must be the solutions of either

x3 + x2 − 2x− 1 = 0 (6)

or

x3 − x2 − 2x+ 1 = 0 (7)

We will utilize a method for solving (6) described on pg. 59 of [1]. The solutions of (7)
can then be found by making an appropriate adjustment in this method. Let

R = cos
2π

7
+ i sin

2π

7
. Then, as a 7th root of unity, R has several useful properties:

• 1. Since R7 = 1, we have

1 +R+R2 +R3 +R4 +R5 +R6 =
R7 − 1

R− 1
= 0.

• 2. For k = 1, . . . , 7,

a)
1

Rk
= R7−k

b) Rk = R7+k

c) Rk +
1

Rk
= 2Re

(
Rk
)
.

Pair the powers of R as follows:

x1 = R+R6 = R+
1

R
= 2 cos

2π

7
,

x2 = R2 +R5 = R2 +
1

R2
= 2 cos

4π

7
= −2 cos

3π

7
,

x3 = R3 +R4 = R3 +
1

R3
= 2 cos

6π

7
= −2 cos

π

7
.

Then, since
x1 + x2 + x3 = R+R2 +R3 +R4 +R5 +R6 = −1,

x1x2 + x2x3 + x3x1 =
(
R3 +R6 +R8 +R11

)
+
(
R5 +R6 +R8 +R9

)
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+
(
R4 +R9 +R5 +R10

)

=
(
R3 +R6 +R+R4

)
+
(
R5 +R6 +R+R2

)

+
(
R4 +R2 +R5 +R3

)

= 2
(
R+R2 +R3 +R4 +R5 +R6

)

= −2, and

x1x2x3 =
(
R+R6

) (
R5 +R6 +R+R2

)

= R6 +R7 +R2 +R3 +R11 +R12 +R7 +R8

= 2 +R+R2 +R3 +R4 +R5 +R6

= 1,

x1, x2, x3 must be the solutions of (6). The condition a < b < c then implies that one possible

solution of our system is a = −2 cos
π

7
, b = −2 cos

3π

7
, and c = 2 cos

2π

7
.

Similarly, if

y1 = −x1 = −2 cos
2π

7
,

y2 = −x2 = 2 cos
3π

7
, and

y3 = −x3 = 2 cos
π

7
, then,

y1 + y2 + y3 = − (x1 + x2 + x3) = 1,

y1y2 + y2y3 + y3y1 = x1x2 + x2x3 + x3x1 = −2, and

y1y2y3 = −x1x2x3 = −1.

Therefore, y1, y2, y3 are the solutions of (7). Again, since a < b < c, the remaining possible

solution of our system is a = −2 cos
2π

7
, b = 2 cos

3π

7
, and c = 2 cos

π

7
.

To show that neither solution is extraneous, we note first that since

y1y2 + y2y3 + y3y1 = x1x2 + x2x3 + x3x1 = −2,

we have
ab+ bc+ ca = −2

in both cases. Further, the conditions

x1 + x2 + x3 = −1, x1x2x3 = 1
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and
y1 + y2 + y3 = 1, y1y2y3 = −1

imply that

(abc)2 = 1 and abc (a+ b+ c) = −1

in both cases. It follows that both solutions also satisfy

a2b2 + b2c2 + c2a2 = (ab+ bc+ ca)2 − 2abc (a+ b+ c)

= 4 + 2

= 6

and

a3b3 + b3c3 + c3a3 = (ab+ bc+ ca)
(
a2b2 + b2c2 + c2a2

)

−abc (ab+ bc+ ca) (a+ b+ c) + 3 (abc)2

= (−2) (6)− (−1) (−2) + 3

= −11.

Hence, our solutions for (6) and (7) both satisfy the original system as well.

Reference:

[1] Benjamin Bold, Famous Problems of Geometry and How to Solve Them, Dover
Publications, Inc., 1969.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed Gray,
Highland Beach, Fl; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Paolo
Perfetti, Department of Mathematics, “Tor Vergata” University, Rome, Italy;
David Stone and John Hawkins, Georgia Southern University, Statesboro, GA,
and the proposer.

• 5260: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Find all primes p and q such that apq−1 ≡ a (mod pq), for all a relatively prime to pq.

Solution 1 by Ken Korbin, New York, NY

Let p = 2 and q be any odd prime.

φ(pq) = φ(2q) = q − 1

(a, pq) = 1, therefore
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aφ(pq) ≡ 1 (mod pq)

aq−1 ≡ 1 (mod pq)

[
aq−1

]
·
[
aq−1

]
≡ 1 · 1 (mod pq)

a2q−2 ≡ 1 (mod pq)

a · a2q−2 ≡ a · 1 (mod pq)

a2q−1 ≡ a (mod pq) , therefore

apq−1 ≡ a (mod pq) , if p = 2 and q is any odd prime.

Solution 2 by Kee-Wai Lau,Hong Kong, China

We show that primes p and q satisfy apq−1 ≡ a (mod pq) for all a relatively prime to pq, if and
only if at least one of them is 2.

We need only that

I. For any prime q, a2q−1 ≡ a (mod 2q), for all a relatively prime to 2q.

II. If p ≤ q are odd primes, then apq−1 6≡ a (mod pq) if a > 1 is a primitive root modulo q.

If (a, 2q) = 1, then aq−1 + 1 is even and by Fermat’s little theorem, we have
aq−1 − 1 ≡ 0 (mod 2q). Hence

a2q−1 − a = a(aq−1 + 1)(aq−1 − 1) ≡ 0 (mod 2q).

This proves I. We now prove II.

Suppose, on the contrary, that a > 1 is a primitive root modulo q such that

apq−1 ≡ a (mod pq). (1)

By Fermat’s little theorem we have

apq−1 = ap−1(aq−1)p

= ap−1(1 + kq)p

= ap−1
p∑

j=0

(
p

j

)
(kq)j for some positive integer k.

(3)

It is well known that p divides

(
p

j

)
for j = 1, 2, · · · , p− 1. Hence

apq−1 ≡ ap−1(1 + kpqp) (mod pq). (2)
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From (1) and (2), we see that

ap−1 ≡ a (mod q). (3)

Since a is a primitive root modulo q, so ar 6≡ a (mod q) for r = 2, 3, · · · , q − 1.

Since p > 2, so by (3) we have p− 1 ≥ q, which contradicts the fact tht p ≤ q. This proves II
and completes the solution.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Dionne
Bailey, Elsie Campbell, and Charles Diminnie, Angelo State University, San
Angelo, TX; David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the
proposer.

• 5261: Proposed by Michael Brozinsky, Central Islip, NY

Show without calculus or trigonometric functions that the shortest focal chord of an ellipse is
the latus rectum.

Solution 1 by Paul M. Harms, North Newton, KS

Any ellipse can be placed on a coordinate system so that the equation of the ellipse is

(x+ c)2

a2
+
y2

b2
= 1 where a > b. One focal point is at (0, 0). I will consider the focal chords

through (0, 0).

Focal chords with slope m are on the line y = mx. The x values of the points of intersection

of the ellipse and the line y = mx come from the equation
(x+ c)2

a2
+
m2x2

b2
= 1 which yields

the quadratic equation
(
a2m2 + b2

)
x2 + 2b2cx− b4 = 0, where b4 = b2

(
a2 − c2

)
.

If H =
√
b4c2 + (a2m2 + b2)b4, the x solutions are

−b2c+H

a2m2 + b2
and

−b2c−H
a2m2 + b2

.

Let the intersection points of the focal chord and the ellipse be (x1, y1) and (x2, y2). To
determine the shortest focal chord, I will look for the minimum of the square of the distance L
between (x1, y1) and (x2, y2).

Here L = (y2 − y1)2 + (x2 − x1)2. Since the points are on y = mx we have
y2 − y1 = m(x2 − x1) and L = (x2 − x1)2(m2 + 1). The points x1 and x2 are the two solutions
of the quadratic equation given above.

We have

(x2 − x1)2 =

(
2H

a2m2 + b2

)2

and L = (x2 − x1)
2(m2 + 1)

=
4b4(c2 + a2m2 + b2)

(a2m2 + b2)2
(m2 + 1)

>
4b4(a2m2 + b2)(m2 + 1)

(a2m2 + b2)2
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=

4b4

a2
(
m2 + 1

)

m2 +

(
b

a

)2

>
4b4

a2
(1).

The last inequality occurs since 0 <
b

a
< 1.

Thus any focal chord with slope m has the square of its length greater than
4b4

a2
, which is the

square of the length of the vertical chord and the latus rectum. The conclusion of the problem
follows.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let F be one of the foci, d the directrix closest to F , e the eccentricity, and M,N,L points on
the ellipse such that MN is a focal chord (that is, F ∈MN) and L is one of the endpoints of
the latus rectum (LF ||d) and M ′, N ′, L′, F ′ the respective projections of M,N,L, on d.

We want to prove that the length of the focal chord MN is greater or equal to the length of
the latus rectum that is, that MN ≥ 2LF .

Since the distance of any point on the ellipse to F is equal to e times its distance to d, we
have that MN = MF + FN = eMM ′ + eNN ′ = e(MM ′ +NN ′) and LF = eLL′, so we want
to prove that MM ′ +NN ′ ≥ 2LL′.

By Thales’ theorem
MM ′

FF ′
=
FF ′

NN ′
that is MM ′ ·NN ′ = (FF ′)2. So by the arithmetic

mean-geometric mean inequality

MM ′ +NN ′ ≥ 2
√
MM ′ ·NN ′ = 2FF ′

with equality if, and only if, MM ′ = NN ′, that is if, and only if, MN coincides with the latus
rectum, as we wanted to prove.

Also solved by Ed Gray, Highland Beach, FL, and the proposer.

• 5262: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Prove that the equation ϕ(10x2) + ϕ(30x3) + ϕ(34x4) = y2 + y3 + y4 has infinitely many
solutions for x, y ∈ N where ϕ(x) is the Euler-ϕ function.

Solution by Tom Moore, Bridgewater State University, Bridgewater, MA

Let x = 2k. Then,

ϕ(10x2) = ϕ
(

5 · 22k+1
)

= ϕ(5)ϕ
(

22k+1
)

= 4 · 22k = 22k+2 =
(

2k+1
)2
.
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ϕ(30x3) = ϕ
(

2 · 5 · 6 · 23k
)

= ϕ(5)ϕ(3)ϕ
(

23k
)

= 8 · 23k = 22k+3 =
(

2k+1
)3
.

ϕ(34x4) = ϕ
(

2 · 17 · 24k
)

= ϕ(17)ϕ
(

24k
)

= 16 · 24k = 24k+4 =
(

2k+1
)4
.

So, we have infinitely many solutions(x, y) =
(
2k, 2k+1

)
, k ≥ 0.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Ed Gray, Highland Beach, FL; Jahangeer
Kholdi and Farideh Firoozbakht, University of Isfahan, Khansar, Iran; Ken
Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; David E. Manes,
SUNY College at Oneonta, Oneonta, NY, and the proposer.

• 5263: Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia, Barcelona,
Spain

Let a, b, c be positive numbers lying in the interval (0, 1]. Prove that

a ·
√

bc

1 + c+ ab
+ b ·

√
ca

1 + a+ bc
+ c ·

√
ab

1 + b+ ca
≤
√

3.

Solution 1 by Ed Gray, Highland Beach, FL

Consider the function f(x, y, z) = x

√
y

1 + z + xy
. Each term in the problem is a

representation of f by assigning a, b, c appropriately. Maximizing any term in the problem is
equivalent to maximizing f .

Write f as

√ (
x2
)
yz

1 + z + xy
. Define u = xy and f becomes

√
xuz

1 + z + u
. Note that u is in (0, 1].

Since x appears alone in the numerator and we wish to maximize the function, we assign to x

its largest value possible: that is, x = 1. The problem now becomes to maximize
uz

1 + z + u
,

for then its square root will attain its maximum.

Define z + u = 2t, where t is in (0, 1]. It is well know that the maximum of the product zu is
t2. Since if

r = zu = u(2t− u) = 2tu− u2.

dr

du
= 2t− 2u = 0 =⇒ u = t, and z = t .

uz

1 + z + u
becomes

t2

1 + 2t
.

Since the derivative of this last term is greater than zero, it attains its maximum for t = 1 and

is
1

3
.

Therefore the maximum of the left hand side of the statement of the problem is

3

√
1

3
= 3

√
3

9
=

3

3

√
3 ≤
√

3. Q.E.D.
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Solution 2 by Adrian Naco, Polytechnic University,Tirana, Albania.

Considering the left side of the last inequality and applying the wellknown

AM-GM inequality we have that

a ·
√

bc

1 + c+ ab
+ b ·

√
ca

1 + a+ bc
+ c ·

√
ab

1 + b+ ca
=

=
√
abc

[ √
a√

1 + c+ ab
+

√
b√

1 + a+ bc
+

√
c√

1 + b+ ca

]
≤

≤
√
abc

[ √
a√

3 6
√
abc

+

√
b√

3 6
√
abc

+

√
c√

3 6
√
abc

]

=
3
√
abc√
3

[√
a+
√
b+
√
c

]
≤

3
√

1√
3

[√
1 +
√

1 +
√

1

]
=
√

3

since

1 + c+ ab ≥ 3
3
√

1 · c · ab = 3
3
√
abc ⇒ 1√

1 + c+ ab
≤ 1
√

3
√

3
√
abc

1 + a+ bc ≥ 3
3
√

1 · a · bc = 3
3
√
abc ⇒ 1√

1 + a+ bc
≤ 1
√

3
√

3
√
abc

1 + b+ ca ≥ 3
3
√

1 · b · ca = 3
3
√
abc ⇒ 1√

1 + b+ ca
≤ 1
√

3
√

3
√
abc

The equality holds for a = b = c = 1

Solution 3 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

By applying the Cauchy-Schwarz inequality we obtain

∑

cyclic

a ·
√

bc

1 + c+ ab




2

≤


∑

cyclic

a2




∑

cyclic

bc

1 + c+ ab




≤ 3


∑

cyclic

bc

ac+ bc+ ab


 = 3.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

The concavity of
√
x yields

∑

cyc

a

√
bc

1 + c+ ab
= (a+ b+ c)

∑

cyc

a

a+ b+ c

√
bc

1 + c+ ab
≤
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≤ (a+ b+ c)

√∑

cyc

a

a+ b+ c

bc

1 + c+ ab
≤
√

3.

Squaring we get

(abc)(a+ b+ c)
∑

cyc

1

1 + c+ ab
≤ 3.

Now define x = 1/a ≥ 1, y = 1/b ≥ 1, z = 1/c ≥ 1. We have

xy + yz + zx

xyz

∑

cyc

1

z + xy + xyz
≤ 3,

and moreover

xy + yz + zx

xyz

∑

cyc

1

z + xy + xyz
≤ xy + yz + zx

xyz

∑

cyc

1

3
≤ 3 ⇐⇒ 3xyz ≥ xy + yz + zx,

which follows by x, y, z ≥ 1.

Solution 5 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Since a, b, c > 0, the Arithmetic - Geometric Mean Inequality implies that

1 + c+ ab ≥ 3
3
√
abc.

Then, because 0 < a, b, c ≤ 1, we have

a ·
√

bc

1 + c+ ab
=
√
a ·
√

abc

1 + c+ ab

≤ √
a ·
√

abc

3 3
√
abc

=

√
a ·
√

(abc)
2
3

√
3

=

√
a 3
√
abc√
3

≤ 1√
3
,

with equality if and only if a = b = c = 1.

Similarly,

b ·
√

ca

1 + a+ bc
≤ 1√

3
and c ·

√
ab

1 + b+ ca
≤ 1√

3
,

with equality in each case if and only if a = b = c = 1.
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Therefore,

a ·
√

bc

1 + c+ ab
+ b ·

√
ca

1 + a+ bc
+ c ·

√
ab

1 + b+ ca

≤ 1
√

3 +
1√
3

+
1√
3

=
√

3,

with equality if and only if a = b = c = 1.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China;
David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

• 5264: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be positive real numbers. Show that if

∑

cyclic

(n+ 1)x3 + nx

x2 + 1
= α

then ∑

cyclic

1

x
>

3n

α
+

(2n− 1)α

3n
+

3nα

9n2 + α2

where n is a positive integer. Cyclic means the cyclic permutation of x, y, z (and not x, y, z
and α).

Solution by proposer

Doing easy manipulations we have

α =
∑

cycl

(n+ 1)x3 + nx

x2 + 1
=
∑

cycl

1

x
+
∑

cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
.

Let f(x) =
−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
. One easily observes that

f ′(x) =
1 + (n+ 2)x2 + (2n+ 4)x4 + (n+ 1)x6

x2(1 + x2)2

f ′′(x) = −2(1 + 3x2 + 2x6)

x3(1 + x2)3.

It is obvious that f ′(x) > 0 and f ′′(x) < 0 for any x that is a positive real number, which
implies that the function f(x) is an increasing and concave function in the positive real
domain. Applying Jensen’s inequality we have

∑

cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
=
∑

cycl

f(x) ≤ 3f




∑

cycl

x

3


 .
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Doing easy manipulations, one easily observes that

α =
∑

cycl

(n+ 1)x3 + nx

x2 + 1
=
∑

cycl

nx+
∑

cycl

x3

x2 + 1
> n

∑

cycl

x =⇒
∑

cycl

x <
α

2n
.

Finally, using the above results we have

∑

cycl

1

x
= α−

∑

cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)

≥ α− 3f




∑

cycl

x

3




> α− 3f



α

n
3




= α− 3f
( α

3n

)

=
3n

α
+

(2n− 1)α

3n
+

3nα

9n2 + α2

and this completes the proof.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2014

• 5283: Proposed by Kenneth Korbin, New York, NY

Find the sides of two different isosceles triangles that both have perimeter 162 and area
1008.

• 5284: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Prove:

a) 33
n

+ 1 ≡ 0 mod 28, ∀n ≥ 1,

b) 33
n

+ 1 ≡ 0 mod 532, ∀n ≥ 2,

c) 33
n

+ 1 ≡ 0 mod 19684, ∀n ≥ 3,

d) 33
n

+ 1 ≡ 0 mod 3208492, ∀n ≥ 4.

• 5285: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” General School,
Buzău, Romania

Let {an}n≥1, and {bn}n ≥ 1 be positive sequences of real numbers with

lim
n→∞ (an+1 − an) = a ∈ <+ and lim

n→∞
bn+1

nbn
= b ∈ <+.

For x ∈ <, calculate

lim
n→∞

(
asin

2 x
n

((
n+1

√
bn+1

)cos2 x

−
(

n
√
bn
)cos2 x

))
.

• 5286: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, an ant is assigned a specific equilateral
triangle EFG and three distinct positive numbers 0 < a < b < c. The ant’s job is to find
a unique point P (x, y) such that the distances from P to the vertices E,F and G of his
triangle are proportionate to a : b : c respectively. Some ants are eternally doomed to an
impossible search. Find a relationship between a, b and c that guarantees eventual
success; i.e., that such a unique point P actually exists.
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• 5287: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let u, v, w, x, y, z be complex numbers. Prove that

2Re(ux + vy + zw) ≤ 3
(
|u|2 + |v |2 + |w |2

)
+

1

3

(
|x |2 + |y |2 + |z |2

)
.

• 5288: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c ≥ 0 be real numbers. Find the value of

lim
n→∞

1

n

n∑

i=1

n∑

j=1

1√
i2 + j2 + ai+ bj + c

.

Solutions

• 5265: Proposed by Kenneth Korbin, New York, NY

Find positive integers x and y such that

2x− y −
√

3x2 − 3xy + y2 = 2014,

with (x, y) = 1.

Solution 1 by G. C. Greubel, Newport News, VA

The process to be considered, for a slightly general class of values, can be seen as
follows. Consider the equation

2x− y −
√

3x2 − 3xy + y2 = a (1)

for which rearranging terms and squaring both sides leads to

3x2 − 3xy + y2 = (2x− y − a)2

3x2 − 3xy + y2 = 4x2 + y2 + a2 + 2(−2xy − 2ax+ ay)

or

y =
x2 − 4ax+ a2

x− 2a

=
(x2 − 4ax+ 4a2)− 3a2

x− 2a

=
(x− 2a)2 − 3a2

x− 2a

y = x− 2a− 3a2

x− 2a
.
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This equation provides y in terms of x for a given x. The relations for x and y can be
put into a “parametric” form by making the substitution

u =
3a2

x− 2a
and v =

3a2

u
.

From this it can now be seen that

x = v + 2a
y = v − u
uv = 3a2.

It is readily seen that the possible factors of a are the primary values used in u and v. This is
to say that if a is a product of four integers, say {ai}1≤i≤4, rasied to powers bi then

uv = 3a1
2b1a2b22 a2b33 a2b44

and leads to the forms of u and v being of the form

u = 3α1aα2
1 aα3

2 aα4
3 aα5

4 and v = 3β1aβ21 aβ32 aβ43 aβ54 , (2)

where α1 + β1 = 1 and αi + βi = 2bi−1 for 2 ≤ i ≤ 5.

Now, returning to equation (1) it can also be seen in the form

(2x− y)−
√

(2x− y)2 − x(x− y) = a.

Invoking the conditions x and y be positive integers leads to the following conditions. If
x− y = 0 then this reduces to 0 = a which is invalid for all a 6= 0. In the case x− y < 0 the
reduction is seen to be

x− |x− y| −
√

(x− |x− y|)2 + x|x− y| = a.

This equation is also invalid for a > 0. The remaining condition x > y is the only option for
a > 0, x > 0 and y > 0. In order to be completely valid the statement should be x > y > 0 for
a > 0.

Also by rearranging the equation into the form
√

3x2 − 3xy + y2 = 2x− y − a

which, for positive integer values x and y, leads to the square root being positive and the
condition 2x− y − a ≥ 0 or 2x− y ≥ 0. The conditions x > y > 0 and 2x− y ≥ 0 can also be
stated as v > u and u+ v + 3a ≥ 0.

Introducing the additional condition (x, y) = p then p|a, p|x and p|y, or p is the divisor of a, x
and y. This condition leads to only relatively prime solutions are considered as solutions of
this particular problem.

a = 2014.

With a = 2014 it is quickly seen that the factors are 2, 19, and 53, i.e., a = 2 · 19 · 53 and
3a2 = 3 · 22 · 192 · 532. The possible factors from this factorable set, in view of equation (2), is
seen by:
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factors of uv = 3(2014)2

u v u v

30 · 20 · 190 · 530 31 · 22 · 192 · 532 31 · 20 · 190 · 530 30 · 22 · 192 · 532

30 · 22 · 190 · 530 31 · 20 · 192 · 532 31 · 22 · 190 · 530 30 · 20 · 192 · 532

30 · 20 · 192 · 530 31 · 22 · 190 · 532 31 · 20 · 192 · 530 30 · 22 · 190 · 532

30 · 20 · 190 · 532 31 · 22 · 192 · 530 31 · 20 · 190 · 532 30 · 22 · 192 · 530

30 · 22 · 192 · 530 31 · 20 · 190 · 532 31 · 22 · 192 · 530 30 · 20 · 190 · 532

30 · 22 · 190 · 532 31 · 20 · 192 · 530 31 · 22 · 190 · 532 30 · 20 · 192 · 530

30 · 22 · 192 · 532 31 · 20 · 190 · 530 31 · 22 · 192 · 532 30 · 20 · 190 · 530

Invoking the condition v > u then the possible values are preceded by an asterisk ∗:
factors of uv = 3(2014)2

u v u v

*30 · 20 · 190 · 530 *31 · 22 · 192 · 532 *31 · 20 · 190 · 530 *30 · 22 · 192 · 532

*30 · 22 · 190 · 530 *31 · 20 · 192 · 532 *31 · 22 · 190 · 530 *30 · 20 · 192 · 532

*30 · 20 · 192 · 530 *31 · 22 · 190 · 532 *31 · 20 · 192 · 530 *30 · 22 · 190 · 532

*30 · 20 · 190 · 532 *31 · 22 · 192 · 530 31 · 20 · 190 · 532 30 · 22 · 192 · 530

*30 · 22 · 192 · 530 *31 · 20 · 190 · 532 31 · 22 · 192 · 530 30 · 20 · 190 · 532

30 · 22 · 190 · 532 31 · 20 · 192 · 530 31 · 22 · 190 · 532 30 · 20 · 192 · 530

30 · 22 · 192 · 532 31 · 20 · 190 · 530 31 · 22 · 192 · 532 30 · 20 · 190 · 530

These eight value pairs for u and v lead to the eight value pairs of x and y, with (x, y) = 1,
being

x y

12,172,616 12,168,587
4,060,224 4,056,193
3,046,175 3,042,143
1,018,077 1,014,037

37,736 33,347
15,264 10,153
12,455 6,983
8,360 1,523.

a = 2015

With a = 2015 it is quickly seen that the factors are 5, 13, and 31, i.e., a = 5 · 13 · 31 and
3a2 = 3 · 52 · 132 · 312. The possible factors from this factorable set, in view of equation (2), is
seen by:

factors of uv = 3(2015)2

u v u v

30 · 50 · 130 · 310 31 · 52 · 132 · 312 31 · 50 · 130 · 310 30 · 52 · 132 · 312

30 · 52 · 130 · 310 31 · 50 · 132 · 312 31 · 52 · 130 · 310 30 · 50 · 132 · 312

30 · 50 · 132 · 310 31 · 52 · 130 · 312 31 · 50 · 132 · 310 30 · 52 · 130 · 312

30 · 50 · 130 · 312 31 · 52 · 132 · 310 31 · 50 · 130 · 312 30 · 52 · 132 · 310

30 · 52 · 132 · 310 31 · 50 · 130 · 312 31 · 52 · 132 · 310 30 · 50 · 130 · 312

30 · 52 · 130 · 312 31 · 50 · 132 · 310 31 · 52 · 130 · 312 30 · 50 · 132 · 310

30 · 52 · 132 · 312 31 · 50 · 130 · 310 31 · 52 · 132 · 312 30 · 50 · 130 · 310

Invoking the condition v > u then the possible values are preceded by an asterisk ∗:,
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factors of uv = 3(2015)2

u v u v

*30 · 50 · 130 · 310 *31 · 52 · 132 · 312 *31 · 50 · 130 · 310 *30 · 52 · 132 · 312

30 · 52 · 130 · 310 *31 · 50 · 132 · 312 *31 · 52 · 130 · 310 *30 · 50 · 132 · 312

30 · 50 · 132 · 310 *31 · 52 · 130 · 312 *31 · 50 · 132 · 310 *30 · 52 · 130 · 312

30 · 50 · 130 · 312 31 · 52 · 132 · 310 *31 · 50 · 130 · 312 *30 · 52 · 132 · 310

30 · 52 · 132 · 310 31 · 50 · 130 · 312 31 · 52 · 132 · 310 30 · 50 · 130 · 312

30 · 52 · 130 · 312 31 · 50 · 132 · 310 31 · 52 · 130 · 312 30 · 50 · 132 · 310

30 · 52 · 132 · 312 31 · 50 · 130 · 310 31 · 52 · 132 · 312 30 · 50 · 130 · 310

These eight value pairs for u and v lead to the eight value pairs of x and y, with (x, y) = 1,
being

x y

12,184,705 12,180,674
4,064,255 4,060,222
491,257 487,202
166,439 162,334
76,105 71,906
28,055 23,518
8,255 1,342

Solution 2 by Ercole Suppa, Teramo, Italy

The given equation is equivalent to

(2x− y − 2014)2 = 3x2 − 3xy + y2 ⇔
x2 − xy − 8056x+ 4028y + 20142 = 0 ⇔

y = x− 4028− 3 · 20142

x− 4028
(1)

where x, y are positive integers such that gcd(x, y) = 1 and 2x− y ≥ 2014.

Since y is integer, we have that x = 4028 + d where d is a divisor of 3 · 20142

Furthermore, since y > 0 we have

(x− 4028)2 > 3 · 20142 ⇔ x > 4028 + 2014
√

3.

Therefore d > 2014
√

3 and the possible values of x are:

x ∈ {8056, 8360, 9646, 10070, 12455, 15264, 16112, 20882, 23161, 37736,
42294, 57399, 61427, 80560, 110770, 118826, 164141, 217512, 233624, 324254,
644480, 1018077, 2032126, 3046175, 4060224, 6088322, 12172616}. (2)

By using (1) and (2), a simple check shows that the only pairs (x, y) such that 2x− y ≥ 2014
and gcd(x, y) = 1 are:

{(8360, 1523), (12455, 6983), (15264, 10153),
(37736, 33347), (1018077, 1014037), (3046175, 3042143)
(4060224, 4056193), (12172616, 12168587)}.
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Solution 3 by Brian D. Beasley Presbyterian College, Clinton, SC

We seek to solve the equation 2x− y −
√

3x2 − 3xy + y2 = c for any positive integer c.
Examining this equation for various values of c, we note the following two patterns of
solutions:

(1) Let x = 3c2 + 2c and y = 3c2 − 1. It is then straightforward to verify that

2x− y −
√

3x2 − 3xy + y2 = 3c2 + 4c+ 1−
√

(3c2 + 3c+ 1)2 = c.

Next, let d = gcd(x, y). If d > 1, then there is a prime p such that p divides d. Thus p divides
c(3c+ 2), so either p divides c or p divides 3c+ 2. But p also divides 3c2 − 1, so p cannot
divide c. Hence p divides 3c+ 2, but p also divides x− y = 2c+ 1 and thus divides
2(3c+ 2)− 3(2c+ 1) = 1, a contradiction. We therefore conclude that gcd(x, y) = 1.

(2) Let x = c2 + 2c and y = c2 − 3. (To keep y > 0, we assume c > 1 here.) It is then
straightforward to verify that

2x− y −
√

3x2 − 3xy + y2 = c2 + 4c+ 3−
√

(c2 + 3c+ 3)2 = c.

Next, we note that if 3 divides c, then gcd(x, y) ≥ 3, so we assume that 3 does not divide c in
this case. Let d = gcd(x, y). If d > 1, then there is a prime p such that p divides d. Thus p
divides c(c+ 2), so either p divides c or p divides c+ 2. But p also divides c2 − 3, so p cannot
divide c, since p 6= 3 in this case. Hence p divides c+ 2, but p also divides x− y = 2c+ 3 and
thus divides 2(c+ 2)− (2c+ 3) = 1, a contradiction. We therefore conclude that gcd(x, y) = 1.

Since c = 2014 for the given equation and 3 does not divide 2014, this approach produces two
solutions:

x = 12, 172, 616 and y = 12, 168, 587;

x = 4, 060, 224 and y = 4, 056, 193.

Addendum. This approach generates at least one solution for each value of c, with at least two
solutions when 3 does not divide c (and when c > 1). However, it does not find all solutions,
and it does not necessarily find the smallest solution.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Lugo, Spain;
Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau,
Hong Kong, China; David E. Manes, SUNY College at Oneonta, NY; David
Stone and John Hawkins, Southern Georgia University, Statesborogh,GA, and
the proposer.

• 5266: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The pentagonal numbers begin 1, 5, 12, 22, · · · and in general satisfy Pn =
n(3n− 1)

2
, ∀n ≥ 1.

The positive Jacobsthal numbers, which have applications in tiling and graph matching

problems, begin 1, 1, 3, 5, 11, 21, · · · with general term Jn =
2n − (−1)n

3
, ∀n ≥ 1. Prove that

there exists infinitely many pentagonal numbers that are the sum of three Jacobsthal numbers.

Solution 1 by Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie,
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Angelo State University, San Angelo, TX

For n ≥ 1, let kn =
2

3

(
22n−1 + 1

)
= 2J2n−1. Then,

Pkn =
kn (3kn − 1)

2

=
1

2
· 2

3

(
22n−1 + 1

) [
2
(
22n−1 + 1

)
− 1

]

=

(
22n−1 + 1

) (
22n + 1

)

3
, while

J2n−1 + J2n + J4n−1 =
1

3

[(
22n−1 + 1

)
+
(
22n − 1

)
+
(
24n−1 + 1

)]

=
22n−1 + 1 + 24n−1 + 22n

3

=

(
22n−1 + 1

)
+ 22n

(
22n−1 + 1

)

=

(
22n−1 + 1

) (
22n + 1

)

3
.

Therefore, for all n ≥ 1,

J2n−1 + J2n + J4n−1 = P2J2n−1 .

Solution 2 by Ed Gray, Highland Beach, FL

The sum of two consecutive Jacobsthal numbers is a power of two since

2x − (−1)x

3
+

2x+1 − (−1)x+1

3
=

1

3

(
2x + 2x+1

)
=

1

3
(2x) (1 + 2) = 2x.

Therefore we need to prove that

(1) 2x +
(2a − (−1)a)

3
=
n(3n− 1)

2

has infinitely many solutions.

Let a be odd so that a+ 1 = 2L
Multiplying (1) by 6 gives us

(2) 6(2x) + 2a+1 + 2 = 3n(3n− 1), or

(3) 9n2 − 3n− 2a+1 − 2− 6(2x) = 0.

This is a quadratic in n whose solution is by the quadratic formula :

(4) 18n = 3 +
√

9 + 36 (6(2x) + 2a+1 + 2)

The discriminate D is given by
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(5) D2 = 81 + 36(2a+1) + 216(2x))

(6) ConsiderD = 9 + 6(2L). Recall that a + 1 = 2L

(7) D2 = 81 + 108(2L) + 36(22L)

(8) Let 108(2L) = 216(2x )

(9) 2L = 2(x+1)

(10) L = x + 1, 2L = 2x + 2 = a + 1

Then (4) becomes :

(11) 18n = 3 + 9 + 6(2L) = 12 + 6(2L)

Dividing by 6,

(12) 3n = 2 + 2L

Since 2 ≡ −1 (mod 3)

2L ≡ −1L ≡ 1 if L is even.

Letting L = 2y we obtain n =
1

3
(2 + 22y).

Solution 3 by David E. Manes, SUNY at Oneonta, Oneonta, NY

We will show if k ≥ 0 and n
2
(
22k+1 + 1

)

3
, then

Pn = J4k+3 + J2k+2 + J2k+1,

from which the result follows.

Observe that if k is a nonnegative integer, the modulo 3

2
(
22k+1 + 1

)
≡ 2

(
(−1)2k+1 + 1

)
≡ 0 (mod 3) .

Therefore, n =
2
(
22k+1 + 1

)

3
is a positive integer for each k ≥ 0. Moreover,

Pn =

2(22k+1+1)
3

[
2(22k+1 + 1)− 1

]

2

=

(
22k+1 + 1

3

)(
22k+2 + 1

)
.
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If k ≥ 0, then

J4k+3 + J2k+2 + J2k+1 =

[
(24k+3 + 1) + (22k+2 − 1)

]
+ (22k+1 + 1)

3

=
22k+2(22k+1 + 1) + (22k+1 + 1)

3

=

(
22k+1 + 1

3

)(
22k+2 + 1

)

= P
2(22k+1 + 1)

3

= Pn.

Hence, there exists infinitely many pentagonal numbers P
2(22k+1 + 1)

3

(k≥ 0), that are the

sum of three Jacobsthal numbers; namely

J4k+3 + J2k+2 + J2k+1.

Also solved by Brian D. Beasley Presbyterian College, Clinton, SC; Kee-Wai Lau,
Hong Kong, China; David Stone and John Hawkins, Southern Georgia
University, Statesborogh, GA, and the proposer.

• 5267: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “Geroge Emil Palade” General School, Buzău, Romania

Let n be a positive integer. Prove that

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
+ (Ln + Ln+2)

2 ≥ 2
√

6
(√

LnLn+1

)
Ln+2,

where Fn and Ln represents the nth Fibonacci and Lucas Numbers defined by F0 = 0, F1 = 1,
and for all n ≥ 0, Fn+2 = Fn+1 + Fn; and L0 = 2, L1 = 1, and for all
n ≥ 0, Ln+2 = Ln+1 + Ln, respectively.

Solution by G. C. Greubel, Newport News, VA

The inequality to be shown valid is that of

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
+ (Ln + Ln+2)

2 ≥ 2
√

6
(√

LnLn+1

)
Ln+2. (1)

Using the AM-GM inequality then it can be seen that

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
≥ 2

[
FnFn+1

Fn+3Ln+1

]1/2
Ln+2Ln+3. (2)
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It can be shown that
1

3
≥
[
FnFn+1

Fn+3Ln+1

]1/2
≥ 1

4
, (3)

which is valid for n ≥ 1, for which its use in equation (2) leads to

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
≥ 1

2
Ln+2Ln+3. (4)

By making use of this on the left-hand side of (1) it is now left to show that

1

2
Ln+2Ln+3 + (Ln + Ln+2)

2 ≥ 2
√

6LnLn+2Ln+2. (5)

Multiplying both sides by 2 yields

Ln+2Ln+3 + 2 (Ln + Ln+2)
2 ≥ 4

√
6LnLn+2Ln+2. (6)

It is with little difficulty to show that

Ln+2Ln+3 + 2 (Ln + Ln+2)
2 = 2L2

n+3 − 11Ln+2Ln+3 + 18L2
n+2 (7)

which, when used in (6), leads to

2L2
n+3 − 11Ln+2Ln+3 + 18L2

n+2 ≥ 4
√

6LnLn+2Ln+2. (8)

Now consider
2L2

n+3 − 11Ln+2Ln+3 + 8L2
n+2

which, when use of the AM-GM inequality is made,1 namely Ln+2 ≥ 2
√
LnLn+1, becomes

2L2
n+3 − 11Ln+2Ln+3 + 8L2

n+2 ≥ 8Ln+1Ln+2 − 11Ln+2Ln+3 + 32LnLn+1

≥ 32LnLn+1 − 22LnLn+1 − 3Ln+1Ln+2

≥ 10LnLn+1 − 3Ln+1Ln+2

≥ Ln+1 (7Ln − 3Ln+1)

≥ 7L2
n + LnLn−1

≥ Ln (Ln+2 + 5Ln) ≥ 0. (9)

From this it is then seen that, when (9) is used in (8),

2L2
n+3 − 11Ln+2Ln+3 + 18L2

n+2 =
(
2L2

n+3 − 11Ln+2Ln+3 + 8L2
n+2

)
+ 10L2

n+2

≥ 10L2
n+2

≥ 20
√
LnLn+1Ln+2. (10)
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Since this represents the left-hand side of the inequality (8) then it is seen that

20
√
LnLn+1Ln+2 ≥ 4

√
6LnLn+1Ln+2 (11)

and leads to the result 20 ≥ 4
√

6 which reduces to 5 ≥
√

6. Since this is a valid inequality the
original statement holds. For the case n = 0 equation (3) can be stated as

1

3
≥
[
FnFn+1

Fn+3Ln+1

]1/2
≥ 0. (12)

Then by following a similar pattern the statement leads to the same result.
Thus, for n ≥ 0,

FnL
2
n+2

Fn+3
+
Fn+1L

2
n+3

Fn + Fn+2
+ (Ln + Ln+2)

2 ≥ 2
√

6
(√

LnLn+1

)
Ln+2. (13)

1 It is seen that Ln+2 = Ln+1 + Ln ≥ 2
√
LnLn+1.

Also solved by Ed Gray, Highland Beach, FL, and the proposers.

• 5268: Proposed by Pedro H.O. Pantoja, IMPA, Rio de Janeiro, Brazil

Let N = 121a + a3 + 24. Determine all positive integers a for which

a) N is a perfect square.

b) N is a perfect cube.

Solution 1 by Ed Gray, Highland Beach, FL

(a) The answer to the first part of the question is that there are none, other than
the trivial solution of a = 0. We will now show why this is the case.

(1) Let 121a = (112)a = 112a = (11a)2, so

(2) N = (11a)2 + a3 + 24. Suppose N = m2, so,

(3) m2 = (11a)2 + a3 + 24. Clearly, m > (11)a. Let

(4) m = (11)a + b

(5) m2 = (11a)2 + 2b(11)a + b2. Equating (2) to (5)

(6) (11a)2 + a3 + 24 = (11a)2 + 2b(11a) + b2. Simplifying gives

(7) a3 + 24 = 2b(11)a + b2.

Note that for every positive integer a, (11)a > a3, since a(ln(11)) > 3 ln(a), dividing by 3a

gives
ln(11)

3
>

ln(a)

a
.

The maximum value of
ln(a)

a
is when its derivative equals zero, or

a · ( 1a)− ln(a)

a2
=

1− ln(a)

a2
= 0, which implies that a = e.

So the maximum value of
ln(a)

a
=

ln(e)

e
=

1

e
= 0.3678, and

ln(a)

a
is monotonically decreasing

for a > e.
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Now
ln(11)

3
= 0.7993, so (11)a > a3. We note for a = 2, the equation in (7) becomes:

32 = 242b+ b2, which is clearly impossible, and the situation only gets worse for a > 2. For
a = 1 the equation in (7) becomes:

(8) 25 = 22b+ b2 which clearly has no interger solution. So, the only solution is the trivial
one, i.e., when a = 0.

(b) The answer to the second part of the question is no; N can never be a perfect
cube. By (2) we have:

(9) N = (11)2a + a3 + 24. First, suppose that a is of the form 3y and N = m3. Then,

(10) m3 = (11)6y + 27y3 + 24, or

(11) m3 = (112y)3 + 27y3 + 24. Then,

(12) m > (11)2y. Letting m = 112y + b

(13) m3 = (11)6y + 3(11)4yb+ 3(11)2yb2 + b3. Equating (11) and (13),

(14) (11)6y + 27y3 + 24 = (11)6y + 3b(11)4y + 3b2(11)2y + b3. Canceling the term (11)6y,

(15) 27y3 + 24 = 3b(11)4y + 3b2(11)2y + b3.

As before, we show that (11)4y > 27y3 since 4y(ln(11)) > ln(27) + 3 ln(y) or

9.591y > 3.2958 + 3 ln(y) or 1 >
0.3436

y
+

0.3128 ln(y)

y
.

We have seen the maximum value of
ln y

y
= 0.3678 when y = e.

If y = e,
0.3436

2.71828
+ (0.3128)(0.3678) = 0.1264 + 0.115 = 0.241.

For y = 1, 1 > 0.3436 and the right hand side is monotonically decreasing. Notice that we
have not used the coefficient 3b, the additional term 3b2(11)2y, or b3. The smallest we can
make the right hand side is for y = b = 1, and the value is
(3)(1)(14641) + (3)(10)(121) + 1 = 132133, while the right hand side has the value of 51.

There was nothing special about the parameter y and we would get these wildly different
values on different sides of the equation for a = 3y, 3(y + 1), 3(y + 2) · · ·. By continuity any
value of a sandwiched between any of the above numbers will suffer the same fate. In
summary, there can never be an integer cube.

Solution 2 by Kee Wai Lau, Hong Kong, China

We show that for all positive integers a,N is neither a perfect square nor a perfect cube.

a) We first show that for a = 2, 3, 4, · · ·,

a3 + 24 < 11a. (1)

Clearly (1) hold for a = 2. Suppose (12) hold for a ≥ 2. Then

(k + 1)3 + 24 < 8k3 + 24 < 8(k3 + 24) < 8(11k) < 11k+1.

so (1) is true for a = k + 1 an so for a = 2, 3, 4 · · ·. Now suppose, on the contrary, that
N = n2, where n is a positive integer. Then

a3 + 24 = (n+ 11a)(n− 11a > 11a.

12X
ia
ng
’s
T
ex
m
at
h



By (1), a = 1, so that n =
√

146, which is a contradiction. Thus N is never a perfect square.

b) It can be proved readily by induction that for positive integers m





N ≡ 2(mod 9), a = 3m − 2
N ≡ 3(mod 9), a = 3m − 1
N ≡ 7(mod 9), a = 3

However, the cube of a positive integer is aways congruent either to 0 or 1 or 8(mod 9). It
follows that N is never a perfect cube.

Solution 3 by David Stone and John Hawkins of Georgia Southern University,
Statesboro, GA and Chuck Garner, Rockdale Magnet School, Conyers, GA.

There are no such integers a in either (a) or (b).

When a = 1, N = 146, which is neither a square nor a cube. Now assume a ≥ 2.

For part (a), we can show that N is trapped between consecutive squares, so cannot itself be
a square.

212a < N = 112a + a3 + 24 < (11a + 1)2 = 112a + 2 · 11a + 1.

The first inequality is clear.

The second, N = 112a + a3 + 24 < (11a + 1)2 = 112a + 2 · 11a + 1 is equivalent to
a3 + 23 < 2 · 11a, which can be verified by a straightforward induction argument.

For part (b), we take advantage of the fact that a cube cannot take on many values 9.
Namely, only 0, 1 and 8. note,

mod 9, 112a ≡





1, if a ≡ 0 mod 3
4, if a ≡ 1 mod 3
7, if a ≡ 2 mod 3, and

mod 9, a3 ≡





0, if a ≡ 0 mod 3
1, if a ≡ 1 mod 3
8, if a ≡ 2 mod 3.

Thus mod 9, N = 112a + a3 + 24 ≡




1 + 0 + 6 ≡ 7, if a ≡ 0 mod 3
4 + 1 + 6 ≡ 2, if a ≡ 1 mod 3
7 + 8 + 6 ≡ 3, if a ≡ 2 mod 3

.

That is, N is congruent to 2, 3 or 7, and never congruent to 0, 1, or 8, N cannot be a cube.

Comment : Numerical evidence suggests that the power of 11 is so dominant that N also lies

between identifiable consecutive cubes m3 < N < (m+ 1)3, where m=
[
112a/3

]
.

Also solved by David E. Manes, SUNY College at Oneonta, NY, and the
proposer.

• 5269: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let {an}n≥1 be the sequence defined by

a1 = 1, a2 = 5, a2n−1 − anan−2 + 4 = 0.
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Show that all of the terms of the sequence are integers.

Solution 1 by Ercole Suppa, Teramo, Italy

From the given recurrence we get

anan−2 = a2n−1 + 4 (1)

an+1an−1 = a2n + 4 (2)

Now subtracting (1) and (2) from each other, we find that for every n ∈ N :

anan−2 − an+1an−1 = (an−1 − an) (an−1 + an) ⇔

anan−2 − an+1an−1 = a2n−1 − a2n ⇔

an (an−2 + an) = an−1 (an+1 + an−1) ⇔
an−2 + an
an−1

=
an+1 + an−1

an
(3)

Therefore the expression
an−2 + an
an−1

is constant. From the initial conditions we obtain

an−2 + an
an−1

=
a3 + a1
a2

=
29 + 1

5
= 6⇒

an = 6an−1 − an−2, ∀n ≥ 3. (4)

By using (4) a simple induction on n show that all the terms of the sequence are integers.

Solution 2 Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Since
a2n−1 − anan−2 + 4 = 0

for n ≥ 3, we have
anan−2 = a2n−1 + 4 ≥ 4.

Therefore, an−2 6= 0 for all n ≥ 3 and we may write the recursive formula for {an} in the form

an =
a2n−1 + 4

an−2

for all n ≥ 3, or equivalently

an+2 =
a2n+1 + 4

an
(1)

for all n ≥ 1.

When we evaluate the first six terms using (1) and the initial values a1 = 1 and a2 = 5, we
obtain

a1 = 1, a2 = 5, a3 = 29, a4 = 169, a5 = 985, and a6 = 5741.
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These entries suggest the following alternative recursive definition for {an}:

a1 = 1, a2 = 5, and an+2 = 6an+1 − an for n ≥ 1. 2 (2)

We will establish (2) by Mathematical Induction. Let P (n) be the statement

an+2 = 6an+1 − an.

Then, the conditions

a3 =
a22 + 4

a1
= 29 = 6a2 − a1

and

a4 =
a23 + 4

a2
= 169 = 6a3 − a2

imply that P (1) and P (2) are true. If we assume that P (1) , P (2) , . . . , P (n) are true for
some n ≥ 2, then in particular, an+2 = 6an+1 − an and
an+1 = 6an − an−1. It follows that

an+3 =
a2n+2 + 4

an+1

=
(6an+1 − an)2 + 4

an+1

= 36an+1 − 12an +
a2n + 4

an+1

= 6 (6an+1 − an)− 6an +
an+1an−1
an+1

= 6an+2 − (6an − an−1)
= 6an+2 − an+1

and hence, P (n+ 1) is true also. By Mathematical Induction, P (n) is true for all n ≥ 1, i.e.,
an+2 = 6an+1 − an for all n ≥ 1.

As a result, the conditions

a1 = 1, a2 = 5, and an+2 = 6an+1 − an for n ≥ 1

and a trivial Mathematical Induction argument imply that an is an integer for all n ≥ 1.

Additionally, this new description affords us a method for finding a formula for the sequence
{an}. Using the customary technique for solving homogeneous linear difference equations, we
look for solutions of the form an = λn, with λ 6= 0. Then, the formula

an+2 = 6an+1 − an
simplifies to

λ2 = 6λ− 1

whose solutions are λ = 3± 2
√

2. The general solution is of the form

an = c1
(
3 + 2

√
2
)n

+ c2
(
3− 2

√
2
)n

for some constants c1 and c2. Further, the initial values a1 = 1 and a2 = 5 yield

c1 =
2−
√

2

4
and c2 =

2 +
√

2

4
.
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Finally, since

3± 2
√

2 =

(
2±
√

2
)2

2
,

we get

an = 2−
√

24
(
3 + 2

√
2
)n

+
2 +
√

2

4

(
3− 2

√
2
)n

=
1

4



(
2−
√

2
)
(
2 +
√

2
)2n

2n
+
(
2 +
√

2
)
(
2−
√

2
)2n

2n




=
(2)
(
2 +
√

2
)2n−1

+ (2)
(
2−
√

2
)2n−1

2n+2

=

(
2 +
√

2
)2n−1

+
(
2−
√

2
)2n−1

2n+1

for all n ≥ 1.

Solution 3 by Kee-Wai Lau, Hong Kong, China

For positive integers n, let bn =
(2−

√
2)(3 + 2

√
2)n + (2 +

√
2)(3− 2

√
2)n

4
> 0. It is easy to

check that b1 = 1, b2 = 54 and for n ≥ 3, bn = bn−1 − bn−2. Hence bn are always positive
integers.

Using the equation anan−2 = a2n−1 + 4, we prove readily by induction that

an =
(2−

√
2)(3 + 2

√
2)n + (2 +

√
2)(3− 2

√
2)n

4
as well.

Thus, an = bn are positive integers.

Editor’s comment: David Stone and John Hawkins of Georgia Southern University in
Statesboro, GA also solved the problem by generating a few terms of the given sequence, and
then finding a recursive definition for these initial terms that was different from the given
recursion in the statement of the problem. Then, using induction, they showed that the new
recursive definition satisfied the recursion in the statement of the problem. Essentially, their
solution path was that used in Solution 1 above.
They also commented that the problem can also be solved as it is in Solution 3 above, where
one finds an explicit formula for the Fibonacci sequence. They continued on the following way:

Comment 1: Other Fibonacci-like properties can be derived. For instance, the ratio of

consecutive terms,
an+1

an
approaches α = 3 + 2

√
2 ≈ 5.8284.

Comment 2: In the proposed problem the true nature of the {an}n≥1| was cleverly disguised

by an unfamiliar recurrence relation: an =
a2n−1 + 4

an−2
. Perhaps there is a similar relation fot he

Fibonacci numbers.

Comment 3: The sequence {an}n≥1| is A001653 at the Online Encyclopedia of Integer
Sequences. Several interesting properties and applications are given: the recurrence relation
an = 6an−1]−an−2

is given. We do not see (in this encyclopedia) the recurrence relation that
was given in the problem statement (so perhaps it is heretofore unknown).
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Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro, Lugo,
Spain; Ed Gray, Highland Beach, FL; G. C. Greubel, Newport News, VA;
Kenneth Korbin, New York, NY; Carl Libis and Junhua Wu, Lane College,
Jackson, TN; Carl Libis (a second solution), Lane College, Jackson, TN; David E.
Manes, SUNY College at Oneonta, NY; Angel Plaza, Universidad de Las Palmas
de Gran Canaria, Spain, and the proposer.

• 5270: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let k ≥ 1 be an integer. Calculate

∫ 1

0

∫ 1

0
(x+ y)k (−1)

⌊
1
x
− 1

y

⌋
dxdy,

wherebxc denotes the floor of x.

Solution 1 by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

For any point (x, y) ∈ [0, 1], also (y, x) ∈ [0, 1]. Note that for (x, y) such that
1

x
− 1

y
∈ (m,m+ 1) with m ∈, then

⌊
1

x
− 1

y

⌋
= m, but for the corresponding point (y, x) also

in the domain [0, 1] we have that
1

y
− 1

x
∈ (−(m+ 1),−m) and therefore

⌊
1

y
− 1

x

⌋
= −(m+ 1).

Since (−1)m = −(−1)−(m+1) and (x+ y)k = (y + x)k the proposed integral is 0.

Solution 2 by Perfetti Paolo, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Let A = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, y ≥ x} and B = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, y ≤ x}.
By doing (x, y)→ (y, x) we get

∫ ∫

A
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy =

∫ ∫

B
(y + x)k(−1)

b 1
y
− 1

x
c
dxdy.

Moreover because of bxc+ b−xc = −1 we get

∫ ∫

B
(x+ y)k(−1)

−1−b 1
x
− 1

y
c
dxdy = −

∫ ∫

B
(x+ y)k(−1)

b 1
x
− 1

y
c
,

and then

∫ 1

0

∫ 1

0
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy =

∫ ∫

A
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy +

∫ ∫

B
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy

= −
∫ ∫

B
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy +

∫ ∫

B
(x+ y)k(−1)

b 1
x
− 1

y
c
dxdy = 0.

Solution 3 by the proposer

The integral equals 0. We have, based on symmetry reasons, that

∫ 1

0

∫ 1

0
x (x+ y)k−1 (−1)

⌊
1
x
− 1

y

⌋
dxdy =

∫ 1

0

∫ 1

0
y(x+ y)k−1 (−1)

⌊
1
y
− 1

x

⌋
dxdy.

On the other hand, for all real numbers x that are not integers, one has

bxc+ b−xc = −1.
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It follows that,

∫ 1

0

∫ 1

0
x (x+ y)k−1 (−1)

⌊
1
x
− 1

y

⌋
dxdy =

∫ 1

0

∫ 1

0
y(x+ y)k−1 (−1)

⌊
1
y
− 1

x

⌋
dxdy

= −
∫ 1

0

∫ 1

0
y(x+ y)k−1 (−1)

−
⌊

1
x
− 1

y

⌋
dxdy

= −
∫ 1

0

∫ 1

0
y(x+ y)k−1 (−1)

⌊
1
x
− 1

y

⌋
dxdy,

and the result follows.

Also solved by Paul M. Harms, North Newton, KS, and by Ed Gray, Highland
Beach, FL.

Mea Culpa; once again

My sincerest apologies to David Stone and to John Hawkins of Georgia Southern
University, for inadvertently forgetting to mention that they had correctly solved
problems 5260, 5261, and 5262; and also to Brian D. Beasley, of Presbyterian
College in Clinton, South Carolina for his solution to 5262.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2014

• 5289: Proposed by Kenneth Korbin, New York, NY

Part 1: Thirteen different triangles with integer length sides and with integer area each

have a side with length 1131. The angle opposite 1131 is Arcsin

(
3

5

)
in all 13 triangles.

Find the sides of the triangles.

Part 2: Fourteen different triangles with integer length sides and with integer area each
have a side with length 6409. The size of the angle opposite 6409 is the same in all 14
triangles.

Find the sides of the triangles.

• 5290: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Someone wrongly remembered the description of an even perfect number as:
N = 2p

(
2p−1 − 1

)
, where p is a prime number. Classify these numbers correctly. Which

are deficient and which are abundant?

( If n and d are positive integers, d 6= n, but d

∣∣∣∣n, then d is called a proper divisor of n.

The integer n is called perfect if the sum of its proper divisors is equal to n. The number
n is called deficient if the sum of its proper divisors is less than n; and if the sum of its
proper divisors is greater than n, then n is called an abundant number. E.g., The proper
divisors of 6 are 1, 2, and 3. Their sum is 1+2+3=6, and so 6 is a perfect number; all
prime numbers are deficient, and the proper divisors of 12 are 1, 2, 4, and 6. So 12 is an
abundant number.)

• 5291: Arkady Alt, San Jose, CA

Let mamb be the medians of a triangle with side lengths a, b, c. Prove that:

mamb ≤
2c2 + ab

4
.

• 5292: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” General School,
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Buzău, Romania

Let a and b be real numbers with a < b, and let c be a positive real number. If
f : R −→ R+ is a continuous function, calculate:

∫ b

a

ef(x−a) (f(x− a))
1
c

ef(x−a) (f(x− a))
1
c + ef(b−x) (f(b− x))

1
c

dx.

• 5293: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ABC be a triangle. Prove that

4
√

sinA cos2B +
4
√

sinB cos2C +
4
√

sinC cos2A ≤ 3
8

√
3

64
.

• 5294: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

a) Calculate
∞∑

n=2

(n− ζ(2)− ζ(3)− · · · − ζ(n)).

b) More generally, for k ≥ 2 an integer, find the value of the multiple series

∞∑

n1,n2,···,nk=1

(n1 + n2 + · · ·+ nk − ζ(2)− ζ(3)− · · · − ζ(n1 + n2 + n3 + · · ·+ nk)),

where ζ denotes the Riemann Zeta function.

Solutions

• 5271: Proposed by Kenneth Korbin, New York, NY

Given convex cyclic quadrilateral ABCD with AB = x,BC = y, and
BD = 2AD = 2CD.

Express the radius of the circum-circle in terms of x and y.

Solution 1 by Andrea Fanchini, Cantú, Italy

Method I
In a cyclic quadrilateral with successive vertices A,B,C,D and sides
a = AB, b = BC, c = CD, d = DA, the length of the diagonal q = BD can be expressed
in terms of the sides as:

q =

√
(ac+ bd) (ab+ cd)

ad+ bc
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Let t = AD = CD. Then in our case we have

2t =

√
(xt+ yt) (xy + t2)

xt+ yt
⇒ t =

√
xy

3

Let p = AC and according Ptolemy’s theorem

p =
ac+ bd

q
=
x+ y

2

Then we denote 6 ABD = 6 DBC = β, so 6 ABC = 26 ABD = 26 DBC = 2β.
Furthermore, from the angle at the center theorem 6 AOD = 6 ABC = 2β.
Now with the Carnot’s theorem at the side AC of the 4ABC, we have

p2 = x2 + y2 − 2xy cos 2β ⇒ cos 2β =
3x2 + 3y2 − 2xy

8xy

Using another time Carnot’s theorem at the side AD of the 4AOD, we obtain

t2 = R2 +R2 − 2R2 cos 2β

from which, we finally obtain, the radius R of the circum-circle in terms of x and y

R =
2xy√

3 (10xy − 3x2 − 3y2)

Method II
Applying Parameshvara’s formula, a cyclic quadrilateral with successive sides a, b, c, d
and semiperimeter s has the circumradius R given by

R =
1

4

√
(ab+ cd) (ac+ bd) (ad+ bc)

(s− a) (s− b) (s− c) (s− d)

In our case we have a = x, b = y and c = d =

√
xy

3
. Substituting, we obtain the formula

requested.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Let BD = 2z and 6 BAD = θ = π − 6 BCD. Applying the cosine formula to triangles
BAD and BCD respectively, we obtain,

cos θ =
x2 − 3z2

2xz
and − cos θ = cos(π − θ) =

y2 − 3z 2

2yz
.

Hence,

z =

√
xy

3
, cos θ =

√
3(x− y)

2
√
xy

, and sin θ =
1

2

√
(3x − y)(3y − x )

xy
.

It is easy to check that sin θ is a positive real number not exceeding 1 if and only if
1

3
<
x

y
< 3. Subject to this condition, we obtain

that the radius of the circum-cirlce =
BD

2 sin θ
=

2xy√
3(3x− y)(3y − x)

.
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Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Neculai Stanciu, Buzău, Romania and Titu Zvonaru, Comănesti,
Romania; David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA; Ercole Suppa, Teramo, Italy, and the proposer.

• 5272: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The Jacobsthal numbers begin 0, 1, 1, 3, 5, 11, 21, · · · with general term

Jn =
2n − (−1)n

3
, ∀n ≥ 0. Prove that there are infinitely many Pythagorean triples like

(3, 4, 5) and (13, 84, 85) that have “hypotenuse” a Jacobsthal number.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

For n ≥ 1,
(
22n − 1, 2n+1, 22n + 1

)
is a primitive Pythagorean triple since

gcd
(
22n − 1, 2n+1

)
= 1 and

(
22n − 1

)2
+
(
2n+1

)2
= 24n − 22n+1 + 1 + 22n+2

= 24n + 22n+1 + 1

=
(
22n + 1

)2
.

It follows that for any positive integer m,((
22n − 1

)
m, 2n+1m,

(
22n + 1

)
m
)

is also a Pythagorean triple. In particular, when
n ≥ 1,

((
22n − 1

)
J2n, 2

n+1J2n,
(
22n + 1

)
J2n

)
is a Pythagorean triple with

(
22n + 1

)
J2n =

(
22n + 1

)
· 22n − 1

3

=
24n − 1

3
= J4n.

Hence, for n ≥ 1,
((

22n − 1
)
J2n, 2

n+1J2n, J4n
)

is a Pythagorean triple whose
“hypotenuse” is a Jacobsthal number.

Solution 2 by Ed Gray, Highland Beach, FL

1) 22 ≡ (−1) (mod 5)
2) 22k ≡ (−1)k (mod 5)
3) If k is even, 22k − 1 ≡ 0 (mod 5)
4) If k is odd, 22k + 1 ≡ 0 (mod 5), in either case

5)
(
22k − 1

) (
22k + 1

)
≡ 0 (mod 5), or

6) 24k − 1 ≡ 0 (mod 5).

Suppose
7) n = 4k.
Then

8) Jn = J4k =
24k − 1

3
≡ 0 (mod 5) by (6).
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Therefore,
9) If n = 4k, let Jn = J4k = r(22 + 12).
Let this be the “hypotenuse.” The formulae for a Pythagorean triple are:
10) x = r(2ab), y = r(a2 − b2), z = r(a2 + b2).
From (9), let a = 2, b = 1.
Then (10) becomes:
11) x = r(2ab), y = r(a2 − b2), z = r(a2 + b2), or
12) x = 4r, y = 3r, z = 5r, where r is defined by (9).
13) Hence x2 + y2 = z2.

Solution 3 by Kenneth Korbin, New York, NY

If a positive integer is a multiple of 5, then it is the length of the hypotenuse of at least
one Pythagorean triangle.

In the J series, every fourth term is a multiple of 5.
For example, J4 = 5, J8 = 85, J12 = 1365, and in general J4n = 16J4(n−1) + 5.

We have

Jn =
2n − (−1)n

3
. Then,

J4n =
24n − (−1)4n

3
=

16n − 1n

3
.

16n − 1 ≡ 15 (mod 15)

16n − 1

3
≡ 5 (mod 5).

The J sequence (mod 10) is

(1, 1, 3, 5, 1, 1, 3, 5, . . . , 1, 1, 3, 5, . . .)

If a and b are positive integers and if a|b, then J4a|J4b.

Also solved by Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; Carl Libis, Lane College, Jackson, TN; Bob Sealy,
Sackville, NB, Canada; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

• 5273: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, “Geroge
Emil Palade” General School, Buzău, Romania

Solve in the positive integers the equation abcd+ abc = (a+ 1)(b+ 1)(c+ 1).

Solution 1 by Adrian Naco, Polytechnic University,Tirana, Albania.

We have that,

2 ≤ d+ 1 =

(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
≤
(

1 +
1

1

)(
1 +

1

1

)(
1 +

1

1

)
= 8, or 1 ≤ d ≤ 7.
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Let us suppose that 1 ≤ c ≤ b ≤ a, then,

2 ≤ (d+ 1) =

(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
≤
(

1 +
1

c

)3

⇒ 3
√

2 ≤ 1 +
1

c
⇒ c ≤ 1

3
√

2− 1

⇒ c ∈ {1, 2, 3}

Case 1. c = 1. Thus,

ab(d+ 1) = 2(a+ 1)(b+ 1) ⇒ d+ 1 = 2

(
a+ 1

a

)(
b+ 1

b

)
> 2

Thus, we have that 2 ≤ d ≤ 7.
a) If a = b, then it implies that,

d = 1 + 2 · 2a+ 1

a2
⇒ a = 1 = b, d = 7

b) If a ≥ b+ 1, then,

3ab ≤ ab(d+ 1) = 2(a+ 1)(b+ 1) ⇒ 3ab ≤ 2ab+ 2a+ 2b+ 2

⇒ ab ≤ 2a+ 2b+ 2

⇒ b ≤ 2 +
2(b+ 1)

a
≤ 2 + 2 = 4

⇒ b ∈ {1, 2, 3, 4}

Thus, we have the following solutions

b = 1, a = 2, d = 5

b = 1, a = 4, d = 4

b = 3, a = 8, d = 2

b = 4, a = 5, d = 2

Case 2. If c = 2, then,

2ab(d+ 1) = 3(a+ 1)(b+ 1).

a) If a = b, then it implies that,

2a2(d+ 1) = 2(a+ 1)2 ⇒ a2/3 ⇒ a = 1 < 2 = c ≤ a ⇒ a < a!
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b) If a ≥ b+ 1, then,

4ab ≤ 2ab(d+ 1) = 3(a+ 1)(b+ 1) ⇒ 4ab ≤ 3ab+ 3a+ 3b+ 3

⇒ ab ≤ 3a+ 3b+ 3

⇒ b ≤ 3 + 3
(b+ 1)

a
≤ 3 + 3 = 6

⇒ b ∈ {2, 3, 4, 5, 6}

Thus, we have the following solutions

b = 2, a = 3, d = 2

b = 4, a = 15, d = 1

b = 6, a = 7, d = 1.

Case 3. If c = 3, then,

6ab ≤ 3ab(d+ 1) = 4(a+ 1)(b+ 1) ⇒ 6ab ≤ 4ab+ 4a+ 4b+ 4

⇒ ab ≤ 2a+ 2b+ 2

⇒ b ≤ 2 + 2
b+ 1

a
≤ 2 + 2 = 4

⇒ b ∈ {3, 4}

Thus, we have the following solutions

b = 3, a = 8, d = 1

b = 4, a = 5, d = 1.

Finally, the solutions (a, b, c, d), of the given equality are,

Case 1 : (1, 1, 1, 8)

(1, 1, 2, 5), (1, 2, 1, 5), (2, 1, 1, 5)

(1, 1, 4, 4), (1, 4, 1, 4), (4, 1, 1, 4)

(1, 3, 8, 2), (1, 8, 3, 2), (3, 1, 8, 2), (3, 8, 1, 2), (8, 1, 3, 2), (8, 3, 1, 2)
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(1, 4, 5, 2), (1, 5, 4, 2), (4, 1, 5, 2), (4, 5, 1, 2), (5, 1, 4, 2), (5, 4, 1, 2).

Case 2 : (2, 2, 3, 2), (2, 3, 2, 2), (3, 2, 2, 2)

(2, 4, 15, 1), (2, 15, 4, 1), (4, 2, 15, 1), (4, 15, 2, 1), (15, 2, 4, 1), (15, 4, 2, 1)

(2, 6, 7, 1), (2, 7, 6, 1), (6, 2, 7, 1), (6, 7, 2, 1), (7, 2, 6, 1), (7, 6, 2, 1).

Case 3 : (3, 3, 8, 1), (3, 8, 3, 1), (8, 3, 3, 1)

(3, 4, 5, 1), (3, 5, 4, 1), (4, 3, 5, 1), (4, 5, 3, 1), (5, 3, 4, 1), (5, 4, 3, 1).

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that the solutions are given by

(a, b, c, d) = (1, 1, 1, 7), (1, 1, 2, 5), (1, 1, 4, 4), (1, 2, 3, 3), (1, 3, 8, 2), (1, 4, 5, 2),

(2, 2, 3, 2), (2, 4, 15, 1), (2, 5, 9, 1), (2, 6, 7, 1), (3, 3, 8, 1), (3, 4, 5, 1).

together with solutions obtained by permutations of entries a, b, c.

Clearly it suffices to consider the case a ≤ b ≤ c. We have

1 ≤ d =

(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
− 1 ≤

(
1 +

1

a

)3

− 1 so that a ≤ 1

2
1
3 − 1

< 4.

Hence, for a = 1, 2, 3, we have respectively 1 ≤ d ≤ 7, 1 ≤ d ≤ 2, d = 1. We then obtain
the following table readily:
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a d c in terms of b Solutions (b,c) in positive integers with a≤ b ≤ c

1 1 -b -1 No solutions

2 2+
6

b− 2
(3,8),(4,5)

3 1+
2

b− 1
(2,3)

4 1+
4− b
3b− 2

(1,4)

5 1+
2− b
2b− 1

(1,2)

6 1+
4− 3b

5b− 2
No solutions

7 1+
2(b− 1)

3b− 1
(1,1)

2 1 3 +
12

b− 3
(4,15), (5,9),(6,7)

2 1 +
2

b− 1
(2,3)

3 1 2 +
6

b− 2
(3,8), (4,5)

Also solved by Ed Gray, Highland Beach, FL; Jahangeer Kholdi and Farideh
Firoozbakht, University of Isfahan, Khansar, Iran; Kenneth Korbin, NY,
NY, and by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA, and the proposers.

• 5274: Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia

Let x, y, z, α be real positive numbers. Show that if

∑

cycl

(n+ 1)x3 + nx

x2 + 1
= α

then ∑

cycl

1

x
>

9n

α
− α

n
+

9nα

9n2 + α2

where n is a natural number.

Solution by proposer

Doing easy manipulations we have

α =
∑

cycl

(n+ 1)x3 + nx

x2 + 1
=
∑

cycl

1

x
+
∑

cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
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Let f(x) =
−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
. One can easy observe that

f ′(x) =
1 + (n+ 2)x2 + (2n+ 4)x4 + (n+ 1)x6

x2(1 + x2)2

f ′′(x) = −2(1 + 3x2 + 2x6)

x3(1 + x2)3

It is obvious that f ′(x) > 0 and f ′′(x) < 0 for any real positive number x, which implies
that the function f(x) is an increasing and concave function in the real positive domain.
Applying Jensen’s inequality we have

∑

cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)
=
∑

cycl

f(x) ≤ 3f


1

3

∑

cycl

x




Doing easy manipulations, one can easy observe that

α =
∑

cycl

(n+ 1)x3 + nx

x2 + 1
=
∑

cycl

nx+
∑

cycl

x3

x2 + 1
> n

∑

cycl

x

Finally, using the above results we have

∑

cycl

1

x
= α−

∑

cycl

−1 + (n− 1)x2 + (n+ 1)x4

x(x2 + 1)

≥ α− 3f


1

3

∑

cycl

x




> α− 3f

( α
n

3

)

= α− 3f

(
α

3n

)

=
9n

α
− α

n
+

9nα

9n2 + α2

and this is the end of the proof.

• 5275: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations
√

2 +

√
2 + . . .+

√
2 + x1

︸ ︷︷ ︸
n

+

√
2−

√
2 + . . .+

√
2 + x1

︸ ︷︷ ︸
n

= x2
√

2,

√
2 +

√
2 + . . .+

√
2 + x2

︸ ︷︷ ︸
n

+

√
2−

√
2 + . . .+

√
2 + x2

︸ ︷︷ ︸
n

= x3
√

2,

. . . . . . . . . . . . . . . . . .√
2 +

√
2 + . . .+

√
2 + xn−1

︸ ︷︷ ︸
n

+

√
2−

√
2 + . . .+

√
2 + xn−1

︸ ︷︷ ︸
n

= xn
√

2,

√
2 +

√
2 + . . .+

√
2 + xn

︸ ︷︷ ︸
n

+

√
2−

√
2 + . . .+

√
2 + xn

︸ ︷︷ ︸
n

= x1
√

2,
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where n ≥ 2.

Solution by Arkady Alt, San Jose, CA

Let h (x) :=
√

2 + x. Then h (x) is a function defined on [−2,∞) with range [0,∞).

Since h : [−2,∞) −→ [0,∞) then for any n ∈ N we can define recursively n−iterated
function hn : [−2,∞) −→ [0,∞), namely h1 = h and hn+1 = h ◦ hn, n ≥ 1.

Let f (x) :=
hn (x) +

√
2− hn−1 (x)√
2

for x ∈ [−2,∞) such that hn−1 (x) ≤ 2.

Since hn−1 (x) ≤ 2 ⇐⇒ h2n−1 (x) ≤ 4 ⇐⇒ hn−2 (x) ≤ 2 ⇐⇒ .... ⇐⇒ h1 (x) ≤ 2 ⇐⇒
x ≤ 2

then Dom (f) = [−2, 2]. Moreover, applying inequality
a+ b√

2
≤
√
a2 + b2 to a = hn (x)

and b =
√

2− hn−1 (x) we obtain f (x) ≤ 2 and since by definition f (x) ≥ 0 for
x ∈ Dom (f)
then range (f) ⊂ [0, 2] .

Using f we can rewrite original system as follow:

(1)

{
xk+1 = f (xk) , k = 1, 2, ..., n− 1

x1 = f (xn)
.

Since xk ∈ [0, 2] , k = 1, 2, ..., n then by setting tk := cos−1
(
xk
2

)
, k = 1, 2, ..., n

we obtain tk ∈
[
0,
π

2

]
, xk = 2 cos tk, k = 1, 2, ..., n.

Noting that h (2 cos t) = 2 cos t2 for t ∈
[
0,
π

2

]
by Math. Induction we obtain

hk (2 cos t) = 2 cos
t

2k
, k = 1, 2, ..., ...and, therefore, f (2 cos t) =

1√
2

(
2 cos

t

2n
+

√
2− 2 cos

t

2n−1

)
= 2

(
1√
2

cos
t

2n
+

1√
2

sin
t

2n

)
= 2 cos

(
π

4
− t2n

)
.

Since
π

4
− t

2n
∈
[
0,
π

2

]
for t ∈

[
0,
π

2

]
then

π

4
− tk

2n
∈
[
0,
π

2

]
as well as tk ∈

[
0,
π

2

]
for

any k = 1, 2, ..., n and, therefore, (1)

⇐⇒





2 cos tk+1 = 2 cos

(
π

4
− tk

2n

)
, k = 1, 2, ..., n− 1

2 cos t1 = 2 cos

(
π

4
− tn

2n

) ⇐⇒

(2)




tk+1 =

π

4
− tk

2n
, k = 1, 2, ..., n− 1

t1 =
π

4
− tn2n

.

Lemma:

Let a, b be real numbers such that |a| 6= 1. Then system of equations{
tk+1 = b+ atk, k = 1, 2, ..., n− 1

t1 = b+ atn

have only solution t1 = t2 = ... = tn =
b

1− a.
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Proof: Noting that
b

1− a = b+ a · b

1− a and denoting c :=
b

1− a we obtain

tk+1 = b+ atk ⇐⇒ tk+1 − c = a (tk − c) , k = 1, 2, ...n− 1
and t1 = b+ atn ⇐⇒ t1 − c = a (tn − c). Since tk − c, k = 1, 2, ...
is geometric sequence we have tk − c = ak−1 (t1 − c) , k = 1, 2, ...n− 1 and therefore,

t1− c = a ·an−1 (t1 − c) ⇐⇒ t1− c = an (t1 − c) ⇐⇒ (t1 − c) (1− an) = 0 ⇐⇒ t1 = c.

That yield tk − c = ak−1 (t1 − c) = 0 ⇐⇒ tk = c, k = 2, ..., n.

Thus, t1 = t2 = ... = tn = c =
b

1− a.

Applying the Lemma with a = − 1

2n
and b =

π

4
we obtain the only solution of (2),

t1 = t2 = ... = tn =
2n−2π
2n + 1

and then x1 = x2 = ... = xn = 2 cos

(
2n−2π
2n + 1

)
is the only

solution of original system.

Also solved by Adrian Naco, Polytechnic University, Tirana, Albania; Paolo
Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Italy; and the proposer.

• 5276: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

(a) Let a ∈ (0, 1] be a real number. Calculate

∫ 1

0
ab 1xcdx,

where bxc denotes the floor of x.

(b) Calculate ∫ 1

0
2−b 1xcdx.

Solution 1 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

(a) Using the substitution 1/x = y, the integral becomes I =

∫ ∞

1
abyc/y2dy. For any

positive integer k and y ∈ [k, k + 1) we have byc = k. Then

I =
∞∑

k=1

∫ k+1

k
ak/y2dy =

∞∑

k=1

ak
(

1

k
− 1

k + 1

)

=
∞∑

k=1

ak

k
−
∞∑

k=1

ak

k + 1
( since both series are absolutely convergent)

= − ln(1− a) +
ln(1− a) + a

a
.

Since
∞∑

k=1

ak =
1

1− a , and
ak

k
=

∫ a

0
xk−1dx for k ≥ 1.
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(b) Since 2−b 1xc =

(
1

2

)b 1xc
, then by part (a) we have

∫ 1

0
2−b 1xcdx = − ln(1/2) + 2 ln(1/2) + 1 = 1− ln 2.

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Proof (a). We change y = 1/x.

∫ 1

0
ab

1
x
cdx =

∫ ∞

1

abyc

y2
dy =

∞∑

k=1

∫ k+1

k

ak

y2
dy =

∞∑

k=1

ak
(

1

k
− 1

k + 1

)

If a = 1 we have telescoping

∞∑

k=1

(
1

k
− 1

k + 1

)
= 1.

If a < 1 we

∞∑

k=1

ak
(

1

k
− 1

k + 1

)
=
∞∑

k=1

∫ a

0
yk−1dy − 1

a

∞∑

k=1

∫ a

0
ykdy

= e =

∫ a

0

dy

1− y −
1

a

∫ a

0

y

1− ydy =

∫ a

0

dy

1− y +
1

a

∫ a

0
dy − 1

a

∫ a

0

1

1− ydy

= − ln(1− a) + a+
1

a
ln(1− a) = 1 +

1− a
a

ln(1− a).

(b). If a = 1/2 we have 1− ln 2.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro,GA

The solutions:

(a)

∫ 1

0
ab

1
x
cdx =





1, if a = 1

1 +
1− a
a

ln(1− a), if 0 < a < 1

(b)

∫ 1

0
2b

1
x
cdx = 1− ln 2.

For part (a), note first that if a = 1, then

∫ 1

0
ab

1
x
cdx = 1.
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Henceforth, we assume 0 < a < 1.

We shall use the following sums, for x ∈ (0, 1].

By integrating
∞∑

k=0

xk =
1

1− x and re-indexing, we have the well-known sum:

(1)
∞∑

k=1

1

k
xk = − ln (1− x).

Then, by some algebraic manipulations, we have

(2)
∞∑

k=1

1

k + 1
xk = −1− 1

x
ln (1− x).

If we partition the interval (0, 1] into subintervals

(
1

k + 1
,

1

k

]
, our integral can be

written as a sum:

∫ 1

0
ab 1xcdx =

∞∑

k=1

∫ 1/k

1/k+1
ab 1xcdx.

We see that

1

k + 1
< x ≤ 1

k

⇐⇒ 1

k + 1
< x and x ≤ 1

k

⇐⇒ 1

x
< k + 1 and k ≤ 1

x

⇐⇒ k ≤ 1

x
< k + 1

⇐⇒
⌊

1

x

⌋
= k.

Thus ∫ 1/k

1/k+1
ab 1xcdx =

∫ 1/k

1/k+1
akdx = ak

(
1

k
− 1

k + 1

)
.

Therefore, summing and applying (1) and (2),

∫ 1/k

1/k+1
ab 1xcdx =

∞∑

k=1

ak

k
−
∞∑

k=1

ak

k + 1

= − ln(1− a)−
{
− 1− 1

a
ln(1− a)

}

= − ln(1− a) + 1 +
1

a
ln(1− a)

14X
ia
ng
’s
T
ex
m
at
h



= 1 +
1− a
a

ln(1− a).

For part (b), note that

∫ 1

0
2−b 1xcdx =

∫ 1

0

(
1

2

)b 1
x
c
dx.

Applying the result for (a), this equals

1 +
1− 1

2
1
2

ln

(
1− 1

2

)
= 1 + ln

(
1

2

)
= 1− ln 2.

Also solved by Ed Gray, Highland Beach, FL; G.C. Greubel, Newport News,
VA; Adrian Naco, Polytechnic University,Tirana, Albania, and the proposer.

Mea Culpa (once again)

When Enkel Hysnelaj of the University of Technology in Sydney, Australia
submitted problem 5264, it came to me in several versions, with the successor version
correcting an error he noticed in the previous version. Foolishly I kept all versions of the
problem, and when I posted 5264, I posted an incorrect version of it. Problem 5274 is
the corrected statement of the problem. Thanks to Ed Gray for coming up with a
counter-example to 5264, and to Enkel for setting things straight in 5274.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2014

• 5295: Proposed by Kenneth Korbin, New York, NY

A convex cyclic hexagon has sides

(
5, 7
√

17, 23
√

13, 25
√

13, 25
√

17, 45
)
.

Find the diameter of the circumcircle and the area of the hexagon.

• 5296: Proposed by Roger Izard, Dallas, TX

Consider the “Star of David,” a six pointed star made by overlapping the triangles ABC
and FDE. Let

AB ∩DF = G, and AB ∩DE = H,

AC ∩DF = L, and AC ∩ FE = K,

BC ∩DE = I, and BC ∩ FE = J,

in such a way that:

CK

AC
=

EI

DE
=
BI

BC
=
GD

DF
=
AG

AB
=
FK

EF
and

AL

AC
=
DH

DE
=
BH

AB
=
EJ

EF
=
FL

DF
=
CJ

CB
.

Let r =
CK

AC
and let p =

AL

AC
. Prove that r + p =

3pr + 1

2
.

• 5297: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let sn = n2, tn =
n(n+ 1)

2
, pn =

n(3n− 1)

2
, for positive integers n, be the square,

triangular and pentagonal numbers respectively. Prove, independently of each other,
that
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i) ta + pb = tc

ii) ta + sb = pc

iii) pa + sb = sc,

for infinitely many positive integers, a, b, and c.

• 5298: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Let (an)n≥1 be an arithmetic progression and m a positive integer. Calculate:

lim
n→∞

((
m∑

k=1

(
1 +

1

n

)n+ak
−me

)
n

)
.

• 5299: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, show that

ln2 2

∫ 1

0

x3/22x sinx

(1 + x ln 2)2
dx ≥ 1− ln 2

1 + ln 2

∫ 1

0

√
x sinx dx.

• 5300: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer. Prove that

∫ π/2

π/4

dx

sin2n x
=

n−1∑

k=0

(
n− 1

k

)
· 1

2n− 2k − 1
.

Solutions

• 5277: Proposed by Kenneth Korbin, New York, NY

Find x and y if a triangle with sides (2013, 2013, x) has the same area and the same
perimeter as a triangle with sides (2015, 2015, y).

Solution 1 by Carl Libis, Lane College, Jackson, TN

The perimeter of (2013, 2013, x) equals the perimeter of (2015, 2015, y) implies that
x = y + 4.

Also, the altitude h1 of (2013, 2013, y + 4) bisects y + 4.
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Use the Pythagorean Theorem on right triangle (2013, h1, (y + 4)/2) to obtain
h1 =

√
20132 − (2 + y/2)2. Similarly for altitude h2 of (2015, 2015, y) we obtain

h2 =
√

20152 − (y/2)2.

Equal areas implies that

(
2 +

y

2

)√

20132 −
(

2 +
y

2

)2

=
y

2

√

20152 −
(
y

2

)2

.

Square both sides, simplify, and then factor to obtain

0 = y3 + 2020y2 − 81043224y − 16208660

= (y + 4030)(y2 − 2010y − 4022)

= (y + 4030)(y2 − 2010y − 4022)

= (y + 4030)
(
y − 1005−

√
1014047

) (
y − 1005 +

√
1014047

)
.

The only positive solution of the three solutions is y = 1005 +
√

1014047 ≈ 2012.

Thus the values are: y ≈ 2012 and x ≈ 2016.

Solution 2 by proposer

The method to obtain x and y is to solve the system of equations:





2y2 + 8y + 12

y + 2
= 2013+2015, and

x = y + 4.

If a triangle with sides (a, a, b) has the same area and the same perimeter as a triangle
with sides (c, c, d), where a, b, c and d are positive integers, then the value of the area
and the perimeter can be expressed in terms of b and d. Namely,

Area =
bd
√

b2 + bd + d2

2b + 2d

Perimeter =
2b2 + 2bd + 2d2

b + d
.

Comment by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA. More generally, if we let k > 2 be some positive constant and
enforce the same “equal-area and equi-perimeter” condition on the two triangles (k, k, x)
and (k + 2, k + 2, y), we find the single solution

y =
k − 3 +

√
(k + 1)2 − 8

2
and x = y + 4 =

k + 5 +
√

(k + 1)2 − 8

2
.

3X
ia
ng
’s
T
ex
m
at
h



Also solved by Dionne Bailey, Elsie Camjpbell, and Charles Diminnie,
Angelo State University, TX; Brian D. Beasely, Presbyterian College,
Clinton, SC; D. M. Batinetu-Giurgiu, Bucharest, Romania, Neculai Stanciu,
Buza, Romania, and Titu Zvonaru, Comanesi, Romania; Bruno Salgueiro
Fanego, Viveiro, Spain; Michael Fried, Ben-Gurion University, Beer-Sheva,
Israel; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS;
Jahangeer Kholdi and Farideh Firoozbakht, University of Isfahan, Khansar,
Iran; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at
Oneonta, Oneonta, NY; Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain, and the proposer.

• 5278: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The triangular numbers 6 = (2)(3) and 10 = (2)(5) are each twice a prime number. Find
all triangular numbers that are twice a prime.

Solution 1 by Ed Gray, Highland Beach, FL

The triangular numbers are given by: (1) Tn =
n(n+ 1)

2
, so if a triangular number is

double a prime p, we must have the following equation: (2)
n(n+ 1)

2
= 2p.

First, suppose n is an even integer. Then n = 2k for some integer k, and
n(n+ 1)

2

becomes
2k(2k + 1)

2
= k(2k + 1). If k(2k + 1) = 2p, then k must be even, say k = 2r

and k(2k + 1) = 2r(4r + 1) = 2p. So, r(4r + 1) = p. But p is prime and this implies that

r = 1, k = 2, n = 4 and
(n)(n+ 1)

2
= 10.

Second, If n is odd, let n = 2k + 1; then

n(n+ 1)

2
=

(2k + 1)(2k + 2)

2
= (2k + 1)(k + 1) = 2p.

Here, k+ 1 must be even, say k+ 1 = 2r, and (2k+ 1)(k+ 1) = 2r(4r− 1) = 2p. Since p

is prime, r = 1, k = 1, n = 3 and
n(n+ 1)

2
= 6. Hence, all relevant triangular numbers

were given in the statement of the problem.

Solution 2 by Paul M. Harms, North Newton, KS

Triangular numbers have the form
n(n+ 1)

2
where n is a positive integer. For each

positive integer n either n or n+ 1 has a factor of 2. When n is a positive integer

greater then 4, the number n, (n+ 1),
n

2
, and

n+ 1

2
are all greater than 2.

When n > 4, and an even integer, then
n

2
, is a prime number greater than 2 or a

product of prime numbers, and n+ 1 is also a prime number greater than 2 or a product

of prime numbers. In this case,
n

2
(n+ 1) cannot be two times one prime number.

Similarly, when n > 4 and an odd number, n as well as
n+ 1

2
are prime numbers greater
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than 2 or are a product of prime numbers. Then n
(n+ 1)

2
cannot be two times one

prime number.

The triangular numbers that are twice a prime must come from positive integers n
which are not greater than 4. We see that the triangular numbers 6 when n = 3 and 10
when n = 4 are the only triangular numbers which are twice a prime number.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie, Angelo
State University, San Angelo, TX; Brian D. Beasely, Presbyterian College,
Clinton, SC; Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; Kenneth Korbin, New York, NY; Kee-Wai Lau,
Hong Kong, China; David E. Manes, SUNY College at Oneonta, Oneonta,
NY; Neculai Stanciu and Titu Zvonaru, Romania; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5279: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania

Let f : <+ −→ <+ be a convex function on <+, where <+ stands for the positive real
numbers. Prove that

3
(
f2(x) + f2(y) + f2(z)

)
−9f2

(
x+ y + z

3

)
≥ (f(x)− f(y))2+(f(y)− f(z))2+(f(z)− f(x))2 .

Solution 1 by Arkady Alt, San Jose, CA

Since

3
(
f2 (x) + f2 (y) + f2 (z)

)
− (f (x)− f (y))2 + (f (y)− f (z))2 + (f (z)− f (x))2

= (f (x) + f (y) + f (z))2 ,

the original inequality is equivalent to

(f (x) + f (y) + f (z))2 ≥ 9f2
(
x+ y + z

3

)
⇐⇒ f (x) + f (y) + f (z)

3
≥ f

(
x+ y + z

3

)
,

where the latter inequality is Jensen’s Inequality for the convex function f : <+ −→ <+.

Solution 2 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

Since f is convex, then f

(
x+ y + z

3

)
≤ f(x) + f(y) + f(z)

3
and the left-hand side of

the given inequality is

LHS ≥ 3
(
f2(x) + f2(y) + f2(z)

)
− (f(x) + f(y) + f(z))2

= 2
(
f2(x) + f2(y) + f2(z)

)
− (2f(x)f(y) + 2f(y)f(z) + 2f(z)f(x))

= (f(x)− f(y))2 + (f(y)− f(z))2 + (f(z)− f(x))2 .

Solution 3 by Michael Brozinsky, Central Islip, NY
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Since f is convex we know that if a ≤ b and 0 < t < 1 that

f (t · a+ (1− t) · b) ≤ t · f(a) + (1− t) · f(b).

(See, for example, the Chord Theorem in Calculus with Analytic Geometry (1978) by
Flanders and Price, pages 153-154.)

Without loss of generality, let 0 < x ≤ y ≤ z and since x ≤ y + z

2
, we have, using the

above result twice that:

f

(
x+ y + z

3

)
= f

(
1

3
· x+

2

3
·
(
y + z

2

))
≤ 1

3
· f(x) +

2

3
·
(
y + z

2

)

≤ 1

3
· f(x) +

2

3
·
(

1

2
· f(z) +

1

2
· f(z)

)

=
f(x) + f(y) + f(z)

3
.

Hence, f(x) + f(y) + f(z) ≥ 3 · f
(
x+ y + z

3

)
where the right hand side is positive by

definition of f .

Squaring both sides gives

f2(x)+f2(y)+f2(z)+2 ·f(x) ·f(y)+2 ·f(x) ·f(z)+2 ·f(y) ·f(z)−9 ·f2
(
x+ y + z

3

)
≥ 0,

which is clearly equivalent to the inequality to be proved.

Also solved by Ed Gray, Highland Beach, FL; Jahangeer Kholdi and Farideh
Firoozbakht, University of Isfahan, Khansar, Iran; Kee-Wai Lau, Hong
Kong, China; Adrian Naco, Polytechnic University, Tirana, Albania; Titu
Zvonaru, Comănesti, Romania, and the proposers.

• 5280: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a ≥ b ≥ c be nonnegative real numbers. Prove that

1

3

(
(a+ b)(c+ a)

2 +
√
a+ b

+
(c+ a)(b+ c)

2 +
√
c+ a

+
(b+ c)(a+ b)

2 +
√
b+ c

)
≤ (a+ b)2

2 +
√
b+ c

.

Solution 1 by Greg Cook, Student, Angelo State University, San Angelo,TX

First, since a ≥ b ≥ c ≥ 0, then (a+ b)(c+ a) ≤ (a+ b)2 and
2 +
√
a+ b ≥ 2 +

√
b+ c. Then,

(a+ b) (c+ a)

2 +
√
a+ b

≤ (a+ b)2

2 +
√
b+ c

. (1)

Again since a ≥ b ≥ c ≥ 0, then (c+ a) (b+ c) ≤ (a+ b)2 and
2 +
√
c+ a ≥ 2 +

√
b+ c. Then,
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(c+ a) (b+ c)

2 +
√
c+ a

≤ (a+ b)2

2 +
√
b+ c

. (2)

Also, since a ≥ b ≥ c ≥ 0, then (b+ c)(a+ b) ≤ (a+ b)2. Then,

(b+ c)(a+ b)

2 +
√
b+ c

≤ (a+ b)2

2 +
√
b+ c

. (3)

Combining (1), (2), and (3),

(a+ b) (c+ a)

2 +
√
a+ b

+
(c+ a) (b+ c)

2 +
√
c+ a

+
(b+ c)(a+ b)

2 +
√
b+ c

≤ 3

(
(a+ b)2

2 +
√
b+ c

)
.

Finally,

1

3

(
(a+ b) (c+ a)

2 +
√
a+ b

+
(c+ a) (b+ c)

2 +
√
c+ a

+
(b+ c)(a+ b)

2 +
√
b+ c

)
≤ (a+ b)2

2 +
√
b+ c

.

Solution 2 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

The inequality is a consequence of the Chebyshev’s sum inequality. Note that sequences

(a+ b)(c+ a), (c+ a)(b+ c), (b+ c)(a+ b) and
1

2 +
√
a+ b

,
1

2 +
√
c+ a

,
1

2 +
√
b+ c

are oppositely sorted. Therefore, the left-hand side of the given inequality LHS is
bounded as

LHS ≤ 1

3
((a+ b)(c+ a) + (c+ a)(b+ c) + (b+ c)(a+ b))

1

3

(
1

2 +
√
a+ b

+
1

2 +
√
c+ a

+
1

2 +
√
b+ c

)

≤ (a+ b)(c+ a)
1

2 +
√
b+ c

≤ (a+ b)2

2 +
√
b+ c

.

Solution 3 by Arkady Alt, San Jose, CA

Note that:

1. c ≤ b ⇐⇒ c+ a ≤ a+ b ⇐⇒ (a+ b) (c+ a)

2 +
√
a+ b

≤ (a+ b)2

2 +
√
a+ b

and

c ≤ a ⇐⇒ 2 +
√
b+ c ≤ 2 +

√
a+ b ⇐⇒ (a+ b)2

2 +
√
a+ b

≤ (a+ b)2

2 +
√
b+ c

yields

(a+ b) (c+ a)

2 +
√
a+ b

≤ (a+ b)2

2 +
√
b+ c

;

2.

{
a+ b ≥ c+ a
a+ b ≥ b+ c

(c+ a) (b+ c)

2 +
√
c+ a

≤ (a+ b)2

2 +
√
c+ a

and 2 +
√
c+ a ≥ 2 +

√
b+ c

yields
(c+ a) (b+ c)

2 +
√
c+ a

≤ (a+ b)2

2 +
√
b+ c

;
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3.
(b+ c) (a+ b)

2 +
√
b+ c

≤ (a+ b)2

2 +
√
b+ c

⇐⇒ b+ c ≤ a+ b ⇐⇒ c ≤ a.

Then
1

3

(
(a+ b) (c+ a)

2 +
√
a+ b

+
(c+ a) (b+ c)

2 +
√
c+ a

+
(b+ c) (a+ b)

2 +
√
b+ c

)
≤

1

3
· 3 frac(a+ b)22 +

√
b+ c =

(a+ b)2

2 +
√
b+ c

.

Solution 4 by Michael Brozinsky, Central Islip, NY

Denote the left hand side and right hand side of the given inequality by L and R
respectively. The inequality will be established if we can show the maximum value of L
and the minimum value of R are equal to one another. Specifically, we will show that

max L = min R =
4a2

2 + 2
√

2a
, and that this occurs when a = b = c.

If we differentiate L, with respect to b we obtain

∂

∂b

(
1

3

(
(a+ b) · (c+ a)

2 +
√
a+ b

+
(c+ a) · (b+ c)

2 +
√
c+ a

+
(b+ c) · (a+ b)

2 +
√
b+ c

))
=

1

3
· (A+B) where

A =
c+ a

2 +
√
a+ b

− 1

2

√
a+ b (c+ a)

(2 +
√
a+ b)2

+
c+ a

2 +
√
a+ b

=
1

2

(c+ a)
(
16 + 4

√
c+ a+ 10

√
a+ b+

√
a+ b

√
c+ a+ 2a+ 2b

)

(
2 +
√
a+ b

)2 (
2 +
√
c+ a

)

and

B =
a+ b

2 +
√
b+ c

+
b+ c

2 +
√
b+ c

− 1

2

√
b+ c (a+ b)

(2 +
√
b+ c)2

=
1

2

4a+ a
√
b+ c+ 8b+ 3b

√
b+ c+ 4c+ 2c

√
b+ c

(
2 +
√
b+ c

)2 .

Since A and B are clearly non-negative and since a ≥ b ≥ c we have L increases with b
and so has its maximum when b = a.

Replacing b by a in L (call this expression M) and differentiating with respect to c gives

∂

∂c
(M) =

∂

∂c

(
1

3

(
2a(c+ a)

2 +
√

2a
+

(c+ a)2

2 +
√
c+ a

+
2(c+ a)a

2 +
√
c+ a

))

=
2

3

(
a

2 +
√

2a

)
+

2

3

(
c+ a

2 +
√
c+ a

)
− 1

6

(c+ a)
√
c+ a

(
2 +
√
c+ a

)2
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+
2

3

(
a

2 +
√
c+ a

)
− 1

3

√
c+ a a

(
2 +
√
c+ a

)2

which simplifies to

1

6

1

(2 +
√

2a)(2 +
√
c+ a)2

(
48a+ 26

√
c+ a a+ 4ac+ 4a2 + 16c+ 6c

√
c+ a

+8c
√

2a+ 3c
√

2a
√
c+ a+ 16a

√
2a+ 5a

√
2a
√
c+ a

)
.

Since this derivative is clearly nonnegative, M increases with c and since a ≥ c, M is
maximized when c = a. So, L is maximized when b and c are both a. This value is

4a2

2 +
√

2a
.

Now if R is differentiated with respect to a we obtain.

∂

∂a

(
(a+ b)2

2 +
√
b+ c

)
=

2(a+ b)

2 +
√
b+ c

which is clearly nonnegative and so R increases with a and since a ≥ b is minimized
when a = b.

Replacing a by b in R (call this expression N) we have

∂

∂b
(N) =

∂

∂b

(
(2b)2

2 +
√
b+ c

)
=

2b
(
8
√
b+ c+ 3b+ 4c

)

(
2 +
√
b+ c

)2√
b+ c

which is clearly nonnegative. So, N increases with b, and since b ≥ c is minimized when

b = c, R is minimized when a = b = c, and has value of
4a2

2 +
√

2a
.

Editor’s Comment: D. M. Bătinetu-Giurgiu, Neuclai Stanciu and Titu
Zvonaru, all of Romania, jointly constructed and proved a generalization of Problem
5280. Their generalization follows:

Let n ∈ N, n ≥ 3, a = x1 ≥ b = x2 ≥ x3 ≥ . . . ≥ c = xn−1 ≥ d = xn > 0 and
u, v ∈ R+ = (0,∞).

If xn+1 = x1, xn+2 = x2, then

n∑

k=1

(xk + xk+1)(xk + xk+2)

u+ v
√
xk+1 + xk+2

≤ n(a+ b)2

u+ v
√
c+ d

.

Letting n = 3, x1 = a, x2 = b, x3 = c and u = 2, v = 1, they showed that the
inequality holds.

Also solved by D. M. Bătinetu-Giurgiu, “Matei Basarab” National College
Bucharest, Neuclai Stanciu, “George Emil Palade” School, Buzău, and Titu
Zvonaru, Comănesti, Romania; Dionne Bailey, Elsie Campbell and Charles
Diminnie, Angelo State University, San Angelo, TX; Ed Gray, Highland
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Beach, FL; Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; Kee-Wai Lau, Hong Kong, China; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Adrian Naco, Polytechnic
University, Tirana, Albania; Perfetti Paolo, Department of Mathematics,
“Tor Vergata” University, Rome, Italy, and the proposer.

• 5281: Proposed by Arkady Alt, San Jose, CA

For the sequence {an}n≥1 defined recursively by an+1 =
an

1 + apn
for n ∈ N , a1 = a > 0,

determine all positive real p for which the series
∞∑

n=1

an is convergent.

Solution 1 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Answer: p < 1.

Proof: Since an+1 < an, an → 0.
It follows that

an+1 = an − ap+1
n + a2p+1

n +O(a3p+1
n )

We employ the standard result of the exercise num.174 at page 38 of the book by G.
Pólya, G. Szegö, Problems and Theorems in Analysis, I.

Assume that 0 < f(x) < x and f(x) = x− axk + bxl + xlε(x), limx→0 ε(x) = 0, for
0 < x < x0 where 1 < k < l and a, b both positive. The sequence xn defined by
xn+1 = f(xn) satisfies

lim
n→∞n

1/(k−1)xn = (a(k − 1))−1/(k−1).

In our case we have a = 1, k = p+ 1, b = 1, l = 2p+ 1. Thus the sequence satisfies

an = p−1/pn−1/p + o(n−1/p)

and then the series converges if and only if p < 1.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that the series
∞∑

n=1

an is convergent if 0 < p < 1 and divergent if ≥ 1.

We assume in what follows that n ∈ N . Clearly an > 0 and by the given recursive

relation, we have an+1 < an. Therefore L = lim
n→∞ an exists and from L =

L

1 + Lp
, we see

that L = 0. Inductively, we have

an+1 =
a

n∏

k=1

(
1 + apk

) . (1)

By making use of the well-known inequality 1 + x < ex for x > 0, we deduce from (1)

that an+1 > ae−
∑n

k=1
ap
k > 0. Since lim

n→∞ an+2 = 0, so
n∑

k=1

apk is divergent. Now there
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exits k0 ∈ N , depending at most on a and p, such that ak < 1 whenever k > k0. Hence if

p ≥ 1, then for any integer M > k0, we have
M∑

k=k0+1

ak ≥
M∑

k=k0+1

apk. Thus
∞∑

k=+1

ak is

divergent.

We next consider the case 0 < p < 1. Let m =

⌊
1

1− p

⌋
+ 1, where bxc is the greatest

integer not exceeding x. By (1), for any n > m, we have

0 < an+1 ≤
a

(1 + apn)
n <

a(
1 + apn+1

)n <
a(

n

m

)
ampn+1

,

so that

0 < an+1 <

(
am!

∏m−1
k=0 (n− k)

)1/(1+mp)

≤
(

am!

(n−m+ 1)m

)1/(1+mp)

.

It is easy to check that
m

1 +mp
> 1, and so

∞∑

n=1

an is convergent.

This completes the solution.

Also solved by Ed Gray, Highland Beach, FL, and the proposer.

• 5282: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∫ 1

0
x ln

(√
1 + x−

√
1− x

)
ln
(√

1 + x+
√

1− x
)
dx.

Solution 1 by Anastasios Kotronis, Athens, Greece

Using the identity

ab =
1

4
· a+ b2 − a− b2,

with a = ln
√

1 + x−
√

1− x and b = ln
√

1 + x+
√

1− x we have

I =

∫ 1

0
x ln
√

1 + x−
√

1− x ln
√

1 + x+
√

1− x dx

=
1

4

∫ 1

0
xln2(2x)− ln2

1−
√

1− x
1 + x

1 +

√
1− x
1 + x

dx

=
1

4

∫ 1

0
x ln2(2x) dx− 1

4

∫ 1

0
x ln2

1−
√

1− x
1 + x

1 +

√
1− x
1 + x

dx

= I1 − I2.
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Integrating by parts twice we easily get that

I1 =
ln2 2

8
− ln 2

8
+

1

16
. (1)

In order to calculate I2, we first note that

∫
u(1− u2)
(1 + u2)3

du u2 = y
1

2

∫
1− y

(1 + y)3
dy

=

∫
1

(1 + y)3
dy − 1

2

∫
1

(1 + y)2

=
u2

2(1 + u2)2
+ c,

so, letting

√
1− x
1 + x

= y and letting
1− y
1 + y

= u we have

1

4

∫
x ln2

1−
√

1− x
1 + x

1 +

√
1− x
1 + x

dx =

∫
y(1− y2)
(1 + y2)3

ln2 1− y
1 + y

dy

=

∫
u(1− u2)
(1 + u2)3

ln2 u du

=
u2 ln2 u

2(1 + u2)2
−
∫

u

2(1 + u2)2
lnu du

=
u2 ln2 u

2(1 + u2)2
−
∫
− 1

2(1 + u2)

′
lnu du

=
u2 ln2 u

2(1 + u2)2
+

lnu

2(1 + u2)
− 1

2

∫
1

u
− u

1 + u2
du

=
u2 ln2 u

2(1 + u2)2
+

lnu

2(1 + u2)
− lnu

2
+

ln(1 + u2)

4
+

= A(x) + c

which yields

I2 = A(x)
∣∣∣
1

0
= lim

x→0+
A(x)− lim

x→1−
A(x) =

ln 2

4
, (2)

and hence, from (1) and (2), I =
ln2 2

8
− ln 8

8
+

1

16
.
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Solution 2 by Arkady Alt, San Jose, CA

Solution A.

Let I =

1∫

0

x ln
(√

1 + x+
√

1− x
)

ln
(√

1 + x−
√

1− x
)
dx.

Then 4I =

1∫

0

x ln
(√

1 + x+
√

1− x
)2

ln
(√

1 + x−
√

1− x
)2
dx =

1∫

0

xu (x) v (x) dx,

where u (x) = ln
(
2 + 2

√
1− x2

)
, v (x) = ln

(
2− 2

√
1− x2

)
.

Since u (x) + v (x) = ln
(
4x2

)
= 2 ln (2x) then

u2 (x) + v2 (x) + 2u (x) v (x) = 4 ln2 (2x) ⇐⇒ u (x) v (x) = 2 ln2 (2x)− u2 (x) + v2 (x)

2

and, therefore, 4I = 2

1∫

0

x ln2 (2x) dx− 1

2




1∫

0

xu2 (x) dx+

1∫

0

xv2 (x) dx


 .

1. Using substitution and integration by parts we obtain

2

1∫

0

x ln2 (2x) dx = [t = 2x; dt = 2dx] =
1

2

2∫

0

t ln2 (t) dt = ln2 2− 1

2

2∫

0

t ln t dt =

ln2 2− ln 2 +
1

2
.

2. Let t = 2 + 2
√

1− x2. Since xdx = −(t− 2) dt

4
then

1∫

0

xu2 (x) dx =
1

4

2∫

4

− (t− 2) ln2 tdt =
1

4

4∫

2

(t− 2) ln2 tdt.

3. Let t = 2− 2
√

1− x2. Since xdx =
(2− t) dt

4
then

1∫

0

xv2 (x) dx=
1

4

2∫

0

(2− t) ln2 tdt = −1

4

2∫

0

(t− 2) ln2 tdt.

Hence
1

2




1∫

0

xu2 (x) dx+

1∫

0

xv2 (x) dx


 =

1

8




4∫

2

(t− 2) ln2 tdt−
2∫

0

(t− 2) ln2 tdt


 =

1

8




4∫

0

(t− 2) ln2 tdt− 2

2∫

0

(t− 2) ln2 tdt


 .

Using integration by parts twice we obtain

∫
(t− 2) ln2 tdt =



p′ = t− 2; p =

t2

2
− 2t

q = ln2 t; q′ =
2 ln t

t


 =

(
t2

2
− 2t

)
ln2 t−

∫
(t− 4) ln tdt =

(
t2

2
− 2t

)
ln2 t−

(
t2

2
− 4t

)
ln t+

t2

4
− 4t.
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Since

∫ 4

0
(t− 2) ln2 tdt =

((
t2

2
− 2t

)
ln2 t−

(
t2

2
− 4t

)
ln t+

t2

4
− 4t

)4

0

= 8 ln 4− 12

and∫ 2

0
(t− 2) ln2 tdt =

((
t2

2
− 2t

)
ln2 t−

(
t2

2
− 4t

)
ln t+

t2

4
− 4t

)2

0

= 6 ln 2− 2 ln2 2− 7

then
1

2




1∫

0

xu2 (x) dx+

1∫

0

xv2 (x) dx


 =

1

8

(
8 ln 4− 12− 2

(
6 ln 2− 2 ln2 2− 7

))
=

1

2
ln 2 +

1

2
ln2 2 +

1

4
.

Therefore, 4I = ln2 2− ln 2 +
1

2
−
(

1

2
ln 2 +

1

2
ln2 2 +

1

4

)
=

1

2
ln2 2− 3

2
ln 2 +

1

4

I =
1

8
ln2 2− 3

8
ln 2 +

1

16
≈ −0.137 37

Solution B.

Let u (x) = ln
(√

1 + x+
√

1− x
)
, v (x) = ln

(√
1 + x−

√
1− x

)
and

I =

1∫

0

xu (x) v (x) dx.

Since u (x) + v (x) = ln

((√
1 + x

)2
−
(√

1− x
)2)

= ln (2x) then

u (x) v (x) =
ln2 (2x)− u2 (x)− v2 (x)

2

and, therefore, 2I =

1∫

0

x ln2 (2x) dx−
1∫

0

x
(
u2 (x) + v2 (x)

)
dx.

Calculation of

1∫

0

x
(
u2 (x) + v2 (x)

)
dx.

1. Let t =
√

1 + x+
√

1− x. Then u2 (x) = ln2 t and

t2 = 2 + 2
√

1− x2 ⇐⇒ t2 − 2

2
=
√

1− x2

yield tdt =
−xdx√
1− x2

⇐⇒ xdx = − t
(
t2 − 2

)

2
dt.

Hence,

1∫

0

xu2 (x) dx = −

√
2∫

2

t
(
t2 − 2

)

2
ln2 tdt =

1

2

2∫

√
2

t
(
t2 − 2

)
ln2 tdt;

2. Let t =
√

1 + x−
√

1− x. Then v2 (x) = ln2 t and

t2 = 2− 2
√

1− x2 ⇐⇒ 2− t2
2

= 2
√

1− x2

yield −tdt =
−x√
1− x2

dx ⇐⇒ xdx =
t
(
2− t2)

2
dt. Hence,

1∫

0

xu2 (x) dx =

√
2∫

0

t
(
2− t2)

2
ln2 tdt = −1

2

√
2∫

0

t
(
t2 − 2

)
ln2 tdt
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and we obtain

1∫

0

x
(
u2 (x) + v2 (x)

)
dx =

1

2

2∫

√
2

t
(
t2 − 2

)
ln2 tdt− 1

2

√
2∫

0

t
(
t2 − 2

)
ln2 tdt =

1

2

2∫

0

t
(
t2 − 2

)
ln2 tdt−

√
2∫

0

t
(
t2 − 2

)
ln2 tdt.

Using integration by parts twice we obtain we obtain

∫
t
(
t2 − 2

)
ln2 tdt =



p′ = t3 − 2t; p =

t4

4
− t2

q = ln2 t; q′ =
2 ln t

t


 =

(
t4

4
− t2

)
ln2 t−

∫ (
t3

2
− 2t

)
ln tdt =

(
t4

4
− t2

)
ln2 t−

(
t4

8
− t2

)
ln t+

∫ (
t3

8
− t
)
dt =

(
t4

4
− t2

)
ln2 t−

(
t4

8
− t2

)
ln t+

(
t4

32
− t2

2

)
.

Hence,
2∫

0

t
(
t2 − 2

)
ln2 tdt =

((
t4

4
− t2

)
ln2 t−

(
t4

8
− t2

)
ln t+

(
t4

32
− t2

2

))2

0

= 2 ln 2− 3

2
,

√
2∫

0

t
(
t2 − 2

)
ln2 tdt =

(√
2
4

4
−
√

2
2

)
ln2
√

2−
(√

2
4

8
−
√

2
2

)
ln
√

2 +

(√
2
4

32
−
√

2
2
2

)
=

3

4
ln 2− 1

4
ln2 2− 7

8
and, therefore,

1∫

0

x
(
u2 (x) + v2 (x)

)
dx =

1

2

(
2 ln 2− 3

2

)
−
(

3

4
ln 2− 1

4
ln2 2− 7

8

)
=

1

4

(
ln2 2 + ln 2 +

1

2

)
.

Since (using integration by parts again )
1∫

0

x ln2 (2x) dx =
1

4

1∫

0

2x ln2 (2x) · 2dx =
1

4

2∫

0

t ln2 tdt =
1

4

(
t2

2

(
ln2 t− ln t+

1

2

))2

0

=

1

2

(
ln2 2− ln 2 +

1

2

)
then I =

1

2

(
1

2

(
ln2 2− ln 2 +

1

2

)
− 1

4

(
ln2 2 + ln 2 +

1

2

))
=

1

8

(
ln2 2− 3 ln 2 +

1

2

)
≈ −0.137 37.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Denote the integral of the problem by I. We show that

I =
2 ln2 2− 6 ln 2 + 1

16
. (1)

Let I1 =

∫ 1

0
x ln2(2x)dx, I2 =

∫ 1

0
x ln2

(√
1 + x−

√
1− x

)
dx and
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I3 =

∫ 1

0
x ln2

(√
1 + x−

√
1− x

)
dx. Using the identity ab =

(a+ b)2 − a2 − b2
2

with

a = ln
(√

1 + x−
√

1− x
)

and b = ln
(√

1 + x+
√

1− x
)
, we see that

I =
1

2
(I1 − I2 − I3) . (2)

To evaluate I1, I2, and I3, we need the known result, readily proved by differentiation,
that for nonnegative integer n,

∫
xn ln2 xdx = xn+1

(
ln2 x

n+ 1
− 2 lnx

(n+ 1)2
+

2

(n+ 1)3

)
+ constant (3)

Since I1 =
1

4

∫ 2

0
x ln2 xdx, so by (3) we have

I1 =
2 ln2−2 ln 2 + 1

4
. (4)

Since (
√

1 + x−
√

1− x)2 = 2(1−
√

1− x2), so

I2 =
1

4

∫ 1

0
x ln2

(
2
(
1−

√
1− x2

))
=

1

8

∫ 1

0
ln2
(
2
(
1−
√

1− x
))
dx.

By the substitution y = 2(1−
√

1− x), so that x = y − y2

4
, we obtain

I2 =
1

16

∫ 2

0
(2− y) ln2 ydy. By (3) we have

I2 =
2 ln2 2− 6 ln 2 + 7

16
. (5)

By using the identity
(√

1 + x+
√

1− x
)2

= 2
(
1 +
√

1− x2
)
, we obtain

I3 =
1

4

∫ 1

0
x ln2

(
2
(
1 +

√
1− x2

))
dx =

1

8

∫ 1

0
x ln2

(
2
(
1 +
√

1− x
))
dx.

By the substitution y = 2
(
1 +
√

1− x) , so that x = y − y2

4
, we obtain

I3 =
1

16

∫ 4

2
(y − 2) ln2 y dy. By (3),we have

I3 =
2 ln2 2 + 10 ln 2− 5

16
. (6)

Now by (2), (4), (5) and (6), we obtain (1) and this completes the solution.

Editor’s comment: Ed Gray of Highland Beach, FL transformed the given integral
into

1

4

∫ √2

2

(
2y − y3

)
ln y (ln(2− y) + ln(2 + y)) dy
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and then he converted the various ln functions into series expansions to obtain a
polynomial in y. This gave the approximate value of the integral as listed above.

Also solved (in closed form) by Paolo Perfetti, Department of Mathematics,
“Tor Vergata” University, Rome, Italy, and the proposer.

Comment by the proposer, Ovidiu Furdui: It is worth mentioning this logarithmic
integral is missing from the book by Gradshteyn and Ryzhik, Tables of Integrals, Series
and Products, Sixth Edition, Academic Press, 2000.

Late Solutions

Late solutions to 5271 and to 5273 were received by Paul M. Harms of North
Newton, KS and from David E. Manes, SUNY College at Oneonta, NY. Their
solutions were mailed on time but they got caught up in the Christmas rush mail, and
arrived on my desk after the solutions to these problems had been published.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2014

• 5301: Proposed by Kenneth Korbin, New York, NY

A convex cyclic quadrilateral with integer length sides is such that its area divided by
its perimeter equals 2014.

Find the maximum possible perimeter.

• 5302: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

If n is an even perfect number, n > 6, and φ(n) is the Euler phi-function, then show
that n− φ(n) is a fourth power of an integer. Find infinitely many integers n such that
n− φ(n) is a fourth power.

• 5303: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let a, b, c, d be positive real numbers. Prove that

a4 + b4 + c4 + d4 + 4 ≥ 4
((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4
.

• 5304: Proposed by Michael Brozninsky, Central Islip, NY

Determine whether or not there exist nonzero constants a and b such that the conic
whose polar equation is

r =

√
a

sin(2θ)− b · cos(2θ)

has a rational eccentricity.

• 5305: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x be a positive real number. Prove that

[x]

2x+ {x} +
[x]{x}

3x2
+

{x}
2x+ [x]

≤ 1

2
,

where [x] is the greatest integer function and {x} is the fractional part of the real
number. I.e., {x} = x− [x] .
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• 5306: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate: ∫ 1

0

ln
(
1− x+ x2

)

x− x2 dx.

Solutions

• 5283: Proposed by Kenneth Korbin, New York, NY

Find the sides of two different isosceles triangles that both have perimeter 162 and area
1008.

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

To begin, we will let the isosceles triangle be designated with sides (a, a, x) and height
h. With given perimeter 162,

x = 162− 2a (1)
x

2
= 81− a, (2)

and, using the Pythagorean Theorem and (2),

h2 +
(x

2

)2
= a2

h2 + (81− a)2 = a2

h = 9
√

2a− 81.

Thus, with given area 1008, (1), and (3),

1

2
(162− 2a)(9

√
2a− 81) = 1008

112

81− a =
√

2a− 81

2 a3 − 405 a2 + 26, 244 a− 543, 985 = 0.

Using Mupad, the solutions are

a =
275− 7

√
177

4
, 65,

7
√

177 + 275

4
.

Using (1), a =
7
√

177 + 275

4
does not yield a triangle with perimeter 162. Hence, using

(1), when a =
275− 7

√
177

4
, x =

49 + 7
√

177

2
, and when a = 65, x = 32. Therefore, the

isosceles triangles are

(
275− 7

√
177

4
,

275− 7
√

177

4
,

49 + 7
√

177

2

)
and (65, 65, 32).
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With some persistence, these solutions can be verified to yield an isosceles triangle with
perimeter 162 and area 1008.

Solution 2 by Arkady Alt, San Jose, CA

Let b be length of the lateral sides and a be half of length of the base.

Then

{
2a+ 2b = 162

a
√
b2 − a2 = 1008

⇐⇒
{

a+ b = 81

a
√
b− a = 112

⇐⇒
{

b = 81− a
a
√

81− 2a = 112

We have a
√

81− 2a = 112 ⇐⇒
{

0 < a ≤ 81/2
a2 (81− 2a) = 1122

and the equation

a2 (81− 2a) = 162 · 49 ⇐⇒ 2a3 − 81a2 + 1122 = 0.

Since 2a3 − 81a2 + 1122 = (a− 16)
(
2a2 − 49a− 784

)
and the quadratic equation

2a2 − 49a− 784 = 0 have only one positive root a =
49 + 7

√
177

4
then we obtain two

different isosceles triangles with side-lengths

(b, 2a, b) = (65, 32, 65) ,

(
275− 7

√
177

4
,
49 + 7

√
177

2
,
275− 7

√
177

4

)
.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Let the sides of the isosceles triangles be a, a, 162− 2a. By Heron’s formula for the area
of a triangle we obtain

(81− a)
√

2a− 81 = 112,

or
(81− a)2(2a− 81)− 12544 = 0,

or
(a− 65)((2a2 − 275a+ 8369) = 0.

Hence a = 65,
275− 7

√
177

4
. So the sides of the isosceles triangles are 65, 65, 32 and

275− 7
√

177

4
,
275− 7

√
177

4
,
7(7 +

√
177)

2
.

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

Any such triangle has sides with lengths x, x, and 162− 2x, where 81/2 < x < 81.
Heron’s formula then implies

10082 = 81(81− x)2(2x− 81),

which in turn is equivalent to

2x3 − 405x2 + 26244x− 543985 = (x− 65)(2x2 − 275x+ 8369) = 0.

We find three real solutions to this equation, namely x = 65 and x = (275± 7
√

177)/4;
however, one of these yields x ≈ 92.032, which is outside the necessary domain. Hence
we obtain two triangles, corresponding to x = 65 and x ≈ 45.468:

(65, 65, 32);

(
275− 7

√
177

4
,
275− 7

√
177

4
,
49 + 7

√
177

2

)
≈ (45.468, 45.468, 71.064).
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Question. In general, if we seek all isosceles triangles of the form (x, x, P − 2x) that
have perimeter P and area A, then we obtain the equation

16Px3 − 20P 2x2 + 8P 3x− (P 4 + 16A2) = 0.

The given values P = 162 and A = 1008 produce exactly two such triangles. For what
values of P and A would we find no triangles, one triangle, two triangles, or three
triangles?

Also solved by Bruno Salgueiro Fanego, Viveriro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Jahangeer Kholdi and
Farideh Firoozbakht, University of Isfahan, Khansar, Iran; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Angel Plaza, Universidad de Las
Palmas, de Gran Canaria, Spain; Michael Thew, Student, St. George’s
School, Spokane, WA; Albert Stadler, Herrliberg, Switzerland, and the
proposer.

• 5284: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Prove:

a) 33
n

+ 1 ≡ 0 mod 28, ∀n ≥ 1,

b) 33
n

+ 1 ≡ 0 mod 532, ∀n ≥ 2,

c) 33
n

+ 1 ≡ 0 mod 19684, ∀n ≥ 3,

d) 33
n

+ 1 ≡ 0 mod 3208492, ∀n ≥ 4.

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

Note the following congruences:

3 ≡ −1 mod 4, 33 ≡ −1 mod 7, 39 ≡ −1 mod 19

327 ≡ −1 mod 37, 381 ≡ −1 mod 63

.
Therefore,

(1) 33
n

+ 1 ≡ (−1)3
n

+ 1 ≡ −1 + 1 ≡ 0 (mod 4) ∀n ≥ 1,

(2) 33
n

+ 1 ≡
(
33
)3n−1

+ 1 ≡ (−1)3
n−1

+ 1 ≡ −1 + 1 ≡ 0 (mod 7) ∀n ≥ 1,

(3) 33
n

+ 1 ≡
(

33
2
)3n−2

+ 1 ≡ (−1)3
n−2

+ 1 ≡ −1 + 1 ≡ 0 (mod 19) ∀n ≥ 2,

(4) 33
n

+ 1 ≡
(

33
3
)3n−3

+ 1 ≡ (−1)3
n−3

+ 1 ≡ −1 + 1 ≡ 0 (mod 37) ∀n ≥ 3,

(5) 33
n

+ 1 ≡
(

33
4
)3n−4

+ 1 ≡ (−1)3
n−4

+ 1 ≡ −1 + 1 ≡ 0 (mod 163) ∀n ≥ 4.

Recall the elementary property of congruences : if a ≡ b mod m and a ≡ b mod n and
gcd(m,n) = 1, then a ≡ b mod m · n

Therefore,

(a) since gcd(4, 7) = 1, it follows from (1) and (2) that 33
n

+ 1 ≡ 0 mod 28 ∀n ≥ 1,
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(b) since gcd(19, 28) = 1, it follows from (a) and (3) that 33
n

+ 1 ≡ 0 mod 532 = 19 · 28
∀n ≥ 2,

(c) since gcd(37, 532) = 1, it follows from (b) and (4) that 33
n

+ 1 ≡ 0 mod 19684 ∀n ≥ 3,

(d) since gcd(163, 19684) = 1, it follows from (c) and (5) that 33
n

+ 1 ≡ 0 mod
3208492 ∀n ≥ 4. This completes the solution.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We have
28=22×7, 532 = 22×7×19, 19684 = 22×7×19×37, 3208492 = 22×7×19×37×163,
33 ≡ −1(mod 28), 39 ≡ −1(mod 19), 327 ≡ −1(mod 37), 381 ≡ −1(mod 163).

Statement a) is true fore n = 1, statement b) is true for n = 2, statement c) is true for
n = 3, statement d) is true for n = 4.

The general statment then follows by induction: If 33
n ≡ −1 (mod a) where (a, 3) = 1

then 33
n+1 ≡

(
33

n)3 ≡ (−1)3 ≡ −1(moda).

Also solved by Arkady Alt, San Jose, CA; Dionne T. Bailey, Elsie M.
Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX;
Brian D. Beasley, Presbyterian College, Clinton, SC; D.M.
Bătinetu−Giurgiu, “Matei Basarab” National College, Bucharest, Romania
and Neculai Stanciu, “Geroge Emil Palade” General School, Buzău,
Romania and Titu Zvonaru, Comănesti, Romania; Bruno Salgueiro Fanego,
Viveiro, Spain; Ed Gray, Highland Beach, FL; Paul M. Harms, North
Newton, KS; Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; Kenneth Korbin, New York, NY; Kee-Wai Lau,
Hong Kong, China; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

• 5285: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” General School, Buzu,
Romania

Let {an}n≥1, and {bn}n ≥ 1 be positive sequences of real numbers with

lim
n→∞

(an+1 − an) = a ∈ <+ and lim
n→∞

bn+1

nbn
= b ∈ <+.

For x ∈ <, calculate

lim
n→∞

(
asin

2 x
n

((
n+1
√
bn+1

)cos2 x
−
(

n
√
bn

)cos2 x))
.

Solution 1 by Arkady Alt, San Jose, CA

Since the lim
n→∞

(an+1 − an) = a, then by the Stolz Theorem lim
n→∞

an
n

= a. Also note that

lim
n→∞

bn+1

(n+ 1)!
bn
n!

= lim
n→∞

bn+1

(n+ 1) bn
= lim

n→∞
bn+1

(n+ 1) bn
· n+ 1

n
= lim

n→∞
bn+1

nbn
= b.
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By the Multiplicative Stolz Theorem lim
n→∞ bn+1

(n+ 1)!

bn
n!

= b yields lim
n→∞

n

√
bn
n!

= b.

Let cn =
n+1
√
bn+1

n
√
bn

=

n+1

√
bn+1

(n+ 1)!

n

√
bn
n!

·

n+1
√

(n+ 1)!

n+ 1
n
√
n!

n

· n+ 1

n
.

Since lim
n→∞

n
√
n!

n
=

1

e
, lim
n→∞

n

√
bn
n!

= b, lim
n→∞

n+ 1

n
= 1 then lim

n→∞
cn = 1, and, therefore,

lim
n→∞

ccos
2 x

n − 1

ln
(
ccos2 xn

) = 1.

Hence, lim
n→∞

n
(
ccos

2 x
n − 1

)
= lim

n→∞

(
n ln

(
ccos

2 x
n

)
· c

cos2 x
n − 1

ln
(
ccos2 xn

)
)

= lim
n→∞

n ln
(
ccos

2 x
n

)
=

cos2 x lim
n→∞

n ln cn = cos2 x ln
(

lim
n→∞

cnn

)
= cos2 x ln

(
lim
n→∞

n+1
√
bnn+1

bn

)
.

Since
n+1
√
bnn+1

bn
=
bn+1

nbn
· 1

n+1

√
bn+1

(n+ 1)!

· n
n+1
√

(n+ 1)
, then lim

n→∞

n+1
√
bnn+1

bn
= b · 1

b
· e = e

and, therefore, lim
n→∞

n
(
ccos

2 x
n − 1

)
= cos2 x.

And since asin
2 x

n

((
n+1
√
bn+1

)cos2 x
−
(

n
√
bn
)cos2 x

)
=

(an
n

)sin2 x
·
(

n

√
bn
n!

)cos2 x

·
(

n
√
n!

n

)cos2 x

· n



(

n+1
√
bn+1

n
√
bn

)cos2 x

− 1


 then

lim
n→∞

(
asin

2 x
n

((
n+1
√
bn+1

)cos2 x
−
(

n
√
bn
)cos2 x

))
=

asin
2 xbcos

2 xe− cos2 x lim
n→∞

n
(
ccos

2 x
n − 1

)
= asin

2 xbcos
2 xe− cos2 x cos2 x.

Solution 2 by Perfetti Paolo, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

(
asin

2 x
n

((
n+1
√
bn+1

)cos2 x
− ( n
√
bn)cos

2 x

))

=
(an
n

)sin2 x
nsin

2 xb
cos2 x

n
n



(

n+1
√
bn+1

n
√
bn

)cos2 x

− 1
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=
(an
n

)sin2 x
n


b

1
n
n

n




cos2 x

(

n+1
√
bn+1

n
√
bn

)cos2 x

− 1




=
(an
n

)sin2 x

b

1
n
n

n




cos2 x

(
n+1
√
bn+1

n
√
bn

)cos2 x

− 1

ln



(

n+1
√
bn+1

n
√
bn

)cos2 x



ln



(

n+1
√
bn+1

n
√
bn

)n cos2 x

 .

By Cesaro-Stolz,

lim
n→∞

b
1/n
n

n
= lim

n→∞

(
bn
nn

)1/n

= lim
n→∞

bn+1

nbn

nn+1

(n+ 1)n+1
=
b

e

and

lim
n→∞

an
n

= lim
n→∞

(an+1 − an).

Now

lim
n→∞

(
bn+1

) cos2 x
n+1

(
bn
) cos2 x

n

= lim
n→∞

(
bn+1

) cos2 x
n+1

(n+ 1)cos2 x
ncos

2 x

(n+ 1)cos2 x
ncos

2 x

(
bn
) cos2 x

n

=
bcos

2 x

ecos2 x
· 1 · e

cos2 x

bcos2 x
= 1.

Moreover,

lim
n→∞



(
bn+1

) cos2 x
n+1

(
bn
) cos2 x

n



n

= lim
n→∞

(
bn+1

)cos2 x
(
bn+1

) cos2 x
n+1

1
(
bn
)cos2 x

= lim
n→∞

(
bn+1

)cos2 x

ncos2 x
(
bn
)cos2 x

ncos
2 x

(n+ 1)cos2 x
(n+ 1)cos

2 x

(
bn+1

) cos2 x
n+1

= bcos
2 x · 1 · e

cos2 x

bcos2 x
= ecos

2 x

The limit is thus

asin
2 x · b

cos2 x

ecos2 x
· 1 · cos2 x.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

By assumption an+1 − an = a+ o(1),
bn+1

nbn
= beo(1), as n→∞. So,

an = a1+
n∑

j=2

(aj − aj−1) = na+o(n), bn =
n!b1
n

n∏

j=2

bj
(j − 1)bj−1

= n!bneo(n) = nne−nbneo(n), as n →∞.
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We have used a weak form of Stirling’s formula, namely n! = nne−n+o(n) as n→∞.

We conclude
(
asin

2 x
n

((
n+1
√
bn+1

)cos2 x
−
(

n
√
bn

)cos2 x))
=

= nsin
2 x (a+ o(1))sin

2 x

((
(n+ 1) be−1+o(1)

)cos2 x
−
(
nbe−1+o(1)

)cos2 x)
=

= nsin
2 x+cos2 x (a+ o(1))sin

2 x
(
be−1+o(1)

)cos2 x
((

1 +
1

n

)cos2 x

− 1

)
=

= n (a+ o(1))sin
2 x
(
be−1+o(1)

)cos2 x(cos2 x

n
+O

(
1

n2

))

= (a+ o(1))sin
2 x
(
be−1+o(1)

)cos2 x(
cos2 x+O

(
1

n

))

→ asin
2 xbcos

2 xe− cos2 x cos2 x as n →∞.

Comment by Bruno Salgueiro Fanego, Viveiro, Spain

A more general question can be seen in problem 75 from the journal Mathproblems,
available at < http://mathproblems-ks.com/?wpfb d1=11> (see page 2) and solved at
< http://mathproblems-ks.com/?wpfb d1=17>(see pages 6-8)>

Also solved by Kee-Wai Lau, Hong Kong, China, and the proposer.

• 5286: Proposed by Michael Brozinsky, Central Islip, NY

In Cartesianland, where immortal ants live, an ant is assigned a specific equilateral
triangle EFG and three distinct positive numbers 0 < a < b < c. The ant’s job is to find
a unique point P (x, y) such that the distances from P to the vertices E,F and G of his
triangle are proportionate to a : b : c respectively. Some ants are eternally doomed to an
impossible search. Find a relationship between a, b and c that guarantees eventual
success; i.e., that such a unique point P actually exists.

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

Let s be the length of the side of 4EFG and suppose we are given three distinct
positive integers 0 < a < b < c such that a+ b > c, b+ c > a and c+ a > b.

Recall the following: the symmetric equation

3
(
x4 + y4 + z4 + w4

)
=
(
x2 + y2 + z2 + w2

)

relates the size of an equilateral triangle ABC to the distances of a point from its three
vertices. Substituting a, b and c for x, y and z respectively and solving for w then gives
the triangle’s side (say w = s′) and the existence of a point P ′. By Pompeiu’s Theorem,
if P ′ is an arbitrary point an equilateral triangle ABC, then there exists a triangle with
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sides of length P ′A,P ′B,P ′C. Moreover, the theorem remains valid for any point P ′ in
the plane of triangle ABC and that the triangle is degenerate if and only if P ′ lies on
the circumcircle of 4ABC. Therefore, a+ b > c, b+ c > a and c+ a > b. Finally using a

dilation transformation from 4ABC to 4EFG with a dilation factor of
s

s′
, it follows

that there exists a point P = P ′
( s
s′

)
whose distances from the three vertices are

PE = a
( s
s′

)
, PF = b

( s
s′

)
and PG = c

( s
s′

)
. Hence,

PE

a
=
PF

b
=
PG

c
=
s

s′
so that

the distancs from P to the vertices E,F and G are proportionate to a : b : c respectively.

Solution 2 by Michael Fried, Ben Gurion University, Beer-Sheva, Israel

Since this is Cartesianland, we might as well place the equilateral triangle in the
Cartesian plane and give the vertices convenient coordinates, say, E = (−1, 0),
F = (1, 0), and G = (0,

√
3) (see figure below.)

Let us set α = b/c = PE/PF , β = a/c = PG/PF , and γ = a/b = PG/PE.

Then the locus of points P with PE/PF = α is the Apollonius circle:

α2
(
(x− 1)2 + y2

)
−
(
(x+ 1)2 + y2

)
= 0

Similarly, the locus of points P with PG/PE = γ is the Apollonius circle:

γ2
(
(x+ 1)2 + y2

)
−
(
x2 + (y −

√
3)2
)

= 0

The condition that the system of equations,

α2
(
(x− 1)2 + y2

)
−
(
(x+ 1)2 + y2

)
= 0

γ2
(
(x+ 1)2 + y2

)
−
(
x2 + (y −

√
3)2
)

= 0
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has a solution, that is, that the two Apollonius circles have an intersection is (after some
messy but routine algebra) is:

∆ = 16
[(
γ2γ2 + (α2 + 1)

)2 −
(
(2α2γ2 − (α2 + 1))2 − 3(α2 − 1)2

)]
≥ 0

After some further manipulation, this come down to the inequality:

(
α2γ2 − (α+ 1)2

) (
α2γ2 − (α− 1)2

)
≤ 0

From which we have the condition:

(
1− 1

α

)2

≤ γ2 ≤
(

1 +
1

α

)2

Or going back to the definition α = b/c, γ = a/b, we have:

(
1− c

b

)2
≤ a2

b2
≤
(

1 +
c

b

)2

So that,
(b− c)2 ≤ a2 ≤ (b+ c)2

Since a, b, c are positive numbers, and since this must be true no matter which
Apollonius circle ratio we begin with, we have the triangle-like inequalities:

a ≤ b+ c

b ≤ a+ c

c ≤ a+ b

One should note that if the circles α2
(
(x− 1)2 + y2

)
−
(
(x+ 1)2 + y2

)
= 0 and

γ2
(
(x+ 1)2 + y2

)
−
(
x2 + (y −

√
3)2
)

= 0 intersect, they will generally intersect in two
points P1 and P2, where both P1G/PF and P2G/PF = a/c, and a single Apollonius
circle with respect to G and F will pass through these points. Observe too, the three
circles then have the same radical axis, namely, P1P2 (see figure below).
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Comments

1. Ken Korbin, New York, NY

Given 0 < a < b < c. If it is possible to construct a triangle with sides (a, b, c) in which
each of the angles is less than 120◦, them there is a unique point P .

2. Bruno Salgueiro Fanego, Viveiro, Spain

In the article by Oene Bottema On the distances of a point to the vertices of a triangle.
journal Crux Mathematicorum, 1984, 10(8), 242− 246, it is proved (among other things)
the following relationship between the lengths of the sides
α1 = 6 A2A1A3, α2 = 6 A3A2A1, α3 = 6 A1A3A2 and any point P in the plane of
4A1A2A3 with distances to the vertices d1 = PA1, d2 = PA2, d3 = PA3, then:

a21d
4
1 + a22d

4
2 + a23d

4
3 − 2a2a3 cosα1d

2
2d

2
3 − 2a3a1 cosα2d

2
3d

2
1 − 2a1a2 cosα3d

2
1d

2
2−

2a21a2a3 cosα1d
2
1 − 2a1a

2
2a3 cosα2d

2
2 − 2a1a2a

2
3 cosα3d

2
3 + a21a

2
2a

2
3 = 0

called identity (6) and reciprocally. That is, that if d1, d2, d3 are positive numbers
satisfying identity (6) then there is a unique point P such that
PA1 = d1, PA2 = d2, PA3 = d3.

This implies that identity(6) is the relationship which solves a problem more generally
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than the one proposed.

Note: In particular, if we suppose that A1A2A3 is the equilateral triangle EFG of the
statement of the problem, with sides e = a1 = a2 = a3 and k is the constant of
proportionality such that d1 = ka, d2 = kb, d3 = kc then identity (6), when divided by e2

becomes

k4
(
a4 + b4 + c4

)
+ e4 − k4

(
a2b2 + a2c2 + b2c2

)
− k2

(
a2 + b2 + c2

)
e2 + e4 = 0,

which is the required relationship in the original statement of the problem.

On the other hand, if we suppose that a point P exists and k is the constant of
proportionality, such aht PE = ka, PF = kb, and PG = kc, using the identity which
appears in the editor’s comment of SSM problem 5140, or its equivalent,

PE4+PF 4+PG4+EF 4 = PE2PF 2+PE2PG2+PF 2PG2+PE2EF 2+PF 2EF 2+PG2EF 2,

we obtain directly the relationship which is required in the problem, that is,

k4
(
a4 + b4 + c4

)
+ e4 = k4

(
a2b2 + a2c2 + b2c2

)
+ k2

(
a2 + b2 + c2

)
e2,

which is also equivalent to equality (4) in the published solution #2 to 5140.

Also solved by Ed Gray, Highland Beach, FL; Paul M. Harms, North
Newton, KS, and the proposer.

• 5287: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let u, v, w, x, y, z be complex numbers. Prove that

2Re(ux + vy + zw) ≤ 3
(
|u|2 + |v |2 + |w |2

)
+

1

3

(
|x |2 + |y |2 + |z |2

)
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that

0 ≤
∣∣∣∣
√

3u − 1√
3
x

∣∣∣∣
2

=

(√
3u − 1√

3
x

)(√
3u − 1√

3
x

)
= 3 |u|2 +

1

3
|x|2 − 2Re(ux ).

So, 2Re(ux ) ≤ 3 |u|2 +
1

3
|x |2.

Similarly, 2Re(vy) ≤ 3 |v |2 +
1

3
|y |2, and 2Re(zw) ≤ 3 |w |2 +

1

3
|z |2.

The statement follows by adding these inequalities.

Solution 2 by David Diminnie and Tatyana Savchuk, Texas Instruments,
Inc., Dallas, TX

We will prove the equivalent statement

0 ≤ 3
(
|u|2 + |v|2 + |w|2

)
− 2Re (ux+ vy + zw) +

1

3

(
|x|2 + |y|2 + |z|2

)
. (1)

Let u1, u2 denote the real and imaginary parts of u, respectively, and similarly for
v, w, x, y, z. Then the right side of (1) becomes
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3
(
u21 + u22 + v21 + v22 + w2

1 + w2
2

)
− 2 (u1x1 − u2x2 + v1y1 − v2y2 + w1z1 − w2z2)

+
1

3

(
x21 + x22 + y21 + y22 + z21 + z22

)
,

which we rewrite as
(

3u21 − 2u1x1 +
1

3
x21

)
+

(
3u22 + 2u2x2 +

1

3
x22

)
+

(
3v21 − 2v1y1 +

1

3
y21

)
+

(
3v22 + 2v2y2 +

1

3
y22

)

+

(
3w2

1 − 2w1z1 +
1

3
z21

)
+

(
3w2

2 + 2w2z2 +
1

3
z22

)
. (2)

Noting that 3a2 + 2ab+ 1
3b

2 and 3a2 − 2ab+ 1
3b

2 may be rewritten as

(√
3a+

1√
3
b

)2

and

(√
3a− 1√

3
b

)2

, respectively, (2) becomes

(√
3u1 −

1√
3
x1

)2

+

(√
3u2 +

1√
3
x2

)2

+

(√
3v1 −

1√
3
y1

)2

+

(√
3v2 +

1√
3
y2

)2

+

(√
3w1 −

1√
3
z1

)2

+

(√
3w2 +

1√
3
z2

)2

. (3)

Since (3) is a sum of squares of real numbers the expression must be nonnegative, and
therefore (1) holds.

Solution 3 by Paul M. Harms, North Newton, KS

We know that the real part of a finite sum of complex numbers is less than or equal to
the modulus of the sum which is less than or equal to the sum of the moduli. Also the
modulus of a finite product of complex numbers equals the product of the moduli.

We have 0 ≤
(
3 |u| − |x|)2 +

(
3 |v| − |y|)2 +

(
3 |w| − |z|)2. After squaring the three

parts, moving terms and dividing by 3, we can obtain,

2 (|u| |x|+ |v| |y|+ |z| |w|) ≤ 3
(
|u|2 + |v|2 + |w|2

)
+

1

3

(
|x|2 + |y|2 + |z|2

)
.

From what was said and shown above,

2Re(ux + vy + zw) ≤ 2 (|u| |x |+ |v | |y |+ |z | |w |) ≤ 3
(
|u|2 + |v |2 + |w |2

)
+

1

3

(
|x |2 + |y |2 + |z |2

)
.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We have

3|u|2 +
1

3
|x|2 − 2Re(ux ) ≥ 3|u|2 +

1

3
|x |2 − 2|u||x | = 1

3
(3|u| − |x |)2 ≥ 0,

and similarly,

3|v|2 +
1

3
|y|2 − 2Re(vy) ≥ 0, 3|z|2 +

1

3
|w|2 − 2Re(zw) ≥ 0.
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The inequality of the problem follows by adding up the three inequalities above.

Solution 5 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

2Re(ux+ vy + zw) ≤ 2(|ux|+ |vy|+ |zw|) = 2(|u| · |x|+ |v| · |y|+ |z| · |w|)
and

|z| · |w| ≤ 3|z|2 +
1

3
|w|2

is simply the AGM.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL and the proposer.

• 5288: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c ≥ 0 be real numbers. Find the value of

lim
n→∞

1

n

n∑

i=1

n∑

j=1

1√
i2 + j2 + ai+ bj + c

.

Solution 1 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

Answer: 2 ln(
√

2 + 1)

Proof: We show that the limit is independent on a, b, c allowing us to set a = b = c = 0
for evaluating it. If Q = [0, 1]× [0, 1], the limit becomes

lim
n→∞

1

n

n∑

i,j=1

1√
i2 + j2

= lim
n→∞

1

n2

n∑

i,j=1

1√
i2

n2 + j2

n2

=

∫ ∫

Q

1√
x2 + y2

dxdy.

By writing the integral as 2

∫ 1

0

(∫ x

0

1√
x2 + y2

dy

)
dx and passing to polar coordinates

we have

2

∫ π/2

π/4

(∫ 1/ sin θ

0

ρ

ρ
dρ

)
dθ = 2

∫ π/2

π/4

1

sin θ
dθ = 2 ln tan

θ

2

∣∣∣
π/2

π/4
= 2 ln(

√
2 + 1).

To show that the limit is independent by a, b, c, we prove

lim
n→∞

1

n

n∑

i,j=1

1√
i2 + j2 + ai+ bj + c

= lim
n→∞

1

n

n∑

i,j=1

1√
i2 + j2 + a′i+ b′j + c′

for any a, b, c, a′, b′, c′. We introduce a number of positive constants Ck, k = 0, 1, . . . .

Since i|a′ − a|+ j|b′ − b|+ |c′ − c| ≤ C0(i+ j) and i2 + j2 + ai+ bj + c ≤ C1(i
2 + j2) we

have the bound
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∣∣∣∣∣
1√

i2 + j2 + ai+ bj + c
− 1√

i2 + j2 + a′i+ b′j + c′

∣∣∣∣∣ =

∣∣∣ (a′ − a) + j(b′ − b) + c′ − c
(i2 + j2 + ai+ bj + c)(i2 + j2 + a′i+ b′j + c′)

∣∣∣×

×
(

1√
i2 + j2 + ai+ bj + c

+
1√

i2 + j2 + a′i+ b′j + c′

)−1
≤

≤ C0(i+ j)

(i2 + j2)2

√
i2 + j2

C1
= C2

i+ j

(i2 + j2)3/2

Thus

1

n

n∑

i,j=1

i+ j

(i2 + j2)3/2
≤ 1

n

∞∑

j=1

n∑

i=1

i

(2ij)3/2
+

1

n

∞∑

i=1

n∑

j=1

j

(2ij)3/2
≤ C3/

√
n

and it follows that for any a, b, c, a′, b′, c′

lim
n→∞

1

n

n∑

i,j=1

(
1√

i2 + j2 + ai+ bj + c
− 1√

i2 + j2 + a′i+ b′j + c′

)
= 0.

In particular we can take a′ = b′ = c′ = 0 and write

1√
i2 + j2 + ai+ bj + c

=

(
1√

i2 + j2 + ai+ bj + c
− 1√

i2 + j2

)
+

1√
i2 + j2

The conclusion is that for any a, b, c the limit assumes the same value
2 ln(
√

2 + 1).

Solution 2 by Ed Gray, Highland Beach, FL

Consider the integral

lim
n→∞

1

n

∫ x=n

x=1

∫ y=n

y=1

dxdy√
x2 + y2

.

(Editor’s comment: Ed used intuition in moving from the double summation to the
double integral by reasoning that the linear terms in the summation wouldn’t contribute
much to the summation for very large values of n. His intuition was right on target, as
seen in Paolo’s solution above. Ed evaluated the double integral in the usual manner, by
first integrating the inside integral with respect to x treating y as a constant, and then
integrating that answer with respect to y, treating x as a constant.

∫ n

x=1

dx√
x2 + y2

= ln
(√

x2 + y2 + x
)
− ln y

∣∣∣∣∣

n

x=1
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= ln
(√

n2 + y2 + n
)
− ln y − ln

(√
12 + y2 + 1

)
+ ln y

= ln
(√

n2 + y2 + n
)
− ln

(√
12 + y2 + 1

)

And now we compute:

∫ n

y=1
ln
(√

n2 + y2 + n
)
dy −

∫ n

y=1
ln
(√

12 + y2 + 1
)
dy.

∫ n

y=1
ln
(√

n2 + y2 + n
)
dy = y ln

(√
n2 + y2 + n

)
+ n ln

(√
n2 + y2 + y

)
− y
∣∣∣∣∣

n

y=1
[
n ln

(√
n2 + n2 + n

)
+ n ln

(√
n2 + n2 + n

)
− n

]
−
[
(1) ln

(√
n2 + 1 + n

)
+ n ln

(√
n2 + 1 + 1

)
− 1
]

Let’s called this A. And evaluating

∫ n

y=1
ln
(√

y2 + 1 + 1
)
dy = y ln

(√
y2 + 1 + 1

)
− y + ln

(
y +

√
1 + y2

) ∣∣∣∣∣

n

y=1

we obtain

n
[
ln(
√
n2 + 1 + 1)

]
− n+ ln

(
n+

√
n2 + 1

)
−
[
(1)
(

ln
(√

2 + 1
))
− 1 + ln(1 +

√
2) ].

And let’s call this B.

We now evaluate
1

n
lim
n→∞

A− 1

n
lim
n→∞

B. Doing this gives us 2 ln(
√

2 + 1).

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the limit equal 2 ln(1 +
√

2), independent of a, b, c.

We first note that
∣∣∣∣∣∣

n∑

i=1

n∑

j=1

1√
i2 + j2 + ai+ bj + c

−
n∑

i=1

∑

j=1n

1√
i2 + j2

∣∣∣∣∣∣

=
n∑

i=1

n∑

j=1

ai+ bj + c(√
i2 + j2 + ai+ bj + c

)(√
i2 + j2

)(√
i2 + j2 + ai+ bj + c+

√
i2 + j2

)

≤ 1

2

n∑

i=1

n∑

j=1

ai+ bj + c

(i2 + j2)3/2
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= O




n∑

i=1

n∑

j=1

ai+ bj + c

(ij)3/2




= O




n∑

i=1

1

i1/2

n∑

j=1

1

j3/2


+O




n∑

i=1

1

i3/2

n∑

j=1

1

j1/2


+O




n∑

i=1

1

i3/2

n∑

j=1

1

j3/2




= O(
√
n).

The constants implied by O depend at most on a, b, and c. It follows that the limit of

the problem in fact equals lim
n→∞

1

n

n∑

i=1

n∑

j=1

1√
i2 + j2

. Now the last limit equals

lim
n→∞

1

n2

n∑

i=1

n∑

j=1

1√(
i
n

)2
+
(
j
n

)2 =

∫ 1

0

∫ 1

0

dydx√
x2 + y2

,

which we are going to evaluate. It is easy to check that

d

dy

(
ln
(
y +

√
x2 + y2

)
=

1√
x2 + y2

and

d

dx

(
ln

(
x+

√
x2+1

)
+ x ln

(
1 +

√
x2 + 1

)
− lnx

)
= ln

(
1 +

√
x2 + y2

)
− lnx.

Hence

∫ 1

0

∫ 1

0

dydx√
x2 + y2

=

∫ 1

0

(
ln
(

1 +
√
x2 + 1

)
− lnx

)
dx = 2 ln

(
1 +
√

2
)
,

where we have used the fact that limx→0+ (x lnx) = 0.

This completes the solution.

Solution 4 by Anastasios Kotronis, Athens, Greece

Let

an =
n∑

i=1

n∑

j=1

1√
i2 + j2 + ai+ bj + c

.

We have

an+1 − an =
n+1∑

i=1

1√
i2 + (n+ 1)2 + ai+ b(n+ 1) + c

+
n+1∑

j=1

1√
(n+ 1)2 + j2 + a(n+ 1) + bj + c
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− 1√
2(n+ 1)2 + (a+ b)(n+ 1) + c

= bn+1 + cn+1 − dn+1

But

bn =
n∑

i=1

1√
i2 + n2 + ai+ bn+ c

=
1

n

n∑

i=1

1√
(i/n)2 + 1 + ai/n2 + b/n+ c/n2

=
1

n

n∑

i=1

1√
(i/n)2 + 1

1 +O(n−1) =
1

n

n∑

i=1

1√
(i/n)2 + 1

+O(n−1)

→
∫ 1

0

1√
x2 + 1

dx = ln(1 +
√

2)

and by symmetry, the same holds for cn. Since clearly dn → 0 , by Cezàro Stolz

1

n

n∑

i=1

n∑

j=1

1√
i2 + j2 + ai+ bj + c

→ 2 ln(1 +
√

2).

Comment by Bruno Salgueiro Fanego, Viveiro, Spain

This problem and its solution appeared as challenge exercise U114 in the journal
Mathematical Reflections. See:
< https://www.awesomemath.org/wp-
ontent/uploads/reflections/2009 2/MR 2 2009 Solutions.pdf >. Pages
36-38.

The required value is 2ln
(√

2 + 1
)
.

Also solved by Arkady Alt, San Jose, CA; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

Mea Culpa

The name of Michael Thew, a student at St. George’s School in Spokane,
WA was inadvertently omitted from the list of those who had solved 5277
and 5279.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2014

• 5307: Proposed by Haishen Yao and Howard Sporn, Queensborough Community College,
Bayside, NY

Solve for x: √
x15 =

√
x10 − 1 +

√
x5 − 1.

• 5308: Proposed by Kenneth Korbin, New York, NY

Given the sequence
t = (1, 7, 41, 239, . . .)

with tn = 6tn−1 − tn−2. Let (x, y, z) be a triple of consecutive terms in this sequence
with x < y < z.

Part 1) Express the value of x in terms of y and express the value of y in terms of x.

Part 2) Express the value of x in terms of z and express the value of z in terms of x.

• 5309: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Consider the expression 3n + n2 for positive integers n. It is divisible by 13 for n = 18
and n = 19. Prove, however, that it is never divisible by 13 for three consecutive values
of n.

• 5310: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a > 0 and a sequence {En}n≥0, be defined by En =
n∑

k=0

1

k!
. Evaluate:

lim
n→∞

n
√
n!
(
a

n√
En−1 − 1

)
.

• 5311: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x, y, z be positive real numbers. Prove that
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∑

cyclic

√(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥ 3
√

10.

• 5312: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate:

∫ 1

0
ln |√x−

√
1− x|dx.

Solutions

• 5289: Proposed by Kenneth Korbin, New York, NY

Part 1: Thirteen different triangles with integer length sides and with integer area each

have a side with length 1131. The angle opposite 1131 is Arcsin

(
3

5

)
in all 13 triangles.

Find the sides of the triangles.

Part 2: Fourteen different triangles with integer length sides and with integer area each
have a side with length 6409. The size of the angle opposite 6409 is the same in all 14
triangles.

Find the sides of the triangles.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Part 1: If α = Arc sin

(
3

5

)
, then sinα =

3

5
and 0 < α <

π

2
. It follows that

cosα =

√
1− 9

25
=

4

5
.

Suppose x and y are the other sides of the triangle with x ≥ y. The Law of Cosines
implies that

(1131)2 = x2 + y2 − 2xy cosα

= x2 + y2 − 8

5
xy.

If we complete the square in x and simplify, we get

(5655)2 = (5x− 4y)2 + (3y)2

and hence, (5x− 4y, 3y, 5655) is a Pythagorean Triple. To solve for x and y, we must
find all such triples and assign 5x− 4y and 3y to the sides of each triple. E.g., for the
triple (2175, 5220, 5655), setting

5x− 4y = 2175
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3y = 5220

yields x = 1827 and y = 1740, while

5x− 4y = 5220

3y = 2175

yields x = 1624 and y = 725. Some other triples give only one integral solution for x and
y and a few give no integral solutions. In all, we found 14 solutions which are listed in
the following table. (Repeated triples indicate multiple solutions as above.)

Pythagorean Triple x y

(3393, 4524, 5655) 1885 1508

(2175, 5220, 5655) 1827 1740

(2175, 5220, 5655) 1624 725

(3900, 4095, 5655) 1872 1365

(3900, 4095, 5655) 1859 1300

(936, 5577, 5655) 1365 312

(663, 5616, 5655) 1300 221

(2280, 5175, 5655) 1836 1725

(2280, 5175, 5655) 1643 760

(2025, 5280, 5655) 1813 1760

(2025, 5280, 5655) 1596 675

(2772, 4929, 5655) 1725 924

(3009, 4788, 5655) 1760 1003

(2871, 4872, 5655) 1740 957

.

It should be noted that in each case, the values of x, y, and 1131 satisfy the required
triangle inequalities for the sides of a non-degenerate triangle. Also, the area of each

triangle is
1

2
xy sinα =

3xy

10
. Since xy is a multiple of 10 in each case, the resulting

triangle has integral area as well.

Part 2: If we once again use α = Arc sin

(
3

5

)
for the angle opposite 6409, then by the

same steps as described in Part 1, the remaining sides x and y (with x ≥ y) must satisfy
the equation

(32, 045)2 = (5x− 4y)2 + (3y)2 .

Following the same procedure as in Part 1, we found the 22 solutions listed in the
following table. As before, each satisfies the required inequalities for the sides of a
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triangle and each yields an integral area.

Pythagorean Triple x y

(15916, 27813, 32045) 10600 9271

(22244, 23067, 32045) 10600 7689

(8283, 30956, 32045) 8400 2761

(2277, 31964, 32045) 7000 759

(2400, 31955, 32045) 7031 800

(21000, 24205, 32045) 10441 7000

(19795, 25200, 32045) 10679 8400

(10192, 30381, 32045) 10140 10127

(18291, 26312, 32045) 10140 6097

(15708, 27931, 32045) 9775 5236

(7656, 31117, 32045) 8265 2552

(8580, 30875, 32045) 8463 2860

(12920, 29325, 32045) 10404 9775

(11475, 29920, 32045) 9044 3825

(20300, 24795, 32045) 10672 8265

(3045, 31900, 32045) 7192 1015

(5304, 31603, 32045) 7735 1768

(13572, 29029, 32045) 9425 4524

(22100, 23205, 32045) 10608 7735

(15080, 28275, 32045) 10556 9425

(12325, 29580, 32045) 10353 9860

(16269, 27608, 32045) 9860 5423

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China, (part 1); David E. Manes, SUNY at Oneonta, Oneonta, NY, and the
proposer.

• 5290: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Someone wrongly remembered the description of an even perfect number as:
N = 2p

(
2p−1 − 1

)
, where p is a prime number. Classify these numbers correctly. Which

are deficient and which are abundant?

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta NY

We will show that if p is a prime, then N = 2p
(
2p−1 − 1

)
is abundant except when p = 2

in which case N is deficient.

If σ(n) is the sum of the positive divisors of n, then n is deficient when σ(n)−n < n and
abundant if σ(n)−n > n. If p = 2, then N = 2p

(
2p−1 − 1

)
= 4 and σ(4)− 4 = 7− 4 = 3.

Therefore N = 4 is deficient. If p is an odd prime, then gcd
(
2p, 2p−1 − 1

)
= 1 implies

σ(N) = σ
(
2p
(
2p−1 − 1

))
= σ (2p)σ

(
2p−1 − 1

)

since σ is a multiplicative function. Moreover σ (2p) = 2p+1 − 1 and
σ
(
2p−1 − 1

)
>
(
2p−1 − 1

)
+ 1 = 2p−1. Thus, σ (N) >

(
2p+1 − 1

)
2p−1. Therefore,

σ(N)−N >
(
2p+1 − 1

)
2p−1 − 2p

(
2p−1 − 1

)
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=
(
2p−1

) (
2p+1 − 1− 2

(
2p−1 − 1

))

=
(
2p−1

) (
2p+1 − 2p + 1

)

= 2p−1 (2p + 1)

>
(
2p−1 − 1

)
2p = N.

Hence, N is an abundant integer.

Solution 2 by Paul M. Harms, North Newton, KS

I will use the theorem stating that proper multiples of perfect numbers and abundant
numbers are abundant numbers.

When p = 2, N = 4 which is a deficient number.

When p = 3, N = 22
(
2
(
22 − 1

))
= 4(6) = 24 which is 4 times the perfect number 6 and

thus is an abundant number.

Consider p a prime number, p ≥ 3. Then(
2p−1 − 1

)
=
(
22 − 1

) (
2p−3 + 2p−5 + . . .+ 22 + 1

)
.

We now have N = 2p
(
2p−1 − 1

)
=
(
2p−1

(
2p−3 + 2p−5 + . . .+ 22 + 1

)) (
2
(
22 − 1

))
. Since

N is a proper multiple of the perfect number 2
(
22 − 1

)
= 6, N is an abundant number.

In conclusion, N is a deficient number when p = 2, but an abundant number for prime
numbers p > 2.

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

We first establish that every nontrivial multiple of a perfect number is abundant (this
result appears in most number theory texts, such as Burton’s Elementary Number
Theory). Given any positive integer n, we denote the sum of its positive divisors
(including n itself) by σ(n). The key observation is that for any positive integer n, we
may sum over its positive divisors d to obtain

σ(n) = n
∑

d|n

1

d
.

Thus if n is perfect and m is a nontrivial multiple of n, then σ(m)/m > σ(n)/n = 2, so
m is abundant. (In general, if we denote the abundancy index of n by I(n) = σ(n)/n,
then the above observation establishes that I(n) ≤ I(m) whenever n divides m.)

Next, we solve the original problem based on the parity of the prime p. If p = 2, then
N = 4 is deficient. If p is odd, then 2p−1 − 1 is divisible by 3, since p− 1 is even and 2
raised to any even power is congruent to 1 modulo 3. Thus in this case N is a nontrivial
multiple of 6, so N is abundant.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Ed Gray, Highland Beach, FL; Kee-Wai
Lau, Hong Kong, China; David Stone and John Hawkins, Georgia Southern
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University, Statesboro, GA, and the proposer.

• 5291: Proposed by Arkady Alt, San Jose, CA

Let mamb be the medians of a triangle with side lengths a, b, c. Prove that:

mamb ≤
2c2 + ab

4
.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

We wish to prove that

2c2 + ab− 4mamb ≥ 0 or equivalently,

(
2c2 + ab+ 4mamb

) (
2c2 + ab− 4mamb

)
≥ 0, that is,

(
2c2 + ab

)2
− 16m2

am
2
b ≥ 0.

Since ma =
1

2

√
2b2 + 2c2 − a2, and mb =

1

2

√
2c2 + 2a2 − b2 we obtain:

(2c2 + ab)2 − 16m2
am

2
b =

(
2c2 + ab

)2
−
(
2b2 + 2c2 − a2

) (
2c2 + 2a2 − b2

)

= 4c4 + 4abc2 + a2b2 −
(
4b2c2 + 4a2b2 − 2b4 + 4c4 + 4c2a2 − 2b2c2 − 2c2a2 − 2a4 + a2b2

)

= 4abc2 − 4a2b2 − 2b2c2 − 2c2a2 + 2a4 + 2b4

= 2a4 + 2b4 − 4a2b4 − 2b2c2 − 2c2a2 + 4abc2

= 2

((
a2 − b2

)2
− (bc− ca)2

)

= 2
(
(a+ b)2 (a− b)2

)
− c2 (b− a)2

= 2 (a− b)2
(
(a+ b)2 − c2

)

= 2 (a− b)2 (a+ b+ c) (a+ b− c) ≥ 0

By the triangle inequality a+ b− c > 0, with equality if and only if a = b, that is , if and
only if the triangle is isosceles with equal side lengths a and b.

Solution 2 by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Since the length of the medians of any triangle ABC with side lengths a, b, and c are
given by the expression

ma =
1

2

√
2b2 + 2c2 − a2 (cyclic),
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as it is well-known, then the inequality claimed becomes

(
1

2

√
2b2 + 2c2 − a2

) (
1

2

√
2c2 + 2a2 − b2

)
≤ 2c2 + ab

4

or √
(2b2 + 2c2 − a2)(2c2 + 2a2 − b2) ≤ 2c2 + ab

Squaring both sides of the above inequality and after canceling terms, we obtain

2a4 + 2b4 − 4c2ab− 4a2b2 − 2b2c2 − 2c2a2 ≥ 0

or equivalently,
2(a− b)2(a+ b+ c)(a+ b− c) ≥ 0

which is true on account that in any non degenerate triangle ABC is a+ b > c. Equality
holds when a = b. That is when 4ABC is isosceles, and we are done.

Also solved by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary
School, Buzău, Romania, and Titu Zvonaru, Comănesti, Romania; Ed Gray,
Highland Beach, FL; Kenneth Korbin, New York, NY; Paul M. Harms,
North Newton, KS, Kee-Wai Lau, Hong Kong, China; Paolo Perfetti,
Department of Mathematics, “Tor Vergata” University, Rome, Italy; Ecole
Suppa, Teramo, Italy,and the proposer.

• 5292: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania

Let a and b be real numbers with a < b, and let c be a positive real number. If
f : R −→ R+ is a continuous function, calculate:

∫ b

a

ef(x−a) (f(x− a))
1
c

ef(x−a) (f(x− a))
1
c + ef(b−x) (f(b− x))

1
c

dx.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

If f(x) = ef(x−a)(f(x− a))
1
c and g(x) = ef(b−x)(f(b− x))

1
c , then for x ∈ (a, b),

f(x) = g(b− x+ a) and hence the proposed integral, say I is equal to

I =

∫ b

a

ef(b−x)(f(b− x))
1
c

ef(x−a)(f(x− a))
1
c + ef(b−x)(f(b− x))

1
c

dx,

and so I =
b− a

2
.

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

By letting y =
x− a
b− a , the integral is equal to

I = (b− a)

∫ 1

0

F ((b− a)y)

F ((b− a)y) + F ((b− a)(1− y))
dy
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= (b− a)

∫ 1

0
dy − 1

b− a

∫ 1

0

F ((b− a)(1− y))

F ((b− a)y) + F ((b− a)(1− y))
dy.

Letting t = 1− y we obtain

I = (b− a)− (b− a)

∫ 1

0

F ((b− a)(1− y))

F ((b− a)y) + F ((b− a)(1− y))
dy

= (b− a)− (b− a)

∫ 1

0

F ((b− a)t)

F ((b− a)(1− t)) + F ((b− a)t)
dy.

It follows that 2I = b− a =⇒ I =
b− a

2
.

Solution 3 by Paul M. Harms, North Newton, KS

Let A(x) = ef(x−a) (f(x− a))
1
c and B(x) = ef(b−x) (f(b− x))

1
c . We see that

∫ b

a

A(x) +B(x)

A(x) +B(x)
dx = b− a =

∫ b

a

A(x)

A(x) +B(x)
dx+

∫ b

a

B(x)

A(x) +B(x)
dx.

For the definite integral from a to b of
B(x)

A(x) +B(x)
consider the change of variables

x = a+ b− u. Then

f(x− a) = f(b− u)

f(b− u) = f(u− a)

B(x) = A(u) and

A(x) = B(u).

With this change of variables,

∫ b

a

B(x)

A(x) +B(x)
dx =

∫ a

b

A(u)

B(u) +A(u)
(−1)du =

∫ b

a

A(u)

A(u) +B(u)
du.

Thus

∫ b

a

A(x)

A(x) +B(x)
dx and

∫ b

a

B(x)

A(x) +B(x)
dx have the same value. Since their sum is

(b− a), the value of

∫ b

a

A(x)

A(x) +B(x)
dx is

b− a
2

.

Also solved by Michael Brozinsky, Central Islip, NY; Kee-Wai Lau, Hong
Kong, China; Titu Zvonaru, Comănesti, Romania, and the proposer.
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• 5293: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ABC be a triangle. Prove that

4
√

sinA cos2B +
4
√

sinB cos2C +
4
√

sinC cos2A ≤ 3
8

√
3

64
.

Comment: Michael Brozinsky of Central Islip, NY and Kee-Wai Lau of Hong
Kong China each noticed that if 4ABC has an obtuse angle, then the above
inequality does not hold. This oversight can be corrected by restricting the statement of
the problem to acute triangles.

Solution 1 by Michael Brozinsky of Central Islip, NY

The given inequality is proved for acute triangles. Without loss of generality let the
diameter of the circumcircle be 1 so that by the law of sines, the sides corresponding to
angle A,B, and C satisfy the following:

a = sinA, b = sinB, c = sin(π − (A+B)) = sin(A+B),

cos2C = (− cos(A+B))2 = cos2(A+B)

cos2B = (− cos(A+ C))2 = cos2(A+ C) and

cos2A = (− cos(C +B))2 = cos2(C +B).

We shall also use the identity cos(x+ y) = cosx cos y − sinx sin y (∗).
We may also assume A ≤ B ≤ C so that a ≤ b ≤ c < 1 and by acuteness

π

2
< A+B ≤ A+ C ≤ B + C, since A + B + C = π.

We have using (∗) that

sin(A) · cos2(B) = sin(A) · cos2(A+ C) = a ·
(√

1− a2 ·
√

1− c2 − a · c
)
)2.

Now
∂

∂a

(
a ·
(√

1− a2·
√

1− c2 − a · c
)2)

=

(√
1− a2·

√
1− c2 − ac

)2
+ 2a

(√
1− a2

√
1− c2 − ac

)(
−
√

1− c2a√
1− a2

− c
)

is clearly

positive when one notes that factor
√

1− a2
√

1− c2 − ac is negative being cos(A+ C)
where A+ C is obtuse. Hence the radicand in the first term on the left hand side of the
given inequality increases with a and since a ≤ b ≤ c has it maximum value when a = b.

Similarly we have using (∗) that

sin(B) · cos2(C) = sin(B) · cos2(A+B) = b ·
(√

1− a2
√

1− b2 − ab
)2

.

Now
∂

∂b

(
b ·
(√

1− a2·
√

1− b2 − a · b
)2)

=

(√
1− a2·

√
1− b2 − ab

)2
+ 2b

(√
1− a2

√
1− b2 − ab

)(
−
√

1− a2b√
1− b2

− a
)

is clearly

positive when one notes that factor
√

1− a2
√

1− b2 − ab is negative being cos(A+B)
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where A+B is obtuse. Hence the radicand in the second term on the left hand side of
the given inequality increases with b and since a ≤ b ≤ c has it maximum value when
b = c.

And similarly we have using (∗) that

sin(C) · cos2(A) = sin(C) · cos2(C +B) = c ·
(√

1− c2
√

1− b2 − cb
)2

and

∂

∂b

(
c ·
(√

1− c2·
√

1− b2 − c · b
)2)

=

2c
(√

1− b2 ·
√

1− c2 − bc
)2

+ 2b

(
−
√

1− c2b√
1− b2

− c
)

is clearly positive when one notes

that factor
√

1− b2
√

1− c2 − b · c is negative being cos(C +B) where C +B is obtuse.
Hence the radicand in the third term on the left hand side of the given inequality
increases with b and since a ≤ b ≤ c has its maximum value with b = c.

Thus the first three radicands are maximized simultaneously when a = b = c and since

A,B and C are acute, we have A = B = C =
π

3
and the left hand side of the given

inequality has its maximum value 3 · 4

√√√√
(√

3

2

)
·
(

1

2

)2

= 3 · 4

√√
3

8
= 3 · 8

√
3

64
as was to

be shown.

Solution 2 by Arkady Alt, San Jose, CA

Since by AM-GM Inequality

4

√
1

2
· sinA√

3
· cos2B ≤

1

2
+

sinA√
3

+ 2 cosB

4
then

1
8
√

12

∑

cyc

4
√

sinA cos2B =
∑

cyc

4

√
1

2
· sinA√

3
· cos2B ≤

∑

cyc

1

2
+

sinA√
3

+ 2 cosB

4

=
3

8
+

1√
3

(sinA+ sinB + sinC) + 2 (cosA+ cosB + cosC) .

Since R ≥ 2r (Euler Inequality) we have cosA+ cosB + cosC = 1 +
r

R
≤ 3

2
.

Also, since sinx is concave down on [0, π] then

sinA+ sinB + sinC

3
≤ sin

A+B + C

3
= sin

π

3
=

√
3

2
⇐⇒ sinA+ sinB + sinC ≤ 3

√
3

2
.

Thus,

1
8
√

12

∑

cyc

4
√

sinA cos2B ≤ 1

4

(
3

2
+

1√
3
· 3
√

3

2
+ 2 · 3

2

)
=

3

2
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⇐⇒
∑

cyc

4
√

sinA cos2B ≤ 3

2
· 8
√

12 = 3
8

√
3

64
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; D.M. Bătinetu−Giurgiu,
“Matei Basarab” National College, Bucharest, Romania and Neculai
Stanciu, “George Emil Palade” General School, Buzău, Romania and Titu
Zvonaru, Comănesti, Romania, and the proposer.

• 5294: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

a) Calculate
∞∑

n=2

(n− ζ(2)− ζ(3)− · · · − ζ(n)).

b) More generally, for k ≥ 2 an integer, find the value of the multiple series

∞∑

n1,n2,···,nk=1

(n1 + n2 + · · ·+ nk − ζ(2)− ζ(3)− · · · − ζ(n1 + n2 + n3 + · · ·+ nk)),

where ζ denotes the Riemann Zeta function.

Solution 1 by Anastasios Kotronis, Athens, Greece

We will answer b) which answers both questions. At first, it is rather straightforward
using induction and the sum of geometric series that for k ≥ 1 and m ≥ 2 integers we
have

+∞∑

n1,n2,...,nk=1

1

mn1+n2+···+nk
=

1

(m− 1)k
.

Now with the change of the summation order, whenever takes place, being justified by
the constant sign of the summands, we have

+∞∑

n1,n2,...,nk=1

(n1 + n2 + · · ·+ nk − ζ(2)− ζ(3)− · · · − ζ(n1 + n2 + · · ·+ nk))

=
+∞∑

n1,n2,...,nk=1


1−

n1+n2+···+nk∑

k=2

∑

m≥2

1

mk




=
+∞∑

n1,n2,...,nk=1


1−

∑

m≥2

n1+n2+···+nk∑

k=2

1

mk
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=
+∞∑

n1,n2,...,nk=1


1−

∑

m≥2

(
1

m− 1
− 1

m

)
+
∑

m≥2

1

m− 1
· 1

mn1+n2+···+nk




=
+∞∑

n1,n2,...,nk=1

∑

m≥2

1

m− 1
· 1

mn1+n2+···+nk

=
∑

m≥2

1

m− 1

+∞∑

n1,n2,...,nk=1

1

mn1+n2+···+nk

=
∑

m≥2

1

(m− 1)k+1
= ζ(k + 1).

Solution 2 by Kee-Wai Lau, Hong Kong, China

For k ≥ 2, we have

∞∑

n1,n2,...nk=1

(n+ 1 + n2 + · · ·+ nk − ζ(2)− ζ(3)− · · · − ζ (n1 + n2 + ·+ nk))

=
∞∑

n1,n2,...nk=1

(
n1 + n2 + · · ·+ nk −

n1+n2+···+nk∑

s=2

∞∑

m=1

1

ms

)

=
∞∑

n1,n2,...nk=1

(
1−

∞∑

m=2

n1+n2+···+nk∑

s=2

1

ms

)

=
∞∑

n1,n2,...nk=1

(
1−

∞∑

m=2

(
1

(m− 1)m
− 1

(m− 1)mn1+n2+·+nk

))

=
∞∑

n1,n2,...nk=1


1−

∞∑

m=2

(
1

m− 1
− 1

m

)
+
∞∑

m+2

1

(m− 1)mn+1+n2+···+nk




=
∞∑

n1,n2,...nk=1

∞∑

m=2

1

(m− 1)mn+1+n2+···+nk

=
∞∑

m=2

1

m− 1



∞∑

n1=1

1

mn1





∞∑

n2=1

1

mn2


 · · ·



∞∑

nk=1

1

mnk




=
∞∑

m=2

1

(m− 1)k+1
.
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So the answer to (b) is ζ(k+ 1). From the steps above, we see that the sum in (a) equals

∞∑

m=2

1

m− 1

∞∑

n=2

1

mn

=
∞∑

m=2

1

(m− 1)2m

=
∞∑

m=2

1

(m− 1)2
−
∞∑

m=2

(
1

m− 1
− 1

m

)

=
π2

6
− 1.

Solution 3 by G.C. Greubel, Newport News, VA

First note that

n∑

k=2

xk =
x(x− xn)

1− x . (1)

Now, the first series to consider is that of

S1 =
∞∑

n=2

(n− ζ(2)− ζ(3)− · · · − ζ(n)) . (2)

The Zeta function is given by

ζ(s) =
∞∑

k=1

1

ks
(3)

and helps lead the series S1 to the form

S1 =
∞∑

n=2

[
n−

n∑

k=2

ζ(k)

]

=
∞∑

n=2

[
n−

∞∑

r=1

(
n∑

k=2

1

kr

)]

=
∞∑

n=2

[
n−

∞∑

r=1

1

r − 1

(
1

r
− 1

rn

)]
, (4)

where (1) was used. It is seen that the first term of the series summed by r is
problematic. To handle the difficulty consider the limit of the terms as r → 1. This limit
is

lim
r→1

{
1

r − 1

(
1

r
− 1

rn

)}
→ 0

0
. (5)
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Use of L’Hospital’s rule applies and leads to

lim
r→1

{
1

r − 1

(
1

r
− 1

rn

)}
= lim

r→1

{−1

s2
+

n

sn+1

}
= n− 1. (6)

With this term the series of (4) now becomes

S1 =
∞∑

n=2

[
1−

∞∑

r=2

1

r − 1

(
1

r
− 1

rn

)]

=
∞∑

n=2

[
1−

∞∑

r=2

(
1

r − 1
− 1

r
− 1

rn(r − 1)

)]

=
∞∑

n=2

∞∑

r=2

1

rn(r − 1)

=
∞∑

r=2

1

r − 1
·
∞∑

n=2

1

rn

=
∞∑

r=2

2r − 1

r(r − 1)2

=
∞∑

r=2

(
1

(r − 1)2
− 1

r(r − 1)

)

= ζ(2)−
∞∑

r=2

(
1

r − 1
− 1

r

)

S1 = ζ(2)− 1. (7)

This is the value of the first series in question.

The second series to consider is that of

S2 =
∞∑

n1,n2,···,nk=1




k∑

p=1

np −
n1+n2+···+nk∑

s=2

ζ(s)


 . (8)

In a similar manor as in the evaluation of the first series the second follows here.

S2 =
∞∑

nk=1




k∑

p=1

np −
n1+···nk∑

s=2

∞∑

r=1

1

rs




=
∞∑

nk=1




k∑

p=1

np −
∞∑

r=1

1

r − 1

(
1

r
− 1

rn1+···+nk

)
 . (9)
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As in the case before the first term of the series summed over r is problematic and is
dealt with by use of L’Hospital’s rule and leads to the result

lim
r→1

{
1

r − 1

(
1

r
+

1

rn1+···+nk

)}
=

k∑

p=1

np − 1. (10)

This then leads to

S2 =
∞∑

nk=1

[
1−

∞∑

r=2

1

r − 1

(
1

r
− 1

rn1+···+nk

)]

=
∞∑

nk=1

[
1−

∞∑

r=2

(
1

r − 1
− 1

r

)
+
∞∑

r=2

1

(r − 1)rn1+···+nk

]

=
∞∑

nk=1

∞∑

r=2

1

r − 1

(
1

r

)n1+···+nk

=
∞∑

r=2

1

r − 1

( ∞∑

n=1

1

rn

)k

=
∞∑

r=2

1

(r − 1)k+1

S2 = ζ(k + 1). (11)

This is the desired value of the second series.

Solution 4 by the proposer

First, we prove that

Sn =
∞∑

k=1

1

k(k + 1)n
= n− ζ(2)− ζ(3)− · · · − ζ(n).

We have, since
1

k(k + 1)n
=

1

k(k + 1)n−1
− 1

(k + 1)n
,

that ∞∑

k=1

1

k(k + 1)n
=
∞∑

k=1

1

k(k + 1)n−1
−
∞∑

k=1

1

(k + 1)n
,

and hence, Sn = Sn−1 − (ζ(n)− 1). Iterating this equality we obtain that

Sn = S1 − (ζ(2) + ζ(3) + · · ·+ ζ(n)− (n− 1)),

and, since S1 =
∑∞

k=1 1/(k(k + 1)) = 1, we get that Sn = n− ζ(2)− ζ(3)− · · · − ζ(n).
Now we are ready to solve the problem.
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a) The series equals ζ(2)− 1. We have,

∞∑

n=2

(n− ζ(2)− ζ(3)− · · · − ζ(n)) =
∞∑

n=2

∞∑

k=1

1

k(k + 1)n

=
∞∑

k=1

1

k

( ∞∑

n=2

1

(k + 1)n

)

=
∞∑

k=1

1

k2(k + 1)

=
π2

6
− 1,

and the first part of the problem is solved.

b) The series equals ζ(k + 1). Let Tk be the value of the multiple series. We have,

Tk =
∞∑

n1,n2,···,nk=1



∞∑

p=1

1

p(p+ 1)n1+n2+···+nk




=
∞∑

p=1

1

p





∞∑

n1=1

1

(p+ 1)n1


 · · ·



∞∑

nk=1

1

(p+ 1)nk






=
∞∑

k=1

1

p

( ∞∑

m=1

1

(p+ 1)m

)k

=
∞∑

k=1

1

pk+1

= ζ(k + 1),

and the problem is solved.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed. Gray, Highland
Beach, FL (part a), and Paolo Perfetti, Department of Mathematics, “Tor
Vergata” University, Rome, Italy.

Comments

Kenneth Korbin’s problem 5283 challenged us to find the sides of two different isosceles
triangles for which each has a perimeter of 162 and an area 1008.

Brian D. Beasley’s solution was one of those featured in the April issue of the column
and in it he stated: “In general, if we seek all isosceles triangles of the form
(x, x, P − 2x) that have perimeter P and area A, then we obtain the equation

16Px3 − 20P 2x2 + 8P 3x− (P 4 + 16A2) = 0.
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The given values P = 162 and A = 1008 produce exactly two such triangles. For what
values of P and A would we find no triangles, one triangle, two triangles, or three
triangles?”

Ken Korbin answered this question.

• If A >
P 2
√

3

36
, then no triangle is possible.

• If A =
P 2
√

3

36
, the exactly one triangle is possible and that triangle is equilateral.

• If 0 < A <
P 2
√

3

36
then exactly two different isosceles triangles have perimeter =P , and

area =A.

Late Solutions

G. C. Greubel of Newport News, VA solved 5283.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2014

• 5313: Proposed by Kenneth Korbin, New York, NY

Find the sides of two different isosceles triangles if they both have perimeter 256 and
area 1008.

• 5314: Proposed by Roger Izard, Dallas TX

A biker and a hiker like to workout together by going back and forth on a road which is
ten miles long. One day, at 8 AM, at the starting end of the road, they went out
together. The biker soon got far past the hiker, reached the end of the road, reversed his
direction, and soon passed by the hiker at 9:06 AM. Then, the biker got down to the
beginning part of the road, reversed his direction, and got back to the hiker at 9:24 AM.
The biker and the hiker were, then, going in the same direction. Calculate in miles per
hour the speeds of the hiker and the biker.

• 5315: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The hexagonal numbers have the form Hn = 2n2 − n, n = 1, 2, 3, . . .. Prove that
infinitely many hexagonal numbers are the sum of two hexagonal numbers.

• 5316: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let {un}n≥0 be a sequence defined recursively by

un+1 =

√
u2n + u2n−1

2
.

Determine lim
n→∞

un in terms of u0, u1.

• 5317: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ak, bk > 0, 1 ≤ k ≤ n, be real numbers such that a1 + a2 + . . .+ an = 1. Prove that

1

n3

(
n∑

k=1

bk

)5

≤
n∑

k=1

b5k
ak
.
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• 5318: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Prove that (1 + x)x ≤ 1 + x2 for 0 ≤ x ≤ 1.

Solutions

• 5295: Proposed by Kenneth Korbin, New York, NY

A convex cyclic hexagon has sides
(

5, 7
√

17, 23
√

13, 25
√

13, 25
√

17, 45
)
.

Find the diameter of the circumcircle and the area of the hexagon.

Solution by Kee-Wai Lau, Hong Kong, China

We show that diameter of the circumcircle is 125 and the area of the hexagon is
8(86
√

34 + 81
√

39).

Let O be the center and d be the diameter of the circumcircle, which we denote by C. It
is easy to see that the anlgle subtended at O by a side of the hexagon with length s

equals 2 sin−1
(s
d

)
. We first suppose that O lies inside the hexagon, so that

f(d) = π, (1)

where

f(d) = sin−1
(

5

d

)
+sin−1

(
7
√

17

d

)
+sin−1

(
23
√

13

d

)
+2 sin−1

(
25
√

13

d

)
+sin−1

(
25
√

17

d

)
+sin−1

(
4.

d

)
.

a = sin−1
(

23
√

13

125

)
+ sin−1

(√
13

5

)
+ sin−1

(√
1

25

)
and

b = sin−1
(

7
√

17

125

)
+ sin−1

(√
17

5

)
+ sin−1

(√
9

25

)

Then f(125) = a+ b. Since a = sin−1
(

4
√

39

25

)
+ sin−1

(
1

25

)
= sin−1 1 =

π

2
and

b = sin−1
(

4
√

34

25

)
+ sin−1

(
9

25

)
= sin−1 1 =

π

2
so (1) holds if and only if d = 125.

Now the distances from O to the sides
(

5, 7
√

17, 23
√

13, 25
√

13, 25
√

17, 45
)

are
(

10
√

39, 43
√

2, 27
√

3, 25
√

3, 25
√

2, 10
√

34
)

. So the area of the hexagon equals

1

2

(
50
√

39 + 301
√

34 + 621
√

39 + 625
√

39 + 10
√

39 + 625
√

34 + 450
√

34
)

2

X
ia
ng
’s
T
ex
m
at
h



= 8
(

86
√

34 + 81
√

39
)
.

We next suppose that O lies on or is outside the hexagon. Since the longest side of the
hexagon is 25

√
17, so d ≥ 25

√
17. Moreover,

sin−1
(

5

d

)
+ sin−1

(
7
√

17

d

)
+ sin−1

(
23
√

13

d

)
+ sin−1

(
25
√

13

d

)
+ sin−1

(
25
√

17

d

)
+ sin−1

(
45

d

)

= sin−1
(

25
√

17

d

)
,

and hence,

sin−1
(

23
√

13

d

)
+ sin−1

(
25
√

13

d

)
< sin−1

(
25
√

17

d

)
. (2)

If d <
√

15002 =
√

(2)(13)(577), then by (2)

sin−1
(

25
√

17

d

)
> sin−1

(
23√
1154

)
+ sin−1

(
25√
1154

)
= sin−1 1 =

π

2
which is false.

If d ≥
√

15002, then the left hand side of (2) equals

sin−1
(

25
√

13

d

√
1− 6877

d2
+

23
√

13

d

√
1− 8125

d2

)
≥ sin−1

(
25
√

13

d

√
1− 6877

15002
+

23
√

13

d

√
1− 8125

15002

)

= sin−1
(√

15002

d

)

> sin−1
(

25
√

17

d

)
,

which is also false. Thus we conclude that O must lie inside the hexagon, and this
completes the solution.

Also solved by Ed Gray, Highland Beach, FL, and the proposer.

• 5296: Proposed by Roger Izard, Dallas, TX

Consider the “Star of David,” a six pointed star made by overlapping the triangles ABC
and FDE. Let
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AB ∩DF = G, and AB ∩DE = H,

AC ∩DF = L, and AC ∩ FE = K,

BC ∩DE = I, and BC ∩ FE = J,

in such a way that:

CK

AC
=

EI

DE
=
BI

BC
=
GD

DF
=
AG

AB
=
FK

EF
and

AL

AC
=
DH

DE
=
BH

AB
=
EJ

EF
=
FL

DF
=
CJ

CB
.

Let r =
CK

AC
and let p =

AL

AC
. Prove that r + p =

3pr + 1

2
.

Solution by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We construct a drawing of the figure and determine lengths of some of the sides in terms
of r, p and the sides of the given triangles.
The following shows that the side lengths of the smaller triangle based on

r =
CK

AC
=

EI

DE
=
BI

BC
=
GD

DF
=
AG

AB
=
FK

EF
and

p =
AL

AC
=
DH

DE
=
BH

AB
=
EJ

EF
=
FL

DF
=
CJ

CB
.

We see that AC +AL+ LK +KC = pAC + LK + rAC, so LK = (1− r − p)AC.
Similarly,

HI = (1− r − p)DE
KJ = (1− r − p)EF
GH = (1− r − p)AB
IJ = (1− r − p)BC
GL = (1− r − p)DF.

We apply the Law of Cosines to the two triangles having A as principal vertex.

In 4ABC, AC2 +AB2 − 2AC ·AB cosA = BC2, and in

4AGL, (pAC)2 + (rAB)2 − 2prAC ·AB cosA = GL2 = (1− r − p)2DF 2.

Solving each equation for 2AC ·AB cosA and equating the results, we have

2AC ·AB cosA = AC2 +AB2 −BC2 =
p2AC2 + r2AB2 − (1− r − p)2DF 2

pr
.

Clearing fractions yields

prAC2 + prAB2 − prBC2 = p2AC2 + r2AB2 − (1− r − p)2DF 2

so
(pr − pr)AC2 + (pr − r2)AB2 − prBC2 + (1− r − p)2DF 2 = 0.
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By considering the other vertices B,C,D,E, F in turn, we obtain analogous equations:

(pr − p2)AB2 + (pr − r2)BC2 − prAC2 + (1− r − p)2DE2 = 0

(pr − p2)BC2 + (pr − r2)AC2 − prAB2 + (1− r − p)2FE2 = 0

(pr − p2)DE2 + (pr − r2)DF 2 − prFE2 + (1− r − p)2AB2 = 0

(pr − p2)EF 2 + (pr − r2)DE2 − prDF 2 + (1− r − p)2BC2 = 0

(pr − p2)DF 2 + (pr − r2)EF 2 − prDE2 + (1− r − p)2AC2 = 0.

Summing these six equations and letting S = AB2 +AC2 +BC2 +DE2 +DF 2 + EF 2

yields a very nice result:

(pr − p2)S + (pr − r2)S − prS + (1− r − p)2S = 0, or

{
(pr − p2) + (pr − r2)− pr + (1− r − p)2

}
S = 0.

Because S is not zero, this gives

(pr − p2) + (pr − r2)− pr + (1− r − p)2 = 0.

Expanding the trinomial and collecting like terms gives us

3pr − 2r − 2p+ 1 = 0. So,

2(r + p) = 1 + 3pr. Thus,

r + p =
3pr + 1

2
.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China, and the proposer.

• 5297: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Let sn = n2, tn =
n(n+ 1)

2
, pn =

n(3n− 1)

2
, for positive integers n, be the square,

triangular and pentagonal numbers respectively. Prove, independently of each other,
that
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i) ta + pb = tc

ii) ta + sb = pc

iii) pa + sb = sc,

for infinitely many positive integers, a, b, and c.

Solution by Carl Libis, Lane College, Jackson, TN

i) tn + pn+1 =
n(n+ 1)

2
+

(n+ 1)(3n+ 2)

2
=
n2 + n+ 3n2 + 5n+ 2

2

=
4n2 + 6n+ 2

2
=

(2n+ 1)(2n+ 2)

2
= t2n+1

ii) sn + tn−1 = n2 +
(n− 1)n

2
=

2n2

2
+
n2 − n

2
=

3n2 − n
2

=
n(3n− 1)

2
= pn

iii) p4n+1 + sn =
(4n+ 1)(12n+ 2)

2
+ n2 =

48n2 + 20n+ 2

2
+

2n2

2

=
50n2 + 20n+ 2

2
= 25n2 + 10n+ 1 = (5n+ 1)2 = s5n+1

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Michael
Brozinsky, Central Islip, NY; Elsie M. Campbell, Dionne T. Bailey, and
Charles Diminnie (jointly), Angelo State University, San Angelo, TX; Ed
Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Kenneth
Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Becca Rousseau, Ellie Erehart,
and Davis Weerheim (jointly), students at Taylor University, Upland, IN;
David Stone and John Hawkins (jointly), Georgia Southern University,
Statesboro, GA, and the proposer.

• 5298: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Let (an)n≥1 be an arithmetic progression and m a positive integer. Calculate:

lim
n→∞

((
m∑

k=1

(
1 +

1

n

)n+ak
−me

)
n

)
.
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Solution by Anastasios Kotronis, Athens, Greece

Let an = a1 + (n− 1)d where a1 is the initial term and d is the common difference of
successive terms. Then

m∑

k=1

(
1 +

1

n

)n+ak
=

m∑

k=1

(
1 +

1

n

)n+a1+(k−1)d
=

(
1 +

1

n

)n+a1−d m∑

k=1

(
1 +

1

n

)kd

= exp

(
(n+ a1 − d) ln

(
1 +

1

n

)) m∑

k=1

exp

(
kd ln

(
1 +

1

n

))

= exp

(
(n+ a1 − d)

(
1

n
− 1

2n2
+O(n−3)

)) m∑

k=1

exp

(
kd

(
1

n
+O(n−2)

))

=

(
e+

e(a1 − d− 1/2)

n
+O(n−2)

) m∑

k=1

(
1 +

kd

n
+O(n−2)

)

=

(
e+

e(a1 − d− 1/2)

n
+O(n−2)

)(
m+

dm(m+ 1)

2n
+O(n−2)

)

= em+
em (d(m− 1) + 2a1 − 1)

2n
+O(n−2) = em+

em (am + a1 − 1)

2n
+O(n−2)

so the desired limit is
em (am + a1 − 1)

2
.

Also solved by Ed Gray, Highland Beach, FL; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Kee-Wai Lau, Hong
Kong, China, and the proposers.

• 5299: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, show that

ln2 2

∫ 1

0

x3/22x sinx

(1 + x ln 2)2
dx ≥ 1− ln 2

1 + ln 2

∫ 1

0

√
x sinx dx.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University Rome, Italy

The two functions
√
x sinx and

x2x

(1 + x ln 2)2
are both increasing in [0, 1]. Indeed,

1

2
√
x

sinx+
√
x cosx and

2x(1 + x ln 2 + x2 ln2 2)

(1 + x ln 2)2
are the derivatives respectively

of the first and the second function.

Chebyshev’s inequality yields
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ln2 2

∫ 1

0

x3/22x sinx

(1 + x ln 2)2
dx ≥ ln2 2

∫ 1

0

x2x

(1 + x ln 2)2
dx

∫ 1

0

√
x sinxdx.

Moreover,

ln2 2

∫ 1

0

x2x

(1 + x ln 2)2
dx =

2x

1 + x ln 2

∣∣∣
1

0
=

1− ln 2

1 + ln 2
,

hence, the result.

Solution 2 by Ed Gray, Highland Beach, FL

The method will be to increase the integral on the right to get a function that is
integrable, and decrease the integral on the left to get a function which is integral in

such a way that the inequality is maintained. We will also evaluate
1

(ln(2))2
· 1− ln 2

1 + ln 2
,

and use its value as a coefficient on the right hand side of the inequality.

For 0 ≤ x ≤ 1,
sin(x) ≤ x,√x sin(x) ≤ x3/2.

So, ∫ 1

0

√
(x) sin(x)dx <

∫ 1

0
x3/2dx =

2

5
x5/2

∣∣∣∣
1

0

= 0.4.

Also,

1

(ln(2))2
= 2.08136898,

1− ln(2)

1 + ln(2)
= 0.181232218, and

1

(ln(2))2
·
(

1− ln(2)

1 + ln(2)

)
= 0.3772111.

• (1)

∫ 1

0

(
x3/2(2x) sin(x)

(1 + x ln(2))2

)
dx ≥ (0.4)(0.3772111) = 0.150884. We need to reduce the

value of the integral to get an approximation that still satisfies the inequality.

• (2) Consider 1 + x > 1 + x ln(2). Squaring,

• (3) 1 + 2x+ x2 >
(
1 + x ln(2))2 , and

• (4) 1 + 2x >
(
1 + x ln(2))2 . This inequality holds since both functions are monotonically

increasing, and the relationship holds for x = 1.

Then:

• (5)
1

1 + 2x
<

1

(1 + x ln(2))2
. So,

• (6)
x3/2 (2x) sin(x)

1 + 2x
<

(
x3/2 (2x) sin(x)

(1 + x ln 2)2

)
. For 0 ≤ x ≤ 1 ,

• (7) sin(x) > x− x3

6
, so,

• (8)

x5/2 (2x)

(
1− x3

6

)

1 + 2x
<
x3/22x sin(x)

(1 + x ln(2))2
, or
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• (9)

x5/2 (2x)

(
1− x3

6

)

1 + 2x
<
x3/2 (2x sin(x)

(1 + 2x)
<
x3/2 (2x sin(x))

(1 + x ln(2))2

We now express
2x

1 + 2x
in a Taylor series expansion about 0.5.

• (10) f(x) = f(.5) + f ′(.5)(x− .5) +
f ′′(.5)

2!
(x− .5)2 +

f ′′′(.5)

3!
(x− .5)3 + . . . .

As one can imagine, the derivatives get quite messy, so let’s bring in Bing to compute
them for us, (which does not violate the spirit of not using a computer because it is not
evaluating the integral, just saving time. In any case, the series out to (x− .5)5 is

f(x) =
2x

1 + 2x
≈ 0.7071−.2169(x−.5)+.3868(x−.5)2−.3475(x−.5)3+.3543(x−.5)4−.3534(x−.5)5

The following table gives a “feel” for the goodness of fit for the approximation over the
range of 0 ≤ x ≤ 1.

x 2x/(1 + 2x) Approximate value

0 1.0 .988951

0.1 .893144 .890731

0.2 .820499 .820131

0.3 .769465 .769412

0.4 .733060 .733060

0.5 .707107 .7072107

0.6 .688962 .688960

0.7 .675877 .676858

0.8 .669654 .669457

0.9 .666452 .665419

1.0 .666667 .662985

Not only is this a good fit, but if we define the expansion by f(x), we see that

f(x) <
2x

1 + 2x
and the equation in step (9) becomes

• (11) x5/2)
(

1− x2

6

)
f(x) < x5/2

(
1− x2

6

)(
2x

1 + 2x

)
< x3/2

2x sinx

1 + 2x
<
x3/22x sin(x)

(1 + x ln(2))2
.

We now need to write the series expansion of f(x), to obtain a polynomial in x. Then by

multiplying by (x5/2)

(
1− x2

6

)
we will obtain a polynomial in x for which we can easily
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perform the integration from 0 to 1. We save the reader the details. The integrand is:

• (12) .058909x19/2 − .20633866x17/2 − 0301165x15/2 + .924424x13/2 − 1.7479965x11/2 +
1.7168252x9/2 − 1.1521715x7/2 + .988952x5/2 . Integrating with respect to x gives us

• (13) .00561x21/2 − .0217198x19/2 − .003543x17/2 + .123256x15/2 − .268923x13/2 +
.31215x11/2 − .256038x9/2 + .282558x7/2.

So, returning to the equation in (1), we see that .1733502 > .150884, and this proves the
inequality.

Solution 3 by Kee-Wai Lau, Hong Kong, China

For 0 ≤ x ≤ 1, let f(x) =
2x

(1 + x ln 2)2
so that

df(x)

dx
=

(ln 2)2x(x ln 2− 1)

(1 + x ln 2)2
< 0,

and f(x) ≥ f(1) =
2

(1 + ln 2)2
. Hence,

∫ 1

0

x3/22x sinx

(1 + x ln 2)2
dx ≥ 2

(1 + ln 2)2

∫
01x3/2 sinxdx.

By the substitution x = y3/5, we obtain

∫ 1

0
x3/2 sinxdx =

3

5

∫ 1

0

√
y sin(y3/5)dy ≥ 3

5

∫ 1

0

√
y sin ydy.

Hence to prove the inequality of the problem, we need only show that

6 ln2 2

5(1 + ln 2)
≥ 1− ln 2, or equivalently ln2 2 ≥ 5

11
. Since

(
17

25

)2

=
289

625
>

5

11
,

so it suffices to show that ln 2 >
17

25
, or e−17/25 >

1

2
. But this follows from the fact that

e−17/25 > 1−
5∑

n=1

(−1)n−1

n!

(
17

25

)n
=

148386317

292986750
>

1

2
.

Remark: If we use the rapidly convergent series ln 2 =
2

3

∞∑

k=0

1

(2k + 1)9k
, as listed in

“Natural logarithm of 2–Wikipedia” in the internet, we obtain easily

ln 2 >
2

3

(
1 +

1

27

)
=

56

81
>

17

25
.

Also solved by the proposer.

• 5300: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer. Prove that

∫ π/2

π/4

dx

sin2n x
=

n−1∑

k=0

(
n− 1

k

)
· 1

2n− 2k − 1
.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX
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If n = 1,

∫ π/2

π/4

dx

sin2 x
=

∫ π/2

π/4
csc2 x dx

= − cotx]
π/2
π/4

= 1

=
0∑

k=0

(
0

k

)
1

2− 2k − 1
.

Hence, the statement is true when n = 1.

If n ≥ 2, then we use the standard calculus approach for evaluating

∫
csc2m x dx.

To begin,

∫ π/2

π/4

dx

sin2n x
=

∫ π/2

π/4
csc2n x dx

=

∫ π/2

π/4

(
1 + cot2 x

)n−1 (
csc2 x dx

)
.

If we substitute u = cotx and simplify, we get

∫ π/2

π/4

dx

sin2n x
= −

∫ 0

1

(
1 + u2

)n−1
du

=

∫ 1

0

(
1 + u2

)n−1
du.

Finally, by the Binomial Theorem,

∫ π/2

π/4

dx

sin2n x
=

∫ 1

0

n−1∑

k=0

(
n− 1

k

)
u2(n−1−k) du

=
n−1∑

k=0

(
n− 1

k

)∫ 1

0
u2n−2k−2 du

=

n−1∑

k=0

(
n− 1

k

)
u2n−2k−1

2n− 2k − 1

]1

0

=
n−1∑

k=0

(
n− 1

k

)
· 1

2n− 2k − 1
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain
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∫ π/2

π/4

dx

sin2 x
=

∫ π/2

π/4

(
1

sin2 x

)n
dx

=

∫ π/2

π/4

(
1 +

1

tan2 x

)n
dx

=
(t=1/ tanx)

∫ 0

1

(
1 + t2

)n −dt
1 + t2

=

∫ 1

0

(
1 + t2

)n−1
dt

=

∫ 1

0

(
n−1∑

k=0

(
n− 1

k

)
· 1k ·

(
t2
)n−1−k

)
dt

=
n−1∑

k=0

∫ 1

0

(
n− 1

k

)
· t2n−2k−2dt

=

n−1∑

k=0

(
n− 1

k

)
· t2n−2k−1

2n− 2k − 1

∣∣∣∣
t=1

t=0

=
n−1∑

k=0

(
n− 1

k

)
· 1

2n− 2k − 1
.

Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Letting t = sinx yields

∫ 1

{1/
√
2}

1

t2n
· 1√

1− t2
dt.

Moreover, y =

√
1

t2
− 1 yields

∫ 0

1
(y2 + 1)n

√
1 + y2

y

−y
(1 + y2)3/2

dy =

∫ 1

0
(1 + y2)n−1dy.

Therefore,

n−1∑

k=0

(
n− 1

k

)
1

2n− 2k − 1
=

n−1∑

k=0

(
n− 1

k

)∫ 1

0
t2n−2k−2dt
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=

∫ 1

0
t2n−2

n−1∑

k=0

(
n− 1

k

)
t−2kdt

=

∫ 1

0
t2n−2

(
1 +

1

t2

)n−1

=

∫ 1

0
(1 + t2)n−1dt.

and this concludes the proof.

Also solved by Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton,
KS; Anastasios Kotronis, Athens, Greece; Kee-Wai Lau, Hong Kong, China, and
the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2015

• 5319: Proposed by Kenneth Korbin, New York, NY

Let N be an odd integer greater than one. Then there will be a Primitive Pythagorean
Triangle with perimeter equal to

(
N2 +N

)2
. For example, if N = 3, then the perimeter

equals
(
32 + 3

)2
= 144.

Find the sides of the PPT for perimeter
(
152 + 15

)2
and for perimeter

(
992 + 99

)2
.

• 5320: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

It is fairly well known that if (a, b, c) is a Primitive Pythagorean Triple (PPT), then the
product abc is divisible by 60. Find infinitely many PPT’s (a, b, c) such that the sum
(a+ b+ c) is also divisible by 60.

• 5321: Proposed by Lawrence M. Lesser, University of Texas at El Paso, TX

On pop quizzes during the fall semester, Al gets 1 out of 3 questions correct, while Bob
gets 3 of 8 correct. During the spring semester, Al gets 3/5 questions correct, while Bob
gets 2/3 correct. So Bob did better each semester (3/8 > 1/3 and 2/3 > 3/5) but worse
for the overall academic year (5/11 < 4/8). The total number of questions involved in
the above example was 3 + 8 + 5 + 3 = 19, and the author conjectures (in his chapter in
the 2001 Yearbook of the National Council of Teachers of Mathematics) that this is
smallest dataset with nonzero numerators in which this reversal (Simpson’s Paradox)
happens. If we allow zeros, the smallest dataset is conjectured to be nine: 0/1 < 1/4
and 2/3 < 1/1, but 2/4 > 2/5 .

Prove these conjectures or find counterexamples.

• 5322: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “George Emil Palade” School, Buzău,
Romania
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If lim
n→∞

(
−3

2

3
√
n2 +

n∑

k=1

1
3
√
k

)
= a > 0, then compute lim

n→∞




−3

2

3
√
n2 +

n∑

k=1

1
3
√
k

a




3√n

.

• 5323: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n be a positive integer and let a1, a2, . . . , an be positive real numbers greater than or
equal to one. Prove that

(
1

n

n∑

k=1

ak

)−2
+

(
1

n2

n∏

k=1

a−2k

)(
n∑

k=1

(
a2k − 1

)1/2
)2

≤ 1.

• 5324: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∞∑

n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
.

Solutions

• 5301: Proposed by Kenneth Korbin, New York, NY

A convex cyclic quadrilateral with integer length sides is such that its area divided by
its perimeter equals 2014.

Find the maximum possible perimeter.

Solution 1 by Proposer

• The figure is an isosceles trapezoid. Let b1, b2 be the bases, h the height, l the
non-parallel sides, and let N = 2014.

• The bases are b1 = 2 and b2 = 8N2.

• Each leg is equal to the arithmetic mean of the bases,

l =
b1 + b2

2
= 4N2 + 1.

• The altitude h is equal to the geometric mean of the bases.

h =
√
b1b2 = 4N.

• The area equals,

1

2
h (b1 + b2) = hl =

(b1 + b2)(
√
b1b2

2
= 16N3 + 4N.
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• Perimeter = b1 + b2 + 2l = 4l = 16N2 + 4.

• Area

Perimeter
=

16N3 + 4N

16N2 + 4
= N.

• l2 − h2 = (l − 2)2, (sides of a PPP.)

Letting the sides be (a, b, c, d) and letting a = 2 and
√
ac = 4 · 2014 = 8056 gives

c = 32, 449, 568.

Letting b = d =
a+ c

2
= 16, 224, 785.

Then, Perimeter = 4b = 4d and
√
bd = b = d.

Area = K =
√
abcd =

√
ac
√
bd = 8056b

Area

Perimeter
=

8056b

4b
= 2014.

So, Perimeter= P = 64, 899, 140.

Solution 2 and Comments, jointly posted by Michael N. Fried of Kibbutz
Revivim, Israel and Edwin Gray, Highland Beach, FL

We can begin to approach this problem in an obvious way. Let the sides be a, b, c, d, the
area A, and the perimeter P . Let the quadrilateral be inscribed in a circle of radius r,
and let the sides subtend the angles at the center α, β, γ, δ (see figure). Then, we have:

A =
1

2
r2(sinα+ sinβ + sin γ + sin δ)

And,

P = 2r

(
sin

α

2
+ sin

β

2
+ sin

γ

2
+ sin

δ

2

)

So that,
A

P
=

1

4

sinα+ sinβ + sin γ + sin δ

sin α
2 + sin β

2 + sin γ
2 + sin δ

2

r

Or, in terms of P ,

A

P
=

1

8

sinα+ sinβ + sin γ + sin δ
(

sin α
2 + sin β

2 + sin γ
2 + sin δ

2

)2P = σP
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where σ is a function of α, β, γ (since δ = 360− (α+ β + γ)).

It is easy to see that σ tends to 0 as α, β, γ, δ tend to 0. Consider a sequence of α, β, γ, δ
where α = β = γ and δ = 360− 3α. For this sequence, we have:

σ(α) =
1

8

3 sinα− sin 3α
(
3 sin α

2 + sin 3α
2

)2

We can see clearly that (1) σ(α) is continuous in a right neighborhood of 0, and (2) if we
write the Taylor expansions of the numerator and denominator of σ(α) we observe that
the lowest power of α in the numerator is 3 while the lowest power is 2 in the
denominator, so that σ(α) is o(α).

Therefore, if P (α) is the perimeter of the cyclic quadrilateral corresponding to α, β, γ, δ

where α = β = γ and δ = 360− 3α then since
2014

σ(α)
= P (α), we find that P (α) increases

without bound as α tends to 0.

This does not solve the problem; however, it does show that if the problem has a
solution it depends entirely on the fact that the sides each have integer length (the
situation is analogous to the fact that if (x, y) is an integer point on the hyperbola
x2 − y2 = 81 then the sum x+ y has maximum, while if (x, y) is any point on the
hyperbola then the sum x+ y has no maximum).

Now, Ken Korbin has shown the existence of a cyclic quadrilateral with integer sides

and
A

P
= 2014, which he claims to be maximal. He maintains this is an isosceles

trapezoid (which it must be if it is to be cyclic) with one base equal to 2 and the other
8× 20142. He sets the remaining sides equal to the arithmetic mean of these values and
asserts that the height must then be the geometric mean of the bases.

From this, he shows easily enough that this quadrilateral with sides 2,
8× 20142 = 32, 449, 568, and 16,224,785 taken twice satisfies the condition that
A

P
= 2014. But of course this does not prove that the perimeter is maximal (even if it

is). I might also mention that the sides of the equilateral trapezoid can be permuted
without making the resulting quadrilateral non-cyclic or changing the perimeter and
area, being an equilateral trapezoid is not essential

Ed Gray, however, has explained clearly why the equal sides should be the arithmetic
mean of the other sides when we take the height to be the geometric mean and why, in
this special case, Ken’s solution is maximal. Ed writes as follows:

I have looked at Ken’s solution to the problem, and while the answer may be correct, I
don’t see any proof that the answer is a maximum. It is easy to buy into the shape of an
isosceles trapezoid, and we shall do that in general terms.

Let the trapezoid have an “upper” base of a, a “lower” base of c, with c > a. Let the
trapezoid have equal lateral sides be b and d, with b on the right, d on the left, so the
figure is abcd reading clockwise.

From the right-most end of a, we drop an altitude h perpendicular to a down to c,
where it also meets at right angles. Call the intersection point F . Since c > a, there is a

part of c to the right of F =
c− a

2
or

c

2
− a

2
. We now have a right triangle with

hypotenuse b and legs h and
c

2
− a

2
.
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By the Pythagorean Theorem,

b2 = h2 + (c/2− a/2)2 (1)

b2 = h2 + c2/4− ac/2 + a2/4. (2)

By letting h2 = ac, we have

b2 = ac+ c2/4− ac/2 + a2/4 = c2/4 + ac/2 + a2/4 = (c/2 + a/2)2 (3)

or

b = (a+ c)/2 (4)

The area is:

A = (1/2)(a+ c)
√
ac (5)

The perimeter is:

P = a+ c+ 2(a+ c)/2 = 2(a+ c) (6)

By hypothesis,

A = 2014P (7)

Substituting (5) and (6) into (7),

(1/2)(a+ c)
√
ac = 2014(2a+ 2c) = 4028(a+ c) (8)

Multiplying by 2/(a+ c), √
ac = 8056 (9)

Squaring,
ac = 80562 (10)

Side a must be even in order for b to be an integer. Since b = d = (c+ a)/2, to maximize
the perimeter P = 2(a+ c), we should like a to be the smallest integer possible (this is
because ac is constant). Since it must also be even, let a = 2. Then (10) becomes:

2c = 80562 (11)

So that, c = 32, 449, 568 and b = d = (c+ a)/2 = 16, 224, 785. Thus the largest
perimeter in this case is:

p = 2 + 16, 224, 785 + 32, 449, 568 + 16, 224, 785 = 64, 899, 140

Q.E.D.

Michael continues on as follows:

I would only add one clarification to Ed’s explanation. It is that seemingly arbitrary
assumption that h2 = ac. The point is this. Since A = 2014P , A is an integer and h is
rational. On the other hand if we multiply equation (1) by 4, we obtain
(2b)2 = (2h)2 + (c− a)2. From this it follows that 2h is an integer and 2b, c− a, and 2h
are a Pythagorean triple. Accordingly, 2b = k(m2 + n2), c− a = k(m2 − n2) and
2h = 2kmn or h = kmn. Thus, taking c = km2 and a = kn2, we have,
h2 = k2m2n2 = km2kn2 = ac.
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• 5302: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

If n is an even perfect number, n > 6, and φ(n) is the Euler phi-function, then show
that n− φ(n) is a fourth power of an integer. Find infinitely many integers n such that
n− φ(n) is a fourth power.

Solution 1 by Brian D. Beasley, Presbyterian College, Clinton, SC

(i) If n is an even perfect number with n > 6, then n = 2p−1(2p − 1), where p and 2p − 1
are both odd primes. Since φ is multiplicative, we have φ(n) = 2p−2(2p − 2), which
implies

n− φ(n) = 2p−1(2p − 1)− 2p−2(2p − 2) = 22p−1 − 22p−2 = 22p−2 = (2(p−1)/2)4,

where 2(p−1)/2 is an integer since p is odd.

(ii) One trivial solution is to let n be any prime. Then n− φ(n) = 1. A less trivial
solution is to take n = 24k+1 for any nonnegative integer k. Then

n− φ(n) = 24k+1 − 24k = 24k = (2k)4.

Solution 2 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

We will begin with the following facts for the phi-function:
1. If p is prime, φ(p) = p− 1.
2. If p is prime and a is a positive integer, φ(pa) = pa−1(p− 1).
3. If the gcd (a,b)=1, φ(ab) = φ(a)φ(b).

We also note that an even perfect number n > 6 can be written in the form
n = 2k−1(2k − 1), where k and 2k−1 are prime and k > 2. Then, since
gcd(2k−1, 2k − 1) = 1 and 2k − 1 is prime,

φ(n) = φ[2k−1(2k − 1)]

= φ(2k−1)φ(2k − 1)

= 2k−2(2k − 2),

= 2k−1(2k−1 − 1).

Further, since k must be an odd prime,

n− φ(n) = 2k−1(2k − 1)− 2k−1(2k−1 − 1)

= 2k−1(2k − 2k−1)

= 2k−1[2k−1(2− 1)]

= 22(k−1)

= (2k−1)2

=
[
22(

k−1
2 )
]2

=
(

2
k−1
2

)4
.

Therefore, n− φ(n) is a fourth power of an integer. If k = 4m+ 1 for m ≥ 1, and p is an
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arbitrary prime,

φ(n) = φ(p4m+1)

= p4m(p− 1)

= p4m+1 − p4m.

Then,

n− φ(n) = p4m+1 − φ(p4m+1)

= p4m+1 − (p4m+1 − p4m)

= p4m

= (pm)4.

Since there are an infinite number of choices for p and m, this provides an example of
infinitely many integers n such that n− φ(n) is a fourth power.

Also solved by Pat Costello, Eastern Kentucky University, Richmond. KY;
Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; David E.
Manes, SUNY College at Oneonta, Oneonta, NY; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5303: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let a, b, c, d be positive real numbers Prove that

a4 + b4 + c4 + d4 + 4 ≥ 4
((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4
.

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY By
the Arithmetic Mean-Geometric Mean inequality,

((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4

≤ a2b2 + b2c2 + c2d2 + d2a2 + 4

4

with equality if and only if a = b = c = d. Therefore,

4

((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4

≤ a2b2 + b2c2 + c2d2 + d2a2 + 4.

Define vectors ~u and ~v such that ~u =

〈
a2, b2, c2, d2

〉
and ~v =

〈
b2, c2, d2, a2

〉
,

Then the Cauchy-Schwarz inequality implies ~u • ~v = ||~u|| · ||~v|| so that

a2b2 + b2c2 + c2d2 + d2a2 ≤
√
a4 + b4 + c4 + d4

√
b4 + c4 + d4 + a4

= a4 + b4 + c4 + d4.

Hence,

4

((
a2b2 + 1

) (
b2c2 + 1

) (
c2d2 + 1

) (
d2a2 + 1

))1/4

≤ a4 + b4 + c4 + d4 + 4
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with equality if and only if a = b = c = d.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

a4 + b4 + c4 + d4 + 4 =
((
a2
)2

+
(
b2
)2

+
(
c2
)2

+
(
d2
)2)1/2 ((

a2
)2

+
(
b2
)2

+
(
c2
)2

+
(
d2
)2)1/2

+ 4

≥ a2b2 + b2c2 + c2d2 + d2a2 + 4

=
(
a2b2 + 1

)
+
(
b2c2 + 1

)
+
(
c2d2 + 1

)
+
(
d2a2 + 1

)

≥ 4

(
(a2b2 + 1)(b2c2 + 1)(c2d2 + 1)(d2a2 + 1)

)1/4

,

where we have used the Cauchy-Schwarz and the arithmetic mean-geometric mean
inequalities.

Equality occurs if, and only if, it occurs in both inequalities, that is if, and only if,
a2/b2 = b2/c2 = c2/d2 = d2/a2 and a2b2 + 1 = b2c2 + 1 = c2d2 + 1 = d2a2 + 1.

That is, inequality holds if, and only if, a = b = c = d.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

By the AM-GM inequality,

a4 + b4

2
≥ a2b2

b4 + c4

2
≥ b2c2

c4 + d4

2
≥ c2d2

d4 + a4

2
≥ d2a2.

Adding these inequalities we obtain

a4 + b4 + c4 + d4 + 4 ≥
(
a2b2 + 1

)
+
(
b2c2 + 1

)
+
(
c2d2 + 1

)
+
(
d2a2 + 1

)
.

We apply once more the AM-GM inequality to obtain

(
a2b2 + 1

)
+
(
b2c2 + 1

)
+
(
c2d2 + 1

)
+
(
d2a2 + 1

)
≥ 4

((
a2b2 + 1

)
+
(
b2c2 + 1

)
+
(
c2d2 + 1

)
+
(
d2a2 + 1

))1/4

,

and the claimed statement follows.

Comment by editor: Titu Zvonaru, Comăesti, and Neculai Stanciu, “George
Emil Palade” School, Buzău, Romania jointly solved the problem in the manner of
solution 3, and noted that the statement of the problem can be made stronger for it also
holds for all real numbers, not just the positive ones.
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Also solved by Arkady Alt, San Jose, CA; Elsie M. Campbell, Dionne T.
Bailey, and Charles Diminnie, Angelo State University, San Angelo, TX; José
Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kenneth Korbin, New York,
NY; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy, and the proposer.

• 5304: Proposed by Michael Brozninsky, Central Islip, NY

Determine whether or not there exist nonzero constants a and b such that the conic
whose polar equation is

r =

√
a

sin(2θ)− b · cos(2θ)

has a rational eccentricity.

Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, Angelo State
University, San Angelo, TX

We will begin with the use of the transformation formulas and the following
trigonometric identities to change the polar form into the rectangular form of the
hyperbola:

x = r cos θ) (1)

y = r sin θ (2)

sin(2θ) = 2 sin θ cos θ, (3)

cos(2θ) = cos2 θ − sin2 θ. (4)

Then, using (1), (2), (3), and (4),

r =

√
a

sin(2θ)− b cos(2θ)

r2 =
a

sin(2θ)− b cos(2θ)

2r2 sin θ cos θ − br2(cos2 θ − sin2 θ) = a

2(r sin θ)(r cos θ)− b(r cos θ)2 + b(r sin θ)2 = a

2xy − bx2 + by2 = a

x2 − 2

b
xy − y2 − a

b
= 0.

With the general form of the hyperbola being

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0,

we have A = 1, B = −2

b
, C = −1, and F = −a

b
. The usual methods of rotation of axes

in analytic geometry can be used to ascertain the eccentricity of the hyperbola, or the
following formula [1] gives the eccentricity in a straightforward manner.

e =

√
2
√

(A− C)2 +B2

η(A+ C) +
√

(A− C)2 +B2
, (12)
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where η = 1 if the determinant of the 3x3 matrix




A B/2 D/2

B/2 C E/2

D/2 E/2 F




is negative, or η = −1 if the determinant is positive. Thus, using (6)

e =

√√√√√√√
2

√
4 +

4

b2

η(0) +

√
4 +

4

b2

=
√

2.

Thus, the eccentricity is irrational for all values of a and b.

Reference:
[1]Ayoub, Ayoub B., “The Eccentricity of a Conic Section,” The College
Mathematics Journal 34(2), March 2003, 116-121.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA, and the proposer.

• 5305: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x be a positive real number. Prove that

[x]

2x+ {x} +
[x]{x}

3x2
+

{x}
2x+ [x]

≤ 1

2
,

where [x] is the greatest integer function and {x} is the fractional part of the real
number. I.e., {x} = x− [x] .

Solution 1 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

Since, x = bxc+ {x}, then x2 = bxc2 + {x}2 + 2 bxc {x}. Now,

bxc
2x+ {x} +

{x}
2x+ bxc =

2x2 + bxc2 + {x}2
6x2 + bxc {x} =

3x2 − 2 bxc {x}
6x2 + bxc {x} .

Therefore, the left-hand side of the proposed inequality, LHS is

LHS =
3x2 − 2 bxc {x}
6x2 + bxc {x} +

bxc {x}
3x2

=
3A− 2B

6A+B
+

B

3A
=

9A2 −B2

18A2 + 3AB

≤ 1

2
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where A = x2 and B = bxc {x}.

Solution 2 by Titu Zvonaru, Comănesti, and Neculai Stanciu “George Emil
Palade” School, Buzău, Romania

We denote a = [x] and b = {x}, so a ≥ 0, b ≥ 0 and x = a+ b.

Because
(2a+ 3b)(3a+ 2b) = 6a2 + 13ab+ 6b2 ≥ 6(a+ b)2,

we have

a

2a+ 3b
+

ab

3(a+ b)2
+

b

3a+ 2b
=

3a2 + 4ab+ 3b2

(2a+ 3b)(3a+ 2b)
+

ab

3(a+ b)

≤ 3a2 + 4ab+ 3b2

6(a+ b)2
+

ab

3(a+ b)2

=
3a2 + 6ab+ 3b2

6(a+ b)2

=
1

2
.

Because we only used the inequality ab ≥ 0, we obtain that equality holds if, and only if
ab = 0, i.e., if, and only if x is an integer or if x ∈ (0, 1).

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

For convenience, let n ≤ x ≤ n+ 1, so [x] = n and {x} = x− n.

Then the given inequality becomes
n

2x+ (x− n)
+
n(x− n)

3x2
+

x− n
2x+ n

≤ 1

2
.

Upon clearing fractions and simplifying, this becomes 0 ≤ n
(
3x3 − 5nx2 + 4n2x− 2n3

)
.

Further algebra simplifies the inequality:

n(x− n)
(
3x2 − 2nx+ 2n2

)
≥ 0

n(x− n)
(
(x− n)2 + 2x2 + n2

)
≥ 0.

Because x ≥ n ≥ 0, this is certainly true.

The final version of the inequality also reveals that equality holds if and only if n = 0
(that is, 0 ≤ x < 1 so{x} = x) or x = n = [x] (that is, x is an integer.)

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS;
Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at
Oneonta, Oneonta, NY; Paolo Perfetti, Department of Mathematics, Tor
Vergata University, Rome, Italy, and the proposer.

• 5306: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania
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Calculate:

∫ 1

0

ln
(
1− x+ x2

)

x− x2 dx.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let

I1 =

∫ 1

0

ln(1− x+ x2)

x
dx

I2 =

∫ 1

0

ln(1− x+ x2)

1− x dx

I3 =

∫ 1

0

ln(1 + x3)

x
dx and

I4 =

∫ 1

0

ln(1 + x)

x
dx.

Clearly, I = I1 + I2 and I1 = I3 − I4.
By the substitution x = 1− y into I2, we easily see that I2 = I1.

By the substitution x = y1/3 into I3, we obtain I3 =
1

3
I4.

It follows that I = 2I1 = 2(I3 − I4) =
−4

3
I4. But I4 is a well-known integral with value

π2

12
and so I =

−π2
9

.

Solution 2 by Albert Stadler, Herrliberg Switzerland

We have
∫ 1

0

ln
(
1− x+ x2

)

x− x2 dx =

∫ 1

0

(
1

x
− 1

1− x

)
ln(1− x+ x2)dx

=

∫ 1

0

ln
(
1− x+ x2

)

x
dx+

∫ 1

0

(
ln
(
1− (1− x) + (1− x)2

)

x
dx

= 2

∫ 1

0

ln(1− x+ x2)

x
dx

= 2

∫ 1

0

ln

(
1 + x3

1 + x

)

x
dx

= 2

∫ 1

0

ln(1 + x3)

x
dx− 2

∫ 1

0

ln(1 + x)

x
dx

= 2
∞∑

k=1

(−1)k−1

k

∫ 1

0
x3k−1dx− 2

∞∑

k=1

(−1)k−1

k

∫ 1

0
xk−1dx
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= 2
∞∑

k=1

(−1)k−1

3k2
− 2

∞∑

k=1

(−1)k−1

k2

= −4

3

∞∑

k=1

(−1)k−1

k2

= −4

3

( ∞∑

k=1

1

k2
− 2

∞∑

k=1

1

(2k)2

)

= −2

3

∞∑

k=1

1

k2
= −2

3
· π

2

6
= −π

2

9
.

The interchange of summation and integration is permitted because of uniform

convergence of the series

∞∑

k=1

(−1)k−1

k
x3k−1 and

∞∑

k=1

(−1)k−1

k
xk−1 in the interval [0, 1].

Addendum: It is noteworthy to mention that the famous relation
∞∑

k=1

1

k2
(

2k

k

) =
ζ(2)

3
=
π2

18
is easily derived from the above integral (see for instance

http://en.wikipedia.org/wiki/Ap%C3%A9ry’s theorem for reference). Indeed,

π2

9
= −

∫ 1

0

ln(1− x+ x2)

x− x2 dx =
∞∑

k=1

1

k

∫ 1

0

(
x− x2

)k−1
dx

=

∞∑

k=1

1

k

∫ 1

0
xk−1 (1− x)k−1 dx =

∞∑

k=1

1

k

Γ(k)Γ(k)

Γ(2k)

=
∞∑

k=1

1

k

(k − 1)!(k − 1)!

(2k − 1)!
= 2

∞∑

k=1

1

k2
k!k!

(2k)!
= 2

∞∑

k=1

1

k2
(

2k

k

) .

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy; Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2015

• 5325: Proposed by Kenneth Korbin, New York, NY

Given the sequence x = (1, 7, 41, 239, 1393, 8119, . . . ), with xn = 6xn−1 − xn−2.

Let y =
x2n + x2n−1

xn
. Find an explicit formula for y expressed in terms of n.

• 5326: Proposed by Armend Sh. Shabani, University of Prishtina, Republic of Kosova

Find all positive integer solutions to m! + 24k−1 = l2.

• 5327: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Show that in any triangle ABC, with the usual notations, that
(

ab

a+ b

)2

+

(
bc

b+ c

)2

+

(
ca

c+ a

)2

≥ 9r2.

• 5328: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, find the positive solutions of the equation

2x+1
(

1−
√

1 + x2 + 2x
)

=
(
x2 + 2x

) (
1−

√
1 + 2x+1

)
.

• 5329: Proposed by Arkady Alt, San Jose, CA

Find the smallest value of
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
where real x, y, z > 0 and

xy + yz + zx = 1.

• 5330: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let B(x) =

(
x 1
1 x

)
and let n ≥ 2 be an integer.
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Calculate the matrix product
B(2)B(3) · · ·B(n).

Solutions

• 5307: Proposed by Haishen Yao and Howard Sporn, Queensborough Community College,
Bayside, NY

Solve for x: √
x15 =

√
x10 − 1 +

√
x5 − 1.

Solution 1 by Arkady Alt, San Jose, CA

Let a =
√
x10 − 1 and b =

√
x5 − 1 then

x5 = b2 + 1, x10 = a2 + 1,

x15 = x10 · x5 =
(
a2 + 1

) (
b2 + 1

)
and therefore,

√
(a2 + 1) (b2 + 1) = a+ b ⇐⇒
(
a2 + 1

) (
b2 + 1

)
= (a+ b)2 ⇐⇒

(ab− 1)2 = 0 ⇐⇒

ab = 1.

Also we have

x10 =
(
x5
)2

=⇒ a2 + 1 =
(
b2 + 1

)2 ⇐⇒ b4 + 2b2 = a2 ⇐⇒ b6 + 2b4 = a2b2.

Since ab = 1 then

b6 + 2b4 − 1 = 0 ⇐⇒
(
b2 + 1

) (
b4 + b2 − 1

)
= 0 ⇐⇒

b4 + b2 − 1 = 0 ⇐⇒

b2 =
−1 +

√
5

2
. Hence,

x5 = b2 + 1

=
−1 +

√
5

2
+ 1

=
1 +
√

5

2
⇐⇒ x =

5

√
1 +
√

5

2
.
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Solution 2 by Charles McCracken, Dayton, OH

Let µ = x5 then
√
µ2 =

√
µ2 − 1 +

√
µ− 1.

It is readily seen that 1 < x < 2. A few successive approximations give µ ≈ 1.618. So we

try µ = φ =
1 +
√

5

2
, also known as, the Golden Ratio.

The equation then becomes

√
φ
3

=
√
φ2 − 1 +

√
φ− 1

φ
√
φ =

√
φ+ 1− 1 +

√
1

φ

φ
√
φ =

√
φ+

√
1

φ

φ2 = φ+ 1. A well known identity.

Since φ = µ, x = 5
√
φ ≈ 1.101025882.

Solution 3 by Becca Rousseau, Ellie Erehart, and David Weerheim (jointly,
students at Taylor University), Upland, IN

The common domain of definition for
√
x15,
√
x10 − 1, and

√
x5 − 1 is x ≥ 1. We now

solve for x:

x15 = (x10 − 1) + 2
√

(x10 − 1)(x5 − 1) + (x5 − 1)

x15 − x10 − x5 + 2 = 2
√
x15 − x10 − x5 + 1

x5
(
x10 − x5 − 1

)
+ 2 = 2

√
x5 (x10 − x5 − 1) + 1.

Letting u = x5
(
x10 − x5 − 1

)
, we obtain

u+ 2 = 2
√
u+ 1

u2 + 4u+ 4 = 4(u+ 1)

u2 + 4u+ 4 = 4u+ 4

u2 = 4u+ 4− 4u− 4

u2 = 0, u = 0.

Substituting x5(x10 − x5 − 1)for u see that

x5
(
x10 − x5 − 1) = 0, so

x5 = 0 or x 10 − x 5 − 1 = 0.
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x5 = 0 x5 =
1±
√

5

2
.

Therefore, x = 0, x =
5

√
1−
√

5

2
, or x =

5

√
1 +
√

5

2
.

The first two roots must be discarded, because they are outside the domain of definition
of x, as noted above.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

It is not specified whether x is real or not, so let’s assume x ∈ R. The domain of x is
[1,∞) since both x10 − 1 and x5 − 1 are the product of (x− 1) for a positive polynomial
respectively of order 9 and 4. Let x5 = y. Squaring we get

y3 = y2 − 1 + y − 1 + 2(y − 1)
√
y + 1 ⇐⇒ y3 − y2 + 1− y + 1 = 2(y − 1)

√
y + 1.

The r.h.s. is nonnegative for y ≥ 1. Moreover for y ≥ 0

y3

2
+
y3

2
+

1

2
≥ 3

2
y2,

1

2
y2 +

1

2
≥ y

and then

y3 − y2 − y + 2 ≥ 1 + y2 + y > y2 + y.

We square both sides again getting

y2(y2 − y − 1)2 = 0 ⇐⇒ y = (1 +
√

5)/2

and then x =
(
(1 +

√
5)/2

)1/5
.

Comment: Brian D. Beasley, Presbyterian College, Clinton, SC, Moti Levy
of Rehovot, Israel, Michael Thew (student at Saint George’s School),
Spokane, WA, Neculai Stanciu, Buzău, Romania and Titu Zvonaru,
Comănesti, Romania, and David Stone and John Hawkins of Georgia
Southern University, Statesboro, Georgia noted in their solutions that if complex
roots are allowed, the full set of roots is:

x = 0, xk =
(

(1 +
√

5)/2
)1/5(

cos
2kπ

5
+ i sin

2kπ

5

)
, k = 0, 1, 2, 3, 4, and

xm =
(

(1−
√

5)/2
)1/5(

cos
2mπ

5
+ i sin

2mπ

5

)
,m = 0, 1, 2, 3, 4.

David Stone and John Hawkins also noted that if we let y1 =
√
x15 and

y2 =
√
x10 − 1 +

√
x5 − 1, the graphs of these two functions intersect at the real root,

and at this point the graphs are tangent to one another.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain;
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Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Kenneth
Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; Kelley McKaig,
Madison Thompson, and Melanie Schmocker, (Students at Taylor
University), Upland, IN; Angel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain, and the proposers.

• 5308: Proposed by Kenneth Korbin, New York, NY

Given the sequence
t = (1, 7, 41, 239, . . .)

with tn = 6tn−1 − tn−2. Let (x, y, z) be a triple of consecutive terms in this sequence
with x < y < z.

Part 1) Express the value of x in terms of y and express the value of y in terms of x.

Part 2) Express the value of x in terms of z and express the value of z in terms of x.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

From the recursive formula
tn+2 = 6tn+1 − tn (1)

and the initial conditions t1 = 1 and t2 = 7, we can find a closed form expression for tn
by using the customary techniques for solving homogeneous linear difference equations.
If we consider solutions of the form tn = λn, with λ 6= 0, equation (1) provides us with
the auxiliary equation

λ2 = 6λ− 1

whose solutions are
λ = 3± 2

√
2.

Then, there are constants c1, c2 such that

tn = c1

(
3 + 2

√
2
)n

+ c2

(
3− 2

√
2
)n

for all n ≥ 1. The initial conditions t1 = 1 and t2 = 7 give

c1 =

√
2− 1

2
and c2 = −

√
2 + 1

2

and we have

tn =

√
2− 1

2

(
3 + 2

√
2
)n
−
√

2 + 1

2

(
3− 2

√
2
)n
.

Finally, since

(
3 + 2

√
2
)

=
(√

2 + 1
)2

and
(
3− 2

√
2
)

=
(√

2− 1
)2
,

we conclude that

tn =

√
2− 1

2

(√
2 + 1

)2n
−
√

2 + 1

2

(√
2− 1

)2n

=

(√
2 + 1

)2n−1 −
(√

2− 1
)2n−1

2
(2)

5

X
ia
ng
’s
T
ex
m
at
h



for all n ≥ 1.

Equation (2) shows that tn > 0 for all n and then an elementary Mathematical
Induction argument using (1) establishes that tn+1 > tn for all n. Therefore, if (x, y, z)
is a triple of consecutive terms in this sequence with x < y < z, we must have x = tn,
y = tn+1, and z = tn+2 for some n ≥ 1.

For Part 1), we note that

y = tn+1

=
1

2

[(√
2 + 1

)2n+1
−
(√

2− 1
)2n+1

]

=
1

2

[(
3 + 2

√
2
)(√

2 + 1
)2n−1

−
(

3− 2
√

2
)(√

2− 1
)2n−1]

=
3 + 2

√
2

2

[(√
2 + 1

)2n−1
−
(√

2− 1
)2n−1]

+ 2
√

2
(√

2− 1
)2n−1

=
(

3 + 2
√

2
)
tn + 2

√
2
(√

2− 1
)2n−1

=
(

3 + 2
√

2
)
x+ 2

√
2
(√

2− 1
)2n−1

.

Then,

x =
1

3 + 2
√

2

[
y − 2

√
2
(√

2− 1
)2n−1]

=
(

3− 2
√

2
)[
y − 2

√
2
(√

2− 1
)2n−1]

=
(

3− 2
√

2
)
y − 2

√
2
(√

2− 1
)2 (√

2− 1
)2n−1

=
(

3− 2
√

2
)
y − 2

√
2
(√

2− 1
)2n+1

.

For Part 2), equation (1) and Part 1) imply that

z = tn+2

= 6tn+1 − tn

= 6

[(
3 + 2

√
2
)
x+ 2

√
2
(√

2− 1
)2n−1]

− x

=
(

17 + 12
√

2
)
x+ 12

√
2
(√

2− 1
)2n−1

.

Hence,

x =
1

17 + 12
√

2

[
z − 12

√
2
(√

2− 1
)2n−1]

=
(

17− 12
√

2
)[
z − 12

√
2
(√

2− 1
)2n−1]

=
(

17− 12
√

2
)
z − 12

√
2
(√

2− 1
)4 (√

2− 1
)2n−1

=
(

17− 12
√

2
)
z − 12

√
2
(√

2− 1
)2n+3

.
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Remark. On page 253 of Recreations in the Theory of Numbers by A. H. Beiler (Dover
Publications, Inc., 1966), it is shown that the sequence {tn} provides the solutions for x
in the Pell Equation x2 − 2y2 = −1. The corresponding y solutions satisfy the recursive
formula yn+2 = 6yn+1 − yn with y1 = 1 and y2 = 5. This yields

yn =

(√
2 + 1

)2n−1
+
(√

2− 1
)2n−1

2
√

2

for n ≥ 1.

Solution 2 by Moti Levy, Rehovot, Israel

The solution of this type of recurrence formulas is

tn = aαn + bβn,

where α and β are the roots of r2 − 6r + 1.

Here,

tn = aαn − (a+ 1)α−n; a =

(
1

2

√
2− 1

2

)
; α = 3 + 2

√
2.

Part 1):

x = aαn − (a+ 1)α−n

y = aαn+1 − (a+ 1)α−n−1

Solving for αn in terms of x, we get,

αn =
(√

2 + 1
)(

x+
√
x2 + 1

)
,

y = 3x+ 2
√

2
√
x2 + 1.

Solving for αn in terms of y, we get,

αn =
(√

2− 1
)(

y +
√
y2 + 1

)
,

x = 3y − 2
√

2
√
y2 + 1.

Part 2):
z = aαn+2 − (a+ 1)α−n−2,

z = 17x+ 12
√

2
√
x2 + 1.

Solving for αn in terms of z, we get,

αn =
(

5
√

2− 7
)(

z +
√
z2 + 1

)
,

x = 17z − 12
√

2
√
z2 + 1.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Titu Zvonaru, Comănesti, Romania (jointly with) Neculai Stanciu,
“Geroge Emil Palade School,” Buzău, Romania, and the proposer.
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• 5309: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Consider the expression 3n + n2 for positive integers n. It is divisible by 13 for n = 18
and n = 19. Prove, however, that it is never divisible by 13 for three consecutive values
of n.

Solution 1 by Bruno Salgueiro Fanego Viveiro, Spain

Let n be an integer such that n ≥ 1. We argue by contradiction. If, for the three
consecutive values n− 1, n, and n+ 1 the expressions 3n−1 + (n− 1)2, 3n + n2, and
3n+1 + (n+ 1)2 are each divisible by 13, then their sum,

(
1 + 3 + 32) · 3n−1 + 3n2 + 2 is

divisible by 13, or equivalently, the expression 3n2 + 2 is divisible by 13.

If we divide n by 13, we obtain an integer quotient c and remainder r, 0 ≤ r < 13, such
that n = 13c+ r, so 3n2 + 2 = 3 (13c+ r)2 + 2 = 13 ·

(
39c2 + 2cr

)
+ 3r2 + 2, which is

divisible by 13, so 3r2 + 2 is also divisible by 13.

Since 0 ≤ r ≤ 12, 3r2 + 2 ∈ {5, 14, 29, 50, 77, 110, 149, 194, 245, 302, 365, 434} and hence
3r2 + 2 is not divisible by 13 (because each remainder of the division of 5, 14, 29, 50, 77,
110, 149, 194, 245, 302, 365, and 434 by 13 is not zero. The remainders are, respectively,
5, 1, 3, 11, 12, 6, 6, 12,11, 3, 1, and 5. Thus we have a contradiction showing that the
expressions 3n−1 + (n− 1)2, 3n + n2, and 3n+1 + (n+ 1)2 cannot all be divisible by 13.

Solution 2 by Ed Gray, Highland Beach, FL

Suppose there were three consecutive integers, say, n, n+ 1 and n+ 2 for which 3n + n2

is divisible by 13. Then we have the three congruences:

(1) 3n + n2 ≡ 0 (mod 13)
(2) 3n+1 + n2 + 2n+ 1 ≡ 0 (mod 13)
(3) 3n+2 + n2 + 4n+ 4 ≡ 0 (mod 13)

Multiple (1) by 9, multiply (2) by 1 and multiply (3) by 3. Then

(4) 9 · 3n + 9n2 ≡ 0 (mod 13)
(5) 3 · 3n + n2 + 2n+ 1 ≡ 0 (mod 13)
(6) 27 · 3n + 3n2 + 12n+ 12 ≡ 0 (mod 13)

Adding the three congruences:

(7) 39 · 3n + 13n2 + 14n+ 13 ≡ 0 (mod 13) =⇒ 13

∣∣∣∣n,

which is equivalent to saying n ≡ 0 (mod 13). Therefore, if it were possible to have three
consecutive integers such that 3n + n2 were divisible by 13, then 13 would have to divide
n and this implies (in eq. 1) that 13 divides 3n , but this is impossible because the only
divisors of 3n are multiples of 3.

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Suppose that there are positive integers n, x, y, z such that

3n + n2 = 13x, 3n+1 + (n+ 1)2 = 13y, and 3n+2 + (n+ 2)2 = 13z.
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Then,

13z = 3 · 3n+1 + (n+ 1)2 + (2n+ 3)

=
[
3n+1 + (n+ 1)2

]
+ 2 · 3n+1 + 2n+ 3

= 13y + 6 · 3n + 2n+ 3

= 13y + 6
(
13x− n2

)
+ 2n+ 3

= 13 (y + 6x)− 6n2 + 2n+ 3.

Hence,
13 (6x+ y − z) = 6n2 − 2n− 3

which implies that
6n2 − 2n− 3 ≡ 0 (mod 13) .

However, as shown in the following table, this is impossible.

n (mod 13) 6n2 − 2n− 3 (mod 13)

0 10
1 1
2 4
3 6
4 7
5 7
6 6
7 4
8 1
9 10
10 5
11 12
12 5

Therefore, no such n, x, y, z exist and 3n + n2 is never divisible by 13 for three
consecutive values of n.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Suppose the contrary, that 3m +m2, 3m+1 + (m+ 1)2, 3m+2 + (m+ 2)2 are divisible by
13 for some positive integer m. Hence their sum

13(3m) + 3m2 + 6m+ 5

is also divisible by 13. However this contradicts the fact that 3m2 + 6m+ 5 is congruent
to 5, 1, 3, 11, 12, 6, 6, 12, 11, 3, 1, 5, 2 modulo 13 according as m is congruent to
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 modulo 13. Hence the assertion of the problem.

Also solved by Arkady Alt, San Jose, CA; Brian D. Beasely, Presbyterian
College, Clinton, SC; Paul M. Harms, North Newton, KS; Kenneth Korbin,
New York, NY; Moti Levy, Rehovot, Israel; David E. Manes, SUNY College
at Oneonta, Oneonta, NY; David Stone and John Hawkins of Georgia
Southern University, Statesboro, Georgia; Titu Zvonaru, Comănesti,
Romania (jointly with) Neculai Stanciu, “Geroge Emil Palade School,”
Buzău, Romania, and the proposer.
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• 5310: Proposed by D. M. Bătinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzău, Romania

Let a > 0 and a sequence {En}n≥0, be defined by En =

n∑

k=0

1

k!
. Evaluate:

lim
n→∞

n
√
n!
(
a
n√En−1 − 1

)
.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

We know that

e =

n∑

k=0

1

k!
+

c

(n+ 1)!
, c = eξ, 0 ≤ ξ < 1.

It follows that n
√
En → 1 and then

(
a
n√En−1 − 1

)
/( n
√
En − 1)→ ln a, as well as

lim
n→∞

n
√
n!
(
a
n√En−1 − 1

)
= lim

n→∞
n
√
n!( n
√
En − 1) ln a.

Moreover,

lim
n→∞

n
(
E1/n
n − 1

)
= 1,

and then

lim
n→∞

n
√
n!( n
√
En − 1) ln a = lim

n→∞

n
√
n!

n
ln a.

Finally, the Cesaro–Stolz theorem yields

lim
n→∞

n
√
n!

n
ln a = lim

n→∞
n

√
n!

nn
ln a = ln a lim

n→∞
(n+ 1)!

(n+ 1)n+1

nn

n!
= ln a lim

n→∞
nn

(n+ 1)n
=

ln a

e
.

Solution 2 by Ed Gray, Highland Beach, FL

We first show that the limit to be evaluated is of the form ∞ · 0, and then we use
L’Hospital’s rule to evaluate it.

lim
n→∞

n
√
En = lim

n→∞
(En)1/n = lim

n→∞

(
n∑

k=0

1

k!

)1/n

= lim
n→∞

{(
1 +

1

n

)n}1/n

= lim
n→∞

(1 + 1/n) = 1, so,

lim
n→∞

(
a
n√En−1 − 1

)
= 0.

Let y = lim
n→∞

(n!)1/n. Then

ln(y) = (1/n) ln(n!)→
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ln(y) = (1/n) ln (1 · 2 · 3 · · ·n) and

ln(y) = (1/n)

(
ln(1) + ln(2) + ln(3) + · · ·+ ln(n)

)

ln(y) ≈ (1/n)

∫ x=n

x=1
ln(x)dx

ln(y) = (1/n)

(
x ln(x)− x

)∣∣∣∣
n

x=1

ln(y) = (1/n)

(
n (ln(n))− n

)

ln(y) = ln(n)− 1

ln(y) = ln(n)− ln e

ln(y) = ln
(n
e

)

y =
n

e

So we see that our problem, to evaluate lim
n→∞

n
√
n!
(
a
n√En−1 − 1

)
, is of the form ∞ · 0,

and this allows us to use L’Hospital’s rule, to differentiate the numerator and
denominator separately with respect to n.

For the numerator, let u = a1/n − 1.

u = a1/n − 1

(u+ 1)n = a

n ln(u+ 1) = ln(a)

lim
n→∞

ln(u+ 1) = lim
n→∞

(1/n) ln(a)

lim
n→∞

1

u+ 1

du

dn
= lim

n→∞
− ln(a)

n2

du

dn
=
−(u+ 1) ln(a)

n2
= −

(
a1/n ln(a)

n2

)

For the denominator,
d

dn
(e/n) = − e

n2
.

So,

lim
n→∞

−a1/n ln(a)

n2

− e

n2

= lim
n→∞

a1/n ln(a)

e
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=
ln a

e
.

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is known that for real x tending to zero, we have ex = 1 + x+O
(
x2
)
.

Since lim
n→∞

En = e, so n
√
En − 1 = e

lnEn
n − 1 =

lnEn
n

+O

(
1

n2

)
, and

a
n√En−1 − 1 = e(

n√En−1) ln a − 1 =
(lnEn) (ln a)

n
+O

(
1

n2

)
, where the last constant

implied by O depends at most on a. Hence, by Stirling’s formula

n! =
√

2πn
(n
e

)n(
1 +O

(
1

n

))
as n tends to infinity, we obtain

lim
n→∞

n
√
n!
(
a
n√En−1 − 1

)
=

ln a

e
.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Moti Levy, Rehovot, Israel, and the proposers.

• 5311: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x, y, z be positive real numbers. Prove that

∑

cyclic

√(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥ 3
√

10.

Solution 1 by Arkady Alt, San Jose, CA

Since by AM-GM Inequality
x2

3
+ 3y2 =

x2 + 9y2

3
≥ 1

3
· 10

10

√
x2 · (y2)9 =

10

3
5
√
xy9 and

2

xy
+

1

z2
≥ 3

3

√(
1

xy

)2

· 1

z2
=

3
3
√
x2y2z2

then

√(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥
√

10

3
5
√
xy9 · 3

3
√
x2y2z2

⇐⇒
√

10
3
√
xyz
· x

1

10 y
9
10 and,

therefore,

using again AM-GM Inequality we obtain

∑
cyclic

√(
x2

3 + 3y2
)(

2
xy + 1

z2

)
≥
√

10
3
√
xyz
·
∑

cyclic

x

1

10 y

9

10 ≥

√
10

3
√
xyz
· 3

3

√
x

1
10 y

9
10 · y

1
10 z

9
10 · z

1
10x

9
10 =

√
10

3
√
xyz
· 3 3
√
xyz = 3

√
10.

Equality holds if x = y = z.
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Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

By the AM-GM inequality

x3

3
+ 3y2 =

x2

3
+

9 times︷ ︸︸ ︷
y2

3
+ . . .+

y2

3
≥ 10

10

√√√√√x2

3
+

9 times︷ ︸︸ ︷
y2

3
+ . . .+

y2

3
=

5
√

105xy9

3
with equality iff

x2

3
=
y2

3
, that is, iff x = y, and

2

xy
+

1

z2
=

1

xy
+

1

xy
+

1

z2
≥ 3 3

√
1

xy
· 1

xy
· 1

z2
=

3
3
√
x2y2z2

with equality iff 1xy =
1

z2
,

that is, iff xy = z2.

Hence,

√(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥

√
5
√

105xy9

3

3
3
√
x2y2z2

= 30

√
1015x3y27

x10y10z10

with equality iff x = y = z, and cyclically. This and the AM-GM inequality prove the
inequality, because

∑

cyclic

√(
x2

3
+ 3y2

)(
2

xy
+

1

z2

)
≥

∑

cyclic

30

√
1015x3y27

x10y10z10

≥ 3 3

√√√√∏

cyclic

30

√
1015x3y27

x10y10z10
= 3

3

√√√√ 30

√
1045x30y30z30

x30y30z30
= 3
√

10,

with equality iff x = y = z and
1015x3y27

x10y10z10
=

1015y3z27

x10y10z10
=

1015z3x27

x10y10z10
, that is iff

x = y = z.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Ed Gray, Highland Beach, FL; Kee-Wai
Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy, Titu
Zvonaru, Comănesti, Romania (jointly with) Neculai Stanciu, “Geroge Emil
Palade School,” Buzău, Romania, and the proposer.

• 5312: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate:

∫ 1

0
ln |√x−

√
1− x|dx.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy
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∫ 1

0
ln |√x−

√
1− x|dx =

∫ 1

1/2
ln(
√
x−
√

1− x)dx+

∫ 1/2

0
ln(
√

1− x−√x)dx.

Moreover,

∫ 1/2

0
ln(
√

1− x−√x)dx =︸︷︷︸
1−x=y

∫ 1

1/2
ln(
√
y −

√
1− y)dy

and then,

∫ 1

0
ln |√x−

√
1− x|dx = 2

∫ 1/2

0
ln(
√

1− x−√x)dx

=

∫ 1/2

0
ln(1− x)dx+ 2

∫ 1/2

0
ln

(
1−

√
x

1− x

)
dx =

[
x = t2/(1 + t2)

]

=

∫ 1

1/2
lnxdx+ 2

∫ 1

0
ln(1− t) 2t

(1 + t2)2
dt

= (x lnx− x)
∣∣∣
1

1/2
+ lim
a→1

2
t2

1 + t2
ln(1− t)

∣∣∣
a

0
+ lim
a→1

∫ a

0

2t2

1 + t2
1

1− tdt. (∗)

2

∫ a

0

t2

1 + t2
1

1− tdt = 2

∫ a

0

(
1

1− t −
1

(1 + t2)(1− t)

)
dt

=

∫ a

0

(
2

1− t −
1

1− t −
1 + t

1 + t2

)
dt

=

(
− ln(1− t)− arctan t− 1

2
ln(1 + t2)

) ∣∣∣
a

0

= − ln(1− a)− arctan a− 1

2
ln(1 + a2).

The quantity (*) becomes

1

2
ln 2− 1

2
+ lim
a→1

ln(1− a)

(
2a2

1 + a2
− 1

)
− π

4
− ln 2

2
= −1

2
− π

4
.

Solution 2 by Kee-Wai Lau, Hong Kong, China

By the substitution x = sin2(θ/2) we have
∫ 1

0
ln

∣∣∣∣
√
x−
√

1− x
∣∣∣∣dx
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=
1

2

∫ 1

0
ln
((√

x−
√

1− x
)2)

dx

=
1

2

∫ 1

0
ln
(

1− 2
√
x(1− x)

)
dx

=
1

4

∫ π

0
ln(1− sin θ) sin θdθ

=
−1

4
[ln(1− sin θ) cos θ]π0 −

1

4

∫ π

0

cos2 θ

1− sin θ
dθ

=
−1

4

∫ π

0
(1 + sin θ)dθ

=
−1

4
[θ − cos θ]

∣∣∣∣
π

0

= −π + 2

4
.

Solution 3 by Moti Levy, Rehovot, Israel

Using the symmetry of the integrand and substituting u = 2x,

∫ 1

0
ln
∣∣√x−

√
1− x

∣∣ dx = 2

∫ 1
2

0
ln

(√
1

2
+ x−

√
1

2
− x
)
dx

= −1 + ln
√

2−
∫ 1

0
ln
(√

1 + u+
√

1− u
)
du. (1)

To evaluate the integral in (1), we substitute u = cos 2x, integrate by parts and use the
trigonometric equality,

(
cosx− sinx

cosx+ sinx

)
cos 2x = 1− sin 2x.
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∫ 1

0
ln
(√

1 + u+
√

1− u
)
du

= 2

∫ π
4

0
ln
(√

1 + cos 2x+
√

1− cos 2x
)

sin 2xdx

= 2

∫ π
4

0
ln
(√

2 (cosx+ sinx)
)

sin 2xdx

= − ln
(√

2 (cosx+ sinx)
)

cos 2x
]π

4

0
+

∫ π
4

0

(
cosx− sinx

cosx+ sinx

)
cos 2xdx

= ln
√

2 +

∫ π
4

0
(1− sin 2x) dx

= ln
√

2 +
π

4
− 1

2
. (2)

By (1) and (2), we obtain,

∫ 1

0
ln
∣∣√x−

√
1− x

∣∣ dx = −π
4
− 1

2
.

Solution 4 by Brian D. Beasely, Presbyterian College, Clinton, SC

We denote the given integral by I and let A =
∫ 1/2
0 ln(

√
1− x+

√
x)dx and

B =
∫ 1/2
0 ln(

√
1− x−√x)dx. We then show that A+B = −1/2 and A−B = π/4, so

we conclude that

I = 2B = −1/2− π/4.

Using L’Hopital’s Rule, we have

A+B =

∫ 1/2

0
ln(1− 2x)dx =

(1− 2x) ln(1− 2x)− (1− 2x)

−2
= −1

2
.

Next, we integrate by parts to calculate A−B:

∫
ln

(√
1− x+

√
x√

1− x−√x

)
dx =

(
x− 1

2

)
ln

(√
1− x+

√
x√

1− x−√x

)
+

∫
1

2
√
x(1− x)

dx

=

(
x− 1

2

)
ln

(√
1− x+

√
x√

1− x−√x

)
+ sin−1(

√
x) + C.

Using L’Hopital once again, we conclude A−B = π/4 as needed.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego,Viveiro,
Spain; Ed Gray, Highland Beach, FL, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2015

• 5331: Proposed by Kenneth Korbin, New York, NY

Given equilateral 4ABC with cevian CD. Triangle ACD has inradius 3N + 3 and
4BCD has inradius N2 + 3N where N is a positive integer.

Find lengths AD and BD.

• 5332: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Inspired by the prime number 1000000000000066600000000000001, known as
Belphegor’s prime where there are thirteen consecutive zeros to the left and right of 666,
we consider the numbers 100 . . . 0201500 . . . 01 where there are k−zeros left and right of
2015. For k < 28 only k = 9 and k = 27 yield prime numbers.

(a) Prove that the sequence 120151, 10201501, 1002015001, . . . has an infinite
subsequence of all composite numbers.

(b) Find the next prime in both the sequences 100 . . . 066600 . . . 01 and
100 . . . 0201500 . . . 01, after the ones noted above.

• 5333: Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Roma
University, Rome, Italy

Evaluate

∫ π/2

−π/2

(
ln
(
1 + tanx+ tan2 x

))2

1 + sinx cosx
dx.

• 5334: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let xij , (1 ≤ i ≤ m, 1 ≤ j ≤ n) be nonnegative real numbers. Prove that

n∏

j=1

(
1−

m∏

i=1

√
xij

1 +
√
xij

)
+

m∏

i=1


1−

n∏

j=1

1

1 +
√
xij


 ≥ 1.

• 5335: Proposed by Arkady Alt, San Jose, CA
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Prove that for any real p > 1 and x > 1 that

lnx

ln(x+ p)
≤
(

ln(x+ p− 1)

ln(x+ p)

)p
.

• 5336: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Caculate: ∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k
− ln

(
k +

1

2

)
− γ
)
.

Solutions

• 5313: Proposed by Kenneth Korbin, New York, NY

Find the sides of two different isosceles triangles if they both have perimeter 256 and
area 1008.

Solution by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let s =
2a+ b

2
be the semiperimeter of the triangle. By Heron’s formula for the area we

also have: A = 1008 =
√
s(s− a)2(s− b). Solving the system we obtain

(a, b) = (65, 126) and (a, b) =

(
255−

√
253

2
, 1 +

√
253

)
.

Also solved by Corneliu Manescu-Avram, Transportation High School,
Ploiesti, Romania; Brian D. Beasley, Presbyterian College, Clinton, SC;
Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, Angelo State
University, San Angelo, TX; Jerry Chu (student at Saint George’s School),
Spokane, WA; Bruno Salgueiro Fanego Viveiro, Spain; Ed Gray, Highland
Beach, FL; G.C. Greubel, Newport, News, VA; Paul M. Harms, North
Newton, KS; Jahangeer Kholdi and Farideh Firoozbakht, University of
Isfahan, Khansar, Iran; Kee-Wai Lau, Hong Kong, China; David E. Manes,
SUNY at Oneonta, Oneonta, NY; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA, and the proposer.

• 5314: Proposed by Roger Izard, Dallas TX

A biker and a hiker like to workout together by going back and forth on a road which is
ten miles long. One day, at 8 AM, at the starting end of the road, they went out
together. The biker soon got far past the hiker, reached the end of the road, reversed his
direction, and soon passed by the hiker at 9:06 AM. Then, the biker got down to the
beginning part of the road, reversed his direction, and got back to the hiker at 9:24 AM.
The biker and the hiker were, then, going in the same direction. Calculate in miles per
hour the speeds of the hiker and the biker.
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Solution 1 by Jerry Chu (student at Saint George’s School), Spokane, WA

Let the speed of the biker be x (mph) and let the speed of the hiker be y (mph).

Because it takes
11

10
hours (8 am to 9:06 am) to meet we have

biker −−−−−−−−−−−− > −−−↓
hiker −−−−−−−−− >< −−−−−↓

11(x+ y)

10
= 20, together they made 20 miles.

And because it takes
7

5
hours for them to meet again, we have

biker −−−−−−−−−−−− > −−−↓

↓ −−−−−−−−− < −−−−−−↓
↓ −−−−−−−− >

hiker −−−−−−− >

The difference in the distances they traveled is
7(x− y)

5
= 20. Solving the system of

equations

11(x+ y) = 200
7(x− y) = 100,

we obtain x =
1250

77
mph and y =

150

77
mph, for the biker and hiker respectively.

Solution 2 by Michael Thew (student at Saint George’s School), Spokane WA

We are given that the entire length of the road is 20 miles. At their first meeting, the
biker has already hit the ten mile mark and started his way back to the starting line. He
passes the hiker (who is still traveling away from the starting line) after a total time of
1.1 hours has elapsed. Let the distance from the 10 mile mark to this meeting point be
x. Therefore, the biker has traveled 10 + x, and the hiker has traveled 10− x . Letting h
and b be the speed in mph of the hiker and the biker respectively, we have, by the
distance = (rate)(time) equation, that 10− x=(h)(1.1) and 10 + x = (b)(1.1). If we add
these two equations and cancel the x′s, we obtain: 20 = (1.1)(h+ b).
The two continue moving until they end up meeting again after a total of 1.4 hours has
elapsed (from the beginning). Therefore, the biker has finished the 10 mile return to the
starting line and has reversed his direction again. The hiker was still traveling in the
same direction (away from the starting line). Labeling y as the distance from the
starting line to this second meeting point, we obtain y = h(1.4) and 20 + y = b(1.4)
Subtracting the first equation from the second equation and canceling the y′s gives :
20 = 1.4(b− h).
Once knowing that

20 = 1.1(b+ h)20 = 1.4(b− h)

we solve for b and h obtaining that b = 16.234 mph and h = 1.948 mph.
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Also solved by Adnan Ali (student at A.E.C.S-4), Mumbai, India; Harold
Don Allen, Brossard, Quebec, Canada; Brian D. Beasley, Presbyterian
College, Clinton, SC; Michael Brozinsky, Central Islip, NY; Elsie M.
Campbell, Dionne T. Bailey, and Charles Diminnie, Angelo State University,
San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kenneth Korbin, New York, NY; Kee-Wai Lau, Hong Kong,
China; David E. Manes, SUNY at Oneonta, Oneonta, NY; Guy Preskill,
Butler University, Indianapolis, IN; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA; Titu Zvonaru, Comănesti, Romania
(jointly with) Neculai Stanciu, “George Emil Palade School,” Buzău,
Romania, and the proposer.

• 5315: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

The hexagonal numbers have the form Hn = 2n2 − n, n = 1, 2, 3, . . .. Prove that
infinitely many hexagonal numbers are the sum of two hexagonal numbers.

Solution 1 by Susan Abernathy, Dionne Bailey, Elsie Campbell, Charles
Diminnie, and Jesse Taylor (jointly), Angelo State University, San Angelo,
TX

Suppose that
Hn+j = Hn +Hk

with j ≥ 1. Then, we have

2 (n+ j)2 − (n+ j) = 2n2 − n+ 2k2 − k,
4nj = 2k2 − k − 2j2 + j

= [2k + (2j − 1)] (k − j) .

One possibility is to let k − j = 4j or k = 5j. Then,

n = 2 (5j) + 2j − 1 = 12j − 1

and
n+ j = 13j − 1.

To check whether these assignments are feasible, note that

H13j−1 = 2 (13j − 1)2 − (13j − 1)

= 338j2 − 65j + 3,

H12j−1 = 2 (12j − 1)2 − (12j − 1)

= 288j2 − 60j + 3,

and
H5j = 2 (5j)2 − 5j = 50j2 − 5j.

It is now clear that

H5j +H12j−1 = 338j2 − 65j + 3 = H13j−1
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for all j ≥ 1. The first five solutions of this type are shown in the following table:

j 5j 12j − 1 13j − 1 H5j H12j−1 H13j−1
1 5 11 12 45 231 276
2 10 23 25 190 1035 1225
3 15 35 38 435 2415 2850
4 20 47 51 780 4371 5151
5 25 59 64 1225 6903 8128

.

Solution 2 by Jerry Chu (student at Saint George’s School), Spokane, WA

The difference between two consecutive hexagonal numbers is

H(n+ 1)−H(n) =
(
2(n+ 1)2 − (n+ 1)

)
−
(
2n2 − n

)
= 4n+ 1.

This is to say that any hexagonal number of the form 4n+ 1 is the difference between
H(n) and H(n+ 1). So we look for hexagonal numbers of the form 4m+ k, where
k = 0, 1, 2, 3

H(4m+ k) (k = 0, 1, 2, 3) = 32m2 + 16mk + 2k2 − 4m− k = 2k2 − k (mod 4).

Only k = 1 satisfies this equation. Therefore, hexagonal numbers of the form
H(4m+ 1) = 32m2 + 12m+ 1, can be expressed as the difference between H(8m2 + 3m)
and H(8m2 + 3m+ 1). So there are an infinite number of hexagonal numbers of the
form H(8m2 + 3m+ 1) that can be expressed as the sum of two hexagonal numbers.

Comment by Editor: William J. O’Donnell of Centennial, CO mentioned in his
solution that: It can further be shown that infinitely many hexagonal numbers are the
sum and difference of two hexagonal numbers, specifically,

H128n2+12n+1 = H16n+1 +H128n2+12n

= H8192n4+1536n3+168n2+9n+1 −H8192n4+1536n3+168n2+9n, for n ≥ 1.

For more detail, see O’Donnell, W.J., Two theorems concerning hexagonal numbers
Fibonacci Quarterly 1979, 17(1), 77-79. Similar results have also been published for
triangular, pentagonal, and octagonal numbers. See:

−Hansen, R.T. Arithmetic of pentagonal numbers. Fibonacci Quarterly, 1970, 8, 83-87.

− O’Donnell, W.J. A theorem concerning octagonal numbers. Journal of Recreational
Mathematics, 1979-80, 12(4), 271-272.

−Sierpinski W. Un Théorème sur les nombres triangulaires Elemente der Mathematik,
1968, 23, 31-32.

Also solved by Adnan Ali (student at A.E.C.S-4), Mumbai, India; Arkady
Alt, San Jose, CA; Corneliu Manescu-Avram,Transportation High School,
Ploiesti, Romania; Brian D. Beasley, Presbyterian College, Clinton, SC;
Bruno Salgueiro Fanego, Viveiro, Spain; Moti Levy, Rehovot, Israel; Ed
Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Jahangeer
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Kholdi and Farideh Firoozbakht, University of Isfahan, Khansar, Iran;
Kenneth Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; David E.
Manes, SUNY at Oneonta, Oneonta, NY; William J. O’Donnell, Centennial,
CO; Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Bob
Sealy, Sackville, New Brunswick, Canada; Albert Stadler, Herrliberg,
Switzerland; David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA; Titu Zvonaru, Comănesti, Romania (jointly with) Neculai
Stanciu, “George Emil Palade School,” Buzău, Romania, and the proposer.

• 5316: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let {un}n≥0 be a sequence defined recursively by

un+1 =

√
u2n + u2n−1

2
.

Determine lim
n→∞

un in terms of u0, u1.

Solution 1 by Moti Levy, Rehovot, Israel

Let vn = u2n, then the sequence {vn}n≥0 follows the linear recurrence

2vn+1 = vn + vn−1.

The closed form of the sequence {vn}n≥0 is vn = α+ β
(
−1

2

)n
, with initial conditions:

u20 = α+ β,

u21 = α− β

2
.

u2n =
1

3
u20 +

2

3
u21 +

(
2

3
u20 −

2

3
u21

)(
−1

2

)n
.

lim
n→∞

un =

√
1

3
u20 +

2

3
u21.

Solution 2 by Jerry Chu (student at Saint George’s School), Spokane, WA

First some observations:

u2 =

√
u20 + u21

2

u3 =

√
u20 + 3u21

4

u4 =

√
3u20 + 5u21

8
.

This suggests that the general of the sequence is

un =

√√√√√
(

2n−2 ± 1

2

)
u20 +

(
2n−1 ∓ 1

2

)
u21

3 · 2n−2 ,
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which is true by induction. So

lim
n→∞

un =

√
1

3
u20 +

2

3
u21

Solution 3 by Henry Ricardo, New York Math Circle, NY

In [1], the authors provide three ways of determining convergence and limiting values for
linear mean recurrences. In particular, they prove that given a sequence {xn} such that
xn := (xn−1 + xn−2 + · · ·+ xn−m)/m for n ≥ m+ 1, where x1, x2, . . . , xm are given real
numbers, we can conclude that

lim
n→∞

xn =
2

m(m+ 1)

m∑

n=1

nxn.

The substitution Uk = u2k converts our given relation to the linear mean recurrence

Un =
Un−1 + Un−2

2
for n = 2, 3, . . . .

Then the paper cited above provides the formula

lim
n→∞

Un =
2

2(3)

1∑

n=0

(n+ 1)Un =
U0 + 2U1

3
,

giving us u2n → (u20 + 2u21)/3, or un →
√

(u20 + 2u21)/3.

Reference
[1] D. Borwein, J. M. Borwein, B. Sims, On the Solution of Linear Mean Recurrences,
Amer. Math. Monthly 121 2014, pp. 486-498.

Editor’s comment: Henry Ricardo submitted three solutions to problem 5316. Taken
together, the above solutions represent the different ways for determining the
convergence of linearly stated recursion sequences, as pointed out in the reference Henry
cited.

Also solved by Susan Abernathy, Dionne Bailey, Elsie Campbell, Charles
Diminnie, and Jesse Taylor (jointly), Angelo State University, San Angelo,
TX; Arkady Alt, San Jose, CA; Corneliu Manescu-Avram,Transportation
High School, Ploiesti, Romania; Bruno Salgueiro Fanego Viveiro, Spain; Ed
Gray, Highland Beach, FL; G. C. Greubel, Newport News, VA; Kenneth
Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China; Adrian Naco,
Polytechnic University, Tirana, Albania; Albert Stadler, Herrliberg,
Switzerland; Titu Zvonaru, Comănesti, Romania (jointly with) Neculai
Stanciu, “Geroge Emil Palade School,” Buzău, Romania; David Stone and
John Hawkins, Georgia Southern University, Statesboro, GA, and the
proposer.

• 5317: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

7

X
ia
ng
’s
T
ex
m
at
h



Let ak, bk > 0, 1 ≤ k ≤ n, be real numbers such that a1 + a2 + . . .+ an = 1. Prove that

1

n3

(
n∑

k=1

bk

)5

≤
n∑

k=1

b5k
ak
.

Solution 1 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

By the Hölder inequality,

(
n∑

k=1

1

)p−q−1 n∑

k=1

bpk
aqk

(
n∑

k=1

ak

)q
≥




n∑

k=1

1
p−q−1

p
b
p
p

k

a
q
p

k

a
q
p

k



p

=

(
n∑

k=1

bk

)p
.

The choice p = 5 and q = 1 gives the result.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We will need two preliminary results:

1. Let f (x) = x
5
2 on (0,∞). Since f ′′ (x) =

15

4
x

1
2 > 0 for x > 0, it follows that f (x) is

strictly convex on (0,∞). Then, Jensen’s Theorem implies that

f

(
1

n

n∑

k=1

bk

)
≤ 1

n

n∑

k=1

f (bk) ,

i.e., (
1

n

n∑

k=1

bk

) 5
2

≤ 1

n

n∑

k=1

b
5
2
k . (1)

Further, equality is attained in (1) if and only if b1 = b2 = . . . = bn.

2. If we apply the Cauchy - Schwarz Inequality to the vectors

−→
X =

(√
a1,
√
a2, . . . ,

√
an
)

and
−→
Y =



√
b51
a1
,

√
b52
a2
, · · · ,

√
b5n
an


 ,

we get

(
n∑

k=1

ak

)(
n∑

k=1

b5k
ak

)
=
∥∥∥−→X
∥∥∥
2 ∥∥∥−→Y

∥∥∥
2

≥
(−→
X · −→Y

)2

=

(
n∑

k=1

b
5
2
k

)2

. (2)
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Since

n∑

k=1

ak = 1, we use (1) and (2) to obtain

n∑

k=1

b5k
ak

=

(
n∑

k=1

ak

)(
n∑

k=1

b5k
ak

)

≥
(

n∑

k=1

b
5
2
k

)2

= n2

(
1

n

n∑

k=1

b
5
2
k

)2

≥ n2


(

1

n

n∑

k=1

bk

) 5
2



2

= n2 · 1

n5

(
n∑

k=1

bk

)5

=
1

n3

(
n∑

k=1

bk

)5

.

Also, by the criterion for equality in (1), equality results above if and only if
b1 = b2 = . . . = bn.

Solution 3 by Angel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain

The proposed inequality is homogeneous in bk, so we may assume in addition that also

b1 + b2 + · · ·+ bn = 1, and the inequality is equivalent to prove that
1

n3
≤

n∑

k=1

b5k
ak

. We

use the Cauchy-Schwarz inequality in Engel’s form which states that

x21
y1

+
x22
y2

+ · · ·+ x2n
yn
≥ (x1 + x2 + · · ·+ xn)2

y1 + y2 + · · ·+ yn
,

for all real numbers xi and positive real numbers yi.

n∑

k=1

b5k
ak

=
n∑

k=1

(
b
5/2
k

)2

ak
(which by Engel’s inequality)

≥

(
n∑

k=1

b
5/2
k

)2

n∑

k=1

ak

=

(
n∑

k=1

b
5/2
k

)2

.
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Now, by the power-mean arithmetic-mean inequality

n∑

k=1

b
5/2
k

n
≥




n∑

k=1

bk

n




5/2

=
1

n5/2
, and so,

n∑

k=1

b
5/2
k ≥ 1

n3/2
.

Therefore,
n∑

k=1

b5k
ak
≥
(

n∑

k=1

b
5/2
k

)2

≥ 1

n3
and we are done.

Solution 4 by Adrian Naco, Polytechnic University,Tirana, Albania

Let’s prove a more general inequality, that is,

1

ns

( n∑

k=1

bk

)s+2

≤
n∑

k=1

bs+2
k

ak
, (1)

Based on the well known Chebyschev inequality we get that

n∑

k=1

bs+2
k

ak
≥ 1

n

( n∑

k=1

1

ak

)( n∑

k=1

bs+2
k

)
(2)

Furthermore if we apply the same inequality s times recursively then,

n∑

k=1

bs+2
k

ak
≥ 1

n

( n∑

k=1

1

ak

)( n∑

k=1

bs+2
k

)
≥ 1

n

( n∑

k=1

1

ak

)
1

n

( n∑

k=1

bk

)( n∑

k=1

bs+1
k

)

≥ 1

n

( n∑

k=1

1

ak

)(
1

n

)2( n∑

k=1

bk

)2( n∑

k=1

bsk

)
≥ .........................

≥ 1

n

( n∑

k=1

1

ak

)(
1

n

)s+1( n∑

k=1

bk

)s+1( n∑

k=1

bk

)

=

(
1

n

)s+2( n∑

k=1

1

ak

)( n∑

k=1

bk

)s+2

≥
(

1

n

)s+2

n2
( n∑

k=1

bk

)s+2

=

(
1

n

)s( n∑

k=1

bk

)s+2

since,

10

X
ia
ng
’s
T
ex
m
at
h



( n∑

k=1

1

ak

)
≥ n

n

√√√√
n∏

k=1

ak

≥ n2
( n∑

k=1

ak

) = n2

Finally, the given inequality to prove is a special case of the general inequality (1) taken
for s = 5.

Solution 5 by Adnan Ali (Student at A.E.C.S-4), Mumbai, India

From Holder’s Inequality, one notices that

n3

(
n∑

k=1

b5k
ak

)
=

(
n∑

k=1

b5k
ak

)(
n∑

k=1

ak

)
1 + · · ·+ 1︸ ︷︷ ︸

n times




1 + · · ·+ 1︸ ︷︷ ︸

n times




1 + · · ·+ 1︸ ︷︷ ︸

n times


 ≥

(
n∑

k=1

bk

)5

whence the result immediately follows and so,
1

n3

(
n∑

k=1

bk

)5

≤
(

n∑

k=1

b5k
ak

)
.

Solution 6 by Nicusor Zlota. “Traian Vula” Technical College, Focsani,
Romania

We shall prove the following more general inequality.

If akbk > 0, 1 ≤ k ≤ n and a, b,∈ <, such that a− b ≥ 1, then

n∑

k=1

bqk
abk
≥ n

(
1

n

n∑

k=1

bk

)a

(
1

n

n∑

k=1

ak

)b (∗)

Proof: Using the Radon and Jensen inequalities, we have

n∑

k=1

bqk
abk

=

n∑

k=1

(
b

a
b+1

k

)b+1

abk

≥
Radon

n∑

k=1

(
b

a
b+1

k

)b+1

abk

≥
Jensen


n
(

1
n

n∑

k=1

bk

) a

b+ 1




b+1

(
n∑

k=1

ak

)b = n

(
1
n

n∑

k=1

bk

)a

(
1
n

n∑

k=1

ak

)b
.

If in (∗), a = 5, b = 1 and

n∑

k=1

ak = 1, then we obtain the inequality of the problem.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; Moti Levy, Rehovot, Israel; Kee-Wai
Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; Henry

11

X
ia
ng
’s
T
ex
m
at
h



Ricardo, New York Math Circle, NY; Titu Zvonaru, Comănesti, Romania
(jointly with) Neculai Stanciu, “George Emil Palade School,” Buzău,
Romania, and the proposer.

• 5318: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Prove that (1 + x)x ≤ 1 + x2 for 0 ≤ x ≤ 1.

Solution 1 by Arkady Alt, San Jose, California, USA.

The inequality (1 + x)x ≤ 1 + x2, 0 ≤ x ≤ 1 immediately follows from the Bernoulli
inequality:

(1 + t)α ≥ 1 + αt, t > −1, a ≥ 1. (1)

Indeed, for 0 < x ≤ 1 ⇐⇒ 1

x
≥ 1, and by (1) we have

(
1 + x2

) 1
x ≥ 1 + x2 · 1

x
= 1 + x ⇐⇒ 1 + x2 ≥ (1 + x)x.

For x = 0 the original inequality is obvious.

Another way to prove the inequality (1 + x)x ≤ 1 + x2 is based on using the Weighted
AM-GM Inequality: upvq ≤ pu+ qv where u, v, p, q ≥ 0 and p+ q = 1.

Indeed, for u = 1 + x, v = 1, p = x, q = 1− x we have

(1 + x)x · 11−x ≤ (1 + x)x+ 1 · (1− x) ⇐⇒ (1 + x)x ≤ 1 + x2.

(1 + x)a ≤ 1 + ax, where x > −1 and 0 ≤ a ≤ 1. (1)

Applying inequality (1) to a = x we obtain (1 + x)x ≤ 1 + x2.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We have equalityfor x = 0 and x = 1.

We assume that 0 < x < 1. We expand (1 + x)x into a binomial series and get

(1 + x)x =
∞∑

n=0

(
x

n

)
xn = 1 + x2 +

∞∑

j=1

(
x(x− 1) · · · (x− 2j + 1)

(2j)!
x2j +

x(x− 1) · · · (x− 2j)

(2j + 1)!
x2j+1

)

= 1 + x2 −
∞∑

j=1

x(1− x) · · · (2j − 1− x)

(2j)!
x2j

︸ ︷︷ ︸
>0

(
1− 2j − x

2j + 1
x

)

︸ ︷︷ ︸
>0

< 1 + x2.

Solution 3 by Michael Brozinsky, Central Islip, NY

Consider g(u)=(1+u)

1

u on (0, 1). It is decreasing since

g′(u) = (1 + u)

1

u
·

(
u

1 + u
− ln(1 + u)

)

u2
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.

Note that (1 + u)

1

u and u2 are positive and f(u) =
u

1 + u
− ln(1 + u) is negative on

(0, 1) since and f(0) = 0 and
d

du
f(u) =

u

(1 + u)2
. Hence since x2 < x if 0 < x < 1 we

have g(x2) > g(x) i.e.

(1 + x2)

1

x2 > (1 + x)

1

x
(∗).

Now if 0 < a < b then
b

a
> 1 and so if t > 0 then

(
b

a

)t
> 1 and so bt > at. (∗∗)

The desired inequality then follows from (**) upon setting b = (1 + x2)

1

x2 , a = (1 + x)

1

x

and t = x2, i.e., raising both sides of (*) to the x2 power.

Solution 4 by Ed Gray, Highland Beach, FL

Consider the the general binomial theorem.

(a+ b)n = an + nan−1b+

(
n

2

)
an−2b2 +

(
n

3

)
an−3b3 +

(
n

4

)
an−4b4 + · · · .

Since a = 1, we suppress its appearance after the first term. Letting b = x = n, and
substituting in the above we obtain

(1 + x)x = 1 + x2 +
x(x− 1)x2

2!
+
x(x− 1)(x− 2)x3

3!
+
x(x− 1)(x− 2)(x− 3)x4

4!
+ · · · .

Clearly, for x = 0 and x = 1 the expression on the left hand side of the equality sign is
the same as the expression on the right hand side of the equality sign.

If 0 < x < 1 we note that starting with the third term, which is negative, we have an
alternating decreasing series that approaches zero. Since each term is numerically less
than its precedent and the third term is negative, it is clear that the series must be less
than the sum of the first two terms, 1 + x2, therefore, for 0 < x < 1, it must be that
(1 + x)x < 1 + x2.

Solution 5 by Kee-Wai Lau, Hong Kong, China

For 0 ≤ x ≤ 1, let f(x) = x ln(1 + x)− ln(1 + x2). We have

f ′(x) = ln(1 + x) +
x(x2 − 2x− 1)

(1 + x)(1 + x2)
and f ′′(x) =

x(x2 + 2x+ 3)
(
x2 + 2x− 1

)

(1 + x)2(x2 + 1)2
.

Hence for 0 < x <
√

2− 1, we have f ′′(x) < 0. Since f ′(0) = 0, so f ′(x) < 0 for
0 < x ≤

√
2− 1. Since f(0) = 0, so f(x) < 0 for 0 < x <

√
2− 1 as well.

Now for
√

2− 1 < x ≤ 1, we have f ′′(x) > 0 so that f(x) is convex. Since f(
√

2− 1) < 0
and f(1) = 0, so f(x) ≤ 0 for

√
2− 1 < x ≤ 1. It follows that f(x) ≤ 0 for 0 ≤ x ≤ 1.

The inequality of the problem follows by exponentiation.
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Also solved by Adnan Ali (Student at A.E.C.S-4), Mumbai, India; Corneliu
Manescu-Avram,Transportation High School, Ploiesti, Romania; Bruno
Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS;
Kenneth Korbin, New York, NY; Moti Levy, Rehovot, Israel; Adrian Naco,
Polytechnic University, Tirana, Albania; Angel Plaza, Universidad de Las
Palmas de Gran Canaria, Spain; Paolo Perfetti, Department of
Mathematics, “Tor Vergata” University, Rome, Italy; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

Mea Culpa

Adnan Ali (Student at A.E.C.S-4 in Mumbai, India) submitted solutions to
problems 5307 and 5309. Unfortunately these solutions were unintentionally not
acknowledged in the previous issue of the column. And similarly for Hatef I.
Arshagi of Guilford Technical Community College in Jamestown, NC for his
solutions to problems 5307, 5309 and 5312. Once again I plead mea culpa to them both,
and also to William J. O’Donnell, Centennial, CO for not acknowledging his
solution to 5213.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2015

• 5337: Proposed by Kenneth Korbin, New York, NY

Given convex quadrilateral ABCD with sides,

AB = 1 + 3
√

2
BC = 6 + 4

√
2 and

CD = −14 + 12
√

2.

Find side AD so that the area of the quadrilateral is maximum.

• 5338: Proposed by Arkady Alt, San Jose, CA Determine the maximum value of

F (x, y, z) = min

{ |y − z|
|x| ,

|z − x|
|y| ,

|x− y|
|z|

}
,

where x, y, z are arbitrary nonzero real numbers.

• 5339: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “George Emil Palade” School, Buzău,
Romania

Calculate:

∫ π/2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx.

• 5340: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b and c be the side-lengths, and s the semi-perimeter of a triangle. Show that

a2 + b2

(s− c)2 +
b2 + c2

(s− a)2
+
c2 + a2

(s− b)2 ≥ 24.

• 5341: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let z1, z2, · · · , zn, and w1, w2, · · · , wn be sequences of complex numbers. Prove that

Re

(
n∑

k=1

zkwk

)
≤ 3

(n+ 1)(n+ 2)

n∑

k=1

|zk|2 +
3n2 + 6n+ 1

20

n∑

k=1

|wk|2 .
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• 5342: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c, α > 0 be real numbers. Study the convergence of the integral

I(a, b, c, α) =

∫ ∞

1

(
a1/x − b1/x + c1/x

2

)α
dx.

The problem is about studying the conditions which the four parameters, a, b, c, and α,
should verify such that the improper integral would converge.

Solutions

• 5319: Proposed by Kenneth Korbin, New York, NY

Let N be an odd integer greater than one. Then there will be a Primitive Pythagorean
Triangle with perimeter equal to

(
N2 +N

)2
. For example, if N = 3, then the perimeter

equals
(
32 + 3

)2
= 144.

Find the sides of the PPT for perimeter
(
152 + 15

)2
and for perimeter

(
992 + 99

)2
.

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, NY

The Primitive Pythagorean Triangle (a, b, c) with perimeter (152 + 15)2 is
(6975, 24832, 25793), and the PPT with perimeter (992 + 99)2 is
(1950399, 48010000, 48049601). One may easily verify that these triangles satisfy the
conditions of the problem.

If m > n are relatively prime positive integers of opposite parity, then they generate a
PPT

(a, b, c) = (m2 − n2, 2mn,m2 + n2),

with perimeter P = 2m(m+ n). If P is a square, then m = 2q2 and m+ n = p2 for some
positive integers p and q. Therefore,

(m,n) = (2q2, p2 − 2q2)

and

a = m2 − n2 = p2(4q2 − p2),

b = 2mn = 4q2(p2 − 2q2),

c = m2 + n2 = p4 − 4p2q2 + 8q4.

Note that p is odd,
√

2q < p < 2q since 4q2 − p2 > 0 and p2 − 2q2 > 0, and gcd(p, q) = 1.
Furthermore, the perimeter P is 4p2q2 = (2pq)2.
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If P = (152 + 15)2, then 2pq = 240. Therefore pq = 120 and the only factors of 120 that
statisfy p as being odd and

√
2q < p < 2q are p = 15 and q = 8. For these values of p

and q,

a = 152
(
4 · 82 − 152

)
= 6975,

b = 4 · 82
(
152 − 2 · 82

)
= 24832,

c = 154 − 4 · 152 · 82 + 8 · 84 = 25793.

If P = (992 + 99)2, then 2pq = 992 + 99 = 9900. Therefore pq = 4950 and the only factors
of 4950 that satisfy p as being odd and

√
2q < p < 2q are p = 99 and q = 50. Then

a = 992
(
4 · 502 − 992

)
= 1950399,

b = 4 · 502
(
992 − 2 · 502

)
= 48010000,

c = 994 − 4 · 992 · 502 + 8 · 504 = 480449601.

Also solved by Ashland University Undergraduate Problem Solving Group,
Ashland, OH; Brian D. Beasley, Presbyterian College, Clinton, SC; Elsie M.
Campbell, Dionne T. Bailey, and Charles Diminnie, Angelo State University,
San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Jahangeer Kholdi and
Farideh Firoozbakht, University of Isfahan, Khansar, Iran; Kee-Wai Lau,
Hong Kong, China; Corneliu Mănescu-Avram, Transportation High School
Ploiesti, Romania; Albert Stadler, Herrliberg, Switzerland; Titu Zvonaru,
Comănesti, Romania (jointly with) Neculai Stanciu, “Geroge Emil Palade
School,” Buzău, Romania; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

• 5320: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

It is fairly well known that if (a, b, c) is a Primitive Pythagorean Triple (PPT), then the
product abc is divisible by 60. Find infinitely many PPT’s (a, b, c) such that the sum
(a+ b+ c) is also divisible by 60.

Solution 1 by Bruno Salgueiro Fanego,Viveiro Spain

It is know that a, b and c are the respective legs and hypothenuse of a PPT if and only if
a = m2 − n2, b = 2mn, and c = m2 + n2 for some positive integers m and n such that
m > n and gcd(m,n) = 1 and m− n is odd.

Hence, the perimeter, a+ b+ c = 2m(m+ n), will be divisible by 60 if, for example, m is
divisible by 30 because in that case, 2m and hence 2m(m+ n) would each be divisible
by 60.
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Thus, we can find infinitely many PPT’s (a, b, c) = (m2 − n2, 2mn,m2 + n2) such that
the sum a+ b+ c is also divisible by 60, if we take m = 30k, with k being a positive
integer and, for example, n = 1 because in that case, m = 30k > 1, gcd(m, 1) = 1, and
m− n = 30k − 1 is odd. A possible infinite set of PPT’s is given by

(a, b, c) = (900k2 − 1, 60k, 900k2 + 1), where k is a positive integer.

Solution 2 by Paul M. Harms, North Newton, KS

Consider the Pythagorean Triangle {n2 + 1, n2 − 1, 2n} where n is a positive even
integer. Then the odd integers (n2 + 1) and (n2 − 1), do not have 2 as a factor. Since
their difference is 2 units, these two integers have no common prime factor greater than
one. Thus the triple (n2 + 1, n2 − 1, 2n) represents the sides of a PPT when n is a
positive even integer. The sum of the three side is 2n2 + 2n = 2n(n+ 1). Let n = 30K
where K is a positive integer. Then n is a positive even integer and the sum of the three
sides is divisible by 60. Using different K ′s we see that there are infinitely many PPT’s
satisfying the problem whose sides have the form (n2 + 1, n2 − 1, 2n) and n = 30K. In
these cases the sum of the three sides is 2n(n+ 1) = 60K(30K + 1).

Solution 3, a generalization by Brian D. Beasley, Presbyterian College,
Clinton, SC

We may generalize the given problem as follows: Given any positive integer m, find
infinitely many PPT’s (a, b, c) such that the sum (a+ b+ c) is divisible by m.
Fix any positive integer m. If m is even, then for each positive integer k, we let s = mk
and t = 1 to produce the PPT

(a, b, c) = (m2k2 − 1, 2mk,m2k2 + 1),

for which a+ b+ c = 2mk(mk + 1). If m is odd, then for each positive integer k, we let
s = 2mk and t = 1 to produce the PPT

(a, b, c) = (4m2k2 − 1, 4mk, 4m2k2 + 1),

for which a+ b+ c = 4mk(2mk + 1).

Also solved by Adnan Ali (Student in A.E.C.S-4), Mumbai, India; Elsie M.
Campbell, Dionne T. Bailey, and Charles Diminnie, Angelo State University,
San Angelo, TX; Ed Gray, Highland Beach, FL; Jahangeer Kholdi and
Farideh Firoozbakht, University of Isfahan, Khansar, Iran; Moti Levy,
Rehovot, Israel; Kenneth Korbin, New York, NY; Kee-Wai Lau, Hong Kong,
China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Corneliu
Mănescu-Avram, Transportation High School Ploiesti, Romania; Angel
Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Titu Zvonaru,
Comănesti, Romania (jointly with) Neculai Stanciu, “Geroge Emil Palade
School,” Buzău, Romania; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

• 5321: Proposed by Lawrence Lesser, University of Texas at El Paso, TX

On pop quizzes during the fall semester, Al gets 1 out of 3 questions correct, while Bob
gets 3 of 8 correct. During the spring semester, Al gets 3/5 questions correct, while Bob
gets 2/3 correct. So Bob did better each semester (3/8 > 1/3 and 2/3 > 3/5) but worse
for the overall academic year (5/11 < 4/8). The total number of questions involved in
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the above example was 3 + 8 + 5 + 3 = 19, and the author conjectures (in his chapter in
the 2001 Yearbook of the National Council of Teachers of Mathematics) that this is the
smallest dataset with nonzero numerators in which this reversal (Simpson’s Paradox)
happens. If we allow zeros, the smallest dataset is conjectured to be 9 : 0/1 < 1/4 and
2/3 < 1/1, but 2/4 > 2/5 .

Prove these conjectures or find counterexamples.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

I wrote a small computer program that did an exhaustive search. It turned out that the
first conjecture is wrong. The smallest value in the first case is 13 and not 19, and these
are the solutions:

1/1 > 6/7, 1/2 > 1/3, 2/3 < 7/10

1/1 > 4/5, 1/3 > 1/4, 2/4 < 5/9

1/1 > 6/7, 2/3 > 1/2, 3/4 < 7/9

1/1 > 4/5, 2/4 > 1/3, 3/5 < 5/8

1/1 > 3/4, 2/5 > 1/3, 3/6 < 4/7

1/1 > 4/5, 3/5 > 1/2, 4/6 < 5/7

1/2 > 1/3, 1/1 > 6/7, 2/3 < 7/10

2/3 > 1/2, 1/1 > 6/7, 3/4 < 7/9

1/3 > 1/4, 1/1 > 4/5, 2/4 < 5/9

2/4 > 1/3, 1/1 > 4/5, 3/5 < 5/8

3/5 > 1/2, 1/1 > 4/5, 4/6 < 5/7

2/5 > 1/3, 1/1 > 3/4, 3/6 < 4/7

The smallest value in the second case is indeed 9 and these are the solutions:

1/1 > 3/4, 1/3 > 0/1, 2/4 < 3/5

1/1 > 2/3, 1/4 > 0/1, 2/5 < 2/4

1/3 > 0/1, 1/1 > 3/4, 2/4 < 3/5

1/4 > 0/1, 1/1 > 2/3, 2/5 < 2/4

Solution 2 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

5

X
ia
ng
’s
T
ex
m
at
h



The conjecture is false for nonzero numerators since 4/5 < 1/1 and 1/4 < 1/3 but
5/9 > 2/4, and the data set is 13 < 19.

If zero numerator are allowed, then we will show that the smallest data set is indeed

mine, that is if
a2
a1

<
A2

A1
and

b2
b1
<
B2

B1
, then

a2 + b2
a1 + b1

>
A2 +B2

A1 +B1
is impossible if

A1 +B1 + a1 + b1 ≤ 8 and a2 = 0. To do so , we will maximize
a2 + b2
a1 + b1

while minimizing

A2 +B2

A1 +B1
Then a1 = 1 and the maximum value of A1 is 4.

If A1 = 4, then maximizing
a2 + b2
a1 + b1

and minimizing
A2 +B2

A1 +B1
yields the following

0/1 < 1/4

1/2 < 1/1

}
=⇒ 1/3 < 2/5.

Note that for other values of A2, the fraction
A2 +B2

A1 +B1
>

2

5
while

a2 + b2
a1 + b1

=
1

3
.

If A1 = 3, then b1 +B1 ≤ 4 implies b1 is 2 or 3. If b1 = 2, then maximizing
a2 + b2
a1 + b1

, one

obtains
0/1 < 1/3

1/2 < 1/1

}
=⇒ 1/3 < 2/4.

If b1 = 3, then maximizing
a2 + b2

a+ 1 + b+ 1
yields

0/1 < 1/3

2/3 < 1/1

}
=⇒ 2/4 = 2/4.

If A1 = 2, then A2 = 1 and b1 +B1 ≤ 5 implies b1 is 2,3, or 4. If b1 = 2, then b2 = 1 and
minimizing B2/B1 so that b2/b1 < B2/B1 implies B1 = 3 and B2 = 2 . Thus,

0/1 < 1/2

1/2 < 2/3

}
=⇒ 1/3 < 3/5.

If b1 = 3 then b2 = 2 and minimizing B2/B1 implies B1 = 1 = B2. Therefore,

0/1 < 1/2

2/3 < 1/1

}
=⇒ 2/4 < 2/3.

If b1 = 4 then b2 = 3 and B1 = B2 = 1. Therefore,

0/1 < 1/2

3/4 < 1/1

}
=⇒ 3/5 < 2/3.

If A1 = 1 then A2 = 1 and b1 +B1 ≤ 6. Therefore b1is 2,3, or 4. If b1 = 2, then b2 = 1
and minimizing B2/B1 implies B1 = 3 and B2 = 2 . Therefore,

0/1 < 1/1

1/2 < 2/3

}
=⇒ 1/3 < 3/4.
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If b1 = 3, then b2 = 2 and b2/b1 < B2/B1 implies B1 = B2 = 1 since B1 ≤ 3. Thus,

0/1 < 1/1

2/3 < 1/1

}
=⇒ 2/4 < 1/1.

Note if b1 = 3 and b2 = 1, then minimizing B2/B1 implies B1 = 2 and B2 = 1.
Therefore,

0/1 < 1/1

1/3 < 1/2

}
=⇒ 1/4 < 2/3.

If b1 = 4, then the only case when
A2 +B2

A1 +B1
6= 1 is when b2 =. Then B1 = 2 and B2 = 1.

Then
0/1 < 1/1

1/4 < 1/2

}
=⇒ 1/5 < 2/3.

Hence, if zero numerators are allowed, then the smallest dataset in which Simpson’s
Paradox can happen is nine.

Comments by the Michael N Fried of Kibbutz Revivim, Israel and by Lawrence
Lesser, the proposer.

Michael: The inequalities need not be strict, we have for example Bob 1/1, 2/10 and Al
1/2, 1/5. So Bob does better OR AS WELL as Al, while the total for Bob is 3/11, is
worse than the total for Al, 2/7. Under this assumption, the total number of questions
is 1+10+2+5=18<19.

Michael went on to say that these numbers can be represented as slopes of lines, i.e., the
slopes of the lines from (0,0) to (1,1) and (10,2) are great than those from (0,0) to (2,1)
and (5,1), while the slope of the line given by the vector sum of (1,1) and (10,2) is less
than that given by the vector sum of (2,1) and (5,1).

Lawrence: By allowing equality we could actually get it all the way down to 9 (e.g, Bob
1/1, 2/4; Al 1/2, 1/2) but almost every formulation of the problem that I have seen
maintains strict inequality.

Slopes of lines is one of many representations of problem that I complied in my chapter
in the 2001 NCTM yearbook, <http://www.statlit.org/pdf/2001LesserNCTM. pdf>

• 5322: Proposed by D.M. Bătinetu-Girugiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “G.E. Palade”, School, Buzău, Romania

If lim
n→∞

(
−3

2

3
√
n2 +

n∑

k=1

1
3
√
k

)
= a > 0, then compute lim

n→∞




−3

2

3
√
n2 +

n∑

k=1

1
3
√
k

a




3√n

.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Let [x] be the greatest integer not exceeding x. It is easy to prove by induction that for
positive integers n,

n∑

k=1

k−1/3 − 3

2
n2/3 = b+

1

2
n−1/3 +

1

3

∫ ∞

n

(
t− [t]− 1

2

)
t−4/3dt (1)
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where b = −
(

1

2
+

1

3

∫ ∞

1
(t− [t]) t−4/3dt

)
. The constant b is finite since

∣∣∣∣
∫ ∞

1
(t− [t]) t−4/3dt

∣∣∣∣ ≤
∫ ∞

1
t−4/3dt = 3. Moreover it is negative by (1), a = b. For

t ≥ 0, let f(t) =

∫ t

0

(
x− [x]− 1

2

)
dx. For any integer k, we have

∫ k+1

k

(
x− [x]− 1

2

)
dx = 0, and so f(t) = O(1). Integrating by parts, we see that the

integral in (1) equals
4

3

∫ ∞

n
f(t)t−7/3dt = O

(
n−4/3

)
. Hence by (1), we have

3
√
n lim
n→∞




−3

2

3
√
n2 +

n∑

k=1

1
3
√
k

a




= 3
√
n ln

(
1 +

1

2a
n−1/3 +O

(
n−4/3

))
=

1

2a
+O

(
n−1/3

)
,

as n→∞. It follows that the limit of the problem equals e1/2a.

Solution 2 by Nicusor Zlota “Traian Vuia” Technical College, Focsani,
Romania

We have the case of 1∞.

Denoting an = −3

2
3
√
n
2

+
n∑

k=1

1
3
√
k

, we may write the limit as:

l = lim
n→∞

(
1 +

an
a

) 3√n
= lim

n→∞

[(
1 +

an − a
a

) a
an−a

]an−a
a

3√n

= elimn→∞ an−a
a

3√n

For l1 = lim
n→∞

an − a
a

3
√
n =

1

a
lim
n→∞

an − a
1
3√n

, and by the Cesaro -Stolz lemma, we have

successively:

l1 =
1

a
lim
n→∞

an+1 − an
1

3√n+1
− 1

3√n
=

1

a
lim
n→∞

−3
2

3
√

(n+ 1)2 + 1
3√n+1

= 3
2

3
√
n

1
3√n+1

− 1
3√n

l1 =
1

2a
lim
n→∞

(
3n+ 1− 3 3

√
n2(n+ 1)

)
3
√
n

3
√
n+ 1− 3

√
n
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=
1

2a
lim
n→∞

(9n+ 1)
(

3
√
n(n+ 1)2 + 3

√
n2(n+ 1) + n

)

(3n+ 1)2 + (9n+ 3) 3
√
n2(n+ 1) + 9n 3

√
n(n+ 1)2

=
1

2a
.

Therefore the limit is l = 21/2a.

Generalization:

If lim
n→∞

(
− p

p− 1

p
√
np−1 +

n∑

k=1

1
p
√
k

)
= a > 0, and we wish to compute

lim
n→∞




− p
p−1

p
√
np−1 +

n∑

k=1

1
p
√
k

a




p√n

, p ∈ N, p ≥ 2

the answer is e1/(p−1)a and its proof is similar to the above.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Moti Levy, Rehovot,
Israel; Corneliu Mănescu-Avram, Transportation High School Ploiesti,
Romania, and the proposers.

• 5323: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n be a positive integer and let a1, a2, . . . , an be positive real numbers greater than or
equal to one. Prove that

(
1

n

n∑

k=1

ak

)−2
+

(
1

n2

n∏

k=1

a−2k

)(
n∑

k=1

(
a2k − 1

)1/2
)2

≤ 1.

Solution 1 by Moti Levy, Rehovot, Israel

Let p (x) = (x− 1)


x−

n∏

j=1

a2j


 . Then clearly p (x) ≤ 0 for 1 ≤ x ≤

n∏

j=1

a2j .

Every a2k, satisfies 1 ≤ a2k ≤
n∏

j=1

a2j , hence

p
(
a2k
)

=
(
a2k − 1

)

a2k −

n∏

j=1

a2j


 ≤ 0, 1 ≤ k ≤ n. (1)

Rearranging the terms in (1), we obtain,

1

a2k
+




n∏

j=1

a−2j


(a2k − 1

)
≤ 1, 1 ≤ k ≤ n. (2)

Taking average of both sides of (2), we get

1

n

n∑

k=1

1

a2k
+




n∏

j=1

a−2j



(

1

n

n∑

k=1

(
a2k − 1

)
)
≤ 1. (3)
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The power mean Mp (x1, . . . , xn), is a mean of the form

Mp (x1, . . . , xn) =

(
1

n

n∑

k=1

xpk

) 1
p

,

M0 (x1, . . . , xn) =

(
n∏

k=1

xk

) 1
n

.

The monotonicity property of the power mean is

if p < q, then Mp ((x1, . . . , xn)) ≤Mq ((x1, . . . , xn)) . (4)

By this property M 1
2
≤M1, hence

(
1

n

n∑

k=1

(
a2k − 1

) 1
2

)2

≤ 1

n

n∑

k=1

(
a2k − 1

)
. (5)

By (3) and (5),

1

n

n∑

k=1

1

a2k
+




n∏

j=1

a−2j



(

1

n

n∑

k=1

(
a2k − 1

) 1
2

)2

≤ 1. (6)

Since the function f (x) = 1
x2

is convex for x ≥ 1, then by Jensen’s inequality

1

n

n∑

k=1

1

a2k
≥ 1
(

1

n

n∑

k=1

ak

)2 . (7)

It follows from (6) and (7) that

1
(

1

n

n∑

k=1

ak

)2 +




n∏

j=1

a−2j



(

1

n

n∑

k=1

(
a2k − 1

) 1
2

)2

≤ 1.

Solution 2 by Kee-Wai Lau, Hong Kong, China

For k = 1, 2, . . . , n, let ak = sec bk, where 0 ≤ bk <
π

2
. Since the function secx is convex

for 0 <
π

2
, so

1

n

n∑

k=1

ak ≥ sec




n∑

k=1

bk

n




. By the concavity of the function sinx for

0 ≤ x < π

2
, we have

(
1

n

n∏

k=1

a−1k

)(
n∑

k=1

(a2k − 1)1/2

)
=

(
1

n

n∏

k=1

cos bk

)(
n∑

k=1

sin bk
cos bk

)
≤

n∑

k=1

sin bk

n
≤ sin




n∑

k=1

bk

n



.
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It follows that

(
1

n

n∑

k=1

ak

)−2
+

(
1

n2

n∏

k=1

a−2k

)(
n∑

k=1

(a2k − 1)1/2

)2

≤ cos2




n∑

k=1

bk

n




+sin2




n∑

k=1

bk

n




= 1,

as required.

Also solved by, Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy, and the proposer.

• 5324: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∞∑

n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that
N∑

n=1

n ln

(
1 +

1

n

)
=

N∑

n=1

n ln(n+ 1)−
N∑

n=1

n ln(n) =

N+1∑

n=1

(n− 1) ln(n)−
N∑

n=1

n ln(n)

= N ln(N + 1)−
N∑

n=1

ln(n) = N ln(N) +N ln

(
1 +

1

N

)
− ln(N !)

= N ln(N) + 1 +O

(
1

N

)
− ln

(√
2πN

)
−N ln(N) +N + o(1)

= N + 1− 1

2
ln(N)− 1

2
ln(2π) + o(1), as N →∞,

where we have used Stirling’s formula in the form N ! =
√

2πNNNe−N+o(1), as N →∞.
N∑

n=1

1 = N

N∑

n=1

1

2n
=

1

2
ln(N) +

γ

2
+ o

(
1

N

)
, as N →∞.

Collecting results we find that

N∑

n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
= N + 1− 1

2
ln(N)− 1

2
ln(2π)−N +

1

2
ln(N) +

γ

2
+ o(1)
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= 1− 1

2
ln(2π) +

γ

2
+ o(1), as N →∞, and so

∞∑

n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
= 1− 1

2
ln(2π) +

γ

2
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

∞∑

n=1

(
n ln

(
1 +

1

n

)
− 1 +

1

2n

)
= lim

N→∞

∞∑

n=1

(
n ln (n+ 1)− n lnn− 1 +

1

2n

)

= lim
N→∞

N∑

n=1

(
(n+ 1) ln (n+ 1))− n lnn− ln(n+ 1)− 1 +

1

2n

)

= lim
N→∞

N∑

n=1

(n+ 1) ln(n+ 1)− n lnn)− lim
N→∞

N∑

n=1

ln(n+ 1)− lim
N→∞

N∑

n=1

1 + lim
N→∞

N∑

n=1

1

2n

= lim
N→∞

(N + 1) ln(N + 1)− lim
N→∞

(ln(N + 1)!)− lim
N→∞

lnN +
1

2
lim
N→∞

N∑

n=1

1

n

= lim
N→∞

(
ln(N + 1)N − ln(N !)− ln(eN )

)
+

1

2
lim
N→∞

N∑

n=1

1

n

= lim
N→∞

ln
(N + 1)N

N !eN
+

1

2
lim
N→∞

N∑

n=1

1

n

= lim
N→∞

ln

(N + 1)N

NN
NN
√
N

1√
N

N !eN
+

1

2
lim
N→∞

N∑

n=1

1

n

= lim
N→∞

ln

(
1 +

1

N

)N

NN
NN
√
N

1√
N

N !eN
+

1

2
lim
N→∞

N∑

n=1

1

n

= lim
N→∞

(
ln

((
1 +

1

N

)N)
+ ln

NN
√
N

N !eN
+ ln

1√
N

)
+

1

2
lim
N→∞

N∑

n=1

1

n

= ln lim
N→∞

(
1 +

1

N

)N
+ ln lim

N→∞
NN
√
N

N !eN
+

1

2
lim
N→∞

(
N∑

n=1

1

n
− lnN

)
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= ln e+ ln

(
1√
2π

)
+
γ

2

=
1

2
(2− ln(2π) + γ) ,

where we have used the Stirling approximation for N ! and where γ is the
Euler-Mascheroni constant.

Also solved by Ed Gray, Highland Beach, FL; G.E. Greubel, Newport News,
VA; Moti Levy, Rehovot, Israel; Kee-Wai Lau, Hong Kong, China; Corneliu
Mănescu-Avram, Transportation High School Ploiesti, Romania; Paolo
Perfetti, Department of Mathematics, Tor Vergata Roma University, Rome,
Italy, and the proposer.

Late Solutions, Comments, and an Announcement

A late solution to problem #5316 was received from Raymon M. Melone of
Waynesburg University, Waynesburg, PA.

Comment by Titu Zvonaru, Comănesti, Romania. Solution 4 of problem #5317 is
incorrect, because inequality (2) in the solution does not hold. For example: If

n = 3, bs+2
1 = 6, bs+2

2 = 9, bs+2
3 = 3, a1 =

1

6
, a2 =

1

2
and a3 =

1

3

then the LHS= 36 + 18 + 9+ = 63, while the RHS=
1

3
(6 + 2 + 3) (6 + 9 + 3) = 66.

The Chebyschev inequality maybe applied only if the sequences are both ascending or
both descending. Of course, we may assume that one of the sequences is ascending but
this assumption does not imply that the second sequence is also ascending:

b1 ≥ b2 ≥ · · · ≥ bn 6=⇒ a1 ≥ a2 ≥ · · · ≥ an.

For example, the inequality

n∑

k=1

bs+2
k ≥ 1

n

(
n∑

k=1

bk

)(
n∑

k=1

bs+1
k

)

is correct.

Announcement: Following is part of a letter that was received from Don Allen of
Brossard, Canada. Don has agreed that I may distribute his pdf file and an
accompanying article entitled “The verse problems of early American arithmetics” to
anyone who is interested in receiving them. Please send your requests to me at
<eisenbt@013.net>

—————————-

Dear Professor Eisenberg:
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When we corresponded in late October, I related how SSM program 5314 had reminded
me of the more challenging problems routinely posed in nineteenth-century school
algebra and arithmetic texts, which I had searched through in a then-uncatalogued
collection at the United States university when I was completing doctoral studies –
Rutgers, in New Jersey. I copied hundreds of such early “word problems” (authors had
been copying one another for decades), and used many of them as challenges for
teachers and for abler students. When I was working in Canada’s Eastern Arctic
decades later, I assembled some of the more satisfying teacher columns that I had
prepared for such problems and their suggested solutions, and shared them with able,
interested students and their parents on an evening at the library/museum of an
appropriate arctic community. I recently located the original of the 30-page handout, I
would like to put them at your disposal. You may print any you wish, and use in SSM
any you feel appropriate and desirable.

Cordially,

Don Allen
Brossard, Canada
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2015

• 5343: Proposed by Kenneth Korbin, New York, NY

Four different Pythagorean Triangles each have hypotenuse equal to 4p4 + 1 where p is
prime.

Express the sides of these triangles in terms of p.

• 5344: Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan

Let 4ABC be isosceles with AB = AC. Let D be a point on side BC. A line through
point D intersects rays AB and AC at points E and F respectively. Prove that
ED ·DF ≥ BD ·DC.

• 5345: Proposed by Arkady Alt, San Jose, CA

Let a, b > 0. Prove that for any x, y the following inequality holds

|a cosx+ b cos y| ≤
√
a2 + b2 + 2ab cos(x+ y),

and find when equality occurs.

• 5346: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Show that in any triangle ABC, with the usual notations, the following hold,

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c ≥ 2s2,

where ra is the excircle tangent to side a of the triangle and s is the triangle’s
semiperimeter.

• 5347: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let 0 < a < b be real numbers and let f, g : [a, b]→ R∗+ be continuous functions. Prove
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that there exists c ∈ (a, b) such that

(
1

f(c)
+

1
∫ b
c g(t) dt

) (
g(c) +

∫ c

a
f(t) dt

)
≥ 4

(R∗+ represents the set of non-negative real numbers.)

• 5348: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k ≥ 1 be an integer. Prove that

∫ 1

0
lnk(1− x) lnx dx = (−1)k+1k!(k + 1− ζ(2)− ζ(3)− · · · − ζ(k + 1)),

where ζ denotes the Riemann zeta function.

Solutions

• 5325: Proposed by Kenneth Korbin, New York, NY

Given the sequence x = (1, 7, 41, 239, 1393, 8119, . . . ), with xn = 6xn−1 − xn−2.

Let y =
x2n + x2n−1

xn
. Find an explicit formula for y expressed in terms of n.

Solution by 1 D.M. Bătinetu-Giurgiu, National College “Matei Basarab,”
Bucharest, Romania

The recurrence sequence xn has the equation r2 − 6r + 1 = 0 with solutions

r1 =
(√

2 + 1
)2
, r2 =

(√
2− 1

)2
, so

xn = urn1 + vrn2 =
(√

2 + 1
)2n

u+
(√

2− 1
)2n

v,

and because x1 = 1, x2 = 7 yields that

(u, v) =

(√
2− 1

2
,−
√

2 + 1

2

)
.

Therefore,

xn =

(√
2 + 1

)2n−1 −
(√

2− 1
)2n−1

2
, and

yn =
x2n + x2n−1

xn
= 2
√

2

((√
2 + 1

)2n−1
+
(√

2− 1
)2n−1)

,
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and we are done.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

In our solution to Problem 5308 (see Dec. 2014 issue of this column ), we used the
techniques for solving homogeneous linear difference equations to show that the closed
form expression for xn is

xn =

(√
2 + 1

)2n−1 −
(√

2− 1
)2n−1

2

for all n ≥ 1. It follows that for all n ≥ 1,

x2n + x2n−1 =

(√
2 + 1

)4n−1 −
(√

2− 1
)4n−1

2
+

(√
2 + 1

)4n−3 −
(√

2− 1
)4n−3

2

=

(√
2 + 1

)4n−3 [(√
2 + 1

)2
+ 1
]
−
(√

2− 1
)4n−3 [(√

2− 1
)2

+ 1
]

2

=

(√
2 + 1

)4n−3 [
2
(
2 +
√

2
)]
−
(√

2− 1
)4n−3 [

2
(
2−
√

2
)]

2

=
(√

2 + 1
)4n−3 (

2 +
√

2
)
−
(√

2− 1
)4n−3 (

2−
√

2
)

=
√

2

[(√
2 + 1

)4n−2
−
(√

2− 1
)4n−2]

=
√

2

[(√
2 + 1

)2n−1
+
(√

2− 1
)2n−1] [(√

2 + 1
)2n−1

−
(√

2− 1
)2n−1]

= 2
√

2xn

[(√
2 + 1

)2n−1
+
(√

2− 1
)2n−1]

.

Therefore,

y =
x2n + x2n−1

xn

= 2
√

2

[(√
2 + 1

)2n−1
+
(√

2− 1
)2n−1]

for all n ≥ 1.

Solution 3 by G. C. Greubel, Newport News, VA
First consider the difference equation

xn+2 = 6xn−1 − xn (1)

which has the general solution xn = Aa2n +Bb2n where a = 1 +
√

2 and b = 1−
√

2. For
the initial conditions x0 = 1 and x1 = 7 the sequence xn has the solution xn = Q2n+1/2,
where Qn are the Pell-Lucas numbers with the recurrence relation Qn+2 = 2Qn+1 +Qn.
The element x2n+1 + x2n−1 can be determined to be 4P4n, where Pn are the Pell
numbers. This leads to the desired quantity being sought as

yn =
8P4n

Q2n+1
. (2)
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Comment by Henry Ricardo, New York Math Circle, NY. The numbers xn in
the proposed problem are the NSQ numbers (named for Newman, Shanks, and
Williams, authors of an influential 1980 group theory paper.) The On-Line Encyclopedia
of Integer Sequences (OEIS) lists the sequence as entry A002315 and gives the formula
(without proof)

xn =
(1 +

√
2)(3 + 2

√
2)n + (1−

√
2)(3− 2

√
2)n

2
=

(1 +
√

2)2n+1 + (1−
√

2)2n+1

2
,

for non-negative integers n. In addition to many comments on the sequence itself, the
connection between this sequence and other OEIS entries are also pointed out.

Also solved by Arkady Alt, San Jose, CA; Brian D. Beasley, Presbyterian
College, Clinton, SC; Bruno Salgueiro Fanego, Viveiro, Spain; Ethan Gegner
(student at Taylor University), Upland IN; Ed Gray, Highland Beach, FL;
Paul M. Harms, North Newton, KS; Tsvetelina Karamfilova, Petko Rachov
Slaveikov Secondary School, Kardzhali, Bulgaria; Kee-Wai Lau, Hong Kong,
China; Moti Levy, Rehovot, Israel; Carl Libis of the University of Tennessee
at Martin, TN; David E. Manes, SUNY College at Oneonta, Oneonta, NY;
Corneliu Mănescu-Avram, Transportation High School Ploiesti, Romania;
Angel Plaza, Universidad de Las Palmas, de Gran, Canaria, Spain; Henry
Ricardo, New York Math Circle, NY; Neculai Stanciu, “George Emil Palade
School,” Buzău, Romania (jointly with) Titu Zvonaru, Comănesti, Romania;
David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA; Albert Stadler, Herrliberg, Switzerland,

• 5326: Proposed by Armend Sh. Shabani, University of Prishtina, Republic of Kosova

Find all positive integer solutions to m! + 24k−1 = l2.

Solution 1 by Ed Gray, Highland Beach, FL

We note that 2(4k−1) always seems to end with the integer 8 for all values of k. We
prove this by induction. The statement is obviously true for k = 1. Assume that the
statement is true for all positive integers up to and including k. I.e. 2(4k−1) ends in with
the integer 8. Does this 2(4k−1) imply that 2(4(k+1)−1) also ends with the integer 8?

2(4(k+1)−1) = 2(4k+3) = 24
(

2(4k−1)
)

= 16
(

2(4k−1)
)
.

But by the induction hypothesis, 2(4k−1) ends with integer 8 and so 16
(
2(4n−1)

)
also

ends with the integer 8.

Now we note that for all integers m ≥ 5, the integer m! ends with the integer 0. So,
m! + 2(4k−1) ends in 8 for all integers m ≥ 5. But there is no square number whose units
digit is 8. So if there are any integer solutions to m! + 24k−1 = l2, the value of the
positive integer m must be 1, 2, 3, or 4.

If m = 4, then m! = 24 ends in a 4 and so m! + 24k−1 ends with the unit’s digit in 4+8,
so l2 must end in 2, but there is no integer whose square ends with a 2 So m 6= 4.
If m = 3, then m! = 6 and so m! + 24k−1 ends with a unit’s digit of 6+8. That is, the
units digit of l2 must be 4, which implies that l must be even. Suppose that l = 2r. Then

6 + 24k−1 = l2
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6 + 24k−1 = (2r)2

6 + 24k−1 = 4r2

But 4 divides the right hand side and 4 divides 24k−1, but 4 does not divide 6 so, m 6= 3.

If m = 2, then m! = 4 and so m! + 24k−1 ends with a unit’s digit of 2, but there is no
integer square has a units digit of 2. So,m 6= 2.

Finally, if m = 1 then m! + 24k−1 becomes

1 + 24k−1 = l2

24k−1 = l2 − 1

24k−1 = (l − 1)(l + 1).

So, both factors (l − 1) and (l + 1) must be a power of 2.

Let l − 1 = 2a and l + 1 = 2b. Subtracting gives 2 = 2b − 2a whose only solution is b = 2
and a = 1. So l − 1 = 21 = 2 and l + 1 = 22

Since

24k−1 = (l − 1)(l + 1)

24k−1 = (2)(4)

24k−1 = (23), so,

k = 1.

The only solution to m! + 24k−1 = l2 is when m = 1, k = 1 and l = 3.

Solution 2 by Jerry Chu, (student at Saint George’s School), Spokane, WA

We note that 24k−1 mod 3 is 2. And l2 mod 3 is either 0 or 1. So, m! must not be a
multiple of 3. Therefore, m = 1 or 2.

When m = 1, 24k−1 = l2 − 1 = (l + 1)(l − 1).

Because (l − 1) and (l + 1) can only be powers of 2, l must equal 3. So
m = 1, k = 1, l = 3.

When m = 2, we take all terms mod 4 and see that 2 + 0 = 0 + 1, which is impossible.

Therefore the only solution is m = 1, k = 1, l = 3.

Solution 3 by Adnan Ali (student in A.E.C.S-4), Mumbai, India

Assume that for m ≥ 3, there exist solutions. Then putting the equation modulo 3, we
see that

l2 = m! + 24k−1 ≡ (−1)4k−1 ≡ −1 (mod 3)
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but −1 is not a quadratic residue modulo 3. So we conclude that m ≤ 2. But now we
may assume that there is a solution for m = 2, then we simply realize the fact that

l2 = 2! + 24k−1 ≡ 2 + 0 (mod 4),

and since 2 is not a quadratic residue modulo 4, we are left with the only option m = 1.
So, we have

24k−1 + 1 = l2 ⇔ (l + 1)(l − 1) = 24k−1

and so we must have both l+ 1, l− 1 as powers of 2, so we let l+ 1 = 2a > l− 1 = 2b for
integers a, b so that a+ b = 4k+ 1 and see that 2a − 2b = 2 = 2b(2a−b − 1) forcing 2b = 2
and 2a−b − 1 = 1 which has the only solution (a, b) = (2, 1) and 2 + 1 = 3 = 4k − 1
implies that k = 1.
So we conclude that the only possible solution is (l,m, k) = (3, 1, 1).

Solution 4 by Henry Ricardo, New York Math Circle, NY

The triple (m, k, l) = (1, 1, 3) is the only solution in positive integers.

To prove this assertion, we use the following easily established facts: (1) 24k−1 ≡ 8
(mod 10) for positive integers k; (2) If l2 ≡ r (mod 10), then r ∈ S = {0, 1, 4, 5, 6, 9}.
First, if m ≥ 5, then m! ≡ 0 (mod 10) so that m! + 24k−1 ≡ 8 (mod 10). But 8 /∈ S.
Thus 1 ≤ m < 5.

If m = 2, then N = m! + 24k−1 = 2(1 + 24k−2), which can’t be a perfect square since
1 + 24k−2 is odd, implying that the prime divisor 2 does not appear with an even
exponent in the prime power factorization of N . Similarly, if m = 3, then
m! + 24k−1 = 2(3 + 24k−2), which can’t be a perfect square.

Finally, we eliminate m = 4 since m! + 24k−1 = 24 + 24k−1 ≡ 4 + 8 ≡ 2 (mod 10) and
2 /∈ S.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Brian D. Beasley, Presbyterian College,
Clinton, SC; Ethan Gegner (student, Taylor University), Upland, IN; Paul
M. Harms, North Newton, KS; Bruno Salgueiro Fanego, Viveiro, Spain;
Jahangeer Kholdi and Farideh Firoozbakht, University of Isfahan, Khansar,
Iran; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY College at
Oneonta, Oneonta, NY; Corneliu Mănescu-Avram, Transportation High
School Ploiesti, Romania; Haroun Meghaichi (student, University of Science
and Technology Houari Boumediene), Algeria; Neculai Stanciu, “George
Emil Palade School,” Buzău, Romania (jointly with) Titu Zvonaru,
Comănesti, Romania; Albert Stadler, Herrliberg, Switzerland, and the
proposer.

• 5327: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Show that in any triangle ABC, with the usual notations, that

(
ab

a+ b

)2

+

(
bc

b+ c

)2

+

(
ca

c+ a

)2

≥ 9r2.
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Solution 1 by Kee-Wai Lau, Hong Kong, China

By the Cauchy-Schwarz inequality, we have

(
ab

a+ b

)2

+

(
bc

b+ c

)2

+

(
ca

c+ a

)2

≥ 1

3

(
ab

a+ b
+

bc

b+ c
+

ca

c+ a

)2

.

Hence it suffices to show that

ab

a+ b
+

bc

b+ c
+

ca

c+ a
≥ 3
√

3r. (1)

Let s be the semiperimeter and F the area of triangle ABC. It is well known that

F = rs =
ab sinC

2
=
bc sinA

2
=
ca sinB

2
. So (1) is equivalent to

(a+ b+ c)

(
1

(a+ b) sinC
+

1

(b+ c) sinA
+

1

(c+ a) sinB

)
≥ 3
√

3. (2)

Let S1 =
1

sinA
+

1

sinB
+

1

sinC
and S2 =

a

sinA(b+ c)
+

b

sinB(c+ a)
+

c

sinC(a+ b)
so

that the left side of (2) can be written as S1 + S2. By the convexity of the function

1

sinx
, for 0 < x < π, we have S1 ≥ 3

(
1

sin
(
A+B+C

3

)
)

= 2
√

3. By the sine formula,

we have

S2 =
1

sinB + sinC
+

1

sinC + sinA
+

1

sinA+ sinB

=
1

2

(
1

sin
(
B+C
2

)
cos
(
B−C
2

) +
1

sin
(
C+A
2

)
cos
(
C−A
2

) +
1

sin
(
A+B
2

)
cos
(
A−B
2

)
)

≥ 1

2

(
1

sin
(
B+C
2

) +
1

sin
(
C+A
2

) +
1

sin
(
A+B
2

)
)

=
1

2

(
sec

(
A

2

)
+ sec

(
B

2

)
+

(
C

2

))
.

Hence by the convexity of the function secx for 0 < x <
π

2
, we have

S2 ≥
3

2
sec

(
A+B + C

6

)
=
√

3.

Thus (2) holds and this completes the solution.
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Solution 2 by Perfetti Paolo, Department of Mathematics, University Tor
Vergata, Rome, Italy

The Cauchy–Schwarz inequality yields

(
ab

a+ b

)2

+

(
bc

b+ c

)2

+

(
ca

c+ a

)2

≥ (ab+ bc+ ca)2

(a+ b)2 + (b+ c)2 + (c+ a)2
≥ 9r2.

where r =
√

(s− a)(s− b)(s− c)/s, and s = (a+ b+ c)/2.

Letting x = (b+ c− a)/2, using the symmetry in the statement of the problem and upon
clearing the denominators we obtain

1

A

∑

sym

(
17x3y2 +

1

2
x5 + 7x4y − 9x3yz − 31

2
x2y2z

)
≥ 0

and A = (3(x2 + y2 + z2) + 5(xy + yz + zx))(x+ y + z) > 0. Muirhead’s theorem
concludes the proof. Indeed

[3, 2, 0] � [2, 2, 1], [5, 0, 0] � [3, 1, 1], [4, 1, 0] � [3, 1, 1]

The underlying AGM’s are

x3y2 + x3z3 ≥ 2x3yz, 3x5 + y5 + z5 ≥ 5x3yz, 9x4y + y4z + 3z4x ≥ 13x3yz

and symmetry.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; Moti Levy, Rehovot, Israel; Nikos
Kalapodis (four solutions), Patras, Greece; Albert Stadler, Herrliberg,
Switzerland; Nicusor Zlota (two solutions) “Traian Vuia” Technical College,
Focsani, Romania, and the proposer.

• 5328: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, find the positive solutions of the equation

2x+1
(

1−
√

1 + x2 + 2x
)

=
(
x2 + 2x

) (
1−

√
1 + 2x+1

)
.

Solution 1 by Junho Chang, Colegio Hispano-Inglés, and Ángel Plaza,
Universidad de Las Palmas de Gran Canaria, Spain

Multiplying both terms of the given equation by
(

1 +
√

1 + x2 + 2x
)(

1 +
√

1 + 2x+1
)

and simplifying we obtain
√

1 + 2x+1 =
√

1 + x2 + 2x

2x+1 = x2 + 2x

2x = x2.

Taking logarithms, the last equation may be written as
lnx

x
=

ln 2

2
. Let us consider the

function f(x) =
lnx

x
defined for positive real numbers x. Since f ′(x) =

1− lnx

x2
, f(x) is
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increasing for x ∈ (0, e) and it is decreasing for x ∈ (e,+∞). Since lim
x→0+

f(x) = −∞, and

f(e) = 1/e > ln 2/2 there is a unique root to the equation
lnx

x
=

ln 2

2
in (0, e), which is

x = 2. Also, since lim
x→+∞

f(x) = 0, there is a unique root to the equation
lnx

x
=

ln 2

2
in

(e,+∞), which is x = 4. So, x = 2 and 4 are the only positive solutions to the problem.

Solution 2 by Haroun Meghaichi (student, University of Science and
Technology Houari Boumediene), Algeria

For convenience we set a = 2x+1, b = x2 + 2x then (1) is equivalent to

a
(

1−
√

1 + b
)

= b
(
1−
√

1 + a
)
⇔ ab

1 +
√

1 + b
=

ab

1 +
√

1 + a
.

Since ab 6= 0, we get

1

1 +
√

1 + b
=

1

1 +
√

1 + a
=⇒ 1 +

√
1 + b = 1 +

√
1 + a

=⇒ a = b

Which means that 2x+1 = 2x + x2 then 2x taking ln of both sides we get

lnx

x
=

ln 2

2
, x > 1

Let f : (1,∞) 7→ R be defined by f(x) = lnx
x − ln 2

2 , then f ′(x) = x−2(1− lnx) then f
cannot have more than two roots (since f increases on (1, e) and decreases on (e,+∞))
and since 2, 4 are obvious roots we conclude that the only positive solutions to the
equation (1) are 2, 4.

Also solved by Adnan Ali (student in A.E.C.S-4), Mumbai, India; Arkady
Alt, San Jose, CA; Dionne Bailey, Elsie Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX; Jerry Chu, (student at Saint
George’s School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain; Ed
Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Jahangeer
Kholdi and Farideh Firoozbakht, University of Isfahan, Khansar, Iran;
Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; David E.
Manes, SUNY College at Oneonta, Oneonta, NY; Paolo Perfetti,
Department of Mathematics, University Tor Vergata, Rome, Italy; Henry
Ricardo, New York Math Circle, NY; Neculai Stanciu, “George Emil Palade
School,” Buzău, Romania (jointly with) Titu Zvonaru, Comănesti, Romania;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

• 5329: Proposed by Arkady Alt, San Jose, CA

Find the smallest value of
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
where real x, y, z > 0 and

xy + yz + zx = 1.

Solution 1 by Kee-Wai Lau, Hong Kong, China
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Since

x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2

=
1

2

((
2x− y +

y(x− y)2

x2 + y2

)
+

(
2y − z +

z(y − z)2
y2 + z2

)
+

(
2z − x+

x(z − x)2

z2 + x2

))

≥ 1

2
((2x− y) + (2y − z) + (2z − x))

=
x+ y + z

2

=
1

2
√

2

√
6(xy + yz + zx) + (x− y)2 + (y − z)2 + (z − x)2

=
1

2
√

2

√
6

=

√
3

2
,

and equality holds when x = y = z =
1√
3

, so the smallest value required is

√
3

2
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Since real x, y, z > 0 and xy + yz + zx = 1, there is an acute triangle ABC such that
cotA = x, cotB = y and cotC = z so

x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2

= cotA− cotA cot2B

cot2A+ cot2B
+ cotB − cotB cot2C

cot2B + cot2C
+ cotC − cotC cot2A

cot2C + cot2A

≥ cotA+ cotB + cotC − cotA cot2B

2 cotA cotB
− cotB cot2C

2 cotB cotC
− cotC cot2A

2 cotC cotA

=
1

2
(cotA+ cotB + cotC)

≥
√

3

2

with equality iff cotA = cotB = cotC and A = B = C = π/3, that is iff

x = y = z =
1√
3

,
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where we have used that cotA, cotB > 0, (cotA− cotB)2 ≥ 0 with equality iff
cotA = cotB and cyclically, and inequality 2.38 page 28, Geometric Inequalities,
Bottema O., Djordjević, R.Z̆., Janić, R.R., Mitrinović, D.S. Vasić, P.M.,
Wolters-Noordhoff, , Groningen, 1969.

Solution 3 by Henry Ricardo, New York Math Circle, NY

The AGM inequality gives us

x3

x2 + y2
= x− xy2

x2 + y2
≥ x− xy2

2xy
= x− y

2
.

Similarly, we get

y3

y2 + z2
≥ y − z

2
and

z3

z2 + x2
≥ z − x

2
.

Adding these three inequalities, we see that

f(x, y, z) =
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
≥ x+ y + z

2
. (A)

Now we have

(x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = x2 + y2 + z2 + 2,

so x+ y + z =
√
x2 + y2 + z2 + 2 ≥

√
3, where we have used the well-known

inequality x2 + y2 + z2 ≥ xy + yz + zx.

Thus f(x, y, z) ≥
√

3

2
, with equality if and only if x = y = z = 1/

√
3.

Editor′s comment : The author also provided a second solution to the above problem.
It starts off exactly as the one above up until statement A. Then:

f(x, y, z) =
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
≥ x+ y + z

2
=

3

2

(
x+ y + z

3

)

≥ 3

2

(
xy + yz + zx

3

)1/2

=
3

2
√

3
=

√
3

2
.

Thus f(x, y, z) ≥
√

3

2
, with equality if and only if x = y = z = 1/

√
3.

Solution 4 by Albert Stadler, Herrliberg, Switzerland

Suppose that xy + y + zx = 1. We claim that

x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
≥
√

3

2
, (1)

with equality if and only if x = y = z =
1√
3

. By homogeneity, (1) is equivalent to the

unconditional inequality

1√
xy + yz + zx

(
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
≥
√

3

2

)
. (2)
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We first note that

(x+ y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx ≥ 3 (xy + yz + zx) ,

since by the Cauchy-Schwarz Inequality, x2 + y2 + z2 ≥ xy + yz + zx, with equality if
and only if x = y = z.

So

1√
xy + yz + zx

(
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2

)
≥

√
3

x+ y + z

(
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2

)
.

To prove (2) it is therefore enough to prove that

1

x+ y + z

(
x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2

)
≥ 1

2
(3)

with equality if and only if x = y = z.

Clearing denominators we see that (3) is equivalent to

∑

cycl

x5y2 +
∑

cycl

x2y5 +
∑

cycl

x4y3 ≥
∑

cycl

x3y4 +
∑

cycl

x4y2z +
∑

cycl

x4yz2. (4)

By the weighted AM-GM inequality,

1

2
x2y2 +

1

2
x4y3 ≥ x3y4,

3

19
x2y5 +

2

19
y3z5 +

14

19
z2x5 ≥ x4yz2,

1

2
x5y2 +

1

2
x3z4 ≥ x4yz2,

10

19
x5y5 +

3

76
y5z2 +

7

38
z5x2 +

1

4
x4y3 ≥ x4y2z.

We conclude that

1

2

∑

cycl

x2y5 +
1

2

∑

cycl

x4y3 ≥
∑

cycl

x3y4, (5)

1

2

∑

cycl

x2y5 =
1

2


 3

19

∑

cycl

x2y5 +
2

19

∑

cycl

y2z5 +
14

19

∑

cycl

z2x5


 ≥ 1

2

∑

cycl

x4yz2, (6)

1

4

∑

cycl

x5y2 +
1

4

∑

cycl

x4y3 =
1

4

∑

cycl

x5y2 + 14
∑

cycl

x3z4 ≥ 1

2

∑

cycl

x4yz3, (7)
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3

4

∑

cycl

x5y2 +
1

4

∑

cycl

x4y3 =
10

19

∑

cycl

x5y2 +
3

76

∑

cycl

x5z2 +
7

38

∑

cycl

z5x2 +
1

4

∑

cycl

x4y3 ≥ 4
∑

cycl

x4y2z. (8)

Condition (4) follows by adding (5),(6),(7), and (8). Equality holds if and only if
x = y = z. (This is the equality condition for weighted AM-GM inequalities.)

Also solved by Adnan Ali (student, in A.E.C.S-4), Mumbai, India; Michael
Brozinsky, Central Islip, NY; Ed Gray, Highland Beach, FL; Moti Levy,
Rehovot, Israel; Paolo Perfetti, Department of Mathematics, Tor Vergata
Roma University, Rome, Italy; Neculai Stanciu, “George Emil Palade
School,” Buzău, Romania (jointly with) Titu Zvonaru, Comănesti, Romania;
Nicusor Zlota (plus a generalization) “Traian Vuia” Technical College,
Focsani, Romania, and the proposer.

• 5330: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let B(x) =

(
x 1
1 x

)
and let n ≥ 2 be an integer.

Calculate the matrix product
B(2)B(3) · · ·B(n).

Solution 1 by Neculai Stanciu, “George Emil Palade School,” Buzău,
Romania (jointly with) Titu Zvonaru, Comănesti, Romania

We denote A(n)=B(1)B(2). . . B(n). We have

A(1) =

(
1 1
1 1

)
, A(2) =

(
1 1
1 1

)(
2 1
1 2

)
=

(
3 3
3 3

)
.

We assume that

A(n) =




(n+ 1)!

2

(n+ 1)!

2

(n+ 1)!

2

(n+ 1)!

2


 . (1)

Since

A(n) =




(n+ 1)!

2

(n+ 1)!

2

(n+ 1)!

2

(n+ 1)!

2






n+ 1 1

1 n+ 1


 =




(n+ 2)!

2

(n+ 2)!

2

(n+ 2)!

2

(n+ 2)!

2


 ,

we have shown, by mathematical induction that (1) holds for all integers n ≥ 2.

Solution 2 by Moti Levy, Rehovot, Israel

Let B(x) = xI +A, where A is an involute matrix (i.e., A2 = I).
Let Pn = B (2)B (3) · · ·B (n).
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Since A is an involute matrix then

Pn = αnI + βnA,

P2 = 2I +A.

Pn+1 = PnB(n+ 1) = (αnI + βnA) ((n+ 1) I +A) .

A recurrence formula for αn, βn is

αn+1 = (n+ 1)αn + βn

βn+1 = (n+ 1)βn + αn

α2 = 2, β2 = 1.

Let xn = αn − βn and yn = αn + βn, then

xn+1 = nxn,

yn+1 = (n+ 2) yn,

x2 = 1, y2 = 3.

The solution for xn, yn is

xn = (n− 1)!, yn =
1

2
(n+ 1)!.

Solving for αn, βn,

αn =
1

4
(n+ 1)! +

1

2
(n− 1)!,

βn =
1

4
(n+ 1)!− 1

2
(n− 1)!.

For any involutory matrix A,

Pn =

(
1

4
(n+ 1)! +

1

2
(n− 1)!

)
I +

(
1

4
(n+ 1)!− 1

2
(n− 1)!

)
A.

For the special case A =

(
0 1
1 0

)
, the solution is

B (2)B (3) · · ·B (n) =

(
1
4 (n+ 1)! + 1

2 (n− 1)! 1
4 (n+ 1)!− 1

2 (n− 1)!
1
4 (n+ 1)!− 1

2 (n− 1)! 1
4 (n+ 1)! + 1

2 (n− 1)!

)
.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie, Angelo State University, San Angelo, TX; Brian D.
Beasley, Presbyterian College, Clinton, SC; Jerry Chu (student at Saint
George’s School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain;
Ethan Gegner (student at Taylor University), Upland IN; Ed Gray,
Highland Beach, FL; G. C. Greubel, Newport News, VA; Jahangeer Kholdi
and Farideh Firoozbakht, University of Isfahan, Khansar, Iran; Kee-Wai
Lau, Hong Kong, China; Carl Libis of the University of Tennessee at Martin,
TN; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Haroun
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Meghaichi (student, University of Science and Technology Houari
Boumediene), Algeria; Corneliu Mănescu-Avram, Transportation High
School Ploiesti, Romania; Henry Ricardo, New York Math Circle, NY;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA; Aoxi Yao (student at Saint
George’s School), Spokane, WA; Ricky Wang, (student at Saint George’s
School), Spokane, WA, and the proposer.

Late Solutions

A late solution was received to problem #5319 and to 5321 by Adnan Ali (student in
A.E.C.S-4), Mumbai, India.

Solutions to problems 5322, 5323 and 5324 were received from Arkady Alt of San
Jose, CA. They were received on time but misfiled by me, and his name was
inadvertently not listed as having solved these problems in the February 2015 issue of
the column. Arkady, I am sorry; mea culpa (once again.)

Solutions to problems 5313, 5314, 5315, and 5318 were also received from Carl Libis of
the University of Tennessee at Martin, TN. They too were received on time but
misfiled by me–again, mea culpa.

Solutions 5320 and to 5322 were also submitted on time by Albert Stadler of
Herrliberg, Switzerland, and inadvertently and misfiled by me.

And for the files submitted by Moubinool Omarjee of Lyce Henri IV, Paris,
France my computer of its own accord, placed them into a “junk file.” But he deserves
credit for having solved problems 5257, 5269, 5275, 5276, and 5281.

To Albert and to Moubinool, and to all others for whom this might have also happened,
mea culpa.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2015

• 5349: Proposed by Kenneth Korbin, New York, NY

Given angle A with sinA =
5

13
. A circle with radius 1 and a circle with radius x are each

tangent to both sides of the angle. The circles are also tangent to each other. Find x.

• 5350: Proposed by Kenneth Korbin, New York, NY

The four roots of the equation

x4 − 96x3 + 206x2 − 96x+ 1 = 0

can be written in the form

x1,2 =

(√
a+

√
b+
√
c

√
a−

√
b+
√
c

)±1

x3,4 =

(√
a+

√
b−√c

√
a−

√
b−√c

)±1

where a, b, and c are positive integers.

Find a, b, and c if (a, b, c) = 1.

• 5351: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Let x, y, z be positive real numbers. Show that

xy

x3 + y3 + xyz
+

yz

y3 + z3 + xyz
+

zx

z3 + x3 + xyz
≤ 3

x+ y + z
.

• 5352: Proposed by Arkady Alt, San Jose, CA

Evaluate
n∑
k=0

xk − (x− 1)

n−1∑

k=0

(k + 1)xn−1−k.
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5353: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let A(z) =
n∑

k=0

akz
k be a polynomial of degree n with complex coefficients. Prove that

all its zeros lie in the disk D = {z ∈ C : |z| < r}, where

r =



1 +

(
n−1∑

k=0

∣∣∣∣
ak
an

∣∣∣∣
3
)1/2





2/3

• 5354: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c > 0 be real numbers. Prove that the series

∞∑

n=1

[
n ·
(
a

1
n − b

1
n + c

1
n

2

)
− ln

a√
bc

]
,

converges if and only if 2 ln2 a = ln2 b+ ln2 c.

Solutions

• 5331: Proposed by Kenneth Korbin, New York, NY

Given equilateral 4ABC with cevian CD. Triangle ACD has inradius 3N + 3 and
4BCD has inradius N2 + 3N where N is a positive integer.

Find lengths AD and BD.

Solution 1 by Ed Gray, Highland Beach, FL

Referring to the diagram, we can derive an equation which relates N and the angle a
defined as the bisector of ∠ADO. (Points O and P are the centers of the incircles.

120-a

120-a

E

30+a

30+a

90-a

90-a

a-30

a-30

60-a
60-a60

60

30
30

6060

30 30

N2+3N

N2+3N

N2+3N

3N+3

3N+3 3N+3

a

a

a

a

H

FD

G

J

I

C

B

A
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It is seen from the diagram that IC = AG = AE + ED +DG.

1) tan 30 =
3N + 3

AE
, so

2) AE =
√

3(3N + 3)

3) tan a =
3N + 3

ED
, so

4) ED =
3N + 3

tan a

5) tan a =
DG

N2 + 3N

6) DG = (N2 + 3N) tan a

Adding 2), 4), and 6)

7) AG = (3N + 3)
√

3 +
3N + 3

tan a
+
(
N2 + 3N

)
tan a

To evaluate IC we note:

8) tan(a− 30) =
N2 + 3N

IC
, or

9) IC =
N2 + 3N

tan(a− 30)

Equating 7) and 9) gives the basic equation:

10) (3N + 3)

(√
3 +

1

tan a

)
+
(
N2 + 3N

)
tan a =

N2 + 3N

tan (a− 30)
.

We expand tan (a− 30)

11) tan(a− 30) =
tan a− tan 30

1 + tan a tan 30
=

tan a−
√

3/3

1 +
√

3/3 tan a
=

3 tan a−
√

3

3 +
√

3 tan a
. So,

12) (3N + 3)
1 +
√

3 tan a

tan a
=
(
N2 + 3N

)
(

3 +
√

3 tan a

3 tan a−
√

3
− tan a

)
.

There is no way to eliminate all of these irrationals except to let:

13) tan a = r
√

3, where r is, for now, unspecified. Making this substitution, eq-12)
becomes:

14) (3N + 3)
1 +
√

3r
√

3

r
√

3
= (N2 + 3N)

(
3 + 3r

3r
√

3−
√

3
− r
)
.

Step 14) simplifies to

15)
(3N + 3)(1 + 3r)

r
=

(
N2 + 3N

)
(9r2 − 6r − 3)

(1− 3r)
and dividing by 3

16)
(N + 1)(1 + 3r)

r
= (N2 + 3N)

(3r + 1)(r − 1)

1− 3r
, and dividing by 3r + 1

17)
N + 1

r
= (N2 + 3N)

1− r
3r − 1

, and simplifying gives

18) (N + 1)(3r − 1) = (N2 + 3N)(r − r2).
Writing step 18) as a quadratic in r, we obtain,
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19)
(
N2 + 3N

)
r2 +

(
3−N2

)
r − (N + 1) = 0, with solution

20) 2(N2 + 3N)r = (N2− 3) +
√

(N2− 3)2 + (4N + 4)(N2 + 3N). The discriminat D2 is:

21) D2 = N4 + 4N3 + 10N2 + 12N + 9 =
(
N2 + 2N + 3)2 . So

22) D = N2 + 2N + 3, and equation 20) becomes

23) 2(N2 + 3N)r = N2 − 3 +N2 + 2N + 3

24) 2(N2 + 3N)r = 2N2 + 2N

25) r =
N2 +N

N2 + 3N
=
N + 1

N + 3

Then the value of tan a becomes

26) tan a =
N + 1

N + 3

√
3. So,

Finally, AD = AE + ED. So,

27) AD = (3N + 3)
√

3 + (N + 3)
√

3 = 2
√

3(2N + 3), and

Similarly, DB = DG+GB = 2
√

3
(
N2 + 2N

)
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let I and J be respectively the inradius of 4ACD and 4BCD, E and F be the
tangent points of the incircles of 4ACD and 4BCD with AB, respectively,
a = AB = BC = CA, d = CD, x =AD, e = AE and f = BF .

By the cosine theorem in 4ACD, d2 = a2 + x2 − 2ax cos(π/3), d=
√
a2 − ax+ x2.

Since AE is a segment of the tangent from A to the incircle of 4ACD, whose

semiperimeter is
a+ x+ d

2
, e =

a+ x+ d

2
− d =

a+ x− d
2

and analogously,

f =
2a− x− d

2
; on the other hand, in 4IAE we have that ∠IAE = ∠(DAC/2) = π/6,

and IE ⊥ AD, so e = (3N + 3) cot (π/6) = 3
√

3(N + 1) and analogously
f =
√

3N(N + 3).

Thus, a+ x−
√
x2 + a2 − xa = 6

√
3 (N + 1) and

2a− x−
√
x2 + a2 − xa = 2

√
3N (N + 3).

Subtracting the first equation from the second one, we obtain that
a = 2x+ 2

√
3
(
N2 − 3

)
, and isolating the square root and squaring the first equation we

obtain that

(a+ x)2 − 121
√

3(N + 1)(a+ x) + 108(N + 1)2 = x2 + a− xa, or equivalently

ax− 4
√

3(N + 1)(a+ x) + 36(N + 1)2 = 0

Substituting here the obtained value of a as a function of x we deduce that
x2 +

√
3(N2 − 6N − 9)x− 12N2 + 6N2 + 72N + 54 = 0, which is a quadratic equation
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with solutions

x =
1

2

(
−
√

3
(
N2 − 6N − 9

)
±
√

3 (N2 − 6N − 9)2 − 4 (−12N2 + 6N2 + 72N + 54)

)

=
1

2

(
−
√

3
(
N2 − 6N − 9

)
±
√

3 (N2 + 2N + 3)2
)

=

√
3

2

(
−N2 + 6N + 9±

(
N2 + 2N + 3

))
∈
{
−
√

3(N + 1)(N − 3), (2
√

3(2N + 3)
}
,

from where, being a = 2x+ 2
√

3(N2 − 3), we deduce that
a ∈

{
4
√

3N, 2
√

3 (N + 1) (N + 3)
}

, respectively, that is, AD = 2
√

3 (2N + 3) and

BD = 2
√

3N (N + 2).

Note that N is a positive integer, so the first case would be possible if (N + 1)(3−N)
and (N − 1)(N + 3) are positive, which is impossible, hence, AD = 2

√
3(2N + 3) and

BD = 2
√

3N (N + 2).

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that
(
AD,BD

)
=
(
2
√

3(2N + 3), 2
√

3N(N + 2)
)
.

Let AD = x and BD = y so that AC = BC = x+ y. The area of

4ACD =
x(x+ y) sin 60◦

2
=

√
3x(x+ y)

4
and the area of 4BCD =

√
3y(x+ y)

4
.

Applying the cosine formula to 4ACD, we obtain CD =
√
x2 + xy + y2.

Since the area of a triangle equals the product of its semiperimeter with its inradius, so

√
3x(x+ y)

2
(

2x+ y +
√
x2 + xy + y2

) = N + 3, (1) and

√
3y(x+ y)

2
(
x+ 2y +

√
x2 + xy + y2

) = N2 + 3N. (2)

Since the left side of (1) equals

√
3
(

2x+ y −
√
x2 + xy + y2

)

6
and the left side of (2)

equals

√
3
(
x+ 2y −

√
x2 + xy + y2

)

6
, so we obtain respectively from (1) and (2) that

√
x2 + xy + y2 = 2x+ y − 6

√
3(N + 1) (3) and

√
x2 + xy + y2 = x+ 2y − 2

√
3N(N + 3) (4)
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From (3) and (4), we obtain y = x+ 2
√

3
(
N2 − 3

)
. Substituting y back into (3),

squaring and simplifying, we obtain,

x2 +
√

3
(
N2 − 6N − 9

)
X − 12N3 + 6N2 + 72N + 54 = 0. Hence either

x = 2
√

3(2N + 3), y = 2
√

3N(N + 2) or x =
√

3(3−N)(1 +N), y =
√

3(N − 1)(N + 3).

Since only the former solution satisfies (3) and (4), so we obtain the claimed solution.

Also solved by Albert Stadler, Herrliberg, Switzerland, and the proposer.

• 5332: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA

Inspired by the prime number 1000000000000066600000000000001, known as
Belphegor’s prime where there are thirteen consecutive zeros to the left and right of 666,
we consider the numbers 100 . . . 0201500 . . . 01 where there are k−zeros left and right of
2015. For k < 28 only k = 9 and k = 27 yield prime numbers.

(a) Prove that the sequence 120151, 10201501, 1002015001, . . . has an infinite
subsequence of all composite numbers.

(b) Find the next prime in both the sequences 100 . . . 066600 . . . 01 and
100 . . . 0201500 . . . 01, after the ones noted above.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

(a) The sequence can be expressed as ak = 102k+5 + 2015 · 10k+1 + 1, k = 0, 1, . . ., where
k denotes the number of consecutive zeros to the right and to the left of 2015.

We note that 1000 ≡ −1 (mod 13), 2015 ≡ 0 (mod 13), 1013 ≡ 1 (mod 53). So

a3n+2 = 103(2n+3) + 2015 · 103n+3 + 1 ≡ 10002n+3 + 2015 · 103n+3 + 1 ≡ −1 + 0 + 1 = 0 (mod 13),

a13n = 1026n+5 + 2015 · 1013n+1 + 1 ≡ 105 + 20150 + 1 ≡ 0 (mod 53),

a13n+8 = 1026n+21 + 2015 · 1013n+9 + 1 ≡ 108 + 2015 · 109 + 1 ≡ 0 (mod 53).

So there are infinitely many indices k for which ak is composite.

(b) Tom Moore is wrong in saying that

10 . . . 0︸ ︷︷ ︸
9 zeros

20150 . . . 0︸ ︷︷ ︸
9 zeros

1 and

1 0 . . . 0︸ ︷︷ ︸
27 zeros

2015 0 . . . 0︸ ︷︷ ︸
27 zeros

1

are primes. The correct statement is that

10 . . . 0︸ ︷︷ ︸
7 zeros

20150 . . . 0︸ ︷︷ ︸
7 zeros

1 and
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1 0 . . . 0︸ ︷︷ ︸
25 zeros

2015 0 . . . 0︸ ︷︷ ︸
25 zeros

1

are primes.

Let bk = 102k+4 + 666 · 10k+1 + 1. Then b13 is Belphegore’s prime. Using the PrimeQ
function of Mathematica we find that

• b42 is prime,

• bk is composite for 14 ≤ k ≤ 41,

• ak is composite for0 ≤ k ≤ 7000, except for k = 7 and k = 25.

I was not able to find a k > 25 for which ak is prime.

Solution 2 by Pat Costello, Eastern Kentucky University, Richmond, KY

(a) The number 2015 is divisible by 13 and so starting with 1002015001, every third
number in the sequence is divisible by 13 (the leading 1 is a 103(2x+3) ≡ −1 (mod13)
which cancels with the final 1).

(b) The next primes in the sequence 100 . . . 066600 . . . 01 are when then the number of
zeroes is k = 42 and k = 506 (probably prime according to Mathematica ).

In the sequence 100 . . . 0201500 . . .− 1, I believe the k values that give primes should be
k = 7 and k = 25 (not 9 and 27) and Mathematica did not find any more primes (or
probably primes) in the sequence with k < 2000.

Solution 3 by Ashland University Undergraduate Problem Solving Group,
Ashland, OH

a) We begin by noting ak = 105+2k + 2015(10k+1) + 1 is an explicit formula for the
number with k-zeros to the left and right of 2015.

Suppose k ≡ 2 (mod 3) so k = 3n+ 2 for some integer n. Then
a3n+2 = 106n+9 + 2015(103n+3) + 1. Since 2015 ≡ 0 (mod 13), we have
a3n+2 ≡ 106n+9 + 1 (mod 13). Thus a3n ≡ (103)2n+3 + 1 (mod 13). Note
103 = 1000 ≡ −1 (mod 13) and clearly 2n+ 3 is odd, so
a3n+2 ≡ (−1)2n+3 + 1 ≡ −1 + 1 ≡ 0 (mod 13) and hence 13

∣∣a3n+2 and a3n+2 is
composite. Thus the subsequence {an} where kn = 3n+ 2 for n = 0, 1, 2, 3, . . . is an
infinite subsequence of all composite numbers.

b) For the sequence 10 . . . 0666001, ak = 102k+4 + 666(10k+1) + 1 and we used MAPLE
to find that the next prime occurs when k = 42, .i.e., there are 42 zeros to the left and
right of 666. (The only additional primes in this sequence with k ≤ 1000 occur when
k = 506 and k = 608).

For the sequence 10 . . . 020150 . . . 01, ak = 105+2k + 2015(10k+1) + 1 and were unable to
find the next prime in the sequence, using MAPLE to check all terms with k ≤ 7000
were composite.

Also solved by Brain D. Beasley, Presbyterian College, Clinton, SC; Ed
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Gray, Highland Beach, FL; Haroun Meghaichi (student, University of
Science and Technology, Houari Boumediene) Algeria, and the proposer.

• 5333: Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Roma
University, Rome, Italy.

Evaluate ∫ π/2

−π/2

(
ln
(
1 + tanx+ tan2 x

))2

1 + sinx cosx
dx.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Denote the integral of the problem by I. We show that

I =
2
√

3π
(
π2 + 3 ln2 3

)

9
. (1)

Let J =

∫ π/2

o
ln(cosx)dx and K =

∫ π/2

0
ln2(cosx)dx. It is known [1], p. 531, section

4.224, entries 6 and 8) that

J =
−π ln 2

2
(2), and

K =
−π(π2 + 12 ln2 2)

24
. (3)

By means of the substitution tanx =

√
3 tan y − 1

2
, we see that

I =
2√
3

∫ π/2

−π/2
ln2

(
3 sec2 y

4

)
dy =

4√
3

∫ π/2

0
ln2

(
3 sec2 y

4

)
dy.

Since ln2

(
3 sec2 y

4

)
= ln2

(
3

4

)
− 4 ln

(
3

4

)
ln(cos y) + 4 ln2(cos y), so

I =
4√
3

(
ln2

(
3

4

)
π

2
− 4 ln

(
3

4

)
J + 4K

)
.

Using (2) and (3), we obtain (1).

Reference

1. I.S. Gradshteyn and I.M. Ryzhik: Table of Integrals, Series, and Products, seventh
edition, Elsevier, Inc. 2007.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We claim that the integral equals
2π(π2 + 3 ln2 3)

3
√

3
.
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We perform a change of variables and put y = tanx. The dy =
1

cos2 x
dx = (1 + y2)dx

and

I =

∫ π/2

−π/2

(
ln
(
1 + tanx+ tan2 x

))2

1 + sinx cosx
dx =

∫ ∞

−∞

(
ln
(
1 + y + y2

))2

1 +
y

1 + y2

dy

1 + y2
=

∫ ∞

−∞

(
ln
(
1 + y + y2

))2

1 + y + y2
dy =

=

∫ ∞

−∞

(
ln
(

1 +
(
y − 1

2

)
+
(
y − 1

2

)2))2

1 +
(
y − 1

2

)
+
(
y − 1

2

)2 dy =

∫ ∞

−∞

(
ln
(
3
4 + y2

))2
3
4 + y2

dy = 2

∫ ∞

0

(
ln
(
3
4 + y2

))2
3
4 + y2

dy.

Put f(s) = 2

∫ ∞

0

1(
3
4 + y2

)sdy for <(s) >
1

2
.

We evaluate f(s) in terms of the beta function

B(x, y) =

∫ 1

0
tx−1 (1− t)y−1 dt =

Γ(x)Γ(y)

Γ(x+ y)
, by performing a change of variables in the

defining integral of f(s). Letting z =
1

1 + y2
, y =

√
1

z
− 1, dy =

−1

2z2
√

1

z
− 1

dz we

obtain

f(s) = 2

∫ ∞

0

1(
3
4 + y2

)sdy = 2

√
3

4

∫ ∞

0

1(
3
4 + 3

4y
2
)sdy = 2

(
3

4

) 1
2
−s ∫ ∞

0

1

(1 + y2)s
dy =

=

(
3

4

) 1
2
−s ∫ 1

0
zs−

3
2

1√
1− z dz =

=

(
3

4

) 1
2
−s Γ

(
s− 1

2

)
Γ
(
1
2

)

Γ(s)
=

√
3π

2

(
4

3

)s Γ
(
s− 1

2

)

Γ(s)
,

where we have used that Γ
(
1
2

)
=
√
π.

We have
d2

ds2
1

Γ(s)
=

d

ds

−Γ′(s)
Γ2(s)

= −Γ
′′
(s)

Γ2(s)
+ 2

(
Γ

′
(s)
)2

Γ3(s)
,

d2

ds2
u(s)v(s)w(s)

u(s)v(s)w(s)
=
u′′(s)
u(s)

+
v′′(s)
v(s)

+
w′′(s)
w(s)

+ 2
u′(s)v′(s)
u(s)v(s)

+ 2
v′(s)w′(s)
v(s)w(s)

+ 2
w′(s)u′(s)
w(s)u(s)

.

So

I = f
′′
(1) =

√
3π

2

4

3
Γ

(
1

2

)
ln2

(
4

3

)
+

√
3π

2

4

3
Γ

′′
(

1

2

)
+
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+

√
3π

2

4

3
Γ

′′
(

1

2

)(
−Γ

′′
(1) + 2

(
Γ

′
(1)
)2)

+ 2

√
3π

2

4

3
Γ

′
(

1

2

)
ln

(
4

3

)

+2

√
3π

2

4

3
Γ

′
(

1

2

)(
−Γ

′
(1)
)

+ 2

√
3π

2

4

3
ln

(
4

3

)
Γ

(
1

2

)(
−Γ

′
(1)
)

(1)

To evaluate Γ
′
(1), Γ

′′
(1), Γ

′ (1
2

)
, Γ

′′ (1
2

)
we use the well known equations,

Γ
′
(z)

Γ(z)
=

1

z
+ γ +

∑

n≥1

(
1

n+ z
− 1

n

)
.

Γ
′′
(z)

Γ(z)
−
(

Γ
′
(z)

Γ(z)

)2

=
∑

n≥0

1

(n+ z)2
,

from which we deduce

(i) Γ(1) = −γ,

(ii) Γ
′′
(1) = γ2 +

∑

n≥0

1

(n+ 1)2
= γ2 +

π2

6
,

(iii) Γ
′
(

1

2

)
= −Γ

(
1

2

)
2 + γ +

∑

n≥1

(
1

n+ 1
2

− 1

n

)
 = −√π


2 + γ + 2

∑

n≥1

(
1

2n+ 1
− 1

2n

)
 =

= −√π (γ + 2 ln 2) ,

(iv) Γ
′
(

1

2

)
= −Γ

(
1

2

)

(

Γ
′ (1

2

)

Γ
(
1
2

)
)2

+
∑

n≥0

4

(2n+ 1)2


 =

=
√
π


(γ + 2 ln 2)2 + 4


∑

n≥0

1

n2
−
∑

n≥0

1

4n2




 =

√
π

(
(γ + 2 ln 2)2 +

π2

2

)
.

We plug (i)− (iv) into (1) and get

I =
2

3

√
3π ln2

(
4

3

)
+

2

3

√
3π

(
(γ + 2 ln 2)2 +

π2

2

)
+

2

3

√
3π

(
γ2 − π2

6

)
+
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− 4

3

√
3π (γ + 2 ln 2) ln

(
4

3

)
− 4

3

√
3πγ (γ + 2 ln 2) +

4

3

√
3πγ ln

(
4

3

)
=

=
2π
(
π2 + 3 ln2 3

)

3
√

3
.

Comment by editor. The numerical answer to this problem can be approximated to
whatever degree of accuracy one wishes by piecing together various integrating techniques
for power series expansions over specific domains and for estimating the area under the
graph of a positively valued curve. This method of computing the value of the integral was
employed by Ed Gray of Highland Beach, FL in his 10 page solution that gave him
a numerical answer that was correct to several decimal places. But as one can see from
the above solutions, the problem was not as straight-forward as I had initially thought.

This problem was also solved by its proposer.

• 5334: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let xij , (1 ≤ i ≤ m, 1 ≤ j ≤ n) be nonnegative real numbers. Prove that

n∏

j=1

(
1−

m∏

i=1

√
xij

1 +
√
xij

)
+

m∏

i=1


1−

n∏

j=1

1

1 +
√
xij


 ≥ 1.

Solution by Kee-Wai Lau, Hong Kong, China

For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let yij be real numbers satisfying 0 ≤ yij ≤ 1. We prove by
induction on m+ n that

n∏

j=1

(
1−

m∏

i=1

yij

)
+

m∏

i=1


1−

n∏

j=1

(1− yij)


 ≥ 1. (1)

For m+ n = 2, we have m = n = 1, and (1) becomes an equality. So suppose that (1)
holds for m+ n = k ≥ 2. We now consider m+ n = k + 1.

Denote the left side of (1) by f (ymn). Then

f (ymn) ≥
n∏

j=1

(
1−

m∏

i=1

yij

)
+

m∏

i=1


1−

n−1∏

j=1

(1− yij)


 , (2)

and

f (ymn) ≥
n∏

j=1

(
1−

m−1∏

i=1

yij

)
+

m∏

i=1


1−

n∏

j=1

(1− yij)


 . (3)

Here we assign the value 1 to any empty products. From (2), we obtain by the induction
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assumption that

f (0) ≥
n−1∏

j=1

(
1−

m∏

i=1

yij

)
+

m∏

i=1


1−

n−1∏

j=1

(1− yij)


 ≥ 1, (4)

and from (3), we obtain by the induction assumption that

f (1) ≥
n∏

j=1

(
1−

m−1∏

i=1

yij

)
+
m−1∏

i=1


1−

n∏

j=1

(1− yij)


 ≥ 1. (5)

Since f(ymn) is a polynomial in ymn with degree 0 or 1, so from (4) and (5), we see that

f(ymn) ≥ 1, and (1) holds also for m+ n = k + 1. Hence (1) holds in general and the

inequality of the problem follows by the substitution y =

√
xij

1 +
√
xij

.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ethan Gegner
(student), Taylor University, Upland, IN; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5335: Proposed by Arkady Alt, San Jose, CA

Prove that for any real p > 1 and x > 1 that

lnx

ln(x+ p)
≤
(

ln(x+ p− 1)

ln(x+ p)

)p
.

Solution 1 by Ethan Gegner (student), Taylor University, Upland, IN

The weighted AM-GM inequality, followed by Jensen’s inequality applied to the concave
function lnx yields

(lnx)1/p (ln(x+ p))

p− 1

p ≤ 1

p
lnx+

p− 1

p
ln(x+ p)

≤ ln

(
1

p
x+

p− 1

p
(x+ p)

)

= ln(x+ p− 1).

Exponentiation by p and then rearranging yields the desired result.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

The inequality is true for any real p ≥ 1 and x > 1, because

(
ln (x+ p− 1)

ln (x+ p)

)p
− lnx

ln(x+ p)
≥ 1 + p

(
ln(x+ p− 1)

ln(x+ p)
− 1

)
− lnx

ln(x+ p)
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=

p ln

(
x+ p− 1

x+ p

)
− ln

(
x

x+ p

)

ln(x+ p)

=
qy ln(1− y−1)− ln(1− q)

ln y

=
q

ln y

(
−
∞∑

k=1

k−1y1−k +
∞∑

k=1

k−1qk−1
)

=
q

ln y

∞∑

k=1

k−1
(
qk−1 − y1−k

)
≥ 0,

where we have used Bernoulli’s inequality

(1 + t)p ≥ 1 + pt for t =
ln(x+ p− 1)

ln(x+ p)
− 1 ≥ −1.

Note that p ≥ 1, x > 1⇒ x+ p− 1 > 1, x+ p > 1⇒ ln(x+ p− 1), ln(x+ p) > 0, the

notation y = x+ p and q =
p

y
, the series expansion ln(1− u) = −

∞∑

k=1

k−1uk for u = y−1

and u = q (observe that 0 < y−1, q < 1) and the fact that q ≥ y−1 with equality iff

p = 1⇒ qk−1 ≥
(
y−1
)k−1

for any integer k ≥ 1.

Moreover, equality is attained iff it occurs in Bernouilli’s inequality and in the inequality
q ≥ y−1. Since there is equality in this last inequality iff p = 1 and in this case also in
Bernoulli’s inequality, we conclude that equality occurs iff p = 1.

Solution 3 by Paul M. Harms, North Newton, KS

All logarithms involved with the inequality are positive. Then the inequality is correct if
the logarithm of the left side is less than the logarithm of the right side. Taking the
natural logarithm of both sides and dividing by p the problem inequality is equivalent t o

ln lnx− ln ln(x+ p)

p
≤ ln ln(x+ p− 1)− ln ln(x+ p)

1
,

Let f(x) = ln lnx where x > 1. Multiplying both sides of the inequality by (−1) we can
write the resulting inequality as

f(x+ p)− f(x)

(x+ p)− x ≥ f(x+ p)− f(x+ p− 1)

(x+ p)− (x+ p− 1)
,

forms often associated with the Mean Value Theorem for derivatives.

Let the following letters and points be associated with each other:

A (x, f(x)) , B ((x+ p), f(x+ p)) , C ((x+ p), f(x)) ,
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E ((x+ p− 1), f(x+ p− 1)) , F ((x+ p), f(x+ p− 1)) ,

and let D be intersection of the line segment between A and B with the line segment
between E and F .

Consider the right triangle 4BEF and the similar right triangles 4ABC and 4DBF .

The left side of the last inequality is the ratio of the distances
BC

AC
=
BF

DF
and the right

side equals the ratio
BF

EF
.

Since f
′
(x) =

1

x lnx
> 0, and f

′′
(x) =

−1 (1 + lnx)

(x lnx)2
< 0 for x > 1, the line segment

from A to B is below the graph of y = f(x). Point D then satisfies the distance

inequality DF < EF so we have
BF

DF
≥ BF

EF
. The problem inequality is correct.

Solution 4 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

The inequality in the statement of the problem is equivalent to

lnx

ln(x+ p)
≤
(

ln(x+ p− 1)

ln(x+ p)

)p
⇐⇒ ln (ln (x+ p))p−1 ≤ (ln (x+ p− 1))p . (∗)

Knowing that lnx > 0 and using the AM-GM inequality, we have:

lnx (ln (x+ p))p−1 ≤
(

lnx+ (p− 1) ln(x+ p)

p

)p
=
(

ln p
√
x(x+ p)p−1

)p
≤ (ln(x+ p− 1))p

for every p > 1 and x > 1. Using the fact that lnx is an increasing function, we deduce
that (∗) is true and also the equivalent inequality in the statement of the problem.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Haroun Meghaichi (student, University of Science and Technology,
Houari Boumediene), Algiers, Algeria; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland, and the proposer.

• 5336: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Caculate: ∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k
− ln

(
k +

1

2

)
− γ
)
.

Solution 1 by Perfetti Paolo, Department of Mathematics, Tor Vergata
University, Rome, Italy

The first item we employ is

n∑

k=1

1

k
= lnn+ γn, γn = γ + o(1), n(γn − γ)→ 1/2.
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The second item we use is the content of problem 1781 of Mathematics Magazine,
vol.80–5, 2007.

Rearranging the sum up to n we get

n∑

k=1

n

k
−
n−1∑

k=1

k

k + 1
−

n∑

k=1

ln

(
k +

1

2

)
− nγ =

= n(lg n+ γn)−
n−1∑

k=1

(
1− 1

k + 1

)
− ln

n∏

k=1

2k + 1

2
− nγ =

= n lnn+ n(γn − γ)− (n− 1) + lnn+ γn − 1− ln
(2n+ 1)!

22nn!

Stirling’s formula n! = (n/e)n
√

2πn(1 + o(1)) and ln(1 + x) ∼ x for x→ 0 yields

n lnn+ n(γn − γ)− n+ lnn+ γn − (2n+ 1) ln(2n+ 1) + (2n+ 1) +

−1

2
ln(2π(2n+ 1)) + o(1) + 2n ln 2 + n lnn− n+

1

2
ln(2πn) + o(1)

(2n+ 1) ln(2n+ 1) = (2n+ 1)(ln 2 + lnn+ o( 1
n) = 2n lnn+ 2n ln 2 + lnn+ ln 2 + o(1).

The sum becomes

n(γn − γ) + n lnn(1− 2 + 1) + n(−1− 2 ln 2 + 2 ln 2 + 2− 1) +

+ lnn(1− 1− 1

2
+

1

2
) + (γn − ln 2− 1

2
ln(4π) +

1

2
ln(2π)

and in the limit we obtain
1

2
+ γ − 3

2
ln 2.

Solution 2 by Anastasios Kotronis, Athens, Greece

Let

Sn :=

n∑

k=1

(
1 +

1

2
+ · · ·+ 1

k
− ln

(
k +

1

2

)
− γ
)
.

Summing by parts we have

Sn =
n∑

k=1

(k + 1− k)Hk − ln

(
n∏

k=1

2k + 1

2

)
− nγ

= kHk

∣∣∣∣∣

n+1

1

−
n∑

k=1

(k + 1) (Hk+1 −Hk)− ln

(
n∏

k=1

2k(2k + 1)

22k

)
− nγ

= (n+ 1) (Hn+1 − 1)− ln

(
(2n+ 1)!

22nn!

)
− nγ

→ 1

2
+ γ − 3 ln 2

2
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by Stirling’s approximation.

Solution 3 by Haroun Meghaichi, (student, University of Science and Technology
Houari Boumediene), Algiers, Algeria.

Let Hn be the n-th harmonic number then for any integer n > 1 we have

an =

n∑

k=1

Hk =

n∑

k=1

(k + 1)Hk+1 − kHk − 1

= (n+ 1) (Hn+1 − 1)

= n (lnn+ γ − 1) + lnn+ γ +
1

2
+ o(1).

And

bn =
n∑

k=1

ln

(
2k + 1

2

)
= ln

(
(2n+ 1)!!

2n

)

= ln

(
(2n+ 1)!

4n(n!)

)
= ln(2n+ 1)!− lnn!− 2n ln 2

= n (lnn− 1) + lnn+
3

2
ln 2 + o(1).

The last line comes directly from Stirling approximation, then we have

n∑

k=1

(
Hk − ln

(
k +

1

2

)
− γ
)

= an − bn − nγ = γ +
1

2
− 3

2
ln 2 + o(1)

Hence, the answer is γ +
1

2
− 3

2
ln 2 =

1

2
ln
e2γ+1

8
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee -Wai Lau, Hong
Kong, China; Albert Stadler, Herrliberg, Switzerland, and the proposer.

Comments

Editor’s note: The following comment was sent to me by Henry Ricardo of the NY Math
Circle. In the March, 2015 solutions, Solution 1 of problem 5330 is incorrect. By throwing in
the factor B(1), the solvers have replaced the original problem by one whose solution is almost
trivial. The proposer (Ovidiu Furdui) no doubt specified that the matrix product start with
B(2) to make it more challenging. The extra factor does not provide a generalization or
extension but, rather, a simplification that is contrary to the spirit of the problem as proposed.

Solution 1 was solved by looking at a few examples, guessing a general form for the product
and then proving the product held by induction. I thought it was a nice simple way to solve
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the problem. Henry disagreed. So I sent his comment on to Ovidiu Furdui, the proposer of
the problem and asked him if the published solution were on a test, would he give full credit.
Here is his response.

——————————————

The reader is right, solution 2 is the correct one. On one hand, the problem asks for the
calculation of the product starting from B(2) up to B(n), for n ≥ 2 and in solution 1 basically
the solvers have computed a product which simplifies very much the problem, so from a
mathematical point of view the problem asks for one thing and the solvers give another. The
product A(n) = B(1)B(2) · · ·B(n) as they give it is correct but this is not what the problem
asks for. (Me, Ted, speaking again; I don’t see it this way– as I see it, they did answer the
question. Now back to Ovidiu.)

On the other hand, to answer your question, if this problem would have been an exam
problem and the student(s) would have solved the problem as in solution 1, then certainly I
would give partial credit for this solution, but not full credit due to the fact that, strictly
speaking the solution is not what the problem asks for. However, I would offer partial credit
to the student for calculating the product A(n) (for observing its form and for proving that by
induction) but not full credit.

Solution 2 is the correct solution of this problem.

———————-

(Editor again:) But still I wasn’t satisfied that the solution was incorrect, and so I explained
the solution to Michael Fried, and he agreed with Henry and with Ovidui. His reasoning was
that the authors of the Solution 1 had changed the initial conditions of the sequence by saying
that the sequence started with B(1) and not B(2). But I argued that the authors of Solution 1
stated in their argument, “we have shown, by mathematical induction that (1) holds for all
integers n ≥ 2,” and again I felt that that they had shown that. To my way of thinking, we
had the product of matrices B(1)B(2) · · ·B(n). The authors of Solution 1 could obtain the
correct answer by a simple translation. I also thought that they could obtain the answer by
multiplying the product by the inverse of B(1), and therein I made a mistake. Matrix B(1) is
not invertible. Anyway, at this point the score was two against me, nobody for me. I then
sent the question (Was the published solution 1 incorrect?) to Albert Stadler, and he agreed
with the others, and he pointed out my mistake that matrix B(1) was not invertible. The
score was now 3-0, and I am now siding with the majority.

Solution 1 to 5332 misses the spirit of the intended problem; once again, mea culpa.
——————

17

X
ia
ng
’s
T
ex
m
at
h



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October 15, 2015

• 5355: Proposed by Kenneth Korbin, New York, NY

Find the area of the convex cyclic pentagon with sides

(13, 13, 12
√

3 + 5, 20
√

3, 12
√

3− 5).

• 5356: Proposed by Kenneth Korbin, New York, NY

For every prime number p there is a circle with diameter 4p4 + 1. In each of these
circles, it is possible to inscribe a triangle with integer length sides and with area

(8p3)(p+ 1)(p− 1)(2p2 − 1).

Find the sides of the triangles if p = 2 and if p = 3.

• 5357: Proposed by Neculai Stanciu, “George Emil Palade” School, Buzău, Romania and
Titu Zvonaru, Comănesti, Romania

Determine all triangles whose side-lengths are positive integers (of which at least one is
a prime number), whose semiperimeter is a positive integer, and whose area is equal to
its perimeter.

• 5358: Proposed by Arkady Alt, San Jose, CA

Prove the identity

m∑

k=1

k

(
m+ 1

k + 1

)
rk+1 = (r + 1)m(mr − 1) + 1.

5359: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let a, b, c be positive real numbers. Prove that

4
√

15a3b+ 1 +
4
√

15b3c+ 1 +
4
√

15c3a+ 1 ≤ 63

32
(a+ b+ c) +

1

32

(
1

a3
+

1

b3
+

1

c3

)
.
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• 5360: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer and let

In =

∫ ∞

0

arctanx

(1 + x2)n
dx.

Prove that

(a)
∞∑

n=1

In
n

= ζ(2);

(b)

∫ ∞

0
arctanx ln

(
1 +

1

x2

)
dx = ζ(2).

Solutions

• 5337: Proposed by Kenneth Korbin, New York, NY

Given convex quadrilateral ABCD with sides,

AB = 1 + 3
√

2
BC = 6 + 4

√
2 and

CD = −14 + 12
√

2.

Find side AD so that the area of the quadrilateral is maximum.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

In the published solution to part (b) of problem 787 Journal Crux Mathematicorum,
1984, 10(2), 56− 58, it is proved that given three sides AB,BC, and CD, the area of the
quadrilateral ABCD is maximum if, and only if, the length of the fourth side, AD is the
diameter of the circle passing through B and C, and a root of the polynomial

x3 −
(
AB

2
+BC

2
+ CD

2
)
− 2AB ·BC · CD = 0. That is

x3 −
(

571− 282
√

2
)
x− 206− 104

√
2 = 0,

whose only real positive root is x = 7 + 5
√

2; so AD = 7 + 5
√

2.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

The cyclic quadrilateral has the maximal area among all quadrilaterals having the same
sequence of side lengths. This is a corollary to Bretschneider’s formula
(http://en.wikipedia.org/wiki/Bretschneider%27s−formula). It can also be proved using
calculus (see([1]). The area of a cyclic quadrilateral with side a, b, c, d is given by
Brahmagupta’s formula

A =
√

(s− a)(s− b)(s− c)(s− d) where s = (a + b + c + d)/2.
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So if a = 1 + 3
√

2, b = 6 + 4
√

2, and c = −14 + 12
√

2 then

16A2 =
(
d− 9 + 13

√
2
)(

d− 19 + 11
√

2
)(

d+ 21− 5
√

2
)(
−d− 7 + 19

√
2
)
.

This is a polynomial of degree four whose extremal points are located at the zeros of its
derivative. Brute force shows that the extremal points are

d1 = 7 + 5
√

2 > 0,

d2 =
−7− 5

√
2 +

√
1987− 1338

√
2

2
< 0,

d3 =
−7− 5

√
2−

√
1987− 1338

√
2

2
< 0.

So AD = d1 = 7 + 5
√

2

References: (1) Thomas, Peter, “Maximizing the Area of a Quadrilateral,” The College
Mathematics Journal, Vol 34. No 4 (September 2003), pp. 315-316.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the area of the quadrilateral is maximum when AD = 7 + 5
√

2.

Let AD = x, s be the semiperimeter and ∆ the area of the quadrilateral. Since the
length of any side of a quadrilateral must be less than the sum of the lengths of the
other three sides, we have 19− 112

√
2 < x < −7 + 19

√
2. It is well known that

∆ ≤
√(

s−AB
) (
s−BC

) (
s−AB

) (
s−AD

)
,

so that 16∆2 ≤ f(x), where

f(x) = −x4 + 2
(

571− 282
√

2
)
x2 + 32(27 + 13

√
2)x− 454337 + 314940

√
2.

It can be checked readily by differentiation that for 19− 11
√

2 < x < −7 + 19
√

2, f(x)
attains its unique maximum at x = 7 + 5

√
2. Hence

∆ ≤

√
f(7 + 5

√
2)

4
= 14

√
−137 + 106

√
2.

It can also be checked readily that the area of the quadrilateral with sides
AB = 1 + 3

√
2, BC = 6 + 4

√
2, CD = −14 + 12

√
2, AD = 7 + 5

√
2,

AC =

√
7
(
−55 + 58

√
2
)

in fact equals 14

√
−137 + 106

√
2.

This completes the solution.

Also solved by Arkardy Alt, San Jose, CA; Ed Gray, Highland Beach, FL;
Henry Ricardo, New York Math Circle, NY; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.
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• 5338: Proposed by Arkady Alt, San Jose, CA

Determine the maximum value of

F (x, y, z) = min

{ |y − z|
|x| ,

|z − x|
|y| ,

|x− y|
|z|

}
,

where x, y, z are arbitrary nonzero real numbers.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We show that the maximum value of F (x, y, z) is 1.

We first prove that
F (x, y, z) ≤ 1, (1)

by showing that at least one of the numbers
|y − z|
|x| ,

|z − x|
|y| ,

|x− y|
|z| is less than equal to

1.

Suppose, on the contrary, that all of them are greater than 1. From
|y − z|
|x| > 1, we

obtain (
y − z)2 > x2, or (x + y − z )(x − y + z ) < 0. (2)

Similarly from
|z − x|
|y| > 1, and

|x− y|
|x| > 1, we obtain respectively

(x− y − z)(x+ y − z) > 0, (3)

and
(x− y − z)(x− y + z) > 0. (4)

Multiplying (2), (3) and (4) together. we obtain

(x+ y − z)2 (x− y + z)2 (x− y − z)2 < 0,

which is false. Thus (1) holds. Since F (2,−1, 1) = 1, we see that the maximum value of
F (x, y, z) is 1 indeed.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We claim that the maximum value equals 1.

Let x > 0. Then F (x, x+ 1,−1) = min

{
x+ 2

x
,
x+ 1

x+ 1
,
1

1

}
= 1.

So the maximum value is ≥ 1.

Suppose the maximum value is > 1. Then there is a triple (x, y, z) with

|y − z| > |x|, |z − x| > |y|, |x− y| > |z|. (1)

By cyclic symmetry, we can assume that x ≤ min(y, z).

Assume first that x ≤ y ≤ z. Then (1) reads as

z − y > |x|, z − x > |y|, y − x > |z|. So z − x = (z − y) + (y − x) > |x|+ |z| ≥ z − x
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which is a contradiction.

Assume next that x ≤ z ≤ y. Then (1) reads as

y − z > |x|, z − x > |y|, y − x > |z|. So y − x = (y − z) + (z − x) > |x|+ |y| ≥ y − x,

which is a contradiction.

This concludes the proof.

Solution 3 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
Unversity, Rome Italy

Answer: 1

The symmetry of F (x, y, z) allows us to set z ≤ y ≤ x. We have two cases:

1) 0 < z ≤ y ≤ x and
2) z < 0, 0 < y ≤ x.

Moreover, by observing that F (x, y, z) = F (−x,−y,−z), the case z ≤ y < 0, x > 0
is recovered by the case 2) simply changing sign to all the signs and the same happens
if z ≤ y ≤ x < 0.

Now we study the case 1)

|y − z|
|x| ≤ |x− z||y| ⇐⇒ y − z

x
≤ x− z

y
⇐⇒ z ≤ x+ y

which evidently holds true. Moreover,

|y − z|
|x| ≤ |x− y||z| ⇐⇒ y − z

x
≤ x− y

z
⇐⇒ yx+ yz ≤ x2 + z2

This generates two subcases.

1.1) 0 < z ≤ y ≤ x and yx+ yz ≤ x2 + z2. In this case we must find the maximum of the

function
y − z
x

. We have

y − z
x
≤ y − z

y
= 1− z

y
< 1.

The value 1 is not attained because z 6= 0.

1.2) 0 < z ≤ y ≤ x and yx+ yz > x2 + z2. In this case we must find the maximum of the

function
x− y
z

. We have

x− y
z

<
y − z
x
≤ y − z

y
= 1− z

y
< 1.

Now we study case 2)

F (x, y, z) = min

{
y − z
x

,
x− z
y

,
x− y
−z

}

and
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y − z
x
≤ x− z

y
⇐⇒ z ≤ x+ y

which evidently holds true.
Moreover,

y − z
x
≤ z − y
−z ⇐⇒ y ≤ x+ z.

This generates two subcases.

2.1) z < 0, 0 < y < x, y ≤ x+ z. In this case we must find the maximum of

y − z
x
≤ x

x
= 1.

The maximum achieved.

2.2) z < 0, 0 < y < x, y > x+ z. In this case we must find the maximum of

x− y
−z ≤ x− y

x− y = 1.

The maximum achieved.

Also solved by Jerry Chu, (student at Saint George’s School), Spokane, WA;
Ethan Gegner, (student, Taylor University), Upland, IN, and the proposer.

• 5339: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “George Emil Palade” School, Buzău,
Romania

Calculate:

∫ π/2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx.

Solution 1 by Haroun Meghaichi (student, University of Science and
Technology Houari Boumediene), Algeria

Consider the general case for a, b > 0 :

I(a, b) =

∫ π/2

0

a sinx+ b cosx

b sinx+ a cosx
dx,

Note that the derivative of the denominator (with respect to x) is b cosx− a sinx, and
{b sinx+ a cosx, b cosx− a sinx} form a base on R[cosx, sinx], then there are α, β ∈ R
such that

a sinx+ b cosx = α (b sinx+ a cosx) + β (b cosx− a sinx) , ∀ x ∈ R

⇔ b− aα− bβ = a− bα+ aβ = 0.

We can easily solve the system to get (α, β) =

(
2ab

a2 + b2
,
b2 − a2
a2 + b2

)
, then

I(a, b) =
1

a2 + b2

∫ π/2

0
2ab+ (b2 − a2)b cosx− a sinx

b sinx+ a cosx
dx
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=
1

a2 + b2

[
2abx+ (b2 − a2) ln |a cosx+ b sinx|

]π/2

0

=
1

a2 + b2

(
abπ + (b2 − a2) ln

b

a

)
.

The proposed integral equals I(4, 3) = I(3, 4) =
1

25

(
12π + 7 ln

4

3

)
.

Solution 2 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Andrew
Siefker, Angelo State University, San Angelo, TX

We attack the problem by using the classical technique for converting a rational
function of sinx and cosx into an ordinary rational function. If we set

u = tan
(x

2

)
,

then the “half-angle” formulas imply that

u2 =
sin2

(
x
2

)

cos2
(
x
2

) =
1− cosx

1 + cosx

and hence,

cosx =
1− u2
1 + u2

. (1)

Also, using (1) and the known identity

u = tan
(x

2

)
=

sinx

1 + cosx
,

we get

sinx =
2u

1 + u2
. (2)

Finally,

du = sec2
(x

2

)
· 1

2
dx =

1

2

[
1 + tan2

(x
2

)]
dx =

1 + u2

2
dx,

i. e.,

dx =
2

1 + u2
du. (3)

Since u = 0 when x = 0 and u = 1 when x =
π

2
, (1), (2), and (3) yield (upon

simplification)

∫ π
2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx = 4

∫ 1

0

2u2 − 3u− 2

(3u2 − 8u− 3) (1 + u2)
du

= 4

∫ 1

0

2u2 − 3u− 2

(3u+ 1) (u− 3) (1 + u2)
du. (4)
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Then, (4) and the partial fraction expansion

2u2 − 3u− 2

(3u+ 1) (u− 3) (1 + u2)
=

12

25
· 1

1 + u2
− 7

50
· u

1 + u2
+

21

100
· 1

3u+ 1

+
7

100
· 1

u− 3

imply that

∫ π
2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx = 4

∫ 1

0

2u2 − 3u− 2

(3u+ 1) (u− 3) (1 + u2)
du

=
48

25
tan−1 u

]1

0

− 7

25
ln
(
1 + u2

)]1

0

+
7

25
ln |3u+ 1|

]1

0

+
7

25
ln |u− 3|

]1

0

=
12π

25
− 7

25
ln 2 +

7

25
ln 4 +

7

25
ln 2− 7

25
ln 3

=
12π

25
+

7

25
ln

(
4

3

)

Solution 3 by Ethan Gegner, (student, Taylor University), Upland, IN

The value of the integral is
1

25
(12π + 7 log(4/3)).

Define

I =

∫ π/2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx

A =

∫ π/2

0

sinx

3 cosx+ 4 sinx
dx

B =

∫ π/2

0

cosx

3 cosx+ 4 sinx
dx.

Then

I = 3A+ 4B
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I +A−B =

∫ π/2

0

3 cosx+ 4 sinx

3 cosx+ 4 sinx
dx =

π

2

I − 6A =

∫ π/2

0

−3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx =

∫ 4

3

1

u
du = log(4/3)

Solving this system yields I =
1

25
(12π + 7 log(4/3)) .

Solution 4 by Bruno Salgueiro Fanego, Viveiro, Spain

Since
d

dx
(ax+ b ln(2 cosx+ 4 sinx)) =

(4a− 3b) sinx+ (3a+ 4b) cosx

3 cosx+ 4 sinx
when

3 cosx+ 4 sinx > 0 and b ∈ <, if we take a, b,∈ < such that 4a− 3b = 3 and 3a+ 4b = 4,

that is, a =
24

25
and b =

7

25
, we obtain that

1

25
(24x+ 7 ln(3 cosx+ 4 sinx)) is a primitive

of
3 sinx+ 4 cosx

3 cosx+ 4 sinx
in [0, π/2], so, by Barrow’s rule,

∫ π/2

0

3 sinx+ 4 cosx

3 cosx+ 4 sinx
dx =

1

25
(24x+ 7 ln(3 + 4())

∣∣∣∣
π/2

0

=
1

25
(12x+ 7 ln(3 · 0 + 4 · 1))− 1

25
(24 · 0 + 7 ln(31 + 4 · 0)

=
12π

25
+

7

25
ln

(
4

3

)
.

Solution 5 by Brian D. Beasely, Presbyterian College, Clinton, SC

We let f(x) = 3 sinx+ 4 cosx and g(x) = 3 cosx+ 4 sinx. Since
g′(x) = −3 sinx+ 4 cosx, we seek constants A and B such that

f(x)

g(x)
= A

(
g′(x)

g(x)

)
+B.

This produces A = 7/25 and B = 24/25, so

∫ π/2

0

f(x)

g(x)
dx =

∫ π/2

0

[
A

(
g′(x)

g(x)

)
+B

]
dx

= A ln(g(x)) +Bx]
π/2
0

= A ln

(
4

3

)
+B

(π
2

)

=
7

25
ln

(
4

3

)
+

12π

25
.
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Addendum. We may generalize the above technique to show that
∫ π/2

0

m sinx+ n cosx

3 cosx+ 4 sinx
dx = A ln

(
4

3

)
+B

(π
2

)
,

where A = (−3m+ 4n)/25 and B = (4m+ 3n)/25.

We may further generalize to show that
∫ π/2

0

m sinx+ n cosx

p cosx+ q sinx
dx = A ln

∣∣∣∣
q

p

∣∣∣∣+B
(π

2

)
,

where A = (−pm+ qn)/(p2 + q2) and B = (qm+ pn)/(p2 + q2), provided we place
appropriate restrictions on the values of p and q (to keep p cosx+ q sinx 6= 0 for each x
in [0, π/2], to avoid p = 0 or q = 0, etc.).

Also solved by Arkady Alt, San Jose, CA; Andrea Fanchini, Gantú, Italy;
Paul M. Harms, North Newton, KS; Ed Gray, Highland Beach, FL; G.C.
Greubel, Newport News, VA; Kee-Wai Lau, - Hong Kong, China; Daniel
López, Center for Mathematical Sciences, UNAM, Morelia, Mexico; Paolo
Perfetti, Department of Mathematics, “Tor Vergata” University, Rome,
Italy; Henry Ricardo (two solutions), New York Math Circle, NY; Albert
Stadler, Herrliberg, Switzerland; Vu Tran (student, Purdue University),West
Lafayette, IN; Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania; Titu Zvonaru, Comănesti, Romania, and the proposers.

• 5340: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b and c be the side-lengths, and s the semi-perimeter of a triangle. Show that

a2 + b2

(s− c)2 +
b2 + c2

(s− a)2
+
c2 + a2

(s− b)2 ≥ 24.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Changing variables by letting s− a = x, s− b = y and s− c = z the proposed inequality
is equivalent to the following one, for x, y and z positive real numbers:

∑

cyclic

(
1 +

y

z

)2
+
(

1 +
x

z

)2
≥ 24.

The last inequality follows by the power-mean, arithmetic-mean, geometric-mean
inequality:

√√√√√
∑

cyclic

(
1 +

y

z

)2
+
(

1 +
x

z

)2

6
≥

∑

cyclic

(
1 +

y

z

)
+
(

1 +
x

z

)

6

= 1 +

∑

cyclic

(y
z

+
x

z

)

6

≥ 1 + 6

√∏

cyclic

y

z
· x
z

= 2
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from where the result follows, with equality if and only if x = y = z, that is if a = b = c.

Solution 2 by Nikos Kalapodis, Patras, Greece

a+ b+ c = 2s =⇒ a2 = (s− b+ s− c)2.
Using the well-known inequality (x+ u)2 ≥ 4xy for x = s− b and y = s− c we have

(s− b+ s− c)2 ≥ 4(s− b)(s− c), i.e.,

a2 ≥ 4(s − b)(s − c) (1)

Similarly we obtain,

b2 ≥ 4(s− c)(s− a) (2)

c2 ≥ 4(s− a)(s− b). (3)

Applying the well known inequality x2 + y2 ≥ 2xy, to (1), (2), and (3) we have

a2 + b2

(s− c)2 +
b2 + c2

(s− a)2
+
c2 + a2

(s− b)2 =

[(
a

s− b

)2

+

(
a

s− c

)2
]

+

[(
b

s− c

)2

+

(
b

s− a

)2
]

+

[(
c

(s− a)

2
+

(
c

(s− b)2
)]
≥

2a2

(s− b)(s− c) +
2b2

(s− c)(s− a)
+

2c2

(s− a)(s− b) ≥ 2(4 + 4 + 4) = 24.

Solution 3 by Arkady Alt, San Jose, CA

Note that
∑
cyc

a2 + b2

(s− c)2
≥ 24 ⇐⇒

∑

cyc

a2 + b2

(a+ b− c)2
≥ 6.

Since a2 ≥ a2 − (b− c)2 ⇐⇒ a2

a+ b− c ≥ c+ a− b

and

b2 ≥ b2 − (c− a)2 ⇐⇒ b2

a+ b− c ≥ b+ c− a

then by AM-GM Inequality we have

∑
cyc

a2

(a+ b− c)2
≥
∑

cyc

c+ a− b
a+ b− c ≥ 3 3

√
c+ a− b
a+ b− c ·

a+ b− c
b+ c− a ·

b+ c− a
c+ a− b = 3

and

∑
cyc

b2

(a+ b− c)2
≥
∑

cyc

b+ c− a
a+ b− c ≥ 3 3

√
b+ c− a
a+ b− c ·

c+ a− b
b+ c− a ·

a+ b− c
c+ a− b = 3.

Thus,
∑
cyc

a2 + b2

(a+ b− c)2
≥ 6.
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Solution 4 by D.M. Bătinetu-Giurgiu, Bucharest, Romania

We shall prove that

xam + ybm

(s− c)m +
xbm + ycm

(s− a)m
+
xcm + yam

(s− b)m ≥ 3
√
xy · 2m+1, where m, x , y > 0.

Proof: We denote the area of the triangle by F , its circumradius by R and its inradius
by r.

By the AM-GM inequality and taking into account that
F = sr =

√
s(s− a)(s− b)(s− c) we have that

∑

cyclic

xam + ybm

(s− c)m ≥ 2
√
xy
∑

cyclic

(√
ab
)m

(s− c)m ≥ 2
√
xy · 3 · 3

√√√√√
∏

cyclic

(√
ab
)m

(s− c)m

= 6
√
xy · 3

√(
abc

(s− a)(s− b)(s− c)

)m

= 6
√
xy · 3

√
(4RF )msm

(s(s− a)(s− b)(s− c))m

= 6
√
xy · 3

√
4mRmFmsm

F 2m

= 6
√
xy · 3

√
4mRmsm

Fm

= 6
√
xy · 3

√
4mRmsm

smrm

= 6
√
xy · 3

√
4m
(
R

r

)m

≥ Euler(R≥2r)6
√
xy · 3
√

4m2m

= 6
√
xy · 3
√

23m = 6
√
xy · 3
√

23m = 3
√
xy2m+1

If we take m = 2 we obtain a solution to problem 5340.

Solution 5 by Paul M. Harms, North Newton, KS
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If x > 0, then using calculus we can show that the minimum value of both expressions




x+

1

x

x2 +
1

x2

is 2 and occurs at x = 1. I will use several substitutions to get the left side of the
problem inequality into a form easier to use.

First let t > 0 and r > 0 such that a = rc and b = tc. Then s =
c

2
(r + t+ 1) and the left

side of the problem inequality is

(
r2 + t2

)
(
t+ r − 1

2

)2 +

(
t2 + 1

)
(
t− r + 1

2

)2 +

(
r2 + 1

)
(
r − t+ 1

2

)2 .

Now let





2H = r + t− 1,

2L = t− r + 1

2K = r − t+ 1.

Then





r = H +K

t = H + L

L = 1−K
with H,L and K positive since

s− a, s− b and s− c are positive.

The inequality in terms of the positive numbers H,K and L can be written as

(H +K)2 + (H + L)2

H2
+

(H + L)2 + 1

L2
+

(H +K)2 + 1

K2
≥ 24.

Working with the left side of the inequality we can obtain

(
2 + 2

K

H
+

(
K

H

)2

+ 2
L

H
+

(
L

H

)2
)

+

((
H

L

)2

+ 2
L

H
+ 1 +

1

L2

)
+

((
H

K

)2

+ 2
H

K
+ 1 +

1

K2

)

= 2

(
K

H
+
H

K

)
+ 2

(
L

H
+
H

L

)
+ 2

((
H

K

)2

+

(
K

H

)2
)

+

((
L

H

)2

+

(
H

L

)2
)

+ 4 +
1

K2
+

1

L2
.

Each of the brackets in the last expression has the form

(
x+

1

x

)
or

(
x2 +

1

x2

)
so the

minimum value of each bracket is 2. Then the left side of the original problem inequality

is greater than or equal to 2(2) + 2(2) + 2 + 2 + 4 +
1

K2
+

1

L2
. If we can show that this

expression is greater than or equal 24, the original inequality is correct.

We must show that
1

K2
+

1

L2
is at least 8. Since K and L are positive numbers such

that L = 1−K, the derivative of the two terms is
−2

K3
− 2

L3
(−1). Letting the derivative

equal to zero, we obtain K = L =
1

2
. The value of 8 is clearly a minimium for

1

K2
+

1

L2
.

Thus the problem inequality is correct.

Solution 6 by Henry Ricardo, New York Math Circle, NY
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It is a known consequence of the arithmetic-geometric mean inequality that the
side-lengths of a triangle satisfy the inequality

(b+ c− a)(c+ a− b)(a+ b− c) ≤ abc.

Using this fact and the arithmetic-geometric mean inequality twice more, we have

a2 + b2

(s− c)2 +
b2 + c2

(s− a)2
+
c2 + a2

(s− b)2 ≥ 3

(
(a2 + b2)(b2 + c2)(c2 + a2)

(s− a)2(s− b)2(s− c)2
)1/3

≥ 3

(
(2ab)(2bc)(2ac)

[(b+ c− a)(a+ c− b)(a+ b− c)]2/64

)1/3

≥ 3

(
8a2b2c2

(abc)2/64

)1/3

= 24.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; D. M.Btinetu-Giurgiu, Bucharest,
Romania; Bruno Salgueiro Fanego, Viveiro, Spain; Ethan Gegner (student,
Taylor University), Upland, IN; Ed Gray, Highland Beach, FL; Nikos
Kalapodis (two additional solutions to #2 above), Patras, Greece; Kee-Wai
Lau, Hong Kong, China; Haroun Meghaichi (student, University of Science
and Technology Houari Boumediene), Algeria; Albert Stadler, Herrliberg,
Switzerland; Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania; Titu Zvonaru and Neculai Stanciu, Romania, and the proposer.

• 5341: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let z1, z2, · · · , zn, and w1, w2, · · · , wn be sequences of complex numbers. Prove that

Re

(
n∑

k=1

zkwk

)
≤ 3

(n+ 1)(n+ 2)

n∑

k=1

|zk|2 +
3n2 + 6n+ 1

20

n∑

k=1

|wk|2 .

Solution 1 by Kee-Wai Lau, Hong Kong, China

We have

Re

(
n∑

k=1

zkwk

)
≤
∣∣∣∣∣
n∑

k=1

zkwk

∣∣∣∣∣ ≤
n∑

k=1

|zk| |wk|

=

n∑

k=1

∣∣∣∣∣

√
6zk√

(n+ 1)(n+ 2)

∣∣∣∣∣

∣∣∣∣∣

√
(n+ 1)(n+ 2)wk√

6

∣∣∣∣∣

≤ 1

2




n∑

k=1



∣∣∣∣∣

√
6zk√

(n+ 1)(n+ 2)

∣∣∣∣∣

2

+

∣∣∣∣∣

√
(n+ 1)(n+ 2)wk√

6

∣∣∣∣∣

2





=
3

(n+ 1)(n+ 2)

n∑

k=1

|zk|2 +
(n+ 1)(n+ 2)

12

n∑

k=1

|wk|2 .
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Since
(n+ 1)(n+ 2)

12
=

3n2 + 6n+ 1

20
− (n− 1)(4n+ 7)

60
≤ 3n2 + 6n+ 1

20
,

so the inequality of the problem holds.

Solution 2 by Ethan Gegner (student, Taylor University), Upland, IN

For n ∈ N , define

f(n) =

(
3

(n+ 1)(n+ 2)

)(
3n2 + 6n+ 1

20

)

and observe that f is an increasing function of n; thus, f(n) ≥ f(1) = 1/4 for all n ∈ N .

Applying AM-GM inequality and then Cauchy’s inequality, we obtain

3

(n+ 1)(n+ 2)

n∑

k=1

|zk|2 +
3n2 + 6n+ 1

20

n∑

k=1

|wk|2 ≥ 2

√√√√f(n)

(
n∑

k=1

|zk|2
)(

n∑

k=1

|wk|
)2

≥
(

n∑

k=1

|zk|2
)1/2( n∑

k=1

|wk|2
)1/2

≥
n∑

k=1

|zk| |wk|

≥ Re

(
n∑

k=1

zkwk

)
.

Solution 3 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

The AGM yields

3

(n+ 1)(n+ 2)

n∑

k=1

|zx|2+
3n2 + 6n+ 1

20

n∑

k=1

|wx|2 ≥ 2

√
3

20

3n2 + 6n+ 1

n2 + 3n+ 2

√√√√
n∑

k=1

|zx|2. ·
n∑

r=1

|wr|2.

Then we use Cauchy–Schwarz

√√√√
n∑

k=1

|zx|2 ·
n∑

r=1

|wr|2 ≥
n∑

k=1

|zx| · |wk|

Moreover
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Re

(
n∑

k=1

zkwk

)
≤
∣∣∣∣∣
n∑

k=1

zkwk

∣∣∣∣∣ ≤
n∑

k=1

|zkwk| ,

and the inequality amounts to show that

2

√
3

20

3n2 + 6n+ 1

n2 + 3n+ 2
≥ 1 ⇐⇒ n ≤ −7

4
, n ≥ 1.

This completes the proof.

Solution 4 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

Let zk = xk + iyk and wk = ak + ibk, for 0 ≤ k ≤ n. We can assume that
xk, yk, ak, bk ≥ 0, because we can increase the left hand side of the statement of the
problem by using absolute values.

We wish to prove the inequality:

n∑

k=1

(akxk − bkyk) ≤
3

(n+ 1)(n+ 2)

n∑

k=1

(
x2k + y2k

)
+

3n2 + 6n+ 1

20

n∑

k=1

(
a2k + b2k

)
.

Because of symmetry, we need only show that:

akxk ≤
3

(n+ 1)(n+ 2)
x2k +

3n2 + 6n+ 1

20
a2k.

Considering this as a quadratic inequality for the variable xk, we see that the
discriminant is negative.

∆ = a2k − 4
3

(n+ 1)(n+ 2)

3n2 + 6n+ 1

20
a2k = a2k

( −4n2 + 3n+ 7

5(n+ 1)(n+ 2)

)
< 0.

Hence, the problem is solved.

Also solved by Bruno Salgueiro Fanego,Viveiro, Spain; Ed Gray, Highland
Beach, FL, and the proposer.

• 5342: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c, α > 0, be real numbers. Study the convergence of the integral

I(a, b, c, α) =

∫ ∞

1

(
a1/x − b1/x + c1/x

2

)α
dx.

The problem is about studying the conditions which the four parameters, a, b, c, and α,
should verify such that the improper integral would converge.

Solution 1 by Arkady Alt, San Jose, CA
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Case 1. If a = b = c, then for any nonzero x, a
1
x − b

1
x + c

1
x

2
= 0, so I(a, b, c, α) = 0 for

any real α > 0.

Case 2. Suppose α isn’t an integer. Then a
1
x − b

1
x + c

1
x

2
must be nonnegative for any x

and in particular, it must be positive for x = 1, that is a ≥ b+ c

2
.

Since

{
2a = b+ c

b = c
⇐⇒ a = b = c then, to avoid the trivial case 1, we will consider

a, b, c such that

a >
b+ c

2
or

{
2a = b+ c

b 6= c.

Then, by the AM-PM inequality, for x > 1 we have

b+ c

2
>

(
b

1
x + c

1
x

2

)x
⇐⇒

(
b+ c

2

) 1
x

>
b

1
x + c

1
x

2
,

and we obtain a
1
x >

b
1
x + c

1
x

2
for any x > 1 and that the integral is defined.

For any real p > 0 we have lim
t→0

pt − 1

t
= ln p. So, lim

x→∞
x

(
a

1
x − b

1
x + c

1
x

2

)
=

lim
x→∞

x
(
a

1
x − 1

)
−1

2

(
lim
x→∞

x
(
b

1
x − 1

)
+ lim
x→∞

x
(
c

1
x − 1

))
= ln a− ln b+ ln c

2
= ln

a√
bc
> 0,

because a >
√
bc if b 6= c or if a >

b+ c

2
.

Therefore, lim
x→∞

(
a

1
x − b

1
x + c

1
x

2

)α

1

xα

= lnα
a√
bc
> 0, and by the Limit Comparison Test,

I(a, b, c, α) converges iff
1

xα
converges; that is, I(a, b, c, α) converges if α > 1 and diverges

if α ∈ (0, 1].

Case 3. Let α be a positive integer. Then the expression

(
a

1
x − b

1
x + c

1
x

2

)α
is defined

for any positive a, b, c and since

lim
x→∞

(
a

1
x − b

1
x + c

1
x

2

)α
= lnα

a√
bc
> 0

is the limit of I(a, b, c, α) for a >
√
bc and when α > 1. So the situation of a =

√
bc must

be analyzed.
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Then


a

1
x − b

1
x + c

1
x

2



α

=

(−1)α
(
b

1
2x − c

1
2x

)2α

2α
.

Assume, without loss of generality, b > c. Since lim
x→∞

x

(
b

1
2x − a

1
2x

)
=

1

2
ln
b

c
> 0,

then lim
x→∞

(
b
1
2x−a

1
2x

)2α

1

x2α

=

(
1

2
ln
b

c

)2α

> 0, and by the Limit Comparison Test

I(a, b, c, α) is convergent iff
1

x2α
convergent, that is I(a, b, c, α) convergent if

α > 1/2 and divergent if α ∈ (0, 1/2].

In summary,

• If a = b = c then I(a, b, c, α) = 0 is convergent for any real α;

• If α ∈ <+/N and a >
b+ c

2
or

{
2a = b+ c
b 6= c

then I(a, b, c, α) is convergent

for α > 1 and divergent for α ∈ (0, 1];

• If α ∈ <+/N and a >
√
bc then I(a, b, c, α) is convergent for α > 1 and divergent for

α ∈ (0, 1];

• If α ∈ N and a =
√
bc then I(a, b, c, α) is convergent for α > 1/2 and divergent for

α ∈ (0, 1/2].

Solution 2 by Paolo Perfetti, Department of Mathematics, “Tor Vergata”
University, Rome, Italy

To have the integral well defined, a necessary condition is 2a ≥ b+ c.

The convergence occurs in one of the following cases:
1) if a = b = c we have convergence for any value of α

2) if α > 1 we have convergence regardless the values of a, b, c

3) if 1/2 < α ≤ 1 and a =
√
bc we have convergence.

Proof
If α is irrational or it is a rational p/q reduced to the lowest terms with q even, we must
impose

2a1/x − b1/x − c1/x ≥ 0

but this doesn’t seem to me easy to prove. A necessary condition is 2a ≥ b+ c
corresponding to x = 1.

If a = b = c the integrand is identically zero and then the integral converges regardless
the value of α.

From now on, a 6= b or b 6= c or a 6= c.

We have a1/x = e
ln a
x = 1 +

ln a

x
+

ln2 a

2x2
+

ln3 a

6x3
+O(x−4) whence
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[
a1/x − b1/x + c1/x

2

]α
=

{
1 +

ln a

x
+

ln2 a

2x2
+

ln3 a

6x3
+

−1

2

(
1 +

ln b

x
+

ln2 b

2x2
+

ln3 b

6x3
+ 1 +

ln c

x
+

ln2 c

2x2
+

ln3 c

6x3
+O(x−4)

)}α
=

=
1

xα

(
ln

a√
bc

+
ln2 a− ln2 b

2 − ln2 c
2

2x
+ xA

)α

A =
1

6

(
ln3 a

x3
− ln3 b

2x3
− ln3 c

2x3

)
+O(x−4)

The positivity of ln
a√
bc

+
ln2 a− ln2 b

2 − ln2 c
2

2x
+ xA for x large enough, imposes

ln
a√
bc
> 0 that is a2 ≥ bc which in turn follows by 2a ≥ b+ c. Indeed

a2 ≥ (b+ c)2

4
=
b2 + c2 + 2bc

4
≥ 4bc

4
= bc

Let α > 1. Since for any x large enough it is

(
ln

a√
bc

+
ln2 a− ln2 b

2 − ln2 c
2

2x
+ xA

)α
≤ C

if α > 1 the integral

∫ ∞

1

1

xα

(
ln

a√
bc

+
ln2 a− ln2 b

2 − ln2 c
2

2x
+ xA

)α
dx converges.

Let 1/2 < α ≤ 1 and a =
√
bc.

0 ≤
(
a1/x − b1/x + c1/x

2

)α
=

1

x2α

(1

4
(ln b− ln c)2 + x2A

)α
≤ C1

x2α

whence convergence.

Let 0 < α ≤ 1/2, and a =
√
bc. To have convergence we need ln b = ln c that is b = c, but

this would yield a = b = c, a forbidden condition.

Also solved by the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2015

• 5361: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral ABCD has perimeter P = 75 + 61
√

15 and has 6 B = 6 D = 90◦.
The lengths of the diagonals are 112 and 128. Find the lengths of the sides.

• 5362: Proposed by Michael Brozinsky, Central Islip, NY

Two thousand forty seven death row prisoners were arranged from left to right with the
numbers 1 through 2047 on their backs in this left to right order. Prisoner 1 was given a
gun and shoots prisoner number 2 dead, and then gives the gun to prisoner number 3
who shoots prisoner number 4 and then gives the gun to number 5 and so on, so that
every second originally numbered prisoner is shot dead.

This process is then repeated from right to left, starting with the person (in this case
number 2047) who last received the gun and then continues to proceed from right to
left, and then the direction switches again, and then again until only one prisoner
remains standing. What is the number of the prisoner who survives the left to right,
right to left shootout? Note that if there had been 2048 prisoners, number 2047 would
have no one to whom to hand the gun in the left to right direction after shooting
number 2048, and so he would then start the gun in its opposite direction shooting the
living prisoner to his immediate left i.e., number 2045. In this case, number 2047 gets to
shoot two prisoners before he hands the gun off to another prisoner.

• 5363: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzaău, Romania

Let x ∈ < and A(x) =




x+ 1 1 1 1
1 x+ 1 1 1
1 1 x+ 1 1
1 1 1 x+ 1


 .

Compute A(0) ·A(x) ·A(y) ·A(z),∀x, y, z ∈ <.

1

X
ia
ng
’s
T
ex
m
at
h



• 5364: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Prove that
n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)
4−n = 1.

• 5365: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n ≥ 3 be a positive integer. Find all real solutions of the system

a32(a
2
2 + a23 + . . .+ a2j+1) = a21

a33(a
2
3 + a24 + . . .+ a2j+2) = a22

. . . . . . . . .
a3n(a2n + a21 + . . .+ a2j−1) = a2n−1





for 1 < j < n.

• 5366: Proposed by Ovidiu Furdui and Alina Sintămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all non-constant, differentiable functions f : R→ R which verify the functional
equation f(x+ y)− f(x− y) = 2f ′(x)f(y), for all x, y ∈ R.

Solutions

• 5343: Proposed by Kenneth Korbin, New York, NY

Four different Pythagorean Triangles each have hypotenuse equal to 4p4 + 1 where p is
prime.

Express the sides of these triangles in terms of p.

Solution 1 by Brian D. Beasley, Presbyterian College, Clinton, SC

We designate the lengths of the legs of these triangles by a and b, so that
a2 + b2 = (4p4 + 1)2. We then make use of the well-known identity

(w2 + x2)(y2 + z2) = (wy + xz)2 + (wz − xy)2.

Since 4p4 + 1 = (2p2)2 + (1)2 = (2p2 − 1)2 + (2p)2, we make the appropriate
substitutions into the above identity to obtain the following four expressions of
(4p4 + 1)2 as the sum of two squares:

(4p4 + 1)2 = (4p4 − 1)2 + (4p2)2

= (4p4 − 8p2 + 1)2 + (8p3 − 4p)2

= (4p4 − 2p2 + 2p)2 + (4p3 − 2p2 + 1)2

= (4p4 − 2p2 − 2p)2 + (4p3 + 2p2 − 1)2.

Hence the four triangles have the following lengths for their legs:

a = 4p4 − 1, b = 4p2;

a = 4p4 − 8p2 + 1, b = 8p3 − 4p;

a = 4p4 − 2p2 + 2p, b = 4p3 − 2p2 + 1;
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a = 4p4 − 2p2 − 2p, b = 4p3 + 2p2 − 1.

Addendum. We note that for p ≥ 2, these eight values of a and b are positive and
distinct. We also observe that the condition that p be prime does not seem to be
necessary.

Solution 2 by Trey Smith, Angelo State University, San Angelo, TX

It is well known that if m > n are both positive integers then

(m2 − n2, 2mn, m2 + n2)

is a Pythagorean triple.

1. Letting m1 = 2p2 and n1 = 1 yields the Pythagorean triple

( 4p4 − 1, 4p2, 4p4 + 1 ).

2. Letting m2 = 2p2 − 1 and n2 = 2p yields the Pythagorean triple

( 4p4 − 8p2 + 1, 8p3 − 4p, 4p4 + 1 ).

3. 4p4 + 1 = (2p2 + 2p+ 1)(2p2 − 2p+ 1), and
2p2 + 2p+ 1 = p2 + 2p+ 1 + p2 = (p+ 1)2 + p2. Letting m3 = p+ 1 and n3 = p
yields the Pythagorean triple ( 2p+ 1, 2p(p+ 1), 2p2 + 2p+ 1 ). Multiplying each
side of the associated Pythagorean triangle by 2p2 − 2p+ 1 yields the triple

( (2p+ 1)(2p2 − 2p+ 1), 2p(p+ 1)(2p2 − 2p+ 1), 4p4 + 1 ).

4. Using a similar argument to 3 above, and letting m4 = p and n4 = p− 1 then
multiplying each side of the associated Pythagorean triangle by 2p2 + 2p+ 1 yields
the triple

( (2p− 1)(2p2 + 2p+ 1), 2p(p− 1)(2p2 + 2p+ 1), 4p4 + 1 ).

It is worth noting that the above computations produce the demonstrated four
Pythagorean triangles for any given prime p. There are, however, cases where a
particular choice of p yields more than four Pythagorean triangles. For example, when
p = 3 we have the triples
(36, 323, 325),
(80, 315, 325),
(91, 312, 325),
(125, 300, 325),
(165, 280, 325),
(195, 260, 325),
(204, 253, 325).

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We remove the restriction that p be prime, requiring only that p be an integer ≥ 2. It is
very well known that very Pythagorean triangle (a, b, c) has the from

a = k(2mn)
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b = k
(
m2 − n2

)

c = k
(
m2 + n2

)
,

where k ≥ 1, and m and n are relatively prime integers of opposite parity with m > n.
Thus we need to write 4p4 + 1 in the form of k

(
m2 + n2

)
in four different ways.

We have the obvious choices

4p4 + 1 = 1 ·
[(

2p2
)2

+ 12
]
and 4p4 + 1 = 4p4 − 4p2 + 1 + 4p2 = 1 ·

[(
2p2 − 1

)2
+ (2p)2

]
.

A different factorization produces two more triangles:

4p4 + 1 =
(
2p2 − 2p+ 1

)
·
(
2p2 + 2p+ 1

)

=
[
p2 + (p− 1)2

] [
(p+ 1)2 + p2

]

=
(
2p2 − 2p+ 1

) [
(p+ 1)2 + p2

]
and

=
(
2p2 + 2p+ 1

) [
p2 + (p− 1)2

]
.

We summarize the results in Table 1:

k m n a = k(2mn) b = k(m2 − n2) c = k(m2 + n2)

1 2p2 1 4p2 4p4 − 1 4p4 + 1
1 2p2 − 1 2p 8p3 − 4p 4p4 − 8p2 + 1 4p4 + 1

2p2 − 2p+ 1 p+ 1 p 4p4 − 2p2 + 2p 4p3 − 2p2 + 1 4p4 + 1
2p2 + 2p+ 1 p p− 1 4p4 − 2p2 − 2p 4p3 − 2p2 + 1 4p4 + 1

It appears that we have four triangles with the required hypotenuse, but we need to
check they are really distinct. Since all of the “a legs” are even and the “b legs” odd, we
only need to compare the values for a and show they are all distinct. This requires 6
comparisons.

For instance, if it were the case that the first two triangles were the same for some value
of p, we would have 4p2 = 8p3 − 4p .

then 0 = 8p3 − 4p2 − 4p = 4p(p− 1)(2p+ 1), which is impossible.

The other comparisons also prove to be impossible.

Therefore, we do have four distinct Pythagorean triangles with hypotenuse 4p2 + 1.

An example with p = 2.

k m n a = k(2mn) b = k(m2 − n2) c = k(m2 + n2)

1 8 1 16 63 65
1 7 4 56 33 65
5 3 2 60 250 65
13 2 1 52 39 65

Note that these four triples are all possible with triples with hypotenuse 65, so the result
proved is, in general, the best possible.
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The four triples produced for p = 3, so that 4 · 34 + 1 = 325:

k m n a b c
1 18 1 36 323 325
1 17 6 204 253 325
13 4 3 312 91 325
25 3 2 300 125 325

A Deeper Look: There are many more such triangles having hypotenuse 4p4 + 1.
Consider the following construction suggested the last row of our table.

The generating pair m = 2, n = 1 produces a Pythagorean triangle with hypotenuse 5. If

we can find a value of p such that 5 divides 4p4 + 1, then we can let k =
4p4 + 1

5
, m = 2

and n = 1 and produce the triangle.

a = k(2mn) = 4k; b = k
(
m2 − n2

)
= 3k; c =

(
m2 + n2

)
=

4p4 + 1

5
· 5 = 4p4 + 1.

Are there any such p? Well,

5
∣∣(4p4 + 1) ⇐⇒ 4p4 + 1 ≡ 0(mod 5) ⇐⇒ −p4 ≡ −1(mod 5) ⇐⇒ p4 ≡ (1mod 5).

By Fermat’s Little Theorem, this last condition is true for all p relatively prime to 5.
That is, for any p not divisible by 5, we have a Pythagorean triangle with hypotenuse
4p4 + 1.

For instance, with p = 2, k =
4 · 24 + 1

5
=

65

3
= 13, and this construction re-creates the

last row of our table.

Let’s designate the triple found via this construction at PT (2; 13, 2, 1).

In general, we designate by PT (p; k,m, n) the triangle having hypotenuse 4 · p4 + 1,

generated by k =
4 · p4 + 1

m2 + n2
, m and n, where m and n are relatively prime integers of

opposite parity with m > n.

With p = 3, k =
4 · 34 + 1

5
=

325

5
= 65, and this construction yields a new triangle with

hypotenuse 325; (260, 195, 325) that is PT (3; 65, 2, 1). Note that the four solutions given
in Table 1 are PT (p; 1, 2p2, 1) , PT (p; 1, 2p2 − 1, 2p), PT (p; 2p2 − 2p+ 1, p+ 1, p) and
PT (p; 2p2 + 2p+ 1, p, p− 1).

Continuing in this vein, the generating pair m = 3, n = 2 produces a Pythagorean
triangle with hypotenuse 13. If we can find a value of p such that 13 divides 4p4 + 1,
then we can let

k =
4p4 + 1

13
,m = 3 and n = 2 and produce the triangle

a = k(2mn) = 12k, b = k
(
m2 − n2

)
= 5k, c = k

(
m2 + n2

)
=

4p4 + 1

13
· 13 = 4p4 + 1.
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Are there any such p? Well,

13
∣∣4p4 + 1 ⇐⇒ 4p4 + 1 ≡ 0(mod 13) ⇐⇒ 4p4 ≡ −1(mod 13) ⇐⇒ 4p4 ≡ 12(mod 13)

⇐⇒ p4 ≡ 3(mod 13).

It is easy to check that this last congruence is satisfied if and only if p = 2, 3, 10 or
11(mod 13). Using any such p will produce a triangle generated by

k =
4p4 + 1

13
,m = 3 and n = 2 and of the form

a = 12k, b = 5k, c =
4p4 + 1

13
· 13 = 4p4 + 1.

This process can be used for any fundamental generating pair m and n.

Theorem: This construction produces all Pythagorean triples having the desired
hypotenuse, 4p4 + 1.

First, some evidence. For instance, we re-examined the table for p = 2.

k m n a b c PT
1 8 1 16 63 65 PT(2;1,8,1)
1 7 4 56 33 65 PT(2;1,7,4)
5 3 2 60 25 65 PT(2;5,3,2)
13 2 1 52 39 65 PT(2;13,2,1)

For p = 3, we also look at all Pythagorean triples with hypotenuse 4 · 34 + 1 = 325,
where the first four triples are those shown above, produced by our procedure shown in
Table 1.

k m n a b c PT
1 18 1 36 323 325 PT(3;1,18,1)
1 17 6 204 253 325 PT(3;1,17,6)
13 4 3 312 91 325 PT(3;13,4,3)
25 3 2 300 125 325 PT(3;25,3,2)

80 315 325 PT(3;5,8,1)
280 165 325 PT(3;5,7,4)
260 195 325 PT(3;13,2,1)

Proof of the theorem. Suppose we are given a Pythagorean triple (a, b, c) which has
hypotenuse of the form 4p2 + 1. We can immediately computer p from

c = 4p4 + 1; p = 4

√
c− 1

4
.

We can also computer k = gcd(a, b).

This gives us a primitive Pythagorean triple

(
a

k
,
b

k
,
c

k

)
, in which we may choose

a

k
to

be the even leg.

That is, we must find appropriate m and n so that

a

k
= 2mn,

b

k
= m2 − n2, c

k
=

4p2 + 1

k
= m2 + n2.
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By solving the last two equations, we find that m =

√
b+ c

2k
and n =

√
c− b
2k

.

These must be coprime integers of opposite parity, because

(
a

k
,
b

k
,
c

k

)
is a primitive

Pythagorean triple.

Therefore, (a, b, c) is PT (p; k,m, n).

Caveat: Producing triples by using this construction is rather random. Given an
appropriate generating pair (m,n) we must find p (and thus k) by solving the
congruence 4p4 + 1 ≡ 0 mod

(
m2 + n2

)
.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University San Angelo, TX; Jerry Chu (Student, Saint George’s
School), Spokane, WA; Bruno Salgueiro Fanego (two solutions), Viveiro,
Spain; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
David E. Manes, SUNY College at Oneonta, Oneonta, NY, and the proposer.

• 5344: Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan

Let 4ABC be isosceles with AB = AC. Let D be a point on side BC. A line through
point D intersects rays AB and AC at points E and F respectively. Prove that
ED ·DF ≥ BD ·DC.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let Γ be the circle which passes through B,C and E and let J be the other point of
intersection of the line DE with Γ. Since E and F are on the rays with origin A and
with orientations AB and AC respectively, we have that DF = DJ = JF ≥ DJ with
equality if, and only if J = C = F , that is, if, and only if the line EF=BC, so

ED ·DF ≥ ED ·DJ (1)

with equality if, and only if the line through point D given in the statement of the
problem is the line BC, and, by the intersecting chords theorem, the absolute value of
the power of D with respect to Γ is ED·DJ and also BD ·DC that is

ED ·DJ = BD ·DC. (2)

From (1) and (2) we deduce the inequality to be shown and that equality occurs if, and
only if, the line through point D is the line BC.

Solution 2 by Titu Zvonaru, Comănesti, Romania

We denote by M the midpoint of BC, a = MB,= MC,h = AM and tan( 6 FDC) = m.
Suppose that F lies between A and C. A parallel line to EF through M intersects AB
and AC at points E′ and F ′ respectively. By Similitude, we obtain:

DF

MF ′
=

DC

MC
⇐⇒ DF =

MF ′ ·DC
MC

,

DE

ME′
=

DB

MB
⇐⇒ DF =

ME′ ·DB
MB

.
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(1)

Since

ED·DF ≥ BD·DC ⇐⇒ ME′ ·DB
MB

·MF ′ ·DC
BC

≥ BD·DC ⇐⇒ ME·MF ≥MB·MC,

we deduce that it suffices to prove the statement of the problem if D is the midpoint of
BC. In the following we will assume that D is the midpoint of BC.

Lt T be the projection of F to BC. It results that

TC

DC
=
FT

AD
⇐⇒ MC −DT

DC
=
DT ·m
AD

⇒ DT =
ah

h+ am
.

By the Pythagorean Theorem, we obtain

DF =
√
DT 2 + FT 2 =

√
a2h2

(h+ am)2
+

a2h2

(h+ am)2
m2 =

ah

h+ am

√
1 +m2,

and similarly, DE =
ah

h− am
√

1 +m2.

It results that:

ED·DF ≥ BD·DC ⇐⇒ a2h2

h2 − a2m2

(
1 +m2

)
⇐⇒ h2+h2m2 ≥ h2−a2m2 ⇐⇒

(
a2 + h2

)
m2 ≥ 0,

which is true. The equality holds if and only if m = 0, that is, the line through D is BC.

Solution 3 by Ed Gray, Highland Beach, FL

To be specific in the case you wish to draw a diagram, let the point D be on the left of
middle of side BD so that point E is on side AB in the triangle closer to B than to A.
The point F on the extension of AC and is external to the triangle ABC. We shall be
interested in triangles EBE and DCF .

In 4BED, let α = 6 EBD and let β = 6 EDB. So 6 DEB = 180− α− β. Also
6 BCA = α because 4ABC is isosceles.

In 4CDF, 6 FDC = β;FCD = 180− α, and although 4EBD and 4FCD are not
similar to one another, the law of sines holds in each triangle.

In 4BED;
ED

sinα
=

BD

sin(180− α− β)
=

BD

sin(α+ β)
. So, ED =

BD sin a

sin(α+ β)
.

In 4DCF ;
DC

sin(α− β)
=

DF

sin(180− α)
=

DF

sinα
. So, DF =

DC sinα

sin(α− β)
.

To show ED ·DF ≥ BD ·DC we must show that

(BD sin a) · (DC sinα)

sin(α+ β) · sin(α− β)
≥ BD ·DC, or

sin2 α

sin(α+ β) sin(α− β)
≥ 1, or

sin2 α ≥ sin(α+ β)sin(α− β)
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sin(α+ β) = sinα cosβ + cosα sinβ

sin(α− β) = sinα cosβ − cosα sinβ, or

sin2 α ≥ (sinα cosβ + cosα sinβ)(sinα cosβ − cosα sinβ)

= sin2 α cos2 β − cos2 α sin2 β.

Adding cos2 α to both sides of the above inequality we obtain

1 ≥ cos2 α− cos2 α sin2 β + sin2 α cos2 β = cos2 α(1− sin2 β) + sin2 α cos2 β

1 ≥ cos2 α cos2 β + sin2 α cos2 β = (cos2 β)(cos2 α+ sin2 α)

1 ≥ cos2 β, and this proves the conjecture.

Also solved by Michael Brozinsky, Central Islip, NY; Jerry Chu (student,
Saint George’s School), Spokane, WA; Kee-Wai Lau, Hong Kong, China;
David Stone and John Hawkins, Georgia Southern University, Statesboro
GA, and the proposer.

• 5345: Proposed by Arkady Alt, San Jose, CA

Let a, b > 0. Prove that for any x, y the following inequality holds

|a cosx+ b cos y| ≤
√
a2 + b2 + 2ab cos(x+ y),

and find when equality occurs.

Solution 1 by Michael Brozinsky, Central Islip, NY

Since
√
u2 = |u|, the left hand side of the given inequality can be written as

a2 cos2 x+ 2ab cosx cos y + b2 cos2 y,

and so using the identities sin2 u = 1− cos2 u and cos(x+ y) = cosx cos y − sinx sin y, it
must be shown that

a2 sin2 x+ b2 sin2 y ≥ 2ab sinx sin y.

This is true from the AM-GM inequality, with equality if, and only if, a sinx = b sin y.

Solution 2 by Paul M. Harms, North Newton, KS

Since each side of the inequality is a nonnegative number, the inequality holds if the
square of the left side is less than or equal to the square of the right side. We need to
show that

(a cosx+ b sin y)2 = a2 cos2 x+ 2ab cosx cos y + b2 cos2 y ≤ a2 + b2 + 2ab cos(x+ y).
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The last inequality is equivalent to

0 ≤ a2
(
1− cos2 x

)
+ b2

(
1− cos2 y

)
+ 2ab (cos(x+ y)− cosx cos y)

= a2 sin2 x+ b2 sin2 y + 2ab((cosx cos y − sinx sin y)− cosx cos y)

= (a sinx− b sin y)2.

Clearly, 0 ≤ (a sinx− b sin y)2 so the problem inequality holds. Equality will hold when

a sinx = b sin y or
a

b
=

sinx

sin y
.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Dionne Bailey, Elsie
Campbell, Charles Diminnie, and Karl Havlak, Angelo State University, San
Angelo, TX; Brian D. Beasley, Presbyterian College, Clinton, SC; Jerry Chu
(student, Saint George’s School), Spokane, WA; Bruno Salgueiro Fanego,
Viveiro, Spain; Ethan Gegner (student, Taylor University), Upland, IN; Ed
Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti,
Department of Mathematics, Tor Vergata, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland; Neculai Stanciu, “George Emil Palade” School,
Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David Stone and
John Hawkins, Georgia Southern University, Statesboro GA; Vu Tran
(student, Purdue University), West Lafayette, IN; Nicusor Zlota, “Traian
Vula” Technical College, Focsani, Romania, and the proposer.

• 5346: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Show that in any triangle ABC, with the usual notations, the following hold,

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c ≥ 2s2,

where ra is the excircle tangent to side a of the triangle and s is the triangle’s
semiperimeter.

Solution 1 by Moti Levy, Rehovot, Israel

From geometry of the triangle:

ha =
2

1

rb
+

1

rc

, hb =
2

1

ra
+

1

rc

, hc =
2

1

rb
+

1

ra

. (1)

Solving (1) for ra, rb and rc, we get

ra =
hahbhc

hahb + hahc − hbhc
10
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rb =
hchahb

hahb − hahc + hbhc

rc =
hahbhc

−hahb + hahc + hbhc
(2)

Suppose ha ≥ hb ≥ hc. It follows from (2) that ra ≤ rb ≤ rc. It is also easy to see that

ha ≥ hb ≥ hc implies
hb + hc
ha

≤ hc + ha
hb

≤ ha + hb
hc

.

So now we can apply Chebyshev’s sum inequality,

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c ≥
1

3

(
hb + hc
ha

+
hc + ha
hb

+
ha + hb
hc

)(
r2a + r2b + r2c

)
.

Since x+ 1
x ≥ 2, for x ≥ 0,

hb + hc
ha

+
hc + ha
hb

+
ha + hb
hc

=
hb
ha

+
hc
ha

+
hc
hb

+
ha
hb

+
ha
hc

+
hb
hc
≥ 6.

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c ≥ 2
(
r2a + r2b + r2c

)
.

To complete the solution, we use the well known inequality

r2a + r2b + r2c ≥ s2,

(which can be shown by proving that tan2 α

2
+ tan2 β

2
+ tan2 γ

2
≥ 1, and that

ra = s tan
α

2
, rb = s tan

β

2
, rc = s tan

γ

2
).

Reference: Bottemi O., et al. Geometric inequalities (Noordhoff, 1969), 2.35 p. 27,
5.34 p. 57.

Solution 2 by Nikos Kalapodis, Patras, Greece

Applying the Cauchy-Schwartz inequality,

(
a21 + a22 + a23

) (
b21 + b22 + b23

)
≥ (a1b1 + a2b2 + a3b3)

2

for a1 =
ra√
ha
, a2 =

rb√
hb
, a3 =

rc√
hc

and b1 =
√
ha, b2 =

√
hb, b3 =

√
hc we have

(
r2a
ha

+
r2b
hb

+
r2c
hc

)
(ha + hb + hc) ≥ (ra + rb + rc)

2,

i.e.,
hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hv

r2c ≥ 2 (rarb + rbrc + rcra) . (1)

Taking into account the well-known formulas S2 = s(s− a)(s− b)(s− c) and
S = ra(s− a) = rb(s− b)− rc(s− c) for the area S of triangle ABC, we have

rarb + rbrc + rcra =
S2

(s− a)(s− b) +
S2

(s− b)(s− c) +
S2

(s− c)(s− a)
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= s(s− c) + s(s− a) + s(s− b)

= s (3s− (a+ b+ c))

= s(3s− 2s) = s2 (2)

Unsing (1)and (2) we obtain the required inequality.

Solution 3 by Titu Zvonaru, Comănesti, Romania

We suppose that a ≥ b ≥ c. Denoting by F the area of triangle ABC w have

a ≥ b ≥ c ⇐⇒ 1

a
≤ 1

b
≤ 1

c
⇐⇒ F

a
≤ F

b
≤ F

c
⇐⇒ ha ≤ hb ≤ hc

⇐⇒ ha + hb + hc
ha

≥ ha + hb + hc
hba

≥ ha + hb + hc
hc

⇐⇒ hb + hc
ha

≥ hc + ha
hb

≥ ha + hb
hc

.

and

a ≥ b ≥ c ⇐⇒ s− a ≤ s− b ≤ s− c ⇐⇒ F

s− a ≥
F

s− b ≥
F

s− c ⇐⇒ ra ≥ rb ≥ rc.

Applying the Chebyshev inequality and the well known inequality

x2 + y2 + z2 ≥ xy + yz + zx,

we obtain

hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c

≥ 1

3

(
hb + hc
ha

+
hc + ha
hb

+
ha + hb
hc

)(
r2a + r2b + r2c

)

≥ 1

3

(
ha
hb

+
hb
ha

+
hb
hc

+
hc
hb

+
hc
ha

+
ha
hc

)
(rarb + rbrc + rcra)

≥ 1

3
(2 + 2 + 2)

(
F 2

(s− a)(s− b) +
F 2

(s− b)(s− c) +
F 2

(s− c)(s− a)

)

= 2 · F
2(s− c+ s− a+ s− b)
(s− c)(s− b)(s− c)
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= 2 · s(s− a)(s− b)(s− c)s
(s− a)(s− b)(s− c) = 2s2.

The equality holds if and only if a = b = c, that is, when triangle ABC is equilateral.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Since ha = b sinC, hb = c sinA, hc = a sinB, so by the sine formula we have

hb + hc
ha

=
c sinA+ a sinB

b sinC

=
sinA(sinB + sinC)

sinB sinC

=
sinA

sinB + sinC

(
4 +

(sinB − sinC)2

sinB sinC

)

≥ 4 sinA

sinB + sinC

=

4 sin

(
A

2

)

cos

(
B − C

2

)

≥ 4 sin

(
A

2

)
.

Similarly,
hc + ha
hb

≥ 4 sin

(
B

2

)
and

ha + hb
hc

≥ 4 sin

(
C

2

)
. Hence using the well-known

relations ra = s tan

(
A

2

)
, rb = s tan

(
B

2

)
, rc = s tan

(
C

2

)
, we see that

1

s2

(
hb + hc
ha

r2a +
hc + ha
hb

r2b +
ha + hb
hc

r2c

)
≥ 4 (f(A/2) + f(B/2) + f(C/2)) ,

where f(x) = sinx tan2 x, for 0 < x <
π

2
. Since

d2f(x)

dx2
= sinx+ tanx secx+ 4 tanx sec3 x+ 2 tan3 x secx > 0,

so, f(A/2) + f(B/2) + f(C/2) ≥ 3f

(
A+B + C

6

)
=

1

2
, and therefore the inequality of

the problem holds.

Also solved by Jerry Chu (student, Saint George’s School), Spokane, WA;
Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL;
Albert Stadler, Herrliberg, Switzerland; Nicusor Zlota, “Traian Vula”
Technical College, Focsani, Romania, and the proposers.
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• 5347: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let 0 < a < b be real numbers and let f, g : [a, b]→ R∗+ be continuous functions. Prove
that there exists c ∈ (a, b) such that




1

f(c)
+

1
∫ b

c
g(t) dt



(
g(c) +

∫ c

a
f(t) dt

)
≥ 4

(R∗+ represents the set of non-negative real numbers.)

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

In order to avoid non-sense expressions, as zero denominators, we may assume that f, g
are not identically null. The proposed inequality may be written as

g(c) +

∫ c

a
f(t)dt

2
≥ 2

1

f(c)
+

1
∫ b

c
g(t)dt

.

The right-hand side tends to zero for c→ b, because

∫ b

c
g(t)dt→ 0. On the other hand,

g, and f are not identically null so the limit of the left-hand side is positive for c→ b,

since at least

∫ b

a
f(t)dt > 0 and the conclusion follows.

Solution 2 by Henry Ricardo, New York Math Circle, NY

Define F (x) =

∫ x

a
f(t)dt ·

∫ b

x
g(t)dt. Since F (a) = F (b) = 0, Rolle’s theorem tells us

that there exists c ∈ (a, b) such that 0 = F ′(c) = f(c)

∫ b

c
g(t)dt− g(c)

∫ c

a
f(t)dt , or

f(c)

∫ b

c
g(t)dt = g(c)

∫ c

a
f(t)dt. (1)

Since f and g are non-negative, the AM-GM inequality yields

(
1

f(c)
+

1
∫ b
c g(t)dt

)(
g(c) +

∫ c

a
f(t)dt

)
≥ 2√

f(c)
∫ b
c g(t)dt

· 2
√
g(c)

∫ c

a
f(t)dt = 4

by statement (1).

Comment by solver: We are tacitly assuming that f(c) 6= 0. It is better to alter the
problem’s hypothesis so that at least f is strictly positive on [a, b].

Solution 3 by Michael Brozinsky, Central Islip, NY
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Assume the contrary that no such c exists so that
(

1

f(c)
+

1
∫ b
c g(t) dt

) (
g(c) +

∫ c

a
f(t) dt

)
≥ 4(∗) for all x on(a, b).

Now

∫ b

x
g(t)dt and

∫ x

a
f(t)dt are continuous and positive functions of x for a ≤ x ≤ b

since f(t) and g(t) are nonnegative and continuous. Hence from (∗) we have
g(x)

f(x)
< 4

for all x on (a, b) (∗∗) and also

∫ x

a
f(t)dt < 4 ·

∫ b

x
g(t)dt (∗ ∗ ∗). From (∗ ∗ ∗), (∗∗) then

implies that

∫ x

a
f(t)dt < 4 ·

∫ b

x
4f(t)dt and so letting x −→ b we have a contradiction

that

∫ b

a
f(t)dt ≤ 0. Hence there exists a c on (a, b) such that F (c) > 4, in fact, there

exists a c on (a, b) such that F (c) > M where M is an arbitrary positive number as the
above proof shows replacing the 4′s by M throughout.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata,
Rome, Italy

We argue by contradiction assuming that

(
1

f(c)
+

1
∫ b
c g(t)dt

)(
g(c) +

∫ c

a
f(t)dt

)
< 4

for any c ∈ (a, b).

Cauchy Schwarz yields

4 >

(
1

f(c)
+

1
∫ b
c g(t)dt

)(
g(c) +

∫ c

a
f(t)dt

)
≥



√∫ c

a f(t)dt

f(c)
+

√
g(c)

∫ b
c g(t)dt




2

Now we prove the Lemma

Lemma There exists d ∈ (a, b) such that

∫ d

a
f(t)dt

f(d)
≥

∫ b

d
g(t)dt

g(d)
.

Proof∫ d

a
f(t)dt

f(d)
≥

∫ b

d
g(t)dt

g(d)
if and only if

g(d)

∫ d

a
f(x)dx ≥ f(d)

∫ b

d
g(x)dx (1)

Now let g(b) = g0 > 0. A value d can be chosen so close to b such that
|g(x)− g0| ≤ g0/2 for any x ∈ (d, b]. For the same reasons
|f(x)− f0| ≤ f0/2 for any x ∈ (d, b] where f0 = f(b). Moreover we can suppose∫ d

a
f(x)dx ≥ 1

2

∫ b

a
f(x)dx = I/2 > 0. We can write

15
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g(d)

∫ d

a
f(x)dx ≥ 1

2
g0

∫ d

a
f(x)dx ≥ 1

2
g0
I

2

and

3

2
f(b)

3

2
g0(b− d) ≥ f(d)

∫ b

d
g(x)dx.

To prove (1) it suffices

1

2
g0
I

2
≥ 3

2
f(b)

3

2
g0(b− d) ⇐⇒ I ≥ 9f(b)(b− d)

and this clearly holds provided that d is very close to b. .

Thanks to the lemma, we can write

4 >



√∫ c

a f(t)dt

f(c)
+

√
g(c)

∫ b
c g(t)dt




2

≥



√∫ b

d g(t)dt

g(d)
+

√
g(d)

∫ b
d g(t)dt




2

≥ 4

since x+ 1/x ≥ 2 for any x > 0, contradiction.

Also solved by Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel,
and the the proposer.

• 5348: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k ≥ 1 be an integer. Prove that

∫ 1

0
lnk(1− x) lnx dx = (−1)k+1k!(k + 1− ζ(2)− ζ(3)− · · · − ζ(k + 1)),

where ζ denotes the Riemann zeta function.

Solution 1 by Moubinool Omarjee of Lycée Henri IV, Paris, France

We change the variable letting u = − ln(1− x).

∫ 1

0
lnk(1− x) lnxdx = (−1)k

∫ +∞

0
uk ln(1− e−u)e−udu

= (−1)k+1

∫ +∞

0

∞∑

n=1

1

n
uke−u(n+1)du

= (−1)k+1
∞∑

n=2

1

n− 1

∫ +∞

0
uke−undu

= (−1)k+1
∞∑

n=2

1

n− 1

1

nk+1
Γ(k + 1)
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= (−1)k+1
∞∑

n=2

1

n− 1

1

nk+1
k!

= (−1)k+1k!
∞∑

n=2

1

n− 1

1

nk+1

= (−1)k+1k!
∞∑

n=2

(
1

n(n− 1)
− 1

n2
− 1

n3
− . . .− 1

nk+1

)

= (−1)k+1k!
∞∑

n=2

(
1

n(n− 1)
−
∞∑

n=2

1

n2
−
∞∑

n=2

1

n3
− . . .−

∞∑

n=2

1

nk+1

)

= (−1)k+1k! (k + 1− ζ(2)− ζ(3)− . . .− ζ(k + 1))

Solution 2 by Anastasios Kotronis, Athens, Greece

It is straightforward to see that
∑

n≥1

xn

n
lnk x converges uniformly on [0, 1] and,

integrating by parts, that for n, k non negative integers:

∫
xn lnk x dx = xn+1

(
lnk x

n+ 1
− k lnk−1 x

(n+ 1)2
+
k(k − 1) lnk−2 x

(n+ 1)3
− . . .+ (−1)kk!

(n+ 1)k+1

)
+ c.

so we have
∫ 1

0
lnk(1− x) lnx dx

1−x=y
====

∫ 1

0
ln(1− y) lnk y dy = −

∫ 1

0

∑

n≥1

yn

n
lnk y dy = −

∑

n≥1

1

n

∫ 1

0
yn lnk y dy

=(−1)k+1k!
∑

n≥1

1

n(n+ 1)k+1
= (−1)k+1k!

∑

n≥2

1

(n− 1)nk+1

= (−1)k+1k!
∑

n≥2

1− 1 + 1
nk+2

1− 1
n

= (−1)k+1k!
∑

n≥2

(
n

n− 1
−

k+1∑

m=0

1

nm

)

= (−1)k+1k!
∑

n≥2

(
n

n− 1
− 1− 1

n
−

k+1∑

m=2

1

nm

)

= (−1)k+1k!


∑

n≥2

(
1

n− 1
− 1

n

)
−
∑

n≥2

k+1∑

m=2

1

nm




= (−1)k+1k!


1−

k+1∑

m=2

∑

n≥2

1

nm


 = (−1)k+1k!

(
1−

k+1∑

m=2

(ζ(m)− 1)

)

= (−1)k+1k! (k + 1− ζ(2)− ζ(3)− · · · − ζ(k + 1)) .

Solution 3 by Moti Levy, Rehovot, Israel
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Clearly, ∫ 1

0
lnk (1− x) lnxdx =

∫ 1

0
ln (1− x) lnk xdx.

The Taylor series of ln (1− x) is ln (1− x) = −∑∞m=1
xm

m , |x| < 1.

∫ 1

0
ln (1− x) lnk xdx = −

∫ 1

0

( ∞∑

m=1

xm

m

)
lnk xdx.

The order of summation and integration can be interchanged (since∫ 1
0

(∑∞
m=1

xm

m

) ∣∣lnk x
∣∣ dx <

∫ 1
0 |ln (1− x) lnx| dx = 2− 1

6π
2 <∞).

Hence, ∫ 1

0
ln (1− x) lnk xdx = −

∞∑

m=1

1

m

∫ 1

0
xm lnk xdx.

After integration by parts of
∫ 1
0 x

m lnk xdx, we get the recurrence,

∫ 1

0
xm lnk xdx = − k

m+ 1

∫ 1

0
xm lnk−1 xdx.

It follows from the recurrence relation that,

∫ 1

0
xm lnk xdx = (−1)k

k!

(m+ 1)k+1
.

∫ 1

0
ln (1− x) lnk xdx = −

∞∑

m=1

1

m
(−1)k

k!

(m+ 1)k+1

= (−1)k+1 k!
∞∑

m=1

1

m (m+ 1)k+1

= (−1)k+1 k!

∞∑

m=1

(
1

m
− 1

m+ 1
− 1

(m+ 1)2
− 1

(m+ 1)3
− · · · − 1

(m+ 1)k+1

)
.

∞∑

m=1

(
1

m
− 1

m+ 1

)
= 1,

∞∑

m=1

1

(m+ 1)l
= −1 +

∞∑

m=1

1

ml
= −1 + ζ (l) .

∫ 1

0
ln (1− x) lnk xdx = (−1)k+1 k!

(
k + 1−

k+1∑

l=2

ζ (l)

)
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; G. C. Greubel, Newport News, VA; Kee-Wai Lau, Hong Kong, China;
Paolo Perfetti, Department of Mathematics, Tor Vergata, Rome, Italy; Ángel
Plaza, University of Las Palmas de Gran Canaria, Spain; Albert Stadler,
Herrliberg, Switzerland, and the proposer.

Mea Culpa
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The solution to 5340 of Paolo Perfetti of the Mathematics Department at Tor
Verga University in Rome, Italy, was inadvertently omitted by the editor from the list of
those who had solved the problem. But on the other hand, Paolo also solved 5322, but he
inadvertently forgot to send it to the editor on time. Paolo Perfetti should be credited with
having solved both 5322 and 5340.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2016

• 5367: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with integer length sides and integer area. The vertices have
coordinates A(0, 0), B(x, y) and C(z, w) with

√
x2 + y2 −

√
z2 + w2 = 1.

Find positive integers x, y, z and w if the perimeter is 84.

• 5368: Proposed by Ed Gray, Highland Beach, FL

Let abcd be a four digit number in base 10, none of which are zero, such that the last
four digits in the square of abcd are abcd, the number itself. Find the number abcd.

• 5369: Proposed by Chirita Marcel, Bucuresti, Romania

Let convex quadrilateral ABCD have area S and side lengths
AB = a,BC = b, CD = c,DA = d. Show that

2 (a+ b+ c+ d)2 + a2 + b2 + c2 + d2 ≥ 36

√(
S2 + abcd cos2

A+ C

2

)
.

• 5370: Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let f(x) and g(x) be arbitrary functions defined for all x ∈ <. Prove that there is a
function h(x) such that

(f(x)− h(x))2015 · (g(x)− h(x))2015

is an odd function for all x ∈ <.

• 5371: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, . . . , an be positive real numbers where n ≥ 4 . Prove that
(

a1
an + a2

)2

+

(
a2

a1 + a3

)2

+ . . .+

(
an

an−1 + a1

)2

≥ 4

n

1
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• 5372: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

(a) Let k ≥ 2 be an integer. Calculate

∫ ∞

0

ln(1 + x)

x k
√
x

dx.

(b) Calculate

∫ ∞

0

ln(1− x+ x2)

x
√
x

dx.

Solutions

• 5349: Proposed by Kenneth Korbin, New York, NY

Given angle A with sinA =
5

13
. A circle with radius 1 and a circle with radius x are each

tangent to both sides of the angle. The circles are also tangent to each other. Find x.

Solution by Andrea Fanchini, Cantú, Italy

I) angle A is acute.

With the notations of the figure we have

AB =
√

132 − 52 = 12

the centers of the circles are on the bisector of A and we know that the bisector divides
the opposite side as the ratio of the lengths of the adjacent sides, so

BG

GC
=

12

13
⇒ BG

5−BG =
12

13
⇒ BG =

12

5

Now we have that

tan
A

2
=

12
5

12
=

1

5
⇒ AH = 5, AE =

√
52 + 12 =

√
26, sin

A

2
=

1√
26

2
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Finally, we obtain the two solutions

sin
A

2
=

x1
AD

⇒ 1√
26

=
x1√

26− 1− x1
⇒ x1 =

√
26− 1√
26 + 1

sin
A

2
=

x2
AF

⇒ 1√
26

=
x2√

26 + 1 + x2
⇒ x2 =

√
26 + 1√
26− 1

II) angle A is obtuse.

In this case 6 E′AH ′ = 90◦ − A

2
, so with the notations of the figure we have

tan

(
90◦ − A

2

)
= cot

A

2
= 5 ⇒ AH ′ =

1

5
, AE′ =

√(
1

5

)2

+ 12 =

√
26

5

Finally, we obtain the other two solutions (where F ′ is the center of circle with radius x4)

sin

(
90◦ − A

2

)
=

x3
AD′

⇒ 5√
26

=
x3√

26
5 − 1− x3

⇒ x3 =

√
26− 5√
26 + 5

sin

(
90◦ − A

2

)
=

x4
AF ′

⇒ 5√
26

=
x4√

26
5 + 1 + x4

⇒ x4 =

√
26 + 5√
26− 5

Solution 2 by Brain D. Beasley, Presbyterian College, Clinton, SC

Given such a circle of radius 1, there are two circles which are tangent to both sides of
angle A and to the original circle; one is smaller than the original, and the other is
larger. We denote the radius of the smallest of these three circles by x and the radius of
the largest circle by X. We bisect angle A to create three similar right triangles, each
with acute angle A/2 and with opposite sides of lengths x, 1, and X, respectively. Using
the half-angle formula for sine, we have two cases:

If sin(A/2) = 1/
√

26, then the “middle” triangle (which has opposite side of length 1)
has a hypotenuse of length

√
26. Thus the hypotenuse of the smallest triangle has length√

26x, and since the smallest circle is tangent to the “middle” circle, this yields
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√
26 =

√
26x+ x+ 1.

Hence x =

√
26− 1√
26 + 1

. Similarly, since the largest circle is tangent to the “middle” circle

and has a hypotenuse of length
√

26X, we obtain
√

26X =
√

26 + 1 +X.

Hence X =

√
26 + 1√
26− 1

=
1

x
.

If sin(A/2) = 5/
√

26, then the “middle” triangle (which has opposite side of length 1)
has a hypotenuse of length

√
26/5. Thus the hypotenuse of the smallest triangle has

length
√

26x/5, and since the smallest circle is tangent to the “middle” circle, this yields
√

26

5
=

√
26x

5
+ x+ 1.

Hence x =

√
26− 5√
26 + 5

. Similarly, since the largest circle is tangent to the “middle” circle

and has a hypotenuse of length
√

26X/5, we obtain
√

26X

5
=

√
26

5
+ 1 +X.

Hence X =

√
26 + 5√
26− 5

=
1

x
.

Comment: David Stone and John Hawkins of Georgia Southern University
in Statesboro, GA extended the conjecture of the problem. They solved the problem
and then applied the conditions of the problem again, showing that there is a third

larger circle of radius

(√
26 + 1√
26− 1

)2

, or in the obtuse case,

(√
26 + 5√
26− 5

)2

, lying outside

the second one. Continuing on in this manner they noted that there is an infinite
sequence of circles, growing larger geometrically, lying inside angle A, each one tangent
to the sides of A and to its predecessor.

And similarly they noted that there is a infinite sequence of circles below the circle of
radius 1, growing smaller geometrically, lying inside angle A, with each one being
tangent to the sides of A and to its predecessor.

Also solved by Michael Brozinsky, Central Islip, NY; Jerry Chu (Student at
George’s School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain;
Michael Fried, Kibbutz Revivim, Israel; Ed Gray, Highland Beach, FL; Paul
M.Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; John Nord,
Saint George’s School, Spokane, WA; Neculai Stanciu, “George Emil
Palade” School, Buză, Romania and Titu Zvonaru,Comănesti, Romania;
Cassidy Wyse, Becca Gerig and Josh Stimmel (jointly, students at Taylor
University), Upland, IN; Albert Stadler, Herrliberg, Switzerland, and the
proposer.

• 5350: Proposed by Kenneth Korbin, New York, NY
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The four roots of the equation

x4 − 96x3 + 206x2 − 96x+ 1 = 0

can be written in the form

x1,2 =

(√
a+

√
b+
√
c

√
a−

√
b+
√
c

)±1

x3,4 =

(√
a+

√
b−√c

√
a−

√
b−√c

)±1

where a, b, and c are positive integers.

Find a, b, and c if (a, b, c) = 1.

Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

The values a, b and c are a = 10, b = 5 and 21. One verifies that these values do yield
the four roots of the polynomial equation. Also, note that
(10, 5, 21) = ((10, 5), 21) = (5, 21) = 1 as required.

Let r =

√
a+

√
b+
√
c

√
a−

√
b+
√
c

and s =

√
a+

√
b−√c

√
a−

√
b−√c

. If r,
1

r
, s and

1

s
are the roots of the

polynomial equation, then

(x− r)(x− 1

r
)(x− s)(x− 1

s
) = x4 − 96x3 + 206x2 − 96x+ 1.

Expanding the left side of the equation and equating coefficients, one obtains

r +
1

r
+ s+

1

s
= 96

(
r +

1

r

)(
s+

1

s

)
= 204.

One calculates

r +
1

r
=

√
a+

√
b+
√
c

√
a−

√
b+
√
c

+

√
a−

√
b+
√
c

√
a+

√
b+
√
c

=
2(a+ b+

√
c)

a− b−√c ,

s+
1

s
=

√
a+

√
b−√c

√
a−

√
b−√c

+

√
a−

√
b−√c

√
a+

√
b−√c

=
2(a+ b−√c)
a− b+

√
c
.

Therefore,

r +
1

r
+ s+

1

s
=

a2 − b2 + c

(a− b)2 − c = 24 (1)
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(
r +

1

r

)(
s+

1

s

)
=

(a+ b)2 − c
(a− b)2 − c = 51 (2)

Equation (1) written a2 − b2 + c = 24(a− b)2 − c when expanded and simplified yields

23a2 + 25b2 − 48ab− 25c = 0. (3)

Rewrite equations (1) and (2) as follows:

(a− b)2 − c =
a2 = b2 + c

24

(a− b)2 − c =
(a+ b)2 − c

51
.

Then
a2 − b2 + c

24
=

(a+ b)2 − c
51

or

9a2 − 25b2 − 16ab+ 25c = 0. (4)

Adding equations (3) and (4) we get 32a2 − 64ab = 0 or a = 2b since a 6= 0.

Substituting 2b for a in equation (4) one obtains 25c = 2b2 or c =
21

25
b2. Since b and c

are positive integers, it follows that b = 5k for some integer k. Therefore, c = 21k2 and
a = 2b = 10k. Hence, b = 5, a = 10, and c = 21 since (a, b, c) = 1.

Solution 2 by Jerry Chu (student, Saint George’s School), Spokane, WA

Obviously, x1x2 = x3x4 = 1. So we can factor the equation into
(x2 + kx+ 1)(x2 + lx+ 1); expanding this and equating its coefficients to those in the

given equation we obtain

{
k + l = −96

kl = 204.

Let k = x1 + x2 =
2(a+ b+

√
c )

a− b−√c , and similarly l = x3 + x4 =
2(a+ b−√c )

a− b+
√
c

.

Subtracting, we get k − l =
8a
√
c

(a− b)2 − c . And also from the above system of equations

k − l =
√

(k + l)2 − 4kl = 20
√

21.

So c = 21 because a, b, c ∈ Z+ and (a, b, c) = 1, therefore 5
(
(a− b)2 − 21

)
= 2a. Call

this Equation 1.

On the other hand, kl =
4
(
(a+ b)2 − c

)

(a− b)2 − c = 204. Therefore, 5
(
(a+ b)2 − 21

)
= (51)(2a).

Call this Equation (2). Subtracting Equation 1 from Equation 2 gives us that

(a+ b)2 − (a− b)2 =
50(2a)

5

6
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4ab = 20a
b = 5

Plugging b = 5 into equation 1 we obtain that a = 10. Therefore,





a = 10

b = 5

c = 21.

Solution 3 by Haroun Meghaichi (student, University of Science and
Technology, Houari Boumediene), Algiers, Algeria

Note that the equation in the statement of the problem is equivalent to

(
x+

1

x

)2

− 96

(
x+

1

x

)
+ 204 = 0.

If x is a solution to this equation, then x−1 is also a solution. Take

x =

√
a+

√
b+
√
c

√
a−

√
b+
√
c
,

where a, b, c ∈ N and c is not a perfect square and (a, b, c) = 1, which means that

x+
1

x
=

√
a+

√
b+
√
c

√
a−

√
b+
√
c

+

√
a−

√
b+
√
c

√
a+

√
b+
√
c

=
2 (a+ b+

√
c)

a− b−√c .

with some basic algebraic manipulations we get

(
x+

1

x

)2

− 96

(
x+

1

x

)
+ 204 =

16
(
a2 + 25

(
b2 − ab+ c+

√
c (2b− a)

))

(a− b−√c)2
.

therefore 2b = a, the equation becomes 25c = 21b2. Since (b, c) = 1 then b = 5k, c = 21n
for some coprime positive integers k, n, and so n = k2, but (n, k) = 1 so n = k = 1, and

(a, b, c) = (10, 5, 21).

The same technique works on x3,4, so the solution to the problem is (10, 5, 21).

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

Since x4 − 96x3 + 206x2 − 96x+ 1 = (x2 + ux+ 1)(x2 + vx+ 1) with u = −48 + 10
√

21
and v = −48− 10

√
21, the four roots are

x1,2 = 24 + 5
√

21±
√

1100 + 240
√

21 = 24 + 5
√

21± (4
√

35 + 6
√

15)

and

x3,4 = 24− 5
√

21±
√

1100− 240
√

21 = 24− 5
√

21± (4
√

35− 6
√

15),

with x1 > x2 and x3 > x4. We also note that the roots in each pair are reciprocals, since
(24 + 5

√
21)2 − (4

√
35 + 6

√
15)2 = 1 and (24− 5

√
21)2 − (4

√
35− 6

√
15)2 = 1.

To write the four roots in the desired form, we first set d1 =
√
a+

√
b+
√
c,

d2 =
√
a−

√
b+
√
c, d3 =

√
a+

√
b−√c, and d4 =

√
a−

√
b−√c. Since
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d1 > d3 > d4 > d2, this justifies our designating x1 as the largest root above, with
x1 > x3 > x4 > x2. As a result, we require x1 + x2 = d1/d2 + d2/d1 = 48 + 10

√
21 and

x3 + x4 = d3/d4 + d4/d3 = 48− 10
√

21. Then rationalizing produces

x1 + x2 =
2(a2 − b2 + c+ 2a

√
c)

(a− b)2 − c = 48 + 10
√

21,

so we set a2 − b2 + c = 24[(a− b)2 − c] and 2a = 5[(a− b)2 − c]. Letting c = 21, we
obtain 48ab− 23a2 = 5(5b2 − 105) and 2a+ 10ab− 5a2 = 5b2 − 105. Thus
10a+ 2ab− 2a2 = 0, so a− b = 5, which yields a = 10 and b = 5. Similarly, we note that
(a, b, c) = (10, 5, 21) produces x3 + x4 = 48− 10

√
21 as needed.

Finally, we observe that since there is a unique real number x > 1 with
x+ 1/x = 48 + 10

√
21, we may conclude

x1 = 24 + 5
√

21 + 4
√

35 + 6
√

15 =

√
10 +

√
5 +
√

21
√

10−
√

5 +
√

21
.

Similarly, we have the corresponding results for x2, x3, and x4.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Neculai Stanciu, “George Emil Palade” School, Buză, Romania and
Titu Zvonaru, Comănesti, Romania; Albert Stadler, Herrliberg, Switzerland;
David Stone and John Hawkins, Georgia Southern University, Statesboro
GA; Vu Tran (student, Purdue University), West Lafayette, IN, and the
proposer.

• 5351: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

Let x, y, z be positive real numbers. Show that

xy

x3 + y3 + xyz
+

yz

y3 + z3 + xyz
+

zx

z3 + x3 + xyz
≤ 3

x+ y + z
.

Solution 1 by Ed Gray, Highland Beach, FL

Divide the numerator and denominator of the first term on the left side of the inequality
by xy, and the numerator and denominator of the second term by yz and similarly the
third term by zx. Thus, the left hand side becomes

1

x3 + y3

xy
+ z

+
1

y3 + z3

yz
+ x

+
1

z3 + x3

zx
+ y

.

x3 + y3

xy
+ z =

(x+ y)(x2 − xy + y2)

xy
+ z

= (x+ y)

(
x2

xy
− 1 +

y2

xy

)
+ z
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= (x+ y)

(
x

y
− 1 +

y

x

)
+ z

But
x

y
+
y

z
− 1 ≥ 1, so

x3 + y3

xy
+ z ≥ (x+ y + z), and

1

x3 + y3

xy
+ z

≤ 1

x+ y + z
.

Each of the other two terms are handled in precisely the same manner, so, to avoid
repetition,

1

x3 + y3

xy
+ z

+
1

y3 + z3

yz
+ x

+
1

z3 + x3

zx
+ y

≤ 1

x+ y + z
+

1

y + z + x
+

1

z + x+ y
=

3

x+ y + z
.

Note that equality holds if, and only if, x = y = z.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We have
xy

x3 + y3 + xyz
+

yz

y3 + z3 + xyz
+

zx

z3 + x3 + xyz

=
1

x+ y + z + (x+y)(x−y)2
xy

+
1

x+ y + z + (y+z)(y−z)2
yz

+
1

x+ y + z + (z+x)(z−x)2
zx

≤ 1

x+ y + z
+

1

x+ y + z
+

1

x+ y + z

=
3

x+ y + z
, as required.

Solution 3 by Arkady Alt, San Jose, CA

Since x3 + y3 ≥ xy (x+ y) ⇐⇒ x3 + y3 − xy (x+ y) = (x+ y) (x− y)2 ≥ 0 then

∑

cyc

xy

x3 + y3 + xyz
≤
∑

cyc

xy

xy (x+ y) + xyz
=
∑

cyc

1

x+ y + z
=

3

x+ y + z
.

Also solved by Dionne T. Bailey, Elsie Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX; Jerry Chu (student, Saint
George’s School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain;
Ethan Gegner (student, Taylor University), Upland, IN; Nikos Kalapodis,
Patras, Greece; David E. Manes, SUNY College at Oneonta, Oneonta, NY;
Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome,
Italy; Ángel Plaza, University of Las Palmas de Gran Canaria Spain; Henry
Ricardo, New York Math Circle, NY; Albert Stadler, Herrliberg,
Switzerland; Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania; Titu Zvonaru, Comănesti, Romania; and the proposers.
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• 5352: Proposed by Arkady Alt, San Jose, CA

Evaluate
n∑

k=0

xk − (x− 1)
n−1∑

k=0

(k + 1)xn−1−k.

Solution 1 by G.C. Greubel, Newport News, VA

Consider the series
n∑

k=0

xk =
1− xn+1

1− x for which the series in question becomes

S =

n∑

k=0

xk − (x− 1)

n−1∑

k=0

(k + 1)xn−k−1

=
1− xn+1

1− x + (1− x)

[
n−1∑

k=0

xn−k−1 +
n∑

k=0

k xn−k−1
]

=
1− xn+1

1− x + (1− x)xn−1
[

1−
(
1
x

)n

1− 1
x

+ x ∂x

(
1−

(
1
x

)n

1− 1
x

)]

=
1− xn+1

1− x + (1− x) · 1− xn
1− x + (x− 1)xn+2

[
n(x− 1) + 1− xn

xn+2

]

=
1− xn+1

1− x + 1− xn + n− 1− xn
1− x

= n+ 1.

From this it can be stated that

n∑

k=0

xk − (x− 1)

n−1∑

k=0

(k + 1)xn−k−1 = n+ 1.

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Since
n−1∑

k=0

(k + 1)xn−1−k =
n∑

k=1

kxn−k, then (x− 1)
n−1∑

k=0

(k + 1)xn−1−k =

n∑

k=1

kxn−k+1 −
n+1∑

k=2

(k − 1)xn−k+1 = xn +
n∑

k=2

xn−k+1 − n = −n+
n∑

k=1

xk, and therefore

n∑

k=0

xk − (x− 1)

n−1∑

k=0

(k + 1)xn−1−k = 1 + n.

Solution 3 by Henry Ricardo, New York Math Circle, NY

Denote the given expression as Fn(x), where we assume that n ≥ 1 and x 6= 0. Since
F1(x) = 1 + x− (x− 1)(0) = 2 = 1 + 1 and
F2(x) = (1 + x+ x2)− (x− 1)(x+ 2) = 3 = 2 + 1, we conjecture that Fn(x) = n+ 1 for
all nonzero values of x and prove this by induction.
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Suppose that FN (x) = N + 1 for some integer N ≥ 3 and all x 6= 0. Then

FN+1(x) =

N+1∑

k=0

xk − (x− 1)

N∑

k=0

(k + 1)xN−k

= x
N∑

k=0

xk + 1− (x− 1)

(
N−1∑

k=0

(k + 1)xN−k +N + 1

)

= x

N∑

k=0

xk + 1− (x− 1)

(
x

N−1∑

k=0

(k + 1)xN−k−1 +N + 1

)

= 1 + x

(
N∑

k=0

xk − (x− 1)
N−1∑

k=0

(k + 1)xN−k−1
)
− (N + 1)(x− 1)

= 1 + x(N + 1)− (N + 1)(x− 1) = N + 2 = (N + 1) + 1.

Also solved by Dionne T. Bailey, Elsie Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX; Jerry Chu (student, Saint
George’s School), Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain;
Ethan Gegner (student, Taylor University), Upland, IN; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; David E. Manes, SUNY College at Oneonta, Oneonta, NY; Haroun
Meghaichi (student, University of Science and Technology, Houari
Boumediene), Algiers, Algeria; Paolo Perfetti, Department of Mathematics,
Tor Vergata University, Rome, Italy; Henry Ricardo (two additional
solutions to his one above), New York Math Circle, New York; Albert
Stadler, Herrliberg, Switzerland; David Stone and John Hawkins of Georgia
Southern University in Statesboro, GA, and the proposer.

5353: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let A(z) =

n∑

k=0

akz
k be a polynomial of degree n with complex coefficients. Prove that

all its zeros lie in the disk D = {z ∈ C : |z| < r}, where

r =



1 +

(
n−1∑

k=0

∣∣∣∣
ak
an

∣∣∣∣
3
)1/2





2/3

Solution 1 by Albert Stadler, Herrliberg, Switzerland

A(z) is a polynomial of degree n. So an 6= 0. Let |z| ≥ r. Then, by Hölder’s inequality,

1

|an|
|A(z)| ≥ |z|n−

n−1∑

k=0

∣∣∣∣
ak
an

∣∣∣∣ |z|
k ≥ |z|n−

(
n−1∑

k=0

∣∣∣∣
ak
an

∣∣∣∣
3
) 1

3
(

n−1∑

k=0

|z| 3k2
) 2

3

= |z|n−
(
r

3
2 − 1

) 2
3

(
|z| 3n2 − 1

|z| 32 − 1

) 2
3

≥ |z|n −
(
r

3
2 − 1

) 2
3

(
|z| 3n2 − 1

|r| 32 − 1

) 2
3
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= |z|n −
(
|z| 3n2 − 1

) 2
3
> |z|n −

(
|z| 3n2

) 2
3

= 0.

So all zeros lie in the open disk D

Solution 2 by Kee-Wai Lau, Hong Kong, China

According to Theorem (27.4) on p. 124 of [1], we have the following result:

For any p and q such that p > 1, q > 1,
1

p
+

1

q
= 1, the polynomial

f(x) = a0 + a1x+ · · · anzn, an 6= 0 has all of its zeros in the circle

|z| <





1 +




n−1∑

j=0

∣∣∣∣
aj
an

∣∣∣∣
p



q/p




1/q

≤
(

1 + nq/pM q
)1/q

,

where M = max

∣∣∣∣
aj
an

∣∣∣∣ , j = 0, 1, · · · , n− 1.

In particular, when p = 3, the result of the above problem follows.

Reference: 1. M. Marden: Geometry of Polynomials, Mathematical Surveys and
Monographs Number 3, American Mathematical Society, (1966).

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.

• 5354: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b, c > 0 be real numbers. Prove that the series

∞∑

n=1

[
n ·
(
a

1
n − b

1
n + c

1
n

2

)
− ln

a√
bc

]
,

converges if and only if 2 ln2 a = ln2 b+ ln2 c.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let x be real. By Taylor’s theorem there is a number h = h(x), 0 ≤ h ≤ 1, such that

ex = 1 + x+
x2

2
+
x3

6
ehx. We choose x =

ln a

n
, x =

ln b

n
, x =

ln c

n
and get

a
1
n = 1 +

ln a

n
+

ln2 a

2n2
+

ln3 a

6n3
a

h
n , 0 ≤ h = h(a, n) ≤ 1,

b
1
n = 1 +

ln b

n
+

ln2 b

2n2
+

ln3 b

6n3
b

h
n , 0 ≤ h = h(b, n) ≤ 1,

c
1
n = 1 +

ln c

n
+

ln2 c

2n2
+

ln3 c

6n3
c

h
n , 0 ≤ h = h(c, n) ≤ 1.
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So

∞∑

n=1


n


a

1

n − b

1

n + c

1

n

2


− ln

a√
bc




=
∞∑

n=1

1

2n

(
ln2 a− ln2 b+ ln2 c

2

)
+
∞∑

n=1

1

6n2

(
(ln3 a)a

h(a,n)
n − (ln3 b)b

h(b,n)
n + (ln3 c)b

h(c,n)
n

2

)
.

The second sum is convergent. The first sum equals 0 if ln2 a =
ln2 b+ ln2 c

2
and it

diverges if ln2 a 6= ln2 b+ ln2 c

2
.

Solution 2 by Anastasios Kotronis, Athens, Greece

For x > 0 real number it is

x
1
n = exp

(
lnx

n

)
= 1 +

lnx

n
+

ln2 x

2n2
+O(n−3). (1)

Setting

An = n ·
(
a

1
n − b

1
n + c

1
n

2

)
− ln

a√
bc

and

A =
ln2 a

2
− ln2 b

4
− ln2 c

4
,

so that A = 0⇐⇒ 2 ln2 a = ln2 b+ ln2 c, with a, b and c respectively in the place of x in
(1) we get

An =
A

n
+O(n−2). (2)

• If A = 0, (2) gives that for some real c > 0 and positive integer n0,

0 ≤ |An| ≤
c

n2
, n ≥ n0

so
∑

n≥n0

An converges absolutely and hence the given series converges.

• If A 6= 0, (2) gives that for some real c > 0 and positive integer n0,

− c

n2
+A ≤ An ≤ A+

c

n2
, n ≥ n0

so
∑

n≥n0

An = sgn(A) · ∞ and hence the given series diverges.
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Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

The general term of the series is

n
(

1 +
ln a

n
+

ln2 a

4n2
+O

(
1

n3

)
− 1

2
− ln b

2n
− ln2 a

8n2
+O

(
1

n3

)
+

−1

2
− ln c

2n
− ln2 c

8n2
+O

(
1

n3

)
− ln

a√
bc

)
=

= n(1− 1

2
− 1

2
) + (ln

a√
bc
− ln

a√
bc

) + n
1

8n

(
2 ln2 a− ln2 b− ln2 c

)
+O

(
1

n2

)
=

= O

(
1

n2

)

whence the absolute convergence.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Haroun Meghaichi (student, University of Science and
Technology, Houari Boumediene), Algiers, Algeria, and the proposer.

Mea Culpa

Apologies to Arkady Alt of San Jose, CA for inadvertently not acknowledging his
solutions to problems 5343, 5344 and 5346.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-
Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals
and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously stated problems
can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2016

• 5373: Proposed by Kenneth Korbin, New York, NY

Given the equation
2
√

2√
343− 147

√
5−

√
315− 135

√
5

=

√
x+ y

√
5.

Find positive integers x and y.

• 5374: Proposed by Roger Izard, Dallas TX

In a certain triangle, three circles are tangent to the incircle, and all of these circles are
tangent to two sides of the triangle. Derive a formula which gives the radius of the incircle
in terms of the radii of these three circles.

• 5375*: Proposed by Kenneth Korbin, New York, NY

Prove or disprove the following conjecture. Let k be the product of N different prime
numbers each congruent to 1(mod 4). Let a be any positive integer.

Conjecture: The total number of different rectangles and trapezoids with integer length

sides that can be inscribed in a circle with diameter k is exactly
5N − 3N

2
.

Editor′s comment: The number for this problem carries with it an astrick. The astrick
signifies that neither the proposer nor the editor are aware of a proof of this conjecture.

• 5376: Proposed by Arkady Alt , San Jose ,CA

Let a1, a2, ..., an, b1, b2, ..., bn be positive real numbers such that
b1 < a1 < b2 < a2 < ... < an−1 < bn < an.
Let

F (x) =
(x− b1) (x− b2) ... (x− bn)

(x− a1) (x− a2) ... (x− an)
.

Prove that F ′ (x) < 0 for any x ∈ Dom (F ).

• 5377: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Show that if A,B,C are the measures of the angles of any triangle ABC and a, b, c the
measures of the length of its sides, then holds

∏

cyclic

sin1/3(|A−B|) ≤
∑

cyclic

a2 + b2

3ab
sin(|A−B|).

• 5378: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k ≥ 1 be an integer. Calculate

∫ ∞

0
lnk
(
ex + 1

ex − 1

)
dx.

Solutions

• 5355: Proposed by Kenneth Korbin, New York, NY

Find the area of the convex cyclic pentagon with sides

(13, 13, 12
√

3 + 5, 20
√

3, 12
√

3− 5)

Solution by Kee-Wai Lau, Hong Kong, China

We show that the area of the pentagon equals 370
√

3.

Let the pentagon be ABCDE with
AB = BC = 13, CD = 12

√
3 + 5, DE = 20

√
3, EA = 12

√
3− 5. Denote the center and

radius of the circumcircle by O and R respectively.

We first consider the case when O lies inside the pentagon. We have
6 AOB + 6 BOC + 6 COD + 6 DOE + 6 EOA = 2π, so that

2 sin−1
(

13

2R

)
+ sin−1

(
12
√

3 + 5

2R

)
+ sin−1

(
10
√

3

R

)
+ sin−1

(
12
√

3− 5

2R

)
= π. (1)

The left side of (1) is a decreasing function of R for R ≥ 10
√

3, so (1) has at most one real
valued solution.

Using the addition formula for the inverse sine function, we have

2 sin−1
(

13

37

)
= sin−1

(
520
√

3

1369

)
,

sin−1
(

12
√

3 + 5

37

)
+ sin−1

(
12
√

3− 5

37

)
= sin−1

(
20
√

3

37

)
, and that
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2 sin−1
(

20
√

3

37

)
= π − sin−1

(
520
√

3

1369

)
.

It follows that the unique solution to (1) is R =
37

2
.

Using Heron’s formula, we obtain the area of the triangles

OAB, OBC, OCD, ODE, OEA as 65
√

3, 65
√

3,
175
√

3 + 39

2
, 65
√

3,
175
√

3− 39

2
, and

so the area of the pentagon equals 370
√

3.

We next consider the case when O lies on or outside the pentagon.

In this case 6 EOA+ 6 AOB + 6 BOC + 6 COD = 6 DOE, so that

sin−1
(

12
√

3− 5

2R

)
+ 2 sin−1

(
13

2R

)
+ sin−1

(
12
√

3 + 5

2R

)
− sin−1

(
10
√

3

R

)
= 0. (2)

For R ≥ 20, let f(R) = 4 sin−1
(

13

2R

)
− sin−1

(
10
√

3

R

)
. Since f(20) > 0, lim

R→∞
f(R) = 0 and

that f attains the maximum value of 0.29 · · · at R =
195
√

470

188
, so in fact f(R) > 0.

Thus the left side of (2) is always positive and so (2) has no solutions.

This completes the solution.

Comments by Editor

1. A sticky point with this problem was in showing that the center of the circle had to lie in
the interior of the pentagon. David Stone and John Hawkins of Georgia Southern
University argued it like this: Assume that the points E,A,B,C, and D are arranged on
the circumference of the circumscribing circle such that
EA = 12

√
3− 5, AB = 13, BC = 13, CD = 12

√
3 + 5, DE = 20

√
3. And suppose that the

center of the circumscribing circle lies in the exterior of the pentagon. If it lies on the
longest side of the pentagon, then it lies on DE and this would make DE a diameter of the
circumscribing circle, so the radius R of the circumscribing circle must be 10

√
3 and the

length of arcDE = 1/2 the circumference of the circle. I.e., arcDE = π(10
√

3).

The length of each arc of the circle is greater than the length of its corresponding chord. So,

arc DE = arc DC + arc CB + arc BA+ arc AE,

arc DE > DC + CB +BA+AE,

π(10
√

3) >
(

12
√

3 + 5
)

+ 13 + 13 +
(

12
√

3− 5
)
,

π(10
√

3) > 24
√

3 + 26; π(10
√

3) ≈ 54.4, and 24
√

3 + 26 ≈ 67.57; So,

54.4 > 67.57 ? No.

Therefore the center of the circumscribing circle cannot lie on the longest side of the
pentagon.
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But as the center of the circle moves into the exterior of the pentagon, the radius of the
circumcircle increases and arcDE decreases. I.e., arcDE ≤ 10π

√
3. So again we have

54.4 > arcDE = arcDE + arcDE + arcDE + arcDE = 67.57

Hence, the center of the circumscribing circle must be in interior of the pentagon.

2. Bruno Salgueiro Fanego of Viveiro, Spain mentioned in his solution that he was
applying an algebraic approach that was developed in a paper by David P. Robbins (see:
Areas of Polygons Inscribed in a Circle, The American Mathematical Monthly,
102(6)(June-July, 1995)). The background to this approach is that the area of a convex
polygon with more than three sides is not uniquely determined by the length of its sides.
But adding the restriction that the polygon must also be cyclic, circumvents this problem
and allows us to extend Heron’s formula for finding the area K of a triangle (with side
lengths a, b, c and semiperimeter s to Brahmagupta’s formula for finding the area of a
quadrilateral, K =

√
(s− a)(s− b)(s− c)(s− d).

Robbins’ paper presents formulas for finding the areas of the cyclic pentagon and cyclic
hexagon. He wrote: “We shall see that the calculations leading to the discovery of the
pentagon formula are so complex that it would have been quite difficult to carry them out
without the aid of a computer. In fact after some study of the problem I thought it likely
that, even if I were to discover the formula, its complexity would make it of little interest to
write down. However, it is possible to write the formulas for the areas of the cyclic pentagon
and the cyclic hexagon in a compact form which is related to the formula of the
discriminant of a cubic polynomial in one variable.”

Using Robbins’ method the formula for finding the area K of a triangle with sides a, b, and c
is

16K2 = 2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4,
while the formula for finding the area K of a cyclic quadrilateral with sides a, b, c, and d is

16K2 = 2a2b2 + · · ·+ 2c2d2 − a4 − b4 − c4 − d4 + 8abcd.

The formulas for finding the areas of cyclic pentagons and hexagons are spelled out in
Robbins’ paper, and although they are formidable, his method works.

Also solved by Bruno Salgueiro Fanego of Viveiro, Spain; Ed Gray, Highland
Beach, FL; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John
Hawkins, Southern Georgia University, and the proposer.

• 5356: Proposed by Kenneth Korbin, New York, NY

For every prime number p there is a circle with diameter 4p4 + 1. In each of these circles, it
is possible to inscribe a triangle with integer length sides and with area

(8p3)(p+ 1)(p− 1)(2p2 − 1).

Find the sides of the triangles if p = 2 and if p = 3.

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC

We designate the side lengths of the triangle by a, b, and c. We also let A be the area of the
triangle and r be the radius of the circle that circumscribes it. Then the formula for the
circumradius and Heron’s formula yield
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abc = 4Ar = 16p3(p+ 1)(p− 1)(2p2 − 1)(4p4 + 1)

and

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c) = 16A2 = 1024p6(p+ 1)2(p− 1)2(2p2 − 1)2.

Inspired by the factorization 4p4 + 1 = (2p2 + 2p+ 1)(2p2 − 2p+ 1), we let a = 4p(2p2 − 1),
b = 2p(p− 1)(2p2 + 2p+ 1), and c = 2p(p+ 1)(2p2 − 2p+ 1). Then

abc = 16p3(p+ 1)(p− 1)(2p2 − 1)(4p4 + 1)

as needed, so to complete the argument, it suffices to verify the second formula above.
Letting P = (a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c), we calculate

P = (2p)4(4p3 + 4p2 − 2p− 2)(4p3 − 4p2 − 2p+ 2)(4p2)(4p2 − 4)

= 1024p6(p+ 1)(2p2 − 1)(p− 1)(2p2 − 1)(p+ 1)(p− 1)

= 1024p6(p+ 1)2(p− 1)2(2p2 − 1)2.

Hence the result holds for any integer p > 1. In particular, when p = 2, the triangle side
lengths are 56, 52, and 60; when p = 3, the triangle side lengths are 204, 300, and 312.

Addendum: The sides of every Heronian triangle have the form
d(m+ n)(mn− k−2), dm(n2 + k2), and dn(m2 + k2), where m,n and k are positive integers
with gcd(m,n, k) = 1 and where d is a proportionality factor; see [1] for more details. Given

any integer p > 1, we may take m = p2, n = p2 − 1, k = p(p− 1), and d =
2

k
to produce the

values of a, b, and c given above.

[1] https://en.wikipedia.org/wiki/Heronian-triangle

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Bruno Salgueiro Fanego (two solutions),
Viveiro, Spain; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton,
KS; David E. Manes, SUNY College at Oneonta, NY; Toshihiro Shimizu,
Kawasaki Japan; David Stone and John Hawkins, Southern Georgia University;
Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, Bazău, Romania, and
the proposer.

• 5357: Proposed by Neculai Stanciu, “George Emil Palade” School, Buzău, Romania and
Titu Zvonaru, Comănesti, Romania

Determine all triangles whose side-lengths are positive integers (of which at least one is a
prime number), whose semiperimeter is a positive integer, and whose area is equal to its
perimeter.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let a, b, c be the positive integer side-lengths of a triangle, p =
a+ b+ c

2
its semiperimeter

and let us suppose that the area of that triangle, given by Heron’s formula√
p(p− a)(p− b)(p− c) is equal to its perimeter 2p.

Let x = p− b, y = p− c, z = p− a; then xyz = (p− a)(p− b)(p− c) = 4p = 4(x+ y + z) so

x =
4(x+ y)

xy − 4
. By the triangle inequalities, x, y, z are positive integers so xy = 4 must be a

positive integer as well. Without loss of generality, suppose that a ≤ b ≤ c; since
a = x+ y, b = y + z, c = z + x, and this is equivalent to y ≤ x ≤ z, so
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x+ y ≤ 2x ≤ 2z =
8(x+ y)

xy − 4
, from where xy − 4 ≤ 8; hence y ≤ 12

x
≤ 12

y
which implies

y ≤ 3, that is y ∈ {1, 2, 3}.
If y = 1, then x ≤ 1

2y = 12 or equivalently x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. If y = 2,
then 2 = y ≤ 12y = 6, or what is the same x ∈ {2, 3, 4, 5, 6} and if y = 3, then
3 = y ≤ x ≤ 12y = 4, or equivalently, x ∈ {3, 4}.

From these possibilities the only ones that give positive integers for z =
4(x+ y)

xy − 4
are

(x, y) = {(5, 1), (6, 1), (8, 1), (9, 1), (3, 2), (4, 2), (6, 2)}, which give

(a, b, c) = (x+y, y+z, z+x} ∈ {6, 25, 29), (7, 15, 20), (9, 10, 17), (10, 9, 17), (5, 12, 13), (6, 8, 10), (8, 6, 10)}.

Thus, the triples of positive integer side-lengths of triangles whose area is equal to its
perimeter are (6, 25, 29), (7, 15, 20), (9, 10, 17), (5, 12, 13), (6, 8, 10) and since at least one of
a, b, c is a prime number, we exclude the triple (6, 8, 10) and since in all the other four cases

the semiperimeter p =
a+ b+ c

2
is a positive integer, the triangles we are looking for are

those whose side lengths are (6, 25, 29), (7, 15, 20), (9, 10, 17), or (5, 12, 13). (Note also that
only the last of them corresponds to a right triangle.)

Solution 2 and Comment by David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA

The A = P problem has a long history. In [2], Markov tells us that Dickson [1] attributes
the solution to Whitworth and Biddle in 1904, then lists the only triangles with Area =
Perimeter:

(6, 8, 10)
(5, 12, 13)
(6, 25, 29)
(7, 15, 20)
(9, 10, 17).

Because our problem requires that one side be a prime, we see that the only solutions to the
stated problem are the last four triangles above (note that each has an integral
semiperimeter).

(The above result can probably now be considered as “common knowledge”: it even
appeared recently online on answers Yahoo.com [3]).

1. L. Dickson, History of the Theory of Numbers, Vol II, Dover Publications, Inc, New
York, 2005 (reprint from the 1923 edition), p. 199.

2. L. P. Markov, Pythagorean Triples and the Problem A = mP for Triangles, Mathematics
Magazine 79(2006) 114−121

3. From Dan, answers.Yahoo.com/question/index?qid=2081130185149AAua2RD, 7 years
ago.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie, Angelo
State University San Angelo TX; Jerry Chu (student, Saint George’s School),
Spokane, WA; Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton,
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KS; David E. Manes SUNY College at Oneonta, Oneonta, NY; Ken Korbin,
NewYork, NY; Kee-Wai Lau, Hong Kong, China; Toshihiro Shimizu, Kawasaki,
Japan; Albert Stadler, Herrliberg, Switzerland, and the proposers.

• 5358: Proposed by Arkady Alt, San Jose, CA

Prove the identity

m∑

k=1

k

(
m+ 1

k + 1

)
rk+1 = (r + 1)m(mr − 1) + 1.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

(r + 1)m(mr − 1) + 1 =

m∑

k=0

m

(
m

k

)
rk+1 −

m∑

k=1

(
m

k

)
rk

=
m∑

k=1

m

(
m

k

)
rk+1 −

m−1∑

k=1

(
m

k + 1

)
rk+1

= mrm+1 +
m−1∑

k=1

(
m

(
m

k

)
−
(

m

k + 1

))
rk+1

= mrm+1 +

m−1∑

k=1

k

(
m+ 1

k + 1

)
rk+1

=

m∑

k=1

k

(
m+ 1

k + 1

)
rk+1

where we have used that m

(
m

k

)
−
(

m

k + 1

)
= k

(
m+ 1

k + 1

)
.

Solution 2 by Anastasios Kotronis, Athens, Greece

We have

(1 + r)m =
m∑

k=0

(
m

k

)
rk (1)

and differentiating

mr(1 + r)m−1 =
m∑

k=0

k

(
m

k

)
rk. (2)

Now

m∑

k=1

k

(
m+ 1

k + 1

)
rk+1 =

m+1∑

k=2

(k − 1)

(
m+ 1

k

)
rk =

m+1∑

k=2

k

(
m+ 1

k

)
rk −

m+1∑

k=2

(
m+ 1

k

)
rk

(2),(1)
=== (m+ 1)r(1 + r)m − (m+ 1)r − (1 + r)m+1 + 1 + (m+ 1)r

= (r + 1)m(mr − 1) + 1.

Solution 3 by Paolo Perfetti, Department of Mathematics, University Tor
Vergata, Rome, Italy
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Proof Induction. Let m = 1. We have

(
2

2

)
r2 = (r + 1)(r − 1) + 1

which clearly holds.

Let’s suppose it is true for 2 ≤ m ≤ n− 1. For m = n we have

m+1∑

k=1

k

(
m+ 2

k + 1

)
rk+1 = (m+ 1)rm+2 +

m∑

k=1

k

[(
m+ 1

k + 1

)
+

(
m+ 1

k

)]
rk+1 =

= (m+ 1)rm+2 + (r + 1)m(mr − 1) + 1

m∑

k=1

k

(
m+ 1

k

)
rk+1 (1)

(
m+ 2

k + 1

)
=

(
m+ 1

k + 1

)
+

(
m+ 1

k

)

and the induction hypothesis have been used. Moreover

m∑

k=1

k

(
m+ 1

k

)
rk+1 =︸︷︷︸

k+1=p

r
m−1∑

p=0

(p+ 1)

(
m+ 1

p+ 1

)
rp+1 =

= r
m−1∑

p=1

p

(
m+ 1

p+ 1

)
rp+1 + r

m−1∑

p=0

(
m+ 1

p+ 1

)
rp+1 =

= r
m∑

p=1

p

(
m+ 1

p+ 1

)
rp+1 −mrm+2 +︸︷︷︸

p+1=q

r
m+1∑

q=0

(
m+ 1

q

)
rq − r − rm+2

The induction hypotheses and the Newton–binomial yield that it is equal to

r ((r + 1)m(mr − 1) + 1)−mrm+2 + r(1 + r)m+1 − r − rm+2.

By inserting in (1) we get

(m+ 1)rm+2 + ((r + 1)m(mr − 1) + 1) (r + 1)− (m+ 1)rm+2 + r(1 + r)m+1 − r =

= (r + 1)m+1(mr − 1) + (r + 1) + r(1 + r)m+1 − r =

= (r + 1)m+1((m+ 1)r − 1)− r(1 + r)m+1 + (r + 1) + r(1 + r)m+1 − r =

= (r + 1)m+1((m+ 1)r − 1) + 1.

and the proof is complete.

Solution 4 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

Here we differentiate the given sum to get the Binomial Theorem, then integrate to get the
desired sum.
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Let f(r) =

m∑

k=1

(
m+ 1

k + 1

)
rk+1 =

m∑

k=1

k
(m+ 1)!

(k + 1)k(k − 1)!(m+ 1− k − 1)!
rk+1,

so,

f ′(r) =
m∑

k=1

k
(k + 1)(m+ 1)!

(k + 1)k(k − 1)!(m− k)!
rk

=
m∑

k=1

k
(m+ 1)!

(k − 1)!(m− k)!
rk

=
m−1∑

k=0

mk
(m+ 1)!

(k − 1)!(m− 1− k)!
rk, by reindexing

= m(m+ 1)

m−1∑

k=0

(m− 1)!

k!(m− 1− k)!
rk,

= m(m+ 1)r
m−1∑

k=0

(
m− 1

k

)
rk

= m(m+ 1)r(r + 1)m−1 by the Binomial Theorem.

Now we can integrate by parts to fine f(r):

f(r) =

∫
m(m+ 1)(r(r + 1)m−1dr

= m(m+ 1)

∫
r(r + 1)m−1dr

= m(m+ 1)

[
1

m
r(r + 1)m −

∫
1

m
(r + 1)dr

]

= m(m+ 1)

[
1

m
r(r + 1)m − 1

m

(r + 1)m+1

m+ 1

]
+ C

= m(m+ 1)

{
(r + 1)m

m

(mr − 1)

m+ 1

}
+ C

= (r + 1)m(mr − 1) + C
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Using the initial condition f(0) = 0 we find C = 1, so f(r) = (r + 1)m(mr − 1) + 1, as
desired.

Editor’s note: David and John also submitted a second solution to this problem that was
similar to Solution 2 above.

Also solved by Dionne Bailey, Elsie Campbell and Charles Diminnie, Angelo
State University San Angelo TX; Charles Burnette (Graduate student, Drexel
University), Philadelphia, PA; Jerry Chu (student, Saint George’s School),
Spokane, WA; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; G. C. Greubel, Newport News, VA; Paul M. Harms, North Newton,
KS; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Carl Libis,
Eastern Connecticut State University, Willimantic, CT David E. Manes SUNY
College at Oneonta, Oneonta, NY; Toshihiro Shimizu, Kawasaki, Japan; Albert
Stadler, Herrliberg, Switzerland, and the proposers.

5359: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let a, b, c be positive real numbers. Prove that

4
√

15a3b+ 1 +
4
√

15b3c+ 1 +
4
√

15c3a+ 1 ≤ 63

32
(a+ b+ c) +

1

32

(
1

a3
+

1

b3
+

1

c3

)
.

Solution 1 by Arkady Alt, San Jose, CA

Since 15a3b+ 1 can be represented as (2a)3 ·
15b+

1

a3

8
then by AM-GM Inequality we obtain

∑

cyc

4
√

15a3b+ 1 =
∑

cyc

4

√√√√
(2a)3 ·

15b+
1

a3

8
≤

∑

cyc

3 · (2a) +
15b+

1

a3

8
4

=
∑

cyc

48a+ 15b+
1

a3

32

≤ 63

32
(a+ b+ c) +

1

32

(
1

a3
+

1

b3
+

1

c3

)
.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We first claim that

4
√

11 + 15x4 ≤ 63

32
x+

1

32x3
, x > 0. (1)
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Indeed,(
63

32
x+

1

32x3

)4

−
(
1 + 15x4

)
=

(x− 1)2 (x+ 1)2
(
x2 + 1

)2 (
24321x8 + 254x4 + 1

)

220x12
≥ 0

We replace x by
4
√
a3b in (1) and use the AM−GM inequality to obtain

4
√

1 + 15a3b ≤ 63

32

4
√
b3c+

1

32
4
√
a9b3

≤ 63

32

(
3

4
· a+

1

4
· b
)

+
1

32

(
3

4
· 1

a3
+

1

4
· 1

b3

)
. (2)

Similarly,

4
√

1 + 15b3c ≤ 63

32

4
√
b3c+

1

32
4
√
b9c3

≤ 63

32

(
3

4
· b+

1

4
· c
)

+
1

32

(
3

4
· 1

b3
+

1

4
· 1

c3

)
. (3)

4
√

1 + 15c3a ≤ 63

32

4
√
cb3a+

1

32
4
√
c9a3

≤ 63

32

(
3

4
· c+

1

4
· a
)

+
1

32

(
3

4
· 1

c3
+

1

4
· 1

a3

)
. (4)

We complete the proof by adding (2), (3), and (4).

Solution 3 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

Let f : (0,∞) −→ < and f(x) = 4
√
x, which is concave on (0,∞). Therefore,

4
√
x = f(x) ≤ f(t) + f ′(t)(x− t) =

4
√
t+

1

4
4
√
t3

(x− t),∀x, t > 0.

Let x = 15a3b+ 1 and t = 16a4. Then we have:

4
√

15a3b+ 1 ≤ 2a+
1

32a3
(
15a3b+ 1− 16a4

)
= 2a+

1

32

(
15b+

1

a3
− 16a

)
.

Summing the analogous upper bounds on the other two terms, gives

4
√

15a3b+ 1 +
4
√

15b3c+ 1 +
4
√

15c3a+ 1 ≤ 2
∑

a+
15

32

∑
a− 1

2

∑
a+

1

32

∑ 1

a3

=
63

32
(a+ b+ c) +

1

32

(
1

a3
+

1

b3
+

1

c3

)
.

Charles Burnette (Graduate student, Drexel University), Philadelphia, PA;
Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach FL; Kee-Wai
Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Toshihiro Shimizu,
Kawasaki, Japan, and the proposer.

• 5360: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer and let

In =

∫ ∞

0

arctanx

(1 + x2)n
dx.

Prove that
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(a)

∞∑

n=1

In
n

= ζ(2);

(b)

∫ ∞

0
arctanx ln

(
1 +

1

x2

)
dx = ζ(2).

Solution 1 by Anastasios Kotronis, Athens, Greece

• a) We have

In
x=tan y
====

∫ π
2

0
y cos2n−2 y dy

and since the integrand doesn’t change sign:

∑

n≥1

In
n

=
∑

n≥1

1

n

∫ π
2

0
y cos2n−2 y dy =

∑

n≥1

∫ π
2

0
y
∑

n≥1

(cos2 y)n−1

n
dy = −

∫ π
2

0
y

ln(1− cos2 y)

cos2 y
dy

= −2

∫ π
2

0
y

ln(sin y)

cos2 y
dy = −2

∫ π
2

0
(y tan y + ln(cos y))′ ln(sin y) dy

= −2 (y tan y + ln(cos y)) ln(sin y)

∣∣∣∣∣

π
2

0

+ 2

∫ π
2

0
(y tan y + ln(cos y)) cot y dy

=
π2

4
+ 2

∫ π
2

0
cot y ln(cos y)

cos y=t
====

π2

4
+ 2

∫ 1

0

t ln t

1− t2 dt =
π2

4
+

∫ 1

0

ln t

1− t dt−
∫ 1

0

ln t

1 + t
dt

=
π2

4
+

∫ 1

0

∑

n≥0
tn ln t−

∫ 1

0

∑

n≥0
(−t)n ln t.

From Dominated Convergence Theorem, the order of integration and summation can
change, so

∑

n≥1

In
n

=
π2

4
+
∑

n≥0

∫ 1

0
tn ln t−

∑

n≥0

∫ 1

0
(−t)n ln t =

π2

4
−
∑

n≥1

1

n2
+
∑

n≥1

(−1)n−1

n2
=
π2

6
= ζ(2).

b) ∫ ∞

0
arctanx ln

(
1 +

1

x2

)
dx

x=tan y
==== −2

∫ π
2

0
y

ln(sin y)

cos2 y
dy =

∑

n≥1

In
n
,

from the first part of the problem, so the result is immediate.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

We first prove (b) and then (a).

b)

∫ ∞

0
arctanx ln

(
1 +

1

x2

)
dx =




u = arctanx =⇒ du =
1

1 + x2
dx

dy = ln

(
1 +

1

x2

)
dx =⇒ v = 2 arctanx+ x ln

(
1 + 1

x2

)
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=

∫ ∞

0
udv = uv]∞0 −

∫ ∞

0
vdu

= arctanx

(
2 arctanx+ x ln

(
1 +

1

x2

))]∞

0

−
∫ ∞

0

2 arctanx+ x ln

(
1 +

1

x2

)

1 + x2
dx

=
π2

2

(
2
π

2
+ 0
)
− 0 (2 · 0 + 0)− 2

∫ ∞

0

arctanx

1 + x2
dx−

∫ ∞

0

x ln

(
1a+

1

x2

)

1 + x2
dx

=
1

π2

2
−
(

arctan2 x

]∞

0

)
− π2

12

=
π2

2
− π2

4
+ 0− π2

12
=

π2

6
= ζ(2).

(a)

∞∑

n=1

In
n

=
∞∑

n=1

1

n

∫ ∞

0

arctanx

(1 + x2)n
dx =

∫ ∞

0
arctanx

∞∑

n=1

1

n

(
1

1 + x2

)n
dx

=

∫ ∞

0
arctanx

(
− ln

(
1− 1

1 + x2

))
dx =

∫ ∞

0
arctanx ln

(
1 +

1

x2

)
dx = ζ(2), from part b.

(1) Table of Integrals, Series and Products, Gradshteyn, I.S. and Ryzhik, I.M., Seventh
Edition Elsevier Inc., 2007, 4,298(16) page 564.

Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Part a)

In =
x arctanx

(1 + x2)n

∣∣∣
∞

0
−
∫ ∞

0

x

(1 + x2)n+1
+ 2n

∫ ∞

0

x2 arctanx

(1 + x2)n+1

=
1

2n

1

(1 + x2)n

∣∣∣
∞

0
+2n

∫ ∞

0

arctanx

(1 + x2)n
dx− 2n

∫ ∞

0

arctanx

(1 + x2)n+1
dx

= − 1

2n
+ 2nIn − 2nIn−1.
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We have obtained the recursive sequence

In+1 = In

(
1− 1

2n

)
− 1

4n2
⇐⇒ 1

2n
In = In − In+1 −

1

4n2
.

Therefore,

∞∑

n=1

In
n

= 2I1 − lim
n→∞

In −
π2

12

I1 =

∫ ∞

0

arctanx

1 + x2
dx =︸︷︷︸

x=tan t

∫ π/2

0
tdt =

π2

8

As for lim
n→∞

In, we break In into two addends.

In =

∫ 1

0

arctanx

(1 + x2)n
dx+

∫ ∞

1

arctanx

(1 + x2)n
dx

.
= J1 + J2.

J1 converges to zero for instance by the dominated convergence theorem of Lebesgue after

observing that
arctanx

(1 + x2)n
→ 0.

As for J2 we bound,

0 <

∫ ∞

1

arctanx

(1 + x2)n
dx ≤ π

2

∫ ∞

1

1

x2n
dx =

π

2

1

2n− 1
→ 0.

We have obtained,

∞∑

n=1

In
n

=
π2

4
− π2

12
=
π2

6
.

Part (b). Let’s define I the integral. Integrating by parts,

I = x arctanx ln

(
1 +

1

x2

) ∣∣∣
∞

0
−
∫ ∞

0

x ln
(
1 + 1

x2

)

1 + x2
dx+

∫ ∞

0

2 arctanx

1 + x2
dx (1)

The first summand annihilates because

lim
x→0

x arctanx ln

(
1 +

1

x2

)
= lim

x→0
x arctanx(ln(1 + x2)− 2 lnx) = 0.

The third is equal to (arctan2 x)
∣∣∣
∞

0
=
π2

4
.

As for the second summand it is equal to

lim
a→∞

∫ a

0

x ln(1 + x2)− 2x lnx

1 + x2
dx = lim

a→∞
ln2(1 + x2)

4

∣∣∣
a

0
− lim
a→∞

2

∫ a

0

x lnx

1 + x2
. (2)

lim
a→∞

2

∫ a

0

x lnx

1 + x2
= lim

a→∞
lnx ln(1 + x2)

∣∣∣
a

0
− lim
a→∞

∫ a

0

ln(1 + x2)

x
dx ;
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lim
a→∞

∫ a

0

ln(1 + x2)

x
dx =

∫ 1

0

ln(1 + x2)

x
dx+ lim

a→∞

∫ a

1

ln(1 + x2)

x
dx ;

∫ 1

0

ln(1 + x2)

x
dx =

∞∑

k=1

(−1)k−1

k

∫ 1

0
x2k−1dx =

∞∑

k=1

(−1)k−1

2k2

lim
a→∞

∫ a

1

ln(1 + x2)

x
dx =︸︷︷︸

x=1/y

lim
a→∞

∫ 1

1/a

ln(1 + y2)− 2 ln y

y
dy

=

∫ 1

0

ln(1 + y2)

y
dy − lim

a→∞
ln2 y

∣∣∣
1

1/a

=

∫ 1

0

ln(1 + y2)

y
dy + lim

a→∞
ln2 a

Plugging in (2) we get

lim
a→∞

ln2(1 + a2)

4
− ln a ln(1 + a2) + ln2 a+ 2

∫ 1

0

ln(1 + x2)

x
dx = 2

∫ 1

0

ln(1 + x2)

x
dx.

and

∫ 1

0
2

ln(1 + x2)

x
dx =

∞∑

k=1

2(−1)k

k

∫ 1

0
x2k−1dx =

∞∑

k=1

(−1)k

k2
=
π2

12
,

and finally (1) is equal to

π2

4
− π2

12
=
π2

6
.

Solution 4 by G.C. Greubel, Newport News, VA

Part a) Given the integral

In =

∫ ∞

0

arctanx

(1 + x2)n
dx (1)

make the change of variable x = tan t to obtain

In =

∫ π/2

0

t sec2 t

(sec2 t)n
dt =

∫ π/2

0
t cos2n−2 t dt. (2)

By considering the summation of In in the desired manner leads to

S =

∞∑

n=1

In
n

= −
∫ π/2

0

t ln(sin2 t)

cos2 t
dt. (3)
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The integral in (3) may be evaluated by use of the Dilogarithm function as seen by the
following.

J =

∫ π/2

0

t ln(sin2 t)

cos2 t
dt (4)

=

[
−Li2

(
− tan2

(
t

2

))
− 2Li2

(
1

2
sec2

(
t

2

))
− Li2

(
cos t sec2

(
t

2

))

−t2 − ln2

(
sec2

(
t

2

))
+ 2 ln 2 ln

(
sec2

(
t

2

))
+ t tan t ln

(
sin2 t

)

− ln
(
sin2 t

)
ln

(
sec2

(
t

2

))
+ ln

(
sin2 t

)
ln

(
cos t sec2

(
t

2

))

− ln

(
tan2

(
t

2

))
ln

(
cos t sec2

(
t

2

))]π/2

0

= −Li2(−1)− Li2(1)− π2

4
+ ln2 2 + 2Li2

(
1

2

)

= −Li2(1) = −ζ(2). (5)

By using the resulting integral value of (5) in (3) the desired result is obtained, namely,

∞∑

n=1

In
n

= ζ(2). (6)

Part b) The integral in question is given by

I =

∫ ∞

0
tan−1 x ln

(
1 +

1

x2

)
dx. (7)

Making the change of variable x = tan t leads to the integral

I = −
∫ π/2

0

t ln(sin2 t)

cos2 t
dt. (8)

This is the same integral defined as (4) and has the resulting value given by (5). By
comparison of results the integral of this section is presented as

∫ ∞

0
tan−1 x ln

(
1 +

1

x2

)
dx = ζ(2) (9)

which is the desired result.

Also solved by Ed Gray, Highland Beach, FL; Kee Wai Lau, Hong Kong, China;
Moti Levy, Rehovot, Israel; Toshihiro Shimizu, Kawasaki, Japan; Albert
Stadler, Herrliberg, Switzerland, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2016

• 5379: Proposed by Kenneth Korbin, New York, NY

Solve:
(x+ 1)4

(x− 1)2
= 17x.

• 5380: Proposed by Arkady Alt, San Jose, CA

Let ∆(x, y, z) = 2(xy + yz + xz)− (x2 + y2 + z2) and a, b, c be the side-lengths of a
triangle ABC. Prove that

F 2 ≥ 3

16
· ∆(a3, b3, c3)

∆(a, b, c)
,

where F is the area of 4ABC.

• 5381: Proposed by D.M. Batinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, and Neculai Stanciu “George Emil Palade” School, Buzău, Romania

Prove: In any acute triangle ABC, with the usual notations, holds:

∑

cyclic

(
cosA cosB

cosC

)m+1

≥ 3

2m+1
,

where m ≥ 0 is an integer number.

• 5382: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Prove that if a, b, c are positive real numbers, then


∑

cyclic

a

b
+ 8

∑

cyclic

b

a




∑

cyclic

b

a
+ 8

∑

cyclic

a

b


 ≥ 93.

• 5383: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Let n be a positive integer. Find gcd(an, bn), where an and bn are the positive integers
for which (1−

√
5)n = an − bn

√
5.

• 5384: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Find all differentiable functions f : < → < which verify the functional equation

xf ′(x) + f(−x) = x2, for all x ∈ <.

Solutions

• 5361: Proposed by Kenneth Korbin, New York, NY

Convex quadrilateral ABCD has perimeter P = 75 + 61
√

15 and has 6 B = 6 D = 90◦.
The lengths of the diagonals are 112 and 128. Find the lengths of the sides.

Solution by Ercole Suppa, Teramo, Italy

Observe that ABCD is a cyclic quadrilateral because 6 B = 6 D = 90◦.

A B

D

C

Denote AB = a, BC = b, CD = c, DA = d. By the Pythagorean theorem applied to
triangles ABC, ACD and Ptolemy’s theorem applied to the quadrilateral ABCD we
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have

a2 + b2 = c2 + d2 = 1282 (1)

ac+ bd = 112 · 128 (2)

Taking into account of (1) and (2) we obtain

(a+ b+ c+ d)2 =
(

75 + 61
√

15
)2

⇔

a2 + b2 + c2 + d2 + 2(ab+ ac+ ad+ bc+ bd+ cd) = 61440 + 9150
√

15 ⇔
2 · 1282 + 2(ab+ ac+ ad+ bc+ bd+ cd) = 61440 + 9150

√
15 ⇔

ac+ bd+ (a+ c)(b+ d) = 14336 + 4575
√

15 ⇔
(a+ c)(b+ d) = 4575

√
15

Putting a+ c = x, b+ d = y we have
{
x+ y = 75 + 61

√
15

xy = 4575
√

15

from which, after some algebra, we find (x, y) =
(
75, 61

√
15
)

or (x, y) =
(
61
√

15, 75
)
.

Finally, solving the system 



a+ c = 75

b+ d = 61
√

15

a2 + b2 = 1282

c2 + d2 = 1282

we get (a, b, c, d) =
(
7, 33
√

15, 68, 28
√

15
)
,
(
33
√

15, 7, 28
√

15, 68
)
,
(
68, 28

√
15, 7, 33

√
15,
)

or
(
28
√

15, 68, 33
√

15, 7
)
, and the proof is completed.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Gail Nord, Gonzaga University, Spokane, WA; Prishtina Math
Gymnasium Problem Solving Group, Republic of Kosova; Toshihiro
Shimizu, Kawasaki, Japan; Neculai Stanciu, “George Emil Palade” General
School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA.

• 5362: Proposed by Michael Brozinsky, Central Islip, NY

Two thousand forty seven death row prisoners were arranged from left to right with the
numbers 1 through 2047 on their backs in this left to right order. Prisoner 1 was given a
gun and shoots prisoner number 2 dead, and then gives the gun to prisoner number 3
who shoots prisoner number 4 and then gives the gun to number 5 and so on, so that
every second originally numbered prisoner is shot dead.

This process is then repeated from right to left, starting with the person (in this case
number 2047) who last received the gun and then continues to proceed from right to
left, and then the direction switches again, and then again until only one prisoner
remains standing. What is the number of the prisoner who survives the left to right,
right to left shootout? Note that if there had been 2048 prisoners, number 2047 would
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have no one to whom to hand the gun in the left to right direction after shooting
number 2048, and so he would then start the gun in its opposite direction shooting the
living prisoner to his immediate left i.e.,number 2045. In this case, number 2047 gets to
shoot two prisoners before he hands the gun off to another prisoner.

Solution 1 by Ashland University Undergraduate Problem Solving Group,
Ashland, OH

Let a(n) = the number of the prisoner who survives when n prisoners are in line. It is
given in the problem that a(2048) = a(2047), and from the explanation given, we can
similarly conclude that a(2k) = a(2k− 1). We can also see that the prisoner left standing
for a(2k+ 1) is the a(k+ 1)st odd-numbered prisoner from the right end of the line since
only odd numbers survived the first gun pass through the line. this gives the relation

a(2k + 1) = 2k + 1− 2 [a(k + 1)− 1] = 2k + 3− 2a(k + 1).

From this we can see that

a(2m) = a(2m − 1) = (2m − 1)− 2
[
a(2m−1 − 1 + 1)− 1

]
= 2m + 1− 2a(2m−1).

We can then solve for an explicit formula using iteration.

a(2m) = a(2m − 1) = 2m + 1− 2a(2m−1)

= 2m + 1− 2
(
2m−1 + 1− 2a(2m−2)

)

= 2m + 1− 2
(
2m−1 + 1− 2

[
2m−2 + 1− 2a(2m−3)

])

= 2m + 1− 2
(
2m−1 + 1− 2

[
2m−2 + 1− 2

(
2m−3 + 1− 2a

(
2m−4

))])
.

So if we regroup these equations,

a(2m) = (a2m − 1) = 2m + 1− 2a(2m−1)

= (2m − 2m) + (1− 2) + 22a(2m−2)a

= (2m − 2m + 2m) + (1− 2 + 22)− 23a(2m−3)

= (2m − 2m + 2m − 2 m) + (1− 2 + 22 − 23) + 24a(2m−4).

We can see that

a(22k) = 1

(
1− (−2)2k

1− (−2)

)
+ 22ka(a2k−2k)

=

(
1− (−2)2k

3

)
+ 22ka(1)

= 22k +

(
1− 22k

3

)
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=
3(22k) + (1− 22k)

3

=
22k + 1

3

=
22k+1 + 1

3

And

a(22k+1) = 22k+1 + 1 + 1

(
1− (−2)2k+1

1− (−2)

)
− 22k+1a

(
2[2k+1]−[2k+1]

)

= 22k+1 +

(
1 + 22k+1

3

)
− 22k+1a(1)

= 22k+1 − 22k+1 +
1 + 22k+1

3

=
22k+1 + 1

3

So a
(
22k
)

= a
(
22k+1

)
=

22k+1 + 1

3
, and a(2047) = a(2048) = a

(
211
)

=
211 + 1

3
= 683.

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

We consider the case of 2n prisoner. Let f(n) be the index of the prisoner who remains
alive. It’s obvious that f(0) = 1. In the first left-to-right shootout, 2n−1 prisoners who
were originally indexed as 1, 3, 5, . . . , 2n − 1 are alive. Then, we reindex these prisoner as
2n−1, 2n−1 − 1, . . . , 2, 1. So the prisoner with new-index f(n− 1) is alive. This prisoner
is also the prisoner of original-index f(n). Since the prisoner of new-index i corresponds
to original index 2n + 1− 2i, it follows that f(n) = 2n + 1− 2f(n− 1). This relation is
equivalent to

f(n)− 2n−1 − 1

3
= −2

(
f(n− 1)− 2n−2 − 1

3

)
.

Therefore, f(n)− 2n−1 − 1/3 = (−2)n(f(0)− 2−1 − 1/3) = (−2)n/6 or
f(n) = (−2)n/6 + 2n−1 + 1/3.

We consider the cases with 2047 prisoners and with 2048 prisoners. In the first
left-to-right of the later case, the prisoner 2047 shoots 2048, while in the former case,
the prisoner 2048 does not initially exist. Thus, in the both two cases, the original index
of living prisoners are identical after first left-to-right movement. Thus, the prisoner
who, in the end, remains alive, is also same. This prisoner is indexed f(11) = 683.

Solution 3 by David E. Manes, SUNY College at Oneonta, NY
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At the end of the bloodbath, number 683 is the only prisoner standing and it takes ten
stages to produce him.

Stage 1: Procedure goes from left to right. The odd numbered prisoners are alive and
the even numbered ones are not. Therefore 1023 prisoners have been eliminated and
1024 prisoners are still alive.

Stage 2: Procedure goes from right to left starting with prisoner 2047. The prisoners’
decreased are numbered 4k + 1, 0 ≤ k ≤ 511 while the prisoners alive are numbered
4k + 3, 0 ≤ k ≤ 511. There are now 512 prisoners alive.

Stage 3: Procedure goes from left to right starting with prisoner 3. Prisoners still alive
after this stage are numbered 8k + 7, 0 ≤ k ≤ 255. There are now 256 prisoners alive.

Stage 4: Procedure goes from right to left starting with prisoner 2043. The prisoners
dismissed after this stage have numbers 16k + 3, 0 ≤ k ≤ 127 and the prisoners still
standing have numbers 16k + 11, 0 ≤ k ≤ 127. There are now 128 prisoners alive.

Stage 5 : Procedure goes from left to right starting with prisoner 11. After this stage
the lifeless prisoners have numbers 32k + 27, 0 ≤ k ≤ 63 and the prisoners still alive have
numbers 32k + 11, 0 ≤ k ≤ 63.

Stage 6: Procedure goes from right to left starting with prisoner 2027. Prisoners no
longer playing are numbered 64k + 11, 0 ≤ k ≤ 31 and the prisoners still playing have
numbers 64k + 43, 0 ≤ k31.

Stage 7: Procedure goes from left to right starting with prisoner 43. After this stage the
prisoners asked to leave are numbered 128k + 107, 0 ≤ k ≤ 15 and the prisoners still
living have numbers 128k + 43, 0 ≤ k ≤ 15.

Stage 8: Procedure goes from right to left starting with prisoner 1963. After this stage
the prisoners not breathing have numbers 256k + 171, 0 ≤ k ≤ 7.

Stage 9: Procedure goes from left to right starting with prisoner 171. After this stage
the extinct prisoners have numbers 512k + 427, 0 ≤ k ≤ 3 and the prisoners still alive
have numbers 512k + 171, 0k ≤ 171. Prisoners no longer playing are numbered and the
prisoners still playing have numbers 64k + 43, 0 ≤ k ≤ 3, that is, prisoners numbered
171, 683, 1195, and 1707,

Stage 10: Procedure goes from right to left starting with prisoner 1707. The deceased
prisoners are numbered 1195 and 171. The only prisoners alive are 683 and 1707, but
prisoner 683 has the loaded gun, hence the result.

Solution 4 by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Order of Direction Number of Difference Left− end, Right−
shootout of surviving between numbers end

shootout inmates of two surviving Surviving
inmates numbers

1 L→ R 1024 2 1− 2047
2 L← R 512 4 3− 2047
3 L→ R 256 8 3− 2043
4 L← R 128 16 11− 2043
5 L→ R 64 32 11− 2027
6 L← R 32 64 43− 2027
7 L→ R 16 128 43− 1963
8 L← R 8 256 171− 1963
9 L→ R 4 512 171− 1707
10 L← R 2 1024 683− 1707
11 L→ R 1 683

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The last surviving inmate has the number 683.
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Solution 5 by Carl Libis and Roland Depratti, Eastern Connecticut State
University, Willimantic, CT

Let f(x) =number of the prisoner that survives when there are x prisoners. Observe that

f(2n + 1) =

{
1, if n = 2, 4, 6, · · ·

2n + 1, if n,= 1, 3, 5, · · ·

f(2n) =





2n+1

3
, if n = 2, 4, 6, · · ·

2n + 1

3
, if n = 1, 3, 5, · · ·

f(2n − 1) =





2n+1

3
, if n = 2, 4, 6, · · ·

2n + 1

3
, if n = 1, 3, 5, · · ·

Thus f(2047) = f(211 − 1) = 683, so when there are 2047 prisoners, then prisoner
number 683 will survive.

Editor’s comment: Ulrich Abel of Technische Hochschule Mittelhessen in
Freiberg, Germany, wrote that “this problem is a variant of the famous Josephus
Problem (see; e.g. http://en.wikpedia.org/wiki/Josephusproblem) or the book
Concrete Mathematics by Graham, Knuth and Patashnik.”

Also solved by Ed Gray, Highland Beach, FL; Prishtina Math Gymnasium
Problem Solving Group, Republic of Kosova; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5363: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzaău, Romania

Let x ∈ < and A(x) =




x+ 1 1 1 1
1 x+ 1 1 1
1 1 x+ 1 1
1 1 1 x+ 1


 .

Compute A(0) ·A(x) ·A(y) ·A(z),∀x, y, z ∈ <.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If

I4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

then I4 ·M = M · I4 = M for all 4× 4 matrices M . Also, for all t ∈ R, it is easily seen
that

A (t) = A (0) + tI4
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and

[A (0)]2 =




4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4


 = 4A (0) .

As a result, we have

A (0) ·A (x) = A (0) · [A (0) + xI4]

= [A (0)]2 + xA (0)

= (x+ 4)A (0)

and

A (y) ·A (z) = [A (0) + yI4] · [A (0) + zI4]

= [A (0)]2 + (y + z)A (0) + yzI4

= (y + z + 4)A (0) + yzI4.

Therefore,

A (0) ·A (x) ·A (y) ·A (z) = (x+ 4)A (0) · [(y + z + 4)A (0) + yzI4]

= (x+ 4) [4 (y + z + 4)A (0) + yzA (0)]

= (x+ 4) (yz + 4y + 4z + 16)A (0)

= (x+ 4) (y + 4) (z + 4)A (0) .

Solution 2 by Moti Levy, Rehovot, Israel

A (x) = xI4 + E4,

where I4 :=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 and E4 :=




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

A(0)·A(x)·A(y)·A(z) = E4 (E4 + xI4) (E4 + yI4) (E4 + zI4)

= E4
4 + (x+ y + z)E3

4 + (xy + xz + yz)E2
4 + xyzE4

E2
4 = 4E4,

E3
4 = 16E4

E3
4 = 64E4

A(0)·A(x)·A(y)·A(z) = E4
4 + (x+ y + z)E3

4 + (xy + xz + yz)E2
4 + xyzE4

= (64 + 16 (x+ y + z) + 4 (xy + xz + yz) + xyz)E4

= (z + 4) (y + 4) (x+ 4)E4.

Solution 3 by Paul M. Harms, North Newton, KS
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Computing A(0), A(x), we obtain the value of (x− 4) for each element in the product.
On the main diagonal of the product A(x)A(z) we have
(y + 1)(z + 1) + 3 = yz + y + z + 4. The other elements have the value
(y + 1) + (z + 1) + 2 = y + z + 4. Then the product A(0) [A(y)A(z)] has the value
yz + y + z + 4 + 3(y + z + 4) for each element. This value is equal to
yz + 4y + 4z + 16 = (y + 4)(z + 4). The result of the computation requested in the
problem is (x+ 4)(y + 4)(z + 4)A(0) or a 4 by 4 matrix all of whose elements are
(x+ 4)(y + 4)(z + 4).

Solution 4 by David Stone and John Hawkins of Georgia Southern
University in Statesboro, GA

Editor′s comment : The authors of this solution generalized the problem as follows:

Let A(x) be m instead of 4× 4 and we shall compute
A(0) ·A(x1) ·A(x2) ·A(x3) · · ·A(xn), for xi ∈ <.

Let A be the m×m matrix A = A(0) A(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . 1
1 1 1 . . 1
. . . . . .
. . . . . .
. . . . . .
1 1 1 . . 1

∣∣∣∣∣∣∣∣∣∣∣∣

.

ThenA(x) = A+ xI (where I is the m×m identity matrix).

Lemma 1: Ak = mk−1A, k ≥ 1.
Proof: Certainly A1 = m1−1A and an easy computation shows that A2 = mA = m2−1A.

Upon the obvious induction hypothesis,

Ak+1 = AAk = A
(
mk−1A

)
= mk−1A2 = mk−1 (mA) = mkA, as desired.

Lemma 2: For any real x, A ·A(x) = (m+ x)A.
Proof:

A ·A(x) = A · (A+ xI) = A2 + xA

= mA+ xA, by Lemma 1

= (m+ x)A.

Theorem: For x1, x2, x3, . . . , xn,∈ < we have
A(0) ·A(x1) ·A(x2) ·A(x3)(xn) = (m+ x1) (m+ x2) (m+ x3) · · · (m+ xn)A.

Proof: We proceed by induction on n.
For n = 1, A(0) ·A(x1) = A ·A(x1) = (m+ x1)A by Lemma 2.

Making the obvious induction hypothesis,

A(0) ·A(x1) ·A(x2) ·A(x3) · · ·A(xn+1)

= {A(0) ·A(x1) ·A(x2) ·A(x3) · · ·A(xn)} ·A (xn+1)

= {(m+ x1)(m+ x2)(m+ x3) · · · (m+ xn)A} ·A (xn+1)

= {(m+ x1)(m+ x2)(m+ x3) · · · (m+ xn)} · {A ·A (xn+1)}
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= {(m+ x1)(m+ x2)(m+ x3) · · · (m+ xn)} · {(m+ xn+1)A} by Lemma 2

= (m+ x1) (m+ x2)(m+ x3) · · · (m+ xn) · (m+ xn+1)A, as desired.

That is, A (0) ·A (x1) ·A (x2) ·A (x3) · · ·A (xn) equals the m×m matrix

(m+ x1)(m+ x2)(m+ x3) · · · (m+ xn)

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . 1
1 1 1 . . 1
. . . . . .
. . . . . .
. . . . . .
1 1 1 . . 1

∣∣∣∣∣∣∣∣∣∣∣∣

.

Norte. There are no concerns about non-commutativity in our algebra of matrices,
because A commutes with powers of itself and with any scalar matrix c.

Note also that everything above remains true if we let all scalars come from an arbitrary
ring with identity (instead of the reals).

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; David
Diminnie and Michael Taylor, Texas Instruments Inc., Dallas, TX; Bruno
Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Connor
Greenhalgh (student, Eastern Kentucky University), Richmond, KY; G. C.
Greubel, Newport News, VA; Carl Libis, Columbia Southern University,
Orange Beach, AL; David E, Manes, SUNY College at Oneonta, NY; Gail
Nord, Gonzaga University, Spokane, WA; Toshihiro Shimizu, Kawasaki,
Japan; Morgan Wood (student, Eastern Kentucky University), Richmond,
KY, and the proposer.

• 5364: Proposed by Angel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Prove that
n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)
4−n = 1.

Solution 1 by Henry Ricardo, New York Math Circle, NY

The generating function of the central binomial coefficient is well known:

f(x) =
1√

1− 4x
=

∞∑

k=0

(
2k

k

)
xk.

Applying a standard theorem on the Cauchy product of two power series,

( ∞∑

i=0

aix
i

)
·



∞∑

j=0

bjx
j


 =

∞∑

n=0

(
n∑

k=0

an−kbk

)
xn,

11

X
ia
ng
’s
T
ex
m
at
h



to f2(x) yields

n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)
= the coefficient of xn in

(
1√

1− 4x

)2

= the coefficient of xn in
1

1− 4x
= 4n,

which proves the given identity.

Comment: The identity in the problem has been known since at least the 1930s. In her
article “Counting and Recounting: The Aftermath” (The Mathematical Intelligencer,
Vol. 6, No. 2, 1984), Marta Sved provides some references and describes a number of
purely combinatorial proofs of the identity, all based in some way on the count of lattice
paths.

Solution 2 by Arkady Alt, San Jose ,CA

First note that
(−1/2

n

)
=
−1/2 (−1/2− 1) .... (−1/2− n+ 1)

n!

= (−1)n · 1 · 3 · ... · (2n− 1)

2nn!

= (−1)n · (2n)!

22n (n!)2

=
(−1)n

4n

(
2n

n

)
and therefore,

(
2n

n

)
= (−4)n

(−1/2

n

)
.

Since,

(
2k

k

)(
2n− 2k

n− k

)
= (−4)k

(−1/2

k

)
(−4)n−k

(−1/2

n− k

)
= (−4)n

(−1/2

k

)(−1/2

n− k

)
,

we have

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)
4−n = 1 ⇐⇒

n∑
k=0

(−1/2

k

)(−1/2

n− k

)
= (−1)n .

Since
1√

1 + x
= (1 + x)−1/2 =

∞∑
n=0

(−1/2

n

)
xn and

∞∑
n=0

(−1)n xn =
1

1 + x
,

we obtain

(
1√

1 + x

)2

=
1

1 + x
⇐⇒

( ∞∑
n=0

(−1/2

n

)
xn
)2

=
∞∑
n=0

(−1)n xn
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⇐⇒
∞∑
n=0

xn
n∑
k=0

(−1/2

k

)(−1/2

n− k

)
=
∞∑
n=0

n (−1)n xn.

Hence,
n∑
k=0

(−1/2

k

)(−1/2

n− k

)
= (−1)n.

Solution 3 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

We have
1√

1− x2
=
∑

n≥0

(
2n

n

)
2−2nx2n.

On the other hand, we have
1

1− x2 =
∑

n≥0
x2n. Squaring the first power series and

comparing terms give us
n∑

k=0

(
2n− 2k

n− k

)(
2k

k

)
2−2n = 1, q.e.d.

Editor′s comment : Several of those who solved this problem also commented on where
variations and generalizations of it can be found. E.g., Ulrich Abel of the
Technische Hochschule Mittelhessen in Friedberg, Germany cited the paper:

Chang, G., Xu, C., “Generalization and probabilistic proof of a combinatorial identity.”
American Mathematical Monthly 118, 175-177, (2011), and also a paper of his
which was published in 2015 that further generalizes notions used in the Chang and Xu
paper.

Ulrich Abel, Vijay Gupta, and Mircea Ivan, “A generalization of a combinatorial
identity by Change and Xu,” Bulletin of Mathematical Sciences, published by
Springer, ISSN 1664-3607. This paper can also be seen at Springer’s open line access
site < SpringerLink.com > .

Another citation was given by Moti Levy, of Rehovot Israel. He mentioned that in
Concrete Mathematics, by Graham, Knuth, and Patashnik (second edition) the problem
is solved in Section 5.3, “Tricks of the trade,” pages 186-187 . And Carl Libis of
Columbia Southern University, Orange Beach, AL cited
http://math.stackexchange.com/questions/687221/proving-sum-k-0n2k-choose-k2n-2k-
choose-n-k-4n/688370688370

In addition, Bruno Salgueirio Fanego of Viveiro, Spain stated that a probabilistic
interpretation of the problem can be found in
<http://mathes.pugetsound.edu/∼mspivey/AltConvRepring.pdf>. He went on to say
that: more generally, it can be demonstrated that, for any real l,
n∑

k=0

(
2n− 2k − l
n− k

)(
2k + l

k

)
4−n = 1 (see: http://arxiv.org/pdf/1307.6693.pdf) and that

for any integer m ≥ 2,

∑

k1·k2···km=n

(
2k1
k1

)(
2k2
k2

)
· · ·
(

2km
km

)
4−n =

Γ
(m

2
+ n

)

n!Γ
(m

2

) ,
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as can be found in <http://129.81.170.14/∼vhm/papers html/prob-bin.pdf>.

Also solved by Ed Gray, Highland Beach, FL; G. C. Greubel, Newport
News, VA; Gail Nord, Gonzaga University, Spokane, WA; Toshihiro
Shimizu, Kawasaki, Japan, and the proposer.

5365: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n ≥ 3 be a positive integer. Find all real solutions of the system

a32(a
2
2 + a23 + . . .+ a2j+1) = a21

a33(a
2
3 + a24 + . . .+ a2j+2) = a22

. . . . . . . . .
a3n(a2n + a21 + . . .+ a2j−1) = a2n−1

a31(a
2
1 + a22 + ...+ a2j ) = a2n





for 1 < j < n.

Partial solution by the proposer

Since the RHS of all equations are nonnegative, then the system does not have solutions
(a1, a2, . . . , an) with negative components. Moreover, (0, 0, . . . , 0) is a trivial solution.
So, it remains to find the positive solutions of the system. To do it, let
m = min

1≤k≤n
{ak} = ap and M = max

1≤k≤n
{ak} = aq. Then, using the (q− 1)th equation yields

jM3m2 ≤ a3q(a2q + a2q+1 + . . .+ a2q+j−1) = a2q−1 ≤M2

and from the (p− 1)th equation we get

jm3M2 ≥ a3p(a2p + a2p+1 + . . .+ a2p+j−1) = a2p−1 ≥ m2

Therefore,

jM3m2 ≤M2 ⇔M ≤ 1

jm2

and

jm3M2 ≥ m2 ⇔ m ≥ 1

jM2

Since M ≤ 1

jm2
, then j2m4 ≤ 1

M2
and from m ≥ 1

jM2
follows that

m ≥ jm4 ⇒ m ≤ 3
√

1/j

Likewise, from M ≤ 1

jm2
and m ≥ 1

jM2
immediately follows

M ≤ jM4 ⇒M ≥ 3
√

1/j

So, m = M = 3
√

1/j and a positive solution of the given system is

(
3
√

1/j, 3
√

1/j, . . . , 3
√

1/j
)

(*) It remains to prove if there exist or not other positive solutions.
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Editor’s comment: When the statement of this problem was published the last line in
the system was not there. Toshihiro Shimizu of Kawasaki, Japan mentioned that
for the sake of symmetry it would be advantageous to add this last line to the system,
and the proposer agreed. But as we see, even with this additional condition, a definitive
set of solutions was not received.

5366: Proposed by Ovidiu Furdui and Alina Sintămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all nonconstant, differentiable functions f : < → < which verify the functional
equation f(x+ y)− f(x− y) = 2f ′(x)f(y), for all x, y ∈ <.

Solution 1 by Moti Levy, Rehovot, Israel

We will show that all the solutions of the functional equation (1) must satisfy the
differential equation (2):

f(x+ y)− f(x− y) = 2f
′
(x)f(y), for all x, y ∈ R, (1)

f
′′
(x)f(x)−

(
f

′
(x)
)2

+ 1 = 0, f (0) = 0, f
′
(0) = 1. (2)

We divide both sides of (1) by y and take the limit y → 0.

f(x+ y)− f(x− y)

y
= 2f

′
(x)

f(y)

y
(3)

The left hand side approaches the derivative f
′
(x)

lim
y→0

f(x+ y)− f(x− y)

2y
= f

′
(x),

and the right hand side is equal to f
′
(x) limy→0

f(y)
y .

It follows that

lim
y→0

f(y)

y
= 1 =⇒ f(0) = 0. (4)

By Taylor’s theorem,

f (y) = f (0) + f
′
(θ) y, 0 ≤ θ ≤ y.

lim
y→0

f (y)

y
= 1 = lim

y→0

f
′
(θ) y

y
=⇒ f

′
(0) = 1.

Thus we have derived the initial conditions,

f(0) = 0, f
′
(0) = 1. (5)

Differentiation of (1) with respect to the variable y, gives

f
′
(x+ y) + f

′
(x− y) = 2f

′
(x)f

′
(y) . (6)

Setting x = y in (1) and in (6), we obtain

f(2x) = 2f
′
(x)f (x) , (7)

f
′
(2x) + 1 = 2

(
f

′
(x)
)2
. (8)
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Now, f
′
(x) = f(2x)

2f(x) from (7), implies that f
′
(x) it is differentiable function (for

f (x) 6= 0) , (actually, by this argument f (x) is infinitely differentiable). Differentiating
(7) gives

f
′
(2x) = f

′′
(x)f (x) +

(
f

′
(x)
)2
. (9)

By equating f
′
(2x) in (8) and (9), we obtain the differential equation,

f
′′
(x)f(x)−

(
f

′
(x)
)2

+ 1 = 0 (10)

Now we differentiate (10),

f (3)(x)f(x) + f
′′
(x)f

′
(x)− 2f

′
(x)f

′′
(x) = 0

or
f (3)(x)

f
′′
(x)

=
f

′
(x)

f(x)
(11)

ln f
′′
(x) = ln f(x) + c

f
′′
(x) = k2f(x)

f(x) = αekx + βe−kx

f (0) = 0, =⇒ α+ β = 0

f
′
(0) = 1, =⇒ kα− kβ = 1

f (x) =
ekx − e−kx

2k
, k ∈ C.

Let k = σ + iτ, σ, τ ∈ R, then

f (x) =
eσx (cos τx+ i sin τx)− e−σx (cos τx− i sin τx)

2 (σ + iτ)

=
(σ − iτ) (eσx (cos τx+ i sin τx)− e−σx (cos τx− i sin τx))

2 (σ2 + τ2)

=
eσx (σ cos (τx) + τ sin (τx))− e−σx (σ cos (τx)− τ sin (τx))

2 (σ2 + τ2)

+ i
eσx (σ sin τx− τ cos τx)− e−σx (σ sin τx− τ cos τx)

2 (σ2 + τ2)
.

Since we are requested to find only the real functions, then σ must be equal to 0 or τ
must be equal to 0.
When σ = 0 then

f (x) =
sin (τx)

τ
, τ ∈ R\ {0} .

When τ = 0 then

f (x) =
sin (iσx)

iσ
=

sinh (σx)

σ
, τ ∈ R\ {0} .
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One can check that f (x) = limτ→0
sin(τx)
τ = x is also a solution of the differential

equation (2).

It is easy to check that f (x) =





sin(τx)
τ , τ ∈ R\ {0}

sinh(σx)
σ , σ ∈ R\ {0}

x

, the family of solution of (2),

are indeed solution of (1).

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

Let (F ) be the functional equation in the problem statement.

There exists y1 such that f ′(y1) 6= 0, otherwise f would be constant. Taking
x = y1, y 6= 0 to (F ) we get

f(y1 + y)− f(y1 − y)

2y
= f ′(y1)

f(y)

y
.

Taking the limit y → 0, we get f ′(y1) = f ′(y1)f ′(0) or f ′(0) = 1. Taking x = 0 to (F ),
we get f(y)− f(−y) = 2f(y) or f(−y) = −f(y). Especially, f(0) = 0.

Then, we get
2f ′(−x)f(y) = f(−x+ y)− f(−x− y) = −f(y − x) + f(x+ y) = 2f ′(x)f(y). We take
y = y0 such that f(y0) 6= 0, where such y0 exists since f is not constant. Then, we get
f ′(−x) = f ′(x) for all x ∈ R.

We show that f ′is differentiable. Taking y = y0 to (F ),
f ′(x) =

(
f(x+ y0)− f(x− y0)

)
/
(
2f(y0)

)
for all x ∈ R.

Thus, it follows that

f ′(x+ h)− f ′(x)

h
=
f(x+ h+ y0)− f(x+ h− y0)− f(x+ y0) + f(x− y0)

2f(y0)h

=
1

2f(y0)

(
f(x+ h+ y0)− f(x+ y0)

h
− f(x+ h− y0)− f(x− y0)

h

)

→ 1

2f(y0)

(
f ′(x+ y0)− f ′(x− y0)

)
(h→ 0)

Thus f ′ is differentiable.

Differentiating with respect to x, we get

f ′(x+ y)− f ′(x− y) = 2f ′′(x)f(y)

Exchanging x and y, (l.h.s) is not changed. Thus f ′′(x)f(y) = f(x)f ′′(y) for any
x, y ∈ R. Especially for y = y0, we get the result that f ′′(x) = cf(x) for some constant
c ∈ R. It’s known functional equation and we omit the detail.

If c > 0, we can write as f(x) = C1 exp(Cx) + C2 exp(−Cx). From the fact that
f(0) = 0 and f ′(0) = 1, we get C1 + C2 = 0 and C(C1 − C2) = 1. Thus, we can write as

17

X
ia
ng
’s
T
ex
m
at
h



f(x) =
(

exp(Cx)− exp(−Cx)
)
/(2C) = sinh(Cx)/(2C). It is easy to check that this

function satisfies (F ).

If c < 0, we can write as f(x) = C1 cos(Cx) + C2 sin(Cx). From the fact that f(0) = 0
and f ′(0) = 1, we get C1 = 0, CC2 = 1. Thus, we can write as f(x) = sin(Cx)/C.
Again, it is easy to check that this function satisfies (F ).

If c = 0, we can write as f(x) = Cx+D. From the fact that f(0) = 0 and f ′(0) = 1. We
get f(x) = x. It also satisfies (F ).

Finally, we get f(x) = sinh(Cx)/(2C) or f(x) = sin(Cx)/C or f(x) = x where C 6= 0 is
constant.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that f(x) = x,
eax − e−ax

2a
or

sin(bx)

b
, where a and b are nonzero numbers.

By putting y = 0 into the into the given functional equation

f(x+ y)− f(x− y) = 2f ′(x)f(y) (1)

we obtain we obtain f ′(x)(0) = 0. Since f is non-constant, so there exists a ∈ < such
that f ′(a) 6= 0. Hence f(0) = 0. Differentiate (1) with respect to y, we obtain

f ′(x+ y) + f ′(x− y) = 2f ′(x)f ′(y). (2)

By putting y = 0 and x = a into (2), we obtain f ′(0) = 1. By putting x = 0 into (1), we
obtain f(−y) = −f(y). Hence by interchanging x and y in (1), we obtain

f(x+ y) + f(x− y) = 2f ′(y)f(x), (3)

Adding up (1) and (3), ) we obtain

f(x+ y) = f ′(x)f(y) + f ′(y)f(x). (4)

Differentiating (4) with respect to x, we obtain

f ′(x+ y) = f ′′(x)f(y) + f ′(y)f ′(x). (5)

Differentiating (4) with respect to y, we obtain

f ′(x+ y) = f ′(x)f ′(y) + f ′′(y)f(x) (6)

From (5) and (6), we obtain f ′′(x)f(y) = f ′′(y)f(x) for all x, y ∈ <.

It follows that f ′′(x) = kf(x), where k is a constant.

If k = 0 then f ′′(x) = 0, so that f is a linear function. Since f(0) = f ′(0)− 1 = 0, so
f(x). If k = a2, then f ′′(x)− a2f(x) = 0.

By standard methods, we obtain (x) =
eax − e−ax

2a
. If k = −b2, then f ′′(x) + b2f(x) = 0.

By standard methods, we obtain f(x) =
sin(bx)

b
.

This completes the solution.
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Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC, and the proposers.

Mea− Culpa

The names of Bruno Salgueiro Fanego of Viveiro, Spain and David E. Manes
of SUNY College at Oneonta, NY should have been listed as having solved
problem 5358; their names were inadvertently omitted from the list.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2016

• 5385: Proposed by Kenneth Korbin, New York, NY

A triangle with integer length sides and integer area has perimeter P = 66. Find the
sides of the triangle when the area is minimum.

• 5386: Proposed by Michael Brozinsky, Central Islip, NY.

Determine whether or not there exit nonzero constants a and b such that the conic
whose polar equation is

r =

√
a

sin(2θ)− b cos(2θ)

has a rational eccentricity.

• 5387: Proposed by Arkady Alt, San Jose, CA

Let D := {(x, y) | x, y ∈ R+, x 6= y and xy = yx} .(Obviously x 6= 1 and y 6= 1 ).

Find sup
(x,y)∈D

(
x−1 + y−1

2

)−1

• 5388: Proposed by Jiglău Vasile, Arad, Romania

Let ABCD be a cyclic quadrilateral, R and r its exradius and inradius respectively, and
a, b, c, d its side lengths (where a and c are opposite sides.) Prove that

R2

r2
≥ a2c2

b2d2
+
b2d2

a2c2
.

• 5389: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ABC be a scalene triangle with semi-perimeter s and area A. Prove that

3a+ 2s

a(a− b)(a− c) +
3b+ 2s

b(b− a)(b− c) +
3c+ 2s

c(c− a)(c− b) <
3
√

3

4A .
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• 5390: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A ∈M2 (R) such that AAT =

(
a b
b a

)
, where a > b ≥ 0. Prove that AAT = ATA

if and only if A =

(
α β
β α

)
or A =

(
β α
α β

)
, where α =

±
√
a+ b±

√
a− b

2
and

β =
±
√
a+ b∓

√
a− b

2
. Here AT denotes the transpose of A.

Solutions

• 5367: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with integer length sides and integer area. The vertices have
coordinates A(0, 0), B(x, y) and C(z, w) with

√
x2 + y2 −

√
z2 + w2 = 1.

Find positive integers x, y, z and w if the perimeter is 84.

Solution by Ed Gray, Highland Beach, FL

Let the sides of the triangle be a, b, c where b =
√
z2 + w2 and c =

√
x2 + y2.

We are given that

c− b = 1
a+ b+ c = 84. So, subtracting
a+ 2b = 83, or, a = 83− 2b.

By Brahmagupta’s formula, the area T is given by

T 2 = s(s− a)(s− b)(s− c), where s =
1

2
(a + b + c) = 42. Then,

T 2 = 42 (42− (83− 2b)) (42− b) (42− (b+ 1)) , or
T 2 = 42 (2b− 41) (42− b)(41− b) =⇒ b = 34. So
T 2 = (42)(27)(8)(7) = (14)2 · 92 · 22 = (252)2 =⇒
T = 252, b = 34, c = b+ 1 = 35, and a = 15.

Since b =
√
z2 + w2, b2 = 342 = 1156 = z2 + w2 and we have z = 30, w = 16 since

900 + 256 = 1156, or vice versa, z = 16 and w = 30. Similarly,

c =
√
x2 + y2, c2 = 352 = 1225 = x2 + y2 and we have x = 28, y = 21 since

784 + 441 = 1225, or vice versa, x = 21 and y = 28.

In summary, (x, y, z, w) ∈ {(21, 28, 30, 16), (28, 21, 16, 30)}.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
Sate University, San Angelo, TX; Brian D. Beasley, Presbyterian College,
Clinton, SC; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; David E. Manes, SUNY
College at Oneonta, Oneonta, NY; Neculai Stanciu, “George Emil Palade”
General School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania;
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David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA, and the proposer.

• 5368: Proposed by Ed Gray, Highland Beach, FL

Let abcd be a four digit number in base 10, none of which are zero, such that the last
four digits in the square of abcd are abcd, the number itself. Find the number abcd.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If x =
(
a× 103

)
+
(
b× 102

)
+ (c× 10) + d, with a, b, c, d ∈ {1, 2, . . . , 9},then

x2 =
(
a2 × 106

)
+
(
2ab× 105

)
+
[(
b2 + 2ac

)
× 104

]
+
[
2 (ad+ bc)× 103

]

+
[(
c2 + 2bd

)
× 102

]
+ (2cd× 10) + d2.

In order for the units digit of x2 to be d, we must have d2 ≡ d (mod 10). Since
d ∈ {1, 2, . . . , 9}, this restricts our choices to d = 1, 5, or 6

Case 1. If d = 1, then d2 = 1 and to obtain c as the tens digit of x2, we need 2cd ≡ c
(mod 10). Since d = 1, this reduces to c ≡ 0 (mod 10), which is impossible when
c ∈ {1, 2, . . . , 9}. Therefore, this case fails.

Case 2. If d = 5, then d2 = 25 and to get c as the tens digit of x2, we require that
2cd+ 2 ≡ c (mod 10). With d = 5, this reduces to c ≡ 2 (mod 10) and hence, c = 2.
When c = 2 and d = 5, we have (2cd× 10) + d2 = 225. To get b as the hundreds digit of
x2, we are forced to set

c2 + 2bd+ 2 ≡ b (mod 10) .

This reduces to b ≡ 6 (mod 10) and thus, b = 6. When d = 5, c = 2, and b = 6, we have(
c2 + 2bd

)
× 102 + (2cd× 10) + d2 = 6625. Finally, to obtain a as the thousands digit of

x2, we are left with
2 (ad+ bc) + 6 ≡ a (mod 10) ,

which reduces to a ≡ 0 (mod 10). Since this is impossible when a ∈ {1, 2, . . . , 9}, this
case also fails.

Case 3. If d = 6, then d2 = 36 and to get c as the tens digit of x2, we must set
2cd+ 3 ≡ c (mod 10). This reduces to c ≡ 7 (mod 10) and hence, c = 7. When d = 6 and
c = 7, (2cd× 10) + d2 = 876. To get b as the hundreds digit of x2 now requires that
c2 + 2bd+ 8 ≡ b (mod 10), i.e., b ≡ 3 (mod 10). Hence, b = 3 and(
c2 + 2bd

)
× 102 + (2cd× 10) + d2 = 9376. Finally, in order for the thousands digit of x2

to be a, we need 2 (ad+ bc) + 9 ≡ a (mod 10) or a ≡ 9 (mod 10). This yields a = 9 and
x = 9376. Since (9376)2 = 87909376, our solution is complete.

Solution 2 by Bruno Salguerio Fanego, Viveiro, Spain

Note that abcd can be expressed as 1000a+ 100b+ 10c+ d, whose square (abcd)2 is

a2 · 106 + 2ab · 105 + (2ac+ b2) · 104 + (2ad+ 2bc) · 1000 + (2bd+ c2) · 100 + 2cd · 10 + d2.

Moreover, 1 ≤ a, b, c, d ≤ 9 . We distinguish several cases:

If d ≤ 3, the last digit of (abcd)2 is d2, which, since its last four digits are abcd, must be
equal to d, so d = 1, in which case, for c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, we obtain that the last
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two digits of (abc1)2 = . . .+ 2c · 10 + 1 are, respectively, {21, 41, 61, 81, 01, 21, 41, 61, 81}
and, on the other hand, since the last two digits of (abc1)2 are equal to c1, they must be
also equal to {11, 21, 31, 41, 51, 61, 71, 81, 91}. But none of the two possible ending digits
for (abcd)2 coincides with units digit of this last possible ending, and so we conclude
that this case, that is, d ≤ 3, is impossible, so d ≥ 4. Since d2 ends in 1, 4, 9, 6 or
5, (abcd)2 ends in 1, 4, 9, 6 or 5, so d ∈ {4, 5, 6, 9} and, hence, (abcd)2 ends in 6, 5, 6, 1
respectively, so d ∈ {6, 5, 6, 1} respectively, which implies that d ∈ {5, 6}.
When d = 5, (abcd)2 = . . .+ (2bd+ c2 + c) · 10 + 25 ends in 25, so c = 2. Then,

(abcd)2 = · · ·+ (2b · 5 + 2 · 22) · 100 + (2 · 2 · 5 + 22) · 10 + 25 = . . .+ 625,

which ends in 625, so b = 6 . Hence,

(abcd)2 = . . .+ (2 · a · 5 + 2 · 6 · 2) · 1000 + (2 · 6 · 5 + 22) · 100 + (2 · 2 · 5) · 10 + 25,

which ends in 0625 and this contradicts the fact that (abcd)2 must end in abcd (because
a cannot be equal to zero).

When d = 6 , we obtain respectively that, for c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} , (abcd )2 ends in
56, 76, 96, 16, 36, 56, 76, 96, 16. Thus, the only possible case is c = 7, being thus

(abcd)2 = (ab76)2 = (12a+ 14b) · 1000 + (12b+ 49) · 100 + 876.

Hence, we obtain that, when b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}, (abcd)2 ends in
976, 176, 376, 576, 776, 976, 176, 376, 576, respectively, which implies that b = 3 is the
only possibility.

Then, (abcd)2 = (a376)2, which ends 3376, 5376, 7376, 9376, 1376, 3376, 5376, 7376, 9376
for a equal to 1, 2, 3, 4, 5, 6, 7, 8, 9. This implies that a = 9 and since 93762 ends in 9376,
we conclude that the only solution to the problem is the number 9376.

Solution 3 by Paul M. Harms, North Newton, KS

Let us look for the answer to the problem by checking one digit at a time. First consider
a one-digit number whose square has the same units digit as the original number. The
one-digit number will have to be 1, 5, or 6.

Let us now try two-digit numbers whose units digit is 1 and whose square has the same
last two digits as the original number. It is easy to show that no two-digit number exists
for this case.

Now consider the case where the units digit is 5. All numbers of this type have squares
ending in 25. Thew number 25 is the only two-digit number whose square ends in 25.

We find 625 is the only three-digit number whose square ends in 625.

If a is any non-zero fourth digit, we find that a625 has a square that ends in 0625.Thus
the number satisfying the problem cannot end in 5. We now consider the case where the
units digit is 6. We see that 762 = 5776, 3762 = 141376, and 93762 = 87909376. The
number 9376 satisfies the problem.

Editor′s comment: Brian D. Beasley of Presbyterian College in Clinton SC,
Kenneth Korbin of New York, NY, and the team of David Stone and John
Hawkins of Georgia Southern University each mentioned in their solution that
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such sequences are called “automorphic numbers” and start as
{5, 25, 625, 0625, 90625, . . .} and {6, 76, 376, 9376, 09376, . . .}. See: Weisstein, Eric W.
“Automorphic Number” in MathWorld-A Wolfram Web Resource,
<http://matheworld.wolfram.com/Automorphic Number.html>.

David Stone and John Hawkins constructed and proved the following theorem.

For any n ≥ 1, there are exactly four n-digit integers N such that the last n digits of N2

are the digits of N . The four numbers are 0 and 1 (considered as n-digit integers),
2n·4·5

n−1
and 5n·2

n−1
(both being reduced mod 10n).

They went on to say that they did not find the above theorem in the literature that they
searched on automorphic numbers.

Also solved by Stephen Acampa (student at Eastern Kentucky University),
Richmond, KY; Brian D. Beasley, Presbyterian College, Clinton SC;
Kee-Wai Lau, Hong Kong, China; Kenneth Korbin, New York, NY; Carl
Libis, Columbia Southern University, Orange Beach, AL; David E. Manes,
SUNY College at Oneonta, Oneonta, NY; Susan Popp (graduate student at
Eastern Kentucky University), Richmond, KY; Erron Prickett (graduate
student at Eastern Kentucky University), Richmond, KY; Neculai Stanciu,
“George Emil Palade” School, Buzău, Romania and Titu Zvonaru,
Comănesti, Romania; David Stone and John Hawkins of Georgia Southern
University, Statesboro, GA; Deven Turner (student at Eastern Kentucky
University), Richmond, KY, and the proposer.

• 5369: Proposed by Chirita Marcel, Bucuresti, Romania

A convex quadrilateral ABCD has area S and side lengths
AB = a,BC = b, CD = c,DA = d. Show that

2 (a+ b+ c+ d)2 + a2 + b2 + c2 + d2 ≥ 36

√(
S2 + abcd cos2

A+ C

2

)
.

Solution by Nikos Kalapodis, Patras, Greece

Taking into account the Bretschneider’s formula (see [1]) for the area of a convex
quadrilateral:

S =

√
(s− a)(s− b)(s− c)(s− d)− abcd cos2

A+ C

2
, where s =

a+ b+ c+ d

2
,

we see that the given inequality is equivalent to

2(a+ b+ c+ d)2 + a2 + b2 + c2 + d2 ≥ 36
√

(s− a)(s− b)(s− c)(s− d) (∗).
Now from the Cauchy-Schwartz inequality and the AM-GM inequality we have

2(a+ b+ c+ d)2 + a2 + b2 + c2 + d2 ≥ 2(a+ b+ c+ d)2 +
(a+ b+ c+ d)2

4

=
9

4
(a+ b+ c+ d)2

=
9

4
[(s− a) + (s− b) + (s− c) + (s− d)]2
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≥ 9

4

[
4 4
√

(s− a)(s− b)(s− c)(s− d)
]2

= 36
√

(s− a)(s− b)(s− c)(s− d).

We have thus proved (∗) and this completes the solution.

[1] https://en.wikipedia.org/wiki/Bretschneider

Also solved by Bruno Salguerio Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Moti Levy, Rehovot, Israel; Neculai Stanciu, “George Emil
Palade” School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania;
Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania, and the
proposer.

• 5370: Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

Let f(x) and g(x) be arbitrary functions defined for all x ∈ <. Prove that there is a
function h(x) such that

(f(x)− h(x))2015 · (g(x)− h(x))2015

is an odd function for all x ∈ <.

Solution by Moti Levy, Rehovot, Israel

If f (x) is odd then (f(x))2015 is odd, hence proving that there is a
function h(x) such that

(f(x)− h(x))(g(x)− h(x))

is an odd function for all x ∈ R will suffice.
Let

h (x) =
1

2
(f (x) + f (−x) + g (x)− g (−x)) .

(f(x)− h(x)) (g(x)− h(x))

=

(
f(x)− 1

2
(f (x) + f (−x) + g (x)− g (−x))

)(
g(x)− 1

2
(f (x) + f (−x) + g (x)− g (−x))

)

=

(
f (x)− f (−x)

2
− g (x)− g (−x)

2

)(
g(x) + g (−x)

2
− f (x) + f (−x)

2

)
.

The first factor is odd function, while the second factor is even function, hence the
product is an odd function, as required.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Neculai Stanciu, “George Emil Palade” General School, Buzău,
Romania and Titu Zvonaru, Comănesti, Romania, and the proposer.

• 5371: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, . . . , an be positive real numbers where n ≥ 4 . Prove that
(

a1
an + a2

)2

+

(
a2

a1 + a3

)2

+ . . .+

(
an

an−1 + a1

)2

≥ 4

n
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Solution 1 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

Define vector ~u and ~v in Rn such that

~u = (1, 1, 1, . . . , 1) and ~v =

(
a1

an + a2
,

a2
a1 + a3

, · · · , an
an−1 + a1

)
.

Then the Cauchy-Schwarz inequality implies ||~u||||~v|| ≥ ~u·~v. Therefore,

√
n

√(
a1

an + a2

)2

+

(
a2

a1 + a3

)2

+ · · ·+
(

an
an−1 + a1

)2

≥ a1
an + a2

+
a2

a1 + a3
+· · ·+ an

an−1 + a1
.

Squaring the inequality, we obtain

(
a1

an + a2

)2

+

(
a2

a1 + a3

)2

+· · ·+
(

an
an−1 + a1

)2

≥

(
a1

an + a2
,

a2
a1 + a3

, · · · , an
an−1 + a1

)2

n
.

The result now follows provided we can show that if n ≥ 4, then

Jn =
a1

an + a2
+

a2
a1 + a3

+ · · ·+ an
an−1 + a1

≥ 2.

To this end, let n = 4. Then

J4 =
a1

a4 + a2
+

a2
a1 + a3

+
a3

a2 + a4
+

a4
a3 + a1

=
a1 + a3
a2 + a4

+
a2 + a4
a1 + a3

≥ 2,

since x+
1

x
≥ 2 for all x > 0. Assume inductively tht k is a positive integer, k ≥ 4, and

Jk ≥ 2. Consider k + 1 positive numbers a1, a2, . . . ak, ak+1. Since Jk+1 is symmetric
with respect to these numbers, we can assume without loss of generality that
aj ≥ ak + 1 for j = 1, 2, . . . , k. Then

Jk+1 =
a1

ak+1 + a2
+

a2
a1 + a3

+ · · ·+ ak
ak−1 + ak+1

+
ak+1

ak + a1
.

Observe that

ak+1 ≤ ak implies ak+1 + a2 ≤ ak + a2 implies
a1

ak+1 + a2
≥ a1
ak + a2

, and similarly

ak
ak−1 + ak+1

≥ ak
ak−1 + a1

. Therefore,

Jk+1 ≥ Jk +
ak+1

ak + a1
> Jk ≥ 2

by the induction hypothesis. Hence, by induction Jn ≥ 2 if n ≥ 4.

Accordingly,
(

a1
an + a2

)2

+

(
a2

a1 + a3

)2

+ · · ·+
(

an
an−1 + a1

)2

≥ (Jn)2

n
≥ 4

n
.

Solution 2 by Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania and Titu Zvonaru, Comănesti, Romania

Since
(
an + a2)

2 ≤ 2
(
a2n + a22) , it suffices to prove that
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x1
xn + x2

+
x2

x1 + x3
+ · · ·+ xn

xn−1 + x1
≥ 8

n
, where x1 = a2i .

We shall prove that

x1
xn + x2

+
x2

x1 + x3
+ · · ·+ xn

xn−1 + x1
≥ 2.

By Bergstrm’s inequality we obtain

x1
xn + x2

+
x2

x1 + x3
+ · · ·+ xn

xn−1 + x1
≥ (x1 + x2 + · · ·+ xn)2

2 (x1x2 + x2x3 + · · ·+ xn−1xn + xnx1)
,

so it suffices to show that

(x1 + x2 + · · ·+ xn)2 ≥ 4 (x1x2 + x2x3 + · · ·+ xn−1xn + xnx1) . (1)

The inequality (1) is cyclic; we can assume that xn = min{x1, x2, . . . , xn−1, xn}.
• For n odd we have

(x1 + x2 + · · ·+ xn)2 − 4 (x1x2 + x2x3 + · · ·+ xn−1xn + xnx1)

≥ (x1 − x2 + . . .− xn−1 + xn)2 + 4x1xn−1 − 4x1xn ≥ 0.

• For n even we have

(x1 + x2 + · · ·+ xn)2 − 4 (x1x2 + x2x3 + · · ·+ xn−1xn + xnx1)

≥ (x1 − x2 + . . .+ xn−1 − xn)2 .

Remark. For n ≥ 8 we have a simple solution, i.e.,

x1
xn + x2

+
x2

x1 + x3
+· · ·+ xn

xn−1 + x1
≥ x1
x1 + x2 + · · ·+ xn

+· · ·+ xn
x1 + x2 + · · ·+ xn

= 1 ≥ 8

n
.

Editor′s comment: Paolo Perfetti mentioned in his solution that
a1

an + a2
+

a2
a1 + a3

+ · · ·+ an
an−1 + a1

≥ 2 is known as being one of the Shapiro

inequalities, and that its proof by induction can be found in
<http://olympiads.mccme.ru/1ktg/2010/5/5-1en.pdf>.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
Moti Levy, Rehovot, Israel; Paolo Perfetti, Mathematics Department, Tor
Vergata University, Rome, Italy; Nicusor Zlota, “Traian Vuia” Technical
College, Focsani, Romania, and the proposer.

• 5372: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

(a) Let k ≥ 2 be an integer. Calculate

∫ ∞

0

ln(1 + x)

x k
√
x

dx.
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(b) Calculate

∫ ∞

0

ln(1− x+ x2)

x
√
x

dx.

Solution 1 by Moti Levy, Rehovot, Israel

Reference: Emil Artin, “The Gamma Function”, Holt, Rinehart and Winston, 1964.
Page 29.

(a)

The well known Euler’s reflection formula for the Gamma function is

Γ (x) Γ (1− x) =
π

sinπx
, 0 < x < 1.

From the definition of the Beta function,

B (x, 1− x) =
Γ (x) Γ (1− x)

Γ (1)
=

∫ 1

0
tx−1 (1− t)−x dt.

Since Γ (1) = 1, ∫ 1

0
tx−1 (1− t)−x dt =

π

sinπx
, 0 < x < 1.

Changing the variable of integration u = t
1−t , we get

∫ ∞

0

ux−1

1 + u
du =

π

sinπx
, 0 < x < 1.

By integration by parts, we get

∫ ∞

0

ux−1

1 + u
du = (1− x)

∫ ∞

0

ln (1 + u)

u2−x
du

Now set x = 1− 1
k to obtain,

1

k

∫ ∞

0

ln (1 + u)

u1+
1
k

du =
π

sinπ
(
1− 1

k

) =
π

sin π
k

.

We conclude that ∫ ∞

0

ln (1 + x)

x k
√
x

dx =
kπ

sin π
k

, k ≥ 2.

(b)
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1− x+ x2 = (x+ α) (x+ β) with αβ = 1 and α+ β = −1.

∫ ∞

0

ln
(
1− x+ x2

)

x
√
x

dx =

∫ ∞

0

ln ((x+ α) (x+ β))

x
√
x

dx

=

∫ ∞

0

ln (x+ α)

x
√
x

dx+

∫ ∞

0

ln (x+ β)

x
√
x

dx

=

∫ ∞

0

lnα+ ln
(
x
α + 1

)

x
√
x

dx+

∫ ∞

0

lnβ + ln
(
x
β + 1

)

x
√
x

dx

=

∫ ∞

0

ln (αβ)

x
√
x
dx+

1√
α

∫ ∞

0

ln
(
x
α + 1

)
x
α

√
x
α

dx

α
+

1√
β

∫ ∞

0

ln
(
x
β + 1

)

x
β

√
x
β

dx

β

Changing the variable of integration, we obtain

∫ ∞

0

ln
(
1− x+ x2

)

x
√
x

dx =

(
1√
α

+
1√
β

)∫ ∞

0

ln (u+ 1)

u
√
u

du

1√
α

+
1√
β

=

√
α+
√
β√

αβ
=
√
α+

√
β =

√
α+ β + 2

√
αβ =

√
−1 + 2 = 1.

We conclude that

∫ ∞

0

ln
(
1− x+ x2

)

x
√
x

dx =

∫ ∞

0

ln (u+ 1)

u
√
u

du =
2π

sin π
2

= 2π.

Editor’s comment: Ulrich Abel of Technische Hochschule Mittelhessen in
Freiberg, Germany, wrote that “both integrals of Problem 5372 can be determined
by using computer algebra. Mathematica V. 9” and he then stated:

(a)

∫ ∞

0

ln(1 + x)

xa
dx = π · Cosec(a · π)

1− a for all constants a such that 1 < Re[a] < 2. This

is slightly more general than the proposed problem.

(b)

∫ ∞

0

ln(x2 − x+ 1)

x3/2
dx =2π.

Solution 2 by Kee-Wai Lau, Hong Kong, China

(a) Denote the integral by I. By substitution x = yk, we obtain

I = k

∫ ∞

0

ln
(
1 + yk

)

y2
dy. Since lim

y→0+

(
ln(1 + yk)

y

)
= lim

y→∞

(
ln(1 + yk)

y

)
= 0,

so by integrating by parts, we obtain

I = −k
∫ ∞

0
ln(1 + yk)d

(
1

y

)
= k2

∫ ∞

0

yk−2

1 + yk
dy.
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We next substitute y =
1

z
to obtain I = k2

∫ ∞

0

1

1 + zk
dz. It is known ([1], entry

34.24(2))

that

∫ ∞

0

1

1 + zk
dz =

π

k
csc
(π
k

)
, and so I = πk csc

(π
k

)
.

(b) Denote the integral by J . By substitution x = y2 we obtain

J = 2

∫ ∞

0

ln(1− y2 + y4)

y2
dy. Since

lim
y→0+

(
ln(1− y2 + y4)

y

)
= lim

y→∞

(
ln(1− y2 + y4)

y

)
= 0,

so by integrating by parts, we obtain

J = 2

∫ ∞

0

ln(1− y2 + y4)

y2
dy = −2

∫ ∞

0
ln(1− y2 + y4)d

(
1

y

)

= 4

∫ ∞

0

2y2 − 1

1− y2 + y4
dy = 8

∫ ∞

0

y2

1− y2 + y4
dy − 4

∫ ∞

0

1

1− y2 + y4
dy.

Substituting y =
1

z
, we obtain

∫ ∞

0

y2

1− y2 + y4
dy =

∫ ∞

0

1

1− z2 + z4
dz, so that

J = 4

∫ ∞

0

1

1− y + y4
dy. It is known ([1], entry 3.242(1)) that

∫ ∞

0

1

1− y2 + y4
dy =

π

2
and so

J = 2π.

Reference [1] I.S. Gradshteyn and I.M. Ryzhik: Tables of Integrals, Series, and Products,
Seventh Edition, Elsevier, Inc., 2007.
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Solution 3 by Albert Stadler, Herrliberg, Switzerland

Both integrals can be evaluated by means of the following

Lemma

Let 0 < a < 1. Let 0 < b < 2π. Then

∫ ∞

0

x−a

x− eibdx =
πeia(π−b)

sin(πa)
.

Proof of the Lemma

Define a path C that consists of the following pieces:

C1 : Reit, 0 < t < 2π, run through once in the positive direction,

C2 : t, ε < t < R, run through in the direction of decreasing real values,

C3 : εeit, 0 < t < 2π run through once in the negative direction,

C4 : t, ε < t < R, run through in the direction of increasing real values.,

Define the branch of z−a such that z−a =
(
|z| eiArg(z)

)−a
, where 0 < Arg(z) < 2π.

Then, by Cauchy’s theorem,

1

2πi

∫

C

z−a

z − eibdz = Res

(
z−a

z − eib , z = eib
)

= e−abi. (1)

The integral
1

2πi

∫

C

z−a

z − eibdz splits as follows:

1

2πi

∫

C

z−a

z − eibdz =
1

2πi

∫

C1

z−a

z − eibdz+
1

2πi

∫

C2

z−a

z − eibdz+
1

2πi

∫

C3

z−a

z − eibdz+
1

2πi

∫

C4

z−a

z − eibdz.

We treat each of these four integrals separately.
∣∣∣∣

1

2πi

∫

C1

z−a

z − eibdz
∣∣∣∣ ≤

1

2π

R−a

R− 1
2πR = O

(
R−a

)
, as R→∞,

∣∣∣∣
1

2πi

∫

C3

z−a

z − eibdz
∣∣∣∣ ≤

1

2π

ε−a

ε− 1
2πε = O

(
ε1−a

)
, as ε→ 0.

Therefore,

1

2πi

∫

C

z−a

z − eibdz =
1

2πi

∫ ∞

0

x−a

x− eibdx−
1

2πi

∫ ∞

0

(
xe2πi

)−a

x− eib dx =
1

2πi

(
1− e−2πia

) ∫ ∞

0

x−a

x− eibdx. (2)
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We combine (1) and (2) and get

1

2πi

(
1− e−2πia

) ∫ ∞

0

x−a

x− eibdx = eiab

which is the claim of the lemma.

(a) Let 1 < a < 2. Partial integration yields

∫ ∞

0

log(1 + x)

xa
dx =

−x1−a log(1 + x)

a− 1

∣∣∣∣∣

∞

0︸ ︷︷ ︸
+

1

a− 1

∫ ∞

0

x1−a

1 + x
dx =

1

a− 1

∫ ∞

0

x1−a

1 + x
dx,

because the first term evaluates to zero.

We set b = π and apply the lemma to get

∫ ∞

0

log(1 + x)

xa
dx =

1

a− 1

∫ ∞

0

x1−a

1 + x
dx =

1

a− 1
· π

sin(π(a− 1))
=
−1

a− 1
· π

sin(πa)
.

(a) is the special case a = 1 +
1

k
.

(b) Let 1 < a < 2. Partial integration yields

∫ ∞

0

log(1− x+ x2)

xa
dx =

−x1−a log(1− x+ x2)

a− 1

∣∣∣∣∣

∞

0︸ ︷︷ ︸
+

1

a− 1

∫ ∞

0

x1−a(2x− 1)

1− x+ x2
dx

=
1

a− 1

∫ ∞

0

x1−a

x− eπi3
dx+

1

a− 1

∫ ∞

0

x1−a

x− e 5πi
3

,

because the first time evaluates to zero.

We apply the lemma to get

∫ ∞

0

log(1− x+ x2)

xa
dx =

1

a− 1
· πe

i(a−1)(π−π
3
)

sin(π(a− 1))
+

1

a− 1
· πe

i(a−1)(π− 5π
3
)

sin(π(a− 1))

=
2π

a− 1
· cos

(
2π
3 (a− 1)

)

sin(π(a− 1))

=
−2π

a− 1
· cos

(
2π
3 (a− 1)

)

sin(π(a))
.

In particular, if a =
3

2
then

∫ ∞

0

log(1− x+ x2)

x
√
x

dx = −4π ·
cos
(π

3

)

sin(3π/2)
= 2π.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical prob-
lems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion
University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solu-
tions can be sent e-mail to <eisenbt@013.net>. Solutions to previously stated problems can be seen
at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2016

• 5391: Proposed by Kenneth Korbin, New York, NY

A triangle with integer length sides (49, b, b+ 1) has integer area. Find two possible values of b.

• 5392: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu,“George Emil
Palade” School, Buzău, Romania

Prove that if x, y, z > 0, then

4
(
x2 + y2 + z2

)

27 (xy + yz + zx)
+

x

7x+ y + z
+

y

x+ 7y + z
+

z

x+ y + 7z
≥ 13

27
.

• 5393: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Through the midpoint of the diagonal BD in the convex quadrilateral ABCD we draw a
straight line parallel to the diagonal AC. This line intersects the side AD at the point E. Show
that

1

[ABC]
+

1

[AEC]
≥ 4

[CED]
.

Here [XY Z] represents the are of 4XY Z.

5394: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Let a, b and c be positive real numbers such that ab+ bc+ ca = 3 and n > 1. Prove that

n

√
a+

1

abc
+

n

√
b+

1

abc
+

n

√
c+

1

abc
≥ 3

n
√

2.

• 5395: Proposed by Mohsen Soltanifar (Ph.D. student), Biostatistics Division, Dalla Lana
School of Public Health, University of Toronto, Canada.

Given the sequence {σ2n}∞n=1 of positive numbers and X1 ∼ N(µ, σ21) . Define recursively a
sequence of random variables {Xn}∞n=1 via

Xn+1|Xn ∼ N
(
Xn, σ

2
n+1

)
n = 1, 2, 3, . . .
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Calculate the limit distribution X of {Xn}∞n=1.

Reference: Rosenthal, J.S. (2007). A First Look at Rigorous Probability (2nd edition), World
Scientific, p. 139.

Proposer’s note concerning the problem:

This is a Bayesian Hierarchical Model of Human Heights from Adam & Eve to the end of time.

Consider a family with its children. We know that height has a normal distribution. We also
know that height of children is due to genetic factors which are dependent on the height of their
parents, but usually this distribution has the same mean as the mean height of their parents
but may vary (some children are taller, some shorter, some are average- versus their parents).
So, the height of children may be modeled as the normal distribution conditioned to the height
of their parents with same mean but potentially different variance.

The first term in the sequence is the distribution of height of Adam & Eve. The second term is
the conditional distribution of their children’s height. This goes till the end of time
consecutively when, according to some beliefs, the Messiah returns. Accordingly, the Messiah
will return and a generation of humans will observe this return . But we do not know when this
will occur. So, we may assume the Messiah will return as time approaches infinity, and that the
distribution of the height of generations of humans that observe the return is “X”. We are
interested in knowing certain features of this distribution.

This problem is a mathematical modeling of the above belief.

• 5396: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Find all continuous functions f : < → < such that

f(−x) = x+

∫ x

0
e−tf(x− t)dt, ∀x ∈ <.

Solutions

• 5373: Proposed by Kenneth Korbin, New York, NY

Given the equation
2
√

2√
343− 147

√
5−

√
315− 135

√
5

=

√
x+ y

√
5.

Find positive integers x and y.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that
2
√

2√
343− 147

√
5−

√
315− 135

√
5

=
2
√

2
(
7− 3

√
5
)√

7− 3
√

5
.

2
√

2
(
7− 3

√
5
)√

76− 3
√

5
=

√
x+ y

√
5 implies
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x+ y
√

5 =
8

(
7− 3

√
5
)3 =

8 ·
(
7 + 3

√
5
)3

43
= 161 + 72

√
5.

So (x, y) = (161, 72).

Solution 2 by Neculai Stanciu “George Emil Palade” School, Buzău and Titu
Zvonaru, Comănesti, Romania

We have
√

343− 147
√

5 =

√
441

2
−
√

245

2
=

21
√

2

2
− 7
√

10

2
.

√
315− 135

√
5 =

√
405

2
−
√

225

2
=

9
√

10

2
− 15

√
2

2
.

√
343− 147

√
5−

√
315− 135

√
5 =

21
√

2

2
− 7
√

10

2
− 9
√

10

2
+

15
√

2

2
= 18

√
2− 8

√
10, and so

2
√

2√
343− 147

√
5−

√
315− 135

√
5

=
1

9− 4
√

5
= 9 + 4

√
5.

Solving the equation
√
x+ y

√
5 = 9 + 4

√
5 gives x = 161, y = 72.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Since 343− 147
√

5 = 49
(
7− 3

√
5
)

and 315− 135
√

5 = 45
(
7− 3

√
5
)
, we obtain

√
343− 147

√
5−

√
315− 135

√
5 = 7

√
7− 3

√
5−
√

45

√
7− 3

√
5

=
(

7− 3
√

5
)√

7− 3
√

5

=

√(
7− 3

√
5
)3

=

√
8
(

161− 72
√

5
)

= 2
√

2

√
161− 72

√
5.

Hence,

2
√

2√
343− 147

√
5−

√
315− 135

√
5

=

√
1

161− 72
√

5
=

√
161 + 72

√
5.

So, x+ y
√

5 = 161 + 72
√

5, that is x− 161 = (72− y)
√

5. If 72− y 6= 0, then
√

5 =
x− 161

72− y ,

which is impossible because, since x− 161 and 72− y are integers, the left hand side is
irrational and the right hand side is rational. Thus, 72− y = 0 and henceforth, x− 161 = 0

√
5.

That is (x, y) = (161, 72), is valid and the only solution, because of the stipulation in the
problem that x and y be positive integers.

Solution 4 by Kee-Wai Lau, Hong Kong, China
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Squaring both sides of the given equation, we obtain

x+ y
√

5 =
8

658− 282
√

5− 2
√

207270− 92610
√

5

=
8

658− 282
√

5− 2
(
147
√

5− 315
)

=
1

161− 72
√

5

= 161 + 72
√

5.

Hence, x = 161 and y = 72.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State Unversity, San Angelo TX; Brian D. Beasley, Presbyterian College, Clinton,
SC; Ed Gray, Highland Beach, FL; G.C. Greubel, Newport News, VA; Paul M.
Harms, North Newton, KS; David E. Manes, SUNY College at Oneonta, Oneonta,
NY; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA; Nicusor Zlota, “Traian Vuia” Technical
College, Focsani, Romania, and the author.

• 5374: Proposed by Roger Izard, Dallas TX

In a certain triangle, three circles are tangent to the incircle, and all of these circles are tangent
to two sides of the triangle. Derive a formula which gives the radius of the incircle in terms of
the radii of these three circles.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let ABC be the triangle, a = BC, b = CA, c = AB,A = 6 BAC,B = 6 CBA, C = 6 ACB, I the
center of the incircle ABC, r its radius, Oa and ra the respective center and radius of the circle
tangent to that incircle and to the side AB and AC,Ob and rb the center and radius of the
circle tangent to that incircle and to the sides BA and BC, respectively, Oc and rc the
respective radius of the circle tangent to that incircle and to the sides CA and CB, Ta the point
of tangency of the incircle of ABC and the circle with center Oa and radius ra, O

′
a the point of

tangency of that circle with AB and I
′

the point of tangency of the incircle of ABC with AB.
We shall prove that

r =
√
rarb +

√
rbrc +

√
rcra.

From triangles AO′aOa and AI ′I, since 6 O′aAOa = 6 BAC/2 = 6 I ′AI, we deduce that
ra
AOa

= sin

(
A

2

)
=

r

AI
.
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Since AI = AOa +OaTa + TaI, r csc

(
A

2

)
= ra csc

(
A

2

)
+ ra + r and , so,

ra
r

=

1− sin

(
A

2

)

1 + sin

(
A

2

) =

1− 2 sin

(
A

4

)
cos

(
A

2

)

1 + 2 sin

(
A

4

)
cos

(
A

2

) =

1− 2

tan

(
A

4

)

1 + tan2

(
A

4

)

1 + 2

tan

(
A

4

)

1 + tan2

(
A

4

)

=




1− tan

(
A

4

)

1− tan

(
A

4

)




2

.

Analogously,

rb
r

=




1− tan

(
B

4

)

1− tan

(
B

4

)




2

and
rc
r

=




1− tan

(
C

4

)

1− tan

(
C

4

)




2

.

Let us dnote ta = tan

(
A

4

)
, tb = tan

(
B

4

)
and tc = tan

(
C

4

)
. Since 0 <

A

4
<
π

4
, 0 < ta < 1,

so since 1− ta > 0, analogously we have 1− tb > 0 and 1− tc > 0. The equality to prove,√
ra
r

√
rb
r

+

√
rb
r

√
rc
r

+

√
rc
r

√
ra
r

= 1 is successively equivalent to showing that

1− ta
1 + ta

· 1− tb
1 + tb

+
1− tb
1 + tb

· 1− tc
1 + tc

+
1− tc
1 + tc

· 1− ta
1 + ta

= 1.

And this is equivalent to showing that

(1− ta)(1− tb)(1 + tc) + (1− tb)(1− tc)(1 + ta) + (1− ta)(1− tc)(1 + tb) = (1 + ta)(1 + tb)(1 + tc).

Expanding and simplifying we obtain:

tatb + tbtc + tcta + ta + tb + tc = tatbtc + 1.

But this is true because

1 = tan
(π

4

)
= tan

(
A+B + C

4

)
= tan

(
A

4
+
B

4
+
C

4

)
=

ta + tb + tc − tatbtc
1− tatb − tbtc + tcta

.

So, the formula r =
√
rarb +

√
rbrc +

√
rcra holds.

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

Let the triangle be A1A2A3, the incenter and radius of the triangle be I,r, the centers of the
three circles be I1, I2, I3 and radius of them be r1, r2, r3, respectively. Let the foot of
perpendicular from I to A2A3, A3A1, A1A2 be H1, H2, H3, respectively. Let
αi = 6 AiIAi+1 = 6 AiIAi+2 where the indices are considered to be the same (mod 3).
Now, we calculate tanα1. Let the foot of perpendicular from I1 to IH2 be K. Then,
IK = r − r1, II1 = r + r1. Thus, KI1 =

√
II21 − IK2 = 2

√
rr1. Therefore,

tanα1 =
2
√
rr1

r − r1
.
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Similarly,

tanα2 =
2
√
rr2

r − r2
tanα3 =

2
√
rr3

r − r3
.

On the other hand, since α1 + α2 + α3 = π, it follows that

tanα1 + tanα2 + tanα3 = tanα1 + tanα2 − tan(α1 + α2)

= tanα1 + tanα2 −
tanα1 + tanα2

1− tanα1 tanα2

=
− tanα1 tanα2(tanα1 + tanα2)

1− tanα1 tanα2

= − tanα1 tanα2 tan(α1 + α2)

= tanα1 tanα2 tanα3.

Thus,

2
√
rr1

r − r1
+

2
√
rr2

r − r2
+

2
√
rr3

r − r3
=

2
√
rr1

r − r1
· 2
√
rr2

r − r2
· 2
√
rr3

r − r3∑

cyc

√
r1(r − r2)(r − r3) = 4r

√
r1r2r3

r2
∑

cyc

√
r1 − r

(∑

sym

√
r1r2 + 4

√
r1r2r3

)
+
√
r1r2r3

∑

cyc

√
r2r3 = 0

We see it as a quadratic equation of r. Then the discriminant is

D =

(∑

sym

√
r1r2 + 4

√
r1r2r3

)2

− 4
∑

cyc

√
r1 ·
√
r1r2r3

∑

cyc

√
r2r3

=

(∑

sym

√
r1r2

)2

+ 8
√
r1r2r3

∑

sym

√
r1r2 + 16r1r2r3 − 4

√
r1r2r3

(
3
√
r1r2r3 +

∑

sym

√
r1r2

)

=

(∑

sym

√
r1r2

)2

+ 4
√
r1r2r3

∑

sym

√
r1r2 + 4r1r2r3

=

(∑

sym

√
r1r2 + 2

√
r1r2r3

)2

.

Thus,

r =

∑
sym

√
r1r2 + 4

√
r1r2r3 ±

(∑
sym

√
r1r2 + 2

√
r1r2r3

)

2
∑

cyc

√
r1

.

6

X
ia
ng
’s
T
ex
m
at
h



We first consider the minus sign of the case. In this case,

r =

√
r1r2r3∑
cyc

√
r1

≤
√
r1r2r3

3 3
√√

r1r2r3

=
1

3
(r1r2r3)

1/3

≤ 1

3
max{r1, r2, r3}

It contradicts with the fact that r is larger any of r1, r2, r3.
Thus, the plus sign must be ocurred. Then,

r =

∑
sym

√
r1r2 + 3

√
r1r2r3∑

cyc

√
r1

=
(
√
r1 +

√
r2 +

√
r3)(
√
r1r2 +

√
r2r3 +

√
r3r1)∑

cyc

√
r1

=
√
r1r2 +

√
r2r3 +

√
r3r1

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
David E. Manes, SUNY College at Oneonta, Oneonta, NY; Albert Stadler,
Herrliberg, Switzerland, and the proposer

• 5375*: Proposed by Kenneth Korbin, New York, NY

Prove or disprove the following conjecture. Let k be the product of N different prime numbers
each congruent to 1(mod 4). Let a be any positive integer.

Conjecture: The total number of different rectangles and trapezoids with integer length sides

that can be inscribed in a circle with diameter k is exactly
5N − 3N

2
.

Editor′s comment: The number for this problem carries with it an asterisk. The asterisk
signifies that neither the proposer nor the editor are aware of a proof of this conjecture.
Toshihiro Shimizu of Kawasaki, Japan considered the case k = 5 · 17, and stated:
“There are four rectangles satisfying the conditions of the problem:
(a, b) = (13, 84), (36, 77), (40, 75), (51, 68), where a and b are the lengths of the sides of the
rectangle.”

and

“There are six trapezoids satisfying the conditions of the problem:

(a, b, c) = (13, 77, 40), (13, 77, 68), (36, 84, 40), (36, 84, 51), (43, 83, 34), (43, 83, 50),

where a, and b are the lengths of the two parallel sides of the trapezoid and c is the length of
the other two sides.” He went on to state that he came to these conclusions with the aid of a
computer.

Editor′s update : No analytic solutions to the conjecture were received, so the problem will
remain open. Ken Korbin, the author of 5375, sent a comment that we should also note that

5N − 3N

2
=

N∑

j=1

(
N

j

)(
2j−1

) (
3N−j

)
.
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When a complete solution is received, it will be published.

• 5376: Proposed by Arkady Alt , San Jose ,CA

Let a1, a2, ..., an, b1, b2, ..., bn be positive real numbers such that
b1 < a1 < b2 < a2 < ... < an−1 < bn < an.
Let

F (x) =
(x− b1) (x− b2) ... (x− bn)

(x− a1) (x− a2) ... (x− an)
.

Prove that F ′ (x) < 0 for any x ∈ Dom (F ).

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that F (x) =

n∏

m=1

x− bm
x− am

is a rational function with simple poles at x = am, 1≤ m ≤ n.

The residue of F (x) at x = aµ equals (aµ − bµ)
∏

m6=µ

aµ − bm
aµ − am

> 0, since aµ > bµ and

aµ − bm
aµ − am

> 0, for m 6= µ.

So f(x) = F (x)−
n∑

µ=1

aµ − bµ
x− aµ

∏

m6=µ

aµ − bm
aµ − am

is a bounded entire function which implies that f(x)

is a constant. We conclude f ′(x) = 0 which implies

F ′(x) = −
n∑

µ=1

aµ − bµ
(x− aµ)2

∏

m6=µ

aµ − bm
aµ − am

< 0 for any x ∈Dom (F).

Solution 2 by Ethan Gegner (student), Taylor University, Upland, IN

For all x ∈ Dom(F ), we have

F ′(x) =
(
∏n
i=1(x− ai)) (

∏n
i=1(x− bi))

′ − (
∏n
i=1(x− bi)) (

∏n
i=1(x− ai))

′

(
∏n
i=1(x− ai))

2 (1)

Suppose x = bj for some 1 ≤ j ≤ n. Then

F ′(x) =

∏
i 6=j(x− bi)∏n
i=1(x− ai)

=
1

(x− aj)
∏

i 6=j

x− bi
x− ai

< 0

since x = bj < aj and x−bi
x−ai > 0 for all i 6= j.

Now suppose x /∈ {b1, . . . , bn}. Then F (x) 6= 0, so by equation (1) we have

F ′(x)

F (x)
=

(
∏n
i=1(x− bi))

′
∏n
i=1(x− bi)

− (
∏n
i=1(x− ai))

′
∏n
i=1(x− ai)

=

n∑

i=1

(
1

x− bi
− 1

x− ai

)

=

n∑

i=1

bi − ai
(x− bi)(x− ai)

(2)

If x < b1 or x > an, then F (x) > 0, and
bi − ai

(x− bi)(x− ai)
< 0 for all 1 ≤ i ≤ n, whence

F ′(x) < 0. Suppose there exists some 1 ≤ j ≤ n− 1 such that aj < x < bj+1. Then for every
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1 ≤ i ≤ n, x− bi and x− ai have the same sign, whence
bi − ai

(x− bi)(x− ai)
< 0 and

F (x) =
∏n
i=1

x− bi
x− ai

> 0. Thus, equation (2) implies F ′(x) < 0.

Finally, suppose that bj < x < aj for some 1 ≤ j ≤ n. Then

F ′(x)

F (x)
=

n∑

i=1

(
1

x− bi
− 1

x− ai

)
=

1

x− b1
− 1

x− an
+

n−1∑

i=1

(
1

x− bi+1
− 1

x− ai

)
> 0

since every term on the right hand side is positive. Moreover, F (x) =
x− bj
x− aj

∏
i 6=j

x− bi
x− ai

< 0,

so again F ′(x) < 0.

Solution 3 by the proposer

Lemma.

F (x) can be represented in form

F (x) = 1 +
n∑
k=1

ck
x− ak

,

where ck, k = 1, 2, ..., n are some positive real numbers.

Proof.

Let Fk (x) :=
(x− b1) (x− b2) ... (x− bk)
(x− a1) (x− a3) ... (x− ak)

, k ≤ n.

We will prove by Math Induction that for any k ≤ n there are positive numbers

ck (i) , i = 1, ..., k such that Fk (x) = 1 +
k∑
i=1

ck (i)

x− ai
.

Let dk := ak − bk > 0, k = 1, 2, ..., n.

Note that F1 (x) =
x− b1
x− a1

=
x− a1 + a1 − b1

x− a1
= 1 +

d1
x− a1

.

Since
x− bk+1

x− ak+1
= 1 +

dk+1

x− ak+1
then in supposition Fk (x) = 1 +

k∑
i=1

ck (i)

x− ai
, where

ck (i) > 0, i = 1, ..., k < n we obtain

Fk+1 (x) = Fk (x) · x− bk+1

x− ak+1
=

(
1 +

k∑

i=1

ck (i)

x− ai

)(
1 +

dk+1

x− ak+1

)

= 1 +
dk+1

x− ak+1
+

k∑

i=1

ck (i)

x− ai
+

k∑

i=1

dk+1ck (i)

(x− ai) (x− ak+1)

= 1 +
dk+1

x− ak+1
+

k∑

i=1

ck (i)

x− ai
−

k∑

i=1

dk+1ck (i)

ak+1 − ai

(
1

x− ai
− 1

x− ak+1

)

= 1 +
dk+1

x− ak+1

(
1 +

k∑

i=1

ck (i)

ak+1 − ai

)
+

k∑

i=1

ck (i)

x− ai

(
1− dk+1

ak+1 − ai

)
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= 1 +
dk+1Fk (ak+1)

x− ak+1
+

k∑

i=1

ck (i)

x− ai
· bk+1 − ai
ak+1 − ai

.

Since Fk (ak+1) > 0 and bk+1 − ai = (bk+1 − ak) + (ak − ai) > 0 then

ck+1 (k + 1) = dk+1Fk (ak+1) > 0, ck+1 (i) :=
(bk+1 − ai) ck (i)

ak+1 − ai
> 0, i = 1, 2, ..., k

and Fk+1 (x) = 1 +
k+1∑
i=1

ck+1 (i)

x− ai
.

Therefore, since F (x) = 1 +
n∑
k=1

ck
x− ak

and ck > 0, k = 1, 2, ..., n then

F ′ (x) = −
n∑
k=1

ck

(x− ak)2
< 0 for any x ∈ Dom (F ) = {a1, a2, ..., an} .

Solution 4 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC

We find F ′(x),

F ′(x) =
b1 − a1

(x− a1)2
· x− b2
x− a2

· x− b3
x− a3

· · · x− bn
x− an

+
x− b1
x− a1

· b2 − a2
(x− a2)2

· x− b3
x− a3

· · · x− bn
x− an

+ . . .+

x− b1
x− a1

· x− b2
x− a2

· · · x− bj−1
x− aj−1

· bj − aj
(x− aj)2

· x− bj+1

x− aj+1
· · · · x− bn

x− an
+ . . .+

x− b1
x− a1

· x− b2
x− a2

· x− b3
x− a3

· · · bn − an
(x− an)2

. (1)

We set

D1(x) =
b1 − a1

(x− a1)2
· x− b2

(x− a2)
· x− b3

(x− a3)
· · · x− bn

x− an

D2(x) =
x− b1
x− a1

· b2 − a2
(x− a2)2

· x− b3
(x− a3)

· · · x− bn
x− an

...

Dj(x) =
x− b1
x− a1

· x− b2
x− a2

· · · x− bj−1
x− aj−1

· bj − aj
(x− aj)2

· x− bj+1

x− aj+1
· · · x− bn

x− an
...

Dn(x) =
x− b1
x− a1

· x− b2
x− a2

· x− b3
x− a3

· · · bn − an
(x− an)2

. Then

F ′(x) =

n∑

k=1

Dk(x). (2)

We note that because

0 < b1 < a1 < b2 < a2 < · · · < an−1 < bn < an (3)
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we have
bj − aj

(x− aj)2
< 0, for all j with 1 ≤ j ≤ n. (4)

Let x ∈ Dom(F ), then we consider the following cases:

Case 1. Let x = bj0 , for some j0 ∈ {1, 2, · · · , n}, then Dj (bj0) = 0, for all j 6= j0, and because

of (3),
bj0 − bj
bj0 − aj

> 0, for all j 6= j0 and with (4) we conclude that F ′ (bj0) < 0.

Case 2. Let x < b1, then for all j with 1 ≤ j ≤ n, and by using (3), we conclude that and that
x− bj
x− aj

> 0. (5)

And then by (4) and (5) we get equation (6) that Dj(x < b1) < 0, for all j with 1 ≤ j ≤ n, and
this implies that F ′(x < b1) < 0.

Case 3. Let x ∈ (bj0 , aj0) for some j0 ∈ {1, 2, · · · , n}, we will show that F (x) is decreasing on

(bj0 , aj0). We know that by (4) and (3),, each function fj(x) =
x− bj
x− aj

is decreasing and positive

on (bj0 , aj0), when j 6= j0, then for all s, t ∈ (bj0 , aj0) with s < t we have

fj(t) > fj(s), (7)

also fj0(x) =
x− bj0
x− aj0

is decreasing but negative on (bj0 , aj0) and

fj0(t) > fj0(s). (8)

Now using (7) and (8), we have
n∏

j=1

fj(t) >
n∏

j=1

fj(s), that is F (t) > F (s), whenever

s, t ∈ (bj0 , aj0) with s < t, the means F (x) is decreasing on (bj0 , aj0) or F (x) < 0 on (bj0 , aj0).

Case 4. Let x ∈
(
aj0 , bj0+1

)
, for some j0 ∈ {1, 2, · · · , n− 1}, then fj(x) =

x− bj
x− aj

> 0, on
(
aj0 , bj0+1

)
, for j∈ {1, 2, · · · , n}, and by (4) and (2), we conclude that F ′(x) < 0, on

(
an, bj0+1

)
.

Case 5. Let x ∈ (bn,∞), then fj(x) =
x− bj
x− aj

> 0, on (bn,∞) for all j ∈ {1, 2, · · · , n}, and by

(4) and (2), we conclude that F ′(x) < 0, on (bn,∞).

Combining the results of Cases 1-5, we conclude that F ′(x) < 0 for any x ∈ Dom(F ).

Also solved by Ed Gray, Highland Beach, FL; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy, and Toshihiro Shimizu,
Kawasaki, Japan.

• 5377: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Show that if A,B,C are the measures of the angles of any triangle ABC and a, b, c the
measures of the length of its sides, then holds

∏

cyclic

sin1/3(|A−B|) ≤
∑

cyclic

a2 + b2

3ab
sin(|A−B|).

Solution 1 by Andrea Fanchini Cantú, Italy
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We know that

sinA =
2K

bc
, sinB =

2K

ac
, sinC =

2K

ab

cosA =
b2 + c2 − a2

2bc
, cosB =

c2 + a2 − b2
2ca

, cosC =
a2 + b2 − c2

2ab

where K is the area of the triangle.

So we have that

sin(A−B) = sinA cosB − cosA sinB =
2K(a2 − b2)

abc2
,

and cyclically,

sin(B − C) =
2K(b2 − c2)

a2bc
, sin(C −A) =

2K(c2 − a2)
ab2c

,

so we have
∏

cyc

sin1/3(A−B) =
2K

abc

3

√
(a2 − b2)(b2 − c2)(c2 − a2)

abc
, and

∑

cyc

a2 + b2

3ab
sin(A−B) =

2K

3a2b2c2
[
(a2 + b2)(a2 − b2) + (b2 + c2)(b2 − c2) + (c2 + a2)(c2 − a2)

]
.

Now if we assume C > B > A then

∏

cyc

sin1/3 |A−B| = 2K

abc

3

√
(a+ b)(b− a)(b+ c)(c− b)(c+ a)(c− a)

abc
, and

∑

cyc

a2 + b2

3ab
sin |A−B| = 2K

3a2b2c2
[
(a2 + b2)(a+ b)(b− a) + (b2 + c2)(b+ c)(c− b) + (c2 + a2)(c+ a)(c− a)

]
.

Therefore we need to prove

3 3
√
a2b2c2(a+ b)(b− a)(b+ c)(c− b)(c+ a)(c− a)

≤ (a2 + b2)(a+ b)(b− a) + (b2 + c2)(b+ c)(c− b) + (c2 + a2)(c+ a)(c− a).

But the AM-GM inequality gives us

3 3
√
a2b2c2(a+ b)(b− a)(b+ c)(c− b)(c+ a)(c− a)

≤ 3 3
√

(a2 + b2)(a+ b)(b− a)(b2 + c2)(b+ c)(c− b)(c2 + a2)(c+ a)(c− a).

So it remains to show that

a2b2c2 ≤ (a2 + b2)(b2 + c2)(c2 + a2).

But this follows immediately because this inequality is equivalent to
0 ≤ a4(b2 + c2) + b4(a2 + c2) + c4(a2 + b2) + a2b2c2 which is immediately evident. Therefore,
the statement of the problem is true, with equality holding if and only if the triangle is isosceles.

Solution 2 Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX
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We will prove the slightly stronger inequality

∏

cyclic

sin
1
3 (|A−B|) ≤

∑

cyclic

a2 + b2

6ab
sin (|A−B|) .

Since 0 < A,B,C < π, it follows that

−π < A−B,B − C,C −A < π

and hence,
0 ≤ |A−B| , |B − C| , |C −A| < π.

Then,
sin (|A−B|) , sin (|B − C|) , sin (|C −A|) ≥ 0

and the Arithmetic - Geometric Mean Inequality implies that

∏

cyclic

sin
1
3 (|A−B|) = 3

√∏

cyclic

sin (|A−B|)

≤ 1

3

∑

cyclic

sin (|A−B|) . (1)

Further, The Arithmetic - Geometric Mean Inequality also yields

a2 + b2 ≥ 2ab, i.e.,
a2 + b2

2ab
≥ 1.

Similar results hold for
b2 + c2

2bc
and

c2 + a2

2ca
. If we combine these facts with condition (1), we get

∏

cyclic

sin
1
3 (|A−B|) ≤ 1

3

∑

cyclic

sin (|A−B|)

≤
∑

cyclic

a2 + b2

6ab
sin (|A−B|) .

Solution 3 by Moti Levy, Rehovot, Israel

By AM-GM inequality and x+
1

x
≥ 2 for x > 0,

∏

cyclic

sin
1
3 |A−B| ≤ 1

3

∑

cyclic

sin |A−B|

≤ 1

3

∑

cyclic

2 sin |A−B| ≤ 1

3

∑

cyclic

(
a

b
+
b

a

)
sin |A−B|

=
∑

cyclic

a2 + b2

3ab
sin |A−B| .

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, Albert Stadler, Herrliberg,
Switzerland; Henry Ricardo, New York Math Circle, NY; Neculai Stanciu “George
Emil Palade” General School, Buzău and Titu Zvonaru, Comănesti, Romania
Toshihiro Shimizu, Kawasaki, Japan, and the proposer
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• 5378: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let k ≥ 1 be an integer. Calculate

∫ ∞

0
lnk
(
ex + 1

ex − 1

)
dx.

Solution 1 by Toshihiro Shimizu, Kawasaki, Japan

Let y = ln
(
ex+1
ex−1

)
. Then ex = ey+1

ey−1 or x = ln
(
ey+1
ey−1

)
and

dx

dy
=

d

dy
(ln(ey + 1)− ln(ey − 1))

=
ey

ey + 1
− ey

ey − 1

=
−1

ey + 1
+
−1

ey − 1

Thus,

∫ ∞

0
lnk
(
ex + 1

ex − 1

)
dx =

∫ 0

∞
yk
( −1

ey + 1
+
−1

ey − 1

)
dy

=

∫ ∞

0

yk

ey + 1
dy +

∫ ∞

0

yk

ey − 1
dy

= Γ(k + 1)η(k + 1) + Γ(k + 1)ζ(k + 1)

= k!(1− 2−k)ζ(k + 1) + k!ζ(k + 1)

= k!(2− 2−k)ζ(k + 1)

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

We calculate, for k ≥ 1,

I (k) =

∫ ∞

0

(
log

ex + 1

ex − 1

)k
dx.

The change of variable

t = log
ex + 1

ex − 1
, or equivalently, x = log

et + 1

et − 1
,

dx =

(
et + 1

et − 1

)−1 −2et

(et − 1)2
dt =

−2et

e2t − 1
dt =

−2e−t

1− e−2tdt

yields

I (k) =

∫ ∞

0
tk

2e−t

1− e−2tdt.

Rewriting as a geometric series we have

I (k) = 2

∞∑

j=0

∫ ∞

0
tke−(2j+1)tdt = 2Γ (k + 1)

∞∑

j=0

1

(2j + 1)k+1
,
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since
∫∞
0 tke−tdt = Γ (k + 1) and the interchange of integration and summation is justified by

the Monotone Convergence Theorem. It is well known (and easy to verify) that

∞∑

j=0

1

(2j + 1)k+1
=
(

1− 2−(k+1)
)
ζ (k + 1) .

Hence,

I (k) =
(

2− 2−k
)

Γ (k + 1) ζ (k + 1)

Remark: The above formula is valid even for complex k with Re (k) > 0.

Solution 3 by Moti Levy, Rehovot, Israel

Let Ik :=
∫∞
0 lnk

(
ex+1
ex−1

)
dx. By change of variable v = ln

(
ex+1
ex−1

)
,

Ik = 2

∫ ∞

0
vk

ev

e2v − 1
dv.

ev

e2v − 1
=

1

ev − 1
− 1

e2v − 1
,

Ik = 2

∫ ∞

0

vk

ev − 1
dv − 2

∫ ∞

0

vk

e2v − 1
dv

= 2

∫ ∞

0

vk

ev − 1
dv −

(
1

2

)k ∫ ∞

0

vk

ev − 1
dv

=

(
2−

(
1

2

)k)∫ ∞

0

vk

ev − 1
dv.

An integral representation of the Zeta function is

Γ (s) ζ (s) =

∫ ∞

0
vs−1

1

ev − 1
dv, Re (s) > 1.

∫ ∞

0
lnk
(
ex + 1

ex − 1

)
dx =

(
2−

(
1

2

)k)
k!ζ (k + 1) .

Also solved by Ed Gray, Highland Beach, FL; G.C. Greubel, Newport News, VA;
Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, Tor
Vergata University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland, and the
proposer.

Mea Culpa

Toshihiro Shimizu of Kawasaki, Japan should have been credited with having solved problems
5367, 5368, 5369, 5370, 5371, and 5372. His name was inadvertently omitted from the listing. Also
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omitted from the list of having solved problems wereCharles McCracken, of Dayton, OH for
5367 , Paolo Perfetti of the Mathematics Department of Tor Vergata University in Rome,
Italy for 5372, The Prishtina Math Gymnasium Problem Solving Group of the Republic
of Kosova for 5368 and 5370, and Albert Stadler, Herrliberg, Switzerland for 5368. Bruno
Salgueiro Fanego of Viveiro, Spain noted that problem 5386 appeared in this column previously
as problem 5304. For the above errors, duplications and omissions, mea culpa. Editor.

Editor′s addendum: Albert’s proof to 5368 was very different from the others that were received. The
problem (posed by Ed Gray of Highland Beach FL) was to find a four digit number abcd in base 10
such that the last four digits of the square of the number abcd was again, abcd. Most solvers considered
various cases for the digits abcd, starting with the digit d ∈ {1, 5, 6}, and then, employing the conditions
of the problem, eliminated various values. Following is Albert’s solution to 5368.

5368: Solution by Albert Stadler, Herrliberg, Switzerland

Let x be the four digit number is base 10. By assumption, x2 ≡ x mod (104), which implies that
x(x − 1) is divisible by 104. x and x − 1 are relatively prime. So either 24 divides x and 54 divides
x− 1 or 54 divides x and 24 divides x− 1.

We now invoke the Chinese remainder theorem. The first alternative implies x = 9376, while the
second implies 625. However, 625 is not a four digit number, so 9376 is the only solution.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2016

• 5397: Proposed by Kenneth Korbin, New York, NY

Solve the equation 3
√
x+ 9 =

√
3 + 3
√
x− 9 with x > 9.

• 5398: Proposed by D. M. Bătinetu-Giurgiu, Bucharest, Romania and Neculai
Stanciu,“George Emil Palade” School, Buzău, Romania

If (2n− 1)!! = 1 · 3 · 5 . . . (2n− 1), then evaluate

lim
n→∞

(
n+1
√

(n+ 1)!(2n+ 1)!!

n+ 1
−

n
√
n!(2n− 1)!!

n

)
.

• 5399: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Let a, b, c be positive real numbers. Prove that

∑

cyclic

2a+ 2b√
6a2 + 4ab+ 6b2

≤ 3.

5400: Proposed by Arkady Alt, San Jose, CA

Prove the inequality
a2

ma
+

b2

mb
+

c2

mc
≤ 12 (2R− 3r),

where a, b, c and ma,mb,mc are respectively sides and medians of 4ABC, with
circumradius R and inradius r.

• 5401: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b, c be three positive real numbers such that a2 + b2 + c2 = 3. Prove that

b−1

(4
√
a+ 3

√
b)2

+
c−1

(4
√
b+ 3

√
c)2

+
a−1

(4
√
c+ 3

√
a)2
≥ 3

49
.
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• 5402: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate ∫ ∞

0

(
cos(ax)− cos(bx)

x

)2

dx,

where a and b are real numbers.

Solutions

• 5379: Proposed by Kenneth Korbin, New York, NY

Solve:
(x+ 1)4

(x− 1)2
= 17x.

Solution 1 by Ed Gray, Highland Beach, FL

Cross-multiplying and simplifying gives x4 − 13x3 + 40x2 − 13x+ 1 = 0. Obviously
x 6= 0, so dividing the polynomial by 40x2 gives

x2

40
− 13

40
x+ 1− 13

40
· 1

x
+

1

40
· 1

x2
= 0,

1

40

((
x2 +

1

x2

)
− 13

(
x+

1

x

))
+ 1 = 0.

Letting t = x+
1

x
, squaring t2 = x2 +

1

x2
+ 2 and then substituting into the above gives

1

40

((
t2 − 2

)
− 13t

)
+ 1 = 0

t2 − 13t+ 38 = 0, so

t1 =
1

2

(
13 +

√
17
)

t2 =
1

2

(
13−

√
17
)
.

Since t = x+
1

x
, we have x2 − tx+ 1 = 0, and solving for x gives

x1 =
1

2

(
t1 +

√
t21 − 4

)
x2 =

1

2

(
t1 −

√
t21 − 4

)

x3 =
1

2

(
t2 +

√
t22 − 4

)
x4 =

1

2

(
t2 −

√
t22 − 4

)
.

Substituting in the respective values of t and simplifying gives:

x1 =
13

4
+

√
17

4
+

1

2

√
85

2
+

13
√

17

2
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x2 =
13

4
+

√
17

4
− 1

2

√
85

2
+

13
√

17

2

x3 =
13

4
−
√

17

4
+

1

2

√
85

2
− 13

√
17

2

x4 =
13

4
−
√

17

4
− 1

2

√
85

2
− 13

√
17

2
.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

Given a real number k, we seek all real solutions of

(x+ 1)4

(x− 1)2
= kx.

We require

x4 + (4− k)x3 + (6 + 2k)x2 + (4− k)x+ 1 = (x2 + ax+ 1)(x2 + bx+ 1) = 0,

where a = (4− k +
√
k2 − 16k)/2 and b = (4− k −

√
k2 − 16k)/2. Hence there are no

real solutions unless k ∈ (−∞, 0] ∪ [16,∞). Solving for x, we obtain
x = (−a±

√
a2 − 4)/2 or x = (−b±

√
b2 − 4)/2. We note that if k = 0, then there is one

real solution; if k < 0 or k = 16, then there are two real solutions; and if k > 16, then
there are four real solutions.

For the given equation with k = 17, we have four real solutions:

Letting a = (−13 +
√

17)/2 and b = (−13−
√

17)/2, we obtain

x = (−a±
√
a2 − 4)/2 ≈ 4.200 or 0.238;

x = (−b±
√
b2 − 4)/2 ≈ 8.443 or 0.118.

Comments: Arkady Alt of San Jose, CA noted in his solution that the 17 in the
statement of the problem could be replaced with any of the three numbers 15, 16, or 18
to obtain a more elegant answer. For example, the equation

(x+ 1)4

(x− 1)3
= 18x gives the solutions

x = 5± 2
√

6 =
(√

3±
√

2
)2

x = 2±
√

3 =

(√
6±
√

2

2

)2

.

Kenneth Korbin, proposer of the problem, stated: If b > 2, then the equation
(x+ 1)4

(x− 1)3
=
(
4b2
)
x gives the solutions

x1 =

√
a+

√
b+
√
c

√
a−

√
b+
√
c

=
1

x2
,
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x3 =

√
a+

√
b−√c

√
a−

√
b−√c

=
1

x4
,

with a = 2b and with c = b2 − 4.

In the given equation 4b2 = 17. Then

b2 =
17

4
, b =

√
17

2
> 2, a = 2b =

√
17, c = b2 − 4 =

1

4
.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain; G.C. Greubel,
Newport News, VA; Paul M. Harms, North Newton, KS; Kee-Wai Lau,
Hong Kong, China; Moti Levy, Rehovot, Israel; David E. Manes, SUNY
College at Oneonta, Oneonta, NY; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Boris Rays, Brooklyn,
NY; Henry Ricardo, New York Math Circle, NY. Toshihiro Shimizu,
Kawasaki, Japan; Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania and Titu Zvonaru, Comănesti, Romania; Albert Stadler,
Herrliberg, Switzerland; (David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA; Nicusor Zlota, “Traian Vuia” Technical College,
Focsani, Romania, and the proposer.

• 5380: Proposed by Arkady Alt, San Jose, CA

Let ∆(x, y, z) = 2(xy + yz + xz)− (x2 + y2 + z2) and a, b, c be the side-lengths of a
triangle ABC. Prove that

F 2 ≥ 3

16
· ∆(a3, b3, c3)

∆(a, b, c)
,

where F is the area of 4ABC.

Solution 1 by Toshihiro Shimizu, Kawasaki, Japan

From the Heron’s formula,

F 2 =
(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c)

16

=
∆(a2, b2, c2)

16

Thus, it suffices to show that ∆(a2, b2, c2)∆(a, b, c)− 3∆(a3, b3, c3) ≥ 0 (♥). The (l.h.s)
can be written as

∑

cyc

(a− b)(a− c)q(a, b, c),

where q(a, b, c) = 4a4 + 2a3(b+ c) + a2(b− c)2 ≥ 0. Moreover, since

q(a, b, c)− q(b, c, a) = (a− b)(bc2 + ac2 + 2b2c+ 2a2c+ 4b3 + 6ab2 + 6a2b+ 4a3),
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the relation, which is larger q(a, b, c) or q(b, c, a), depends on the value of a or b. Without
loss of generality, we assume a ≥ b ≥ c. Then, q(a, b, c) ≥ q(b, c, a) ≥ q(c, a, b). Thus,

∑

cyc

(a− b)(a− c)q(a, b, c) = (a− b)
(
(a− c)q(a, b, c)− (b− c)q(b, c, a)

)
+ q(c, a, b)(a− c)(b− c)

≥ 0.

Therefore, (♥) is true.
Note: It is similar to the proof of Schur’s inequality. It seems that (♥) is valid for any
a, b, c, even if the constraint that a, b, c are the side-lengths of a triangle is not satisfied.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

Denote by s the semiperimeter of the triangle put sa = s− a, sb = s− b, sc = s− c. By
the triangle inequality, sa ≥ 0, sb ≥ 0, sc ≥ 0. Also a = sb + sc, b = sc + sa, c = sa + sb.
Furthermore, we note that

∆(a, b, c) = ∆ (sb + sc, sc + sa, sa + sb) = 4 (sasb + sbsc + scsa) ≥ 0.

By Heron’s formula F 2 = s · sa · sb · sc = (sa + sb + sc) sa · sb · sc.
Therefore we need to prove that

64 (sa + sb + sc) · sa · sb · sc (sasb + sbsc + scsa) ≥ 3∆
(

(sb + sc)
3 , (sc + sa)

3 , (sa + sb)
3
)

which is equivalent to

27
∑

symm

s4as
2
b + 21

∑

symm

s3as
3
b + 5

∑

symm

s2as
2
bs

2
c ≥ 27

∑

symm

s4asbsc + 26
∑

symm

s3as
2
bsc (1)

(as is seen by simply multiplying out).

By Schur’s inequality

∑

cycl

sasb (sasb − sbsc) (sasb − scsa) ≥ 0

which is equivalent to

∑

symm

s3as
3
b +

∑

symm

s2as
2
2s

2
c ≥ 2

∑

symm

s3as
2
bsc (2)

(as is seen again by multiplying out).

We have the following inequalities

5
∑

symm

s3as
3
b + 5

∑

symm

s2as
2
bs

2
c ≥ 10

∑

symm

s3as
2
bsc, (by(2)),

27
∑

symm

s4as
2
b ≥ 27

∑

symm

s4asbsc, by Muirhead′s inequality,

16
∑

symm

s3as
3
b ≥ 16

∑

symm

s3as
2
bsc, by Muirhead′s inequality.
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(1) follows by adding these three inequalities.

Solution 3 by proposer

Let s :=
t1 + t2 + t3

2
. Since ti < s, i = 1, 2, 3 (triangle inequalities) then our problem is:

Find max s for which there are positive integer numbers
t1, t2, t3 satisfying ti ≤ min {ai, s− 1} , i = 1, 2, 3, t1 + t2 + t3 = 2s.

First note that s ≥ 3, ti ≥ 2, i = 1, 2, 3. Indeed, since ti ≤ s− 1, then
1 ≤ s− ti, i = 1, 2, 3 and,
therefore, t1 = 2s− t2 − t3 = (s− t2) + (s− t3) ≥ 2. Cyclic we obtain t2, t3 ≥ 2. Hence,
2s ≥ 6 ⇐⇒ s ≥ 3.

Since t3 = 2s− t1 − t2, 2 ≤ t3 ≤ min {a3, s− 1}
then 1 ≤ 2s− t1 − t2 ≤ min {a3, s− 1} ⇐⇒
max {2s− t1 − a3, s+ 1− t1} ≤ t2 ≤ 2s− 1− t1 and, therefore, for t2 we obtain the
inequality

(1) max {2s− t1 − a3, s+ 1− t1, 2} ≤ t2 ≤ min {2s− 1− t1, a2, s− 1}
with conditions of solvability :

(2)





2s− t1 − a3 ≤ s− 1
2s− t1 − a3 ≤ a2
s+ 1− t1 ≤ a2
2 ≤ 2s− 1− t1

⇐⇒





s+ 1− a3 ≤ t1
2s− a2 − a3 ≤ t1
s+ 1− a2 ≤ t1
t1 ≤ 2s− 3

.

Since s− 1 ≤ 2s− 3 then (2) together with 2 ≤ t1 ≤ min {a1, s− 1} it gives us bounds
for t1 :

(3) max {s+ 1− a3, 2s− a2 − a3, s+ 1− a2, 2} ≤ t1 ≤ min {a1, s− 1} .

Since 2 ≤ ai, i = 2, 3 then s+ 1− a2 ≤ s− 1, s+ 1− a3 ≤ s− 1 and solvability condition
for (3) becomes

s+ 1− a3 ≤ a1 ⇐⇒ s ≤ a1 + a3 − 1, 2s− a2 − a3 ≤ a1 ⇐⇒ s ≤
⌊
a1 + a2 + a3

2

⌋
,

s+ 1− a2 ≤ a1 ⇐⇒ s ≤ a1 + a2 − 1, 2s− a2 − a3 ≤ s− 1 ⇐⇒ s ≤ a2 + a3 − 1.

Thus, s∗ = min

{⌊
a1 + a2 + a3

2

⌋
, a1 + a2 − 1, a2 + a3 − 1, a3 + a1 − 1

}
is the largest

value of integer semiperimeter.

Solution 4 by Andrea Fanchini, Cantú, Italy

We know that
F 2 = s(s− a)(s− b)(s− c)

where s is the semiperimeter of 4ABC.
Now making the substitutions and clearing the denominators we have to prove

16s(s−a)(s−b)(s−c)
[
2(ab+ bc+ ca)− (a2 + b2 + c2)

]
≥ 3

[
2(a3b3 + b3c3 + c3a3)− (a6 + b6 + c6)

]

now we make the following substitutions (with x, y, z > 0)

a = y + z, b = z + x, c = x+ y
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and expanding out into symmetric sums the given inequality yields
LHS:

27(x4y2 + x4z2 + y4z2 + x2y4 + x2z4 + y2z4) + 42(x3y3 + y3z3 + x3z3)+

+6(x3yz2 + x3y2z + x2y3z + xy3z2 + x2yz3 + xy2z3) + 78x2y2z2

RHS:
38(x4yz + xy4z + xyz4)

so it remains to prove that

27(x4y2 + x4z2 + y4z2 + x2y4 + x2z4 + y2z4) ≥ 38(x4yz + xy4z + xyz4)

or
27[4, 2, 0] ≥ 19[4, 1, 1]

which is true because
19[4, 2, 0] � 19[4, 1, 1]

it follows from Muirhead’s Theorem, q.e.d.

Solution 5 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

As well known F 2 = s(s− a)(s− b)(s− c) and s = (a+ b+ c)/2. Upon setting
a = y + z, b = x+ z, c = x+ y,
the inequality becomes

∑

sym

(
27x4y2 + 21(xy)3 + 5(xyz)2

)
≥
∑

sym

(
27x4yz + 26x3y2z

)
.

The third degree Schür inequality is

(a3 + b3 + c3) + 3abc ≥
∑

sym

a2b,

which applied to the triple (xy), (yz), (zx), yields

5
∑

sym

(xy)3 + 5
∑

sym

(xyz)2 ≥ 10
∑

sym

x3y2z.

The inequality becomes

∑

sym

(
27x4y2 + 16(xy)3

)
≥
∑

sym

(
27x4yz + 16x3y2z

)
,

and the proof is complete upon observing that by the AGM we have

x4y2 + x4z2 ≥ 2x4yz, (xy)3 + (xy)3 + (xz)3 ≥ 3x3y2z.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Moti Levi, Rehovot, Israel, and Nicusor Zlota, “Traian Vuia”
Technical College, Focsani, Romania
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• 5381: Proposed by D.M. Batinetu-Giurgiu,“Matei Basarab” National College,
Bucharest, and Neculai Stanciu “George Emil Palade” School, Buzău, Romania

Prove: In any acute triangle ABC, with the usual notations, holds:

∑

cyclic

(
cosA cosB

cosC

)m+1

≥ 3

2m+1
,

where m ≥ 0 is an integer number.

Solution 1 by Nikos Kalapodis, Patras, Greece

We first recall Barrow’s Inequality:
If x, y, z are positive real numbers and A+B + C = π then

yz

2x
+
zx

2y
+
xy

2z
≥ x cosA+ y cosB + z cosC (1)

(This inequality first appeared in [1]. For a solution see [2] or [3] (inequality 2.20, pp.
23-24)).
Applying inequality (1) for x = cosA, y = cosB, and z = cosC (note that
cosA, cosB, cosC > 0, since ABC is an acute triangle) we obtain

∑

cyclic

cosA cosB

cosC
≥ 2(cos2A+ cos2B + cos2C) (2)

By the following well-known trigonometric identities

cosA+ cosB + cosC = 1 + 4 sin
A

2
sin

B

2
sin

C

2
and sin

A

2
sin

B

2
sin

C

2
=

r

4R
and

Euler’s inequality (2r ≤ R) we obtain that cosA+ cosB + cosC = 1 +
r

R
≤ 3

2
(3)

Using the AM-GM inequality and inequality (3) we have

cosA cosB cosC ≤
(

cosA+ cosB + cosC

3

)3

≤
(

1

3
· 3

2

)3

=
1

8
(4)

Furthermore, by the identity cos2A+ cos2B + cos2C + 2 cosA cosB cosC = 1 and
inequality (4) we obtain

cos2A+ cos2B + cos2C ≥ 3

4
(5)

By (2) and (5), we have

∑

cyclic

cosA cosB

cosC
≥ 3

2
(6)

Finally, applying Radon’s Inequality and using inequality (6) we have that

∑

cyclic

(
cosA cosB

cosC

)m+1

=

(
cosA cosB

cosC

)m+1

1m
+

(
cosB cosC

cosA

)m+1

1m
+

(
cosC cosA

cosB

)m+1

1m
≥
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∑

cyclic

cosA cosB

cosC



m+1

(1 + 1 + 1)m
≥

(
3

2

)m+1

3m
=

3

2m+1
.

References:
[1] L. J. Mordell and D. F. Barrow, Solution 3740, The American Mathematical Monthly
Vol. 44, No. 4 (Apr., 1937) pp. 252-254
(http://www.jstor.org/stable/2300713)
[2] R. R. Janic, On A Geometric Inequality Of D. F. Barrow, Univ. Beograd. Publ.
Elektrotehn. Fak. Ser. Mat. Fiz. No. 181-196 (1967), pp.73-74
(http://pefmath2.etf.bg.ac.rs/files/71/194.pdf)
[3] O. Bottema, R. Z. Djordjevic, R. R. Janic, D. S. Mitrinovic, and P. M. Vasic,
Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands,
1969.
Remark: Inequalities (3), (4), and (5) also appear respectively as inequalities 2.16, 2.23
and 2.21 in reference [3].

Solution 2 byÁngel Plaza, University of Las Palmas de Gran Canaria, Spain

By the RMS-AM inequality it is enough to prove that

∑

cyclic

cosA cosB

cosC
≥ 3

2
.

Taking into account that A+B + C = π, then
cosC = cos

(
π
2 −A+ π

2 −B
)

= sinA sinB − cosA cosB, so the inequality to be proved
may be written with cotangents as

∑

cyclic

cotA cotB

1− cotA cotB
≥ 3

2
, or

∑

cyclic

1

1− cotA cotB
≥ 9

2
.

It is well known that if α = cotA, β = cotB, and γ = cotC, then αβ + βγ + γα = 1.

Therefore, taking x = αβ, y = βγ, and z = γα we have to prove that
∑

cyclic

1

1− x ≥
9

2

which follows by Jensen’s inequality, since function f(x) =
1

1− x is convex for x ∈ (0, 1).

Solution 3 by Henry Ricardo, New York Math Circle, NY

Elementary calculations show that for A,B,C ∈ (0, π/2)

cosA cosB

cosC
=

tanC

tanA+ tanB
. (1)

Furthermore, we have

∑

cyclic

tanC

tanA+ tanB
≥ 3

2
. (2)

by Nesbitt’s inequality.
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Finally, (1), (2), and the power mean inequality give us

∑

cyclic

(
cosA cosB

cosC

)m+1

=
∑

cyclic

(
tanC

tanA+ tanB

)m+1

≥ 3


1

3

∑

cyclic

tanC

tanA+ tanB



m+1

≥ 3

(
1

2

)m+1

=
3

2m+1
.

Solution 4 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

Using the inequality am+1 + bm+1 + cm+1 ≥ 1

3m
(a+ b+ c)m+1 (*) we have

∑(
cosA cosB

cosC

)m+1

=
∑(

tanC

tanA+ tanB

)m+1 ≥
by (∗)

1

3m

(∑ tanC

tanA+ tanB

)m+1

. (∗∗)

Setting tanA = x, tanB = y, tanC = z, and using Nesbitt’s inequality, we have

∑ tanC

tanA+B
=
∑ z

x+ y

≥
by Nesbitt)

3

2
, (∗ ∗ ∗)

The statement of the problem follows from (∗∗) and (∗ ∗ ∗).

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levi, Rehovot, Israel;
Toshihiro Shimizu, Kawasaki, Japan, and the proposer.

• 5382: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Prove that if a, b, c are positive real numbers, then

∑

cyclic

a

b
+ 8

∑

cyclic

b

a




∑

cyclic

b

a
+ 8

∑

cyclic

a

b


 ≥ 93.

Solution 1 by Henry Ricardo, New York Math Circle, NY

By the arithmetic-geometric mean inequality, each of the sums
∑

cyclic

a

b
,
∑

cyclic

b

a
is

greater than or equal to 3. Thus


∑

cyclic

a

b
+ 8

∑

cyclic

b

a




∑

cyclic

b

a
+ 8

∑

cyclic

a

b


 ≥ (3 + 8 · 3)(3 + 8 · 3) = 272 = 93.

Solution 2 by Ed Gray, Highland Beach, FL

Clearly, if a = b = c, the above product becomes

(1 + 1 + 1 + 8(1 + 1 + 1)) (1 + 1 + 1 + 8(1 + 1 + 1)) = (3 + 24)(3 + 24) = 272 = 729 = 93.
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Therefore, if we show that the product is minimum when all variables are equal, then the
conjecture would be true. It is sufficient to calculate the product in two different ways.

First, suppose that a = b and c = 0.99a. Second, suppose a = b and c = 1.01a. If both
of these products exceed 729, that would show that if all variables are not equal, we do
not have a minimum.

Case 1: a = b, c = 0.99a. The product becomes
(

1 +
1

0.99
+ 0.99 + 8(1 + 0.99 +

1

0.99
)

)(
1 + 0.99 +

1

0.99
+ 8(1 +

1

0.99
+ 0.99)

)
= 729.049

Case 2: a = b, c = 1.01a. The product becomes

(
1 +

1

0.99
+ 0.99 + 8(1 + 1.01 +

1

1.01
)

)2

= 729.048

QED

Solution 3 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

We begin by applying the extension of the Arithmetic - Geometric Mean Inequality
which states that if α, β, x, y > 0 and α+ β = 1, then

αx+ βy ≥ xαyβ,

with equality if and only if x = y. It follows that

∑

cyclic

a

b
+ 8

∑

cyclic

b

a
=
∑

cyclic

(
a

b
+ 8

b

a

)

= 9
∑

cyclic

(
1

9

a

b
+

8

9

b

a

)

≥ 9
∑

cyclic

(a
b

) 1
9

(
b

a

) 8
9

= 9
∑

cyclic

(
b

a

) 7
9

,

with equality if and only if
a

b
=
b

a
,
b

c
=
c

b
, and

c

a
=
a

c
, i.e., if and only if a = b = c.

Next, apply the standard version of the Arithmetic - Geometric Mean Inequality to get

∑

cyclic

a

b
+ 8

∑

cyclic

b

a
≥ 9

∑

cyclic

(
b

a

) 7
9

≥ 27 3

√√√√∏

cyclic

(
b

a

) 7
9

= 27, (1)

with equality if and only if
b

a
=
c

b
=
a

c
, i.e., if and only if a = b = c.
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A similar set of steps yields ∑

cyclic

b

a
+ 8

∑

cyclic

a

b
≥ 27, (2)

with equality if and only if a = b = c.

Therefore, by (1) and (2),


∑

cyclic

a

b
+ 8

∑

cyclic

b

a




∑

cyclic

b

a
+ 8

∑

cyclic

a

b


 ≥ 272 = 93,

with equality if and only if a = b = c.

Solution 4 by Andrea Fanchini, Cantú, Italy

Clearing the denominators and making the multiplications we have

8(a4b2 +a4c2 +a2b4 + b4c2 + b2c4 +a2c4)+65(a4bc+ab4c+abc4)+65(a3b3 + b3c3 +a3c3)+

+16(a3b2c+ a3bc2 + a2b3c+ ab3c2 + a2bc3 + ab2c3) ≥ 534a2b2c2

or
16[4, 2, 0] + 65[4, 1, 1] + 65[3, 3, 0] + 32[3, 2, 1] ≥ 178[2, 2, 2]

which is true because
16[4, 2, 0] � 16[2, 2, 2]

65[4, 1, 1] � 65[2, 2, 2]

65[3, 3, 0] � 65[2, 2, 2]

32[3, 2, 1] � 32[2, 2, 2]

each of which follows from Muirhead’s Theorem, q.e.d.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Michael Brozinsky (3
solutions), Central Islip, NY; Bruno Salgueiro Fanego, Viveiro, Spain; Paul
M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Moti Levi,
Rehovot, Israel; Nikos Kalapodis, Patras, Greece; Paolo Perfetti,
Department of Mathematics, Tor Vergata University, Rome, Italy; Boris
Rays, Brooklyn, NY; Neculai Stanciu,“George Emil Palade” School, Buzău,
Romania and Titu Zvonaru, Comănesti, Romania; Toshihiro Shimizu,
Kawasaki, Japan; Albert Stadler, Helliberg, Switzerland; Nicusor Zlota,
“Traian Vuia” Technical College, Focsani, Romania, and the proposer.

5383: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n be a positive integer. Find gcd(an, bn), where an and bn are the positive integers
for which (1−

√
5)n = an − bn

√
5.

Solution 1 by Ethan Gegner (Undergraduate student, Taylor University),
Upland, IN
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The equation

an+1 − bn+1

√
5 = (an − bn

√
5)(1−

√
5) = an + 5bn − (an + bn)

√
5

yields the recurrence relations

an+1 = an + 5bn

bn+1 = an + bn

Thus,

gcd(an+1, bn+1) = gcd(an + 5bn, an + bn) = gcd(6an−1 + 10bn−1, 2an−1 + 6bn−1)

= gcd(16an−2 + 40bn−2, 8an−2 + 16bn−2)

= 8 gcd(2an−2 + 5bn−2, an−2 + 2bn−2)

= 8 gcd(bn−2, an−2 + 2bn−2)

= 8 gcd(bn−2, an−2)

Since a1 = b1 = 1, a2 = 6, b2 = 2, a3 = 16, b3 = 8, we have
gcd(a1, b1) = 20, gcd(a2, b2) = 21, gcd(a3, b3) = 23. It follows inductively that

gcd(an, bn) =

{
2n : 3|n
2n−1 : otherwise

Solution 2 Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

For n = 1, a1 = b1 = 1. For n > 1,

an − bn
√

5 =
(
an−1 − bn−1

√
5
)(

1 +
√

5
)

= an−1 + 5bn−1 −
√

5 (an−1 + bn−1)

so an = an−1 + 5bn−1, and bn = an−1 + bn−1, or in matrix form

(
an
bn

)
=

(
1 5
1 1

)
·
(
an−1
bn−1

)
⇒

(
an
bn

)
=

(
1 5
1 1

)n
·
(

1
1

)
.

Therefore, an = 2n−1 · Ln and bn = 2n · Fn, where Ln and Fn+1 respectively are the nth
Lucas and the nth Fibonacci numbers. Since Ln = Fn−1 + Fn+1, then gcd(Ln, Fn+1) = 1
and hence gcd(an, bn) = 2n−1, if Ln is odd, while gcd(an, bn) = 2n if Ln is even, that is
when n is a multiple of 3.

Solution 3 by Carl Libis, Columbia Southern University, Orange Beach, AL

Let
(
1−
√

5
)n

= an − bn
√

5. Then

an+1 − bn+1

√
5 =

(
an − bn

√
5
)(

1−
√

5
)

= (an + 5bn)− (an + bn)
√

5.

Thus,

(i) an+1 = an + 5bn,
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(ii) bn+1 = an + bn, and using (i), and (ii) we can show that

(iii) an+1 = 2an + 4an−1,

(iv) bn+1 = 2bn + ban−1. By observation we note from the first few terms

(v) an = 2n−1ln,

(vi) bn = 2n−1fn,

where ln and fn are Lucas and Fibonacci numbers. We can verify (v) and (vi) by
substituting them into (iii) and (iv).

It is well known that gcd(fn, ln) =

{
2, if 3| n
1, otherwise.

.

See<http://mathhelpforum.com/discrete-math/40492-proof-about-fibonacci-lucas-
numbers-gcd.html> or
<https://cms.math.ca/crux/v3/n4/page232-236.pdf>.

Therefore,

gcd (an, bn) = gcd
(
2n−1fn, 2n−1ln

)
= 2n−1

{
2, if 3| n
1, otherwise.

=

{
2n, if 3| n
2n−1, otherwise.

Comment by Editor: Kenneth Korbin of NewYork, NY observed a connection
between this problem and the solution to problem 5373, that required us to find positive

integers x and y such that
2
√

2√
343− 147

√
5−

√
315− 135

√
5

=

√
x+ y

√
5, the unique

answer of which was (x, y) = 161 + 72
√

5. He continued on as follows.

Observe that:

(
1−
√

5
)12

= (4096)(161−72
√

5) = 212(161−72
√

5), and also (161)2− (72
√

5)2 = 1. So,

(
161− 72

√
5
)(

161 + 72
√

5
)(

1−
√

5
)12

= 212(161− 72
√

5)

161 + 72
√

5 =
212

(
1−
√

5
)12

√
161 + 72

√
5 =

26
(
1−
√

5
)6 .

And additionally:
26

(
1−
√

5
)6=

2
√

2√
343− 147

√
5−

√
315− 135

√
5

.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie, Angelo State University, San Angelo, TX; Brian D.
Beasley, Presbyterian College, Clinton, SC; Bruno Salgueiro Fanego,
Viveiro, Spain; Ed Gray, Highland Beach, FL; G.C. Greubel, Newport News,
VA; Kenneth Korbin, New York, NY; Kee-Wai Lau, Hong Kong, China;
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Moti Levi, Rehovot, Israel; David E. Manes, SUNY College at Oneonta,
Oneonta, NY; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5384: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Find all differentiable functions f : < → < which verify the functional equation

xf ′(x) + f(−x) = x2, for all x ∈ <.

Solution 1 by Michael Brozinsky, Central Islip, NY

We have at once from the given equation xf ′(x) + f(−x) = x2 that f(0) = 0, and since
x2 = (−x)2 that

xf ′(x) + f(x) = −xf ′(−x) + f(x) so that

x
(
f ′(x) + f ′(−x)) = f(x)− f(−x)

which can be cast as xG′(x) = G(x), which we label as equation (1) and in which
G(x) = f(x)− f(−x).

From (1) we have G(x) = cx for some constant c and thus G′′(x) = 0, and so
f ′′(x) = f ′′(−x) and we label this as equation (2), where we have used the chain rule.
Now, by differentiating the given equation twice we have

x · f ′′′(x) + f ′′(x) + f ′′(x) + f ′′(−x) = 2

and so from (2) we have

f ′′(0) =
2

3
and xf ′′′(x) + 3f ′′(x) = 2. (3)

Letting v = f ′′(x) in (3) we have the linear differential equation x ·
(
dv

dx

)
+ 3v = 2, and

using the integrating factor x3 we obtain

x3dv + 3x2vdx = 2x2dx so that

x3v =
2x3

3
+A and f ′′(x) = v =

2

3
+
A

x3
(4)

where the constantA = 0 since f ′′(0) =
2

3
. Integrating (4) twice we obtain

f(x) =
x2

3
+Bx+ C where B and C are constants and since f(0) = 0, we have C = 0.

Hence, the general solution is f(x) =
x2

3
+Bx, where B is an arbitrary constant.

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

Let P (x) be the given equation. From P (x) + P (−x), we get

x
d

dx
(f(x) + f(−x)) + (f(x) + f(−x)) = 2x2. (1)
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From P (x)− P (−x), we get

x
d

dx
(f(x)− f(−x))− (f(x)− f(−x)) = 0. (2)

First, we solve (1). Let g(x) = f(x) + f(−x)− 2
3x

2.Then, (1) can be rewritten as

x
dg

dx
= −g(x)

The root of this differential equation is g(x) = C/x for constant C ∈ R.
Next, we solve (2). Let h(x) = f(x)− f(−x). Then, (2) can be rewritten as

x
dh

dx
= h(x)

The root of this differential equation is h(x) = Dx for constant D ∈ R.
Thus, f(x) = (g(x) + 2/3x2 + h(x))/2 = C/x+Dx+ x2/3 for some constant C,D ∈ R.
Since, f(x) should be defined for all x ∈ R, C must be 0. Therefore, f(x) = Dx+ x2/3,
where D ∈ R is a constant and this satisfies P (x).

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

xf ′(x) + f(−x) = x2,∀x ∈ < =⇒ −xf ′(−x) + f (− (−x))− (−x)2 ,∀x ∈ <, that is

−xf ′(−x) + f(x) = x2,∀x ∈ < =⇒ xf ′(x) + f(−x) = x2 = −xf ′ (−x) + f(x) ,

∀x ∈ < =⇒ x (f ′(x)− f ′(−x)) + f(x) + f(−x) = 2x2,∀ ∈ <, or equivalently,

xg′(x) + g(x) = 2x2, ∀x ∈ <, where g : < → < is the function defined by

g(x) = f(x) + f(−x),∀x ∈ <, that is h′(x) = 2x2, with h : < → <, ∀x ∈ <.

h(x) = xg(x),∀x ∈ < =⇒ h(x) =
2x2

3
+ C, for some C ∈ <, ∀x ∈ <

implies f(x) + f(−x) = g(x) =
h(x)

x
=

2x2

3
+
C

x
, ∀x− {0}.

f differentiable implies f differentiable at x = 0 =⇒ f continuous at x = 0.

This fact and the equality f(x) + f(−x) =
2x2

3
+
C

x
imply that C = 0.

Hence, f(−x) =
2x2

3
− f(x) and thus xf ′(x) +

2x2

3
− f(x) = xf ′(x) + f(−x) = x2.

∀x ∈ <−{0} =⇒ xf ′(x)− f(x) =
x2

3
∀x ∈ <− 0} =⇒ f ′(x)

x
− f(x)

x2
=

1

3
, ∀x ∈ <−{0}.

=⇒ k′(x)
1

3
, where k : < → < is the function defined by k(x) =

f(x)

x
,∀x− {0}

=⇒ k(x) =
x

3
+D with D ∈ <,∀x ∈ <−{0} =⇒ f(x) =

x2

3
+Dx,∀x ∈ <−{0}. Since

(
f ′(x)− f ′(−x)

)
+ f(x) + f(−x) = 2x2, ∀x ∈ < =⇒

2f(0) = 0 (f ′(0)− f ′(−0)) + f(0) + f(−0) = 2 · 02 = 0, so f(0) = 0, we conclude that

f(x) =
x2

3
+Dx,∀x, where D is any real constant.

Solution 4 by Moti Levy, Rehovot, Israel

The derivative of f : R→ R satisfies the functional equation
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f
′
(x) =

x2 − f (−x)

x
, (1)

hence it is also differentiable function (maybe except for x = 0).

Differentiation of the functional equation gives,

xf
′′

(x) + f
′
(x)− f ′

(−x) = 2x. (2)

Substitution of (1) into (2 ) gives,

xf
′′

(x) + f
′
(x) +

x2 − f (x)

x
= 2x,

or
x2f

′′
(x) + xf

′
(x)− f (x) = x2. (3)

All the differentiable functions which satisfy the functional equation
xf

′
(x) + f (−x) = x2, must satisfy (3).

The solutions of the differential equation (3) are

f (x) =
1

3
x2 + α

(
x+

1

x

)
+ β

(
x− 1

x

)
(4)

Now we substitute (4) in the left side of the original functional equation:

x
d
(
1
3x

2 + α
(
x+ 1

x

)
+ β

(
x− 1

x

))

dx
+

1

3
x2 − α

(
x+

1

x

)
+ β

(
1

x
− x
)

=
1

x

(
x3 − 2α+ 2β

)
= x2 − 2

x
(α− β) .

It follows that α must be equal to β for (4) to be a solution.
All the differentiable functions f : R→ R, which satisfy the functional equation
xf

′
(x) + f (−x) = x2, for all x ∈ R are

f (x) =
1

3
x2 + cx, c ∈ R.

Solution 5 by Kee-Wai Lau, Hong Kong, China

Denote the given functional equation by (1). We show that

f(x) =
x2

3
+ kx, (2)

where k is an arbitrary constant.

Replacing x bt −x in (1), we obtain

−xf ′(−x) + f(x) = x2. (3)

Subtracting (3) fromf (1), we obtain

x
(
f ′(x) + f ′(−x)

)
− (f(x)− f(−x)) = 0. (4)
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Integrating (4), we obtain f(x)− f(−x) = ax , where a is an arbitrary constant. By
substituting f(−x) = f(x)− ax back into (1). we obtain

xf ′(x) + f(x) = x2 + ax. (5)

Integrating (5), we obtain xf(x) =
x3

3
+
ax2

2
+ b, where b is a constant. By

putting x = 0 we see that b = 0. Thus (2) hold for x 6= 0. By putting x = 0

into (1), we obtain f(0) = 0 and so (2) hold for x = 0 as well.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie, Angelo State University, San Angelo, TX; Ed Gray,
Highland Beach, FL; Henry Ricardo, New York Math Circle, NY; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposer.

Editor′s Notes

The conjecture in 5375* has been revised by its author Kenneth Korbin of NY,
NY to the following:

5375* (revised): Prove or disprove the following conjecture. Let k be the product of
N different prime numbers each congruent to 1(mod 4).

The total number of different rectangles and trapezoids with integer length sides and

diagonals that can be inscribed in a circle with diameter k is exactly
5N − 3N

2
.

Toshihiro Shimizu of Kawasaki, Japan provided a counter example to the original
statement of the problem that did not require the diagonals to also be integers. He let
k = 5 · 17 = 85 and then developed the trapezoids (34, 43, 34, 83) and (50, 43, 50, 83).
The diagonals of these two trapezoids are not of integral length. Ken commented on
Toshihiro’s examples by saying that: “It never occurred to me that a trapezoid with
integer length sides inscribed in a circle with diameter k could have non-integer length
diagonals.” So with the revision, 5375* remains an open problem.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-
Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals
and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously stated problems
can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
October15, 2016

• 5403: Proposed by Kenneth Korbin, New York, NY

Let φ =
1 +
√

5

2
. Solve the equation 3

√
x+ φ = 3

√
φ+ 3
√
x− φ with x > φ.

• 5404: Proposed Arkady Alt, San Jose, CA

For any given positive integer n ≥ 3, find the smallest value of the product of x1x2 . . . xn,

where x1, x2, x3, . . . xn > 0 and
1

1 + x1
+

1

1 + x2
+ . . .+

1

1 + xn
= 1.

• 5405: Proposed by D. M. Bătinetu-Giurgiu, Bucharest, Romania and Neculai
Stanciu,“George Emil Palade” School, Buzău, Romania

If a, b ∈ < such that a+ b = 1, en =

(
1 +

1

n

)n

and cn = − lnn+
n∑

k=1

1

k
, then compute

lim
n→∞

(
(n+ 1)a

n+1

√
((n+ 1)!cn)b − na n

√
(n!en)b

)
.

• 5406: Proposed by Cornel Ioan Vălean, Timis, Romania

Calculate: ∞∑

n=1

Hn

n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
,

where Hn =

n∑

k=1

1

k
denotes the harmonic number.

• 5407: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Find all triples (a, b, c) of positive reals such that

a+ b+ c = 1,
1

(a+ bc)2
+

1

(b+ ca)2
+

1

(c+ ab)2
=

243

16
.

• 5408: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate: ∫ 1

0

lnx ln(1− x)

x(1− x)
dx.

Solutions

• 5385: Proposed by Kenneth Korbin, New York, NY

A triangle with integer length sides and integer area has perimeter P = 66. Find the sides of
the triangle when the area is minimum.

Solution by Toshihiro Shimizu, Kawasaki, Japan

Let s = P/2 = 23328. Let the sides of the triangle be a, b, c. The square of area of the
triangle can be written as s(s− a)(s− b)(s− c). Thus, (s− a)(s− b)(s− c) must be
minimized and this value must be twice the square of an integer. Let α = s− a, β = s− b,
γ = s− c and T = (s− a)(s− b)(s− c) = αβγ. Then, α+ β + γ = s and without loss of
generality, we assume α ≥ β ≥ γ > 0. When (α, β, γ) = (23276, 44, 8), we have T = 2 · 20242.
We show that this case is the unique smallest case. In this case it follows that
(a, b, c) = (52, 23284, 23320) and Area = 437, 184.

First, we assume that if βγ = t for some positive integer t. Then, it follows that
α = s− β − γ ≥ s− t− 1 and

T = αβγ ≥ (s− t− 1) · t

Thus, we need to find the case that (s− t− 1) · t < 2 · 20242 or t2 − 23327t+ 2 · 20242 > 0 or
t < 356.6.
Therefore, we only need to consider the case that βγ ≤ 356 and the range of γ is
γ ≤

⌊√
356
⌋

= 18.
We consider the case γ = 1. The range of β is 1 ≤ β ≤ 356.For case (β, γ) = (1, 1),
α = s− β − γ = 23326 and T = 23326, T/2 = 11663, It’s not a square of an integer.
For case (β, γ) = (2, 1), α = s− β − γ = 23325 and T = 46650, T/2 = 23325, It’s not a
square of an integer.
For case (β, γ) = (3, 1), α = s− β − γ = 23324 and T = 69972, T/2 = 34986, It’s not a
square of an integer.

...

2X
ia
ng
’s
T
ex
m
at
h



Editor′s interlude : The solution continues on in the above manner, and after 49 pages,
with each line similar to the output listed above, the proof by exhaustion ends with the final
entries listed as:

...

We consider the case γ = 17. The range of β is 17 ≤ β ≤ 20. For case (β, γ) = (17, 17),
α = s− β − γ = 23294 and T = 6731966, T/2 = 3365983, It’s not a square of an integer.
For case (β, γ) = (18, 17), α = s− β − γ = 23293 and T = 7127658, T/2 = 3563829, It’s not
a square of an integer.
For case (β, γ) = (19, 17), α = s− β − γ = 23292 and T = 7523316, T/2 = 3761658, It’s not
a square of an integer.
For case (β, γ) = (20, 17), α = s− β − γ = 23291 and T = 7918940, T/2 = 3959470, It’s not
a square of an integer.
We consider the case γ = 18. The range of β is 18 ≤ β ≤ 19.For case (β, γ) = (18, 18),
α = s− β − γ = 23292 and T = 7546608, T/2 = 3773304, It’s not a square of an integer.
For case (β, γ) = (19, 18), α = s− β − γ = 23291 and T = 7965522, T/2 = 3982761, It’s not
a square of an integer.

Editor again: Each of the complete solutions submitted used Hero’s formula on an
expression connecting the perimeter of the triangle with its area, and then used a computer
in proving that they had the minimal area. But sometimes computers get it wrong. David
Stone and John Hawkins of Southern Georgia University in Statesboro, GA
stated that the area of the triangle with integer length sides of (1, 23327, 23328) is
essentially zero, which of course they quickly dismissed. They then listed the areas of the
following three Heronian triangles each having perimeter 66 = 46, 656.




a b c s s− a s− b s− c area
52 23284 23320 23328 23276 44 8 437184
72 23290 23294 23328 23256 38 343 837218
153 23225 23278 23328 23175 103 50 1, 668, 60




Ed Gray of Highland Beach, FL showed that the Heronian Triangle with side lengths of
{1928, 21402, 23326} has an area of 1386720, and Kenneth Korbin, proposer of the
problem, showed that a triangle with side lengths {2600, 2073, 23319} has an area of
3,357,936. Kee-Wai Lau of Hong Kong, China also showed that the triangle with
integer side lengths of {52, 23284, 23320} has a perimeter of 66 and produces the triangle
with the minimal integral area.

• 5386: Proposed by Michael Brozinsky, Central Islip, NY.

Determine whether or not there exit nonzero constants a and b such that the conic whose
polar equation is

r =

√
a

sin(2θ)− b cos(2θ)

has a rational eccentricity.

3X
ia
ng
’s
T
ex
m
at
h



Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

To begin, the given polar equation can be written in x and y as follows:

by2 + 2xy − bx2 = a. (1)

Noting that (1) has the form Dx2 + Exy + Fy2 = a, the angle of rotation is found to be

tan(2θ) =
E

D − F = −1

b
. (2)

With some perseverance and the standard rotation formulas with x = u cos(θ)− v sin(θ)
and y = u sin(θ) + v cos(θ), (1) can be written as

(
sin(2θ)− b cos(2θ)

)
u2 +

(
b cos(2θ)− sin(2θ)

)
v2 = a. (3)

Thus, using (2), sin(2θ) =
1√
b2 + 1

and cos(2θ) = − b√
b2 + 1

. (3) can now be simplified and

displayed in standard form of a conic as
√
b2 + 1u2 −

√
b2 + 1 v2 = a

u2

a√
b2 + 1

− v2

a√
b2 + 1

= 1. (4)

If we consider A to be the distance from the center of the hyperbola to a vertex, B to be the
distance from the center to an end of the conjugate axis, and C to be the distance from the

center to a focus, then from (4), A2 =
a√
b2 + 1

, B2 =
a√
b2 + 1

, and

C2 = A2 +B2 =
2a√
b2 + 1

. (5)

Using (5), eccentricity is defined to be e =
C

A
=
√

2. Thus, there do not exist nonzero

constants a and b to yield a rational eccentricity.

Editor′s comment: This problem appeared before in this column as problem 5304; mea
culpa, once again.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical
Community College, Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain;
Ed Gray; Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Toshihiro
Shimizu, Kawasaki, Japan, and the proposer.

• 5387: Proposed by Arkady Alt, San Jose, CA

Let D := {(x, y) | x, y ∈ R+, x 6= y and xy = yx} .(Obviously x 6= 1 and y 6= 1 ).

Find sup
(x,y)∈D

(
x−1 + y−1

2

)−1

Solution 1 by Henry Ricardo, New York Math Circle, NY

4X
ia
ng
’s
T
ex
m
at
h



The power mean inequality gives us

M−1(x, y) =

(
x−1 + y−1

2

)−1
≤ M0(x, y) =

√
xy,

so that

sup
(x,y)∈D

(
x−1 + y−1

2

)−1
≤ sup

(x,y)∈D

√
xy.

Now it is well known that the general solution of the equation xy = yx in the first quadrant
is given parametrically by

x =

(
1 +

1

u

)u

, y =

(
1 +

1

u

)u+1

, u > 0,

a form attributed to Christian Goldbach. This gives us

x · y =

(
1 +

1

u

)u

·
(

1 +
1

u

)u+1

,

implying that

sup
(x,y)∈D

(
x−1 + y−1

2

)−1
= lim

u→∞
√
xy =

√
e · e = e.

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

It is well-known that for any positive integer n,

(x, y) =

((
1 +

1

n

)n

,

(
1 +

1

n

)n+1
)

satisfies the equation xy = yx and x 6= y. Letting n→∞, both x and y converges to e.
Thus, the value ((x−1 + y−1)/2)−1 also converges to e.
Next, we show that for any real number satisfying xy = yx, x 6= y, the equation
((x−1 + y−1)/2)−1 ≤ e holds. xy = yx is equivalent to log x/x = log y/y. Since log x/x is
negative and monotone decreasing for x < 1, and it’s positive and monotone increasing for
1 ≤ x ≤ e and also it’s positive and monotone decreasing on e ≤ x, it is obvious that
1 < x, y and without loss of generality , we assume y < e < x. We write x = 1/s, y = 1/t.
Then, s < 1/e < t and s log s = t log t. The inequality ((x−1 + y−1)/2)−1 ≤ e is equivalent to
1/e ≤ (s+ t)/2.
Let f(x) = x log x. Then, f ′(x) = 1 + log x, f ′′(x) = 1/x, f ′′′(x) = −x−2 < 0 for x > 0.
Thus, f ′(x) is concave and it follows that

f ′(z) + f ′(2e − z)
2

≤ f ′(z + 2
e − z
2

) = f ′(
1

e
) = 0
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for any z > 0. Integrating from z = s to z = 1/e, we get

f(1/e)− f(s) + f(2e − s)− f(1/e)

2
≤ 0,

or f(2/e− s) ≤ f(s) = f(t). Since, f(z) is monotone increasing on 1/e ≤ z, it follows that
2/e− s ≤ t or 1/e ≤ (s+ t)/2. Therefore we have shown that ((x−1 + y−1)/2)−1 ≤ e for any
(x, y) ∈ D.
Finally we conclude that the supremum value is e.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

In is known that D ∩
{

(x, y)
∣∣x 6= 1, y 6= 1

}
can be parametrized by

(0, 1) ∪ (1,+∞) 3 t→
(
x(t), y(t)

)
=
(
t

1
t−1 , t

t
t−1

)
.

(Note that t =
y(t)

x(t)
is the slope of the line from (0, 0) to

(
x(t), y(t)

)
; moreover,

y(t)x(t) =
(
t

t
t−1

)t 1
t−1

= t
t

t−1
·t

1
t−1

= t
t·t

1
t−1

t−1 = t
t
1+ 1

t−1

t−1 = t
t

t
t−1

t−1 = t
1

t−1
·t

1
t−1

=
(
t

1
t−1

) t
tt−1

= x(t)y(t).

Hence,

(
x(t)−1 + y(t)−1

2

)−1
=

2x(t)y(t)

x(t) + y(t)
=

2t
1

t−1 · t t
t−1

t
1

t−1 + t
t

t−1

=
2t

1+t
t−1

t
1

t−1 · (1 + t)
=

2t
t

t−1

t+ 1
.

Let us define (0, 1) ∪ (1,∞) 3 µ→ f(u) =
2u

u
u−1

u+ 1.

Then f ′(u) =
2u

u
u−1 (2u− 2− (u+ 1) lnu)

(u2 − 1)2
so f ′(u) > 0 for u ∈ (0, 1) and f ′(u) < 0 for

u ∈ (1,+∞), with implies that f is strictly increasing in (0, 1) and strictly decreasing in

(1,+∞), which implies that

sup
u∈(0,1)∪(1,+∞)

f(u) = lim
u→1

f(u) = lim
n→1

2

u+ 1
· lim
u→1

u
u

u−1 = lim
n→1

u
u

u−1 = e
ln lim

u→1
u

u
u−1

= e
lim
u→1

lnu
u

u−1

= e
lim
u→1

u
u−1

lnu
= e

lim
u→1

u

u− 1

(
−
∞∑

n=1

1− un
n

)

= e

lim
u→1

u

∞∑

n=1

(1− u)n−1

n

= e

lim
u→1

u+

∞∑

n=2

u(1− u)n−1

n
= e1+0 = e.

Thus, sup
(x,y)∈D

(
x−1 + y−1

2

)−1
= sup

t∈(0,1)∪(1,+∞)

(
x(t)−1 + y(t)−1

2

)−1
= sup

t∈(0,1)∪(1,+∞)
f(t) = e.
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Solutions 4 and 5 by Michael Brozinsky, Central Islip, NY

For simplicity, we shall use
2xy

x+ y
, which equals the given expression.

We shall also use the Lambert function W (x) which is the inverse of f(x) = x · ex (with the

domain of f(x) being {−1,∞ ) so that W (x) has domain

[
−1

e
,∞
)

and

W (x · ex) = x if x ≥ −1, and

x = W (x) · eW (x), if x ≥ 1

e
(∗)

From yx = xy we have
ln(x)

x
=

ln(y)

y
(∆), and since F (t) =

ln(t)

t
is one to one and negative

on (0, 1), one to one and positive on (1, e) and one to one and positive on (e,∞) and since
x 6= y, we can assume that 1 < y < e and x > e so that in particular ln(y) > −1 and from
(∗), W

(
− ln(y) · e− ln(y)

)
= − ln(y) which we will encounter later when we obtain (∗∗)

below.

From yx = xy we have by raising both sides to the
1

xy
power that y

1
y = x

1
x . The left hand

side can be written as
(
eln(y)

) 1
y =

(
eln(y)

)e− ln(y)

= eln(y)·e
− ln(y)

and so we have

eln(y)·e
− ln(y)

= x
1
x . If we take natural logs of both sides of this equation and multiply both

sides by −1 we have

− ln(y) · e− ln(y) =
− ln(x)

x
(1).

Now
− ln(x)

x
> −1

e
(since

ln(x)

x
has it s maximum of

1

e
) when x = e and thus

W

(
− ln(x)

x

)
> −1 and so 1 +W

(
− ln(x)

x

)
> 0. (Note W (u) ≥ −1 with equality only if

u = −1

e
).

Taking W of both sides of (1) and using (∗) we have from (1) that

− ln(y) = W

(
− ln(x)

x

)
(∗∗) and so

y =
1

e− ln(y)
=

1

e
W
(
− ln(x)

x

) = using(∗)
W
(
− ln(x)

x

)

− ln(x)
x

= − x

ln(x)
·W

(
− ln(x)

x

)

The expression whose supremum we wish to find is thus

2xy

x+ y
=

2x
(
− x

ln(x) ·W
(
− ln(x)

x

))

x+
(
− x

ln(x) ·W
(
− ln(x)

x

)) −
2x2W

(
− ln(x)

x

)

ln(x) ·
(
x−

xW
(
− ln(x)

x

)

ln(x)

) (∗ ∗ ∗)
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Now differentiating the second equation in (∗) shows W ′(x) =
1

eW (x) · (W (x) + 1)
and so

differentiating (∗ ∗ ∗) gives, after simplification

2W

(
− ln(x)

x

)2(
ln(x)−W

(
− ln(x)

x

)
− 2

)

(
ln(x)−W

(
− ln(x)

x

))2(
1 +W

(
− ln(x)

x

)) = − 2 ln(y)2 (ln(x) + ln(y)− 2)

(ln(x) + ln(y))2 (1− ln(y))
using (∗∗) (1).

Recall 1− ln(y) = 1 +W

(
ln(x)

x

)
> 0. The expression in (1) thus is positive when

ln(x) + ln(y)− 2 < 0 and negative when ln(x) + ln(y)− 2 > 0. This last expression in (∗ ∗ ∗)
increases if xy < e2 and decreases when xy > e2 and thus has maximum of e when xy = e2

and so e is the desired supremum.

Solution 5

For simplicity, we shall use
2xy

x+ y
, which equals the given expression. From yx = xy we have

ln(x)

x
=

ln(y)

y
(∆), and since F1(t) =

ln(t)

t
is one to one and negative on (0, 1), one to one

and positive on (1, e) and one to one and positive on (e,∞) and since x 6= y, we can assume
that 1 < x < e and y > e

Now since y · ln(x) = x · ln(y), we have that y · ln(x)− x = x · (ln(y)− 1) > 0 (∗). Since
d

dx

(
u(x)v(x)

)
= u(x)v(x) ·

(
v(x)

u(x)
u′(x) + ln (u(x)) · v′(x)

)
we readily have from yx = xy by

implicit differentiation that y′ =
y · ln(y)− y2

x
y · ln(x)− x and since

d

dx

(
2xy

x+ y

)
=

2
(
x2y′ + y2

)

(x+ y)2
we

have by substitution that

d

dx

(
2xy

x+ y

)
=

2y
(
ln(y)x2 + ln(x)y2 − 2xy

)

(y ln(x)− x) (x+ y)
and factoring out xy

=

2xy2
(

ln(y)

y
x+

ln(x)

x
y − 2

)

(y ln(x)− x)(x+ y)2
, and since x y = yx ,

=

2xy2
(

ln(xy)

y
+

ln(yx)

x
− 2

)

(y ln(x)− x)(x+ y)2

=
2xy2 (ln(x) + ln(y)− 2

(y ln(x)− x) (x+ y)2
.
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The expression is thus positive (recall y ln(x)− x > 0) when ln(x) + ln(y)− 2 < 0 and

negative when ln(x) + ln(y)− 2 > 0. Thus sup
(x,y)∈D

(
x−1 + y−1

2

)−1
increases if xy < e2 and

decreases when xy > e2 and so e is the desired supremum.

Editor′s comment: Michael Brozinsky also submitted two more solutions to this problem,
each in the spirit of solutions the above.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5388: Proposed by Jiglău Vasile, Arad, Romania

Let ABCD be a cyclic quadrilateral, R and r its exradius and inradius respectively, and
a, b, c, d its side lengths (where a and c are opposite sides.) Prove that

R2

r2
≥ a2c2

b2d2
+
b2d2

a2c2
.

Solution 1 by Toshihiro Shimizu, Kawasaki, Japan

Remark: We assume that ABCD is inscribable (and thus ABCD is bicentric) and excircle
is circumcircle.

Let the circumcircle and incircle of ABCD be Γ(with center O), Γ′(with center I),
respectively. We fix Γ,Γ′ and move A such that ABCD has circumcircle Γ and incircle Γ′.
The existence of such quadrilateral is assured by the Poncelet’s closure theorem (see also
https://en.wikipedia.org/wiki/Poncelet%27s closure theorem).

If Γ and Γ′ are concentric, the quadrilateral is square and we can easy to check that R =
√

2r
and a2c2

b2d2
+ b2d2

a2c2
= 2. Thus the equality holds. We assume that Γ and Γ′ are not concentric.

As A vary, we only show the case when (r.h.s), that is a2c2

b2d2
+ b2d2

a2c2
, is maximum. The value is

maximum when ac
bd is maximum. We calculate the maximum value.

Let P be the intersection of AC and BD. Let W,X, Y, Z be the tangency point of Γ′ with
AB,BC,CD,DA, respectively.

Then, we show the following lemma. The point P is a fixed point as A varies. Let E be
the intersection of AB and CD. Let F be the intersection of BC and DA. Since the
quadrilateral ABCD is inscribable, AC, BD, ZX, WY are all concurrent at point P . (it
can be shown by Brianchon’s theorem and we omit) Then, ZX is the polar line of F with
respect to Γ′ and WY is the polar line of E with respect to Γ′. Thus, FE is the polar line of
P (intersection of ZX and WY ) with respect to Γ′. Moreover, E,P is on the polar line of F
with respect to Γ and F, P is on the polar line of E with respect to Γ. (This fact is well
known and I saw it in my Japanese book.) Therefore, EF and P are polar line and pole
with respect to both Γ and Γ′. We will show that this situation only occurs when P is one
of the particular two points. More precisely, since EF is polar line of P with respect to both
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Γ and Γ′, both PO, PO′ are perpendicular to EF . Thus, P must be on OO′. We calculate
the position of P (see Figure 1) Let x = IP and d = IO. From the point P , draw a line
perpendicular to OO′ and let S, S′ be one of the intersection with Γ, Γ′, respectively. Let Q
be the intersection of tangent line of Γ at S and OO′ and Q′ be the intersection of tangent
line of Γ′ at S′ and OO′. We find the condition that Q = Q′. This situation is equivalent to
the above since 4QSO and 4SPO is similar right triangle,
OQ = OS ·OS/OP = R2/(x+ d). Similarly, IQ′ = IS′ · IS′/IP = r2/x. Thus,

R2

x+ d
= d+

r2

x

must be hold. Since this equation is quadratic equation, there are at most two valid value of
x. As A varies continuously, P moves continuously and can’t jump to another point. Thus,
P must be fixed point as A varies. Therefore, lemma has been shown.

Now we have fixed point P and line EF are fixed as A varies. We show that EI and FI are
perpendicular. Since WY ⊥ EI and ZX ⊥ FI , it suffices to show that ZX ⊥WY . Since
6 ZAP = 6 DAC = 6 DBC = 6 PBX and 6 AZP = 6 FZX = 6 FXZ = 6 BXP , we have
4ZPA ∼ 4XPB. Thus, 6 ZPA = 6 XPB. Similarly, 6 APW = 6 DPY , 6 WPB = 6 Y PC,
6 XPC = 6 ZPD. Since 6 APW = 6 Y PC and 6 XPC = 6 ZPA,
6 ZPA+ 6 WPA = 360◦/4 = 90◦. Thus, ZX ⊥WY .

Let θ = 6 IEF , 6 DEA = 2α, 6 DFC = 2β. The distance between I and EF be p(> r), this
value is constant as θ vary. Then, since EI = p/ sin θ and FI = p/ cos θ,
sinα = r/EI = (r sin θ)/p and sinβ = r/FI = (r cos θ)/p. Thus,
cos 2α = 1− 2 sin2 α = 1− 2(r2 sin2 θ)/p2 and cos 2β = 1− 2 sin2 β = 1− 2(r2 cos2 θ)/p2.

Then, from the Law of Sines, it follows that

a = AB

= FB · sin 6 BFA
sin 6 FAB

= EF · sin 6 FEB
sin 6 EBF

· sin 6 BFA
sin 6 FAB

= EF · sin(θ − α) sin 2β

cos(β − α) cos(α+ β)

c = CD

= CF · sin 6 DFC
sin 6 CDF

= EF · sin 6 CEF
sin 6 ECF

· sin 6 DFC
sin 6 CDF

= EF · sin(θ + α) sin 2β

cos(α+ β) cos(β − α)

b, d are calculated by replacing θ by π/2− θ and swapping α and β from a, c respectively.
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Then, since both denominators are unchanged under these replacement, we get

ac

bd
=

sin(θ − α) sin(θ + α)

sin(π/2− θ − β) sin(π/2− θ + β)
· sin2 2β

sin2 2α

=
cos 2θ − cos 2α

cos(π − 2θ)− cos 2β
· 1− cos2 2β

1− cos2 2α

=
cos 2θ − cos 2α

cos(π − 2θ)− cos 2β
· 1− cos 2β

1− cos 2α
· 1 + cos 2β

1 + cos 2α

=
1− 2 sin2 θ −

(
1− 2(r2 sin2 θ)/p2

)

1− 2 cos2 θ − (1− 2(r2 cos2 θ)/p2)
· cos2 θ

sin2 θ
· 2− 2(r2 cos2 θ)/p2

2− 2(r2 sin2 θ)/p2

=
p2 − r2 cos2 θ

p2 − r2 sin2 θ
.

Since sin2 θ + cos2 θ = 1, this value takes maximum when sin θ = 0 and the maximum value

is p2−r2
p2

. Similarly, the minimal value is p2

p2−r2 when sin θ = 1. Therefore, the maximal value

of a2c2

b2d2
+ b2d2

a2c2
is
(
p2−r2
p2

)2
+
(

p2

p2−r2
)2

. Thus we only need to show that

R2

r2
≥
(
p2 − r2
p2

)2

+

(
p2

p2 − r2
)2

Now we derive relation between p, r,R. Let K, L be the intersection of line QI and Γ′,
where K is closer to Q than L. Let the tangent line at K meet Γ at N and the tangent line
at L meet Γ at N ′. We can see that Q,N,N ′ are collinear and this line is a tangent line of Γ
(see figure 2). Let the tangency point be M . Then, since 4QKN and 4QMI are similar,

KN = MI ·QK/QM = r(p− r)/
√
p2 − r2. Thus, KO =

√
R2 −

(
r(p−r)√
p2−r2

)2

. Similarly,

since 4QLN ′ and 4QMI are similar, LN ′ = MI ·QL/QM = r(p+ r)/
√
p2 − r2. Thus,

LO =

√
R2 −

(
r(p+r)√
p2−r2

)2

. Therefore, since 2r = KO + LO, it follows that

2r =

√√√√R2 −
(
r(p− r)√
p2 − r2

)2

+

√√√√R2 −
(
r(p+ r)√
p2 − r2

)2

2r =

√
R2 − p+ r

p− r · r
2 +

√
R2 − p− r

p+ r
· r2

Squaring, we get

4r2 = 2R2 −
(
p+ r

p− r +
p− r
p+ r

)
r2 + 2

√
R2 − p+ r

p− r · r
2

√
R2 − p− r

p+ r
· r2

(
4 +

p+ r

p− r +
p− r
p+ r

)
r2 − 2R2 = 2

√
R2 − p+ r

p− r · r
2

√
R2 − p− r

p+ r
· r2
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Squaring again, we get

(
4 +

p+ r

p− r +
p− r
p+ r

)2

r4 − 4R2r2
(

4 +
p+ r

p− r +
p− r
p+ r

)
+ 4R4 = 4R4 − 4R2r2

(
p+ r

p− r +
p− r
p+ r

)
+ 4r4

((
4 +

p+ r

p− r +
p− r
p+ r

)2

− 4

)
r2 = 16R2

Therefore,

R2

r2
=

1

16

((
4 +

p+ r

p− r +
p− r
p+ r

)2

− 4

)

=
1

16

(
14 +

(
p− r
p+ r

)2

+

(
p+ r

p− r

)2

+ 8

(
p− r
p+ r

+
p+ r

p− r

))

=
14
(
p2 − r2

)2
+ (p− r)4 + (p+ r)4 + 8 (p− r) (p+ r)

(
(p− r)2 + (p+ r)2

)

16 (p− r)2 (p+ r)2

=
2p4 − p2r2
(p2 − r2)2

Therefore we need to show that

2p4 − p2r2
(p2 − r2)2

≥
(
p2 − r2
p2

)2

+

(
p2

p2 − r2
)2

It is equivalent to

p4 − p2r2
(p2 − r2)2

≥
(
p2 − r2
p2

)2

p2

p2 − r2 ≥
(
p2 − r2
p2

)2

p6 ≥
(
p2 − r2

)3
.

The last inequality is obvious.

Following are the diagrams for Lemma 1.
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Solution 2 by Kee-Wai Lau, Hong Kong, China

It is well known that R =
1

4

√
(ab+ cd)(ac+ bd)(ad+ bc)

abcd
and r =

√
abcd

a+ c
=

√
abcd

b+ d
for the

bicentric quadrilateral ABCD. Hence the inequality of the problem is equivalent to

(ab+ cd)(ac+ bd)(ad+ bc)((a+ c)(b+ d)− 16
(
a4c4 + b4d4) ≥ 0 (1)

By homogeneity, we may assume without loss of generality that

c = 1− a (2)

and
d = 1− b (3)
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It can be checked readily, using (2) and (3), that the left hand side of (1) equals

(1 + 4a (1− a)) a2 (a− 1)2 (2a− 1)2 + (1 + 4b(1− b)) b2(b− 1)2(2b− 1)2

+ab(1− a)(1− b)((2a− 1)2 + (2b− 1)2).

Since 0 < a < 1 amnd 0 < b < 1, so the last expression is nonnegative. Thus (1) holds and
this completes the solution.

Also solved by Ed Gray, Highland Beach, FL, and the proposer

5389: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let ABC be a scalene triangle with semi-perimeter s and area A. Prove that

3a+ 2s

a(a− b)(a− c) +
3b+ 2s

b(b− a)(b− c) +
3c+ 2s

c(c− a)(c− b) <
3
√

3

4A .

Solution 1 by Neculai Stanciu, “George Emil Palade” School Buzău, Romania
and Titu Zvonaru, Comaesti, Romania

bc3 − b3c+ a3c− ac3 + ab3 − a3b
abc (a− b)(b− c)(c− a)

<
3
√

3

4A
⇐⇒ (a− b)(b− c)(c− a)(a+ b+ c)

abc(a− b)(b− c)(c− a)
<

3
√

3

4A

⇐⇒ 2s

4AR
<

3
√

3

4A

⇐⇒ 2s < 3R
√

3,

which is the well-known Mitrinović’s inequality (see, e.g., item 5.3 in Geometric Inequalities
by O.Bottema et. al., Groningen, 1969.)

Solution 2 by Ed Gray, Highland Beach, FL

Let the statement of the problem be labeled as (1).

Outline of solution: We will show that the left hand side of (1), l.h.s. (1) =l.h.s. (9)
Statement (12) below is derived from a well known identity.
Statement (13) and onward shows that the l.h.s (9)=l.h.s. (12). So in summary,

l.h.s (1)=l.h.s. (9) =l.h.s.(12) ≤ 3
√

3

4A
.

Collecting the terms on the l.h.s.(1) gives us

(2)
bc(c− b)(4a+ b+ c) + ac(a− c)(a+ 4b+ c) + ab(bb− a)(a+ b+ 4c)

abc(a− b)(b− c)(c− a)
or

(3)
bc(c− b)4a+ (bc)(c2 − b2) + (ac)(a− c)4b+ ac(a2 − c2) + ab(b− a)4c+ ab(b2 − a2)

abc(a− b)(b− c)(c− a)
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(4)
4abc(c− b) + 4abc(a− c) + 4abc)(b− a) + bc(c2 − b2) + ab(a2 − c2) + ab(b2 − a2)

abc(a− b)(b− c)(c− a)
or

(5)
4abc(c− b+ a− c+ b) + bc(c− b)(c+ b) + ac(a− c)(a+ c) + ab(b− a)(b+ a)

abc(a− b)(b− c)(c− a)
=

(6)
bc(c− b)(c+ b) + a− c+ b)

abc(a− b)(b− c)(c− a)
+
ac(a− c)(a+ c) + a− c+ b)

abc(a− b)(b− c)(c− a)
+

ab(b− a)(b+ a)

abc(a− b)(b− c)(c− a)
=

(7)
c+ b

a(a− b)(a− c) +
a+ c

b(c− b)(a− b) +
a+ b

c(c− b)(c− a)
=

(8)
bc(c2 − b2) + ac(a2 − c2) + ab(b2 − a2)

abc(a− b)(b− c)(c− a)
.

Slightly re-arranging (1) becomes

(9)
a3(c− b) + b3(a− c) + c3(b− a)

bc(a3)(c− b) + ac(b3)(a− c) + ab(c3)(b− a)
<

3
√

3

4A
.

A well known identity (GOOGLE) is:

(10)
9abc

a+ b+ c
≥ 4A

√
3, or inverting

(11)
a+ b+ c

9abc
≤ 1

4A
√

3
=

√
3

12A
=

3
√

3

36A

Multiplying by 9

(12)
a+ b+ c

abc
≤ 3
√

3

4A
Hence, it is sufficient to show:

(13)
a3(c− b) + b3(a− c) + c3(b− a)

bc(a3)(c− b) + ac(b3)(a− c) + ab(c3)(b− a)
≤ a+ b+ c

abc
or

(14)

a3(c− b) + b3(a− c) + c3(b− a) ≤ (a+ b+ c)

(
bc(a3)(c− b) + ac(b3)(a− c) + ab(c3)(b− a)

abc

)

or

(15)

a3(c− b) + b3(a− c) + c3(b− a) ≤ (c−b)
(
a3 + a2b+ a2c

)
+(a−c)

(
ab2 + b3 + cb2

)
+(b−a)

(
ac2 + bc2 + c3

)
)

Transposing from left to right

(16)
0 ≤ (c− b)(a2)(b+ c) + (a− c)(b2)(a+ c) + (b− a)(c2)(b+ a)

(a2)(c2 − b2) + (b2)(a2 − c2) + (c2)(b2 − a2) or

(17)
0 ≤ a2c2 − a2b2 + b2a2 − b2c2 + b2c2 − a2c2 = 0. Q.E.D.

Solution 3 by Moti Levy, Rehovot, Israel
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The left hand side of the inequality can be simplified,

3a+ 2s

a (a− b) (a− c) +
3b+ 2s

b (b− c) (b− a)
+

3c+ 2s

c (c− a) (c− b) = 2sabc.

Hence the original inequality is equivalent to

2s

abc
<

3
√

3

4A or to 4A
√

3 <
9abc

a + b + c
. (1)

It is well known that in any triangle, sinA+ sinB + sinC ≤ 3
√

3

2
. Hence

sinA+ sinB + sinC =
a

2R
+

b

2R
+

c

2R
≤ 3
√

3

2
or

a+ b+ c ≤ 3R
√

3. (2)

It is well known that R =
abc

4A . Labeling this equation as (3), it follows from (2) and (3)

that a+ b+ c ≤ 3
abc

4A
√

3, which implies (1).

Remark: Inequality (1) was proposed by T. R. Curry in the “American Mathematical
Monthly”, Vol. 73 (1966) as elementary problem number 1861.
The solution by Leon Bankoff (who served as the editor of the Problem Department of
PME magazine for several years) was selected.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical
Community College, Jamestown, NC; Elsie M. Campbell, Dionne T. Bailey, and
Charles Diminnie, Angelo State University, San Angelo, TX; Bruno Salgueiro
Fanego, Viveiro, Spain; Toshihiro Shimizu, Kawasaki, Japan; Kee-Wai Lau,
Hong Kong, China; Nicusor Zlota “Trian Vuia” Technical College, Focsani,
Romania, and the proposer.

5390: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A ∈M2 (R) such that AAT =

(
a b
b a

)
, where a > b ≥ 0. Prove that AAT = ATA if

and only if A =

(
α β
β α

)
or A =

(
β α
α β

)
, where α =

±
√
a+ b±

√
a− b

2
and

β =
±
√
a+ b∓

√
a− b

2
. Here AT denotes the transpose of A.

Solution 1 by Toshihiro Shimizu of Kawasaki, Japan
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Remark: I assume that a > b > 0.
Let

A =

(
x y
z w

)
.

Then, from the AAT = ATA, it follows that x2 + y2 = x2 + z2 = y2 + w2 = z2 + w2 = a,
xz + yw = xy + zw = b. Thus, y2 = z2, x2 + z2 = y2 + w2 and (x− w)(y − z) = 0. Thus, it
follows that x = w or y = z and y = ±z.
If y 6= z, y = −z 6= 0 and x = w must be satisfied. Then, we can write

A =

(
x y
−y x

)
.

Then, a = x2 + y2, b = 0, a contradiction.
Thus y = z, then x = ±w. Since xz + yw = b > 0, the plus sign must be occured. Thus, we
can write

A =

(
x y
y x

)
,

and x2 + y2 = a, 2xy = b. Then, (x+ y)2 = a+ b implies x+ y = ±
√
a+ b. Thus, x, y is a

two root of the equation t2 ∓
√
a+ bt+ b/2 = 0. Thus,

{x, y} =
{
±
√
a+b+

√
a+b−2b

2 , ±
√
a+b−

√
a+b−2b

2

}
.

Solution 2 by Kee-Wai Lau, Hong Kong, China

If a > b = 0, then the matrix A0 =

(√
a 0

0 −√a

)
satisfying A0A

T
0 =

(
a 0
0 a

)
and

A0A
T
0 = AT

0A0, is neither of the form

(
α β
β α

)
nor of the form

(
β α
α β

)
.

Hence in what follows we always assume that a > b > 0.

Let

(
w x
y z

)
so that AAT =

(
w2 + x2 wy + xz
wy + xz y2 + z2

)
and AAT =

(
w2 + y2 wx+ yz
wx+ yz x2 + z2

)
.

Hence if AAT =

(
a b
b a

)
, then

w2 + x2 = y2 + z2 = a, (1)

and
wy + xz = b. (2)

Suppose that AAT = ATA, then

x2 = y2, (3)

and
wy + xz = wx+ yz. (4)

From (4) we obtain (x− y)(z − w) = 0. We first suppose that x = y. Then by (1), we have
w2 = z2 and by (2) we have x(w + z) = b. Since b > 0, so w = z and we have
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w2 + x2 = a
2wx = b (5)

Solving (5), we obtain (w, x) =

(√
a+ b+

√
a− b

2
,

√
a+ b−

√
a− b

2

)
,

(
−
√
a+ b+

√
a− b

2
,

√
a− b−

√
a+ b

2

)
,

(√
a+ b−

√
a− b

2
,

√
a+ b+

√
a− b

2

)
,

(√
a− b−

√
a+ b

2
,−
√
a+ b+

√
a− b

2

)
,

with corresponding matrices

A1 =




√
a+ b+

√
a− b

2

√
a+ b−

√
a− b

2

√
a+ b−

√
a− b

2

√
a+ b+

√
a− b

2


 ,

A2 =




−
√
a+ b+

√
a− b

2

√
a− b−

√
a+ b

2

√
a− b−

√
a+ b

2
, −

√
a+ b+

√
a− b

2


 ,

A3 =




√
a+ b−

√
a− b

2

√
a+ b+

√
a− b

2

√
a+ b+

√
a+ b

2
,

√
a+ b−

√
a− b

2


 , and

A4 =




√
a− b−

√
a− b

2
−
√
a+ b+

√
a− b

2

−
√
a+ b+

√
a− b

2
,

√
a− b−

√
a+ b

2


 .

It is easy to check that Ak satisfies AkA
T
k =

(
a b
b a

)
and that AkA

T
k = AT

kAk for k = 1, 2, 3, 4.

Next we suppose that w = z. Then by (2), we have w(x+ y) = b. Since b > 0, so by (3), we
have x = y, and we arrive at (5) again. This completes the solution.

Solution 3 by the Proposer
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One implication is easy to prove. If A =

(
α β
β α

)
or A =

(
β α
α β

)
, with

α =
±
√
a+ b±

√
a− b

2
and β =

±
√
a+ b∓

√
a− b

2
, then

AAT = ATA =

(
α2 + β2 2αβ

2αβ α2 + β2

)
=

(
a b
b a

)
.

Now we prove the other implication. First we note, since det(AAT ) = det2A = a2 − b2 > 0,

that A is invertible. The equation AAT =

(
a b
b a

)
implies that

AT = A−1
(
a b
b a

)
= A−1(aI2 + bJ), where J =

(
0 1
1 0

)
. The equation AAT = ATA

implies that AAT = aI2 + bJ = (aA−1 + bA−1J)A = ATA, and this in turn implies

bA−1JA = bJ and, since b 6= 0, we get that JA = AJ . Let A =

(
x y
u v

)
. Since JA = AJ

we get that u = y and v = x, so A =

(
x y
y x

)
. We have

AAT =

(
x2 + y2 2xy

2xy x2 + y2

)
=

(
a b
b a

)

and this implies that x2 + y2 = a and 2xy = b. Since we have a symmetric system it is clear
that the values of x and y could be interchanged. Adding and subtracting these equations
we get that (x+ y)2 = a+ b and (x− y)2 = a− b, and we have x+ y = ±

√
a+ b and

x− y = ±
√
a− b. Thus, x =

±
√
a+ b±

√
a− b

2
, y =

±
√
a+ b∓

√
a− b

2
and the problem is

solved.

Also solved by Boris Rays, Brooklyn, NY; Dexter Harrell (Undergraduate
Student), Auburn University Montgomery, AL; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA.

Problem 5375* once again

Toshihiro Shimizu of Kawasaki, Japan has the solved 5375*. (We can now remove the
asterisk from its label.) Following is a restatement of Kenneth Korbin’s problem and
Toshihiro’s solution to it.

5375 (revised): Prove or disprove the following conjecture. Let k be the product of N
different prime numbers each congruent to 1(mod 4).

The total number of different rectangles and trapezoids with integer length sides and

diagonals that can be inscribed in a circle with diameter k is exactly
5N − 3N

2
.

19X
ia
ng
’s
T
ex
m
at
h



Solution

Let a, b be the length of longer and shorter sides of the trapezoid (or rectangle, in this case
let a = b), c be the length of other sides and d be the length of the diagonal. Let α, β, γ, δ
be the central angle with respect to the circumcircle of the segment (side or diagonal) with
length a, b, c, d, respectively. We can see that

sin
α

2
=
a

k

sin
β

2
=
b

k

sin
γ

2
=
c

k

sin
δ

2
=
d

k
.

Moreover, α = δ − γ, β = δ + γ. Thus, it follows that

a

k
= sin

α

2
= sin

(
δ

2
− γ

2

)
=
d
√
k2 − c2 − c

√
k2 − d2

k2

b

k
= sin

β

2
= sin

(
δ

2
+
γ

2

)
=
d
√
k2 − c2 + c

√
k2 − d2

k2
.

Thus, k2 − c2 and k2 − d2 must be perfect square. (♥)Let these perfect squares be c′2, d′2,
respectively. Then, ak = dc′ − cd′, bk = dc′ + cd′. Thus, both dc′, cd′ must be divisible by k.
Since dc′ − cd′ > 0, it must follow that d > c.

Conversely, if we are given (c, d) with these condition, we can get a, b and the trapezoid (or
rectangle) is determined. Thus, we calculate the number of (c, d).

It follows that

k2 = c2 + c′2

k2 = d2 + d′2

Let k1 = gcd(c, k) and k2 = k/k1. Then, gcd(c′, k) = k1 and d is divisible by k2.

Let k1 be the product of M prime numbers. We calculate the number of (c, d) with the
fixed k1. Since, the case that c = d is impossible we ignore the condition d > c and divide
the result by 2.

The number of c with simply k1 | c is 3N−M − 1(see Note 2), since the condition is
(k/k1)

2 = (c/k1)
2 + (c′/k1)2. But this value over-counts the case that k1p | c, where p is a

prime divisor of k but not of k1. Thus, we need to subtract 3N−M−1 − 1. We also
undercounted the case that cpq, where p, q is a prime divisor of k but not k1, and so on.
Thus the number of c is calculated, by Inclusion-exclusion principle, that

N−M∑

t=0

(
N −M

t

)
· (−1)t

(
3N−M−t − 1

)
= (3− 1)N−M − (1− 1)N−M

= 2N−M
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The number of d can be simply calculated as 3M − 1. Thus, summing up about M , the total
number of {c, d} is

N∑

M=0

(
N

M

)
2N−M · (3M − 1) = (2 + 3)N − (2 + 1)N

= 5N − 3N

Thus, the total number of (c, d) is
5N − 3N

2
.

Note 1: about (♥): precisely, I think we can show that if a
√
x+ b

√
y is rational, where

a, b ∈ Q+ and x, y are non-negative integer, then both x, y must be perfect square.

Note 2: From Jacobi’s two square theorem
(http://web.maths.unsw.edu.au/˜mikeh/webpapers/paper21.pdf), the number of integer
(x, y) with k2 = x2 + y2 is

4
∑

26|d|n
(−1)

d−1
2 = 4

∑

d|n
1 = 4 · 3N .

Among these integer roots, there are four with at least one of them is zero (±k, 0), (0,±k).
Other 4 · 3N − 4 of them are classified to (±x,±y) with x, y > 0. Thus, the number of
positive integer roots can be written as 3N − 1.

Mea− Culpa

Mistakes happen. Arkady Alt of San Jose, CA should have been credited with having
solved 5381, and G. C. Greubel of Newport News, VA should have been listed for
having solved, in two different ways, 5384. I am sorry for these mistakes.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2016

• 5409: Proposed by Kenneth Korbin, New York, NY

Given isosceles trapezoid ABCD with AB < CD, and with diagonal AC = AB + CD.
Find the perimeter of the trapezoid if 4ABC has inradius 12 and if 4ACD has
inradius 35.

• 5410: Proposed by Arkady Alt, San Jose, CA

For the given integers a1, a2, a3 ≥ 2 find the largest value of the integer semiperimeter of
a triangle with integer side lengths t1, t2, t3 satisfying the inequalities ti ≤ ai, i = 1, 2, 3.

• 5411: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania

Let (an)n≥1 , (bn)n≥1 be real valued positive sequences with lim
n→∞

an = lim
n→∞

bn = a ∈ R∗+
If lim
n→∞

(n (an − a)) = b ∈ R and lim
n→∞

(n (bn − a)) = c ∈ R compute

lim
n→∞

(
an+1

n+1
√

(n+ 1)!− bn n
√
n!
)
.

Note: R∗+ means the positive real numbers without zero.

• 5412: Proposed by Michal Kremzer, Gliwice, Silesia, Poland

Given positive integer M . Find a continuous, non-constant function f : R→ R such
that f (f(x)) = f ([x]), for all real x, and for which the maximum value of f(x) is M .

Note: [x] is the greatest integer function.

• 5413: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Compute

lim
n→∞

1

n

∑

1≤i≤j≤n

1√
(n2 + (i+ j)n+ ij)

.
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• 5414: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A,B ∈M2(C) be such that 2015AB − 2016BA = 2017I2. Prove that

(AB −BA)2 = O2.

Here, C is the set of complex numbers.

Solutions

• 5391: Proposed by Kenneth Korbin, New York, NY

A triangle with integer length sides (49, b, b+ 1) has integer area. Find two possible
values of b.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

If we let s and A denote the triangle’s semi-perimeter and area, respectively, then

s =
49 + b+ (b+ 1)

2
= b+ 25

and Heron’s Formula yields

A2 = s (s− 49) (s− b) (s− (b+ 1))

= (b+ 25) (b− 24) (25) (24)

= 600 (b+ 25) (b− 24) .

Since A is a positive integer, we must have

(b+ 25) (b− 24) = 6k2 (1)

for some positive integer k. If we expand the left side of (1) and complete the square, we
ultimately obtain

(2b+ 1)2 − 24k2 = 2401 = 492.

One way to find acceptable values for b, k, and A is to solve the Pell Equation

x2 − 24y2 = 1 (2)

and then set 2b+ 1 = 49x, k = 49y, and A = 60k. Since the solution of (2) with the
smallest value of x is x = 5, y = 1, we get all solutions (xn, yn) of (2) by setting

xn + yn
√

24 =
(

5 +
√

24
)n
.

For each solution, we let b =
49xn − 1

2
, k = 49yn, and A = 60k. The first five solutions

of (2) and the corresponding values of b, k, and A are listed in the following table.

x y b k A

5 1 122 49 2, 940

49 10 1, 200 490 29, 400

485 99 11, 882 4, 851 291, 060

4, 801 980 117, 624 48, 020 2, 881, 200

47, 525 9, 701 1, 164, 362 475, 349 28, 520, 940
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Editor’s note: Some readers extended the above table a bit further. David Stone and
John Hawkins of Georgia Southern University added the following to the above
table.

x y b k A

47, 525 9, 701 1, 164, 362 475, 349 28, 520, 940

11,526,000 28,232,820 282,328,200

114,095,642 279,476,106 2,794,761,060

1,129,430,424 2,766,528,240 27,665,282,400

11,180,208,602 27,385,806,294 273,858,062,940

Also solved by Ulrich Abel, Technische Hochschule Mittelhessen, Germany;
Jeremiah Bartz, University of North Dakota, Grand Forks, ND; Brian
Beasley, Presbyterian College, Clinton, SC; Bruno Salgueiro Fanego,
Viveiro, Spain; Ed Gray, Highland Beach, FL; Paul M. Harms, North
Newton, KS; Kee-Wai Lau, Hong Kong, China; Carl Libis, Columbia
Southern University, Orange Beach, AL; Charles McCracken, Dayton, OH;
John Nord, Spokane, WA; Toshihiro Shimizu, Kawasaki Japan; Neculai
Stanciu “George Emil Palade” School, Buzău, Romania and Titu Zvonaru,
Comănesti, Romania; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

Editor’s note: The problem solving column is sometimes used in a problem solving
course offered at Taylor University in Upland, IN, where the students in the
course often work in small groups. Each of the following students at Taylor University
should also be credited with having solved 5391.

Group 1: Madison Massot, Julia Noonan and Benjamin Thayer
Group 2: Amish Mishra, Raquel Helton, and Allie Ternet
Group 3: Matt Garringer, Sarah Glett, and Erin Song
Group 4: Caleb Belmont, Caleb Holleman, and Nick Iorio

A comment and a question about 5391 from the proposer, Kenneth Korbin.

It can be seen that there are infinitely many Primitive Heronian Triangles that have a
side with length 49.

Question: Is there another positive integer less than 1500 that can also be the length of
a side of infinitely many Primitive Heronian Triangles?

• 5392: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu,“George
Emil Palade” School, Buzău, Romania

Prove that if x, y, z > 0, then

4
(
x2 + y2 + z2

)

27 (xy + yz + zx)
+

x

7x+ y + z
+

y

x+ 7y + z
+

z

x+ y + 7z
≥ 13

27
.

Solution 1 by Kee-Wai Lau, Hong Kong, China

By homogeneity, we assume without loss of generality that x+ y + z = 1.
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Let t = x2 + y2 + z2 so that xy + yz + zx =
(x+ y + z)2 − (x2 + y2 + z2)

2
=

1− t
2

and

4(x2 + y2 + z2)

27(xy + yz + zx)
=

8t

27(1− t) . Since the function
1

1 + 6s
is convex for s > 0, so by

Jensen’s inequality, we have

x

7x+ y + z
+

y

x+ 7y + z
+

z

x+ y + 7z
=

x

1 + 6x
+

y

1 + 6y
+

z

1 + 6z
≥ 1

1 + 6(x2 + y2 + z2)
=

1

1 + 6t
.

Hence the left side of the inequality of the problem is greater than or equal to

8t

27(1− t) +
1

1 + 6t
=

14(3t− 1)2

27(1− t)(1 + 6t)
+

13

27
≥ 13

27
,

as desired.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata,
Rome, Italy

By Cauchy–Schwarz reversed, we get

∑

cyc

x

7x+ y + z
=
∑

cyc

x2

x(7x+ y + z)
≥ (x+ y + z)2

7(x2 + y2 + z2) + 2(xy + yz + zx)
.

The inequality is implied by

4(x2 + y2 + z2)

27(xy + yz + zx)
+

x2 + y2 + z2 + 2(xy + yz + zx)

7(x2 + y2 + z2) + 2(xy + yz + zx)
− 13

27
≥ 0 (1)

Since the l.h.s. of (1) is equal to 756(x2 + y2 + z2 − xy − yz − zx)2 ≥ 0
the original inequality is proven.

Solution 3 by Nicusor Zlota, “Traian Vuia”Technical College, Focsani,
Romania

1

3
−
∑

cyclic

x

7x+ y + z
=
∑

cyclic

(
1

9
− x

7x+ y + z

)
=

∑

cyclic

y + z − 2x

9(7x+ y + z)

=
∑

cyclic

y − x
9(7x+ y + z)

+
∑

cyclic

z − x
9(7x+ y + z)

=
∑ y − x

9(7x+ y + z)
+
∑ x− y

9(x+ 7y + z)

=
∑ (x− y)2

3(7x+ y + z)(x+ 7y + z)
,

and
4(x2 + y2 + z2)

27(xy + yz + zx)
− 4

27
=

2
∑

(x− y)2

27(xy + yz + zx)
.
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So, the inequality becomes

∑ (x− y)2

3(7x+ y + z)(x+ 7y + z)
≤ 2

∑
(x− y)2

27(xy + yz + zx)
.

To show this it suffices to show that

(x− y)2

3(7x+ y + z)(x+ 7y + z)
≤ 2(x− y)2

27(xy + yz + zx)
⇐⇒ 2(7x+y+z)(x+7y+z) ≥ 9(xy+yz+zx).

I.e.,
14x2 + 14y2 + z2 + 91xy + 7yz + 7zx ≥ 0,

which is obviously true.

Equality holds if x = y = z.

Solution 4 by Moti Levy, Rehovot, Israel

This inequality deserves brute force attack by Muirhead’s inequality.

4
(
x2 + y2 + z2

)

xy + yz + zx
+

27x

7x+ y + z
+

27y

x+ 7y + z
+

27z

x+ y + 7z
− 13 ≥ 0.

After some tedious manipulations, our inequality is equivalent to:

28
∑

cyc

x5+164
∑

cyc

x4y+164
∑

cyc

xy4+728
∑

cyc

x3yz ≥ 80
∑

cyc

x3z2+80
∑

cyc

x2z3+924
∑

cyc

x2y2z,

or to
14
∑

sym

x5 + 164
∑

sym

x4y + 364
∑

sym

x3yz ≥ 80
∑

sym

x3z2 + 462
∑

sym

x2y2z.

Now we prepare the inequality for application of Muirhead’s inequality by splitting some
terms in left and right hand sides:

14
∑

sym

x5+66
∑

sym

x4y+98
∑

sym

x4y+364
∑

sym

x3yz ≥ 14
∑

sym

x3z2+66
∑

sym

x3z2+98
∑

sym

x2y2z+364
∑

sym

x2y2z.

We use the following majorization relations:

(5, 0, 0) � (3, 2, 0) ,

(4, 1, 0) � (3, 2, 0) ,

(4, 1, 0) � (2, 2, 1) ,

(3, 1, 1) � (2, 2, 1)

to show that
∑

sym

x5 ≥
∑

sym

x3z2,

∑

sym

x4y ≥
∑

sym

x3z2,

∑

sym

x4y ≥
∑

sym

x2y2z,

∑

sym

x3yz ≥
∑

sym

x2y2z.
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A nice tutorial on the application of Muirhead’s inequality can be found at:
https://kheavan.files.wordpress.com/2010/06/muirhead-69859.pdf

Also solved by Arkady Alt, San Jose, CA; Michael Brozinsky, Central Islip,
NY; Ed Gray, Highland Beach, FL; Toshihiro Shimizu, Kawasaki Japan;
Albert Stadler, Herrliberg, Switzerland, and the proposer.

• 5393: Proposed by José Luis Dı́az-Barrero, Barcelona, Tech, Barcelona, Spain

Through the midpoint of the diagonal BD in the convex quadrilateral ABCD we draw
a straight line parallel to the diagonal AC. This line intersects the side AD at the point
E. Show that

1

[ABC]
+

1

[AEC]
≥ 4

[CED]
.

Here [XY Z] represents the are of 4XY Z.

Solution 1 by Arkady Alt, San Jose, CA
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We assume that midpoint M of diagonal BD does not coincide with K ( the point of
intersection of AC and BD) because otherwise [AEC] = 0.

Also, w.l.o.g. assume that KD > BK.

Let r = BM = MD and d := KM. Since ME ‖ AC then
AE

ED
=
KM

MD
=
d

r
and,

therefore,

[AEC] = [ACD] · AE
AD

= [ACD] · d

r + d
and [CED] = [ACD] · ED

AD
= [ACD] · r

r + d
.

Let BP,DQ ⊥ AC.Then 4KPB ≈ 4KQD =⇒ BP

DQ
=
BK

DK
and since

BK = r − d,KD = r + d we have
[ABC]

[ADC]
=
AC ·BP
AC ·DQ =

r − d
r + d

.

Thus,
1

[ABC]
+

1

[AEC]
≥ 4

[CED]
⇐⇒ 1

[ABC]
+

r + d

d · [ACD]
≥ 4 (r + d)

r · [ACD]
⇐⇒

[ACD]

[ABC]
+
r + d

d
≥ 4 (r + d)

r
⇐⇒ r + d

r − d +
r + d

d
≥ 4 (r + d)

r
⇐⇒ 1

r − d +
1

d
≥ 4

r

and we have
1

r − d +
1

d
− 4

r
=

(r − 2d)2

dr (r − d)
≥ 0.

Solution 2 by Toshihiro Shimizu, Kawasaki Japan

Let M be the midpoint of BD, F be the intersection of AC and BD and S be the area
of the quadrilateral ABCD. Let x = FB/DB. Then, [ABC] = xS, [ADC] = (1− x)S
and DM/DF = 1/(2(1− x)). Thus, [AEC] = [ADC] |AE/AD| = [ADC] |MF/DF | =
(1− x)S ((1/2− x)/(1− x)) = (1/2− x)S. Similarly,
[CED] = [ADC] |ED/AD| = [ADC] |MD/DF | = (1− x)S |(1/2)/(1− x)| = 1/2S.
Therefore we need to show that

1

x
+

1
1
2 − x

≥ 4

1/2
= 8.

From Cauchy-Schwarz’s inequality,

(
1

x
+

1
1
2 − x

)(
x+

1

2
− x
)
≥ 22

.It’s equivalent to the desired inequality.

Soltuion 3 by Kee-Wai Lau, Hong Kong, China

Without loss of generality, let BD = 2. Let
O = (0, 0), A = (xA, yA), B = (0, 1), C = (xC , yC) , D(0,−1), where xA > 0 and xC < 0.

Suppose that AC and BD interset at F = (0, f). Since OE||AC and E lies on AD, so

f > 0. Since quadrilateral ABCD is convex, so f < 1. Suppose that slope of AC =

slope of OE = m. We readily obtain yA = mxA + f, yC = mxC + f and

E =

(
xA

1 + f
,
mxA
1 + f

)
. By the standard formula, we obtain [ABC] =

(1− f)(xA − xC)

2
.

[AEC] =
f(xA − xC)

2
and [CED] =

xA − xC
2

. Hence the inequality of the problem is

7

X
ia
ng
’s
T
ex
m
at
h



equivalent to
1

1− f +
1

f
≥ 4. But this follows from the fact that

1

1− f +
1

f
− 4 =

(1− 2f)2

(1− f)f
≥ 0.

This completes the solution.

Solution 4 by Bruno Salgueiro Fanego, Viveiro, Spain

Let M be the midpoint of the diagonal BD and let us draw a straight line parallel to
the diagonal AC through B.

NB is parallel to AC, triangles ABC and ANC have the same basis AC and the same
altitude, so [ABC] = [ANC].

By the Arithmetic Mean -Harmonic Mean Inequality applied to the positive numbers
[ANC] and [AEC]

1

[ABC]
+

1

[AEC]
=

1

[ANC]
+

1

[AEC]
≥ 4

[ANC] + [AEC]
=

4

[CNE]
,

with equality iff [ANC] = [AEC], that is, iff AN = AE, or equivalently, NE = 2AE;
that DE = 2AE, or what is the same AD = 3AE, i.e., DP = 3MP , where P denotes
the intersection of the diagonals AC and BD. Since M is the midpoint of BD, this is
equivalent to DP = 3BP .

ME and BNare parallel lines (because they are both parallel to the diagonal AC) and
M is the midpoint of BD, so E is the midpoint of DN and, hence triangles CNE and
CED have the same area (because they have the same base-lengths NE = DE, and the
same altitude (distance (C,AD)).

Thus,
1

[ABC]
+

1

[AEC]
≥ 4

[DEC]
, and equality occurs iff the diagonal AC divides the

diagonal BD in the ratio 3 : 1.

Also solved by Boris Rays, Brooklyn, NY; Yaqub Aliyev, Qafqaz University,
Baku, Azerbaijan, and the proposer.

5394: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Let a, b and c be positive real numbers such that ab+ bc+ ca = 3 and n > 1.
Prove that

n

√
a+

1

abc
+

n

√
b+

1

abc
+

n

√
c+

1

abc
≥ 3

n
√

2.

Solutions 1 and 2 by Henry Ricardo, New York Math Circle, NY.

We have, using the AM-GM inequality several times,

∑

cyclic

n

√
a+

1

abc
≥ 3

[(
a+

1

abc

)(
b+

1

abc

)(
c+

1

abc

)]1/3n

≥ 3
[
2
√

1/bc · 2
√

1/ac · 2
√

1/ab
]1/3n

= 3

(
8

abc

)1/3n

=
3 n
√

2

(abc)1/3n
≥ 3

n
√

2
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since 3 = ab+ bc+ ca ≥ 3 3
√

(abc)2 implies that 1/abc ≥ 1.

Equality holds if and only if a = b = c = 1.

Solution 2:

We have, using the AM-GM inequality several times,

∑

cyclic

n

√
a+

1

abc
≥ n
√

2 ·
∑

cyclic

1

(bc)1/2n

≥ n
√

2


3

3

√(
1

bc

)1/2n( 1

ca

)1/2n( 1

ab

)1/2n



= 3
n
√

2

(
1

(abc)1/3n

)
≥ 3

n
√

2

since 3 = ab+ bc+ ca ≥ 3 3
√

(abc)2 implies that 1/abc ≥ 1.

Equality holds if and only if a = b = c = 1.

Solution 3 by Nikos Kalapodis, Patras, Greece

By the AM-GM inequality we have 3 = ab+ bc+ ca ≥ 3 3
√

(abc)2. It follows that
1

abc
≥ 1.

Using again AM-GM inequality properly, we have

n

√
a+

1

abc
+ n

√
b+

1

abc
+ n

√
c+

1

abc
≥ n

√
2√
bc

+ n

√
2√
ca

+ n

√
2√
ab
≥ 3

3

√
n

√
23

abc
=

3
3n

√
23

abc
≥ 3

3n
√

23 = 3 n
√

2.

Solution 4 by Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania and Titu Zvonaru Comănesti, Romania

By the AM-GM inerquality we have

2n
√
bc = 2n

√
1 · 1 · 1 · . . . · 1(bc) ≤ 2n− 1 + bc

2n
, and the other two inequalities analogously.

Hence, by the AM-GM inequality and Bergström’s inequality we obtain

n

√
a+

1

abc
+

n

√
b+

1

abc
n

√
c+

1

abc
≥ n

√
2

(
1

2n
√
bc

+
1

2n
√
ca

+
1

2n
√
ab

)

Bergström
≥

n
√

2 · 9
2n
√
ab+ 2n

√
bc+ 2n

√
ca

≥ n
√

2 · 9

2n− 1 + ab+ 2n− 1 + bc+ 2n− 1 + ca

2n
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=
n
√

2 · 18n

6n
= 3

n
√

2, and we are done.

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell,
and Charles Diminnie, Angelo State University, San Angelo, TX; Michael
Brozinsky, Central Islip, NY; Bruno Salgueiro Fanego, Viveiro Spain; Ed
Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy,
Rehovot, Israel; Boris Rays, Brooklyn, NY; Toshihiro Shimizu, Kawasaki
Japan; Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania,
and the proposer.

5395: Proposed by Mohsen Soltanifar (Ph.D. student), Biostatistics Division, Dalla
Lana School of Public Health, University of Toronto, Canada.

Given the sequence {σ2n}∞n=1 of positive numbers X1 ∼ N(µ, σ21) . Define recursively a
sequence of random variables {Xn}∞n=1 via

Xn+1|Xn ∼ N
(
Xn, σ

2
n+1

)
n = 1, 2, 3, . . .

Calculate the limit distribution X of {Xn}∞n=1.

Reference: Rosenthal, J.S. (2007). A First Look at Rigorous Probability (2nd edition),
World Scientific, p. 139.

Proposer’s note concerning the problem:

This is a Bayesian Hierarchical Model of Human Heights from Adam & Eve to the end
of time.

Consider a family with its children. We know that height has a normal distribution. We
also know that height of children is due to genetic factors which are dependent on the
height of their parents, but usually this distribution has the same mean as the mean
height of their parents but may vary (some children are taller, some shorter, some are
average- versus their parents). So, the height of children may be modeled as the normal
distribution conditioned to the height of their parents with same mean but potentially
different variance.

The first term in the sequence is the distribution of height of Adam & Eve. The second
term is the conditional distribution of their children’s height. This goes till the end of
time consecutively when, according to some beliefs, the Messiah returns. Accordingly,
the Messiah will return and a generation of humans will observe this return . But we do
not know when this will occur. So, we may assume the Messiah will return as time
approaches infinity, and that the distribution of the height of generations of humans
that observe the return is “X”. We are interested in knowing certain features of this
distribution.

This problem is a mathematical modeling of the above belief.

Solutions 1 and 2 by Moti Levy, Rehovot, Israel

The random variables {Xn}∞n=1 have normal distribution Xn ∼ N
(
µn, s

2
n

)
.
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The probability density function of Xn is fXn (t) = 1√
2πsn

e
− (t−µn)2

2s2n .The probability

density function of Xn+1 |Xn is fXn+1|Xn (t) = 1√
2πσn+1

e
− (t−Xn)2

2σ2n+1 .

The probability density function of Xn+1 is given by the following integral

fXn+1 (t) =

∫ ∞

−∞
fXn+1|Xn (ξ) fXn (ξ) dξ =

∫ ∞

−∞

(
1√

2πσn+1

e
− (t−ξ)2

2σ2n+1

)(
1√

2πsn
e
− (ξ−µn)2

2s2n

)
dξ

=
1

√
2π
√
σ2n+1 + s2n

e
− (t−µn)2

2(σ2n+1+s
2
n) = N

(
µn, σ

2
n+1 + s2n

)
.

By induction argument, the mean of Xn+1 = µ and the variance of Xn+1 =
∑n+1

k=1 σ
2
k.

The limit distribution of {Xn}∞n=1 is N
(
µ,
∑∞

k=1 σ
2
k

)
.

Solution 2 Remark: Alternative method for finding the probability density function of
Xn+1 is by employing characteristic functions defined as follows:

ϕX (t) := E
[
eitX

]
.

The characteristic function of normal random variable X ∼ N
(
µ, σ2

)
is

ϕX (t) = eiµt−
1
2
σ2t2 .

ϕXn+1 (t) = E
[
E
[
eitXn+1 |Xn

]]
= E

[
eiXnt−

1
2
σ2
n+1t

2
]

= e−
1
2
σ2
n+1t

2
E
[
eiXnt

]
= e−

1
2
σ2
n+1t

2
ϕXn (t)

= e−
1
2
σ2
n+1t

2
eiµnt−

1
2
s2nt

2
= eiµnt−

1
2(σ2

n+1+s
2
n)t2

It follows that Xn+1 ∼ N
(
µn, σ

2
n+1 + s2n

)
.

Solution 3 by Toshihiro Shimizu, Kawasaki Japan

Let f(x | µ, σ2) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
be the density function of the normal

distribution. Let gn(x) be the density function of the distribution Xn. We show that
gn(x) = f

(
x | µ,∑n

i=1 σ
2
i

)
. n = 1 is obvious. We asume that the statement is true for

some n. Then,

gn+1(x) =

∫ ∞

−∞
f(x | t, σ2n+1) · gn(t)dt

=

∫ ∞

−∞
f(x− t | 0, σ2n+1) · f

(
t− µ | 0,

n∑

i=1

σ2i

)
dt

= f

(
x− µ | 0,

n+1∑

i=1

σ2i

)

= f

(
x | µ,

n+1∑

i=1

σ2i

)
.

Thus, the statement is true for n+ 1.
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If the value
∑∞

i=1 σ
2
i is bounded, it converges to some value σ2. Then, the limit

distribution X is N(µ, σ2). If the value
∑∞

i=1 σ
2
i is not bounded. There is no limit

distribution.

Also solved by the proposer.

5396: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Find all continuous functions f : < → < such that

f(−x) = x+

∫ x

0
e−tf(x− t)dt, ∀x ∈ <.

Solution 1 by Michael Brozinsky, Central Islip,NY

If we rewrite the given equation as f(−x) = x+ e−x
(∫ x

0
ex−tf(t)dt

)
and use the

change of variable u = x− t, the given equation can be written as

f(−x) = x+ e−x
(∫ x

0
euf(u)du

)
. (1)

Note that the right hand side is a differentiable function of x follows from the
fundamental theorem of integral calculus and thus so is f(x) or equivalently,

(f(−x)− x) · ex
(∫ x

0
euf(u)du

)
. (2)

If we differentiate both sides of (2) with respect to x and use the chain rule and the
fundamental theorem of integral calculus we obtain

(f(−x)− x) · ex + ex · (−f ′(−x)− 1) = ex · f(x) and so dividing by ex gives

(f(−x)− x) + (f ′(−x)− 1) = f(x) which can be written as

f ′(x) = f(−x)− x− 1− f(x) (3)

The right hand side of (3) is differentiable and using (3) (or its equivalent form in which
all x′s are replaced by −x) we have by differentiation

f ′′(−x) · (−1) = f ′(−x) · (−1)− 1− f ′(x)

= (f(−x)− x− 1− f(x)) · (−1)− 1− (f(x) + x− 1− f(−x))

= 1. (4)

If we subtract two times equation (3) from equation (4) we obtain

f ′′(−x) · (−1)− 2 · f ′(−x) = 3− 2 · f(−x) + 2x+ 2 · f(x)

using(3)
= 3− 2 · f(−x) + 2x+ 2 · (f(−x)− x− 1− f ′(−x))

= −2 · f ′(−x) + 1,

so that f(x) satisfies the differential equation.
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f ′′(x) = −1 where the initial conditions f(0) = 0 and f ′(0) = 1 and f ′′(0) = −1 follow
from the given equation and from (3) and (4) respectively.

Hence, f(x) = a+ bx+ cx2 and the initial conditions readily give a = 0, b = −1 and

c = −1

2
, so that f(x) = −x− 1

2
x2.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

We perform a change of variables and get

f(−x) = x+

∫ x

0
e−tf(x− t)dt = x+ e−x

∫ x

0
dtf(t)dt. (1)

The right hand side is a differentiable function, since f is continuous . The f is

differentiable. Suppose f is n-times differentiable. Then x+ e−x
∫ x

0
etf(t)dt is

differentiable n+ 1 times, and so f is n+ 1 times differentiable. So f is differentiable
infinitely many times. Thus,

(f(x) + x)e−x =

∫ −x

0
etf(t)dt,

d

dx

(
(f(x) + x)e−x

)
= −e−xf(−x) = −e−x

(
x+ e−x

∫ x

0
etf(t)dt

)
,

−f(x)e−x + f ′(x)e−x + e−x − xe−x = −xe−x − e−2x
∫ x

0
etf(t)dt,

−f(x)ex + f ′(x)ex + ex = −
∫ x

0
etf(t)dt, (2)

d

dx

(
−f(x)ex + f ′(x)ex

)
+ ex = −exf(x),

−f(x)ex + f ′′(x) + ex = −f(x)ex,

f ′′(x) = −1

We deduce from (1) and (2) that f(0) = 0 and f ′(0) = 1. So

f(x) = −1

2
x2 − x = −1

2
x(x+ 2).

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Moti Levy, Rehovot, Israel; Toshihiro Shimizu, Kawasaki
Japan, and the proposer.

Late Solutions Received

The name of Paul M. Harms of North Newton, KS should be added to the list of
those who solved 5390. He also noted in his solution that the case of b = 0, which was
allowed in the statement of the problem, led to a counter example of the statement, and
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like the others who solved this problem, he showed that the problem was only true for
b > 0.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2017

• 5415: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with inradius r and with cevian CD. Triangle ACD has
inradius x and triangle BCD has inradius y, where x, y and r are positive integers with
(x, y, r) = 1.
Part 1: Find x, y, and r if x+ y − r = 100

Part 2: Find x, y, and r if x+ y − r = 101.

• 5416: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Two congruent intersecting holes, each with a square cross-section were drilled through
a cube. Each of the holes goes through the opposite faces of the cube. Moreover, the
edges of each hole are parallel to the appropriate edges of the original cube, and the
center of each hole is at the center of the original cube. Letting the length of the original
cube be a, find the length of the square cross-section of each hole that will yield the
largest surface area of the solid with two intersecting holes. What is the largest surface
area of the solid with two intersecting holes?
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• 5417: Proposed by Arkady Alt, San Jose, CA

Prove that for any positive real number x, and for any natural number n ≥ 2,

n

√
1 + x+ · · ·+ xn

n+ 1
≥ n−1

√
1 + x+ · · ·+ xn−1

n
.
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• 5418: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania

Let ABC be an acute triangle with circumradius R and inradius r. If m ≥ 0, then prove
that ∑

cyclic

cosA cosm+1B

cosm+1C
≥ 3m+1Rm

2m+1(R+ r)m
.

• 5419: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, · · · , an be positive real numbers. Prove that

n∏

k=1

(
n∑

k=1

atkk

)
≥
(

n∑

k=1

a
tn+1

4
k

)n

where for all k ≥ 1, tk is the kth tetrahedral number defined by tk =
k(k + 1)(k + 2)

6
.

• 5420: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A =

(
3 1
−4 −1

)
. Calculate

lim
n→∞

1

n

(
I2 +

An

n

)n
.

Solutions

• 5397: Proposed by Kenneth Korbin, New York, NY

Solve the equation 3
√
x+ 9 =

√
3 + 3
√
x− 9 with x > 9.

Solution 1 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Cube both sides of the given equation and rearrange to obtain

(x− 9)2/3 +
√

3 (x− 9)1/3 +
(

1− 2
√

3
)

= 0.

This is a quadratic equation with respect to u = 3
√
x− 9 with solutions

u =
−
√

3±
√

8
√

3− 1

2
.

When x > 9, we have u > 0 and

x = 9 +

(
−
√

3 +
√

8
√

3− 1

2

)3
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=
(

1 +
√

3
)(

8
√

3− 1
)1/2

=

√
44 + 30

√
3.

Solution 2 by Brain D. Beasely, Presbyterian College, Clinton, SC

Rewriting the given equation and cubing both sides yields

(x+ 9)− 3 3
√

(x+ 9)2(x− 9) + 3 3
√

(x+ 9)(x− 9)2 − (x− 9) = 3
√

3,

or 3 3
√
x2 − 81( 3

√
x− 9− 3

√
x+ 9) = 3

√
3− 18. Then −3

√
3 3
√
x2 − 81 = 3

√
3− 18, so

cubing once more produces

−81
√

3(x2 − 81) = 2997
√

3− 7290.

Hence x2 = 30
√

3 + 44, so requiring x > 9 yields x =
√

30
√

3 + 44 ≈ 9.795995.

Solution 3 by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC

It is well known that if a+ b+ c = 0, then a3 + b3 + c3 = 3abc. (1)

From the equation we have 3
√
x+ 9−

√
3− 3
√
x− 9 = 0, and with the help of (1) we get

x+ 9− 3
√

3− (x− 9) = 3
√

3 · 3
√
x2 − 81

18− 3
√

3 = 3
√

3 · 3
√
x−81, and dividing both sides by 3

√
3, gives

2
√

3− 1 =
3
√
x2 − 81. (2)

From (2) we have (2
√

3− 1)3 = x2 − 81, which yields x = ±
√

81 + (2
√

3− 1)3 and since

x > 9, the only solution is x =
√

81 + (2
√

3− 1)3 =
√

30
√

3 + 44.

Solution 4 by Kee-Wai Lau, Hong Kong, China

By the substitution x = y3 + 9, we obtain 3
√
y3 + 18 =

√
3 + y. Cubing both sides and

simplifying, we have y2 +
√

3y + 1− 2
√

3 = 0, so that the only positive solution is

y =

√
8
√

3− 1−
√

3

2
. Hence the solution to the equation of the problem is

x = (1 +
√

3)
(√

8
√

3− 1
)

= 9.79 · · · .

Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Arkady Alt, San
Jose, CA; Dionne Bailey, Elsie Campbell, and Karl Havlak, Angelo State
University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray,
Highland Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong
Kong, China; David E. Manes, State University of New York at Oneonta,
Oneonta, NY; Boris Rays, Brooklyn, NY; Toshihiro Shimizu, Kawaskaki, Japan;
Albert, Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA; Nicusor Zlota “Traian Vuia Technical
College, Focsani, Romania and the proposer.
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Students from Taylor University in Upland, IN.
Group 1: Ben Byrd, Maddi Guillaume, and Makayla Schultz (jointly)
Group 2: Rebekah Couch, Hannah Keyser, and Nolan Willoughby (jointly)
Group 3: Michelle Franch, Caleb Knuth, and Savannah Porter (jointly)
Group 4: Lauren Moreland, Anna Souzis, and Boni Hernandez (jointly).

• 5398: Proposed by D. M. Bătinetu-Giurgiu, Bucharest, Romania and Neculai Stanciu,“George
Emil Palade” School, Buzău, Romania

If (2n− 1)!! = 1 · 3 · 5 . . . (2n− 1), then evaluate

lim
n→∞

(
n+1
√

(n+ 1)!(2n+ 1)!!

n+ 1
−

n
√
n!(2n− 1)!!

n

)
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

By Stirling’s asymptotic formula,

n! =
(√

2πn
)
nne−n+O( 1

n), as n →∞.

So

n
√
n! (2n− 1)!!

n
=

1

n

n

√
(2n)!

2nn!
=

1

2n
n
√

(2n)! =
1

2n
2n
√

4πn (2n)2 e
−2+O

(
1
n2

)

=
2n

e2
e

ln(4πn)
2n

+O
(

1
n2

)

=
2n

e2

(
1 +

(ln 4πn)

2n
+O

(
ln2 n

n2

))

=
2n

e2
+

ln(4πn)

e2
+O

(
ln2 n

n

)
.

We conclude that

lim
n→∞

(
n+1
√

(n+ 1)!(2n+ 1)!!

n+ 1
−

n
√

(n!)!(2n− 1)!!

n

)

= lim
n→∞

(
2(n+ 1)

e2
+

ln(4π(n+ 1))

e2
− 2n

e2
− ln(4πn)

e2
+O

(
ln2 n

n

))

=
2

e2
+ lim
n→∞

(
ln
(
n+1
n

)

e2
+O

(
ln2 n

n

))
=

2

e2
.
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Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

For each positive integer n, we let

an =
n
√
n!(2n− 1)!!

n
=

1

n

n

√
n!(2n)!

2n · n!
=

1

2n
n
√

(2n)!.

Next, we apply a version of Stirling’s formula due to Robbins [1], namely
n! =

√
2πn(n/e)nern , where 1/(12n+ 1) < rn < 1/(12n). This yields

an =
(4πn)1/(2n)(2n/e)2er2n/n

2n
=

2n

e2

(
er2n
√

4πn
)1/n

.

Hence

an+1 − an =
2n+ 2

e2
(
er2n+2

√
4πn+ 4π

)1/(n+1) − 2n

e2

(
er2n
√

4πn
)1/n

=
2n

e2

[(
er2n+2

√
4πn+ 4π

)1/(n+1) −
(
er2n
√

4πn
)1/n]

+
2

e2
(
er2n+2

√
4πn+ 4π

)1/(n+1)
,

so lim
n→∞

(an+1 − an) = 0 +
2

e2
=

2

e2
.

[1] H. Robbins, A remark on Stirling’s formula, The American Mathematical Monthly 62(1),
Jan. 1955, 26-29.

Solution 3 by Adnan Ali (student), A.E.C.S-4, Mumbai, India

Lemma. [1] If the positive sequence (pn) is such that

lim
n→∞

pn+1

npn
= p > 0,

then

lim
n→∞

( n+1
√
pn+1 − n

√
pn) =

p

e
.

Taking pn =
n!(2n− 1)!!

nn
, we have

lim
n→∞

pn+1

npn
= lim

n→∞
nn−1(2n+ 1)

(n+ 1)n
= lim

n→∞
2n+ 1

n+ 1

(
1− 1

n+ 1

)n−1
= 2e−1,

and so from our Lemma, the required limit evaluates to 2/e2.

REFERENCES

[1] Gh. Toader, Lalescu sequences, Publikacije-Elektrotehnickog Fakulteta Univerzitet U
Beogradu Serija Matematika, 9 (1998), 1928.

Editor′s comment : The authors of this problem, D. M. Bătinetu-Giurgiu, and Neculai
Stanciu proved in their solution the following generalization:

If t ∈ R∗+ and (an)n≥1, (bn)n≥1 are positive real sequences such that lim
n→∞

an+1

nan
= a ∈ R∗+ and

lim
n→∞

bn+1

ntbn
= b ∈ R∗+ then
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lim
n→∞

(
n+1
√
an+1bn+1

(n+ 1)t
−

n
√
anbn
nt

)
=

ab

et+1
.

Letting t = 1, an = n! and bn = (2n− 1)!!, then

lim
n→∞

an+1

nan
= lim

n→∞
(n+ 1)!

n · n!
= lim

n→∞
n+ 1

n
= 1 and lim

n→∞
(2n+ 1)!!

n · (2n− 1)!!
= lim

n→∞
2n+ 1

n
= 2,

I.e., a = 1 and b = 2. So

lim
n→∞

(
n+1
√

(n+ 1)!(2n+ 1)!!

n+ 1
−

n
√
n!(2n− 1)!!

n

)
=

ab

et+1
=

1 · 2
e1+1

=
2

e2
.

Also solved by Arkady Alt, San Jose, CA; Ángel Plaza, University of Las Palmas
de Gran Canaria, Spain; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau,
Hong Kong, China; Toshihiro Shimizu, Kawaskaki, Japan; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposers.

• 5399: Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Let a, b, c be positive real numbers. Prove that

∑

cyclic

2a+ 2b√
6a2 + 4ab+ 6b2

≤ 3.

Solution by Ed Gray, Highland Beach, FL

By symmetry it is sufficient to show that when x and y are positive, real numbers then

f(x, y) =
2x+ 2y√

6x2 + 4xy + 6y2
≤ 1.

Squaring both sides, is

(2x+ 2y)2 ≤ 6x2 + 4xy + 6y2? Or equivalently, is

0 ≤ 2x2 − 4xy + 2y2 = (2)(x− y)2? But this is obviously true.

Therefore the statement of the problem is true.

Editor′s comment : D.M. Bătinetu-Giurgiu of “Matei Basarab” National College,
Bucharest, Romania with Neculai Stanciu of “George Emil Palade” School,
Buzău, Romania generalized the problem as follows:

If a, b, c,m, n, p ∈ R∗+, then
∑

cyclic

m(a+ b)√
(n+ 2p)a2 + 2nab+ (n+ 2p)b2

≤ 3m√
n+ p

.

After proving the generalization, they let m = n = p = 2, obtaining the statement of the
problem.
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Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Arkady Alt, San
Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M.
Harms, North Newton, KS; Nikos Kalapodis, Patras, Greece; Kee-Wai Lau, Hong
Kong, China; Paolo Perfetti, Mathematics Department, Tor Vergata University,
Rome, Italy; Henry Ricardo, New York Math Circle, NY; Albert Stadler,
Herrliberg, Switzerland; Toshihiro Shimizu, Kawaskaki, Japan; Neculai Stanciu,
“George Emil Palade” School, Buzău, Romania and Titu Zvonaru, Comănesti,
Romania; Nicusor Zlota “Traian Vuia” Technical College, Focansi,Romania, and
the proposer

5400: Proposed by Arkady Alt, San Jose, CA

Prove the inequality
a2

ma
+

b2

mb
+

c2

mc
≤ 12 (2R− 3r),

where a, b, c and ma,mb,mc are respectively sides and medians of 4ABC, with circumradius
R and inradius r.

Solution 1 by Nikos Kalapodis, Patras, Greece

Let the median AM = ma intersects the circumcircle of triangle ABC at D.

Then by the intersecting chords theorem we have
AM ·MD = MB ·MC or AM · (AD −AM) = MB ·MC.

It follows that ma ·AD −m2
a =

a2

4
i.e.

a2

ma
= 4AD − 4ma.

By the obvious inequality AD ≤ 2R we obtain that
a2

ma
≤ 8R− 4ma (1).

Taking into account the other two similar inequalities we have

a2

ma
+

b2

mb
+

c2

mc
≤ 24R− 4(ma +mb +mc) (2).

Inequality (1) can be rewritten as ma ≥
a2 + 4m2

a

8R
. Adding the other two similar

inequalities and using the following well-known identities

m2
a +m2

b +m2
c =

3

4
(a2 + b2 + c2), bc = 2Rha,

1

ha
+

1

hb
+

1

hc
=

1

r
we get that
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ma +mb +mc ≥
a2 + b2 + c2 + 4(m2

a +m2
b +m2

c)

8R
=

a2 + b2 + c2

2R
≥bc+ ca+ ab

2R

= ha + hb + hc ≥
9

1

ha
+

1

hb
+

1

hc

=
9
1

r

= 9r, i.e. ma +mb +mc ≥ 9r (3).

Combining (2) and (3) we have

a2

ma
+

b2

mb
+

c2

mc
≤ 24R− 4(ma +mb +mc) ≤ 24R− 4 · 9r = 12(2R− 3r).

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let A′, B′, C ′ and A”, B”, C” be respectively the midpoints of the sides BC,CA,AB and the
intersections of the medians AA′, BB′, CC ′ with the circumcircle of 4ABC and let us denote
ha, hb, hc the heights and na = A′A′′, nb = B′B′′, nc = C ′C ′′

Taking into account that the absolute value of the power of A′ with respect to the circumcircle

of 4ABC is A′B ·A′C and also A′A ·A′A′′, that is
a

2
· a

2
= ma · na or equivalently

a2

ma
= 4na.

Since ma + na ≤ 2R (AA
′

is a chord of the circumcircle whose diameter is 2R) and ha ≤ ma

(the height is the minimum distance from the vertex to its opposite side), we conclude that
naa ≤ 2R−ma ≤ 2R− ha.

Thus
a2

ma
≤ 4(2R− ha) and analogously

b2

mb
≤ 4(2R− hb) and

c2

mc
≤ 4(2R− hc) so

a2

ma
+

b2

mb
+

c2

mc
≤ 12

(
2R− 1

3
(ha + hb + hc)

)
.

The result follows from ha + hb + hc ≥ 9r, with equality iff 4ABC is equilateral which is
equality 6.8 from page 61 in the book Geometric inequalities by O. Bottema, R. Z̆.
Djordjević, R.R. Janić, D.S. Mitrinović and P.M Vasić, Wolters Noordhoff, Groningen, 1969.

Equality is attained iff ma + na = 2R, ha = ma and ha + hb + hc = 9r and cyclically, that is,
iff 4ABC is an equilateral triangle.

Solution 3 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

Using the inequality ma ≥
b2 + c2

4R
, we obtain

a2

ma
+

b2

mb
+

c2

mc
≤

∑ 4Ra2

b2 + c2

2(2R− 3r)

R
−
∑ a2

b2 + c2
≥ 0 ⇐⇒ 3(2R− 3r)

R
− 3

2
≥ 0 =⇒ R ≥ 2r, which is true.
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(3)

* Where, using Nesbitt’s inequality, we have
∑ a2

b2 + c2
≥ 3

2
.

Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Ed Gray,
Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Toshihiro Shimizu,
Kawaskaki, Japan, and the proposer.

5401: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b, c be three positive real numbers such that a2 + b2 + c2 = 3. Prove that

b−1

(4
√
a+ 3

√
b)2

+
c−1

(4
√
b+ 3

√
c)2

+
a−1

(4
√
c+ 3

√
a)2
≥ 3

49
.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

The proposed inequality may be written as

1
(

4
√
ab+ 3b

)2 +
1

(
4
√
bc+ 3c

)2 +
1

(4
√
ca+ 3a)

2 ≥
3

49
.

Now, by the Cauchy-Shwartz inequality in Engel form, the left-hand side is

LHS ≥ 32
(

4
√
ab+ 3b

)2
+
(

4
√
bc+ 3c

)2
+ (4
√
ca+ 3a)

2

=
32

16 (ab+ bc+ ca) + 9 (a2 + b2 + c2) + 24
(
b
√
ab+ c

√
bc+ a

√
ca
) .

By the rearrangement inequality, ab+ bc+ ca ≤ a2 + b2 + c2 and
b
√
ab+ c

√
bc+ a

√
ca ≤ a2 + b2 + c2, so

LHS ≥ 32

(16 + 9 + 24) (a2 + b2 + c2)
=

32

(16 + 9 + 24) 3
=

3

49

with equality if and only if a = b = c = 1.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

If x, y > 0, then two forms of the Arithmetic - Geometric Mean Inequality state that

2
√
xy ≤ x+ y and 2xy ≤ x2 + y2.
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In both cases, equality is attained if and only if x = y. As a result, we have

y
(
4
√
x+ 3

√
y
)2

= y (16x+ 24
√
xy + 9y)

≤ y [16x+ 12 (x+ y) + 9y]

= 7y (4x+ 3y)

= 7
(
4xy + 3y2

)

≤ 7
[
2
(
x2 + y2

)
+ 3y2

]

= 7
(
2x2 + 5y2

)
, (1)

with equality if and only if x = y.

We will also need the known result that if X,Y, Z > 0, then

(X + Y + Z)

(
1

X
+

1

Y
+

1

Z

)
≥ 9. (2)

(This is a direct result of applying the Cauchy - Schwarz Inequality to the vectors
−→
V =

(√
X,
√
Y ,
√
Z
)

and
−→
W =

(
1√
X
,

1√
Y
,

1√
Z

)
.)

By (1), (2), and the constraint equation a2 + b2 + c2 = 3,

b−1
(

4
√
a+ 3

√
b
)2 +

c−1
(

4
√
b+ 3

√
c
)2 +

a−1

(4
√
c+ 3

√
a)

2

≥ 1

7

[
1

2a2 + 5b2
+

1

2b2 + 5c2
+

1

2c2 + 5a2

]

=
1

147
· 21 ·

[
1

2a2 + 5b2
+

1

2b2 + 5c2
+

1

2c2 + 5a2

]

=
1

147

[(
2a2 + 5b2

)
+
(
2b2 + 5c2

)
+
(
2c2 + 5a2

)] [ 1

2a2 + 5b2
+

1

2b2 + 5c2
+

1

2c2 + 5a2

]

≥ 9

147

=
3

49
,

with equality if and only if a = b = c = 1.

Solution 3 by Henry Ricardo, New York Math Circle, NY

The arithmetic-geometric mean (AM-GM) inequality gives us

(4
√
a+ 3

√
b)2 = 16a+ 24

√
ab+ 9b ≤ 16a+ 24

(
a+ b

2

)
+ 9b = 28a+ 21b.

Then, using the Cauchy-Schwarz inequality and the AM-GM inequality, we see that

∑

cyclic

b−1

(4
√
a+ 3

√
b)2
≥

∑

cyclic

b−1

28a+ 21b
=

∑

cyclic

1

28ab+ 21b2

≥ (1 + 1 + 1)2∑
cyclic (28ab+ 21b2)

=
9

28(ab+ bc+ ca) + 21(a2 + b2 + c2)

≥ 9

28(a2 + b2 + c2) + 21(a2 + b2 + c2)
=

9

49(3)
=

3

49
.
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Equality holds if and only if a = b = c = 1.

Solution 4 by Toshihiro Shimizu, Kawaskaki, Japan

From Cauchy-Schwartz’s inequality,

(
a2 + b2 + c2

)( b−1

(4
√
a+ 3

√
b)2

+
c−1

(4
√
b+ 3

√
c)2

+
a−1

(4
√
c+ 3

√
a)2

)
≥


∑

cyclic

a√
b(4
√
a+ 3

√
b)




2

=


∑

cyclic

1

4
√

b
a + 3 · ba




2

Let x = log

(√
b

a

)
, y = log

(√
c

b

)
, z = log

(√
a

c

)
.Then, x+ y + z = 0. The (r.h.s) of the

above inequality is equal to

∑

cyclic

1

4ex + 3e2x




2

Let f(x) = 1/
(
4ex + 3e2x

)
. Since f ′′(x) = 4e−x

(
9ex + 9e2x + 4

)
/ (3ex + 4)3 > 0, f is convex.

Thus, from Jensen’s inequality, it follows that

f(x) + f(y) + f(z) ≥ 3f

(
x+ y + z

3

)

= 3f(0)

=
3

7

Solution 5 by David E. Manes, SUNY Oneonta, Oneonta, NY

Let

L =
∑

cyclic

b−1

(4
√

2 + 3
√
b)2

=
∑

cyclic

1

b(4
√
a+ 3

√
b)2

.

Define vectors ~u and ~v such that

~u =

(
1√

b(4
√
a+ 3

√
b)
,

1
√
c(4
√
b+ 3

√
c)
,

1√
a(4
√
c+ 3

√
a)

)
.

~v =
(√

b(4
√
a+ 3

√
b),
√
c(4
√
b+ 3

√
c),
√
a(4
√
c+ 3

√
a)
)
.

Then the dot product of ~u and ~v is less than or equal to the product of the norms of ~u and ~v
by the Cauchy-Schwarz inequality. Therefore,

1 + 1 + 1 ≤
√∑

cyclic

1

b(4
√
a+ 3

√
b)2

√∑

cyclic

b(4
√
a+ 3

√
b)2

12

X
ia
ng
’s
T
ex
m
at
h



or

L ≥ 9∑

cyclic

b(4
√
a+ 3

√
b)2

.

Expanding the denominator, one obtains

∑

cyclic

b(4
√
a+ 3

√
v)2 = 16


∑

cyclic

ab


+ 24


∑

cyclic

√
ab3


+ 9(a2 + b2 + c2).

The Rearrangement inequality implies
∑

cyclic

ab+
∑

cyclic

√
ab3 ≤ (a2 + b2 + c2) +

(√
a4 +

√
b4 +

√
c4
)

with equality if and only if a = b = c. Therefore,

1∑

cyclic

b(4
√
a+ 3

√
b)2
≥ 1

16
∑

cyclic

a2 + 24
∑

cyclic

a2 + 9
∑

cyclic

a2
.

Since a2 + b2 + c2 = 3, it follows that

1∑

cyclic

b(4
√
a+ 3

√
b)2
≥ 1

16(3) + 24(3) + 9(3)
=

1

3(49)
.

Hence,

L =
∑

cyclic

b−1

(4
√

2 + 3
√
b)2
≥ 9

3(49)
=

3

49

with equality if and only if a = b = c = 1.

Editor′s comment : D.M. Bătinetu-Giurgiu of “Matei Basarab” National College,
Bucharest, Romania with Neculai Stanciu of “George Emil Palade” School,
Buzău, Romania generalized the problem as follows:

If a, b, c,m, n ∈ R∗+, then
∑

cyclic

b−1

(m
√
a+ n

√
b)2
≥ 3

(n+ p)2
.

They did this by showing that

∑

cyclic

b−1

(m
√
a+ n

√
b)2
≥ 27

(m+ n)2(a+ b+ c)2
. (2)

Then they used the hypothesis concluding that

3 = a2 + b2 + c2 ≥ (a+ b+ c)2

3
⇐⇒ 9 ≥ (a+ b+ c)2. (3)

By (2) and (3) they obtained

∑

cyclic

b−1

(m
√
a+ n

√
b)2
≥ 27

(m+ n)2(a+ b+ c)2
=

3

(m+ n)2
.

13

X
ia
ng
’s
T
ex
m
at
h



Letting m = 1and n = 3 they obtained the statement of the problem.

Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Arkady Alt, San
Jose, CA; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL;
Nikos Kalapodis, Patras, Greece; Kee-Wai Lau, Hong Kong, China; Paolo
Perfetti, Mathematics Department of Tor Vergata University, Rome, Italy; Albert
Stadler, Herrliberg, Switzerland; Neculai Stanciu of “George Emil Palade”
School, Buzău, Romania and Titu Zvonaru, Comănesti, Romania; Nicusor Zlota,
“Traian Vuia” Technical College, Focsani, Romania, and the proposer.

5402: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate ∫ ∞

0

(
cos(ax)− cos(bx)

x

)2

dx,

where a and b are real numbers.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Obviously we may assume a 6= b, since otherwise the integral is null. Let us suppose that
a > b > 0. Using parity, write the integral as

I =
1

2

∫ ∞

−∞

(
cos(ax)− cos(bx)

x

)2

dx,

and then deform the contour to be the line C slightly below the real axis. Next express
cosines in terms of exponentials. Then we obtain I equal to

1

8

(∫

C

−2
(
e−(a+b)xi + e(a−b)xi + e(b−a)xi + e(a+b)xi

)
+ e−2axi + e2axi + e−2bxi + e2bxi + 4

x2
dx

)
.

For a > b > 0, in the integrals containing terms of the form e−kxi, with k > 0, the contour can
be closed in the lower half plane (by Jordan lemma) and therefore these integrals vanish (as
there are no singularities inside).

The integrals containing terms of the form ekxi, with k ≥ 0, can only be closed in the upper
half plane and are therefore given by the residues at x = 0. Therefore

I =
πi

4
Resx=0

(
−2e(a−b)xi − 2e(a+b)xi + e2axi + e2bxi + 4

x2

)

=
πi

4
(−2i(a− b)− 2i(a+ b) + 2ia+ 2ib)

=
πi2(−a+ b)i

4
=
π(a− b)

2
.

Solution 2 by Toshihiro Shimizu, Kawaskaki, Japan
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For real number a 6= 0, we have

∫ ∞

0

sin2 ax

x2
dx =

1

2

∫ ∞

−∞

sin2 ax

x2
dx

=
a2

2

∫ ∞

−∞

sin2 y

y2
dy

|a| (where y = |a|x)

=
|a|
2

∫ ∞

−∞

sin2 y

y2
dy

=
|a|
2

∫ ∞

−∞
sin2 y

(
−1

y

)′
dx

=
|a|
2

[
sin2 y

(
−1

y

)]∞

−∞
− a

2

∫ ∞

−∞
2 sin y cos y

(
−1

y

)
dy

=
|a|
2

∫ ∞

−∞

sin 2y

y
dy

=
|a|
2

∫ ∞

−∞

sin y

y
dy

=
|a|π

2
.

For a = 0, the value of l.h.s is 0 and r.h.s is also 0. Thus, this result is true for any real
number a. Then, since

(cos ax− cos bx)2 = cos2 ax+ cos2 bx− 2 cos ax cos bx

= 1− sin2 ax+ 1− sin2 bx− cos (ax+ bx)− cos (ax− bx)

= 2− sin2 ax− sin2 bx

−
(

1− 2 sin2

(
ax+ bx

2

))
−
(

1− 2 sin2

(
ax− bx

2

))

= − sin2 ax− sin2 bx+ 2 sin2

(
ax+ bx

2

)
+ 2 sin2

(
ax− bx

2

)
,

it follows that

∫ ∞

0

(
cos ax− cos bx

x

)2

dx = −
∫ ∞

0

sin2 ax

x2
dx−

∫ ∞

0

sin2 bx

x2
dx

+ 2

∫ ∞

0

sin2
(
ax+bx

2

)

x2
dx+ 2

∫ ∞

0

sin2
(
ax−bx

2

)

x2
dx

= −|a|π
2
− |b|π

2
+ 2 · |a+ b|

4
π + 2 · |a− b|

4
π

=
1

2
(− |a| − |b|+ |a+ b|+ |a− b|) .

If a, b are the same sign or 0, we have − |a| − |b|+ |a+ b| = 0 and the answer is |a−b|2 , if a, b

are the opposite sign, − |a| − |b|+ |a− b| = 0 and the answer is |a+b|2 .
Also, we can write this answer as

min

{ |a− b|
2

,
|a+ b|

2

}
.
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Solution 3 by Ed Gray, Highland Beach, FL

In order to calculate:

∫ ∞

0

(
cos(ax)− cos(bx)

x

)2

dx, where a and b are real numbers we first

expand the numerator so that the integral becomes
∫ ∞

0

cos2(ax)− 2 cos(ax) cos(bx) + cos2(bx)

x2
dx. (1)

But the expression 2 cos(ax) cos(bx) = cos(ax+ bx) + cos(ax− bx), so equation (1) becomes
∫ ∞

0

cos2(ax)

x2
−
∫ ∞

0

cos(ax+ bx)

x2
−
∫ ∞

0

cos(ax− bx)

x2
+

∫ ∞

0

cos2(bx)

x2

We evaluate each of these four integrals.

We may use “integration by parts” and other standard procedures to obtain the following:

∫ ∞

0

cos2(ax)

x2
=
−aπ

2

∫ ∞

0

− cos(ax+ bx)

x2
=

(a+ b)π

2

∫ ∞

0

− cos(ax− bx)

x2
=

(a− b)π
2

if a > b; =
(b − a)π

2
if b > a.

∫ ∞

0

cos2(bx)

x2
=
−bπ

2

Summing the four integrals above we see that

∫ ∞

0

(
cos(ax)− cos(bx)

x

)2

dx =





(a− b)π
2

, if b < a

(b− a)π

2
, if a < b.

Solution 4 by Albert Stadler, Herrliberg, Switzerland

We claim that f(a, b) =

∫ ∞

0

(
cos(ax)− cos(bx)

x

)2

dx =
π

2
||b| − |a||.

Obviously, f(a, b) = f(b, a) = −f(−a, b) = f(a,−b). (1)

Let r > 0 and let L be the “indented” line: −∞ < t ≤ −r, reiϕ, π ≥ ϕ ≥ 0, r ≤ t <∞, run

through “from left to right”. Let a be a real number. Then

∫

L

eiaz

z2
dz = π (a |a|).

Indeed, By Cahuchy’s theorem, the integral does not end on r. Assume that a ≥ 0. Then
∣∣∣∣
∫

L

eiaz

z2
dz

∣∣∣∣ ≤ 2

∫ ∞

r

1

t2
dt+

πr

r2
max
0≤ϕ≤π

∣∣∣eiareiϕ
∣∣∣ =

1

r
(2 + π)→ 0, as r →∞.
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So

∫

L

eiaz

z2
dz = 0, if a ≥ 0, where L is the complex conjugate of L, i.e., the line L reflected at

the abscissa

By the residue theorem,

∫

L

eiaz

z2
dz −

∫

L

eiaz

z2
dz =

∫

|z|=r

eiaz

z2
dz = 2πiRes

(
eiaz

z2
, z = 0

)
= −2πa.

So

∫

L

eiaz

z2
dz =

∫

L

eiaz

z2
dz − 2πiRes

(
eiaz

z2
, z = 0

)
= 2πa, if a < 0 .

To sum up:

∫

L

eiaz

z2
dz =

{
0, a ≥ 0

2πa, a < 0.
= π (a− |a|) , as claimed.

We conclude that

f(ab) =

∫ ∞

0

(
cos(ax)− cos(bx)

x

)2

dx =
1

2

∫ ∞

−∞

(
cos(ax)− cos(bx)

x

)2

dx =
1

2

∫

L

(
cos(az)− cos(bz)

z

)2

dz =

=
1

2

∫

L

cos2(az) +−2 cos(az) cos(bz) + cos2(bz)

z2
dz

=
1

2

∫

L

(
eiaz + e−iaz

)2 − 2
(
eiaz + e−iaz

) (
eiaz + e−iaz

)
+
(
eiaz + e−iaz

)2

4z2
dz

=
1

2

∫

L

e2iaz + e2ibz + e−2iaz + e−2ibz + 4− 2ei(a+b)z − 2ei(a−b)z − 2ei(−a+b)z − 2ei(−a−b)z

4z2
dz

=
π

8

(
2a− |2a|+ 2b− |2b| − 2a− |2a| − 2b− |2b| − 2(a+ b)

+2|a+ b| − 2(a− b) + 2|a− b| − 2(−a+ b) + 2| − a+ b| − 2(−a− b) + 2| − a− b|
)

=
π

4

(
− |a| − |b| − |a| − |b|+ |a+ b|+ |a− b|+ | − a+ b|+ | − a− b|

)

=
π

2

(
− |a| − |b|+ |a+ b|+ |a− b|

)
.

By (1) we can assume that 0 ≤ a ≤ b. Then

f(a, b) =
π

2
(−|a| − |b|+ |a+ b|+ |a− b|)

=
π

2
(−a− b+ a+ b+ b− a)
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=
π

2
(b− a)

=
π

2

∣∣|b| − |a|
∣∣, as claimed.

Solution 5 by Kee-Wai Lau, Hong Kong, China

Denote the given integral by I. We show that

I =
(|a+ b|+ |a− b| − |a| − |b|)π

2
(1)

4pt It is well known that for any real number r, we have

∫ ∞

0

sin(rx)

x
dx =





π/2 r > 0

0 r = 0. (2)

−π/2 r < 0.

Since lim
x→0

(cos(ax)− cos(bx))2

x
= 0, so intergrating by parts , we obtain

I =

∫ ∞

0

f(a, b, x)

x
dx, where

f(a, b, x)

= 2 (cos(ax)− cos(bx)) (b sin(bx)− a sin(ax))

= 2b sin(bx) cos(ax) + 2a sin(ax) cos(bx)− a sin(2ax)− b sin(2bx)

= (a+ b) sin ((a+ b)x) + (a− b) sin ((a− b)x)− a sin(2ax)− b sin(2bx).

Using (2), we now obtain (1). This completes the proof.

Solution 6 by Adnan Ali, Student in A.E.C.S-4, Mumbai, India

We prove that the value of the proposed integral is (a− b)π
2
. It is trivial when a = b, so we

assume that a 6= b. We make repeated use of the following integral (proof of which is provided
at the end, for the sake of completion)

∫ ∞

0
e−αx cos(βx)dx =

α

α2 + β2

We have the identity (easily verified)
1

x2
=

∫ ∞

0
te−xtdt. Using this, the proposed integral

becomes ∫ ∞

0

∫ ∞

0
te−xt(cos(ax)− cos(bx))2dtdx.
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Since everything is positive, by Tonelli’s Theorem, we can reverse the order of integration so
that the integral now becomes

∫ ∞

0

∫ ∞

0
te−xt(cos(ax)− cos(bx))2dxdt.

From the trigonometric identities
cos(2x) + 1

2
= cos2(x) and

2 cos(x) cos(y) = cos(x+ y) + cos(x− y), we easily obtain (using (1))
∫ ∞

0
e−xt(cos2(ax) + cos2(bx))dx =

1

t
+

1

2

(
t

t2 + (2a)2
+

t

t2 + (2b)2

)

and ∫ ∞

0
e−xt(2 cos(ax) cos(bx))dx =

t

t2 + (a+ b)2
+

t

t2 + (a− b)2.

Thus, (2) becomes ∫ ∞

0

∫ ∞

0
te−xt(cos(ax)− cos(bx))2dxdt

=

∫ ∞

0
t

(
1

t
+

1

2

(
t

t2 + (2a)2
+

t

t2 + (2b)2

)
− t

t2 + (a+ b)2
− t

t2 + (a− b)2

)
dt

=

[
(a− b) arctan

t

a− b + (a+ b) arctan
t

a+ b
− a arctan

t

2a
− b arctan

t

2b

]t=∞

t=0

= (a− b)π
2

.

Proof of (1):

Let I =

∫ ∞

0
e−αx cos(βx)dx. Then cos(βx) =

eiβx + e−iβx

2
gives

I =
1

2

∫ ∞

0

(
e−x(α−iβ) + e−x(α+iβ)

)
dx =

1

2

(
1

α− iβ +
1

α+ iβ

)
=

α

α2 + β2
.

Alternatively, one can do integration by parts to get the same result.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain, and the proposer.

Mea Culpa

Paolo Perfetti of the Mathematics Department of Tor Vergata University in
Rome, Italy should have been credited with having solved 5394.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2017

• 5421: Proposed by Kenneth Korbin, New York, NY

An equilateral triangle is inscribed in a circle with diameter d. Find the perimeter of the
triangle if a chord with length 1− d bisects two of its sides.

• 5422: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygon ABCDE is a regular pentagon. Pentagon PQRST is bounded by diagonals of
pentagon ABCDE as shown. Find the following:

the area of pentagon PQRST

the area of pentagon ABCDE
.
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• 5423: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b, c be the side-lengths, ra, rb, rc be the radii of the ex-circles and R, r the radii of
the circumcircle and incircle respectively, and s the semiperimeter of 4ABC. Show that

(ra − r)2 + rbrc
(s− b)(s− c) +

(rb − r)2 + rcra
(s− c)(s− a)

+
(rc − r)2 + rarb
(s− a)(s− b) ≥ 13.

• 5424: Proposed by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

Let a, b, c and d be positive real numbers such that abc+ bcd+ cda+ dab = 4. Prove
that (a8 − a4 + 4)(b7 − b3 + 4)(c6 − c2 + 4)(d5 − d+ 4) ≥ 256.

• 5425: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let Fn be the nth Fibonacci number defined by F0 = 0, F1 = 1, and for all
n ≥ 2, Fn = Fn−1 + Fn−2. If n is an odd positive integer then show that 1 + det(A) is
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the product of two consecutive Fibonacci numbers, where

A =




F 2
1 − 1 F1F2 F1F3 . . . F1Fn

F2F1 F 2
2 − 1 F2F3 · · · F2Fn

F3F1 F3F2 F 2
3 − 1 · · · F3Fn

...
...

...
. . .

...
FnF1 FnF2 FnF3 · · · F 2

n − 1




5426: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let (an)n≥1 be a strictly increasing sequence of natural numbers. Prove that the series

∞∑

n=1

√
an

[an, an+1]
converges.

Here [x, y] denotes the least common multiple of the natural numbers x and y.

Solutions

• 5403: Proposed by Kenneth Korbin, New York, NY

Let φ =
1 +
√

5

2
. Solve the equation 3

√
x+ φ = 3

√
φ+ 3
√
x− φ with x > φ.

Solution 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Karl
Havlak, Angelo State University, San Angelo, TX

Let a = 3
√
x+ φ and b = 3

√
x− φ. We may write

a− b = 3
√
φ

(a− b)3 = φ

a3 − 3a2b+ 3ab2 − b3 = φ

a3 − b3 − 3ab(a− b) = φ

x+ φ− (x− φ)− 3 3
√
x2 − φ2 3

√
φ = φ.

Simplifying this last equation we obtain 3
√
x2 − φ2 =

φ2/3

3
. Under the condition x > φ,

the solution to this equation is x =

√
φ2

27
+ φ2 =

2
√

21

9
φ.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC.

Given any real number a > 0, we solve the equation 3
√
x+ a = 3

√
a+ 3
√
x− a with x > a.

(Similarly, given any real number a < 0, we may solve the equation
3
√
x+ a = 3

√
a+ 3
√
x− a with x < a.)
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Rewriting the given equation and cubing both sides yields

(x+ a)− 3 3
√

(x+ a)2(x− a) + 3 3
√

(x+ a)(x− a)2 − (x− a) = a,

or 3 3
√
x2 − a2( 3

√
x− a− 3

√
x+ a) = −a. Then −3 3

√
a 3
√
x2 − a2 = −a, so cubing once

more produces

−27a(x2 − a2) = −a3.

Hence x2 =
28

27
a2, so requiring x > a yields x =

2
√

21

9
a. In particular, when a = φ, we

obtain the solution x =
2
√

21

9
φ =

√
21 +

√
105

9
.

Solution 3 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

The value of x > φ that satisfies the equation is

x = φ
[(−3 +

√
21

6

)3
+ 1
]
≈ 1.48363835038.

One notes that x > φ and does satisfy the equation.
Let v = 3

√
x− φ. Then v3 = x− φ so that x = v3 + φ. Since we want the solution x > φ,

it follows that x must be positive. The original equation in terms of v is

3
√
x+ 2φ = 3

√
φ+ v.

Cubing both sides of this equation, we get

3 3
√
φ · v2 + 3( 3

√
φ)2v − φ = 0.

Dividing by 3 3
√
φ reduces this equation to the monic quadratic equation

v2 + 3
√
φ · v − 1

3
( 3
√
φ)2 = 0

with roots

v =
− 3
√
φ± 3
√
φ ·
√

7
3

2
.

Rejecting the negative root yields

v =
− 3
√
φ+ 3
√
φ ·
√

7
3

2
= 3
√
φ
(−3 +

√
21

6

)
.

Hence,

x = v3 + φ = φ
[(−3 +

√
21

6

)3
+ 1
]

=
2
√

21

9
φ.

Editor′s comment : D. M. Bătinetu-Giurgiu of “Matei Basarab” National College,
Bucharest, Romania with Neculai Stanciu of “George Emil Palade” School,
Buzău, Romania generalized the problem as follows:

Let a, b, c, > 0, with a+ b = 2c then it can be shown that the unique real-valued solution to

the equation 3
√
x+ a = 3

√
x− b+ 3

√
c, where x > c is x =

3
√

3 (b− a) + 4c
√

7

6
√

3
.
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If a = b = φ, then = φ and the equation 3
√
x+ φ = 3

√
x− φ+ 3

√
φ with x > φ, has the solution

x =
3
√

3
(
φ− φ) + 4φ

√
7

6
√

3
=

2
√

21

9
φ.

Also solved by Adnan Ali (student), A.E.C.S-4, Mumbai, India; Arkady Alt, San
Jose, CA; Ashland University Undergraduate Problem Solving Group, Ashland,
OH; D. M. Bătinetu-Giurgiu of “Matei Basarab” National College, Bucharest,
Romania with Neculai Stanciu of “George Emil Palade” School, Buzău, Romania;
Brian Bradie, Christopher Newport University, Newport News, VA; Bruno
Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Kee-Wai Lau,
Hong Kong, China; Moti Levy, Rehovot, Israel; Boris Rays, Brooklyn, NY;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA; Nicusor Zlota, Traian Vuia Technical
College, Focsani, Romania; the proposer, and Students from Taylor University
(see below);

Students at Taylor University, Upland, IN.
Group 1. Ben Byrd, Maddi Guillaume, and Makayla Schultz.
Group 2. Caleb Knuth, Michelle Franch and Savannah Porter.
Group 3. Lauren Moreland, Anna Souzis, and Boni Hermandez

• 5404: Proposed Arkady Alt, San Jose, CA

For any given positive integer n ≥ 3, find the smallest value of the product of x1x2 . . . xn,

where x1, x2, x3, . . . xn > 0 and
1

1 + x1
+

1

1 + x2
+ . . .+

1

1 + xn
= 1.

Solution 1 by Ed Gray, Highland Beach, FL

Suppose each term had the value of
1

n
. Since there are n terms, the sum is equal to 1,

satisfying the problem restriction.

In the event for each k, 1 ≤ k ≤ n

1.
1

1 + xk
=

1

n
, so xk = n− 1, and the value of the product is:

2. (n− 1)n.

If this is not the smallest product, at least one value of xk must be less than n− 1. Suppose
xk = n− 1− e where e > 0.

Then the series contains the therm
1

1 + xk
=

1

n− e . We must increase the value of another

term so that the sum maintains the value of 1. We must have:

3.
1

n− e +
1

1 + xm
=

2

n

4.
1

1 + xm
− 2

n
− 1

n− e =
2(n− e− n)

n(n− e) =
2n− 2e− n
n(n− e)

5.
1

1 + xm
=

n− 2e

n(n− e)
6. (1 + xm)(n− 2e) = n(n− e)

7. 1 + xm =
n(n− e)
n− 2e
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8. xm =
n(n− e)
n− 2e

− 1 =
n(n− e)− n− 2e)

n− 2e
=
n2 − ne− n+ 2e

n− 2e

9. The new product is:
(

(n− 1)n−2
)
xkxm. If the new product is to be smaller, we must have:

10.
(n− 1)n−2(n− 1− e)(n2 − n− e(n− 2)

n− 2e
< (n− 1)n, or dividing by (n− 1)n−2

11. (n− 1− e)(n2 − n− en+ 2e) < (n− 2e)(n− 1)2,

12. (n− 1− e)(n2 − n− en+ = 2e) < (n− 2e)(n2 − 2n+ 1), which simplifies to:

13. 2en2 + ne2 < 2e2. Dividing by e2,

14.
2n2

e
+ n < 2, which is a contraction. Therefore, we did not decrease the product, but

increased it.

So (n− 1)n is the minimum product.

Solution 2 by Ramya Dutta (student), Chennai Mathematical Institute) India

Consider the polynomial P (x) =

n∏

j=1

(x+ xj), then
P ′(x)

P (x)
=

n∑

j=1

1

x+ xj
, i.e., P ′(1) = P (1).

Denoting the j-th symmetric polynomial by, σj =
∑

1≤k1<k2<···<kj≤n
xk1xk2 · · ·xkj for j ≥ 1 and

σ0 = 1,

P (x) =
n∑

j=0

σjx
n−j and P ′(x) =

n−1∑

j=0

(n− j)σjxn−j−1

Therefore, the condition P (1) = P ′(1) is equivalent to,

σn =
n−1∑

j=0

(n− j − 1)σj

Using, AM-GM inequality: σj ≥
(
n

j

)
σj/nn for j ≥ 1.

I.e., writing σ1/nn = α, we have,

αn =
n−1∑

j=0

(n− j − 1)σj ≥
n−1∑

j=0

(n− j − 1)

(
n

j

)
αj

= (n− 1)

n−1∑

j=0

(
n

j

)
αj − n

n−1∑

j=1

(
n− 1

j − 1

)
αj

= (n− 1) ((1 + α)n − αn)− nα
(
(1 + α)n−1 − αn−1)

= αn − (1 + α)n + n(1 + α)n−1

that is, (1 + α)n ≥ n(1 + α)n−1 =⇒ α ≥ n− 1 (since, α > 0)
So, the minimum value of x1x2 · · ·xn is (n− 1)n.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA
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We shall use the Method of Lagrange Multipliers to show that the smallest value of the
product is (n− 1)n, achieved when each xi = n− 1.

First suppose that all but one of the xi are equal: let xi = b for 1 ≤ i ≤ n− 1 and choose xn

so that the constraint
n∑

i=1

1

1 + xi
=

1

1 + x1
+

1

1 + x2
. . .+

1

1 + xn
= 1 is satisfied:

n∑

i=1

1

1 + xi
= (n− 1)

1

1 + b
+

1

1 + xn
= 1,=⇒ xn =

n− 1

b− (n− 2)
, where

b > n− 2 to make xn > 0.

Then the product f(x1, x2, . . . , x)n) =
n∏

i=1

xi = bn−1
n− 1

b− (n− 2)
.

We note that as b becomes unbounded positive, the product of the x′is becomes unbounded
positive, and as b approaches n− 2 from above, the product of the x′is also becomes
unbounded positive. Thus if the product has an absolute extremum subject to the given
constraint, it must be a minimum since the product is unbounded above.

For b = n− 1, we see that xn = n− 1, so every xi = n− 1 and the product is equal to (n− 1)n,

We consider this as a Lagrange Multiplier problem where we minimize the product

f(x1, x2, . . . , xn) =
n∏

i=1

xi subject to the constraint

n∑

i=1

1

1 + xi
=

1

1 + x1
+

1

1 + x2
. . .+

1

1 + xn
= 1.

That is, subject to the constraint

g(x1, x2, . . . , xn) =
n∏

i=1

xi =
n∑

i=1

1

1 + xi
=

1

1 + x1
+

1

1 + x2
. . .+

1

1 + xn
= 1.

By the Method of Lagrange Multipliers, we’ll find the minimum of f where

∂

∂xi
f(x1, x2, . . . , xn) = λ

∂

∂xi
g(x1, x2, . . . , xn) for 1 ≤ k ≤ n.

We see that:
∂

∂xi
f(x1, x2, . . . , xn) =

n∏

i=1
i=k

xi and
∂

∂xi
g(x1, x2, . . . , xn) =

1

(1 + xi)2
for

1 ≤ k ≤ n.

Thus we want to solve the system,
n∏

i=1
i=k

xi =
λ

(1 + xk)2
, for 1 ≤ k ≤ n.

Solving each equation for λ gives λ = −(1 + xk)2
n∏

i=1
i 6=k

xi for 1 ≤ k ≤ n.

Hence, for any 1 ≤ j, k ≤ n we must have λ = −(1 + xi)
2

n∏

i=1
i6=k

xi = −(1 + xj)
2

n∏

i=1
i 6=k

xi

7

X
ia
ng
’s
T
ex
m
at
h



Algebra gives
xj

(1 + xj)2
=

xk
(1 + xk)2

, 1 ≤ j, k ≤ n.

We claim this forces xi = xk. Suppose that xk 6= xi for some k 6= j.

Now consider the function h(x) =
x

(1 + x)2
for x > 0.

Note that h(xi) = h(xk) for 1 ≤ j, k ≤ n

By calculus, h(x) is strictly increasing for 0 < x < 1 to a maximum (of 1/4) at x = 1, and is
then strictly decreasing for x > 1. That is, h except for the peak at x = 1 is two- to- one
function (for x > 0).

Moreover, h(x) has the reflective property h

(
1

x

)
= h(x). Hence, for

1 ≤ j 6= k ≤ n, h(xj) = h(xk) and xj 6= xk =⇒ xj =
1

xk
. Then jour constraint becomes

1 =
1

1 + xk
+

1

1 + xj
+ (other positive terms)

=
1

1 + xk
+

1

1 +
1

xk

+ (other positive terms)

=
1

1 + xk
+

xk
1 + xk

+ (other positive terms)

= 1 + (other positive terms)

which is impossible. Therefore, xk = xj .

Hence, to achieve the extreme value, which must be a minimum, all of the xi are equal and
must equal n− 1, forcing the minimum value of the product to be (n− 1)n.

Solution 4 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

Denote by
1

1 + xi
= yi =⇒ xi =

1− yi
yi

, yi > 0, i = 1, 2, , n

By the AM-GM, we get

x1x2 . . . xn =
n∏

i=1

1− yi
yi

=
y2 + y3 + . . .+ yn

y1
. . .

y1 + y2 + . . .+ yn−1
yn

≥ (n− 1)n n−1
√

(y1y2 . . . yn)n−1

y1y2 . . . yn
= (n−1)n.

So, x1x2 . . . xn ≥ (n− 1)n. Equality occurs for x1 = x2 = . . . = xn = n− 1.

Editor′s comment : In addition to a general solution to this problem, the problem’s author,
Arkady Alt of San Jose, CA, also provided 4 different solutions for the cases n = 2 = 3.

Solution A.

Let n = 3. We have
1

1 + x1
+

1

1 + x2
+

1

1 + x3
=1⇐⇒

3 + 2 (x1 + x2 + x3) + x1x2 + x2x3 + x3x1 = 1 + x1 + x2 + x3 + x1x2 + x2x3+

x3x1 + x1x2x3 ⇐⇒ 2 + x1 + x2 + x3 = x1x2x3. Since x1 + x2 + x3 ≥ 3 3
√
x1x2x3
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then x1x2x3 ≥ 2 + 3 3
√
x1x2x3 ⇐⇒

(
3
√
x1x2x3 − 2

) (
3
√
x1x2x3 + 1

)2 ≥ 0 ⇐⇒
3
√
x1x2x3 − 2 ≥ 0 ⇐⇒ x1x2x3 ≥ 23.

Solution B.

Since
1

1 + x1
+

1

1 + x2
+

1

1 + x3
= 1 ⇐⇒ 1

1 + x1
+

1

1 + x2
=

x3
1 + x3

⇐⇒

1 + x3
1 + x1

+
1 + x3
1 + x2

= x3 =⇒ x3 ≥ 2 (1 + x3)

√
1

1 + x1
.

1

1 + x2
=

2 (1 + x3)√
(1 + x1) (1 + x2)

.

Similarly we obtain x2 ≥
2 (1 + x2)√

(1 + x3) (1 + x1)
, x1 ≥

2 (1 + x1)√
(1 + x2) (1 + x3)

.

Hence, x1x2x3 ≥
23 (1 + x1) (1 + x2) (1 + x3)√

(1 + x2) (1 + x3) ·
√

(1 + x3) (1 + x1) ·
√

(1 + x1) (1 + x2)
= 23.

Solution C.

Let a :=
1

1 + x1
, b :=

1

1 + x2
, c :=

1

1 + x3
then a, b, c ∈ (0, 1) , a+ b+ c = 1 and

x1 =
1− a
a

=
b+ c

a
≥ 2
√
bc

a
, x2 =

1− b
b

=
c+ a

b
≥ 2
√
ca

b
, x3 =

1− c
c

=
a+ b

c
≥ 2
√
ab

c
.

Therefore, x1x2x3 ≥
2
√
bc

a
· 2
√
ca

b
· 2
√
ab

c
= 8.

Solution D.

First note that at least one of the products x1x2, x2x3, x3x1 must be greater then 1.

Indeed,assume that x1x2, x2x3, x3x1 ≤ 1. Then since 2 + x1 + x2 + x3 = x1x2x3 ⇐⇒

1 =
2

x1x2x3
+

1

x1x2
+

1

x2x3
+

1

x3x1
and x1x2x3 =

√
x1x2 · x2x3 · x3x1 ≤ 1

we obtain a contradiction 1 =
2

x1x2x3
+

1

x1x2
+

1

x2x3
+

1

x3x1
≥ 2 + 1 + 1 + 1 ≥ 5.

Let it be x1x2 > 1 and let t :=
√
x1x2, r := x1x2x3.

Then 2 + x1 + x2 + x3 = x1x2x3 becomes

+
r

t2
= r and, since x1 + x2 ≥ 2

√
x1x2 = 2t, t > 1, we obtain

r − r

t2
= 2 + x1 + x2 ≥ 2 + 2t ⇐⇒ r

(
t2 − 1

)

t2
≥ 2 (t+ 1) ⇐⇒ r ≥ 2t2

t− 1
= 2

(
t2 − 1 + 1

t− 1

)
=

2

((
t− 1 +

1

t− 1

)
+ 2

)
≥ 2 (2 + 2) = 8, because t− 1 +

1

t− 1
≥ 2.

Comment by Editor: Neculai Stanciu of “George Emil Palade” School, Buzău,
Romania and Titu Zvonaru of Comănesti, Romania, stated that there is a paper in the
Romanian Mathematical Gazette, (Volume CXX, number 11, 2015) pp. 489-498 by Eugen
Păltănea that presents five solutions and extensions for the following proposition: Let

x1, x2, . . . , xn > 0, n ≥ 2. If
1

1 + x1
+

1

1 + x2
+ . . .+

1

1 + xn
= 1, then n

√
x1x2 . . . xn ≥ n− 1.

They presented a new solution to this proposition and then applied it to problem 5404.

Also solved by Adnan Ali, Student in A.E.C.S-4, Mumbai, India; Bruno Salgueiro
Fanego, Viveiro, Spain; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot,
Israel; Henry Ricardo, New York Math Circle, NY; Albert Stadler, Herrliberg,
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Switzerland; and the authors.

• 5405: Proposed by D. M. Bătinetu-Giurgiu, Bucharest, Romania and Neculai Stanciu,“George
Emil Palade” School, Buzău, Romania

If a, b ∈ < such that a+ b = 1, en =

(
1 +

1

n

)n

and cn = − lnn+

n∑

k=1

1

k
, then compute

lim
n→∞

(
(n+ 1)a

n+1

√
((n+ 1)!cn)b − na n

√
en

)b

.

Solution 1 by Ramya Dutta (student, Chennai Mathematical Institute) India

Using log(1 + x) =
∞∑

k=1

(−1)k−1
xk

k
, for −1 < x < 1 and the Stirling Approximation:

log n! =

(
n+

1

2

)
log n− n+

1

2
log 2π +O

(
1

n

)

For n > 2,

(n!en)b/n = exp

(
b log n!

n

)(
1 +

1

n

)b

= exp

(
b log n+

b log n

2n
− b+

b log 2π

2n
+O

(
1

n2

))(
1 +

1

n

)b

= e−bnb exp

(
b log n

2n
+
b log 2π

2n
+O

(
1

n2

))(
1 +

1

n

)b

= e−bnb
(

1 +
b log n

2n
+
b log 2π

2n
+O

(
log2 n

n2

))(
1 +

b

n
+O

(
1

n2

))

= e−bnb
(

1 +
b log n

2n
+
b log 2π

2n
+
b

n
+O

(
log2 n

n2

))

Again, cn = Hn − log n = γ +
1

2n
+O

(
1

n2

)

Therefore,

cb/(n+1)
n = exp

(
b log cn
n+ 1

)

= exp

(
b log γ

n+ 1
+

b

n+ 1
log

(
1 +

1

2γn
+O

(
1

n2

)))

= exp

(
b log γ

n
+O

(
1

n2

))
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Similarly,

((n+ 1)!cn)b/(n+1)

= e−b(n+ 1)b exp

(
b log(n+ 1)

2(n+ 1)
+

b log 2π

2(n+ 1)
+O

(
1

n2

))
cb/(n+1)
n

= e−b(n+ 1)b exp

(
b log n

2n
+
b log 2π

2n
+O

(
1

n2

))
exp

(
b log γ

n
+O

(
1

n2

))

= e−b(n+ 1)b
(

1 +
b log n

2n
+
b log(2πγ2)

2n
+O

(
log2 n

n2

))

Thus,

lim
n→∞

(n+ 1)a n+1

√
((n+ 1)!cn)b − na n

√
(n!en)b

= lim
n→∞

e−b(n+ 1)

(
1 +

b log n

2n
+
b log(2πγ2)

2n
+O

(
log2 n

n2

))

− e−bn
(

1 +
b log n

2n
+
b log 2π

2n
+
b

n
+O

(
log2 n

n2

))

= lim
n→∞

e−b
(

1 +O

(
log n

n

))
+ e−bn

(
b log γ

n
− b

n
+O

(
log2 n

n2

))

= lim
n→∞

e−b(1 + b log γ − b) +O

(
log n

n

)
= e−b(a+ b log γ)

Solution 2 by Albert Stadler, Herrliberg, Switzerland

The nth harmonic number admits the asymptotic expansion

n∑

k=1

1

k
= lnn+ γ +O

(
1

n

)
, as

n→∞. (See for instance https://en/wikipedia.org/wiki/Harmonic number.)

Stirling’s formula states that n! =
√

2πnnne−n
(

1 +O

(
1

n

))
, as n→∞. (See for instance

https://en/wikipedia.org/wiki/Stirling %27s approximation).

So

(n+ 1)a n+1

√
((n+ 1)!cn)b =

= (n+ 1)a+b(2π)
b

2(n+1) (n+ 1)
b

2(n+1) e−b
(

1 +O

(
1

n

)) b
n+1

(
γ +O

(
1

n

)) b
n+1

= (n+ 1)e−b
(

1 +
b

2(n+ 1)
log(2π) +

b

2(n+ 1)
log(n+ 1) +

b

(n+ 1)
log γ +O

(
log2 n

n2

))

= e−b
(
n+ 1 +

b

2
log(2π) +

b

2
log(n+ 1) + b log γ +O

(
log2 n

n

))
,
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nn n

√
(n!en)b = na+b(2π)

b
2nn

b
2n e−b

(
1 +O

(
1

n

)) b
n
(

1 +
1

n

)b

= ne−b
(

1 +
b

2n
log(2π) +

b

2n
log(n) +

b

n
+O

(
log2 n

n2

))
,

= e−b
(
n+

b

2
log(2π) +

b

2
log(n) + b+O

(
log2 n

n

))
.

Thus

lim
n→∞

(
(n+ 1)a n+1

√
((n+ 1)!cn)b − na n

√
(n!en)b

)

= lim
n→∞

(
e−b

(
n+ 1 +

b

2
log(2π) +

b

2
log(n+ 1) + b log(γ)− n− b

2
log(2π)− b

2
log(n)− b+O

(
log2 n

n

)))

= e−b (1 + b log γ − b) = e−b (a+ b log γ) .

Also solved by Arkady Alt, San Jose, CA; Brian Bradie, Christopher Newport
University, Newport News, VA; Kee-Wai Lau, Hong Kong, China; Moti Levy,
Rehovot, Israel, and the proposers.

• 5406: Proposed by Cornel Ioan Vălean, Timis, Romania

Calculate: ∞∑

n=1

Hn

n

(
ζ(3)− 1− 1

23
− · · · − 1

n3

)
,

where Hn =
n∑

k=1

1

k
denotes the harmonic number.

Solutions 1 and 2 by Ramya Dutta (student), Chennai Mathematical Institute
India

Solution (1):

Changing the order of summation in (?) and using

k∑

n=1

Hn

n
=
H2

k +H
(2)
k

2
, we have:

∞∑

n=1

Hn

n

(
ζ(3)−

n∑

k=1

1

k3

)
=

∞∑

n=1

∞∑

k=n

Hn

nk3
−
∞∑

n=1

Hn

n4
(?)

=

∞∑

k=1

1

k3

k∑

n=1

Hn

n
−
∞∑

n=1

Hn

n4

=
1

2

∞∑

k=1

H2
k +H

(2)
k

k3
−
∞∑

n=1

Hn

n4
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Lemma:

∞∑

k=1

Hk

k(n+ k)
=

1

n

(
1

2
H2

n +
1

2
H(2)

n + ζ(2)− Hn

n

)

Proof:

∞∑

k=1

Hk

k(n+ k)
=
∞∑

k=1

k∑

j=1

1

jk(n+ k)
=
∞∑

j=1

∞∑

k=j

1

jk(n+ k)
(1)

=
∞∑

j=1

∞∑

k=j+1

1

jk(n+ k)
+
∞∑

j=1

1

j2(n+ j)
(2)

=

∞∑

j=1

∞∑

k=1

1

j(k + j)(n+ k + j)
+

∞∑

j=1

1

j2(n+ j)
(3)

=
1

2

∞∑

j=1

∞∑

k=1

1

jk(n+ k + j)
+
∞∑

j=1

1

j2(n+ j)
(4)

=
1

2

∞∑

k=1

Hn+k

k(n+ k)
+
∞∑

j=1

1

j2(n+ j)
(5)

=
1

2

∞∑

k=1

Hn+k

k(n+ k)
+

1

n

(
ζ(2)− Hn

n

)
(6)

Justifications: (1) Interchanged order of summation, (3) made the change in variable
k 7→ k + j, (4) used the symmetry of the summation w.r.t. k and j,

∞∑

j=1

∞∑

k=1

1

j(k + j)(n+ k + j)
=
∞∑

j=1

∞∑

k=1

1

k(k + j)(n+ k + j)

=
1

2



∞∑

j=1

∞∑

k=1

1

j(k + j)(n+ k + j)
+

∞∑

j=1

∞∑

k=1

1

k(k + j)(n+ k + j)




=
1

2

∞∑

j=1

∞∑

k=1

1

jk(n+ k + j)
,

(5) used the identity,
Hm

m
=

1

m

∞∑

j=1

(
1

j
− 1

m+ j

)
=
∞∑

j=1

1

j(m+ j)
and

(6) used partial fraction,
∞∑

j=1

1

j2(n+ j)
=
∞∑

j=1

(
1

nj2
− 1

nj(n+ j)

)
=

1

n

(
ζ(2)− Hn

n

)
.
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Again,

∞∑

k=1

Hn+k

k(n+ k)
=

1

n

∞∑

k=1

(
Hk

k
− Hn+k

n+ k

)
+

1

n

∞∑

k=1

(
Hn+k −Hk

k

)
(7)

=
1

n

n∑

k=1

Hk

k
+

1

n

∞∑

k=1

1

k




n∑

j=1

1

k + j


 (8)

=
1

n

n∑

k=1

Hk

k
+

1

n

n∑

j=1

1

j

∞∑

k=1

(
1

k
− 1

k + j

)
(9)

=
2

n

n∑

k=1

Hk

k
=
H2

n +H
(2)
n

n
(10)

Thus, combining lines (6) and (10),

∞∑

k=1

Hk

k(n+ k)
=

1

n

(
1

2
H2

n +
1

2
H(2)

n + ζ(2)− Hn

n

)

Now, dividing both sides of the identity with n2 and summing over n ≥ 1,

1

2

∞∑

n=1

H2
n +H

(2)
n

n3
+ ζ(2)ζ(3)−

∞∑

n=1

Hn

n4
=

∞∑

n=1

∞∑

k=1

Hk

kn2(n+ k)

=

∞∑

k=1

Hk

k2

(
ζ(2)− Hk

k

)

where, we used partial fraction decomposition from line (6) earlier. That is,

3

2

∞∑

n=1

H2
n +H

(2)
n

n3
= ζ(2)

∞∑

n=1

Hn

n2
− ζ(2)ζ(3) +

∞∑

n=1

Hn

n4
+

∞∑

n=1

H
(2)
n

n3
(I)

Now we provide an evaluation of the Euler sum:

∞∑

n=1

H
(2)
n

n3
.

Consider the partial fraction decomposition,

n−1∑

k=1

(
1

k(n− k)

)2

=
1

n2

n−1∑

k=1

(
1

k
+

1

n− k

)2

=
1

n2

n−1∑

k=1

1

k2
+

1

(n− k)2
+

2

n

(
1

k
+

1

n− k

)

=
2

n2

(
H(2)

n +
2Hn

n
− 3

n2

)
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Dividing both sides by n and summing over n ≥ 1,

2

∞∑

n=1

1

n3

(
H(2)

n +
2Hn

n
− 3

n2

)
=

∞∑

n=1

n−1∑

k=1

1

nk2(n− k)2
(change of variable n = m+ k)

=

∞∑

m=1

∞∑

k=1

1

k2m2(k +m)

=

∞∑

m=1

∞∑

k=1

k(m+ k)− k2
k3m3(k +m)

=

∞∑

m=1

∞∑

k=1

1

k2m3
−
∞∑

m=1

∞∑

k=1

1

km3(k +m)

= ζ(2)ζ(3)−
∞∑

m=1

Hm

m4

i.e.,
∞∑

n=1

H
(2)
n

n3
=

1

2
ζ(2)ζ(3)− 5

2

∞∑

n=1

Hn

n4
+ 3ζ(5) (II)

Thus, combining the results from (I) and (II),

∞∑

n=1

Hn

n

(
ζ(3)−

n∑

k=1

1

k3

)
=

1

2

∞∑

n=1

H2
n +H

(2)
n

n3
−
∞∑

n=1

Hn

n4

=
1

3
ζ(2)

∞∑

n=1

Hn

n2
− 1

3
ζ(2)ζ(3)− 2

3

∞∑

n=1

Hn

n4
+

1

3

∞∑

n=1

H
(2)
n

n3

=
1

3
ζ(2)

∞∑

n=1

Hn

n2
− 1

6
ζ(2)ζ(3)− 3

2

∞∑

n=1

Hn

n4
+ ζ(5)

Using Euler’s summation formula:

∞∑

n=1

Hn

nq
=
(

1 +
q

2

)
ζ(q + 1)− 1

2

q−2∑

j=1

ζ(j + 1)ζ(q − j), for q ≥ 2

we have the particular cases,

∞∑

n=1

Hn

n2
= 2ζ(3) and

∞∑

n=1

Hn

n4
= 3ζ(5)− ζ(2)ζ(3),

i.e.,
∞∑

n=1

Hn

n

(
ζ(3)−

n∑

k=1

1

k3

)
= 2ζ(2)ζ(3)− 7

2
ζ(5)

Solution (2):
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We start with evaluating the integral for a > 0,
∫ 1

0
xa−1 log2(1− x) dx = lim

b→1

∂2

∂b2

∫ 1

0
xa−1(1− x)b−1 dx

= lim
b→1

∂2

∂b2
Γ(a)Γ(b)

Γ(a+ b)

=
1

a

(
(γ + ψ(a+ 1))2 + ζ(2)− ψ(1)(a+ 1)

)

Thus,

∫ 1

0
xn−1 log2(1− x) dx =

H2
n +H

(2)
n

n
So,

∞∑

n=1

Hn

n

(
ζ(3)−

n∑

k=1

1

k3

)
=

1

2

∞∑

n=1

H2
n +H

(2)
n

n3
−
∞∑

n=1

Hn

n4

=
1

2

∞∑

n=1

1

n2

∫ 1

0
xn−1 log2(1− x) dx−

∞∑

n=1

Hn

n4

=
1

2

∫ 1

0

Li2(x) log2(1− x)

x
dx−

∞∑

n=1

Hn

n4

Using the reflection formula for Dilogarithm,
Li2(x) + Li2(1− x) = ζ(2)− log x log(1− x)
we may rewrite the integral as,

∫ 1

0

Li2(x) log2(1− x)

x
dx

= ζ(2)

∫ 1

0

log2(1− x)

x
dx

︸ ︷︷ ︸
(I)

−
∫ 1

0

log x log3(1− x)

x
dx

︸ ︷︷ ︸
(II)

−
∫ 1

0

Li2(1− x) log2(1− x)

x
dx

︸ ︷︷ ︸
(III)

The first integral (I):
∫ 1

0

log2(1− x)

x
dx =

∫ 1

0

log2 x

1− x dx

=

∞∑

n=1

∫ 1

0
xn−1 log2 x dx

= 2
∞∑

n=1

1

n3
= 2ζ(3)

The second integral (II): Using
log(1− x)

1− x = −
∞∑

n=1

Hnx
n,

∫ 1

0

log x log3(1− x)

x
dx =

∫ 1

0

log3 x log(1− x)

1− x dx

= −
∞∑

n=1

∫ 1

0
Hnx

n log3 x dx

= 6
∞∑

n=1

Hn

(n+ 1)4
= 6

∞∑

n=1

Hn

n4
− 6ζ(5)
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The third integral (III):
∫ 1

0

Li2(1− x) log2(1− x)

x
dx =

∫ 1

0

Li2(x) log2 x

1− x dx

=
∞∑

n=1

∫ 1

0
H(2)

n xn log2 x dx

= 2
∞∑

n=1

H
(2)
n

(n+ 1)3
= 2

∞∑

n=1

H
(2)
n

n3
− 2ζ(5)

Combining the results,

∞∑

n=1

Hn

n

(
ζ(3)−

n∑

k=1

1

k3

)
= ζ(2)ζ(3)− 4

∞∑

n=1

Hn

n4
+ 4ζ(5)−

∞∑

n=1

H
(2)
n

n3

=
1

2
ζ(2)ζ(3)− 3

2

∞∑

n=1

Hn

n4
+ ζ(5)

= 2ζ(2)ζ(3)− 7

2
ζ(5)

Editor′s comment : Albert Stadler of Herrliberg, Switzerland mentioned in his solution

that the expression
∞∑

k=1

Hk

k4
= −π

2

6
ζ(3) + 3ζ(5) is due to Euler and that Euler went on to

generalize this formula as follows:

2
∞∑

n=1

Hn

nm
= m+ 2ζ(m+ 1)−

m−2∑

n=1

ζ(m− n)ζ(n+ 1),m = 2, 3, . . .

The reference he gave for this is: L.Euler, Meditationes circa singulare serierum genus, Novi
Comm. Acad. Sci. Petropolitanae 20 (1775), 140-186. Reprinted in Opera Omnia, ser. I, vol.
15, B.G. Teubner, Berlin, 1927, pp 217-267.

Solution 3 by Moti Levy, Rehovot, Israel

We calculate the sum by expressing it as a sum of definite integrals (involving polylogarithmic
function) and then make use of results by Prof. Pedro Freitas [1].
The tail of ζ (3) is

ζ (3)− 1− 1

23
− · · · − 1

n3
=
∞∑

k=1

1

(n+ k)3
. (11)

The following definite integral is known [2]:
∫ 1

0
xn ln2 xdx =

2

(n+ 1)3
. (12)

Substituting (11) in (12) and changing the order of summation and integration give,

ζ (3)− 1− 1

23
− · · · − 1

n3
=

1

2

∞∑

k=1

∫ 1

0
xn+k−1 ln2 xdx

=
1

2

∫ 1

0
xn ln2 x

∞∑

k=1

xk−1dx =
1

2

∫ 1

0

xn

1− x ln2 xdx.
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∞∑

n=1

Hn

n

(
ζ (3)− 1− 1

23
− · · · − 1

n3

)
=
∞∑

n=1

Hn

n

1

2

∫ 1

0

xn

1− x ln2 xdx =
1

2

∫ 1

0

( ∞∑

n=1

Hn

n
xn

)
ln2 x

1− xdx

(13)
Let F (x) :=

∑∞
n=1

Hn
n x

n, then dF
dx = 1

x

∑∞
n=0Hnx

n. The generating function of the sequence
(Hn)n≥0 is well known [3]

∞∑

n=0

Hnx
n = − ln (1− x)

1− x .

It follows that dF
dx = − ln(1−x)

x(1−x) . To find F (x) we integrate,

F (x) = −
∫ x

0

ln (1− t)
t (1− t) dt = −

∫ x

0

ln (1− t)
1− t dt−

∫ x

0

ln (1− t)
t

dt =
1

2
ln2 (1− x) + Li2 (x) (14)

Now we substitute (14) in (13) and obtain the required sum as a sum of two definite integrals,

∞∑

n=1

Hn

n

(
ζ (3)− 1− 1

23
− · · · − 1

n3

)
=

1

4

∫ 1

0

ln2 x ln2 (1− x)

1− x dx+
1

2

∫ 1

0

ln2 x

1− xLi2 (x) dx.

These definite integrals appear in [1] as entries in Table 6:

∫ 1

0

ln2 x ln2 (1− x)

1− x dx = −4ζ (2) ζ (3) + 8ζ (5) .

∫ 1

0

ln2 x

1− xLi2 (x) dx = 6ζ (2) ζ (3)− 11ζ (5) .

∞∑

n=1

Hn

n

(
ζ (3)− 1− 1

23
− · · · − 1

n3

)
=

1

2
(6ζ (2) ζ (3)− 11ζ (5)) +

1

4
(−4ζ (2) ζ (3) + 8ζ (5))

= 2ζ (2) ζ (3)− 7

2
ζ (5) =

π2

3
ζ (3)− 7

2
ζ (5) ∼= 0.325 36.

References:
[1] Freitas Pedro, ”Integrals of Polylogarithmic functions, recurrence relations, and associated
Euler sums”, arXiv:math/0406401v1 [math.CA] 21 Jun 2004.
[2] Gradshteyn and Ryzhik, ”Table of Integrals, Series and Products” (7Ed, Elsevier, 2007),
Entry 2.723-2.
[3] Ronald L. Graham, Donald E. Knuth, Oren Patashnik ”Concrete Mathematics, A
Foundation for Computer Science”, 2nd Edition 1994, page 352, (7.43).

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that the sum of the problem, denoted by S, equals
4ζ(2)ζ(3)− 7ζ(5)

2
.

We need the facts that

Hn

n
= −

∫ 1

0
xn−1 ln(1− x)dx, (see p. 206, of [2]),

1

(n+m)3
=

1

2

∫ 1

0
xm+n−1 ln2 xdx, (see formula 2.723 of [3]), and

18

X
ia
ng
’s
T
ex
m
at
h



γ(3)−
n∑

m=1

1

m3
=

∞∑

m=1

1

(n+m)3
.

For −1 ≤ 1 let Li2(x)=

∞∑

m=1

xn

n2
. By following closely the method of solution of problem 3.62 in

[2, p. 211− 213], we obtain,

S = −1

2

∫ 1

0

∫ 1

0

y ln2 y ln(1− x)

(1− y)(1− xy)
dxdy = −1

2

∫ 1

0

y ln2 y

1− y

(
−1

2 ln2(1− y)− Li2(y)

y

)
dy

=
1

4
I +

1

2
J,

where I =

∫ 1

0

ln2 y ln2(1− y)

1− y dy and J =

∫ 1

0

ln2 y2(1− y)

1− y dy. It is known [1, p.1436, Table 6]

that I = 8ζ(5)− 4ζ(2)ζ(3) and J = 6ζ(2)ζ(3)− 11ζ(5).

Hence the claimed result for the sum of the problem.

References:
1. Freitas P.: Integrals of polylogarithmic functions, recurrence relations and associated Euler
sums, Mathematics of Computation, vol. 74, number 251, 1425-1440 (2005).

2. Furdui O.: Limits, Series, and Fractional Part Integrals, Springer, New Hork, (2013)

3. Gradshteyn, I.S. and Ryzhik, I.M.: Tables of Intgerals, Series, and Products, Seventh
Edition, Elsevier (2007).

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Albert Stadler, Herrliberg, Switzerland, and the proposer.

• 5407: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find all triples (a, b, c) of positive reals such that

a+ b+ c = 1,
1

(a+ bc)2
+

1

(b+ ca)2
+

1

(c+ ab)2
=

243

16
.

Solution 1 by Neculai Stanciu of “George Emil Palade” School, Buzău, Romania
and Titu Zvonaru of Comănesti, Romania

Since a+ b+ c = 1 then a+ bc = a · 1 + bc = a(a+ b+ c) + bc = (a+ b)(a+ c). We denote
a+ b = x, b+ c = y and c+ a = z then x+ y + z = 2. Using well-known inequalities we have

243

16
=

1

x2y2
+

1

y2z2
+

1

z2x2
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≥ 1

xy
· 1

yz
+

1

yz
· 1

zx
+

1

zx
· 1

xy

=
1

xyz

(
1

x
+

1

y
+

1

z

)
≥ 1
x+ y + z

3

· 9

x+ y + z

=
27

8
· 9

2
=

243

16
.

Hence, x = y = z =⇒ a = b = c =
1

3
.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX

Assume that a, b, c > 0 and a+ b+ c = 1. Then, by the Arithmetic - Geometric Mean
Inequality,

a+ bc ≤ a+
(b+ c)2

4
= a+

(1− a)2

4
=

(a+ 1)2

4
,

with equality if and only if b = c. Since a, b, c > 0, it follows that

1

(a+ bc)2
≥ 16

(a+ 1)4
, (1)

with equality if and only if b = c. Similar steps show that

1

(b+ ca)2
≥ 16

(b+ 1)4
, (2)

with equality if and only if c = a, and

1

(c+ ab)2
≥ 16

(c+ 1)4
, (3)

with equality if and only if a = b. By (1), (2), and (3), we have

1

(a+ bc)2
+

1

(b+ ca)2
+

1

(c+ ab)2
≥ 16

[
1

(a+ 1)4
+

1

(b+ 1)4
+

1

(c+ 1)4

]
, (4)

with equality if and only if a = b = c =
1

3
.

Further, if f (x) =
1

x4
, then f ′′ (x) =

20

x6
> 0 on (0,∞), and hence, f (x) is strictly convex on

(0,∞). If we use Jensen’s Theorem, we obtain

1

(a+ 1)4
+

1

(b+ 1)4
+

1

(c+ 1)4
= f (a+ 1) + f (b+ 1) + f (c+ 1)

≥ 3f

[
(a+ 1) + (b+ 1) + (c+ 1)

3

]

= 3f

(
4

3

)

=
243

256
, (5)
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with equality if and only if (a+ 1) = (b+ 1) = (c+ 1), i.e., if and only if a = b = c =
1

3
.

By combining (4) and (5), we see that the conditions a, b, c > 0 and a+ b+ c = 1 imply that

1

(a+ bc)2
+

1

(b+ ca)2
+

1

(c+ ab)2
≥ 16

(
243

256

)
=

243

16
,

with equality if and only if a = b = c =
1

3
. Therefore, the unique solution for our system must

be a = b = c =
1

3
.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

(1− a)2 − 4bc = (b+ c)2 − 4bc = (b− c)2 ≥ 0 with equality iff b = c

=⇒ (1 + a)2

4
= a+

(1− a)2

4
≥ a+ bc > 0 with equality iff b = c =⇒ 1

(a+ bc)2
≥ 16

(1 + a)4
with

equality iff b = c, and cyclically, so

1

(a+ bc)2
+

1

(b+ ca)2
+

1

(c+ ab)2
≥ 16

(
1

(1 + a)4
+

1

(1 + b)4
+

1

(1 + c)4

)

with equality iff a = b = c =
1

3
. By the arithmetic mean−geometric mean inequality,

1

(a+ bc)2
+

1

(b+ ca)2
+

1

(c+ ab)2
≥ 16 · 3 3

√
1

(1 + a)4(1 + b)4(1 + c)4

=
48

(
3
√

(1 + a)(1 + b)(1 + c)
)4

≥ 48
(

1 + a+ 1 + b+ 1 + c

3

)4 =
48

(
4

3

)4 =
243

16

with equality iff a = b = c =
1

3
, so from this and the second of the given equations we

conclude that a = b = c =
1

3
.

Editor′s comment: D.M. Bătinetu-Giurgiu, of “Matei Basarab” National College,
Bucharest, Romanina and Neculai Stanciu of “George Emil Palade” School
Buzău, Romania generalized the problem as follows:

If a, b ≥ 0, a+ b, c, d,m > 0, x, y, z > 0, such that x+ y + z = s > 0 and

(as+ bx)m+1

(cx+ dyz)m
+

(as+ bt)m+1

(cy + dzx)m
+

(as+ bz)m+1

(cz + dxy)m
=

3m(3a+ b)m+1s

(3c+ ds)m
, then find all triples(x , y , z ).

They found the solution that since x+ y + z = s, then s2 ≥ 3(xy + yz + zx) with equality iff

x = y = z =
s

3
.
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If s = 1,m = 2, a = 1, b = 0, c = 1, d = 1 we obtain x+ y + z = 1 and
∑

cyc

1

(x+ yz)2
=

243

16
,

i.e., problem 5407.

Also solved by Adnan Ali, Student in A.E.C.S-4, Mumbai, India; Arkady Alt, San
Jose, CA; Ed Gray, Highland Beach, FL; Ramya Dutta (student), Chennai
Mathematical Institute, India; Kee-Wai Lau, Hong Kong, China; Moti Levy,
Rehovot, Israel; Albert Stadler, Herrliberg, Switzerland; David Stone and John
Hawkins, Georgia Southern University, Statesboro,GA, and the proposer.

• 5408: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate: ∫ 1

0

lnx ln(1− x)

x(1− x)
dx.

Solution 1 by Albert Stadler, Herriliberg, Switzerland

∫ 1

0

lnx ln(1− x)

x(1− x)
dx =

∫ 1

0

(
1

x
− 1

1− x

)
ln(x) ln(1− x)dx

= 2

∫ 1

0

(lnx)(ln(1− x)

x
dx

= −2

∞∑

n=1

1

n

∫ 1

0
xn lnxdx

= 2
∞∑

n=1

1

n3
= 2ζ(3).

Solution 2 by Moti Levy, Rehovot, Israel

Since 1
x(1−x) = 1

x + 1
1−x and

∫ 1
0

lnx ln(1−x)
x dx =

∫ 1
0

lnx ln(1−x)
(1−x) dx then

I :=

∫ 1

0

lnx ln (1− x)

x (1− x)
dx = 2

∫ 1

0

lnx ln (1− x)

x
dx.

Using the Taylor series of ln(1− x) for 0 < x < 1, and changing the order of summation and
integration,

I = −2

∫ 1

0

lnx

x

( ∞∑

k=1

xk

k

)
dx = −2

∞∑

k=1

1

k

∫ 1

0
xk−1 lnxdx.

Gradshteyn and Ryzhik, entry 2.723-1,
∫
xn lnxdx = xn+1

(
lnx

n+ 1
− 1

(n+ 1)2

)
.

I = −2
∞∑

k=1

1

k

∫ 1

0
xk−1 lnxdx = 2

∞∑

k=1

1

k

1

k2
= 2ζ (3) .

22

X
ia
ng
’s
T
ex
m
at
h



Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the integral of the problem , denoted by I equals 2

∞∑

n=1

1

n3
.

It is well known that for non-negative integers n.

∫
xn lnxdx = xn+1

(
lnx

n+ 1
− 1

(n+ 1)2

)
+ constant.

Hence for 0 < a < 1, we have

∫ a

0

lnx (1− x)

x
dx = −

∫ a

0
lnx

∞∑

n=0

xn

n+ 1
dx = −

∞∑

n=0

1

n+ 1

∫ a

0
xn lnxdx

= − ln a

∞∑

n=0

an+1

(n+ 1)2
+

∞∑

n=0

an+1

(n+ 1)3
, so that

∫ 1

0

lnx (1− x)

x
dx =

∞∑

n=0

an+1

(n+ 1)3
.

Since
1

x(1− x)
=

1

x
+

1

1− x , so

I =

∫ 1

0

lnx ln(1− x)

x
dx+

∫ 1

0

lnx ln(1− x)

1− x dx = 2

∫ 1

0

lnx ln(1− x)

x
dx = 2

∞∑

n=0

1

(n+ 1)3
,

as asserted.

Solution 4 by Brian Bradie, Christopher Newport University, Newport News, VA

A generating function for the Harmonic numbers is

∞∑

n=1

Hnx
n = − ln(1− x)

1− x .

The radius of convergence for this series is 1, so the order of summation and integration can
be reversed to yield

∫ 1

0

lnx ln(1− x)

x(1− x)
dx = −

∫ 1

0

lnx

x

( ∞∑

n=1

Hnx
n

)
dx

= −
∞∑

n=1

Hn

∫ 1

0
xn−1 lnxdx

=

∞∑

n=1

Hn

n2
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= 2ζ(3).

Solution 5 by Adnan Ali, Student in A.E.C.S-4, Mumbai, India

Let I denote the above integral and let f(x) = lnx ln(1−x) and g′(x) =
1

x(1− x)
=

1

x
+

1

1− x.

Then f ′(x) =
ln(1− x)

x
− lnx

1− x and g(x) = lnx− ln(1− x). Evaluating I by parts we have

I = [f(x)g(x)]10 −
∫ 1

0
f ′(x)g(x)dx

= [lnx ln(1− x)(lnx− ln(1− x))]10 −
∫ 1

0

(
ln(1− x)

x
− lnx

1− x

)
(lnx− ln(1− x))dx

=

∫ 1

0

(
ln(1− x)

x
− lnx

1− x

)
(ln(1− x)− lnx)dx

=

∫ 1

0

ln2(1− x)

x
dx+

∫ 1

0

ln2 x

1− xdx−
∫ 1

0

lnx ln(1− x)

1− x dx−
∫ 1

0

lnx ln(1− x)

x
dx

Let I1 =
∫ 1
0

ln2(1− x)

x
dx, then

∫ 1
0

ln2 x

1− xdx = I1 (with the substitution y = 1− x). Similarly

let I2 =
∫ 1
0

lnx ln(1− x)

x
dx, then

∫ 1
0

lnx ln(1− x)

1− x dx = I2 (with the substitution y = 1− x).

So, I = 2(I1 − I2). But we also notice that integration of I2 by parts yields (taking 1/x as
second function)

I2 =

∫ 1

0

lnx ln(1− x)

x
dx =

[
ln2 x ln(1− x)

]1
0
−
∫ 1

0

(
ln(1− x)

x
− lnx

1− x

)
lnxdx

=

∫ 1

0

ln2 x

1− xdx−
∫ 1

0

lnx ln(1− x)

x
dx = I1 − I2.

Thus I2 = 1
2I1 and so I = 2(I1 − I2) = I1. Now to calculate I1, we notice that

I1 =

∫ 1

0

ln2 x

1− xdx =
∞∑

n=0

∫ 1

0
xn ln2 xdx (15)

Now from integration by parts we have (by taking xn as the second function)

∫ 1

0
xn ln2 xdx =

[
(ln2 x)

xn+1

n+ 1

]1

0

−
∫ 1

0

2 lnx

x
· x

n+1

n+ 1
dx = − 2

n+ 1

∫ 1

0
xn lnxdx

= − 2

n+ 1



[

(lnx)
xn+1

n+ 1

]1

0

−
∫ 1

0

1

x
· x

n+1

n+ 1
dx


 =

2

n+ 1

∫ 1

0

xn

n+ 1
dx =

2

(n+ 1)3
.

Substituting the result obtained above in (1), we get I1 =
∑∞

n=0

2

(n+ 1)3
= 2ζ(3). Thus,

I = I1 = 2ζ(3).
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Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Pat Costello, Eastern Kentucky University, Richmond, KY;
Ramya Dutta (student Chennai Mathematical Institute), India; Bruno Salgueiro
Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

Late Acknowledgment

Henry Ricardo of the New York Math Circle should have been credited for having
solved problem 5397.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2017

• 5427: Proposed by Kenneth Korbin, New York, NY

Rationalize and simplify the fraction

(x+ 1)4

x(2016x2 − 2x+ 2016)
if x =

2017 +
√

2017−
√

2017

2017−
√

2017−
√

2017
.

• 5428: Proposed by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

If x > 0, then
[x]

4
√

[x]4 + ([x] + 2{x})4
+

{x}
4
√
{x}4 + ([x] + 2{x})4

≥ 1− 1
4
√

2
, where [.] and

{.} respectively denote the integer part and the fractional part of x.

• 5429: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzău, Romania

Prove that there are infinitely many positive integers a, b such that
18a2 − b2 − 6a− b = 0.

• 5430: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b, c be the side-lengths, α, β, γ the angles, and R, r the radii respectively of the
circumcircle and incircle of a triangle. Show that

a3 · cos(β − γ) + b3 · cos(γ − α) + c3 · cos(α− β)

(b+ c) cosα+ (c+ a) cosβ + (a+ b) cos γ
= 6Rr.

• 5431: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let Fn be the nth Fibonacci number defined by F1 = 1, F2 = 1 and for all n ≥ 3,
Fn = Fn−1 + Fn−2. Prove that

∞∑

n=1

(
1

11

)FnFn+1

is an irrational number and determine it (*).
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The asterisk (∗) indicates that neither the author of the problem nor the editor are
aware of a closed form for the irrational number.

• 5432: Proposed by Ovidiu Furdui and Alina Ŝıntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions f : (0,∞)→ (0,∞), with f(1) =
√

2, such that

f ′
(

1

x

)
=

1

f(x)
, ∀x > 0.

Solutions

• 5409: Proposed by Kenneth Korbin, New York, NY

Given isosceles trapezoid ABCD with AB < CD, and with diagonal AC = AB + CD.
Find the perimeter of the trapezoid if 4ABC has inradius 12 and if 4ACD has
inradius 35.

Solution 1 by Michael N. Fried, Ben-Gurion University, Beer-Sheva, Israel

Let |AB| = x, |AC| = |AD| = c, |AC| = K so that, since |AC| = |AB|+ |CD|, we can
write |DC| = K − x.
The key observation is that if the triangle ABC is reflected and transposed so that BC
coincides with AD, the resulting figure AEDC is an equilateral triangle. This is so
because:
1) The trapezoid is isosceles, so that EDA = π −ADC, and, therefore, EDC is a
straight line
2) By the given, |AB|+ |DC| = |ED|+ |DC| = x+K − x = K, and, therefore,
|EA| = |AC| = |CE| = K.
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With the geometry of the situation in mind, one can now easily see that since the
diameter of O1 is 24 and the diameter of O2 is 70, the length of the side of the
equilateral triangle (i.e. the diagonal of the original trapezoid) cannot be less than 94
units. This will be important later.
Now, since the twice the area of a triangle is the product of its inradius and its
perimeter, we find that twice the area of the triangle AED is 12(c+K + x) and twice
the area of the triangle ADC is 35(c+K +K − x). On the other hand, since we have
observed that EAC is equilateral, twice the areas of these triangles are also,

respectively,
√
3
2 Kx and

√
3
2 K(K − x). Thus, we can write the following two equations:

c+K + x =

√
3

24
Kx (1)

c+ 2K − x =

√
3

70
K(K − x) (2)

Using the law of cosines in the triangle AED and the fact that angle < AED = π
3 , we

have a third equation:

c2 = K2 + x2 −Kx (3)

Thus, we have three quadratic equations in three unknowns, c,K, and x. We will show
that this can be reduced to a single quadratic equation in K, from which we will be able
to find x and c.
To make the algebra easier to write out, let us use the following notations:

q =
√
3

24

p =
√
3

70
Q = qK − 1
P = pK − 1
The reason for the latter two will become clear in a moment.
Eliminating c from equations 1 and 2, we find that x = K(pK−1)

K(p+q)−2 or using our notation
above:

x =
KP

P +Q
(4)

Note, 1 can be written as K + c = (qK − 1)x = Qx (similarly, 2 can be written
K + c = P (K − x)), so substituting 4 into 1 in this form, we find, after some easy
manipulations:

c =
K

P +Q
(PQ− (P +Q)) (5)

On the other hand, substituting 4 into 3 and rearranging terms we obtain:

c2 =

(
K

P +Q

)2

((P +Q)2 + P 2 − P (P +Q)) (6)

Squaring 5, equating it with 6, and canceling
(

K
P+Q

)2
, we obtain:

(PQ− (P +Q))2 = (P +Q)2 + P 2 − P (P +Q)

And after some simplification, we have the equation:

PQ(PQ− 2(P +Q) + 1) = 0
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But since Qx = K + c > 0 and P (K − x) = K + c > 0, neither P nor Q can be 0, so, we
have:

PQ− 2(P +Q) + 1 = 0

At this point, we can substitute pK − 1 = P and qK − 1 = Q, to obtain the following
quadratic equation in K:

pqK2 − 3(p+ q)K + 6 = 0 (7)

Substituting p =
√
3

70 and q =
√
3

24 and solving, we obtain two solutions:

K = 80
√

3 ≈ 138.564 or K = 14
√

3 ≈ 24.245. As we noted above, K cannot be less than
94, so we have only K = 80

√
3. Using 4 and 5 to find x and c, we find then that the

perimeter of ABCD= 2c+K = 226
√

3 ≈ 391.443

Solution 2 by David E. Manes, SUNY College at Oneonta, Oneonta, NY

Let x = AB, y = CD and z = AD = BC. Then the perimeter of the trapezoid ABCD
is x+ y + 2z = 226

√
3 when x = 17

√
3, y = 63

√
3 and z = 73

√
3.

Denote the area of polygon X by [X]. Then, by Ptolemy’s theorem, AC =
√
xy + z2.

Therefore, x + y =
√
xy + z2. Solving for z2, we get z2 = x2 + xy + y2. The height h of

the trapezoid, according to the Pythagorean theorem, is given by

h =

√
z2 −

(y − x
2

)2
=

√
3

2
(x+ y).

Therefore,

[ABC] =
1

2
· x ·
√

3

2
(x+ y)

and

[ACD] =
1

2
· y ·
√

3

2
(x+ y).

Let r denote the inradius of triangle T . Then r · s = [T ] where s is the semiperimeter of
T . For each of the triangles ACD and ABC, this formula reduces to

35

2
(x+ 2y + z) =

√
3

4
y(x+ y),

6(2x+ y + z) =

√
3

4
x(x+ y),

respectively. Multiplying the first equation by x, the second by y and then subtracting
the second equation from the first yields the following upon simplification:

z(
35

2
x− 6y) = 6y2 − 23xy − 35

2
x2.

Since z =
√
x2 + xy + y2, we have

√
x2 + xy + y2(

35

2
x− 6y) = 6y2 − 23xy − 35

2
x2.

Squaring both sides of this equation and then simplifying it, one obtains the equation

136y2 − 249xy − 945x2 = 0.
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Regarding this equation as a quadratic in y, one obtains the following roots

y =
249x±

√
(249x)2 + 4(136)(945x2)

272

=
249x± 759x

272
.

Since y > 0 we disregard the negative root so that

y =
1008

272
x =

63

17
x.

Moreover,

z =
√
x2 + xy + y2 =

√
x2 +

63

17
x2 +

(63

17
x
)2

=
73

17
x.

Thus, our solutions are parametrized by x and the problem now is to find the value(s) of
x that satisfy the two equations for the inradius. To that end suppose

6
(
2x+

63

17
x+

73

17
x
)

=

√
3

4
x
(
x+

63

17
x
)
.

Then x = 17
√

3. Similarly, the equation 35
2 (x+ 2y + z) =

√
3
4 y(x+ y) yields x = 17

√
3.

Hence, y = 63
17x = 63

√
3 and z = 73

17x = 73
√

3 so that the perimeter of the trapezoid

ABCD is x+ y + 2z = 226
√

3.

Solution 3 by Nikos Kalapodis, Patras, Greece

Let P be the intersection of diagonals AC and BD. Since trapezoid ABCD is isosceles,
the triangles ABC and BAD, as well as, the triangles ACD and BDC are congruent,
(SAS criterion).
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It follows that the triangles PAB and PCD are isosceles with PA = PB and PC = PD
(1).
Furthermore, since they are similar (congruent angles) we have
PA

AB
=
PC

CD
=
PA+ PC

AB + CD
=

AC

AB + CD
= 1. Thus, PA = AB and PC = CD (2).

From (1) and (2) we conclude that triangles PAB and PCD are equilateral.
Let p = AB = PA = PB, q = CD = PC = PD, r = BC = AD, t = p+ q + r and h the
height of the trapezoid. Then we have
p

q
=
ph

qh
=

2[ABC]

2[ACD]
=

12(2p+ q + r)

35(p+ 2q + r)
=

12(p+ t)

35(q + t)
or 23pq = t(12q − 35p) (3)

Since the trapezoid is isosceles, it is cyclic, so by Ptolemy’s Theorem we have
pq + r2 = (p+ q)2 (4) or pq = t(p+ q − r) (5)
By (3) and (5) we obtain 58p+ 11q = 23r (6)

Finally, applying the well-known formula r = (s− a) tan
A

2
in triangles ACD and BAC

we have

23 = 35− 12 =

(
p+ 2q + r

2
− r
) √

3

3
−
(

2p+ q + r

2
− r
) √

3

3
=
q − p

2
·
√

3

3
, i.e.

q − p = 46
√

3 (7).
Solving the system of equations (4), (6) and (7) we find p = 17

√
3, q = 63

√
3, and

r = 73
√

3.
Therefore the perimeter of trapezoid is p+ q + 2r = 226

√
3.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Albert Stadler, Herrliberg, Switzerland; Malik Sheykhov (student at
the France-Azerbaijan University in Azerbaijan) and Talman Residli
(student at Azerbaijan Medical University in Baku, Azerbaijan); David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposer

• 5410: Proposed by Arkady Alt, San Jose, CA

For the given integers a1, a2, a3 ≥ 2 find the largest value of the integer semiperimeter of
a triangle with integer side lengths t1, t2, t3 satisfying the inequalities ti ≤ ai, i = 1, 2, 3.

Solution 1 by Kee-Wai Lau, Hong Kong, China

Without loss of generality, we assume that a1 ≥ a2 ≥ a3. Let

T1 = {2, 3, . . . , a1}, T2 = {2, 3, . . . , a2}, T3 = {2, 3, . . . , a3}

T = {(t1, t2, t3) : t1 ∈ T1, t2 ∈ T2, t3 ∈ T3} and

S = T ∩ {(t1, t2t3) : t1, t2, t3 are the side lengths of a triangle}.

Let L = Maximum
(t1,t2,t3)∈S

t1 + t2 + t3
2

. We show that L =





a1 + a2 + a3
2

, if a2 + a3 > a1

a2 + a3 −
1

2
, if a2 + a3 ≤ a1.

Case 1: a2 + a3 > a1
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We have (a1, a2, a3) ∈ S and clearly L =
a1 + a2 + a3

2
.

Case 2: a2 + a3 ≤ a1
We have (a2 + a3 − 1, a2, a3) ∈ S so that L ≥ a2 + a3 −

1

2
. If (t1, t2, t3) ∈ T

and t1 > a2 + a3 − 1, then (t1, t2, t3) /∈ S. If (t1, t2, t3) ∈ T then t1 < a2 + a3 − 1, then

t1 + t2 + t3
2

<
(a2 + a3 − 1) + a2 + a3

2
= a2 + a3 −

1

2
. Hence, L = a2 + a3 −

1

2
in this

case.

This completes the solution.

Solution 2 by proposer

Let s =
t1 + t2 + t3

2
. Since ti < s, i = 1, 2, 3 then by the triangle inequality our problem

becomes the following: Find the maximum of s for which there are positive integer
numbers t1, t2, t3 satisfying ti ≤ min{ai, s− 1), i = 1, 2, 3, t1 + t2 + t3 = 2s.

First note that s ≥ 3, ti ≥ 2, i = 1, 2, 3. Indeed, since ti ≤ s− 1 then 1 ≤ s− ti, i = 1, 2, 3
and therefore t1 = 2s− t2 − t3 = (s− t2) + (s− t3) ≥ 2. Cyclicly we obtian t2, t3 ≥ 2
Hence, 2s ≥ 6 ⇐⇒ s ≥ 3.

Since t3 = 2s− t1 − t2, 2 ≤ t3 ≤ min{a3, s− 1}, then
1 ≤ 2s− t1 − t2 ≤ min{a3, s− 1} ⇐⇒ max{2s− t1 − a3, s+ 1− t1} ≤ t2 ≤ 2s− 1− t1,
and therefore, we obtain the inequality for t2, namely that

(1) max{2s− t1 − a3, s+ 1− t1, 2} ≤ t2 ≤ min{2s− 1− t1, a2, s− 1}

with the conditions of solvability being:

(2)





2s− t1 − a3 ≤ s− 1
2s− t1 − a3 ≤ a2
s+ 1− t1 ≤ a2

2 ≤ 2s− 1− t1

⇐⇒





s+ 1− a3 ≤ t1
2s− a2 − a3 ≤ t1
s+ 1− a2 ≤ t1

t1 ≤ 2s− 3

Since s− 1 ≤ 2s− 3, then (2) together with 2 ≤ t1 ≤ min{a1, s− 1} gives us the bounds
for t1

(3) max{s+ 1− a3, 2s− a2 − a3, s+ 1− a2, 2} ≤ t1 ≤= min{a1, s− 1}.
Since 2 ≤ ai, i = 1, 2, 3 then s+ 1− a2 ≤ s− 1, s+ 1− a3 ≤ s− 1 and the solvability
condition for (3) becomes

s+ 1− a3 ≤ a1 ⇐⇒ s ≤ a1 + a3 − 1, 2s− a2 − a3 ≤ a1 ⇐⇒ s ≤
⌊
a1 + a2 + a3

2

⌋
,

s+ 1− a2 ≤ a1 ⇐⇒ s ≤ a1 + a2 − 1, 2s− a2 − a3 ≤ s− 1 ⇐⇒ s ≤ +a2 + a3 − 1.

Thus, s∗ = min

{⌊
a1 + a2 + a3

2

⌋
, a1 + a2 − 1, a2 + a3 − 1, a3 + a1 − 1

}
is the largest

integer value of the semiperimeter.

Solution 3 by Ed Gray, Highland Beach, FL

We consider several special cases:

a) If a1 = a2 = a3 = 2k, we can equate ti = ai for each i. The perimeter is then 6k and
the semiperimeter is 3k.
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b) Suppose a1 = a2 = a3 = 2k + 1. We note that a1 + a2 = 4k + 2 and a3 − 1 = 2k. We
define t1 = a1, t2 = a2 and t3 = a3 − 1.

c) Suppose that a1 = a2 and a3 is larger than either one. In this case we set t1 = a1 and
t2 = a2. It doesn’t matter if a1, a2 are both even or both odd, t1 + t2 is even. We now
have to avoid a potential problem. It must be true that t1 + t2 ≥ t3. Therefore, since if
a3 is large, we need to define t3 = a3 − x, where x is the integer which is the smallest
such that a3 − x is even and t1 + t2 > t3. Since t1 + t2 + t3 is even, the semiperimeter is
integral.

d) Suppose that a1 = a2 and a3 is smaller than either one, in this case set
t1 = a1, t2 = a2, so that t1 + t2 is even. If a3=2, we let t3 = 2. If a3 > 2, but odd, we we
set t3 = a3 − 1. Then t1 + t2 + t3 equals the perimeter which is even and with an integer
semiperimeter, and the triangle inequalities hold.

e) Finally, we have the general case: a1 < a2 < a3. We set t1 = a1, t2 = a2. If t1 + t2 is
even we need t3 to be even. If a3 is very far so that a1 + a2 < a3, we let t3 = a3 − x,
where x is the smallest integer which simultaneously makes t1 + t2 + t3 even and
t1 + t2 > t3. If t1 + t2 is odd, we employ a similar calculation.

Solution 4 by Paul M. Harms, North Newton, KS

Suppose a1 ≤ a2 ≤ a3. The largest perimeter would be a1 + a2 + a3 where
ti = ai, i = 1, 2, 3 provided that we have a triangle, i.e., a1 + a2 > a3.

If a1 + a2 > a3, and the perimeter is an even integer, then the largest value of an integer

semiperimeter is
a1 +2 +a3

2
.

If the perimeter is an odd integer, then a3 must be at least 3 and we could use sides
t1 = a1, t2 = a2 and t3 = a3 − 1. The largest integer semiperimeter for this case is
a1 + a2 + a3 − 1

2
.

Now consider the case where a1 + a2 ≤ a3. A triangle with a maximum perimeter is
when t1 = a1, a2 = t2, and t3 = a1 + a2 − 1. Here t3 > a1, a2 and the perimeter is the
odd integer 2a1 + 2a2 − 1. To get the largest integer semiperimeter we could use
t1 = a1, t2 = a2 and t3 = a1 + a2 − 2 which has a1 + a2 − 1 as the largest integer
semiperimeter.

Also solved by Jeremiah Bartz and Timothy Prescott, University of North
Dakota, Grand Forks, ND; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA

• 5411: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzău, Romania

Let (an)n≥1 , (bn)n≥1 be real valued positive sequences with lim
n→∞

an = lim
n→∞

bn = a ∈ R∗+
If lim
n→∞

(n (an − a)) = b ∈ R and lim
n→∞

(n (bn − a)) = c ∈ R compute

lim
n→∞

(
an+1

n+1
√

(n+ 1)!− bn n
√
n!
)
.

Note: R∗+ means the positive real numbers without zero.
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Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

By Stirling’s approximation,
n! ∼

√
2πnn+1/2e−n,

so
n
√
n! ∼ n

e
and n+1

√
(n+ 1)! ∼ n+ 1

e
.

It then follows that

an+1
n+1
√

(n+ 1)!− bn n
√
n! ∼ (n+ 1)an+1

e
− nbn

e

=
1

e
[(n+ 1)(an+1 − a)− n(bn − a) + a]

and

lim
n→∞

(
an+1

n+1
√

(n+ 1)!− bn n
√
n!
)

= lim
n→∞

1

e
[(n+ 1)(an+1 − a)− n(bn − a) + a]

=
1

e
(b− c+ a).

Solution 2: by Moti Levy, Rehovot, Israel.

lim
n→∞

(
((n+ 1)!)

1
n+1 an+1 − (n!)

1
n bn

)

= lim
n→∞

(
((n+ 1)!)

1
n+1

n+ 1
((n+ 1) (an+1 − a)) + ((n+ 1)!)

1
n+1 a− (n!)

1
n

n
(n (bn − a))− (n!)

1
n a

)

= lim
n→∞

((n+ 1)!)
1

n+1

n+ 1
((n+ 1) (an+1 − a))− lim

n→∞
(n!)

1
n

n
(n (bn − a)) + a lim

n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)

= lim
n→∞

((n+ 1)!)
1

n+1

n+ 1
lim
n→∞

((n+ 1) (an+1 − a))

− lim
n→∞

(n!)
1
n

n
lim
n→∞

(n (bn − a)) + a lim
n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
.

So we are challenged with two limits: limn→∞
(n!)

1
n

n and

limn→∞
(

((n+ 1)!)
1

n+1 − (n!)
1
n

)
. We will show that both limits equal to 1

e .

We begin by stating the well-known asymptotic expansion of the Gamma function:

ex

xx
√

2πx
Γ (x+ 1) ∼ 1 +

1

12x
, x→∞.

For positive integer n,

( e
n

)n n!√
2πn

∼ 1 +
1

12n
, n→∞.

Using
(
1 + 1

12n

) 1
n ∼ 1 + 1

12n2 and
(√

2πn
) 1

n ∼ 1, we get

e

n
(n!)

1
n ∼ 1 +

1

12n2
, n→∞,
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or
(n!)

1
n

n
∼ 1

e

(
1 +

1

12n2

)
, n→∞,

which implies

lim
n→∞

(n!)
1
n

n
=

1

e
.

lim
n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
= lim

n→∞
(n!)

1
n

(
((n+ 1)!)

1
n+1

(n!)
1
n

− 1

)

(n!)
1
n

n
∼ 1

e

(
1 +

1

12n2

)
;

((n+ 1)!)
1

n+1

n+ 1
∼ 1

e

(
1 +

1

12n2

)

((n+1)!)
1

n+1

n+1

(n!)
1
n

n

∼ 1 ⇒ ((n+ 1)!)
1

n+1

(n!)
1
n

∼ n+ 1

n
= 1 +

1

n

((n+ 1)!)
1

n+1

(n!)
1
n

− 1 ∼ 1

n

(n!)
1
n

(
((n+ 1)!)

1
n+1

(n!)
1
n

− 1

)
∼ n

e

(
1 +

1

12n2

)
1

n
∼ 1

e
.

We conclude that

lim
n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)
=

1

e
.

Now back to the original limit

lim
n→∞

((n+ 1)!)
1

n+1

n+ 1
lim
n→∞

((n+ 1) (an+1 − a))

− lim
n→∞

(n!)
1
n

n
lim
n→∞

(n (bn − a)) + a lim
n→∞

(
((n+ 1)!)

1
n+1 − (n!)

1
n

)

=
1

e
b− 1

e
c+ a

1

e
=
a+ b− c

e
.

Also solved by Arkady Alt, San Jose, CA; Paul M. Harms, North Newton,
KS; Paolo Perfetti, Department of Mathematics, Tor Vergata, Rome, Italy,
and the proposers.

• 5412: Proposed by Michal Kremzer, Gliwice, Silesia, Poland

Given positive integer M . Find a continuous, non-constant function f : R→ R such
that f (f(x)) = f ([x]), for all real x, and for which the maximum value of f(x) is M .

Note: [x] is the greatest integer function.

Solution 1 by Tommy Dreyfus, Tel Aviv University, Israel

Let f(x) = 0 except for M < x < M + 1, where f(x) = M − 2M

∣∣∣∣x−
(
M +

1

2

)∣∣∣∣.
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Then f is continuous, attains its maximum at f

(
M +

1

2

)
= M , and

f(f(x)) = f([x]) = 0 for all x.

Solution 2 by Albert Stadler, Herrliberg Switzerland

Let f(x) =

{
M sin2 (πx) , if x < 0 or x > M

0, if 0 ≤ x ≤ M .

f(x) is continuous and non-constant. In addition f(n) = 0 for all integers n.
0 ≤ f(x) ≤M and the maximum M is assumed.

f ([x]) = 0 for all real x since [x] is an integer. f(f(x)) = 0 for all real x, since
0 ≤ (x) ≤M and f(y) = 0 for 0 ≤ y ≤M .

Solution 3 by Moti Levy, Rehovot, Israel
Let f : R→ R be defined as follows (M is positive integer):

f (x) =

{
M
[

x
M+1

]
sin2 (πx) , for M + 2 ≥ x ≥M + 1

0, otherwise.

The function f (x) is continuous and its maximum value over R is M .
Clearly (since sin2 (π [x]) = 0) ,

f ([x]) = 0.

By its definition 0 ≤ f (x) ≤M. Hence, f (f (x)) = 0, since
[
f(x)
M+1

]
= 0.

f (f (x)) =

{
M
[
f(x)
M+1

]
sin2 (πf (x)) = 0, for M + 2 ≥ x ≥M + 1

0, otherwise.

We conclude that f (x) is continuous and non-constant function with maximum value
M , which satisfies f(f(x)) = f([x]) = 0.

Solution 4 by The Ashland University Undergraduate Problem Solving
Group, Ashland, OH

The following function satisfies the given conditions;

f(x) =




−x+ 2M − 2 if M − 2 ≤ x ≤M − 3/2
x+ 1 if M − 3/2 < x ≤M − 1
M otherwise.

We can easliy check that f is continuous by noting that:

f(M − 2) = M, f

(
M − 3

2

)
= M − 1

2
, and f(M − 1) = M.

We now show f satisfies f (f(x)) = f ([x]).

When x ≤M − 2, [x] ≤M − 2 and f(f(x)) = f(M) = M = f([x]).

When x ≥M − 1, [x] ≥M − 1 and f(f(x)) = f(M) = M = f([x].

Finally, when M − 2 < x < M − 1, [x] = M − 2 and M − 1

2
≤ f(x) < M .

Thus, f(f(x)) = M = f ([x]).
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Also solved by Michael N. Fried, Ben-Gurion University, Beer-Sheva, Israel,
and the proposer.

• 5413: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Compute

lim
n→∞

1

n

∑

1≤i≤j≤n

1√
(n2 + (i+ j)n+ ij)

.

Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

lim
n→∞

1

n

∑

1≤i≤j≤n

1√
n2 + (i+ j)n+ ij

= lim
n→∞

∑

1≤i≤j≤n

1√
(1 + i/n)(1 + j/n)

· 1

n2

=

∫ 1

0

∫ x

0

1√
(1 + x)(1 + y)

dy dx

=

∫ 1

0

2√
1 + x

·
√

1 + y

∣∣∣∣
x

0

=

∫ 1

0

(
2− 2√

1 + x

)
dx

=
(
2x− 4

√
1 + x

)∣∣∣
1

0

= 6− 4
√

2.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Since n2 + (i+ j)n+ ij = (n+ i)(n+ j), it is easy to check that

∑

1≤i≤j≤n

1√
n2 + (i+ j)n+ ij

=
1

2

(
n∑

i=1

1√
n+ i

)2

+
1

2

n∑

i=1

1

n+ i
(1)

Now lim
n→∞

1√
n

n∑

i=1

1√
n+ i

= lim
n→∞

n∑

i=1

1

n
√
n+ 1

n

=

∫ 1

0

dx√
1 + x

= 2
(√

2− 1
)

, and from

0 <

n∑

i=1

1

n+ i
≤ n

n+ 1
, we have lim

n→∞
1

n

n∑

i=1

1

n+ i
= 0, so by (1), we obtain

lim
n→∞

1

n

∑

1≤i≤j≤n

1√
n2 + (i+ j)n+ ij

= 2(3− 2
√

2).

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Moti Levy, Rehovot, Israel; Paolo Perfetti, Department of
Mathematics, Tor Vergata, Rome, Italy; Albert Stadler, Herrliberg,
Switzerland, and the proposer.
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• 5414: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A,B ∈M2(C) be such that 2015AB − 2016BA = 2017I2. Prove that

(AB −BA)2 = O2.

Here, C is the set of complex numbers.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

Recall that the characteristic polynomial of a 2x2 matrix M is pM (x) = det(M − xI2).
An easy calculation shows that pM (x) = x2 − tr(M )x + det(M ) where det(M) is the
determinate of M and tr(M) is its trace. By the Cayley-Hamilton Theorem we have
pM (M) = 02.

We first note that AB and BA have the same characteristic polynomial p(x) because
det(AB) = det(BA) and tr(AB) = tr(BA).

We given 2015AB − 2016BA = 2017I2. Adding AB to both sides of this equation yields

2016(AB −BA) = AB + 2017I2.

Taking the determinant of this we find

20162 det(AB −BA) = det(AB + 2017I2) = p(−2017).

Similarly adding BA to both sides of the original equation and taking the determinant
yields

20152 det(AB −BA) = 20152 det(AB −BA) = p(−2017).

Thus
20162 det(AB −BA) = 20152 det(AB −BA)

and so det(AB −BA) = 0.

Since tr(AB −BA)=tr(AB)−tr(BA) = 0 we see that the characteristic polynomial of
AB −BA is x2. Thus, (AB −BA)2 = 02.

Essentially the same argument would establish the following mild generalization: Let
A,B ∈M2(K) were K is a field. Let s, t ∈ K with s 6= ±1 and t6= 0. Then
AB − sBA = tI2 implies (AB −BA)2 = 02.

Solution 2 by Albert Stadler, Herrliberg, Switzerland

AB and BA have the same eigenvalues, since det(xI2 −AB) = det(xI2 −BA). Indeed,
when A is nonsingular this result follows from the fact that AB and BA are similar:
BA = A−1(AB)A.

For the case where both A and B are singular, one may remark that the desired identity
is an equality between polynomials in x and the coefficients of the matrices. Thus, to
prove this equality, it suffices to prove that it is veified on a non-empty open subset (for
the usual topology, or, more generally, for the Zariski topology) of the space of all the
coefficients. As the non-singular matrices form such an open subset of the space of all
matrices, this proves the result.
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Let x be an eigenvalue of AB. Then

0 = det (xI2 −AB) = det

(
xI2 −

2016

2015
BA− 2017

2015
I2

)

=
20162

20152
det

(
x− 2017

2015
2016
2015

I2 −BA
)

=
20162

20152
det

(
x− 2017

2015
2016
2015

I2 −AB
)

=
20162

20152
det

(
2015x− 2017

2016
I2 −AB

)
. (1)

det(xI2 −AB) is a quadratic polynomial in x, let’s say det(xI2 −AB) = ax2 + bx+ c.

(1) then implies that

ax2 + bx+ c =
20162

20152

(
a

(
2015x− 2017

2016

)2

+ b

(
2015− 2017

2016

)
+ c

)
. We compare the

coefficients of the polynomials and see that b = 4034a, c = 20172a.

So the quadratic polynomial reads as ax2 + 4034ax+ 20172a = a(x+ 2017)2 which
shows that the characteristic polynomial of AB and BA has -2017 as a double zero, x is
an eigenvector of both AB and BA corresponding to the eigenvalue -2017. Therefore

there are numbers u and v such that AB is similar to

(
−2017 u

0 −2017

)

and BA is similar to

(
−2017 v

0 −2017

)
. Therefore, (AB −BA)2 is thus similar to

(
0 u− v
0 0

)
= 02, which implies that (AB −BA)2 = 02.

Solution 3 by Michael N. Fried, Ben-Gurion University, Beer-Sheva, Israel

Let us write [A,B] for AB −BA. Since traceAB = traceBA, we have, as is well-known,
trace[A,B] = 0. Thus, keeping in mind that [A,B] is a 2× 2 matrix, the characteristic
polynomial of [A,B] is x2 + det[A,B] = 0, so that if its eigenvalues are λ1 and λ2, we
have λ = λ1 = −λ2 and λ2 = −det[A,B]. Moreover, since every matrix satisfies its own
characteristic polynomial,

[A,B]2 = −det[A,B]I

Therefore, [A,B]2 = 0, which is what we want to show, if and only if
λ2 = −det[A,B] = 0, that is, if and only if λ = 0. We will show that, indeed, λ = 0
Consider the given equation pAB − (p+ 1)BA = (p+ 2)I. By adding BA or AB to both
sides, we obtain, respectively:

p[A,B] = (p+ 2)I +BA (8)

(p+ 1)[A,B] = (p+ 2)I +AB (9)
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Let λ be an eigenvalue for [A,B] and v the corresponding eigemvector. Thus, we have
by (8):

p[A,B]v = pλv = ((p+ 2)I +BA)v

Thus,
BAv = (pλ− (p+ 2))v

so that, pλ− (p+ 2) is an eigenvalue for BA. Since −λ is the other eigenvalue of [A,B],
we find that −(pλ+ (p+ 2)) is the second eigenvalue of BA.
In the same way, using equation (9), we find the eigenvalues of AB to be
(p+ 1)λ− (p+ 2) and −((p+ 1)λ+ (p+ 2))
The determinant of any matrix is of course equal to the product of the eigenvalues.
Moreover, detAB = detBA. Hence:

−(pλ+ (p+ 2))(pλ− (p+ 2)) = −((p+ 1)λ+ (p+ 2))((p+ 1)λ− (p+ 2))

From which we have:
((p+ 1)2 − p2)λ2 = 0

So that λ = 0, which is what we wished to prove.

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

Assume A,B ∈M2(C) with nAB − (n+ 1)BA = (n+ 2)I2 for some positive integer n.

Write A =

[
a b
c d

]
and B =

[
e f
g h

]
.

Then (AB −BA)2 = kI2, where

k = (bg − cf)2 + (af + bh− be− df)(ce+ dg − ag − ch).

By hypothesis, we have:

n(ae+ bg)− (n+ 1)(ae+ cf) = n+ 2 n(af + bh)− (n+ 1)(be+ df) = 0
n(cf + dh)− (n+ 1)(bg + dh) = n+ 2 n(ce+ dg)− (n+ 1)(ag + ch) = 0.

Thus n(af + bh− be− df) = be+ df and n(ce+ dg − ag − ch) = ag + ch. Also,
(n+ 1)/n = (af + bh)/(be+ df) = (ce+ dg)/(ag + ch), and ae− dh = (2n+ 1)(bg − cf).

Substituting yields

k =
(ae− dh)(bg − cf)

2n+ 1
+

(be+ df)(ag + ch)

n2
.

15

X
ia
ng
’s
T
ex
m
at
h



Then

(2n+ 1)k = abeg − acef − bdgh+ cdfh+
2n+ 1

n2
(abeg + bceh+ adfg + cdfh)

=

(
n+ 1

n

)2

(abeg + cdfh)− (acef + bdgh) +
2n+ 1

n2
(adfg + bceh)

=

(
n+ 1

n

)2

[(ag + ch)(be+ df)− adfg − bceh]− (acef + bdgh) +
2n+ 1

n2
(adfg + bceh)

=

(
n+ 1

n

)2

(ag + ch)(be+ df)− (adfg + bceh)− (acef + bdgh)

=

(
af + bh

be+ df

)(
ce+ dg

ag + ch

)
(ag + ch)(be+ df)− (adfg + bceh)− (acef + bdgh)

= (af + bh)(ce+ dg)− (adfg + bceh)− (acef + bdgh)

= 0.

Hence k = 0 as needed.

Also solved by Moti Levy, Rehovot, Israel, and the proposer.

Mea Culpa

Paul M. Harms of North Newton, KS and Jeremiah Bartz of University of
North Dakota, Grand Forks, ND should have each been credited with having
solved problem 5403.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2017

• 5433: Proposed by Kenneth Korbin, New York, NY

Solve the equation: 4
√
x+ x2 = 4

√
x+ 4
√
x− x2, with x > 0.

• 5434: Proposed by Titu Zvonaru, Comnesti, Romania and Neculai Stanciu, “George
Emil Palade” General School, Buzău, Romania

Calculate, without using a calculator or log tables, the number of digits in the base 10
expansion of 296.

• 5435: Proposed by Valcho Milchev, Petko Rachov Slaveikov Seconday School, Bulgaria

Find all positive integers a and b for which
a4 + 3a2 + 1

ab− 1
is a positive integer.

• 5436: Proposed by Arkady Alt, San Jose, CA

Find all values of the parameter t for which the system of inequalities

A =





4
√
x+ t ≥ 2y

4
√
y + t ≥ 2z

4
√
z + t ≥ 2x

a) has solutions;
b) has a unique solution.

• 5437: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let f : C − {2} → C be the function defined by f(z) =
2− 3z

z − 2
. If

fn(z) = (f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n

)(z), then compute fn(z) and lim
n→+∞

fn(z).

• 5438: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania
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Let k ≥ 0 be an integer and let α > 0 be a real number. Prove that

x2k

(1− x2)α +
y2k

(1− y2)α +
z2k

(1− z2)α ≥
xkyk

(1− xy)α
+

ykzk

(1− yz)α +
xkzk

(1− xz)α ,

for x, y, z ∈ (−1, 1).

Solutions

• 5415: Proposed by Kenneth Korbin, New York, NY

Given equilateral triangle ABC with inradius r and with cevian CD. Triangle ACD has
inradius x and triangle BCD has inradius y, where x, y and r are positive integers with
(x, y, r) = 1.
Part 1: Find x, y, and r if x+ y − r = 100

Part 2: Find x, y, and r if x+ y − r = 101.

Solution by Ed Gray, Highland Beach, FL

Editor’s comment: Ed’s solution to this problem was 18 pages in length. Listed below is
my greatly abbreviated outline of his solution method. All formulas listed below were
proved and/or referenced in Ed’s complete solution. He started his solution with the
second part of the problem and then applied the methods constructed there to the first
part of the problem. The reason for this will soon become apparent. Following is Ed’s
solution.

The following equations will be used in the solution.

x =
6r2 − 3rp

4r − p+
√

4r2 + p2 − 2rp
(1)

y =
3rp

p+ 2r +
√

4r2 + p2 − 2pr
(2)

k = p(2r − p) (3)

x+ y − r =
k

2r +
√

4r2 − k
(4)

Solution to Part 2. x+ y − r = 101.

Substituting the value x+ y − r = 101 into (4) and solving for k we see that

k

2r +
√

4r2 − k
= 101 =⇒ k = 404r − 10201,

and substituting this into (3) above we see that

404r − 10201 = 2pr − p2 =⇒ p = r −
√
r2 − 404r + 10201.
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Letting D equal the value under the square root we have

D2 = r2 − 404r + 10201 =⇒ r2 − 404r + 10201−D2 = 0.

Solving for r gives r = 202±
√

30603 +D2

Letting b2 = 30603 +D2 we have (b−D)(b+D) = 30603 = 31 · 1012.

This implies that there are three possible factorizations:

Case I : 1× 30603

Case II : 3× 10201

Case III : 101× 303

Case I:

{
b−D = 1
b+D = 30603

=⇒
{
b = 15302
D = 15301

.

So,
r1 = 202 + b = 202 + 15302 = 15504
r2 = 202− b = 202− 15302 < 0
p = r −D = 155404− 15301 = 203.

Therefore, r = 15504 and p = 203.

For these values of r and p, we evaluate x and y by using formulas (1) and (2) above.

x =
6r2 − 3rp

4r − p+
√

4r2 + p2 − 2rp

6(155040)2 − 3(15504)(203)

4(15504)− 203 +
√

4(15504)2 + (203)2 − 2(15504)(203)

= 15453.

y =
3pr

p+ 2r +
√

4r2 + p2 − 2pr

= 152.

So for Case I, r = 15504, x = 15453, y = 152, and x+ y − r = 101. Since x, y, r have no
common factor, they represent a solution.

Case II:

{
b−D = 3
b+D = 10201

=⇒
{
b = 5102
D = 5099

. So,




r1 = 202 + 5102 = 5304
r2 = 202− 5102 < 0
p = r −D = 205.

.

Following the path in Case I, we find that





r = 5304
x = 5252
y = 153, and

x+ y − r = 101.
These terms have no common factor and so represent a solution.
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Case III:

{
b−D = 101
b+D = 303

=⇒
{
b = 202
D = 101

. So,




r1 = 202 + 202 = 4043
r2 = 202− 202 = 0, not viable
p = r −D = 4043− 101 = 303.

.

Given r = 404, p = 303, and calculating as before, we have for Case III,
r = 404, x = 303, y = 202, x+ y − r = 101. However 101 divides all three terms,
violating (x, y, r) = 1, so we do not have a solution.

In summary, and taking into account the interchangeability of x and y, there are four
solutions for Part 2 of the problem:

x
y
r


 =




15453
152

15504


 ,




5252
153
5304


 ,




152
15453
15504


 ,




153
5252
5304


 .

Solution to Part 1. x+ y − r = 100. In solving Part 1 of the problem we employ the
same techniques that were used in Part 2. We start off by finding that if

k

2r +
√

4r2 − k
= 100 then k = 400r − 10, 000. Substituting this into Equation (3), gives

us 400r − 10, 000 = 2pr − p2 and solving for p gives us p = r −
√
r2 − 4004r + 10, 000.

The discriminant, D is given by D2 = r2 − 400r + 10000. Writing this as a quadratic in
r and solving for r gives us

r2 − 400r + 10, 000−D2 = 0

r = 200±
√

30, 000 +D2.

And as before, letting b2 = 30, 000 +D2 we obtain

(b−D+)(b+D) = 30, 000 = 24 · 31 · 54.
Hence there are 5× 2× 5 = 50 factors which need to be written as the product of two
factors. Since 2b must equal the sum of the two factors, they cannot be of opposite
parity. Following is a table listing all factorizations. We eliminate those factorizations
that have an odd factor by placing an asterisk in front of them.

∗1× 30, 000 2× 15, 000 ∗3× 10, 000
4× 7500 ∗5× 6, 000 8× 3750
10× 3000 12× 2500 ∗15× 2000
∗16× 1875 20× 1500 24× 1250
∗25× 1200 30× 1000 40× 750
∗48× 625 50× 600 60× 500
∗75× 400 ∗80× 375 100× 300
120× 250 ∗125× 240 150× 200

The remaining factorizations represent potential solutions. We will do the first one in
detail but the others we will only check to see if (x, y, r) = 1.

{
b−D = 2
b+D = 15000

=⇒
{
b = 7501
D = 7499.

. So,




r1 = 200 = 7501 = 7701
r2 = 200− 7501 < 0
p = r −D = 7701− 7499 = 202.

Given p = r −D = 7701− 7499 = 202. For r = 7701, p = 202 we calculate x and y using
the standard formulas.

x =
6r2 − 3rp

4r − p+
√

4r2 + p2 − 2rp
=⇒ x = 7650
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y =
3rp

p+ 2r +
√

4r2 + p2 − 2pr
=⇒ y = 151.

So x = 7650, y = 152, r = 7701. These have no common factor and so represent a
solution.

We now move to the next case.

{
b−D = 4
b+D = 7500

=⇒ x = 3900, y = 152, r = 3952. Since

(x, y, z) 6= 1, this is not a solution.

And the next case.

{
b−D = 6
b+D = 5000

=⇒ x = 2650, y = 153, r = 2703. Since

x+ y − r = 100 and (x, y, r) = 1 this is a solution.

And the next.

{
b−D = 8
b+D = 3750

=⇒ x = 2025, y = 154, r = 2079. Since x+ y − r = 100

and (x, y, r) = 1 this is a solution 10pt Working our way through the table of potential

solutions we find that

{
b−D = 24
b+D = 1250

=⇒ x = 775, y = 162, r = 837 and since

x+ y − r = 100 and (x, y, r) = 1 this is a solution

Systemically working our way the table we see that many values did not result in an
answer to the problem. Summarizing Part 1 of the problem, and taking into account the
interchangeability of x and y, we see that there are exactly eight solutions.

1) x = 7650, y = 151, r = 7701
2) x = 2650, y = 153, r = 2703
3) x = 2025, y = 154, r = 2079
4) x = 775, y = 162, r = 837
5) x = 151, y = 7650, r = 7701
6) x = 153, y = 2650, r = 2703
7) x = 154, y = 2025, r = 2079
8) x = 162, y = 775, r = 837.

Also solved by Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

• 5416: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Two congruent intersecting holes, each with a square cross-section were drilled through
a cube. Each of the holes goes through the opposite faces of the cube. Moreover, the
edges of each hole are parallel to the appropriate edges of the original cube, and the
center of each hole is at the center of the original cube. Letting the length of the original
cube be a, find the length of the square cross-section of each hole that will yield the
largest surface area of the solid with two intersecting holes. What is the largest surface
area of the solid with two intersecting holes?
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Solution by Paul M. Harms, North Newton, KS

Let the side lengths of the drilled squares be x at the surface of the original cube. The
surface area of the one side of the original cube, with a square hole cut out of it, is
a2 − x2. There are four of these sides on the original cube.

On a side of the original cube the shortest distance between an edge of the original cube
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and a parallel side of the drilled square hole is
a− x

2
.

Now consider the surface area “inside” the cube made by the part of the drilled square
that starts at a side of the original cube and ends when the drilled square meets the
other drilled square originating from an adjacent side of the cube. This surface area
looking at one side of the cube includes four rectangles with one side length of x and

“depth” length of
a− x

2
, so this surface area is

4x(a− x)

2
= 2(a− x). There are four of

these around the original cube. The surface area of each of the two sides of the original
cube which have no holes is a.

In the middle of the original cube at the intersection of the two drilled square holes,
there are two squares of side length x with are parallel to the sides of the original cube
with no holes . The area of each square is x2.

The total surface area of the problem is

4(a2 − x2) + 4 (2x(a− x)) + 2a2 + 2x2 = 6a2 + 8ax− 10x2.

The maximum surface area occurs when 8a− 20x = 0 or x =
2a

5
. The maximum surface

area is
38a2

5
when a side of the drilled square holes as a length of

2a

5
.

Editor′s comment: David Stone and John Hawkins, both from Georgia
Southern University, Statesboro, GA accompanied their solution by placing the
statement of the problem into a story setting. They wrote:

“An interpretation: in the ancient Martian civilization, the rulers favorite meditational
spot was a levitating cube having a cubical inner sanctum formed by two horizontal
square tunnels, meeting at the center of the cube, from which he could see out in all four
directions. The designers were charged to construct the ship with a maximum amount
of wall space for inscriptions and carved likenesses of His Highness. There are four short
hallways leading from the inner room to the outside walls.” They let x be the side
length of the square tunnels that are drilled through the original cube and noted that
each tunnel has an x× x cross section and has length a. The inner most cubical room is
x× x× x. They then mentioned that “by drilling the tunnels and opening up an interior

chamber, the surface area has increased from 6a2 to
38

5
a2, an increase of

8

5
a2 or 27%.

So the King has his private getaway and more space for pictures and wall hangings.”

Also solved by Jeremiah Bartz, University of North Dakota, Grand Forks,
ND and Nicholas Newman, Francis Marion University, Florence SC; Michael
N. Fried, Ben-Gurion University, Beer-Sheva, Israel; David A. Huckaby,
Angelo State University, San Angelo, TX; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

• 5417: Proposed by Arkady Alt, San Jose, CA

Prove that for any positive real number x, and for any natural number n ≥ 2,

n

√
1 + x+ · · ·+ xn

n+ 1
≥ n−1

√
1 + x+ · · ·+ xn−1

n
.

Solution 1 by Henry Ricardo, New York Math Circle, NY
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Let αn = (1 + x+ · · ·+ xn)/(n+ 1) and define

F (x) =
(1 + x+ x2 + · · ·+ xn−1)n

(1 + x+ x2 + · · ·+ xn)n−1
.

Then, for x > 0 and n ≥ 2, we see that

n−1
√
αn−1 ≤ n

√
αn ⇔ αnn−1 ≤ αn−1n ⇔ F (x) ≤ nn

(n+ 1)n−1
= F (1).

Now we show that F (x) attains its absolute maximum value at x = 1.

For x 6= 1, we have

F ′(x) =
(xn − 1)n−1(xn+1 − 1)−n

(
−x2n+1 + n2xn+2 + 2(1− n2)xn+1 + n2xn − x

)

x(x− 1)2

=

G(x)︷ ︸︸ ︷
(xn − 1)n−1

(xn+1 − 1)n(x− 1)2
·

H(x)︷ ︸︸ ︷(
−x2n + n2xn+1 + 2(1− n2)xn + n2xn−1 − 1

)
.

Noting that G(x) is negative for 0 < x < 1 and positive for x > 1, we examine the factor
H(x) to see that

H(x) = −(xn − 1)2 + n2xn−1(x− 1)2

= −n2(x− 1)2
[

(xn−1 + xn−2 + · · ·+ x+ 1)2

n2
− xn−1

]

= −n2(x− 1)2

[(
xn−1 + xn−2 + · · ·+ x+ 1

n

)2

−
(

n
√
xn−1 · xn−2 · · ·x · 1

)2
]

is negative for all x > 0 by the AM-GM inequality.

Thus F ′(x) > 0 for 0 < x < 1 and F ′(x) < 0 for x > 1, implying that F (x) has an
absolute maximum value at x = 1—that is, F (x) ≤ F (1) on (0,∞), which proves the
proposed inequality.

COMMENT: This was proposed by Walther Janous as problem 1763 (1992, p. 206) in
Crux Mathematicorum. My solution is based on the published solution of Chris
Wildhagen.

Solution 2: by Moti Levy, Rehovot, Israel

If x = 1 then the inequality holds, since

n

√
1 + x+ · · ·+ xn

n+ 1
=

n−1

√
1 + x+ · · ·+ xn−1

n
= 1.

We assume that x > 1.
Let us define the continuous functions g (t) , and f (t) , t ∈ R, t > 1, as follows,

g (t) :=
xt+1 − 1

x− 1

1

t+ 1
, f (t) := (g (t))

1
t .
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Clearly, n

√
1+x+···+xn

n+1 = n

√
1

n+1
xn+1−1
x−1 = f (n) . The original inequality (in terms of the

function f) is
f (n) ≥ f (n− 1) , for n ≥ 2.

For n = 2,
√

1+x+x2

3 ≥ 1+x
2 follows from1+x+x2

3 −
(
1+x
2

)2
= 1

12 (x− 1)2 ≥ 0.

Therefore, it suffices to prove that f (t) is monotone increasing function for t ≥ 1.
We will show this by proving that the derivative of ln f (t) is postive for t ≥ 1.
The derivative is given by

t2
d

dt
(ln f) = − ln g + t

dg
dt

g
.

The first step is showing − ln g + t
dg
dt
g > 0 for t = 1.

− ln g + t
dg
dt

g

∣∣∣∣∣
t=1

= − ln

(
1 + x

4

)
+

2x2 lnx

2 (x2 − 1)
.

To show that − ln
(
1+x
4

)
+ 2x2 lnx

2(x2−1) > 0 for x > 0, we see that

limx→0

(
− ln

(
1+x
4

)
+ 2x2 lnx

2(x2−1)

)
= ln 4 > 0.

Now we show that the derivative of − ln
(
1+x
4

)
+ 2x2 lnx

2(x2−1) is positive:

d
(
− ln

(
1+x
4

)
+ 2x2 lnx

2(x2−1)

)

dx
=

1

x2 − 1
− 2x lnx

(x2 − 1)2
.

We use the well known inequality: lnx ≤ x2−1
2x for x > 0 to show that

1

x2 − 1
− 2x lnx

(x2 − 1)2
≥ 0.

The second step is showing that the derivative of − ln g + t
dg
dt
g is positive for t > 0,

d

(
− ln g + t

dg
dt
g

)

dt
= −

dg
dt

g
+

dg
dt

g
+
d

dt

(
dg
dt

g

)
=

d

dt

(
dg
dt

g

)
.

After some tedious calculation we arrive at,

d

dt

(
dg
dt

g

)
=

(
xt+1 − 1

)2 − xt+1 ln2 xt+1

(xt+1 − 1)2 (t+ 1)2
.

To show that
(
xt+1 − 1

)2 ≥ xt+1 ln2 xt+1, or that lnxt+1 ≤ 1√
xt+1

(
xt+1 − 1

)
, we use

again the inequality ln y ≤ y2−1
2y for y > 0,

ln y ≤ y − 1√
y

y + 1

2
√
y
.

But y+1
2
√
y ≥ 1; hence,

ln y ≤ y − 1√
y
, y > 0.
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Now set y = xt+1 to finish the proof.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Denote the inequality of the problem by (∗). It is easy to see that if (∗) holds for x = t

then it also holds for x =
1

t
. Hence it suffices to prove (∗) for 0 < x ≤ 1.

Let f(x) = (n− 1) ln

(
n∑

k=0

xk

)
− n ln

(
n−1∑

k=0

xk

)
+ ln

(
nn

(n+ 1)n−1

)
, where 0 < x ≤ 1.

By taking logarithms, we see that (∗) is equivalent to f(x) ≥ 0.

We have f(1) = 0 and for 0 < x < 1,

f(x) = (n− 1) ln(1− xn+1)− n ln(1− xn) + ln(1− x) + ln

(
nn

(n+ 1)n−1

)
.

Hence to prove (∗), we need only prove that f ′(x) < 0 for 0 < x < 1.

Since f ′(x) =
g(x)

(x− 1)(xn − 1)(xn+1 − 1)
, where

g(x) = x2n − n2xn+1 + 2(n− 1)(n+ 1)xn − n2xn−1 + 1, it suffices to show

g(x) > 0, for 0 < x < 1. Now

g′(x) = 2nx2n−1 − (n+ 1)n2xn + 2n(n− 1)(n+ 1)xn−1 − (n− 1)n2xn−2,

g′′(x) = 2n(2n− 1)x2n−2 − (n+ 1)n3xn−1 + 2n(n+ 1)(n− 1)2xn−2 − (n− 1)(n− 2)n2xn−3, and

g′′′(x) = 4n(n− 1)(2n− 1)x2n−3 − (n− 1)(∗n+ 1)n3xn− 2+

2n(n− 2)(n+ 1)(n− 1)2xn−3 − (n− 1)(n− 2)(n− 3)n2xn−4.

Thus g(1) = g′(1) = g′′(1) = g′′′(x) = 0 so that 1 is a root of multiplicity 4 of the
equation g(x) = 0. By Descartes’ rule of signs, the equation g(x) = 0 has no other
positive roots. Since g(0) = 1 > 0, so g(x) > 0 for 0 < x < 1.

This completes the proof.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Let f(t) = 1/x. The inequality goes unchanged because

n

√
1 + 1

t + . . .+ 1
tn

tn(n+ 1)
≥ n−1

√
1 + 1

t + . . .+ 1
tn−1

tn−1n

⇐⇒ n

√
1 + t+ . . .+ tn

n+ 1
≥ n−1

√
1 + t+ . . .+ tn−1

n
.
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This means that we may assume x ≥ 1.

Let x = 1. The inequality becomes

1 = n

√√√√ 1

n+ 1
(1 + 1 + . . .+ 1︸ ︷︷ ︸

n+1 times

) ≥ n

√√√√ 1

n
(1 + 1 + . . .+ 1︸ ︷︷ ︸

n times

) = 1.

Let x > 1. The inequality is also

n

√
1

n+ 1

1− xn+1

1− x ≥ n−1

√
1

n

1− xn
1− x ,

that is

n

√
1

x− 1

∫ x

1
tn ≥ n−1

√
1

x− 1

∫ x

1
tn−1.

This is the Power–Means inequality for integrals.

Also solved by Ed Gray, Highland Beach, FL; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5418: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” General School,
Buzaău, Romania

Let ABC be an acute triangle with circumradius R and inradius r. If m ≥ 0, then prove
that ∑

cyclic

cosA cosm+1B

cosm+1C
≥ 3m+1Rm

2m+1(R+ r)m
.

Solution 1 by Nikos Kalapodis, Patras, Greece

Applying Radon’s Inequality and taking into account that

cosA+ cosB + cosC = 1 +
r

R
and

∑

cyclic

cosA cosB

cosC
≥ 3

2
(see Solution 1 of Problem

5381, SSMA, April 2016) we have

∑

cyclic

cosA cosm+1B

cosm+1C
=
∑

cyclic

(
cosA cosB

cosC

)m+1

cosmA
≥


∑

cyclic

cosA cosB

cosC



m+1


∑

cyclic

cosA



m ≥

3m+1Rm

2m+1(R+ r)m
.

Solution 2 by Arkady Alt, San Jose, CA

Firstly, we will prove that in any acute triangle the inequality

(1)
∑
cyc

cosA cosB

cosC
≥ 3

2
, holds.
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Let α := π − 2A, β := π − 2B, γ := π − 2C. Then α, β, γ > 0 (since

A,B,C < π/2 ), α+ β + γ = π and (1)⇐⇒ ∑
cyc

sin
α

2
sin

β

2

sin
γ

2

≥ 3

2
.

Let a, b, c be sidelenghts of a triangle with angles α, β, γ, respectively, and s be
semiperimeter of this triangle.

Then sin
α

2
=

√
1− cosα

2
=

√
1

2

(
1− b2 + c2 − a2

2bc

)
=

√
(s− b) (s− c)

bc
and,

similarly, sin
β

2
=

√
(s− c) (s− a)

ca
, sin

γ

2
=

√
(s− a) (s− b)

ab
. Hence,

∑
cyc

sin
α

2
sin

β

2

sin
γ

2

=
∑
cyc

√
(s− b) (s− c)

bc
·
√

(s− c) (s− a)

ca√
(s− a) (s− b)

ab

=
∑
cyc

s− c
c

=
∑
cyc

s

c
− 3 =

1

2
(a+ b+ c) ·

(
1

a
+

1

b
+

1

c

)
− 3 ≥ 1

2
· 9− 3 =

3

2
.

Noting that cosA+ cosB + cosC = 1 +
r

R
and using a combination of the Weighted

Power Mean-Arithmetic Inequality with weights cosA, cosB, cosC > 0 and inequality
(1) we obtain:

∑
cyc

cosA cosm+1B

cosm+1C
=

∑
cyc

cosA

(
cosB

cosC

)m+1

=
∑
cyc

cosA ·




∑
cyc

cosA

(
cosB

cosC

)m+1

∑
cyc

cosA


 ≥

∑
cyc

cosA ·




∑
cyc

cosA

(
cosB

cosC

)

∑
cyc

cosA




m+1

=
∑
cyc

cosA ·

(
∑
cyc

cosA cosB

cosC

)m+1

(
∑
cyc

cosA

)m+1 =

(
∑
cyc

cosA cosB

cosC

)m+1

(
∑
cyc

cosA

)m ≥

(
3

2

)m+1

(
1 +

r

R

)m =
3m+1Rm

2m+1 (R+ r)m
.

Solution 3 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

The inequality is equivalent to and Radon’s inequality, and applying it we obtain

∑ cosA cosm+1B

cosm+1C
=
∑

(
cosA cosB

cosC

)m+1

cosmA

≥
Radon

(∑ cosA cosB

cosC

)m+1

∑
cosA)m

≥ 3m+1Rm

2m+1(R+ r)m
,

where
∑

cosA = 1 +
r

R
and

∑ cosA cosB

cosC
=
∑ tanC

tanA+ tanB
.

Denote tanA = x, tanB = y, tanC = z. Using Nesbitt’s inequality, we have
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∑ tanC

tanA+ tanB
=
∑ z

x+ y
≥

Nesbitt

3

2
.

Solution 4 by Henry Ricardo, New York Math Circle, NY.

We will use the following known results: (1) Radon’s inequality: If xk, ak > 0 ∀k, p > 0,

then
∑n

k=1
xp+1
k

apk
≥ (
∑n

k=1 xk)
p+1 / (

∑n
k=1 ak)

p; (2)
∑

cyclic

cosA cosB

cosC
≥ 3/2 ; (3)

∑
cyclic cosA = (R+ r)/R .

Now we have

∑

cyclic

cosA cosm+1B

cosm+1C
=

∑

cyclic

(
cosA cosB

cosC

)m+1

cosmA

(1)

≥

(∑
cyclic

cosA cosB
cosC

)m+1

(∑
cyclic cosA

)m

(2), (3)

≥ (3/2)m+1

((R+ r)/R)m
=

3m+1Rm

2m+1(R+ r)m
.

Comments: (a) Inequality (2) appeared as problem 4053, proposed by Šefket
Arslanagić, in Crux Mathematicorum and reappeared in several solutions to problem
5381 in this Journal; (b) Inequality (3) appeared in Solution 1 to problem 5381 in this
Journal. It is also Lemma 2.5.1 in Inequalities: A Mathematical Olympiad Approach by

R. Manfrino et. al.; (c) The related inequality
∑

cyclic

(
cosA cosB

cosC

)m+1 ≥ 3/2m+1

appeared as problem 5381 by the current proposers.

Editor’s comment: Moti Levy of Rehovot Israel stated in his solution that: “A nice
article on Radon’s inequality is A generalization of Radon’s Inequality by D. M.
Bătineţu-Giurgiu and Ovidiu T. Pop, in CREATIVE MATH. & INF. 19 (2010), No. 2,
116 - 121.”

Also solved by Ed Gray, Highland Beach, FL; Moti Levy, Rehovot, Israel;
Albert Stadler, Herrliberg, Switzerland, and the proposer.

5419: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a1, a2, · · · , an be positive real numbers. Prove that

n∏

k=1

(
n∑

k=1

atkk

)
≥
(

n∑

k=1

a
tn+1

4
k

)n

where for all k ≥ 1, tk is the kth tetrahedral number defined by tk =
k(k + 1)(k + 2)

6
.

Counter example by Moti Levy, Rehovot, Israel
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The index k appears twice in the left hand side. This seems odd. The proposer has
been asked and here is his response:
“Here, index k is used in both sum and product.
But indices in sums and product are dummy variables and they do not need to be distinct.
Surely, it is convenient but not necessary.”

Following the proposer’s argument that the index k is a dummy variable, we change the
first index designation from the letter k to the letter j.

Now the proposed inequality becomes:

n∏

j=1

(
n∑

k=1

atkk

)
≥
(

n∑

k=1

a
tn+1

4
k

)n
.

But
n∏

j=1

(
n∑

k=1

atkk

)
=

(
n∑

k=1

atkk

)n
,

hence the proposed inequality implies

n∑

k=1

atkk ≥
n∑

k=1

a
tn+1

4
k .

Let us check this inequality for the special case n = 2, for example:

2∑

k=1

atkk = at11 + at22 = a1 + a42

2∑

k=1

a
t3
4
k = a

5
2
1 + a

5
2
2

Now take a1 = 4 and a2 = 1. Since

4 + 1 ≤ 4
5
2 + 1,

the inequality is not true.

Editor′s note : The impossibility of this problem as it originally appeared was also
noted by Albert Stadler of Herrliberg, Switzerland. I, as editor, should have
noticed this mistake, but didn’t; mea culpa.

In correspondence with the proposer of the problem, José Luis Dı́az-Barrero, it was
acknowledged that the problem should have read as follows:

Let a1, a2, · · · , an be positive real numbers. Prove that

n∏

k=1




n∑

j=1

atkj


 ≥

(
n∑

k=1

a
tn+1

4
k

)n

where for all k ≥ 1, tk is the kth tetrahedral number defined by

tk =
k(k + 1)(k + 2)

6
.
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However, by changing the index in this manner, as Moti Levy mentioned, “changes the
meaning of the problem.” Below is a proof of the problem as it was intended to be in the
first place.

Solution by the proposer. We consider the function f(x) = ln(ax1 + ax2 + · · ·+ axn) that is
convex in R, as can be easily proven. Applying Jensen’s inequality to f(x), we obtain

n∑

k=1

pk ln
(
axk1 + · · ·+ axkn

)
≥ ln

(
a
∑n

k=1 pkxk
1 + · · ·+ a

∑n
k=1 pkxk

n

)

where pk are positive numbers of sum one and x1, x2, · · · , xn ∈ R. Taking into account
that f(x) = ln(x) is injective, then the preceding expression becomes

ln




n∏

k=1




n∑

j=1

axkj



pk

 ≥ ln

(
a
∑n

k=1 pkxk
1 + · · ·+ a

∑n
k=1 pkxk

n

)

or equivalently,

n∏

k=1




n∑

j=1

axkj



pk

≥
(
a
∑n

k=1 pkxk
1 + · · ·+ a

∑n
k=1 pkxk

n

)

Setting pk =
1

n
, 1 ≤ k ≤ n and xk = tk, 1 ≤ k ≤ n, and taking into account that

n∑

k=1

tk =
n

4
tn+1, as can be easily proven for instance by induction, then we have

n∏

k=1




n∑

j=1

atkj




1/n

≥
n∑

k=1

a
tn+1

4
k

from which the statement follows. Equality holds when n = 1, and we are done.

Comment: On account of the preceding for the particular case n = 2, we have

2∏

k=1




2∑

j=1

atkj


 ≥

(
2∑

k=1

a
tn+1

4
k

)2

or
(at11 + at12 )(at21 + at22 ) ≥ (a

t3/4
1 + a

t3/4
2 )2

Letting a1 = 4, a2 = 1, t1 = 1, t2 = 4, t3 = 10 in the last expression, we obtain

(41 + 1)(44 + 1) ≥ (45/2 + 1)2 ⇐⇒ 1285 ≥ 1089

5420: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A =

(
3 1
−4 −1

)
. Calculate

lim
n→∞

1

n

(
I2 +

An

n

)n
.
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Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

Let

A =

[
3 1
−4 −1

]
.

The characteristic polynomial of A is λ2 − 2λ+ 1, so λ = 1 is an eigenvalue of A with
algebraic multiplicity 2. The vector

v =

[
1
−2

]

forms a basis for the eigenspace of A corresponding to λ = 1. One solution of the
equation A− I = v is the vector [

1
−1

]
.

The matrix A can therefore be written in the form

A = T

[
1 1
0 1

]
T−1,

where

T =

[
1 1
−2 −1

]
.

A straightforward induction argument establishes that

[
1 1
0 1

]n
=

[
1 n
0 1

]
,

so that

An = T

[
1 n
0 1

]
T−1 =

[
2n+ 1 n
−4n −2n+ 1

]
.

Thus,

An

n
=




2 +
1

n
1

−4 −2 +
1

n


 ,

and

I2 +
An

n
=




3 +
1

n
1

−4 −1 +
1

n


 = T




1 +
1

n
1

0 1 +
1

n


T−1.

Another straightforward induction argument establishes that




1 +
1

n
1

0 1 +
1

n




n

=




(
1 +

1

n

)n
n

(
1 +

1

n

)n−1

0

(
1 +

1

n

)n


 ,
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so that

(
I2 +

An

n

)n
= T




(
1 +

1

n

)n
n

(
1 +

1

n

)n−1

0

(
1 +

1

n

)n


T

−1

=




2n

(
1 +

1

n

)n−1
+

(
1 +

1

n

)n
n

(
1 +

1

n

)n−1

−4n

(
1 +

1

n

)n−1
−2n

(
1 +

1

n

)n−1
+

(
1 +

1

n

)n


 .

Finally,

lim
n→∞

1

n

(
I2 +

An

n

)n
=

[
2e e
−4e −2e

]
.

Solution 2 by Henry Ricardo, New York Math Circle, NY.

To simplify the solution, we invoke a known result (∗) that is a consequence of the
Cayley-Hamilton theorem: If A ∈M2(C) and the eigenvalues λ1, λ2 of A are equal, then
for all n ≥ 1 we have An = λn1B + nλn−11 C, where B = I2 and C = A− λ1I2. (See, for
example, Theorem 2.25(b) in Essential Linear Algebra with Applications by T.
Andreescu, Birkhäuser, 2014.)

The eigenvalues of the given matrix A are both equal to 1, so we apply (∗) to get
An = nA− (n− 1)I2. Now we use the last expression to see that
M = I2 +An/n = A+ I2/n ; and, since M ’s eigenvalues are both equal to 1 + 1/n, we
apply (∗) again to determine that

1

n

(
I2 +

An

n

)n
=

1

n
Mn

=
1

n

[(
1 +

1

n

)n
I2 + n

(
1 +

1

n

)n−1(
M −

(
1 +

1

n

)
I2

)]

=
1

n

[
n

(
1 +

1

n

)n−1
M +

(
1 +

1

n

)n
(1− n)I2

]

=
1

n

[
n

(
1 +

1

n

)n−1(
A+

I2
n

)
+

(
1 +

1

n

)n
(1− n)I2

]

=

(
1 +

1

n

)n
· n

2A− (n2 − n− 1)I2
n(n+ 1)

→ e(A− I2) =

(
2e e
−4e −2e

)
.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

Put I =

(
1 0
0 1

)
, J =

(
1 1
0 1

)
, S =

(
3 −2
−6 7

)
.

Then

AS = SJ, S−1 =
1

9

(
7 2
6 3

)
, A = SJS−1, An =

(
SJS−1

)n
= SJnS−1, Jn =

(
1 n
0 1

)
,
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1

n

(
I +

An

n

)n
=

1

n

(
I +

(SJS−1)n

n

)n
=

1

n

(
I + S

Jn

n
S−1

)n

=
1

n

(
S

(
I +

Jn

n

)
S−1

)n

=
1

n
S

(
I +

Jn

n

)n
S−1

=
1

n
S




1 + 1
n 1

0 1 + 1
n



n

S−1

=

(
1 + 1

n

)n

n
S




1 1
1+ 1

n

0 1




n

S−1

=

(
1 + 1

n

)n

n
S




1 n
1+ 1

n

0 1




n

S−1 −→

= eS




0 1

0 0


S−1

=
e

9
S

(
6 3
0 0

)

= e




2 1

−4 −2


 , as n −→∞.

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

Solution. Let Bn = I2 + (1/n)An. It is straightforward to show by induction that
Bn = A+ (1/n)I2. Using the characteristic polynomial of Bn, we have
B2
n = 2(1 + 1/n)Bn − (1 + 1/n)2I2. It then follows by induction on k that for each

positive integer k,

Bk
n = k

(
1 + 1

n

)k−1
Bn − (k − 1)

(
1 + 1

n

)k
I2.
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Thus

lim
n→∞

1

n
Bn
n = lim

n→∞

[(
1 +

1

n

)n−1
Bn −

(
n− 1

n

)(
1 +

1

n

)n
I2

]

= eA− eI2
= e(A− I2)

= e

(
2 1
−4 −2

)
.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Anthony J. Bevelacqua,
University of North Dakota, Grand Forks, ND; Bruno Salgueiro Fanego,
Viveiro, Spain; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot,
Israel; David R. Stone and John Hawkins, Georgia Southern University,
Statesboro, GA, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2017

• 5439: Proposed by Kenneth Korbin, New York, NY

Express the roots of the equation
(x+ 1)4

(x− 1)2
= 20x in closed form.

“Closed form” means that the roots cannot be expressed in their approximate decimal
equivalents.

• 5440: Proposed by Roger Izard, Dallas,TX

The vertices of rectangle ABCD are labeled in clockwise order, and point F lines on line
segment AB. Prove that AD +AC > DF + FC.

• 5441: Proposed by Larry G. Meyer, Fremont, OH

In triangle ABC draw a line through the ex-center corresponding to side c so that it is
parallel to side c. Extend the angle bisectors of A and B to meet the constructed lines
at points A′ and B′ respectively. Find the length of A′B′ if given either

(1) Angles A,B ,C and the circumradius R

(2) Sides a, b, c

(3) The semiperimeter s, the inradius r and the exradius rc

(4) Semiperimeter s and side c.

• 5442: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let Ln be the nth Lucas number defined by L0 = 2, L1 = 1 and for
n ≥ 2, Ln = Ln−1 + Ln−2. Prove that for all n ≥ 0,

1

2

∣∣∣∣∣∣

(Ln + 2Ln+1)
2 L2

n+2 L2
n+1

L2
n+2 (2Ln + Ln+1)

2 L2
n

L2
n+1 L2

n L2
n+2

∣∣∣∣∣∣
is the cube of a positive integer and determine its value.
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• 5443: Proposed by D.M. Băinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “Geroge Emil Palade” General School, Buzău,
Romania

Compute

∫ π
3

π
6

x

sin 2x
dx.

• 5444: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Solve in < the equation {(x+ 1)2} = 2x2, where {a} denotes the fractional part of a.

Solutions

• 5421: Proposed by Kenneth Korbin, New York, NY

An equilateral triangle is inscribed in a circle with diameter d. Find the perimeter of the
triangle if a chord with length 1− d bisects two of its sides.

Solution by Michael N. Fried, Ben-Gurion University, Beer-Sheva, Israel

Let the triangle be ABC and the chord, DEFG. Since the diameter is d, the side of the

triangle is
√
3d
2 so that AE = EB = EF =

√
3d
4 . Let DE = FG = x. So that by the

theorem on intersecting chords, we have:

x

(
x+

√
3d

4

)
=

3

16
d2

2
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On the other hand, since 2x+
√
3d
4 = 1− d, we have, x = 1

2

(
1− d−

√
3d
4

)
.

Substituting into the equation from the intersecting chords theorem and simplifying, we
obtain a quadratic equation for d:

d2 − 32d+ 16 = 0

whose solutions are d = 16± 4
√

15. But since 1− d is the length of the chord DG,
d < 1, so that we have the single solution d = 16− 4

√
15.

Thus the perimeter of the triangle is:

3

√
3d

2
= 3

(√
3

2

)(
16− 4

√
15
)

= 6
(

4
√

3− 3
√

5
)

Also solved by Jeremiah Bartz, University of North Dakota, Grand Forks,
ND; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach, FL;
Paul M. Harms, North Newton, KS; David A. Huckaby, Angelo State
University, San Angelo, TX; Kee-Wai Lau, Hong Kong, China; Charles
McCracken, Dayton, OH; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA; Titu Zvonaru, Comămesto, Romania and
Neculai Stanciu, “George Emil Palade” School, Buzău, Romania, and the
proposer.

• 5422: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygon ABCDE is a regular pentagon. Pentagon PQRST is bounded by diagonals of
pentagon ABCDE as shown. Find the following:

the area of pentagon PQRST

the area of pentagon ABCDE
.

3

X
ia
ng
’s
T
ex
m
at
h



Solution 1 by Nikos Kalapodis, Patras, Greece

It can be easily checked that pentagon PQRST is regular (since it is equiangular and
equilateral). Therefore it is similar to pentagon ABCDE. Since the ratio of the areas of
two similar polygons is equal to the square of the ratio λ of the corresponding sides, it
follows that

the area of pentagonPQRST

the area of pentagonABCDE
= λ2.

By the law of sines in triangles BPQ and QBC we have

λ =
PQ

BC
=

PQ

BQ
BC

BQ

=

sin 36◦

sin 72◦
sin 108◦

sin 36◦

=
sin2 36◦

sin 72◦ sin 108◦
=

(
sin 36◦

sin 72◦

)2

=

(
sin 36◦

2 sin 36◦ cos 36◦

)2

=
1

4 cos2 36◦
=

1

4

(√
5 + 1

4

)2 =
4

6 + 2
√

5
=

2

3 +
√

5
=

3−
√

5

2
.

Therefore λ2 =

(
3−
√

5

2

)2

=
14− 6

√
5

4
=

7− 3
√

5

2
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Let a = AB and d = AC be the lengths of the side and the diagonal of the regular
pentagon ABCDE.

It is a known result that d = ϕa, where φ =
1 +
√

5

2
is the golden ratio. (This can be

shown, for example by taking into account that triangle ACS and DES have their sides

respectively parallel, so they are similar, from where
AC

DE
=
CS

ES
. Since ABCS is a

rhombus, itis a parallelogram and, thus CS = AB and since

ES = CE − CS = CE −AB, we conclude that
AC

DE
=

AB

CE −AB , or equivalently,

d

a
=

a

d− a , which impies d2 − ad− a2 = 0 and, hence, d =
a±
√
a2 + 4a2

2
, so d = φa

because a > 0 and d > 0.)
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We have that ES = CE −AB = d− a = (ϕ− 1)a and

SR = ER− ES = AB − ES = a− (ϕ− 1)a = (2− ϕ)a

and since the ratio of the areas of PQRST and ABCDE equals the square of their

similarity ratio
SR

AB
=

(2− ϕ)a

a
= 2− ϕ, we conclude that

area(PQRST )

area(ABCDE )
= (2− ϕ)2 ≈ 0.145898

Solution 3 by Brian Bradie, Christopher Newport University, Newport
News, VA

The area of a regular pentagon is proportional to the square of its side length, so

the area of pentagon PQRST

the area of pentagon ABCDE
=

(
PQ

DE

)2

. (1)

Because triangle BPQ is similar to triangle BED,

(
PQ

DE

)2

=

(
BQ

BD

)2

. (2)

Without loss of generality, suppose that pentagon ABCDE has sides of length 1. By
the Law of Cosines,

BD
2

= 2− 2 cos 108◦ = 4 sin2 54◦. (3)

Moreover, triangle BQC is isosceles with BQ = QC; thus, by the Law of Cosines,

1 = BQ
2
(2− 2 cos 108◦) = 4BQ

2
sin2 54◦,

so that

BQ
2

=
1

4 sin2 54◦
. (4)

Combining equations (1) – (4), it follows that

the area of pentagon PQRST

the area of pentagon ABCDE
=

1

16 sin4 54◦
.

Now,

sin 54◦ =
1 +
√

5

4
=

1

2
ϕ,

where ϕ denotes the Golden Ratio, so

the area of pentagon PQRST

the area of pentagon ABCDE
=

1

ϕ4
.

Solution 4 by David E. Manes, SUNY at Oneonta, Oneonta, NY

Let [X] denote the area of polygon X. Then
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[PQRST ]

[ABCDE]
=

7− 3
√

5

2
≈ 3

20
,

where ABCDE is a regular pentagon.

Assume that ABCDE is inscribed in the unit circle x2 + y2 = 1. Then the vertices of
the pentagon can be chosen as follows:
B = (0, 1), C = (s1, c1), D = (s2,−c2), E = (−s2,−c2) andA = (−s1, c1), where

c1 = cos
(2π

5

)
=

1

4
(
√

5− 1),

c2 = cos
(π

5

)
=

1

4
(
√

5 + 1),

s1 = sin
(2π

5

)
=

1

4

√
10 + 2

√
5,

s2 = sin
(4π

5

)
=

1

4

√
10− 2

√
5.

Furthermore, the pentagon is symmetric with respect to the y-axis and the pentagon
PQRST is also regular since its sides are the bases of five congruent isosceles triangles.
If t is the side length of a regular pentagon T , then its area is given by

[T ] = 1
4

√
25 + 10

√
5 · t2.

Let a and b be the side lengths of pentagons ABCDE and PQRST , respectively. Then

a = BC =
√
s21 + (1− c1)2 =

√
1

16
(10 + 2

√
5) + (1− 1

4
(
√

5− 1)2

=

√
10− 2

√
5

2
.

Therefore,

[ABCDE] =
1

4

√
25 + 10

√
5 · a2 =

1

4

√
25 + 10

√
5 · 1

4
(10− 2

√
5).

To find b, note that the equation of the line containing B and E is

y − 1 =
( 5 +

√
5√

10− 2
√

5

)
x.

If y = c1, then x = (c1−1)
√

10−2
√
5

5+
√
5

so that the coordinates for point P are

P =
((c1 − 1)

√
10− 2

√
5

5 +
√

5
, c1

)
.

By symmetry,

Q =
(−(c1 − 1)

√
10− 2

√
5

5 +
√

5
, c1

)
.

Therefore,

b = PQ =
−2(c1 − 1)

√
10− 2

√
5

5 +
√

5

6
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so that

[PQRST ] =

√
25 + 10

√
5(c1 − 1)2(10− 2

√
5)

(5 +
√

5)2

=
1
16

√
25 + 10

√
5(
√

5− 5)2(10− 2
√

5)

(5 +
√

5)2)
.

Hence,

[PQRST ]

[ABCDE]
=

(√
25+10

√
5(
√
5−5)2)(10−2

√
5)

16(5+
√
5)2

)

(√
25+10

√
5(10−2

√
5)

16

)

=
(
√

5− 5)2

(5 +
√

5)2

=
7− 3

√
5

2
≈ 0.145 898 033 75 ≈ 3

20
.

Solution 5 by Albert Stadler, Herrliberg, Switzerland

PQRST is similar to pentagon ABCDE. Therefore,

the area of Pentagon PQRST

the area of Pentagon ABCDE
=

(
SR

CD

)2

=

(
SR

CS

)2

=

(
CS − CR

CS

)2

=

(
1− CR

CS

)2

=

(
1−
√

5− 1

2

)2(
3−
√

5

2

)2

=

(
6− 2

√
5

4

)2

=

(
1−
√

5

2

)4

,

where we have used the fact that in a regular pentagon diagonals are cut in sections
whose proportions follow the golden ratio (https://en.wikipedia.org/wiki/Pentagon).

Editor′s comment: At first glance it appears that different answers were obtained for
this problem. But letting ϕ equal the golden ratio, and using the equation
ϕ2 − ϕ+ 1 = 0 it can be shown that the answers are equivalent to one another.

Scott Brown of Auburn University at Montgomery noted that: The material
regarding the area of both pentagons can be found on pp. 308-315 in Tom Koshy’s book
“Fibonacci and Lucas Numbers with Applications”. He went on to state that “evidently
the problem is not new,” to which I add, but it is still very interesting.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX; Jeremiah Bartz, University of North
Dakota Grand Forks, ND; Michael N. Fried, Ben-Gurion Univesity,
Beer-Sheva, Israel; Ed Gray, Highland Beach, FL; Paul M. Harms, North
Newton, KS: David Huckaby, Angelo State University, San Angelo, TX; Ken
Korbin (two solutions), NewYork, NY; Kee-Wai Lau, Hong Kong, China;
Charles McCracken, Dayton, OH; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

• 5423: Proposed by Oleh Faynshteyn, Leipzig, Germany
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Let a, b, c be the side-lengths, ra, rb, rc be the radii of the ex-circles and R, r the radii of
the circumcircle and incircle respectively of 4ABC. Show that

(ra − r)2 + rbrc
(s− b)(s− c) +

(rb − r)2 + rcra
(s− c)(s− a)

+
(rc − r)2 + rarb
(s− a)(s− b) ≥ 13.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

It is well known (https://en.wikipedia.org/wiki/Incircle-and-excircles-of-a-triangle) that

∆ =
√
s(s− a)(s− b)(s− c), r =

∆

s
, ra =

∆

s− a, rb =
∆

s− b , rc =
∆

s− c .

The stated inequality is therefore equivalent to

∑

cycl

(ra − r)2 + rbrc
(s− b)(s− c) =

∑

cycl

s(s− a)

(
1

s− a −
1

s

)2

+
∑

cycl

s(s− a)

(s− b)(s− c) ≥ 13. (1)

Put u := s− a, v := s− b, w := s− c. Then s = u+ v + w. By the triangle inequality,
u ≥ 0, v ≥ 0, w ≥ 0. So (1) is equivalent to

∑

cycl

(u+ v + w)u

(
1

u
− 1

u+ v + w

)2

+
∑

cycl

(u+ v + w)

vw

= −6 +
∑

cycl

u+ v + w

u
+
∑

cycl

u

u+ v + w
+
∑

cycl

u2

vw
+
∑

cycl

u

w
+
∑

cycl

u

v

= −2 +
∑

cycl

v

u
+
∑

cycl

w

u
+
∑

cycl

u2

vw
+
∑

cycl

u

w
+
∑

cycl

u

v

= −2 + 2
∑

cycl

v

u
+ 2

∑

cycl

w

u
+
∑

cycl

u2

vu
≥ 13. (2)

By the AM-GM inequality,

∑

cycl

v

u
≥ 3 3

√
v

u
· w
v
· u
w

= 3,
∑

cycl

w

u
≥ 3 3

√
w

u
· u
v
· v
w

= 3,
∑

cycl

u2

vw
≥ 3

3

√
u2

vw
· v

2

wu
· w

2

uv
= 3.

So (2) holds true.

Solution 2 by Arkady Alt, San Jose, CA

Let F be area of the triangle. Since ra =
F

s− a, rb =
F

s− b , rc =
F

s− c , r =
F

s
then

(ra − r)2 + rbrc
(s− b)(s− c) =

(
F

s− a −
F

s

)2

+
F

s− b ·
F

s− c
(s− b)(s− c)
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=

F 2

(
a2

s2 (s− a)2
+

1

(s− b) (s− c)

)

(s− b)(s− c)

=
F 2
(
a2 (s− b) (s− c) + s2 (s− a)2

)

s2 (s− a)2 (s− b)2 (s− c)2

=
a2 (s− b) (s− c) + s2 (s− a)2

F 2

=
4a2 (a+ c− b) (a+ b− c) + (a+ b+ c)2 (b+ c− a)2

16F 2

=

(
4
(
bc3 + b3c

)
− 6

(
a2b2 + 6a2c2 − b2c2

)
+ 5a4 + b4 + c4 + 4a2bc

)

16F 2
and, therefore,

∑

cyc

(ra − r)2 + rbrc
(s− b)(s− c) =

1

F 2

∑

cyc

(
4bc
(
a2 + b2 + c2

)
− 6

(
a2b2 + 6a2c2 − b2c2

)
+ 5a4 + b4 + c4

)

=
4
(
a2 + b2 + c2

)
(ab+ bc+ ca)− 6

(
a2b2 + b2c2 + a2c2

)
+ 7

(
a4 + b4 + c4

)

16F 2

=
4
(
a2 + b2 + c2

)
(ab+ bc+ ca)− 20

(
a2b2 + b2c2 + a2c2

)
+ 7

(
a2 + b2 + c2

)2

16F 2
.

Let x := s− a, y := s− b, z := s− c, p := xy + yz + zx, q := xyz. Due to the
homogeneity of the original inequality we can assume that s = 1. Then
a = 1− x, b = 1− y, c = 1− z,

x, y, z > 0, x+ y + z = 1, a+ b+ c = 2, abc = p− q, F =
√
xyz =

√
q,

ab+ bc+ ca = 1 + p, a2 + b2 + c2 = 2 (1− p) ,

a2b2 + b2c2 + a2c2 = (ab+ bc+ ca)2 − 2abc (a+ b+ c)

= (1 + p)2 − 4 (p− q) = (1− p)2 + 4q, and original inequality becomes

8
(
1− p2

)
− 20

(
(1− p)2 + 4q

)
+ 28 (1− p)2

16q
≥ 13 ⇐⇒ 1− p− 5q

q
≥ 13 ⇐⇒ 1− p ≥ 18q.
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Since q = xyz ≤ x+ y + z

3
· xy + yz + zx

3
=
p

9
and

p = xy + yz + zx ≤ (x+ y + z)2

3
=

1

3
, then

1− p− 18q ≥ 1− p− 18 · p
9

= 1− 3p ≥ 0.

Solution 3 and 4 by Nikos Kalapodis, Patras, Greece

Using the well-known formulas S = sr, S = ra(s− a) and S =
√
s(s− a)(s− b)(s− c)

we have

(ra − r)2 =

(
S

s− a −
S

s

)2

=
a2S2

s2(s− a)2
=
a2(s− b)(s− c)

s(s− a)
and

rbrc =
S

s− b ·
S

s− c =
S2

(s− b)(s− c) = s(s− a).

It follows that
(ra − r)2

(s− b)(s− c) =
a2

s(s− a)
, and

rbrc

(s− b)(s− c) =
s(s− a)

(s− b)(s− c) =
(s− a)2

r2
.

By Cauchy-Schwarz inequality and the well-known inequality s ≥ 3
√

3r we have

∑

cyc

(ra − r)2 + rbrc
(s− b)(s− c) =

∑

cyc

(ra − r)2
(s− b)(s− c) +

∑

cyc

rbrc
(s− b)(s− c) =

∑

cyc

a2

s(s− a)
+
∑

cyc

(s− a)2

r2
≥

(a+ b+ c)2

s(s− a+ s− b+ s− c)+
(s− a+ s− b+ s− c)2

3r2
=

4s2

s2
+

s2

3r2
≥ 4 +

1

3
· 27 = 4 + 9 = 13.

Solution 4

Using the well-known formulas (s− b)(s− c) = rra, ra + rb + rc = r + 4R,
1

ra
+

1

rb
+

1

rc
=

1

r
and Euler’s inequality (R ≥ 2r) we have

∑

cyc

(ra − r)2
(s− b)(s− c) =

∑

cyc

r2a + r2 − 2rra
rra

=
∑

cyc

(
ra
r

+
r

ra
− 2

)
=

1

r

∑

cyc

ra + r
∑

cyc

1

ra
− 6

=
1

r
(r + 4R) + r · 1

r
− 6 =

4R

r
− 4 ≥ 4, and

∑

cyc

rbrc
(s− b)(s− c) =

∑

cyc

rbrc
rra

=
rarbrc
r

∑

cyc

1

r2a
=
rarbrc
r

∑

cyc

(
1

ra

)2

≥ rarbrc
r

∑

cyc

1

rarb

=
1

r

∑

cyc

ra =
1

r
(r + 4R) = 1 +

4R

r
≥ 9.

Therefore
∑

cyc

(ra − r)2 + rbrc
(s− b)(s− c) =

∑

cyc

(ra − r)2
(s− b)(s− c) +

∑

cyc

rbrc
(s− b)(s− c) ≥ 4 + 9 = 13.
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Also solved by Brian Bradie, Christopher Newport University, Newport
News, VA; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Moti Levy, Rehovot, Israel; Albert Stadler Herrliberg,
Switzerland; Titu Zvonaru,Comănesti, Romania and Neculai Stanciu
“Geroge Emil Palade” School, Buză, Romania, and the proposer.

• 5424: Proposed by Nicusor Zlota, “Traian Vuia” Technical College, Forcsani, Romania

Let a, b, c and d be positive real numbers such that abc+ bcd+ cda+ dab = 4. Prove
that (a8 − a4 + 4)(b7 − b3 + 4)(c6 − c2 + 4)(d5 − d+ 4) ≥ 256.

Solution 1 by Ed Gray, Highland Beach, FL

Like most of these inequality problems, I find there is generally a solution evident by
inspection that actually makes the inequality a strict equality. Then, by choosing
numbers with the correct orientation, one can show that the numbers seen by inspection
actually provide an extremum. Let’s put labels on the givens in the statement of the
problem.

(1) abc+ bcd+ cda+ dab = 4. We wish to prove:
(2) (a8 − a4 + 4)(b7 − b3 + 4)(c6 − c2 + 4)(d5 − d+ 4) ≥ 256.
Clearly, if a = b = c = d = 1, the following relations hold:
(3) abc = 1,
(4) bcd = 1,
(5) cda = 1,
(6) dab = 1, and
(7) abc+ bcd+ cda+ dab = 4. Also,
(8) a8 − a4 = 0,
(9) b7 − b3 = 0,
(10) c6 − c2 = 0,
(11) d5 − d = 0, so that the product in (2) becomes 44 = 256.
Therefore, if we show that choices for a, b, c, d with at least one < 1 all makes the
product of (a8 − a4 + 4)(b7 − b3 + 4)(c6 − c2 + 4)(d5 − d+ 4) > 256, the conjecture would
be true.

It would be sufficient to consider three cases:
(A) a < 1, b = 1, c = 1, d > 1,
(B) a < 1, b < 1, c = 1, d > 1,
(C) a < 1, b < 1, c < 1, d > 1,
In each case, we choose a, b, c as necessary and compute d by using (1).
To be explicit, we choose the following numbers:
(A) a = .99, b = 1, c = 1, calculated value of d is 1.010067114
Evaluating Eq.(2) using these numbers, the product is 256.1952096
(B) a = .99, b = .99, c = 1, calculated value of d is 1.02020202
Evaluating Eq.(2) using these numbers, the product is 256.489
(C) a = .99, b = .99, c = .99, calculated value of d is 1.030405401
Evaluating Eq.(2) using these numbers, the product is 256.9590651

Solution 2 by Moti Levy, Rehovot, Israel
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The inequality can be simplified by applying

a8 − a4 ≥ a4 − 1,

b7 − b3 ≥ b4 − 1,

c6 − c2 ≥ c4 − 1,

d5 − d ≥ d4 − 1.

Hence it suffices to prove that

(a4 + 3)(b4 + 3)(c4 + 3)(d4 + 3) ≥ 256.

We rewrite the left hand side:

(a4 + 3)(b4 + 3)(c4 + 3)(d4 + 3)

= (a4 + 1 + 1 + 1)(1 + b4 + 1 + 1)(1 + 1 + c4 + 1)(1 + 1 + 1 + d4).

By Holder’s inequality,

(a4 + 1 + 1 + 1)(1 + b4 + 1 + 1)(1 + 1 + c4 + 1)(1 + 1 + 1 + d4) ≥ (a+ b+ c+ d)4 .

Thus, what is left is to show that abc+ bcd+ cda+ dab = 4 implies that a+ b+ c+ d ≥ 4.

To this end, we employ elementary symmetric polynomials notation:

p1 = e1 = a+ b+ c+ d,

p2 = a2 + b2 + c2 + d2,

p3 = a3 + b3 + c3 + d3,

e3 = abc+ bcd+ cda+ dab.

It is well known (from Newton’s identities) that

p31 − 3p1p2 + 2p3 = 6e3.

We also have from the power mean inequality
√

p2
4 ≥

p1
4 ,

p2 ≥
p21
4
,

and from Chebyshev’s inequality a3 + b3 + c3 + d3 ≥ abc+ bcd+ cda+ dab,

p3 ≥ e3.

It follows that,
p31 − 3p1p2 = 6e3 − 2p3 ≥ 4e3.

p2 ≥ p21
4 implies that

p31 − 3p1
p21
4
≥ p31 − 3p1p2,

or that
p31
4
≥ 4e3 = 16.

We conclude that p1 ≥ 4 and this fact completes the solution.

Also solved by Albert Stadler, Herrliberg, Switzerland, and the proposer.
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• 5425: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let Fn be the nth Fibonacci number defined by F0 = 0, F1 = 1, and for all
n ≥ 2, Fn = Fn−1 + Fn−2. If n is an odd positive integer the show that 1 + det(A) is the
product of two consecutive Fibonacci numbers, where

A =




F 2
1 − 1 F1F2 F1F3 . . . F1Fn

F2F1 F 2
2 − 1 F2F3 · · · F2Fn

F3F1 F3F2 F 2
3 − 1 · · · F3Fn

...
...

...
. . .

...
FnF1 FnF2 FnF3 · · · F 2

n − 1




Brian Bradie, Christopher Newport University, Newport News, VA

We will establish the more general result that for any positive integer n the quantity
1 + (−1)n−1 det(A) is the product of two consecutive Fibonacci numbers. Toward this
end, let

B = A+ I =




F1

F2

F3
...
Fn




[
F1 F2 F3 · · · Fn

]
.

The matrix B is a rank 1 matrix with eigenvalue

n∑

j=1

F 2
j = FnFn+1

of algebraic multiplicity 1 and eigenvalue 0 of algebraic multiplicity n− 1. It then
follows that the matrix A has eigenvalue FnFn+1 − 1 of algebraic multiplicity 1 and
eigenvalue −1 of algebraic multiplicity n− 1. Thus,

det(A) = (−1)n−1 (FnFn+1 − 1) ,

and
1 + (−1)n−1 det(A) = 1 + (FnFn+1 − 1) = FnFn+1.

Also solved by Moti Levy, Rehovot, Israel; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5426: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let (an)n≥1 be a strictly increasing sequence of natural numbers. Prove that the series

∞∑

n=1

√
an

[an, an+1]
converges.

Here [x, y] denotes the least common multiple of the natural numbers x and y.

Solution 1 by Moti Levy, Rehovot, Israel
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It is known that
lcm (a, b) gcd (a, b) = ab.

Clearly, a = A gcd (a, b) and b = B gcd (a, b) . If a > b then A > B and
a− b = (A−B) gcd (a, b) > gcd (a, b) .

a− b > gcd (a, b) =
ab

lcm (a, b)
,

or

1

lcm (a, b)
<
a− b
ab

=
1

b
− 1

a
, a > b. (1)

It follows from (1) that

√
an

lcm (an, an+1)
<
√
an

(
1

an
− 1

an+1

)
=

1√
an
− 1√

an+1

√
an
an+1

,

so that

∞∑

n=1

√
an

lcm (an, an+1)
<
∞∑

n=1

(
1√
an
− 1√

an+1

√
an
an+1

)
. (2)

Let us define a sequence of positive real numbers (bn)n≥1 as follows:

b2k−1 =
1√
ak
, (3)

b2k =
1√
ak+1

√
ak+1

ak+2
(4)

By definition (4),
∑∞

n=1

(
1√
an
− 1√

an+1

√
an

an+1

)
=
∑∞

n=1 (−1)n+1 bn.

The terms of the sequence (bn)n≥1 satisfy: bn > bn+1 > 0 and limn→∞ bn = 0.

The series
∑∞

n=1 (−1)n+1 bn converges by the Alternating Series Test (called also Leibniz
Criterion).

Inequality (2) implies that the series
∑∞

n=1

√
an

lcm(an,an+1)
converges as well.

Remark: The idea for this solution came from the enjoyable short paper by D. Borwein,
who solved a conjecture of P. Erdös.

Reference: D. Borwein, “A Sum of Reciprocals of Least Common Multiples”,
Canadian Mathematical Bulletin, Volume 20 (1), 1978, pp. 117-118.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Denote by (x, y) the greatest common divisor of the natural numbers x and y.

It is well known that (x, y)[x, y] = xy. Hence for any natural number M ≥ 2, we have

M∑

n=1

√
an

[an, an+1]
=

M∑

n=1

(an, an+1)√
anan+1
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=

M∑

n=1

(an, an+1 − an)√
anan+1

≤
M∑

n=1

an+1 − an√
anan+1

=
M∑

n=1

1√
an
−

M+1∑

n=2

√
an−1
an

=
1√
a1
−
√
aM

aM+1
+

M∑

n=2

√
an −

√
an − 1

an

≤ 1√
a1

+

M∑

n=2

√
an −

√
an − 1√

an
√
an−1

=
1√
a1

+
M∑

n=2

1√
an−1

−
M∑

n=2

1√
an

=
2√
a1
− 1√

aM

≤ 2√
a1
.

Thus
∞∑

n=1

√
an

[an, an+1]
converges.

Also solved by Ed Gray, Highland Beach, FL and the author.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2017

• 5445: Proposed by Kenneth Korbin, New York, NY

Find the sides of a triangle with exradii (3, 4, 5).

• 5446: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygons ABCD,CEFG, and DGHJ are squares. Moreover, point E is on side
DC,X = DG ∩ EF , and Y = BC ∩ JH. If GX splits square CEFG in regions whose
areas are in the ratio 5:19. What part of square DGHJ is shaded? (Shaded region in
DGHJ is composed of the areas of triangle Y HG and trapezoid EXGC.)
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• 5447: Proposed by Iuliana Trască, Scornicesti, Romanai

Show that if x, y, and z is each a positive real number, then

x6 · z3 + y6 · x3 + z6 · y3
x2 · y2 · z2 ≥ x3 + y3 + z3 + 3x · y · z

2
.

• 5448: Proposed by Yubal Barrios and Ángel Plaza, University of Las Palmas de Gran
Canaria, Spain

Evaluate: lim
n→∞ n

√√√√
∑

0≤i,j≤n
i+j=n

(
2i

i

)(
2j

j

)
.

• 5449: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the use of a computer, find the real roots of the equation

x6 − 26x3 + 55x2 − 39x+ 10 = (3x− 2)
√

3x− 2.

• 5450: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k be a positive integer. Calculate

∫ 1

0

∫ 1

0

⌊
x

y

⌋k yk
xk

dxdy,

where bac denotes the floor (the integer part) of a.

Solutions

5427: Proposed by Kenneth Korbin, New York, NY

Rationalize and simplify the fraction

(x+ 1)4

x(2016x2 − 2x+ 2016)
if x =

2017 +
√

2017−
√

2017

2017−
√

2017−
√

2017
.

Solution 1 by David E. Manes, SUNY at Oneonta, Oneonta, NY

Let F = (x+ 1)4/(x(2016x2 − 2x+ 2016)) and let y =
√

2017−
√

2017. Then
y2 = 2017−

√
2017 and y4 = 2017(2018− 2

√
2017). Moreover,

x =
2017 + y

2017− y ,
1

x
=

2017− y
2017 + y

, x+ 1 =
2(2017)

2017− y and
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x2 + 1 =
(2017 + y

2017− y
)2

+ 1 =
(2017 + y)2 + (2017− y)2

(2017− y)2

=
2(20172 + y2)

(2017− y)2
.

Therefore,

2016(x2 + 1)− 2x = 2
[2016(20172 + y2)

(2017− y)2
− 2017 + y

2017− y
]

= 2
[2016(20172 + y2)− (20172 − y2)

(2017− y)2

]

= 2
[2015 · 20172 + 2017y2

(2017− y)2

]

= 2(2017)
[2015(2017) + y2

(2017− y)2

]

Substituting these values into the fraction F and simplifying, we obtain

F =

(
2(2017)
2017−y

)4
(2017− y)

(2017 + y)(2(2017)
(
2015(2017)+y2

(2017−y)2
)

=
(2(2017))3

(20172 − y2)(2015 · 2017 + y2)

=
8(2017)3

2015 · 20173 + 2 · 2017(2017−
√

2017)− 2017(2018− 2
√

2017)

=
8(2017)2

2015 · 20172 + 2016

=
32546312

8197604351

≈ 0.003 970 222 349.

Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

For notational convenience we set d = 2017−
√

2017, y = 2017 +
√
d, and

z = 2017−
√
d. Thus our x is y/z. We have

(x+ 1)4

x(2016x2 − 2x+ 2016)
=

(y
z

+ 1
)4

(y
z

)(
2016

(y
z

)2
− 2

(y
z

)
+ 2016

) · z
4

z4

=
(y + z)4

yz(2016y2 − 2yz + 2016z2)

Now
y + z = 2 · 2017,
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yz = 20172 − d
= 20172 − 2017 +

√
2017

= 2017 · 2016 +
√

2017,

and

2016y2 − 2yz + 2016z2 = 2016(y2 + z2)− 2yz

= 2016((y + z)2 − 2yz)− 2yz

= 2016(y + z)2 − 2 · 2017yz

= 2016(2 · 2017)2 − 2 · 2017(2017 · 2016 +
√

2017)

= 2 · 2017(2017 · 2016−
√

2017).

Hence

(y + z)4

yz(2016y2 − 2yz + 2016z2)
=

24 · 20174

2 · 2017(20172 · 20162 − 2017)

=
23 · 20172

2017 · 20162 − 1

=
32546312

8197604351
.

Solution 3 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Let y = 2017 and w =
√
y −√y. Observe

x =
y + w

y − w
x+ 1 =

2y

y − w
w2 = y −√y
w4 = y2 + y − 2y

√
y.

Then

(x+ 1)4

x(2016x2 − 2x+ 2016)
=

24y4

(y − w)4
· y − w
y + w

· 1

2016
(
y+w
y−w

)2
− 2

(
y+w
y−w

)
+ 2016

=
24y4

2016(y + w)3(y − w)− 2(y + w)2(y − w)2 + 2016(y + w)(y − w)3

=
24y4

2(2015y4 + 2y2w2 − 2017w4)

=
23y3

2015y3 + 2yw2 − w4
using y = 2017

=
8y3

2015y3 + 2y(y −√y)− (y2 + y − 2y
√
y)

=
8y3

2015y3 + y2 − y

=
8y2

2015y2 + y − 1
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so that
(x+ 1)4

x(2016x2 − 2x+ 2016)
=

8(2017)2

2015(2017)2 + 2016
=

32546312

8197604351
.

Solution 4 by Arkady Alt, San Jose, CA

Let x =
a+

√
a−√a

a−
√
a−√a

. Then, x+
1

x
=
a+

√
a−√a

a−
√
a−√a

+
a−

√
a−√a

a+
√
a−√a

=

(
a+

√
a−√a

)2
+
(
a−

√
a−√a

)2

a2 − a+
√
a

=
2
(
a2 + a−√a

)

a2 − a+
√
a

=
2
(
−a2 + a−√a+ 2a2

)

a2 − a+
√
a

=

−2 +
4a2

a2 − a+
√
a
⇐⇒ x+

1

x
+ 2 =

4a2

a2 − a+
√
a

and, therefore,

(x+ 1)4

x((a− 1)x2 − 2x+ (a− 1))
=

(x+ 1)4

x2((a− 1)

(
x+

1

x
+ 2

)
− 2a)

=

(
x+

1

x
+ 2

)2

(a− 1)

(
x+

1

x
+ 2

)
− 2a

=

(
4a2

a2 − a+
√
a

)2

(a− 1) · 4a2

a2 − a+
√
a
− 2a

=

16a4

((a− 1) · 4a2 − 2a (a2 − a+
√
a)) (a2 − a+

√
a)

=
16a4

2a (a2 − a−√a) (a2 − a+
√
a)

=

8a3

(a2 − a)2 − a
=

8a2

a (a− 1)2 − 1
.

For a = 2017 we get
(x+ 1)4

x(2016x2 − 2x+ 2016)
=

8 · 20172

2017 · 20162 − 1
.

Solution 5 by Kee-Wai Lau, Hong Kong, China

We show that
(x+ 1)4

x(2016x2 − 2x+ 2016)
=

32546312

8197604351
(1)

Firstly we have

x+
1

x
=

2017 +
√

2017−
√

2017

2017−
√

2017−
√

2017
+

2017−
√

2017−
√

2017

2017 +
√

2017−
√

2017

=

(
2017 +

√
2017−

√
2017

)2
+
(

2017−
√

2017−
√

2017
)2

(
2017−

√
2017−

√
2017

)2
+
(

2017 +
√

2017−
√

2017
)2

=
2(4070306−

√
2017)

4066272 +
√

2017

=
2(4070306−

√
2017)(4066272−

√
2017)

(4066272 +
√

2017)(4066272−
√

2017)
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=
2(8205736897− 4034

√
2017)

8197604351
.

Next, we have

(
x+

1

x
+ 2

)2

=
131291822608(8197604353− 4032

√
2017)

67200717095534131201

and

2016

(
x+

1

x

)
− 2 =

4034(8197604353− 4032
√

2017)

8197604351
.

Since
(x+ 1)4

x(2016x2 − 2x+ 2016)
=

(
x+

1

x
+ 2

)2

2016

(
x+

1

x

)
− 2

, so (1) follows.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Telman Rashidov, Azerbaijan Medical University, Baku
Azerbaijan; Boris Rays, Brooklyn, NY; Albert Stadler, Herrliberg,
Switzerland; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5428: Proposed by Nicusor Zlota, “Traian Vuia” Technical College, Focsani, Romania

If x > 0, then
[x]

4
√

[x]4 + ([x] + 2{x})4
+

{x}
4
√
{x}4 + ([x] + 2{x})4

≥ 1− 1
4
√

2
, where [.] and

{.} respectively denote the integer part and the fractional part of x.

Solution 1 by Soumava Chakraborty, Kolkata, India

Case 1: 0 < x < 1 [x] = 0. Therefore,

LHS =
{x}

4
√

17{x}4
=

1
4
√

17
> 1− 1

4
√

2
.

Case 2: [x] ≥ 1 and {x} = 0. Therefore,

LHS =
[x]

4
√

2[x]4
=

1
4
√

2
> 1− 1

4
√

2
.

Case 3: [x] ≥ 1 and 0 < {x} < 1. Therefore,

{x} < 1 ≤ [x] ⇒ {x} < [x]
(

2{x}+ [x]
)4

+ [x]4 < 82[x]4

⇒ [x]
4
√

[x]4 + ([x] + 2{x})4
>

1
4
√

82
, and

{x}
4
√
{x}4 + ([x] + 2{x})4

> 0, and therefore

LHS >
1

4
√

82
> 1− 1

4
√

2
.
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Combining the 3 cases, the LHS is always >
1

4
√

82
which is > 1− 1

4
√

2

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Since x = [x] + {x} and [x] ≤ x < [x] + 1, we have that [x] + 2{x} = x+ {x} and
{x} = x− [x] < 1, so [x] + 2{x} = x+ {x} ≤ x+ x = 2x and, thus, since x > 0,
(x+ {x})4 < (2x)4; hence, [x]4 + (x+ {x})4 < x4 + 16x4 and
{x}4 + (x+ {x})4 < x4 + 16x4.

It follows that 0 < 4
√

[x]4 + (x+ {x})4 < 4
√

17x4 and 0 < 4
√
{x}4 + (x+ {x})4 < 4

√
17x4

so

0 <
1

4
√

[x]4 + (x+ {x})4
≤ 1

4
√

17x
and 0 <

1
4
√
{x}4 + (x+ {x})4

≤ 1
4
√

17x
and hence,

[x]
4
√
{x]}4 + (x+ {x})4

≤ [x]
4
√

17x
with equality iff [x] = 0 and

0 <
{x}

4
√
{x]}4 + (x+ {x})4

≤ {x}
4
√

17x
with equality iff {x} = 0, so

[x]
4
√

[x]4 + ([x] + 2{x})4
+

{x}
4
√

[{x}4 + ([x] + 2{x})4
=

[x]
4
√

[x]4 + (x+ {x})4
+

{x}
4
√

[{x}4 + (x+ {x})4

≥ [x]
4
√

17x
+
{x}
4
√

17x
=

[x] + {x}
4
√

17x
=

x
4
√

17x
=

1
4
√

17

with equality iff [x] = 0 and {x} = 0, that is, iff 0 < x < 1 and x ∈ N , with is impossible.

Hence, we have proved the more general and strict inequality

[x]
4
√

[x]4 + ([x] + 2{x})4
+

{x}
4
√
{x}4 + ([x] + 2{x})4

>
1

4
√

17

(which implies, because
1

4
√

17
+

1
4
√

2
= 1.33338 · · · > 1, the initial result.)

Also solved by Moti Levy, Rehovot, Israel; Nirapada Pal-India, and the
proposer.

5429: Proposed by Titu Zvonaru, Comănesti, Romania and Neculai Stanciu, “George
Emil Palade” School, Buzău, Romania

Prove that there are infinitely many positive integers a, b such that 18a2− b2−6a− b = 0.

Solution 1 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Define
g (a, b) = 18a2 − 6a− b2 − b

and
f (a, b) = (577a+ 136b− 28, 2448a+ 577b− 120) .
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By direct computation we see that g (f (a, b)) = g (a, b). If g (a0, b0) = 0 with a0, b0 ∈ N
then the iterates (an, bn) = f (an−1, bn−1) are in N ×N and satisfy g (an, bn) = 0, for all
n ∈ N .

Since g (1, 3) = 0, starting with (a0, b0) = (1, 3) we obtain the infinite sequence of
solutions

(1, 3) , (957, 4059) , (1104185, 4684659) , (1274228341, 5406093003) ,

(1470458401137, 6238626641379) , . . .

Since g (5, 20) = 0, starting with (a0, b0) = (5, 20) we obtain another infinite sequence of
solutions:

(5, 20) , (5577, 23660) , (6435661, 27304196) , (7426747025, 31509019100) ,

(8570459630997, 36361380737780) , . . .

Solution 2 by Trey Smith, Angelo State University, San Angelo, TX

Solution by Trey Smith, Angelo State University, San Angelo, TX 76909

We start by observing that

18a2 − b2 − 6a− b = 0 ⇒ (2b+ 1)2 − 2(6a− 1)2 = −1

which is suspiciously close to being Pell’s Equation. Our particular equation is of the
form

x2 − 2y2 = −1.

Notice that (7, 5) (x = 7 and y = 5) is a solution to x2 − 2y2 = −1. We will now create a
sequence of solutions starting with (c0, d0) = (7, 5) in the following recursive manner.
For n ≥ 0, let

cn+1 = c3n + 6cnd
2
n, dn+1 = 3c2ndn + 2d3n.

We prove the following facts regarding this sequence.

Fact 1. For all n, (cn, dn) is a solution to x2 − 2y2 = −1.

Proof: We use induction to prove this. In the ground case, it is clear that
(c0, d0) = (7, 5) is a solution to x2 − 2y2 = −1.

Assume that (cn, dn) is a solution.

c2n+1 − 2d2n+1

= (c3n + 6cnd
2
n)2 − 2(3c2ndn + 2d3n)2

= c6n + 12c4nd
2
n + 36c2nd

4
n − 2(9c4nd

2
n + 12c2nd

4
n + 4d6n)

= c6n + 12c4nd
2
n + 36c2nd

4
n − 18c4nd

2
n − 24c2nd

4
n − 8d6n

= c6n − 6c4nd
2
n + 12c2nd

4
n − 8d6n

= (c2n − 2d2n)3

= −1.
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For the next two facts, we use the notation q ≡m t to represent the statement q ≡ t
(mod m).

Fact 2. For all n, cn ≡3 1 and cn ≡2 1.

Proof: We proceed by induction noting, first, that c0 ≡3 1 and c0 ≡2 1. Then assuming
that cn ≡3 1 we have that

cn+1 = c3n + 6cnd
2
n ≡3 13 + 0 = 1.

Also, assuming that cn ≡2 1, we have

cn+1 = c3n + 6cnd
2
n ≡2 13 + 0 = 1.

Fact 3. For all n, dn ≡2 1.

Proof: Clearly d0 ≡2 1. Assuming that dn ≡2 1, we have

dn+1 = 3c2ndn + 2d3n ≡2 3 · 12 · 1 + 0 = 3 ≡2 1.

Fact 4. For all n, d2n ≡3 2.

Proof: Certainly d0 ≡3 2. Assume that for n, d2n ≡3 2. Then

d2n+1 = 3c22nd2n + 2d32n ≡3 0 + 2 · 23 ≡3 1,

so that

d2(n+1) = d2n+2 = 3c22n+1d2n+1 + 2d32n+1 ≡3 0 + 2 · 13 ≡3 2.

Using the facts above, we show that there are infinitely many pairs (a, b) that satisfy
(2b+ 1)2 − 2(6a− 1)2 = −1. Fix an even number m. Then (cm, dm) satisfies
x2 − 2y2 = −1. Since cm ≡2 1 we have that cm − 1 is even (and greater than 0) so that

b =
cm − 1

2

is an integer. Also, dm ≡3 2 which tells us that dm + 1 is divisible by 3, and since
dm ≡2 1, dm + 1 is divisible by 2. Hence dm + 1 is divisible by 6. Then

a =
dm + 1

6

is an integer. Thus, the pair (a, b) is a solution to 18a2 − b2 − 6a− b = 0.

Solution 3 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND
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Observe two such solutions (a, b) are given by (1, 3) and (5, 20). We claim that if (ai, bi)
is a solution in positive integers, then so is (ai+1, bi+1) where

ai+1 = 577ai + 136bi − 28
bi+1 = 2448ai + 577bi − 120.

To see this, note that (ai+1, bi+1) are clearly positive integers and

18a2i+1 − b2i+1 − 6ai+1 − bi+1 = 18(577ai + 136bi − 28)2 − (2448ai + 577bi − 120)2

−6(577ai + 136bi − 28)− (2448ai + 577bi − 120)

= 18a2i − b2i − 6ai − bi
= 0.

The solutions (1, 3) and (5, 20) are seeds which produce two infinite families of solutions.
The first four solutions in each family is given below.

i ai bi ai bi
1 1 3 5 20
2 957 4059 5577 23660
3 1104185 4684659 6435661 27304196
4 1274228341 5406093003 7426747025 31509019100

Solution 4 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

The proposed equation may be written as follows:

18a2 − b2 − 6a− b = 0

18

(
a− 1

6

)2

− 1

2
−
(
b+

1

2

)2

+
1

4
= 0

18

(
a− 1

6

)2

−
(
b+

1

2

)2

=
1

4

72

(
a− 1

6

)2

− 4

(
b+

1

2

)2

= 1

(2b+ 1)2 − 2 (6a− 1)2 = −1.

The last equation is a Pell-type equation x2 − 2y2 = −1, by doing x = 2b+ 1 and
y = 6a− 1. The smallest solution of x2 − 2y2 = −1 is (1, 1) and therefore all its solutions

are given by xi + yi
√

2 =
(
1 +
√

2
)2i+1

. Note that xi and yi are allways odd so b is an

integer. Also 6a = 1 +
∑

k≥0

(
2i+ 1

2k + 1

)
. Since the expression 1 +

∑

k≥0

(
2i+ 1

2k + 1

)
is even and

multiple of 3 for i of the form i = 6m− 1, for m integer, the proposed equation has
infinitely many positive integral solutions.

Solution 5 by David E. Manes, SUNY at Oneonta, NY

Solution. Writing the equation as a quadratic in b, one obtains b2 + b− 6a(3a− 1) = 0
and, since we want positive integer solutions,

b =
−1 +

√
1 + 72a2 − 24a

2
.
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Note that the above fraction is a positive integer provided that 72a2 − 24a+ 1 = c2 for
some integer c. This last equation is equivalent to a negative Pell equation
c2 − 2d2 = −1, where d = 6a− 1. This equation is solvable and the positive integer
solutions are given by the odd powers of 1 +

√
2. More precisely, if n is a positive integer

and (cn, dn) is a solution of c2− 2d2 = −1, then cn + dn
√

2 = (1 +
√

2)2n−1. The problem
is that not all the solutions for dn yield solutions for an.

Observe: 1) if n ≡ 0 (mod 4), then cn ≡ 5 (mod 6) and dn ≡ 1 (mod 6), 2) if n ≡ 1
(mod 4), then cn ≡ dn ≡ 1 (mod 6), 3) if n ≡ 2 (mod 4), then cn ≡ 1 (mod 6) and
dn ≡ 5 (mod 6), 4) if n ≡ 3 (mod 4), then cn ≡ dn ≡ 5 (mod 6).

The above observations provide straightforward inductive arguments for the following
consequences. If n ≡ 0 or 1 (mod 4), then there are no solutions since dn ≡ 1 (mod 6)
implies no integer solution for an. On the other hand, if n ≡ 2 or 3 (mod 4), then

an =
dn + 1

6
is a positive integer and bn = (−1 +

√
72a2n − 24an + 1)/2. Since there are

infinitely many positive integers congruent to 2 or 3 modulo 4, the result follows.

Some of the infinitely many solutions are: if n = 2, then c2 = 7, d2 = 5 and
(a2, b2) = (1, 3); if n = 3, then c3 = 41, d3 = 29 and (a3, b3) = (5, 20); if n = 6, then
c6 = 8119, d6 = 5741 and (a6, b6) = (957, 4059); if n = 7, then c7 = 47321, d7 = 33461
and (a7, b7) = (5577, 23660); if n = 10, then c10 = 9369319, d10 = 6625109 and
(a10, b10) = (1104185, 4684659); if n = 11, then c11 = 54608393, d11 = 38613965 and
(a11, b11) = (6435661, 27304196).

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Dionne Bailey, Elsie
Campbell, and Charles Diminnie, Angelo State University, San Angelo, TX;
Anthony J. Bevelacqua, University of North Dakota, ND; Ed Gray, Highland
Beach, FL; Moti Levy, Rehovot, Israel; Kenneth Korbin, NY, NY; Kee-Wai
Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; Toshihiro
Shimizu, Kawasaki, Japan; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

5430: Proposed by Oleh Faynshteyn, Leipzig, Germany

Let a, b, c be the side-lengths, α, β, γ the angles, and R, r the radii respectively of the
circumcircle and incircle of a triangle. Show that

a3 · cos(β − γ) + b3 · cos(γ − α) + c3 · cos(α− β)

(b+ c) cosα+ (c+ a) cosβ + (a+ b) cos γ
= 6Rr.

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

By the Law of Cosines,

cosα =
b2 + c2 − a2

2bc

and hence,

(b+ c) cosα =
(b+ c)

(
b2 + c2 − a2

)

2bc
=
a (b+ c)

(
b2 + c2 − a2

)

2abc
.
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Similarly,

(c+ a) cosβ =
b (c+ a)

(
c2 + a2 − b2

)

2abc

and

(a+ b) cos γ =
c (a+ b)

(
a2 + b2 − c2

)

2abc
.

Therefore,

(b+ c) cosα+ (c+ a) cosβ + (a+ b) cos γ

=
a (b+ c)

(
b2 + c2 − a2

)
+ b (c+ a)

(
c2 + a2 − b2

)
+ c (a+ b)

(
a2 + b2 − c2

)

2abc

=
2a2bc+ 2ab2c+ 2abc2

2abc
= a+ b+ c. (1)

If K is the area of the given triangle, then

K =
1

2
ab sin γ =

1

2
bc sinα =

1

2
ca sinβ

and we have

sinα =
2K

bc
, sinβ =

2K

ca
, and sin γ =

2K

ab
.

Thus,

a3 cos (β − γ) = a3 [cosβ cos γ + sinβ sin γ]

= a3

[(
c2 + a2 − b2

)

2ca
·
(
a2 + b2 − c2

)

2ab
+

4K2

(ca) (ab)

]

= a

[
a4 −

(
b2 − c2

)2
+ 16K2

4bc

]

=
a2

4abc

[
a4 −

(
b2 − c2

)2
+ 16K2

]
.

By Heron’s Formula,

16K2 = (a+ b+ c) (a+ b− c) (b+ c− a) (c+ a− b)
=
[
(a+ b)2 − c2

] [
c2 − (a− b)2

]

= 2
(
a2b2 + b2c2 + c2a2

)
−
(
a4 + b4 + c4

)
.

Hence,

a3 cos (β − γ) =
a2

4abc

[
a4 −

(
b2 − c2

)2
+ 2

(
a2b2 + b2c2 + c2a2

)
−
(
a4 + b4 + c4

)]

=
a2

4abc

[
−2b4 − 2c4 + 2

(
a2b2 + 2b2c2 + c2a2

)]

=
a2

2abc

(
−b4 − c4 + a2b2 + 2b2c2 + c2a2

)
.

Similarly,

b3 cos (γ − α) =
b2

2abc

(
−c4 − a4 + a2b2 + b2c2 + 2c2a2

)
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and

c3 cos (α− β) =
c2

2abc

(
−a4 − b4 + 2a2b2 + b2c2 + c2a2

)
.

As a result,

a3 cos (β − γ) + b3 cos (γ − α) + c3 cos (α− β)

=
a2

2abc

(
−b4 − c4 + a2b2 + 2b2c2 + c2a2

)
+

b2

2abc

(
−c4 − a4 + a2b2 + b2c2 + 2c2a2

)

+
c2

2abc

(
−a4 − b4 + 2a2b2 + b2c2 + c2a2

)

=
1

2abc
· 6a2b2c2

= 3abc. (2)

By (1) and (2),

a3 cos (β − γ) + b3 cos (γ − α) + c3 cos (α− β)

(b+ c) cosα+ (c+ a) cosβ + (a+ b) cos γ
=

3abc

a+ b+ c
. (3)

Finally, if s =
a+ b+ c

2
, then

R =
abc

4K
and K = rs

and we get

6Rr = 6

(
abc

4K

)(
K

s

)

=
3abc

2s

=
3abc

a+ b+ c
. (4)

Conditions (3) and (4) yield the desired result.

Solution 2 by Moti Levy, Rehovot, Israel

After substituting Rr = abc
2(a+b+c) in the right hand side of the original inequality, it

becomes ∑
cyc a

3 cos (β − γ)∑
cyc (b+ c) cosα

=
3abc

a+ b+ c
.

Thus, we actually need to prove two identities (which appeared many times before in the
literature):

∑

cyc

(b+ c) cosα = a+ b+ c, (1)

∑

cyc

a3 cos (β − γ) = 3abc. (2)
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Dropping a perpendicular from C to side c, it divides the triangle into two right
triangles, and c into two pieces c = a cosβ + b cosα, and similarly for all sides:

c = a cosβ + b cosα,

a = b cos γ + c cosβ,

b = c cosα+ a cos γ.

To prove (1), we add the three equations, and get immediately:

a+ b+ c = a cosβ + b cosα+ b cos γ + c cosβ + c cosα+ a cos γ =
∑

cyc

(b+ c) cosα.

To prove (2), we use the following trigonometric identity

cos (x− y) =
sinx cosx+ sin y cos y

sin (x+ y)
,

and the triangle identity
a

sinα
=

b

sinβ
=

c

sin γ
.

a3 cos (β − γ) = a3
sinβ cosβ + sin γ cos γ

sin (β + γ)

= a3
sinβ cosβ + sin γ cos γ

sinα

= a3
b cosβ + c cos γ

a
= a2b cosβ + a2c cos γ

∑

cyc

a3 cos (β − γ) =
∑

cyc

(
a2b cosβ + a2c cos γ

)

= ab (a cosβ + b cosα) + ac (c cosα+ a cos γ) + bc (b cos γ + c cosβ)

= 3abc.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Bruno Salgueiro Fanego,
Viveiro, Spain; Kee-Wai Lau, Hong Kong, China; Kevin Soto Palacios,
Huarmey, Peru; Neculai Stanciu, “Geroge Emil Palade” School Buzău,
Romania and Titu Zvonaru, Comănesti, Romania; Nicusor Zlota, “Traian
Vuia” Technical College, Focsani, Romania, and the proposer.

5431: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let Fn be the nth Fibonacci number defined by F1 = 1, F2 = 1 and for all n ≥ 3,
Fn = Fn−1 + Fn−2. Prove that

∞∑

n=1

(
1

11

)FnFn+1

is an irrational number and determine it (*).

The asterisk (∗) indicates that neither the author of the problem nor the editor are
aware of a closed form for the irrational number.

Solution 1 by Moti Levy, Rehovot, Israel
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It is well known that

FnFn+1 =
n∑

k=1

F 2
k , (1)

hence x :=
∑∞

n=1

(
1
11

)FnFn+1 can be expressed as

x =
1

11F
2
1

+
1(

11F
2
1

)(
11F

2
2

) +
1(

11F
2
1

)(
11F

2
2

)(
11F

2
3

) + · · · ,

or

x =

∞∑

k=1

1

a1a2 · · · ak
, ak = 11F

2
k . (2)

The series (2) is the Engel expansion of the positive real number x. See [1] for definition
of Engel expansion.

In 1913, Engel established the following result (See [2] page 303):

Every real number x has a unique representation c+
∑∞

k=1
1

a1a2···ak , where c is an
integer and 2 ≤ a1 ≤ a2 ≤ a3 ≤··· is a sequence of integers. Conversely, every such
sequence is convergent and its sum is irrational if and only if limk→∞ ak =∞.
Therefore, by Engel’s result,

∑∞
n=1

1
11FnFn+1

is irrational, since limk→∞ 11F
2
k =∞.

I do not know how to express x in closed form. However, it can be shown that it is
transcendental. To this end, I rely on a result given in [2] (on page 315):

Let (f(n))n≥1 be a sequence of positive integers such that limn→∞
f(n+1)
f(n) = µ > 2. Then

for every integer d ≥ 2, the number x =
∑∞

n=1
1

df(n) is transcendental.

In our case, d = 11 and f (n) = FnFn+1. We check that

lim
n→∞

f (n+ 1)

f (n)
= lim

n→∞
Fn+1Fn+2

FnFn+1
= lim

n→∞
Fn+2

Fn
= lim

n→∞
Fn+1 + Fn

Fn

= 1 + lim
n→∞

Fn+1

Fn
=

3 +
√

5

2
∼= 2.618 > 2.

Then x =
∑∞

n=1
1

11FnFn+1
is transcendental.

References:

[1] Wikipedia “Engel expansion”.

[2] Ribenboim Paulo, “My Numbers, My Friends: Popular Lectures on Number Theory”,
Springer 2000.

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg,
Germany

Let p be a prime. For the sake of brevity put ck = FkFk+1. We prove that the number

s =
∞∑

k=1

(
1

p

)ck
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is transcendental, in particular irrational.

The partial sum

sn =

n∑

k=1

(
1

p

)ck

=
an
bn

with positive integers an and bn ≤ pcn satisfies

0 < s− sn =

∞∑

k=n+1

(
1

p

)ck

≤
(

1

p

)cn+1 ∞∑

k=0

(
1

p

)k

=
1

p− 1

(
1

p

)cn+1−1
≤ 1

(pcn)
cn+1−1

cn

,

because ck+1 − ck = Fk+1Fk+2 − FkFk+1 = F 2
k+1 ≥ 1. Since

lim
n→∞

cn+1 − 1

cn
= lim

n→∞
Fn+1Fn+2 − 1

FnFn+1
= lim

n→∞

(
Fn+1

Fn
· Fn+2

Fn+1

)
=

(
1 +
√

5

2

)2

=
3 +
√

5

2
> 2

By the theorem of Thue, Siegel and Roth, for any (fixed) algebraic number x and ε > 0,
the inequality

0 <
∣∣∣x− a

b

∣∣∣ < 1

b2+ε

is satisfied only by a finite number of integers a and b. Hence, s is transcendental.

Also solved by the Kee-Wai Lau, Hong Kong, China (first part of the
problem), and the proposer, (first part of the problem)

5432: Proposed by Ovidiu Furdui and Alina Ŝıntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions f : (0,∞)→ (0,∞), with f(1) =
√

2, such that

f ′
(

1

x

)
=

1

f(x)
, ∀x > 0.

Solution 1 by Arkady Alt, San Jose, CA

First note that f ′
(

1

x

)
=

1

f (x)
, ∀x > 0 ⇐⇒ f ′ (x) =

1

f

(
1

x

) , ∀x > 0.

Then, since f ′′ (x) =




1

f

(
1

x

)




′

= −
f ′
(

1

x

)(
− 1

x2

)

f2
(

1

x

) and

1

f2
(

1

x

) = (f ′ (x))2 , f ′
(

1

x

)
=

1

f (x)
,

we obtain f ′′ (x) =
1

x2
(f ′ (x))2

1

f (x)
⇐⇒ f (x) f ′′ (x)

(f ′ (x))2
=

1

x2
⇐⇒

(f ′ (x))2 − f (x) f ′′ (x)

(f ′ (x))2
− 1 = − 1

x2
⇐⇒
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(
f (x)

f ′ (x)

)′
= 1− 1

x2
⇐⇒ f (x)

f ′ (x)
= x+

1

x
+ c ⇐⇒ f ′ (x)

f (x)
=

x

x2 + cx+ 1
.

Since f ′ (1) =
1

f (1)
=

1√
2

then
f (1)

f ′ (1)
= 1 +

1

1
+ c ⇐⇒ 2 = 2 + c ⇐⇒ c = 0.

Therefore,
f (x)

f ′ (x)
= x+

1

x
⇐⇒ f ′ (x)

f (x)
=

x

x2 + 1
⇐⇒ ln f (x) =

1

2
ln
(
x2 + 1

)
+ d and,

using f(1) =
√

2

again, we obtain ln f (1) =
1

2
ln
(
12 + 1

)
+ d ⇐⇒ ln

√
2 =

1

2
ln 2 + d ⇐⇒ d = 0.

Thus, f (x) =
√
x2 + 1.

Solution 2 by Albert Stadler, Hirrliberg, Switzerland

The differential equation f ′(x) =
1

f

(
1

x

) shows that f is differentiable infinitely often in

x > 0. We differentiate the equation f ′(x)f

(
1

x

)
= 1 and get

f ′′(x)f

(
1

x

)
− f ′(x)f ′

(
1

x

)
1

x2
=
f ′′(x)

f ′(x)
− f ′(x)

f(x)

1

x2
= 0,

or equivalently

f ′′(x)f(x)

(f ′(x))2
=

1

x2
. (1)

By assumption f(1) =
√

2 and thus f ′(1) =
1

f(1)
=

√
2

2
.

We integrate (1) and apply partial integration to get

1− 1

x
=

∫ x

1

dt

t2
=

∫ x

1

f ′′(t)f(t)

(f ′(t))2
dt

=

∫ x

1

d

dt

( −1

f ′(t)

)
f(t)dt

= − f(t)

f ′(t)

∣∣∣∣
x

1

+

∫ x

1

f ′(t)
f ′(t)

dt

=
f(1)

f ′(1)
− f(x)

f ′(x)
+ x− 1

= 1− f(x)

f ′(x)
+ x.

So
f(x)

f ′(x)
=

1

x
+ x or equivalently

f ′(x)

f(x)
=

x

1 + x2
.
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We integrate again and get

ln f(x)− ln f(1) =

∫ x

1

f ′(t)
f(t)

dt =

∫ x

1

t

1 + t2
dt =

1

2
ln(1 + x2)− =

1

2
ln 2.

Therefore f(x) =
√

1 + x2.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Let f : (0,+∞)→ (0,+∞) be a differentiable function that satisfies the hypothesis of
the problem and let g : (0,+∞)→ (0,+∞) be the differentiable function defined by

g(x) =
1

x
. Since f is differentiable, and by the hypothesis f ′(x) =

1

(f ◦ g)(x)
, ∀x > 0, we

conclude that f ′ is also differentiable and, differentiating both side of the equality

f ′(x)f

(
1

x

)
= 1, we obtain that f ′′(x)f

(
1

x

)
+ f ′(x)f ′

(
1

x

) −1

x2
= 0, and since

f

(
1

x

)
=

1

x2
, or equivalently,

(f ′(x))2 − f ′′(x)f(x)

(f ′(x))2
= 1− 1

x2
, or what is the same,

(
f

f ′

)′
(x) = 1− 1

x2
, ∀x > 0.

Integrating both sides, we conclude that
f(x)

f ′(x)
= x+

1

x
+ C, ∀x > 0, for some C ∈ <. If

we take x = 1 at the start of the inequality, and since f(1) =
√

2, we obtain that

f ′(1) =
1√
2

and
f(1)

f ′(1)
= 2 + C, from where C = 0, which implies, because

f(x) > 0 ∀x > 0 by hypothesis and
f(x)

f ′(x)
= x+

1

x
+ 0 and

f ′(x)

f(x)
=

x

x2 + 1
, ∀x > 0.

Integrating both sides of this last equality, we conclude that

ln (f(x)) = log
(√

x2 + 1
)

+D, ∀x > 0 for some D ∈ <. Taking x = 1 in this equality

and using the fact that f(1) =
√

2, we find that D = 0 and therefore
f(x) =

√
x2 + 1, ∀x > 0.

Since the function f : (0,+∞)→ (0,+∞) defined by f(x) =
√
x2 + 1, ∀x > 0, is

differentiable with f ′(x) =
x√

x2 + 1
and satisfies that f(1) =

√
2, and that

f

(
1

x

)
=

1

x√
1

x2
+ 1

=
1

f(x)
, ∀x > 0, we conclude that the only differentiable function

that satisfies the conditions of the problem is the function f(x) =
√
x2 + 1, ∀x > 0.

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

We have f ′
(
1
x

)
f (x) = 1. Letting x to 1

x we also have f ′ (x) f
(
1
x

)
= 1 (∗). Thus,

d

dx

(
f (x) f

(
1

x

))
= f ′ (x) f

(
1

x

)
+
(
−x−2

)
f (x) f ′

(
1

x

)

= 1− x−2.

Integrating it, we have
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f (x) f

(
1

x

)
= x+

1

x
+ C

Letting x = 1, we have 2 = 2 + C or C = 0. Therefore f (x) f
(
1
x

)
= x+ 1

x . Multiplying
f (x) to (∗), we have

(
x+

1

x

)
f ′ (x) = f (x)

f ′ (x)

f (x)
=

1

x+ 1
x

Integrating again, we have

log f (x) =

∫
dx

x+ 1
x

=

∫
x

x2 + 1
dx

=
1

2

∫ (
x2 + 1

)′

x2 + 1
dx

=
1

2
log
(
x2 + 1

)
+D

Thus, we can write f (x) = D
√
x2 + 1 where D is some constant. Letting x = 1, we have

D = 1. Therefore, we have f (x) =
√
x2 + 1, this function actually satisfies the condition.

Also solved by Abdallah El Farsi, Bechar, Algeria; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Michael N. Fried,
Ben-Gurion University, Beer-Sheva, Israel; Moti Levy, Rehovot, Israel; Ravi
Prakash, New Delhi, India, and the proposers.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
September 15, 2017

• 5451: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with sides a = 8, b = 19 and c = 22. The triangle has an interior
point P where AP, BP , and CP each have positive integer length. Find AP and BP , if
CP = 4.

• 5452: Proposed by Roger Izard, Dallas, TX

Let point O be the orthocenter of a given triangle ABC. In triangle ABC let the
altitude from B intersect line segment AC at E, and the altitude from C intersect line
segment AB at D. If AC and AB are unequal, derive a formula which gives the square
of BC in terms of AC,AB,EO, and OD.

• 5453: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu,“George Emil Palade” School, Buzău,
Romania

If a, b, c ∈ (0, 1) or a, b, c ∈ (1,∞) and m,n are positive real numbers, then prove that

loga b+ logb c

m+ n loga c
+

logb c+ logc a

m+ n logb a
+

logc a+ loga b

m+ n logc b
≥ 6

m+ n

• 5454: Proposed by Arkady Alt, San Jose, CA

Prove that for integers k and l, and for any α, β ∈
(
0, π2

)
, the following inequality holds:

k2 tanα+ l2 tanβ ≥ 2kl

sin(α+ β)
−
(
k2 + l2

)
cot(α+ β).

• 5455: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations:

1

a
+

1

b
+

1

c
=

1

abc

a+ b+ c = abc+
8

27

(
a+ b+ c)3

1
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• 5456: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k be a positive integer. Calculate

lim
x→∞

e−x
∞∑

n=k

(−1)n
(
n

k

)(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solutions

• 5433: Proposed by Kenneth Korbin, New York, NY

Solve the equation: 4
√
x+ x2 = 4

√
x+ 4
√
x− x2, with x > 0.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

Let f(x) = 4
√
x+ 4
√
x− x2 − 4

√
x+ x2. Then f(x) is continuous on [0, 1]. We have

f(1/2) > 0 and f(1) < 0. By the Intermediate Value Theorem our original equation has
at least one solution with x > 0.

Now consider

4
√
x+ x2 = 4

√
x+

4
√
x− x2 =⇒ 4

√
1 + x = 1 + 4

√
1− x

=⇒ 4
√

1 + x− 4
√

1− x = 1

=⇒
√

1 + x− 2
4
√

1− x2 +
√

1− x = 1

=⇒
√

1 + x+
√

1− x = 1 + 2
4
√

1− x2
=⇒ 1 + x+ 2

√
1− x2 + 1− x = 1 + 4

4
√

1− x2 + 4
√

1− x2
=⇒ 1− 2

√
1− x2 = 4

4
√

1− x2
=⇒ 1− 4

√
1− x2 + 4(1− x2) = 16

√
1− x2

=⇒ 5− 4x2 = 20
√

1− x2
=⇒ 25− 40x2 + 16x4 = 400(1− x2)
=⇒ 16x4 + 360x2 − 375 = 0

As a quadratic in x2 the roots of this polynomial are

x2 =
−360± 160

√
6

32
=
−45± 20

√
6

4

and so

x = ±
√
−45± 20

√
6

2

This is a positive real number only if we choose both signs positive. Thus our original
equation has at most one positive real solution.

Our last two paragraphs show that

x =

√
20
√

6− 45

2
.
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is the unique positive real solution to our original equation.

Solution 2 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Since x > 0, we lose no solutions if we divide by 4
√
x to obtain

4
√

1 + x = 1 + 4
√

1− x.

If we let X = 4
√

1 + x and Y = 4
√

1− x, then X4 + Y 4 = 2 and we can solve for XY in
the following steps:

X − Y = 1

(X − Y )4 = 1

X4 − 4X3Y + 6X2Y 2 − 4XY 3 + Y 4 = 1

X4 + Y 4 − 2XY
(
2X2 − 3XY + 2Y 2

)
= 1

−2XY
[
2 (X − Y )2 +XY

]
= −1

2XY (XY + 2) = 1

2X2Y 2 + 4XY − 1 = 0

XY =
−2±

√
6

2
.

The condition XY = 4
√

1− x2 ≥ 0 implies that

4
√

1− x2 =

√
6− 2

2

1− x2 =

(√
6− 2

2

)4

=
49− 20

√
6

4

x2 = 1− 49− 20
√

6

4
=

20
√

6− 45

4
.

Because x > 0, our solution is

x =

√
20
√

6− 45

2
.

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Solution. Since x > 0, we may divide the given equation by 4
√
x to produce

4
√

1 + x = 1 + 4
√

1− x.

Squaring both sides then yields
√

1 + x = 1 + 2 4
√

1− x+
√

1− x, or√
1 + x−

√
1− x− 1 = 2 4

√
1− x. Squaring yet again produces

(1 + x) + (1− x) + 1− 2
√

1 + x+ 2
√

1− x− 2
√

1− x2 = 4
√

1− x,

or 3− 2
√

1− x2 = 2
√

1 + x+ 2
√

1− x. We square once more to obtain

9− 12
√

1− x2 + 4(1− x2) = 4(1 + x) + 4(1− x) + 8
√

1− x2

3
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and thus 5− 4x2 = 20
√

1− x2. Squaring for the last time yields
25− 40x2 + 16x4 = 400(1− x2) and hence 16x4 + 360x2 − 375 = 0. Finally, the only real
positive solution of this equation is

x =

√
−45

4
+ 5
√

6 =

√
−45 + 20

√
6

2
.

Addendum. It is interesting to note that this solution is approximately 0.99872354, very
close to 1. In particular, this implies that 49/4 is a good rational approximation of 5

√
6,

which also means that 7/2 is a good rational approximation of 4
√

150.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Jeremiah Bartz, University
of North Dakota, Grand Forks, ND; Bruno Salgueiro Fanego, Viveiro, Spain;
Ed Gray, Highland Beach, FL; Paul M. Harms, North Newton, KS; Aykut
Ismailov, Shumen, Bulgaria; Kee-Wai Lau, Hong Kong, China; David E.
Manes, SUNY at Oneonta, Oneonta, NY; Boris Rays, Brooklyn, NY;
Brandon Richardson (student), Auburn University at Montgomery, AL;
Toshihiro Shimizu, Kawasaki, Japan; Trey Smith, Angelo State University,
San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova
(three solutions), Varna, Bulgaria, and the proposer.

• 5434: Proposed by Titu Zvonaru, Comnesti, Romania and Neculai Stanciu, “George
Emil Palade” General School, Buzău, Romania

Calculate, without using a calculator or log tables, the number of digits in the base 10
expansion of 296.

Solution 1 by Ed Gray, Highland Beach, FL

(
212
)8

= 296 > (4 · 103)8 = 48 · 1024 > 6 · 104 · 1024 = 6 · 1028.

Also (
28
)12

= 296 <
(
3 · 102

)12
= 312 · 1024 <

(
6 · 105

)
· 1024 = 6 · 1029.

Therefore, 6 · 1028 < 296 < 6 · 1029. So n = 29.

Solution 2 by Paul M. Harms, North Newton, KS

We see that
4(103) < 212 = 4096 < 4.1(103).

Then
16(106) < 224 < 16.81(106) < 17(106).

Taking the fourth power of the appropriate terms we obtain,

164(1024) = 65536(1024) = 0.65536(1029) < 296 < 174(1024) = 83521(1024) = 0.83521(1029).

Since 296 is bounded by integers who have 29 digits in the base 10 expansion, the integer
296 must also have 29 digits in its base 10 expansion.
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Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

The required number of digits is 29 because, as we shall show, 1028 ≤ 296 < 1029. More

exactly, we shall prove that 1 <
296

1028
< 10. Since

296

1028
=

(
224

107

)4

=

((
212
)2

107

)4

=

(
40962

107

)4

=

(
1, 6777216 · 107

107

)4

= (1, 6777216)4 ,

we obtain that

14 <
296

1028
< 1, 68)4, that is 1 <

296

1028
< (2.8224)2 and, hence, 1 <

296

1028
< 32 < 10.

Note: another way to show that 1028 < 296 is, for example:

52 < 25

5 < 23

}
⇒ 52 < 25

53 < 29

}
⇒ 55 < 25 · 53 < 212 ⇒ 55 < 212

52 < 25

}
⇒ 57 < 25 · 55 < 217 ⇒

⇒ 27 · 57 < 224 ⇒

⇒
(
107
)4
<
(
224
)4 ⇒

⇒ 1028 < 296.

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

Since 103 < 210 = 1024 < 1.03× 103 and 296 =
(
210
)9 × 26 =

(
210
)9 × 10× 6.4 we have

6.4× 10× 103×9 <296 < 6.4× 10× 103×9 × (1.03)9 .

We evaluate 1.039. We have 1.03× 1.03× 1.03 = 1.0609× 1.03 = 1.092727 < 1.1 and
1.1× 1.1× 1.1 = 1.331 < 1.4 (I never use calculator.) Therefore, we have

1028 < 6.4× 1028 < 296 < 6.4× 1.4× 1028 = 8.96× 1028 < 1029.

Therefore, the number of digits in 296 is 29.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Hatef I.
Arshagi, Guilford Technical Community College, Jamestown, NC; Kee-Wai
Lau, Hong Kong, China; Albert Stadler, Herrliberg, Switzerland; David
Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposers.

• 5435: Proposed by Valcho Milchev, Petko Rachov Slaveikov Seconday School, Bulgaria

Find all positive integers a and b for which
a4 + 3a2 + 1

ab− 1
is a positive integer.

Solution 1 by Moti Levy, Rehovot, Israel

This solution is based on similar problem and solution which appeared in [1].
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a4 + 3a2 + 1

ab− 1
may be replaced by equivalent expression with symmetric polynomial in

the numerator.

Indeed,
a4 + 3a2 + 1

ab− 1
=
a2
(
a2 + b2 + 3

)
− (ab− 1) (ab+ 1)

ab− 1
.

Now, a and ab− 1 satisfy the equation b ∗ a+ (−1) ∗ (ab− 1) = 1, which implies that a
and ab− 1 are relatively prime and clearly a2 and ab− 1 are also relatively prime.

Thus,
a4 + 3a2 + 1

ab− 1
is a positive integer if and only if

a2 + b2 + 3

ab− 1
is a positive integer.

We call the ordered pair (a, b) a solution if

a2 + b2 + 3

ab− 1
= m, (1)

where m is a positive integer. The set of solutions is not empty since (1, 2) is a solution.

We exclude (a, a) from the set of solutions since
2a2 + 3

a2 − 1
= 2 +

5

a2 − 1
/∈ N for all a > 0.

Equation (1) is re-written as follows

a2 −mab+ b2 = − (m+ 3) . (2)

It is easily verified (see (3)) that if (a, b) is a solution then (ma− b, a) is a solution as
well.

(ma− b)2 −m (ma− b) a+ a2 = a2 −mab+ b2, (3)

Let (a0, b0) be the “smallest” solution in the sense that a0 + b0 ≤ a+ b, where (a, b) is
any solution.

a0 + b0 ≤ (ma0 − b0) + a0,

or
2b0
a0
≤ m. (4)

2b0
a0
≤ a20 + b20 + 3

a0b0 − 1

0 ≤ −2a0b
2
0 + 2b0 + a30 + 3a0 (5)

Let (a0, a0 + k) be a solution. Then substituting in (5) gives,

0 ≤ −2a0 (a0 + k)2 + 2 (a0 + k) + a30 + 3a0

= −2k2a0 − 4ka20 + 2k − a30 + 5a0.

Solving −2k2a0 − 4ka20 + 2k − a30 + 5a0 ≥ 0, we get

1

2a0

(
1− 2a20 −

√
6a20 + 2a40 + 1

)
≤ k ≤ 1

2a0

(
1− 2a20 +

√
6a20 + 2a40 + 1

)
,

hence, k will have positive values only if

√
6a20 + 2a40 + 1 + 1 ≥ 2a20.

This inequality holds for a0 = 1 and a0 = 2. For a0 = 1, possible values for k are 1 or 2;
for a0 = 2, possible value for k is 1.

6
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Thus we have to check the following set of potential solutions: {(1, 2) , (1, 3) , (2, 1)} .
Clearly (1, 2) and (2, 1) are solutions, but (1, 3) is not.

For (1, 2) and (2, 1) the value of m is 8. We conclude that the sole value of m is 8.

It follows from (3) that the pairs (an, bn) (and by symmetry (bn, an)), which satisfy
condition (1) are expressed by the recurrence formulas

an+1 = 8an − bn,
bn+1 = an,

which are equivalent to the recurrence formulas

an+2 = 8an+1 − an, (6)

bn+2 = 8bn+1 − bn.

We have two sets of initial conditions:

1) a0 = 1, a1 = 6, b0 = 2, b1 = 1; the pairs resulting from these initial conditions are
(1, 2), (6, 1), (47, 6), (370, 47) ,. . . .

an =

(
1

2
− 1√

15

)(
4−
√

15
)n

+

(
1

2
+

1√
15

)(
4 +
√

15
)n
,

bn =

(
1 +

7

2
√

15

)(
4−
√

15
)n

+

(
1− 7

2
√

15

)(
4 +
√

15
)n
.

2) a0 = 2, a1 = 15, b0 = 1, b1 = 2; the pairs resulting from these initial conditions are
(2, 1), (15, 2), (118, 15), (929, 118) , . . . .

an =

(
1− 7

2
√

15

)(
4−
√

15
)n

+

(
1 +

7

2
√

15

)(
4 +
√

15
)n
,

bn =

(
1

2
+

1√
15

)(
4−
√

15
)n

+

(
1

2
− 1√

15

)(
4 +
√

15
)n
.

Reference:

[1] La Gaceta de la RSME, Vol. 18 (2015), No. 1, “Solution to Problem 241, by Roberto
de la Cruz Moreno”.

Solution 2 by Anthony Bevelacqua, University of North Dakota, Grand
Forks, ND

1) There are no solutions to our problem with a = b. We have
a4 + 3a2 + 1 ≡ 5 mod (a2 − 1). Assume there is a solution with a = b. Then a2 − 1
divides a4 + 3a2 + 1 so a4 + 3a2 + 1 ≡ 0 mod (a2 − 1). Thus 5 ≡ 0 mod (a2 − 1) and so
a2 − 1 divides 5. But then a2 = 2 or a2 = 6, a contradiction in either case.

2) The only solutions with a ≤ 4 are (a, b) = (1, 2), (2, 1), (1, 6) and (2, 15).
Suppose (a, b) is a solution to our problem. If a = 1 then b− 1 divides 5 so b− 1 = 1 or
b− 1 = 5. Both (1, 2) and (1, 6) are solutions. If a = 2 then 2b− 1 divides 29 so
2b− 1 = 1 or 2b− 1 = 29. Both (2, 1) and (2, 15) are solutions. If a = 3 then 3b− 1
divides 109 so 3b− 1 = 1 or 3b− 1 = 109, a contradiction. If a = 4 then 4b− 1 divides
305 = 5 · 61 so 4b− 1 ∈ {1, 5, 61, 305}, a contradiction.
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3) ab− 1 divides a4 + 3a2 + 1 if and only if ab− 1 divides a2 + b2 + 3.
We have

(ab− 1)(a3b+ 3ab+ a2 + 3) = a4b2 + 3a2b2 + a3b+ 3ab− a3b− 3ab− a2 − 3

= a4b2 + 3a2b2 − a2 − 3

and so
b2(a4 + 3a2 + 1)− (ab− 1)(a3b+ 3ab+ a2 + 3) = a2 + b2 + 3.

Thus if ab− 1 divides a4 + 3a2 + 1 then ab− 1 divides a2 + b2 + 3. Conversely suppose
ab− 1 divides a2 + b2 + 3. Then ab− 1 divides b2(a4 + 3a2 + 1). Since ab− 1 and b2 are
relatively prime we have that ab− 1 divides a4 + 3a2 + 1.

Now if k > 0 and (a, b) is a solution to a2 + b2 + 3 = k(ab− 1) then b is a root of the
polynomial a2 + x2 + 3 = k(ax− 1) which can be rewritten as
x2 − kax+ (a2 + 3 + k) = 0. Thus if b′ is the other root we have, by Vieta’s formulas,
b+ b′ = ka and bb′ = a2 + 3 + k. The first shows that b′ is an integer and the second
shows that b′ > 0. Thus (a, b′) is another solution to a2 + b2 + 3 = k(ab− 1).

4) If ab− 1 divides a2 + b2 + 3 then a2 + b2 + 3 = 8(ab− 1). Suppose there are positive
integers a, b, k such that a2 + b2 + 3 = k(ab− 1). For this fixed k let S be the set of all
positive integer pairs (a, b) such that a2 + b2 + 3 = k(ab− 1). Choose an (a, b) ∈ S such
that a+ b is minimal. Without loss of generality we have a ≤ b. Since a 6= b by 1) we
have a < b. Now (a, b′) is another solution. Since a+ b is minimal we have a+ b ≤ a+ b′

and hence b ≤ b′. Thus

b2 ≤ bb′ = a2 + 3 + k =⇒ k ≥ b2 − a2 − 3

and so

a2 + b2 + 3 = k(ab− 1)

≥ (b2 − a2 − 3)(ab− 1)

= ab3 − b2 − a3b+ a2 − 3ab+ 3.

Hence
3ab+ 2b2 ≥ ab3 − a3b =⇒ 3a+ 2b ≥ ab2 − a3.

Since a < b we have 3a+ 2b < 5b and ab2 − a3 = a(b+ a)(b− a) > ab. Thus 5b > ab and
so a < 5. By 2) the only possible (a, b) are then (1, 2), (1, 6), and (2, 15). Each of these
gives k = 8.

Thus 3) and 4) show that our original problem is equivalent to finding all positive
integers a and b such that a2 + b2 + 3 = 8(ab− 1). We could rewrite this as
(a− 4b)2 − 15b2 = −11 and apply the theory of equations of the form x2 −Dy2 = N as
found in, say, section 58 of Nagell’s Number Theory. Instead we will determine the
solutions by “Vieta jumping” as in the proof of (4).

Let S be the set of all positive integers pairs (a, b) such that a2 + b2 + 3 = 8(ab− 1).
Clearly if (a, b) ∈ S then (b, a) ∈ S, and, by 1) there are no (a, b) ∈ S with a = b. Recall
that if (a, b) ∈ S then (a, b′) ∈ S where b+ b′ = 8a and bb′ = a2 + 11.

5) For any (a, b) ∈ S define ρ(a, b) = (b′, a) and λ(a, b) = (b, 8b− a). Then ρ(a, b) ∈ S,
λ(a, b) ∈ S, and λ(ρ(a, b)) = (a, b).

8

X
ia
ng
’s
T
ex
m
at
h



Let (a, b) ∈ S. We have (a, b′) ∈ S and hence ρ(a, b) = (b′, a) ∈ S. Now

b2 + (8b− a)2 + 3 = 64b2 − 16ab+ (a2 + b2 + 3)

= 64b2 − 16ab+ 8(ab− 1)

= 64b2 − 8ab− 8

= 8(b(8b− a)− 1)

so λ(a, b) = (b, 8b− a) ∈ S. Finally,

λ(ρ(a, b)) = λ(b′, a) = (a, 8a− b′)

where

8a− b′ = 8a− a2 + 11

b
=

8ab− a2 − 11

b
=
b2

b
= b.

6) The only (a, b) ∈ S such that a < b ≤ 10 are (a, b) = (1, 2) and (1, 6).

Since a2 + b2 + 3 ≡ 0 mod 8 we see that a and b must have opposite parity and neither
can be divisible by 4. Moreover the only such solutions with a or b less than 4 are (1, 2)
and (1, 6) by 2). This leaves only

(a, b) = (5, 6), (6, 7), (6, 9), (5, 10), (7, 10), (9, 10)

and none of these satisfy a2 + b2 + 3 = 8(ab− 1).

7) Let (a, b) ∈ S such that b ≥ 11. If a < b then b′ < a

Suppose first that b′ ≤ 10. Assume a ≤ b′. Since (a, b′) ∈ S we have a 6= b′. Thus
a < b′ ≤ 10. So, by 6), we must have a = 1. But if a = 1 we have b = 1 or b = 6, a
contradiction with b ≥ 11. Hence b′ < a.

Suppose now that b′ ≥ 11. Again assume a ≤ b′. Then, as in the last paragraph, a < b′.
We have

bb′ = a2 + 11 < (b′)2 + 11 =⇒ b < b′ +
11

b′
≤ b′ + 1

and so b ≤ b′. Now swapping b and b′ we have

bb′ = a2 + 11 < b2 + 11 =⇒ b′ < b+
11

b
≤ b+ 1

and so b′ ≤ b. Thus b = b′. Since 8a = b+ b′ = 2b we have b = 4a. But then

a2 + 16a2 + 3 = 8(4a2 − 1) =⇒ 11 = 15a2,

a contradiction. Hence b′ < a.

Finally,

8) (a, b) ∈ S if and only if {a, b} = {sn, sn+1} or {a, b} = {tn, tn+1} for n ≥ 0 where

s0 = 1, s1 = 2, and sn = 8sn−1 − sn−2 for n ≥ 2

and
t0 = 1, t1 = 6, and tn = 8tn−1 − tn−2 for n ≥ 2.
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Note that λn(1, 2) = (sn, sn+1) and λn(1, 6) = (tn, tn+1) for all n ≥ 0.

Since (1, 2) and (1, 6) ∈ S we see that (a, b) ∈ S for any {a, b} = {sn, sn+1} or
{a, b} = {tn, tn+1} and n ≥ 0 by (5).

Now suppose (a, b) ∈ S. Since (b, a) ∈ S as well, we can suppose without loss of
generality that a < b. By 5) and 7) there exists an integer d ≥ 0 such that
ρd(a, b) = (a∗, b∗) with a∗ < b∗ ≤ 10. By (6) we must have ρd(a, b) = (1, 2) or
ρd(a, b) = (1, 6). Since (a, b) = λd(ρd(a, b)) we have (a, b) = λd(1, 2) or (a, b) = λd(1, 6).

Thus ab− 1 divides a4 + 3a2 + 1 if and only if a and b are consecutive elements of either
of the sequences sn or tn given above. Since the first few terms of sn are
1, 2, 15, 118, 929, 7314, 57583, . . . and the first few terms of tn are
1, 6, 47, 370, 2913, 22934, 180559, . . . the first few solutions to our problem (with a ≤ b)
are

(a, b) = (1, 2), (2, 15), (15, 118), (118, 929), (929, 7314), (7314, 57583), . . .

and

(a, b) = (1, 6), (6, 47), (47, 370), (370, 2913), (2913, 22934), (22934, 180559), . . .

Also solved by Ed Gray, Highland Beach, FL; Kenneth Korbin, NewYork,
NY; Toshihiro Shimizu, Kawasaki, Japan; Anna V. Tomova (three solutions),
Varna, Bulgaria, and the proposer.

• 5436: Proposed by Arkady Alt, San Jose, CA

Find all values of the parameter t for which the system of inequalities

A =





4
√
x+ t ≥ 2y

4
√
y + t ≥ 2z

4
√
z + t ≥ 2x

a) has solutions;

b) has a unique solution.

Solution by the Proposer

a) Note that (A)⇐⇒





t ≥ 16y4 − x
t ≥ 16z4 − y
t ≥ 16x4 − z

=⇒ 3t ≥ 16y4 − x+ 16z4 − y + 16x4 − z =

(
16x4 − x

)
+
(
16y4 − y

)
+
(
16z4 − z

)
≥ 3 min

x

(
16x4 − x

)
=⇒ t ≥ min

x

(
16x4 − x

)
.

For x ∈
(

0,
1

16

)
, using the AM-GM Inequality, we obtain

x− 16x4 = x
(
1− 16x3

)
= 3

√
x3 (1− 16x3)3 =

3

√(
48x3

) (
1− 16x3

)3

48
≤

3

√
1

48
·
(

48x3 + 3− 3 · 16x3

4

)4

= 3

√
1

48
·
(

3

4

)4

=
3

16
. And since x− 16x4 ≤ 0 for
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x /∈
(

0,
1

16

)
, then for all x the inequality x− 16x4 ≤ 3

16
holds. Since the upper bound

is
3

16
for values

x− 16x4 is attainable when x =
1

4
, then max

(
x− 16x4

)
=

3

16
⇐⇒

min
x

(
16x4 − x

)
= − 3

16
.

Thus t ≥ − 3

16
is a necessary condition for the solvability of system (A).

Let’s prove sufficiency.

Let t ≥ − 3

16
. Since function h (x) is continuous in R and min

x

(
16x4 − x

)
= − 3

16
, then

[
− 3

16
,∞
)

is the range of h (x) . This means that for any t ≥ − 3

16
the equation

16x4 − x = t

has solution in R and since for any u which is a solution of the equation 16x4 − x = t

the triple (x, y, z) = (u, u, u, ) is a solution of the system (A) then for such t system (A)

solvable as well.

Remark.

Actually the latest reasoning about the solvability of system (A) if t ≥ − 3

16
is redundant

for (a) because suffices to note that for such t the triple (x, y, z) =

(
1

4
,
1

4
,
1

4

)
satisfies to

(A).

But for (b) criteria of solvability of equation 16x4 − x = t in form of inequality

t ≥ − 3

16
is

important.

b) Note that system (A) always have more the one solution if t > − 3

16
.

Indeed, let for any t1, t2 ∈
(
− 3

16
, t

)
such that t1 6= t2 equation 16u4 − u = ti has

solution ui, i = 1, 2.

Then u1 6= u2 and two distinct triples (u1, u1, u1) , (u2, u2, u2) satisfy to the system (A).

Let t = − 3

16
.Then − 3

16
≥ 16y4 − x =⇒ − 3

16
+ x− y ≥ 16y4 − y ≥ − 3

16
.

Hereof x− y ≥ 0 ⇐⇒ x ≥ y. Similarly − 3

16
≥ 16z4 − y and − 3

16
≥ 16x4 − z implies

y ≥ z and z ≥ x, respectively. Thus in that case x = y = z and all solutions of the

system (A) are represented by solutions of one equation 16x4 − x = − 3

16
⇐⇒

16x4 − x+
3

16
= 0 ⇐⇒ 256x4 − 16x+ 3 = 0 which has only root

1

4
because

256x4 − 16x+ 3 = (4x− 1)2
(
16x2 + 8x+ 3

)
.

Thus, system (A) has unique solution iff t =
1

4
.

Also solved by Ed Gray, Highland Beach,FL; Kee-Wai Lau, Hong Kong,
China; Moti Levy, Rehovot, Israel; David Stone and John Hawkins, Georgia
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Southern University, Statesboro, GA, and Toshihiro Shimizu, Kawasaki,
Japan.

• 5437: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let f : C − {2} → C be the function defined by f(z) =
2− 3z

z − 2
. If

fn(z) = (f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n

)(z), then compute fn(z) and lim
n→+∞

fn(z).

Solution 1 by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo
State University, San Angelo, TX

Assume first that z 6= 2 and fn (z) exists for all n ≥ 1. Then, direct computation yields

f2 (z) =
10− 11z

5z − 6
and f3 (z) =

42− 43z

21z − 22
. (1)

When these are combined with the formula for f (z), it appears that there is a sequence
{xn} of positive integers such that

fn (z) =
2xn − (2xn + 1) z

xnz − (xn + 1)
(2)

for all n ≥ 1. Since f (z) =
2− 3z

z − 2
, we have x1 = 1. Further, if (2) holds for some n ≥ 1,

then

fn+1 (z) = f (fn (z))

=
2− 3fn (z)

fn (z)− 2

=

2− 3

[
2xn − (2xn + 1) z

xnz − (xn + 1)

]

[
2xn − (2xn + 1) z

xnz − (xn + 1)

]
− 2

=
2 [xnz − (xn + 1)]− 3 [2xn − (2xn + 1) z]

[2xn − (2xn + 1) z]− 2 [xnz − (xn + 1)]

=
(8xn + 2)− (8xn + 3) z

(4xn + 1) z − (4xn + 2)
.

This suggests that xn+1 = 4xn + 1 for n ≥ 1. These conditions on {xn} are consistent
with the formula for f (z) and property (2). Note finally that

x1 = 1 =
3

3
=

4− 1

3
, x2 = 5 =

15

3
=

42 − 1

3
, and x3 = 21 =

63

3
=

43 − 1

3
.
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This leads us to conjecture that xn =
4n − 1

3
and hence,

fn (z) =

2

(
4n − 1

3

)
−
[
2

(
4n − 1

3

)
+ 1

]
z

(
4n − 1

3

)
z −

[(
4n − 1

3

)
+ 1

] =
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

for all n ≥ 1.

If fn (z) exists for all n ≥ 1, let P (n) be the statement

fn (z) =
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)
. (3)

If n = 1,

2 (4− 1)− (2 · 4 + 1) z

(4− 1) z − (4 + 2)
=

6− 9z

3z − 6

=
2− 3z

z − 2

and thus, P (1) is true. Assume that P (n) is true, i.e.,

fn (z) =
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

for some n ≥ 1. Then,

fn+1 (z) = f (fn (z))

=

2− 3

[
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

]

[
2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

]
− 2

=
2 [(4n − 1) z − (4n + 2)]− 3 [2 (4n − 1)− (2 · 4n + 1) z]

[2 (4n − 1)− (2 · 4n + 1) z]− 2 [(4n − 1) z − (4n + 2)]

=
[2 (4n − 1) + 3 (2 · 4n + 1)] z − [2 (4n + 2) + 6 (4n − 1)]

[2 (4n − 1) + 2 (4n + 2)]− [2 · 4n + 1 + 2 (4n − 1)] z

=

(
2 · 4n+1 + 1

)
z − 2

(
4n+1 − 1

)

(4n+1 + 2)− (4n+1 − 1) z

=
2
(
4n+1 − 1

)
−
(
2 · 4n+1 + 1

)
z

(4n+1 − 1) z − (4n+1 + 2)

and therefore, P (n+ 1) is also true. By Mathematical Induction, P (n) is true for all
n ≥ 1.

Because formula (3) required the assumption that fn (z) exists for all n ≥ 1, we need to
determine if there are points z ∈ C \ {2} for which there is a positive integer m such that
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fn (z) does not exist for n > m. The existence of fn (z) requires that z, f (z), . . .,
fn−1 (z) 6= 2. Therefore, we have to find all points z for which fm (z) = 2 for some
m ≥ 1. One way to do this is to consider the inverse function

f−1 (z) =
2z + 2

z + 3

and describe

f−m (z) =

(
f−1 ◦ f−1 ◦ . . . ◦ f−1︸ ︷︷ ︸

)

m

(z)

in a manner similar to that used to find formula (3). If we do so, we see that for z 6= −3,

f−m (z) =
(4m + 2) z + 2 (4m − 1)

(4m − 1) z + 2 · 4m + 1
.

In particular,

f−m (2) =
(4m + 2) · 2 + 2 (4m − 1)

(4m − 1) · 2 + 2 · 4m + 1
=

4m+1 + 2

4m+1 − 1
.

If zm =
4m+1 + 2

4m+1 − 1
for some m ≥ 1, then it follows that fm (zm) = 2 and hence, fn (zm) is

undefined for n > m. Therefore, lim
n→+∞

fn (zm) does not exist for these points.

Let

S = {2} ∪
{

4m+1 + 2

4m+1 − 1
: m ∈ N

}
.

For z /∈ S, fn (z) exists for all n ≥ 1. If z = 1, then z /∈ S and (3) implies that

fn (1) =
2 (4n − 1)− (2 · 4n + 1)

(4n − 1)− (4n + 2)

=
−3

−3

= 1

for all n ≥ 1. Hence, lim
n→+∞

fn (1) = 1. For all other values of z /∈ S,

lim
n→+∞

fn (z) = lim
n→+∞

2 (4n − 1)− (2 · 4n + 1) z

(4n − 1) z − (4n + 2)

= lim
n→+∞

2 (1− 4−n)− (2 + 4−n) z

(1− 4−n) z − (1 + 2 · 4−n)

=
2− 2z

z − 1
= −2.

Therefore, for z /∈ S,

lim
n→+∞

fn (z) =

{
1 if z = 1
−2 otherwise

Solution 2 by Henry Ricardo, Westchester Math Circle, NY
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We take advantage of the well-known homomorphism between 2× 2 matrices and

Möbius transformations: A =

(
a b
c d

)
↔ f(z) =

az + b

cz + d
. In this relation, the n-fold

composition fn(z) corresponds to the nth power of A. Here we are dealing with powers

of the matrix A =

(
−3 2
1 −2

)
.

Now we invoke a known result that is a consequence of the Cayley-Hamilton theorem: If
A ∈M2(C) and the eigenvalues λ1, λ2 of A are not equal, then for all n ≥ 1 we have

An = λn1B + λn2C, where B =
1

λ1 − λ2
(A− λ2I2) and C =

1

λ2 − λ1
(A− λ1I2) . (∗)

(See, for example, Theorem 2.25(a) in Essential Linear Algebra with Applications by T.
Andreescu, Birkhäuser, 2014.)

The eigenvalues of the given matrix A are −1 and −4, so we apply (∗) to get

An =
(−1)n

3
(A+ 4I2) −

(−4)n

3
(A+ I2)

=

(
(−1)n − (−4)n

3

)
A +

(
4 · (−1)n − (−4)n

3

)
I2

=

(
1
3(−1)n(1 + 2 · 4n) 2

3(−1)n + 2
3(−1)n+14n

1
3(−1)n + 1

3(−1)n+14n 1
3(−1)n(2 + 4n)

)
.

After some simplification, we see that

fn(z) =
(2 · 4n + 1)z − 2(4n − 1)

(1− 4n)z + (4n + 2)
.

Finally, we note that fn(1) = 3/3 = 1; and, for z 6= 1, we have

lim
n→+∞

fn(z) = lim
n→+∞

(2 · 4n + 1)z − 2(4n − 1)

(1− 4n)z + (4n + 2)
=

2(z − 1)

1− z = −2.

Therefore,

lim
n→+∞

fn(z) =

{
1 if z = 1,
−2 if z 6= 1

.

Solution 3 by David E. Manes, Oneonta, NY

We will show by induction that

f (n)(z) =
2− 2an + 1

an
z

z − an + 1

an

where an =
4n − 1

3
. If n = 1, then a1 = 1 and f (1)(z) =

(2− 3z)

(z − 2)
= f(z). Therefore, the

result is true for n = 1. Assume the positive integer n ≥ 1 and the given formula is valid
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for f (n)(z). Then

f (n+1)(z) = f(f (n)(z) =

2− 3




2− 2an + 1

an
z

z − an + 1

an







2− 2an + 1

an
z

z − an + 1

an


− 2

=

2z − 2

(
an + 1

an

)
− 6 + 3

(
2an + 1

an

)
z

2− 2an + 1

an
z − 2z + 2

(
an + 1

an

)

=
2anz − 2an − 2− 6an + 6anz + 3z

2an − 2anz − z − 2anz + 2an + 2
=
−2− 8an + (8an + 3)z

−(4an + 1)z + (4n+ 2)

=
2 + 8an − (8an + 3)z

(4an + 1)z − (4n+ 2)
=

2 + 8

(
4n − 1

3

)
−
(

8

(
4n − 1

3

)
+ 3

)
z

(
4

(
4n − 1

3

)
+ 1

)
z −

(
4

(
4n − 1

3

)
+ 2

)

=
(−2 + 2 · 4n+1)− (1 + 2 · 4n+1)z

(4n+1 − 1)z − (4n+1 + 2)

=

2−
(

2 · 4n+1 + 1

4n+1 − 1

)
z

z −
(

4n+1 + 2

4n+1 − 1

) =

2−




2 · 4n+1 + 1

3
4n+1 − 1

3


 z

z −




4n+1 + 2

3
4n+1 − 1

3




=

2−
(

2an+1 + 1

an+1

)
z

z −
(
an+1 + 1

an+1

)

where an+1 =
(4n+1 − 1)

3
. Note that

4n+1 + 2

3
=

4n+1 − 1

3
+ 1 = an+1 + 1 and

2 · 4n+1 + 1

3
=

2 · 4n+1 − 2

3
+ 1 = 2

(4n+1 − 1

3

)
+ 1 = 2an+1 + 1.

Hence, the result is true for the integer n+ 1 so that by the principle of mathematical
induction the result is valid for all positive integers n.

For the limit question, note that if f(z) = z, then z = 1 or z = −2. Therefore, one of the
fixed points of f is z = 1 so that f (n)(1) = 1 for each positive integer n and

lim
n→+∞

f (n)(1) = 1. Moreover, observe that

lim
n→+∞

1

an
= lim

n→+∞
3

4n − 1
= 0.

Therefore, if z 6= 1, then
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lim
n→+∞

f (n)(z) = lim
n→+∞




2− 2an + 1

an
z

z − an + 1

an


 =

(
2− lim

n→+∞

(
2 +

1

an

)
z

)

(
z − lim

n→+∞

(
1 +

1

an

)) =
2− 2z

z − 1
= −2.

Hence,

lim
n→+∞

f (n)(z) =

{
1, if z = 1,

−2, if z 6= 1.

Solution 4 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Recall the map f(z) =
az + b

cz + d
7→
[
a b
c d

]
gives a group isomorphism between group of

fractional linear transformations
{
f : f(z) =

az + b

cz + d
where a, b, c, d ∈ C and ad− bc 6= 0

}

under function composition and the group

GL(2, C) =

{[
a b
c d

]
: a, b, c, d ∈ C and ad− bc 6= 0

}

under matrix multiplication.

To compute fn(z), let M =

[
−3 2

1 −2

]
. Using induction, we show

Mn =
(−1)n

3

[
22n+1 + 1 −22n+1 + 2
−4n + 1 4n + 2

]
.

Observe M1 =
−1

3

[
23 + 1 −23 + 2
−3 6

]
=
−1

3

[
9 −6
−3 6

]
=

[
−3 2

1 −2

]
.

Assume

Mn =
(−1)n

3

[
22n+1 + 1 −22n+1 + 2
−4n + 1 4n + 2

]

and observe

Mn+1 = MnM

=
(−1)n

3

[
22n+1 + 1 −22n+1 + 2
−4n + 1 4n + 2

] [
−3 2

1 −2

]

=
(−1)n

3

[
−3(22n+1 + 1) + (−22n+1 + 2) 2(22n+1 + 1)− 2(−22n+1 + 2)

−3(−4n + 1) + (4n + 2) 2(−4n + 1)− 2(4n + 2)

]

=
(−1)n+1

3

[
22(n+1)+1 + 1 −22(n+1)+1 + 2
−4n+1 + 1 4n+1 + 2

]
.

Using the aforementioned group isomorphism and simplifying, we conclude

fn(z) =
(22n+1 + 1)z − 22n+1 + 2

(−4n + 1)z + 4n + 2
=

(2 · 4n + 1)z + (2− 2 · 4n)

(1− 4n)z + (2 + 4n)
.
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Notice that the map fn(z) is undefined for z =
4k + 2

4k − 1
where 1 ≤ k ≤ n. Consequently

lim
n→+∞

f(z) does not exist for these values of z. Furthermore,

lim
n→+∞

fn(z) = lim
n→+∞

(2 · 4n + 1)z + (2− 2 · 4n)

(1− 4n)z + (2 + 4n)

= lim
n→+∞

(
2 + 1

4n

)
z +

(
2
4n − 2

)
(

1

4n
− 1

)
z +

(
2

4n
+ 1

)

=
2z − 2

−z + 1

= −2

(
1− z
1− z

)
.

Note f(1) = 1 so fn(1) = 1 for all n ≥ 1. It follows that

lim
n→+∞

f(z) =





DNE if z =
4n + 2

4n − 1
where n ∈ Z>0

1 if z = 1
−2 otherwise.

(DNE = does not exist)

Comment by Editor : David Stone and John Hawkins of Georgia Southern
University stated the following in their solution: “The appearance of so many sums of
powers of 4 prompts us to offer a candidate for the cutest representation of f (n)(z) :

f (n)(z) =
(2 · 111 . . . ...14 + 1) z − 2 · 111 . . . 14
−111 . . . ...14z + (111 . . . 14 + 1)

,

where each of the base 4 repunits has n− 1 digits.”

Solution 5 by Toshihiro Shimizu, Kawasaki, Japan

Let fn (z) =
anz + bn
cnz + dn

. Then, we have

an+1z + bn+1

cn+1z + dn+1
= fn+1 (z)

= fn
(

2− 3z

z − 2

)

=
(bn − 3an) z + 2 (an − bn)

(dn − 3cn) z + 2 (cn − dn)

Therefore, we have an+1 = bn − 3an, bn+1 = 2an − 2bn and cn+1 = dn − 3cn,
dn+1 = 2cn − 2dn. Since f0 (z) = z , a0 = 1, b0 = c0 = 0 and d0 = 1. Since
bn = an+1 + 3an, we have

an+2 + 3an+1 = 2an − 2 (an+1 + 3an)

an+2 + 5an+1 + 4an = 0
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and a1 = b0 − 3a0 = −3. Thus, we have

an =
1

3
(−1)n +

2

3
(−4)n

bn = an+1 + 3an

=
1

3
(−1)n+1 +

2

3
(−4)n+1 + (−1)n + 2 (−4)n

=
2

3
(−1)n − 2

3
(−4)n .

Similarly, we have cn+2 + 5cn+1 + 4cn = 0 and c1 = d0 − 3c0 = 1. Thus, we have

cn =
1

3
(−1)n − 1

3
(−4)n

dn = cn+1 + 3cn

=
2

3
(−1)n +

1

3
(−4)n

Therefore,

fn (z) =
((−1)n + 2 (−4)n) z + (2 (−1)n − 2 (−4)n)

((−1)n − (−4)n) z + (2 (−1)n + (−4)n)
.

If z 6= 1, we have

fn (z) =

((
1
4

)n
+ 2
)
z +

(
2
(
1
4

)n − 2
)

((
1
4

)n − 1
)
z +

(
2
(
1
4

)n
+ 1
)

→ 2z − 2

−z + 1

= −2 (n→ +∞) .

If z = 1, the value of fn (z) is always 1 and its limit is also 1.

Solution 6 by Kee-Wai Lau, Hong Kong, China

It can easily be proved by induction that

fn(z) =
2(22n − 1)− (22n+1 + 1)z

(22n − 1)z − 2(22n−1 + 1)
,

whenever z /∈ Sn, where Sn = {2} ∪
{

2(22k−1 + 1)

22k − 1
: k = 1, 2, 3, · · · , n

}
.

Clearly, lim
n→∞

fn(1) = 1 and if z /∈ T, where T = {1, 2} ∪
{

2(22k−1 + 1

22k − 1
, k = 1, 2, 3 · · ·

}
,

then lim
n→∞

fn(z) = −2.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford
Technical Community College, Jamestown, NC; Brian D. Beasley,
Presbyterian College, Clinton, SC; Brian Bradie, Christopher Newport
University, Newport News,VA; Bruno Salgueiro Fanego Viveiro, Spain; Ed
Gray, Highland Beach, FL; Moti Levy (two solutions), Rehovot, Israel;
Francisco Perdomo and Ángel Plaza, Universidad de Las Palmas de Gran
Canaria, Spain; Trey Smith, Angelo State University, San Angelo, TX;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.
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5438: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let k ≥ 0 be an integer and let α > 0 be a real number. Prove that

x2k

(1− x2)α +
y2k

(1− y2)α +
z2k

(1− z2)α ≥
xkyk

(1− xy)α
+

ykzk

(1− yz)α +
xkzk

(1− xz)α ,

for x, y, z ∈ (−1, 1).

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that by the Binomial theorem,

t2k

(1− t2)α = t2k
∞∑

j=0

(−α
j

)(
−t2
)j

=
∞∑

j=0

(−α
j

)
t2k+2j , −1 < t < 1,

where (−1)j
(−α
j

)
=
α(α+ 1) · · · (α+ j − 1)

j!
> 0 for all indices j ≥ 0.

Therefore, by the AM−GM inequality,

x2k

(1− x2)α +
y2k

(1− y2)α +
z2k

(1− z2)α =
1

2

∑

cycl

(
x2k

(1− x2)α +
y2k

(1− y2)α
)

=
1

2

∑

cycl

∞∑

j=0

(−1)j
(−α
j

)(
x2k+2j + y2k+2j

)

≥
∑

cycl

∞∑

j=0

(−1)j
(−α
j

)
|xy|k+y

≥
∑

cycl

∞∑

j=0

(−1)j
(−α
j

)
(xy)k+y

=
∑

cycl

(xy)k

(1− xy)α
, as claimed.

Solution 2 by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC

It is well known that for any real numbers a, b, c

a2 + b2 + c2 ≥ ab+ bc+ ca. (1)

We show that a, b ∈ (−1, 1)
√

(1− a2)(1− b2) ≤ 1− ab. (2)

Suppose that to the contrary
√

(1− a2)(1− b2) > 1− ab, by squaring both sides of the
inequality, we get 1− a2 − b2 + a2b2 > 1− 2ab+ a2b2, which implies that
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−a2 − b2 + 2ab = −(a− b)2 > 0, which is impossible, that is, (2) is proved. From (2), we
can conclude that

1√
(1− a2)(1− b2)

≥ 1

1− ab. (3)

Now, using (1) and (3), we write

x2k

(1− x2)α +
y2k

(1− y2)α +
z2k

(1− z2)α

≥ xkyk

((1− x2)(1− y2) α2
+

ykzk

((1− y2)(1− z2))α2
+

zkxk

((1− z2)(1− x2))α2

=
xkyk(√

(1− x2)(1− y2)
)α +

ykzk(√
(1− y2)(1− z2)

)α +
zkxk(√

(1− z2)(1− x2)
)α

≥ xkyk

(1− xy)α
+

ykzk

(1− yz)α +
zkxk

(1− zx)α
.

Solution 3 by Moti Levy, Rehovot, Israel

Since
|a|k

(1− |a|)α ≥
ak

(1− a)α
, a ∈ (−1, 1) then

|x|k |y|k
(1− |x| |y|)α +

|y|k |z|k
(1− |y| |z|)α +

|z|k |x|k
(1− |z| |x|)α ≥

xkyk

(1− xy)α
+

ykzk

(1− yz)α +
zkxk

(1− zx)α
.

Therefore, we can assume that x, y, z ∈ (0, 1) . Using the generalized binomial theorem,

1

(1− u)α
=

∞∑

n=0

(
n+ α− 1

n

)
un =

∞∑

n=0

Γ (n+ a)

n!Γ (α)
un, |u| < 1.

x2k

(1− x2)α =

∞∑

n=0

Γ (n+ a)

n!Γ (α)
x2(n+k)

xkyk

(1− xy)α
=
∞∑

n=0

Γ (n+ a)

n!Γ (α)
(xy)n+k

By the inequality a2 + b2 + c2 ≥ ab+ bc+ ca, a, b, c ≥ 0,

(
xn+k

)2
+
(
yn+k

)2
+
(
zn+k

)2
≥ xn+kyn+k + yn+kzn+k + zn+kkn+k.
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x2k

(1− x2)α +
y2k

(1− y2)α +
z2k

(1− z2)α

=
∞∑

n=0

Γ (n+ a)

n!Γ (α)
x2(n+k) +

∞∑

n=0

Γ (n+ a)

n!Γ (α)
y2(n+k) +

∞∑

n=0

Γ (n+ a)

n!Γ (α)
z2(n+k)

=

∞∑

n=0

Γ (n+ a)

n!Γ (α)

(
x2(n+k) + y2(n+k) + z2(n+k)

)

≥
∞∑

n=0

Γ (n+ a)

n!Γ (α)

(
xn+kyn+k + yn+kzn+k + zn+kkn+k

)

=
∞∑

n=0

Γ (n+ a)

n!Γ (α)
xy(n+k)y(n+k) +

∞∑

n=0

Γ (n+ a)

n!Γ (α)
y(n+k)z(n+k) +

∞∑

n=0

Γ (n+ a)

n!Γ (α)
z(n+k)k(n+k)

=
xkyk

(1− xy)α
+

ykzk

(1− yz)α +
zkxk

(1− zx)α
.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We first note that

0 < (1− x2)(1− y2) = (1− xy)2 − (x− y)2 ≤ (1− x)2.

Hence by the AM-GM inequality, we have

x2k

(1− x2)α +
y2k

(1− y2)α ≥
2|xkyk|√

(1− x2)α(1− y2)α
≥ 2|xkyk|

(1− xy)α
.

Similarly,

y2k

(1− y2)α +
z2k

(1− z2)α ≥ 2|ykzk|
(1− yz)α and

z2k

(1− z2)α +
x2k

(1− x2)α ≥ 2|zkxk|
(1− zx)α

.

Adding these inequalities, we easily deduce the inequality of the problem.

Also solved by Ed Gray, Highland Beach, FL; Nicusor Zlota, “Traian Vuia”
Technical College, Focsani, Romania; Toshihiro Shimizu, Kawasaki, Japan,
and the proposer.

Mea Culpa

For a variety of reasons, mostly caused by sloppy bookkeeping, those listed below were
not credited for having solved the following problems, but should have been.
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5427: Paul M. Harms, North Newton, KS.

5428: Ed Gray, Highland Beach, FL;
David Stone and John Hawkins, Georgia Southern University, Statesboro,
GA.

5429: Brian D. Beasley, Presbyterian College, Clinton, SC.

5431: Albert Stadler, Herrliberg, Switzerland.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2017

• 5457: Proposed by Kenneth Korbin, New York, NY

Given angle A with sinA =
12

13
. A circle with radius 1 and a circle with radius x are each

tangent to both sides of the angle. The circles are also tangent to each other. Find x.

• 5458: Proposed by Michal Kremzer, Gliwice, Silesia, Poland

Find two pairs of integers (a, b) from the set {1, 2, 3, 4, 5, 6, 7, 8, 9} such that for all
positive integers n, the number

c = 537aaa b . . . b︸ ︷︷ ︸ 18403

is composite, where there are 2n numbers b between a and 1 in the string above.

• 5459: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Triangle ABC is an arbitrary acute triangle. Points X,Y , and Z are midpoints of three
sides of 4ABC. Line segments XD and XE are perpendiculars drawn from point X to
two of the sides of 4ABC. Line segments Y F and Y G are perpendiculars drawn from
point Y to two of the sides of 4ABC. Line segments ZJ and ZH are perpendiculars
drawn from point Z to two of the sides of 4ABC. Moreover,
P = ZJ ∩ FY, Q = ZH ∩DX, and R = Y G ∩XE. Three of the triangles, and three of
the quadrilaterals in the figure are shaded. If the sum of the areas of the three shaded
triangles is 5, find the sum of the areas of the three shaded quadrilaterals.
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• 5460: Proposed by Ángel Plaza,Universidad de Las Palmas de Gran Canaria, Spain

If a, b > 0 and x, y > 0 then prove that

a3

ax+ by
+

b3

bx+ ay
≥ a2 + b2

x+ y
.

• 5461: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Compute the following sum:
∞∑

n=1

cos (2n− 1)

(2n− 1)2
.

• 5462: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let n ≥ 1 be an integer. Calculate

∫ π
2

0

cosx(
1 +

√
sin(2x)

)ndx .

Solutions

• 5439: Proposed by Kenneth Korbin, New York, NY

Express the roots of the equation
(x+ 1)4

(x− 1)2
= 20x in closed form.

“Closed form” means that the roots cannot be expressed in their approximate decimal
equivalents.

Solution 1 by David E. Manes, Oneonta, NY
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The four roots of the equation are: x = 4 +
√

5± 2
√

5 + 2
√

5 and

x = 4−
√

5± 2
√

5− 2
√

5. One verifies that each of these values is a solution of the
equation.
With x 6= 1, the equation is equivalent to (x+ 1)4 = 20x(x− 1)2. After expanding, this
equation reduces to the reciprocal equation x4 − 16x3 + 46x2 − 16x+ 1 = 0. To solve it,
define the polynomial function f(x) as follows and note that

f(x) = x4 − 16x3 + 46x2 − 16x+ 1 = x2
(
x2 − 16x+ 46− 16

x
+

1

x2

)

= x2
[(
x2 +

1

x2

)
− 16

(
x+

1

x

)
+ 46

]
.

Let z = x+
1

x
. Then

(
x+

1

x

)2

= x2 +
1

x2
+ 2 implies x2 +

1

x2
= z2 − 2. Therefore,

f(x) = x2 · g(z) where g(z) = z2 − 2− 16z + 46 = z2 − 16z + 44. Then the roots of the
reciprocal equation are the zeroes of g(z) since x = 0 is not a solution of the equation.
Using the quadratic formula, the roots of z2 − 16z + 44 = 0 are z = 8± 2

√
5. If

x+
1

x
= 8 + 2

√
5, then x2 − (8 + 2

√
5)x+ 1 = 0 with roots x = 4 +

√
5± 2

√
5 + 2

√
5. If

x+
1

x
= 8− 2

√
5, then x2 − (8− 2

√
5)x+ 1 = 0 with roots x = 4−

√
5± 2

√
5− 2

√
5.

This completes the solution.

Solution 2 by Brian Bradie, Christopher Newport University, Newport
News, VA

The equation
(x+ 1)4

(x− 1)2
= 20x

is equivalent to
x4 + 4x3 + 6x2 + 4x+ 1 = 20x3 − 40x2 + 20x,

or
x4 − 16x3 + 66x2 − 16x+ 1 = 20x2.

Now,
x4 − 16x3 + 66x2 − 16x+ 1 = (x2 − 8x+ 1)2,

so
(x2 − 8x+ 1)2 − 20x2 =

[
x2 − (8 + 2

√
5)x+ 1

] [
x2 − (8− 2

√
5)x+ 1

]
= 0.

Thus, by the quadratic formula,

x =
8 + 2

√
5±

√
(8 + 2

√
5)2 − 4

2
=

8 + 2
√

5±
√

80 + 32
√

5

2

= 4 +
√

5± 2

√
5 + 2

√
5,

or

x =
8− 2

√
5±

√
(8− 2

√
5)2 − 4

2
=

8− 2
√

5±
√

80− 32
√

5

2

= 4−
√

5± 2

√
5− 2

√
5.
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Solution 3 by Anna V. Tomova, Varna, Bulgaria

The possible values of the variable are those for which x 6= 1. The following equations
are equivalent:

(x+ 1)4

(x− 1)2
= 20x ⇐⇒ 20x(x+ 1)4−20x(x−1)2 = 0 ⇐⇒ x4−16x3 + 46x2−16x+ 1 = 0.

Now we are looking for a representation of the left hand side of the equation as a
product:

x4−16x3+46x2−16x+1 =
(
x2 + ax+ 1

) (
x2 + bx+ 1

)
= x4+(a+b)x3+(2+ab)x2+(a+b)x+1.

Therefore we have to solve the system

{
a+ b = −16
ab+ 2 = 46

⇐⇒
{
a+ b = −16
ab = 44

or to

solve the quadratic equation
X2 + 16X + 44 = 0 ⇐⇒ X1,2 = −8±

√
64− 44 = −8± 2

√
5. Then we have:

x4 − 16x3 + 46x2 − 16x+ 1 =
(
x2 +

(
2
√

5− 8
)
x+ 1

)(
x2 −

(
2
√

5 + 8
)
x+ 1

)
= 0.

the solutions to the problem are then:

x2 +
(

2
√

5− 8
)
x+ 1 = 0 ⇐⇒ x1,2 = 4−

√
5± 2

√
5− 2

√
5;

x2 −
(

2
√

5 + 8
)
x+ 1 = 0 ⇐⇒ x3,4 = 4 +

√
5± 2

√
5 + 2

√
5.

Editor’s Comment: David Stone and John Hawkins of Georgia Southern
University in Statesboro made the following remark in their solution: “It’s
surprising that the line y = 20x actually intersects the rational function four times. The
line y = 10x, for instance, would not do so. So an interesting questions would be: for

which values of m does the equation
(x+ 1)4

(x− 1)2
= mx have four solutions?” Kenneth

Korbin, author of the problem, answered it as follows: “Possible values other than 20
would be any number 16 or greater.”

Also solved by Arkady Alt, San Jose, CA; Dionne Bailey, Elsie Campbell
and Charles Diminnie, Angelo State University, San Angelo, TX; Brian D.
Beasley, Presbyterian College, Clinton, SC; Anthony J. Bevelacqua,
University of North Dakota, Grand Forks, ND; Pat Costello, Eastern
Kentucky University, Richmond, KY; Bruno Salgueiro Fanego (two
solutions), Viveiro, Spain; Zhi Hwee Goh, Singapore, Singapore; Ed Gray,
Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti,
Department of Mathematics, Tor Vergata, Rome, Italy; Henry Ricardo,
Westchester Area Math Circle, NY; Toshihiro Shimizu, Kawasaki, Japan;
Albert Stadler Herrliberg, Switzerland; Neculai Stanciu, “George Emil
Palade” School, Buzău Romania and Titu Zvonaru, Comănesti, Romania;
David Stone and John Hawkins of Georgia Southern University in
Statesboro, GA, and the proposer.

• 5440: Proposed by Roger Izard, Dallas,TX
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The vertices of rectangle ABCD are labeled in clockwise order, and point F lines on line
segment AB. Prove that AD +AC > DF + FC.

Solution 1 by Titu Zvonaru, Comănesti, Romania and Neculai
Stanciu,“George Emil Palade” School Romania

We consider the ellipse with foci D and C which passes through the points A and B.
Since the point F belongs to the segment AB, we know that F is inside the ellipse.
Hence, FD + FC < AD +AC, and we are done.

Solution 2 by Kee-Wai Lau, Hong Kong,China

We first suppose that AF ≤ BF . We produce CB to G such that BG = BC. It is easy
to see that AG = AC and FG = FC.

If AF = BF , then DFG is a straight line. By the triangle inequality, we have
AD +AC = AD +AG > DG = DF + FG = DF + FC as required.

If AF < BF , we produce DF to meet the line AG at H. Applying the triangle
inequality to triangles DAH and FHG, we obtain respectively AD +AH > DF +HF
and HF +HG > FG. Adding up the lat two inequalities, we have
AD +AG > DF + FG or AD +AC > DF + FC.

Now suppose that AF > BF . We produce DA to I such that DA = IA. Similar to the
case AF < BF , we obtain BC +BD > CF + FD. Since AD = BC and BD = AC, so
again AD +AC > DF + FC, and this completes the solution.

Editor′s Comment: David Stone and John Hawkins of Georgia Southern
University in Statesboro corrected the inequality to read: AD +AC ≥ DF + FC,
because equality occurs if F is either end point of the segment AB. They presented
three different solution paths to the problem. In one of them they used the notion of
reflection. They reflected the rectangle across the segment AB to include AD′C ′B as an
upper rectangle, and then they reflected FC to FC ′. They then argued that in triangle
DAC ′ it is clear that AD+AC ′ ≥ DF +FC ′ ≥ DC ′ because AC ′ = AC and FC ′ = FC.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain; Michael N. Fried,
Ben-Gurion University of the Negev, Beer-Sheva, Israel; Paul M. Harms,
North Newton, KS; Zhi Hwee Goh, Singapore, Singapore; Ed Gray,
Highland Beach, FL; David A. Huckaby, Angelo State University, San
Angelo, TX; David E. Manes, Oneonta, NY; Charles McCracken, Dayton,
OH; Sachit Misra, Delhi, India; Toshihiro Shimizu, Kawasaki, Japan; Albert
Stadler, Herrliberg, Switzerland; David Stone and John Hawkins (three
solutions), Georgia Southern University, Statesboro, GA, and the proposer.

• 5441: Proposed by Larry G. Meyer, Fremont, OH

In triangle ABC draw a line through the ex-center corresponding to side c so that it is
parallel to side c. Extend the angle bisectors of A and B to meet the constructed lines
at points A′ and B′ respectively. Find the length of A′B′ if given either

(1) Angles A,B ,C and the circumradius R
(2) Sides a, b, c
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(3) The semiperimeter s, the inradius r and the exradius rc
(4) Semiperimeter s and side c.

Solution 1 by Arkady Alt, San Jose, CA

5441: Proposed by Larry G. Meyer, Fremont, OH

In triangle ABC draw a line through the ex-center corresponding to side c so that it is

parallel to side c. Extend the angle bisectors of A and B to meet the constructed lines

at points A and B respectively. Find the length of AB if given either

(1) Angles A,B,C and the circumradius R

(2) Sides a,b,c

(3) The semiperimeter s, the inradius r and the exradius rc
(4) Semiperimeter s and side c:

Solution by Arkady Alt , San Jose ,California, USA.

B'

A'

rcrc

rc

Ic

I

B

C

A

Since AB  AB then AIB  AIB and r  rc is length of height of the triangle AIB

from I to AB.

Hence, A
B

c  r  rc
r  AB 

cr  rc
r and since

ABC  rs  rcs  c  rc
r  s

s  c then

AB  c 1  rcr  c 1  s
s  c 

c2s  c
s  c 

ca  b
s  c 

2ca  b
a  b  c



8R2 sinCsinA  sinB
2RsinA  sinB  sinC


4R sinCsinA  sinB
sinA  sinB  sinC

.

Also, since rs  rcs  c  c 
rc  rs
rc we obtain

AB  c 1  rcr 
rc  rs
rc  r  rcr 

rc
2  r2s
rrc .

So, AB 
4R sinCsinA  sinB
sinA  sinB  sinC


2ca  b
a  b  c


rc
2  r2s
rrc 

c2s  c
s  c .

————-
Since AB ‖ A′B′ then 4A′IB′ ∼ 4AIB and r + rc is length of height of the triangle
A′IB′ from I to A′B′.

Hence,
A′B′

c
=
r + rc
r

⇐⇒ A′B′ =
c (r + rc)

r
and since

[ABC] = rs = rc (s− c) =⇒ rc
r

=
s

s− c then

A′B′ = c
(

1 +
rc
r

)
= c

(
1 +

s

s− c

)
=
c (2s− c)
s− c =

c (a+ b)

s− c =
2c (a+ b)

a+ b− c =

8R2 sinC (sinA+ sinB)

2R (sinA+ sinB − sinC)
=

4R sinC (sinA+ sinB)

sinA+ sinB − sinC
.

Also, since rs = rc (s− c) ⇐⇒ c =
(rc − r) s

rc
we obtain

A′B′ = c
(

1 +
rc
r

)
=

(rc − r) s
rc

· r + rc
r

=

(
r2c − r2

)
s

rrc
.

So, A′B′ =
4R sinC (sinA+ sinB)

sinA+ sinB − sinC
=

2c (a+ b)

a+ b− c =

(
r2c − r2

)
s

rrc
=
c (2s− c)
s− c .

Solution 2 by Kee-Wai Lau, Hong Kong, China

Let the incenter of triangle ABC be I and the ex-center corresponding to side c be Ec
so that CIEc is a straight line cutting AB at D, say. Let the feet of the perpendiculars
from I to AB and from Ec to AB be X and Y respectively. It is easy to see that
triangle IAB and I ′A′B′, triangles IAD and IA′Ecn triangles IDX and EcDY are
pairwise similar. Hence

A′B′ = AB
IA′

IA
= AB

IEc
ID

= AB
ID + EcD

ID
= AB

(
1 +

EcY

IX

)
= AB

(
1 +

rc
r

)
.
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It is well known that c = 2R sinC, r = 4R sin
A

2
sin

B

2
sin

C

2
and

rc = 4R cos
A

2
cos

B

2
sin

C

2
. Hence the answer to part (1) is

A′B′ = 2R sinC

(
1 + cot

A

2
cot

B

2

)
.

It is also well-known that r =
[ABC]

s
and rc =

[ABC]

s− c were [ABC] equals the area of

triangle ABC. Hence the answer to part (2) is

A′B′ =
2c(a+ b)

a+ b− c .

and the answer to part (4) is

A′B′ =
c(2s− c)
s− c .

From r =
[ABC]

s
and rc =

ABC

s− c , we obtain that c = s

(
1− r

rc

)
. The answer to part

(3) is then

A′B′ =
s
(
r2c − r2

)

rrc
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Toshihiro Shimizu, Kawasaki, Japan; Zhi Hwee Goh, Singapore,
Singapore; Neculai Stanciu, “George Emil Palade” School, Buzău Romania
and Titu Zvonaru, Comănesti, Romania; and the proposer.

• 5442: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain.

Let Ln be the nth Lucas number defined by L0 = 2, L1 = 1 and for
n ≥ 2, Ln = Ln−1 + Ln−2. Prove that for all n ≥ 0,

1

2

∣∣∣∣∣∣

(Ln + 2Ln+1)
2 L2

n+2 L2
n+1

L2
n+2 (2Ln + Ln+1)

2 L2
n

L2
n+1 L2

n L2
n+2

∣∣∣∣∣∣

is the cube of a positive integer and determine its value.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

The problem may be generalized as follows. For a, b positive numbers, then

1

2

∣∣∣∣∣∣

(a+ 2b)2 (a+ b)2 b2

(a+ b)2 (2a+ b)2 a2

b2 a2 (a+ b)2

∣∣∣∣∣∣
=
(
a2 + 3ab+ b2

)3

which may be checked by a symbolic calculus package like Mathematica. So for the
proposed expression in the problem we have

1

2

∣∣∣∣∣∣

(Ln + 2Ln+1)
2 L2

n+2 L2
n+1

L2
n+2 (2Ln + Ln+1)

2 L2
n

L2
n+1 L2

n L2
n+2

∣∣∣∣∣∣
=
(
L2
n + 3LnLn+1 + L2

n+1

)3
.
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Solution 2 by Moti Levy, Rehovot, Israel

Let A denote our matrix,

A :=




(Ln + 2Ln+1)
2 L2

n+2 L2
n+1

L2
n+2 (2Ln + Ln+1)

2 L2
n

L2
n+1 L2

n L2
n+2


 .

Using the identity related to Lucas and Fibonacci numbers,

Ln+m = Lm+1Fn + LmFn−1,

the matrix A is expressed by Fibonacci numbers Fn and Fn−1 only,

A =




(7Fn + 4Fn−1)
2 (4Fn + 3Fn−1)

2 (3Fn + Fn−1)
2

(4Fn + 3Fn−1)
2 (5Fn + 5Fn−1)

2 (Fn + 2Fn−1)
2

(3Fn + Fn−1)
2 (Fn + 2Fn−1)

2 (4Fn + 3Fn−1)
2


 .

From now on, our arguments do not relate to Fibonacci or Lucas numbers properties
(any decent CAS, say Mathematica, can relieve us of tedious calculations). Let B be a
symmetric matrix defined as follows:

B :=




(7x+ 4y)2 (4x+ 3y)2 (3x+ y)2

(4x+ 3y)2 (5x+ 5y)2 (x+ 2y)2

(3x+ y)2 (x+ 2y)2 (4x+ 3y)2


 ,

where x, y are real or complex numbers.
The determinant of B divided by 2 is

1

2
detB =

(
19x2 + 31xy + 11y2

)3
.

It follows that the positive number we are seeking is 19F 2
n + 31FnFn−1 + 11F 2

n−1.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We replace Ln+2 by Ln + Ln+1, expand the determinate and factor to get

1

2

(
(Ln + 2Ln+1)

2(2Ln + Ln+1)
2(Ln + Ln+1)

2 + 2(Ln + Ln+1)
2L2

nL
2
n+1

−(2Ln + Ln+1)
2L4

n+1 − (Ln + 2Ln+1)
2L4

n − (Ln + Ln+1)
6

)

=

(
L2
n + 3LnLn+1 + L2

n+1

)3

.

Ln can be represented as

Ln = fn + (−f)n with f =
1 +
√

5

2
(see: https://en.wikipedia.org/wiki/ Lucas number).

Therefore

L2
n + 3LnLn+1 + L2

n+1 = f2n + (−f)−2n + 2(−1)n
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+3f2n+1 + 3(−f)−2n−1 + 3(−1)nf + 3(−1)n+1f−1

+f2n+2 + (−f)−2n−2 + 2(−1)n+1

= nL2n + 3L2n+1 + L2n+2 + 3(−1)n
(
f − 1

f

)

= L2n + L2n+1︸ ︷︷ ︸
=L2n+2

+ 2L2n+1 + L2n+2 + 3(−1)n
(
f − 1

f

)

= 2L2n+3 + 3(−1)n.

So the given determinant can be represented as (2L2n+3 + 3(−1)n)3.

Also solved by Brian Bradie, Christopher Newport University, Newport
News, VA; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Zhi Hwee Goh, Singapore, Singapore; Kee-Wai Lau Hong Kong,
China; Toshihiro Shimizu, Kawasaki, Japan; David Stone and John Hawkins
(partial solution), Georgia Southern University, Statesboro, GA, and the
proposer.

• 5443: Proposed by D.M. Băinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu “Geroge Emil Palade” General School, Buzău,
Romania

Compute

∫ π
3

π
6

x

sin 2x
dx.

Solution 1 by Ed Gray, Highland Beach, FL

Letting y = 6x− 3π

2
and changing the limits we see that:

∫ π
3

π
6

x

sin 2x
dx =

1

36

∫ π
2

−π
2

y + 3 + π/2

cos y3
dy

=
1

36

∫ π
2

−π
2

y

cos y3
dy +

1

36
· 3π

2

∫ π
2

−π
2

1

cos
(y
3

)dy.

The first integral is zero because the integrand is odd, while the second integral (with
the help of Wolfram-Alpha) is ln(27) = 3 ln(3). Therefore,∫ π

3

π
6

x

sin 2x
dx =

1

36
· 3π

2
· 3 · ln 3 =

π · ln 3

8
.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Let x = arctan t. The integral becomes
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∫ √3
1√
3

arctan t

2
t√

1 + t2
√

1 + t2

dt

1 + t2
=

∫ √3
1√
3

1

2

arctan t

t
dt =

∫ √3
1√
3

1

2

π
2 − arctan 1

t

t
dt

Moreover,

−
∫ √3

1√
3

1

2

arctan 1
t

t
dt =︸︷︷︸

t=1/y

∫ 1√
3

√
3

1

2

arctan y

y
dy = −

∫ √3
1√
3

1

2

arctan y

y
dy

It follows,

∫ √3
1√
3

1

2

arctan t

t
dt =

π

8

∫ √3
1√
3

1

t
dt =

π

8

(
ln
√

3− ln
1√
3

)
=
π

8
ln 3.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical
Community College, Jamestown, NC; Brian Bradie, Christopher Newport
University, Newport News, VA; Pat Costello, Eastern Kentucky University,
Richmond, KY; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Motti Levy, Rehovot, Israel; Angel Plaza, University of Las Palmas
de Gran Canaria, Spain; Toshihiro Shimizu, Kawasaki, Japan; Albert Stadler,
Herrliberg, Switzerland; Students at Taylor University {Group 1: Ellie Grace
Moore, Samantha Korn, and Gwyn Terrett; Group 2: Luke Wilson, California
Drage, Jonathan DeHaan}, Upland, IN; Anna V. Tomova, Varna, Bulgaria, and
the proposer.

• 5444: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Solve in < the equation {(x+ 1)2} = 2x2, where {a} denotes the fractional part of a.

Solution 1 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Since 0 ≤ {(x+ 1)2} < 1, any solution x satisfies 0 ≤ 2x2 < 1 or equivalently − 1√
2
< x < 1√

2
.

Note that
√

2− 1 < 1√
2
<
√

3− 1 and observe

{(x+ 1)2} =





(x+ 1)2 if −1 < x < 0

(x+ 1)2 − 1 if 0 ≤ x <
√

2− 1

(x+ 1)2 − 2 if
√

2− 1 ≤ x <
√

3− 1.

We consider three cases.

For − 1√
2
< x < 0 the equation reduces to (x+ 1)2 = 2x2 or equivalent x2 − 2x− 1 = 0.

Solving gives x = 1±
√

2, however only x = 1−
√

2 lies in
(
− 1√

2
, 0
)

. Thus x = 1−
√

2

produces the only solution in this case.

For 0 ≤ x <
√

2− 1 the equation reduces to (x+ 1)2 − 1 = 2x2 or equivalent x2 − 2x = 0.
Solving gives x = 0, 2. We see only x = 0 lies in

[
0,
√

2− 1
)
, so x = 0 produces the only

solution in this case.

For
√

2− 1 ≤ x < 1√
2

the equation reduces to (x+ 1)2− 2 = 2x2 or equivalent x2− 2x+ 1 = 0.

Solving gives x = 1, however this does not lie in
[√

2− 1, 1√
2

)
. This case yields no solution.
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In summary, there are two solutions, namely x = 1−
√

2 and x = 0.

Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Grand Forks,
ND

Since 0 ≤ {(x+ 1)2} < 1 we must have 2x2 < 1 and so |x| < 1/
√

2. Hence

x2 + 2x+ 1 <
1

2
+
√

2 + 1 < 3.

Thus (x+ 1)2 = x2 + 2x+ 1 must be in [0, 3).
If x2 + 2x+ 1 ∈ [0, 1) then

2x2 = {x2 + 2x+ 1} = x2 + 2x+ 1 =⇒ x2 − 2x− 1 = 0

and so x = 1±
√

2, but only x = 1−
√

2 satisfies the original equation.
If x2 + 2x+ 1 ∈ [1, 2) then

2x2 = {x2 + 2x+ 1} = x2 + 2x =⇒ x2 − 2x = 0

and so x = 0 or x = 2, but only x = 0 satisfies the original equation.
Finally, if x2 + 2x+ 1 ∈ [2, 3) then

2x2 = {x2 + 2x+ 1} = x2 + 2x− 1 =⇒ x2 − 2x+ 1 = 0

and so x = 1, but this does not satisfy the original equation.
Thus the only solutions are x = 0 and x = 1−

√
2.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

Let bac denote the integer part of a.

Since bac is the only integer such that a− 1 <bac ≤ a and {a} = a−bac, we have that

0 ≤ {a} < 1. Thus, 0 ≤
{

(x+ 1)2
}

= 2x2 < 1, so x2 <
1

2
and hence − 1√

2
< x <

1√
2

.

Moreover,
{

(x+ 1)2
}

= 2x2 ⇐⇒ b(x+ 1)2c = (x+ 1)2 − 2x2 ⇐⇒ b(x+ 1)2c = 1 + 2x− x2.
But (x+ 1)2 ≥ 0 ⇐⇒ 1 + 2x− x2 = b(x+ 1)2c ≥ 0; since the graph of f(x) = 1 + 2x− x2 is a
concave parabola which cuts the x-axis in x = 1±

√
2 and with vertex (absolute maximum) at

(1, 2), then the last obtained inequality f(x) ≥ 0 is equivalent to 1−
√

2 ≤ x ≤ 1 +
√

2. or
what is the same, taking into account that

− 1√
2
< x <

1√
2

, 1-
√

2 ≤ x ≤ 1√
2

.

On the other hand, f(x) = b(x+ 1)2c ∈ Z and 0 ≤ f(x) ≤ 2 implies f(x) ∈ {0, 1, 2}, that is,

x ∈ {1−
√

2, 1 +
√

2, 0, 1, 2}, which is equivalent, because 1−
√

2 ≤ x ≤ 1√
2

to x∈
{

1−
√

2, 0
}

.

Since {(0 + 1)2} = 0 = 2 · 02 and
{

(1−
√

2 + 1)2
}

= {6− 4
√

2} = 6− 4
√

2 = 2(1−
√

2)2, we
conclude that the solutions x ∈ < of the given equations {(x+ 1)2} = 2x2 are exactly
x = 1−

√
2 and x = 0.

Solution 4 by Toshihiro Shimizu, Kawasaki, Japan

From the given equation, 0 ≤
{

(x+ 1)2
}

= 2x2 < 1 or 0 ≤ x2 < 1
2 or − 1√

2
< x < 1√

2
. Then,

we have 0 ≤ (x+ 1)2 <
(

1 + 1√
2

)2
= 1 + 1

2 +
√

2 < 1.5 + 1.5 = 3. Therefore, the integer part

k =
⌊
(x+ 1)2

⌋
is 0 or 1 or 2.
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If k = 0, we have 2x2 = (x+ 1)2 or x2 − 2x− 1 = 0 or x = 1±
√

2. Only x = 1−
√

2 is valid
for k = 0.
If k = 1, we have 2x2 + 1 = (x+ 1)2 or x2 − 2x = 0 or x = 0, 2. Only x = 0 is valid for k = 1.
If k = 2, we have 2x2 + 2 = (x+ 1)2 or x2 − 2x+ 1 = 0 or x = 1. This is not valid for k = 2.
Therefore, x = 1−

√
2, 0.

Also solved by Arkady Alt, San Jose CA; Brian Bradie, Christopher Newport
University, Newport News, VA; Ed Gray, Highland Beach, FL; Paul M. Harms,
North Newton, KS; Zhi Hwee Goh, Singapore, Singapore; Kee-Wai Lau, Hong
Kong, China; David E. Manes, Oneonta, NY; Albert Stadler, Herrliberg,
Switzerland, and the proposers.

End Notes

The following should have been credited with having solved the problems below, but their
names were inadvertently not listed; mea culpa.

Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy
for problems 5433, 5437, and 5438.

Jeremiah Bartz, University of North Dakota, Grand Forks, ND for 5434.

David Stone and John Hawkins, Georgia Southern University, Statesboro, GA for
5433.

12

X
ia
ng
’s
T
ex
m
at
h



Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2018

• 5463: Proposed by Kenneth Korbin, New York, NY

Let N be a positive integer. Find triangular numbers x and y such that
x2 + 14xy + y2 =

(
72N2 − 12N − 1

)2
.

• 5464: Proposed by Ed Gray, Highland Beach, FL

Let ABC be an equilateral triangle with side length s that is colored white on the front
side and black on the back side. Its orientation is such that vertex A is at lower left, B is
its apex, and C is at lower right. We take the paper at B and fold it straight down along
the bisector of angle B, thus exposing part of the back side which is black. We continue
to fold until the black part becomes 1/2 of the existing figure, the other half being white.
The problem is to determine the position of the fold, the distance defined by x (as a
function of s) which is the distance from B to the fold.

• 5465: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Quadrilateral ABCD is a rectangle with diagonal AC. Points P,R, T,Q and S are on
sides AB and DC and they are connected as shown. Three of the triangles inside the
rectangle are shaded pink, and three are shaded blue. Which is larger, the sum of the
areas of the pink triangles or the sum of the areas of the blue triangles?
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• 5466: Proposed by D.M. Bătinetu−Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” School, Buzău,
Romania

Let f : (0,+∞)→ (0,+∞) be a continuous function. Evaluate

lim
n→∞

∫ (n+1)2

n+1
√

(n+1)!

n2
n√

n!

f
(x
n

)
dx.

• 5467: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

In an arbitrary triangle 4ABC, let a, b, c denote the lengths of the sides, R its
circumradius, and let ha, hb, hc respectively, denote the lengths of the corresponding
altitudes. Prove the inequality

a2 + bc

b+ c
+
b2 + ca

c+ a
+
c2 + ab

a+ b
≥ 3abc

2R
3

√
1

ha · hb · hc
,

and give the conditions under which equality holds.

• 5468: Proposed by Ovidiu Furdui and Alina Sîntămărian, both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Find all differentiable functions f : < → < with f(0) = 1 such that f ′(x) = f2(−x)f(x),
for all x ∈ <.

Solutions

• 5445: Proposed by Kenneth Korbin, New York, NY

Find the sides of a triangle with exradii (3, 4, 5).

Solution 1 by Solution by David E. Manes, Oneonta, NY

Denote the triangle by ABC with vertices A,B and C. Let a = BC, the side opposite
the vertex A, b = AC and c = AB. Let ra = 3, the exradius of the circle tangent to side
BC. Similarly, rb = 4 is the exradius of the circle tangent to AC and rc = 5 is the
exradius of the circle tangent to AB. If r is the inradius of triangle ABC, then
1

ra
+

1

rb
+

1

rc
=

1

r
implies

1

3
+

1

4
+

1

5
=

1

r
implies r =

60

47
. If ∆ is the area of triangle

ABC, then ∆2 = r · ra · rb · rc. Therefore,
(

60

47

)
(3 · 4 · 5) = ∆2 implies ∆ =

60√
47

=
60
√

47

47
.

If s =
a+ b+ c

2
is the semiperimeter of ABC, then s =

∆

r
. Therefore,

s =

(
60
√
47

47

)

(
60
47

) =
√

47.
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Using the formula ra =
∆

s− a , one obtains a = s− ∆

ra
. Therefore,

a =
√

47−

(
60√
47

)

3
=

47− 20√
47

=
27
√

47

47
.

Similarly,

b = s− ∆

rb
=
√

47−

(
60√
47

)

4
=

32
√

47

47
,

c = s− ∆

rc
=
√

47−

(
60√
47

)

5
=

35
√

47

47
.

This completes the solution.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

In the published soltion by Howard Eves to problem 786 in the Journal Crux
Mathematicorum (1984,10(20)), a more general result of the above problem is proved.
For arbitrarily chosen positive real numbers r1, r2, r3 there is one and only one triangle
whose exradii are r1, r2, r3, and that is the one whose sides are:

a =
r1(r2 + r3)√

r1r2 + r2r3 + r3r1
, b =

r2(r3 + r1)√
r1r2 + r2r3 + r3r1

c =
r3(r1 + r2)√

r1r2 + r2r3 + r3r1
.

For the exradii values of r1 = 3, r2 = 4 and r3 = 5 we find that

a =
3(4 + 5)√

3 · 4 + 4 · 5 + 5 · 3 =
27√
47
, b =

4(5 + 3)√
3 · 4 + 4 · 5 + 5 · 3 =

32√
47
, c =

35√
47
.

Solution 3 by Ed Gray, Highland Beach, FL

Letting r be the in-radius of the given triangle, r1, r2, r3 the ex-radii, s its
semi-perimeter, K its area and a, b, c its side lengths, then following relationships, that
were developed by Feuerbach, hold:

(1)
1

r
=

1

r1
+

1

r2
+

1

r3
.

(2) K2 = r · r1 · r2 · r3

(3) s ·K = r1 · r2 · r3

(4) a = s− K

r1
, b = s− K

r2
, c = s− K

r3.

Making the substitutions we find that a =
27
√

47

47
, b =

32
√

47

47
, c =

35
√

47

47
.

Comment by David Stone and John Hawkins of Georgia Southern
University: An interesting connection to this problem (from Wolfram Mathworld) is
that the curvature of the incircle equals the sum of the curvatures of the excircles:
1

r
=

1

ra
+

1

rb
+

1

rc
which equals

(
rbrc + rarc + rarb

rarbrc

)
. Thus the area can be written as

∆ =
√
rarbrc.
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Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
Charles McCracken, Dayton, OH; Daniel Sitaru, Mathematics Department,
National Economic College “Theodor Costescu,” Drobeta Turnu - Severin,
Mehedinti, Romania; Albert Stadler, Herrliberg, Switzerland; David Stone
and John Hawkins, Georgia Southern University, Statesboro, GA, and the
proposer.

• 5446: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygons ABCD,CEFG, and DGHJ are squares. Moreover, point E is on side
DC,X = DG ∩ EF , and Y = BC ∩ JH. If GX splits square CEFG in regions whose
areas are in the ratio 5:19. What part of square DGHJ is shaded? (Shaded region in
DGHJ is composed of the areas of triangle Y HG and trapezoid EXGC.)

Solution 1 by “Get Stoked” Problem Solving Group, Mountain Lakes High
School, Mountain Lakes, NJ

Since 6 B = 6 H, 6 JY B = 6 GYH,

4JBY ∼ 4GHY,

and because 4JBY and 4DAJ have a shared angle, 6 B = 6 A

4JBY ∼ 4DAJ,
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and because AD = DC, JD = GD, 6 A = 6 DCG,

4DAJ ∼= 4DCG

and since CG||EX,
4DCG ∼ 4DEX

and because 6 DEX = 6 F, 6 DXE = 6 GXF ,

4DEX ∼ 4GFX.

Therefore,
4GYH ∼ 4GXF

Without loss of generality, set the area of 4Y HG = 5 and trapezoid EXGC = 19.
Adding the areas of 4Y HG and trapezoid EXGC and finding each side obtains:

√
5 + 19 = 2

√
6.

Drawing a perpendicular line from point X to CG creates line IX.
Because the area of XFGI is double of that of 4GXF and FG = EC = XI,

XF : CG = 5 : 12.

Since FG = CG, it can be concluded hat 4GXF is a 5 -12 -13 triangle. Because
4DGC ∼ 4GXF ,

CG : DG = 5 : 13.

Now that we know the ratio between the two squares and that the ratio of the area
between two similar polygons is the square of the ratio of the sides, it is apparent that

area(EXGC)

area(JDGH)
=

19

24
·
(

5

13

)2

=
475

4096
.

Adding the two pieces results in the part of square DCHJ that is shaded

5

24
+

475

4096
=

55

169
.

Solution 2 by Kenneth Korbin, New York, NY

Answer:
55

169
.

Let XF = 25 and EX = 35. Then each segment in the diagram will have positive
integer length.

AD = 144, AJ = 60, JB = 89, BY = 35, Y H = 65, HG = 156, GF = 60, FX = 25,

XE = 35, ED = 84, DJ = 156, JY = 91, Y G = 169, CE = 60, CG = 60, XG = 65.

DX = 91.
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Every triangle in this diagram is similar to the Pythagorean Triangle with sides
(5, 12, 13).

Area of square DGHJ = (156)2 = 24336.

Area of triangle Y HG =
1

2
(65) (156) = 5070.

Area of trapezoid EXGC = (60)2 − 1

2
(25) (60) = 2850.

So the desired ratio is
5070 + 2850

24336
=

55

169
.

Also solved by Jeremiah Bartz and Nicholas Newman, University of North
Dakota and Troy University respectively, Grand Forks, ND and Troy, AL;
Bruno Salgueiro Fanego, Viveiro, Spain; Michael N. Fried, Ben-Gurion
University of the Negev, Beer-Sheva, Israel; Ed Gray, Highland Beach, FL;
Kee-Wai Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Daniel
Sitaru, Mathematics Department, National Economic College “Theodor
Costescu,” Drobeta Turnu - Severin, Mehedinti, Romania; Sachit Misra,
Nelhi, India; Boris Rays, Brooklyn, NY; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

• 5447: Proposed by Iuliana Trască, Scornicesti, Romanai

Show that if x, y, and z is each a positive real number, then

x6 · z3 + y6 · x3 + z6 · y3
x2 · y2 · z2 ≥ x3 + y3 + z3 + 3x · y · z

2
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

The stated inequality is equivalent to

2x6z3 + 2y6x3 + 2z6y3 ≥ x5y2z2 + x2y5z2 + x2y2z5 + 3x3y3z3. (1)

By the AM-GM inequality,

∑

cycl

x6z3 =
∑

cycl

(
2

3
x6z3 +

1

3
y6x3

)
≥
∑

cycl

(
x

2
3
·6z

2
3
·6y

1
3
·6x

1
3
·3
)

=
∑

cycl

x5y2z2,

∑

cycl

x6z3 ≥ 3x3y3z3

Statement (1) follows by adding these two inequalities.

Solution 2 by Arkady Alt, San Jose, CA

Note that,

x6z3 + y6x3 + z6y3

x2 y2 z2
≥ x3 + y3 + z3 + 3xyz

2
⇐⇒ 2

(
x6z3 + y6x3 + z6y3

)
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≥ x5 y2 z2 + x2 y5 z2 + x2 y2 z5 + 3x3 y3 z3.

By AM-GM Inequality,

x6z3 + y6x3 + z6y3 ≥ 3 3
√
x6z3 · y6x3 · z6y3 = 3 3

√
x9y9z9 = 3x3 y3 z3.

And again by AM-GM Inequality.

2x6z3 + y6x3 ≥ 3
3

√
(x6z3)2 y6x3 = 3 3

√
x15y6z6 = 3x5y2z2,

and therefore,

3
∑

cyc

x6z3 =
∑

cyc

(
2x6z3 + y6x3

)
≥
∑

cyc

3x5y2z2 ⇐⇒
∑

cyc

x6z3 ≥
∑

cyc

x5 y2 z2.

Thus, 2
∑
cyc
x6z3 =

∑
cyc
x6z3 +

∑
cyc
x6z3 ≥∑

cyc
x5 y2 z2 + 3x3 y3 z3.

Solution 3 by Moti Levy, Rehovot, Israel

By Muirhead inequality ((6, 3, 0) majorizes (5, 2, 2)),

∑

sym

x6x3z0 ≥
∑

sym

x5y2z2,

or explicitly,

(
x6z3 + y6x3 + z6y3

)
+
(
x6y3 + v6z3 + z6x3

)
≥ 2

(
x5y2z2 + x2y5z2 + x2y2z5

)
. (1)

Again, by Muirhead inequality ((5, 2, 2) majorizes (3, 3, 3)),

∑

sym

x5y2z2 ≥
∑

sym

x3y3z3

or explicitly,
x5y2z2 + x2y5z2 + x2y2z5 ≥ 3x3y3z3. (2)

Given three positive numbers a, b, c. We can always assign their values to x, y and z
respectively, such that x6z3 + y6x3 + z6y3 ≥ x6y3 + y6z3 + z6x3. Hence, without loss of
generality, we can assume that

x6z3 + y6x3 + z6y3 ≥ x6y3 + y6z3 + z6x3, (3)

then by (1), (2) and (3)

2
(
x6z3 + y6x3 + z6y3

)
≥
(
x6z3 + y6x3 + z6y3

)
+
(
x6y3 + v6z3 + z6x3

)

≥ 2
(
x5y2z2 + x2y5z2 + x2y2z5

)

≥ x5y2z2 + x2y5z2 + x2y2z5 + 3x3y3z3.

which is equivalent to

x6z3 + y6x3 + z6y3

x2y2z2
≥ x3 + y3 + z3 + 3xyz

2
.
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Solution 4 by Kee-Wai Lau, Hong Kong, China

We prove the stronger inequality

x6z3 + y6x3 + z6y3

x2y2z2
≥ x3 + y3 + z3. (1)

Since x3 + y3 + z3 ≥ 3xyz by the AM-GM inequality, the inequality of the problem
follows immediately from (1).

By homogeneity, we assume without loss of generality that xyz = 1. By substituting

z =
1

xy
into (1), we deduce after some algebra that (1) is equivalent to

x9 + x9y9 + 1− x9y3 − x6y6 − x3 ≥ 0. (2)

Denote the left side of (2) by f . It can be checked readily by expanding both sides that

(1 + 2x3 + x3y3)f = x9(1 + x3)(1 + y3)(1− y3)2 + (1 + x3)2(1− x3)2+
x3(1 + y3)(1 + x3y3)(1− x3y3)2,

which is nonnegative. Thus (2) holds and this completes the solution.

Solution 5 by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC

It is well-known that for all a, b, c ≥ 0 we have a3 + b3 + c3 ≥ a2b+ b2c+ c2a, and
a3 + b3 + c3 ≥ 3abc. Now for all positive real numbers x, y, and z we can write

2
(
x6 · z3 + y6 · x3 + z6 · y3

)

x2 · y2 · z2 ≥ 2
[
(x2z)2y2x+ (y2x)2z2y + (z2y)2x2z

]

x2y2z2
=

2(x3 + y3 + z3) = x3 + y3 + z3 + (x3 + y3 + z3) ≥ x3 + y3 + z3 + 3xyz.

Now, multiplying both sides of the inequality

2(x6 · z3 + y6 · x3 + z6 · y3)
x2 · y2 · z2 ≥ x3 + y3 + z3 + 3xyz,

by
1

2
, will give us the desired result.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Moti Levy, Rehovot, Israel; David E. Manes, Oneonta, NY;
Sachit Misra, Delhi, India; Paolo Perfetti, Department of Mathematics, Tor
Vergata University of Rome, Italy; Daniel Sitaru, Mathematics Department,
National Economic College “Theodor Costescu,” Drobeta Turnu - Severin,
Mehedinti, Romania, and the proposer.

• 5448: Proposed by Yubal Barrios and Ángel Plaza, University of Las Palmas de Gran
Canaria, Spain

Evaluate: lim
n→∞ n

√√√√
∑

0≤i,j≤n
i+j=n

(
2i

i

)(
2j

j

)
.
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Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

The generating function for the central binomial coefficients is (1− 4x)−1/2; that is,

∞∑

i=0

(
2i
i

)
xi =

1√
1− 4x

.

It follows that

∑

0≤i,j≤n,i+j=n

(
2i
i

)(
2j
j

)
=

n∑

i=0

(
2i
i

)(
2(n− i)
n− i

)

is the coefficient of xn in the function

1√
1− 4x

· 1√
1− 4x

=
1

1− 4x
=
∞∑

n=0

(4x)n,

which is 4n. Thus,

lim
n→∞

n

√√√√
∑

0≤i,j≤n,i+j=n

(
2i
i

)(
2j
j

)
= lim

n→∞
n
√

4n = lim
n→∞

4 = 4.

Solution 2 by Daniel Sitaru, Mathematics Department, National Economic
College “Theodor Costescu,” Drobeta Turnu - Severin, Mehedinti, Romania

(1 + x)0(1 + x)2n + (1 + x)2(1 + x)2n−2 + (1 + x)4(1 + x)2n−4 + . . .

. . .+ (1 + x)2n(1 + x)0 = (2n+ 1)(1 + x)2n

The coefficient of xn in LHS and RHS are equal:

(
2n
n

)
+

(
2
1

)(
2n− 2
n− 1

)
+

(
4
2

)(
2n− 4
n− 2

)
+ . . .+

(
2n
n

)
= (2n+ 1)

(
2n
n

)

∑

0≤i,j≤n
i+j=n

(
2i
i

)(
2j
j

)
= (2n+ 1)

(
2n
n

)

lim
n→∞

n

√√√√
∑

0≤i,j≤n

(
2i
i

)(
2j
j

)
= lim

n→∞
n

√
(2n+ 1)

(
2n
n

)

CAUCHY−D′ALEMBERT︷︸︸︷
= lim

n→∞
2n+ 3

2n+ 1
·

(2n+2)!
((n+1)!)2

(2n)!
((n)!)2

= 1 · lim
n→∞

(2n+ 1)(2n+ 2)

(n+ 1)2
= 4.
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Solution 3 by Kee-Wai Lau, Hong Kong, China

It is well known that that |x| ≤ 1

4
,

∞∑

i=0

(
2i

i

)
xi =

1√
1− 4x

, with the usual convention that

0! = 1 and

(
0

0

)
= 1. Hence,

∞∑

i=0

(4x)i =
1

1− 4x
=

( ∞∑

i=0

(
2i

i

)
xi

)2

=

∞∑

n=0

∑

0≤i,j≤n
i+j=n

(
2i

i

)(
2j

j

)
xn.

Thus for nonnegative integers n,

∞∑

n=0

∑

0≤i,j≤n
i+j=n

(
2i

i

)(
2j

j

)
= 4n,

so that the limit of the problem equals 4.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; Perfetti Paolo, Department of Mathematics,
Tor Vergata University, Rome Italy; Albert Stadler, Herrliberg, Switzerland;
Anna V. Tomova, Varna, Bulgaria, and the proposer.

• 5449: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the use of a computer, find the real roots of the equation

x6 − 26x3 + 55x2 − 39x+ 10 = (3x− 2)
√

3x− 2.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We need to consider only the values of x ≥ 2/3, since the square root is not real for x < 2/3.

We see that x = 1 and x = 2 are roots of the given equation Suppose that x /∈ {1, 2}. We find
that

x6 − 27x3 + 55x2 − 39x+ 10 = (x− 1)(x− 2)
(
x4 + 3x3 + 7x2 − 12x+ 5

)

= (3x− 2)
√

3x− 2− x3

=
(3x− 2)3 − x6

(3x− 2)
√

3x− 2 + x3

=
(x− 1)(x− 2)

(
x4 + 3x3 + 7x2 − 12x+ 4

)

(3x− 2)
√

3x− 2 + x3
, implying

x4 + 3x3 + 7x2 − 12x+ 5 =
x4 + 3x3 + 7x2 − 12x+ 4

(3x− 2)
√

3x− 2 + x3
. (1)
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We note that x4 + 3x3 + 7x2 − 12x+ 4 = x4 + x2(3x− 2) + (3x− 2)2 ≥ 0, since x ≥ 2/3. So
(1) has no other real solutions than x = 1 and x = 2.

Solution 2 by Ed Gray, Highland Beach, FL

Define the function:

(1) f(x) = x6 − 26x3 + 55x2 − 39x+ 10− (3x− 2)3/2 = 0.

Consider the term (3x− 2)3/2. Since the values of x = 1 and x = 2 both provide integer
values, it is worth trying these values as a first guess. In fact,

(2) f(1) = 1− 26 + 55− 39 + 10− 1 = 0, so in fact, x = 1 is a root.

(3) f(2) = 64− 26(8) + 55(4)− 39(2) + 10− 8 = 64− 208 + 220− 78 + 10− 8 = 0, so, in fact
x = 2 is also a root.

It may be fruitful to utilize the derivative which is:

(4) f ′(x) = 6x5 − 78x2 + 110x− 39− (3/2) ∗ (3)
√

3x− 2.

We note that

(5) f ′′(2) = (6)(32)− (78)(4) + 110)(2)− 39− 9 = 192− 312 + 220− 39− 9 = 52.

(6) f ′(1) = 6− 78 + 110− 39− 4.5 = −5.5, so the function is 0 at x = 1 and x = 2. At x = 1, it
is decreasing and at x = 2 it is increasing. Therefore, there is a point x0 with 1 < x0 < 2 and
f ′(x0) = 0. The function is increasing at x = 2, where the derivative is greater than 0, so if
x > 2, the function is greater than 0. It would be good if the function stays positive for x > 2.

Note the second derivative is:

(7) f ′′(x) = 30x4 − 156x+ 110− (27/4) ∗ (3x− 2)( − 1/2).

At x = 2, f ′′(2)480− 312 + 110− 27/8 = 274.625, and clearly increases as x increases. We
conclude there can be no real roots greater than 2.

Now we look at the situation where x = 1, which is a root. f ′(1) = −5.5. Therefore, values of
f(x) for x slightly less than 1 must be positive. If x < 2/3, we note the radical term becomes
negative and complex terms will be introduced, negating the existence of real roots. We need
to consider the region 2/3 < x < 1. The value of

f(2/3) = (2/3)6 − 26((2/3)3 + 56(3/3)2 − 39(2/3) + 10

= 64/729− 26(8/27) + 55(4/9)− 39(2/3) + 10 = 604/729 > 0.

Also, f ′(2/3) = 111/243. This is unexpectedly positive, which means the function rises from
604/729 at x = 2/3 as x increases, then there must be a point x1 such that 2/3 < x1 < 1 and
f ′(x1) = 0. After x > x1, the derivative turns negative and the function descends to 0 at
x = 1. Therefore, there can be no other real roots other than x = 1 and x = 2.

Solution 3 by Anna V. Tomova, Varna, Bulgaria

The decision area is: 3x− 2 ≥ 0 =⇒ x ≥ 2

3
, x6 − 26x3 + 55x2 − 39x+ 10 ≥ 0. We let

√
3x− 2 = t ≥ 0 ⇐⇒ x =

t2 + 2

3
, and after substitution we obtain

t12 + 12t10 + 60t8 − 542t6 + 483t4 − 729t3 + 111t2 + 604 = 0.
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Looking for low-valued positive integer roots to the above equation so that we can use the
factor theorem, we see that t = 1 and t = 2 allows us to rewrite the equation as

(t−1)(t−2)
(
t10 + 3t9 + 19t8 + 51t2 + 175t6 + 423t5 + 377t4 + 285t3 + 584t2 + 453t+ 302

)
= 0.

Because all of the coefficients in the third factor are positive, we see that there are no other

positive roots. So,




x =

t2 + 2

3
= 1 =⇒ x = 1

x =
t2 + 2

3
= 2 =⇒ x = 2.

Solution 4 by Brian D. Beasley, Presbyterian College, Clinton, SC

We note that x = 1 and x = 2 satisfy the given equation, and we show that those are the only
real roots.

Squaring both sides of the equation and factoring yields (x− 1)(x− 2)f(x) = 0, where

f(x) = x10 + 3x9 + 7x8 − 37x7 − 15x6 − 49x5 + 579x4 − 1025x3 + 820x2 − 327x+ 54.

Since we must have x ≥ 2/3 in the original equation, it suffices to show that f(x) 6= 0 for each
x ≥ 2/3. We write f(x) = (g(x))2 + h(x), where

g(x) = x5 + 3
2x

4 + 19
8 x

3 − 353
16 x

2 + 2915
128 x− 1603

256

and

h(x) = 1463
512 x

4 + 2463
256 x

3 + 410783
16384 x

2 − 684823
16384 x+ 969335

65536 .

Then h′(x) = 1463
128 x

3 + 7389
256 x

2 + 410783
8192 x− 684823

16384 . Since h′′(x) > 0 on (0,∞), h′ is increasing on
(0,∞). Also, h′(2/3) > 0, so we have h′(x) > 0 for each x ≥ 2/3. Thus h is increasing on
[2/3,∞) with h(2/3) > 0, so h(x) > 0 for each x ≥ 2/3 as needed. Hence f(x) > 0 for each
x ≥ 2/3.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai Lau, Hong
Kong, China; Perfetti Paolo, Department of Mathematics, Tor Vergata
University, Rome Italy; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

• 5450: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let k be a positive integer. Calculate
∫ 1

0

∫ 1

0

⌊
x

y

⌋k yk
xk

dxdy,

where bac denotes the floor (the integer part) of a.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News, VA

Reverse the order of integration, and then write
∫ 1

0

∫ 1

0

⌊
x

y

⌋k yk
xk

dx dy =

∫ 1

0

∫ 1

0

⌊
x

y

⌋k yk
xk

dy dx

=

∫ 1

0

∫ 1

x

⌊
x

y

⌋k yk
xk

dy dx+
∞∑

n=1

∫ 1

0

∫ x/n

x/(n+1)

⌊
x

y

⌋k yk
xk

dy dx.
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For x ≤ y ≤ 1, bx/yc = 0, while for x/(n+ 1) ≤ y ≤ x/n, bx/yc = n, so

∫ 1

0

∫ 1

0

⌊
x

y

⌋k yk
xk

dx dy =

∞∑

n=1

nk
∫ 1

0

∫ x/n

x/(n+1)

yk

xk
dy dx.

Now,

∫ 1

0

∫ x/n

x/(n+1)

yk

xk
dy dx =

1

k + 1

∫ 1

0

1

xk

(
xk+1

nk+1
− xk+1

(n+ 1)k+1

)
dx

=
1

k + 1

(
1

nk+1
− 1

(n+ 1)k+1

)∫ 1

0
x dx

=
1

2(k + 1)

(
1

nk+1
− 1

(n+ 1)k+1

)
,

so

∫ 1

0

∫ 1

0

⌊
x

y

⌋k yk
xk

dx dy =
1

2(k + 1)

∞∑

n=1

nk
(

1

nk+1
− 1

(n+ 1)k+1

)
.

=
1

2(k + 1)

∞∑

n=1

nk − (n− 1)k

nk+1
.

By the binomial theorem,

(n− 1)k =
k∑

j=0

(−1)j
(
k
j

)
nk−j .

It follows that

nk − (n− 1)k =
k∑

j=1

(−1)j+1

(
k
j

)
nk−j ,

nk − (n− 1)k

nk+1
=

k∑

j=1

(−1)j+1

(
k
j

)
1

nj+1
,

and

∞∑

n=1

nk − (n− 1)k

nk+1
=

k∑

j=1

(−1)j+1

(
k
j

) ∞∑

n=1

1

nj+1
=

k∑

j=1

(−1)j+1

(
k
j

)
ζ(j + 1),

where ζ(x) denotes the Riemann zeta function. Finally,

∫ 1

0

∫ 1

0

⌊
x

y

⌋k yk
xk

dx dy =
1

2(k + 1)

k∑

j=1

(−1)j+1

(
k
j

)
ζ(j + 1).

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

For any positive integer m, let us assume that m ≤ x

y
< m+ 1, which it is equivalent to
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x

m+ 1
≤ y < x

m
. The proposed integral, say I, becomes

I =
∞∑

m=1

mk

∫ 1

0

1

xk

∫ x
m

x
m+1

ykdy dx

=
∞∑

m=1

mk

∫ 1

0

1

xk
yk+1

k + 1

] x
m

x
m+1

dx

=
∞∑

m=1

mk

2(k + 1)

(
1

mk+1
− 1

(m+ 1)k+1

)

=
1

2(k + 1)

∞∑

m=1

(
1

m
− mk

(m+ 1)k+1

)

=
1

2(k + 1)

∞∑

m=1

(
1

m
− 1

m+ 1
−
∑k

j=1(−1)j
(
k
j

)

(m+ 1)k+1−j

)

from where,

I =

k∑

j=1

(−1)j+1

(
k

j

)
ζ(j + 1)

2(k + 1)
.

Solution 3 by Perfetti Paolo, Department of Mathematics, Tor Vergata
University, Rome Italy

We change variables x/y = t, x = u and the integral becomes

∫ 1

0
dt

∫ t

0
du

1

tk+2
btcku+

∫ ∞

1
dt

∫ 1

0
du

1

tk+2
btcku =

∫ ∞

1
dt

∫ 1

0
du

1

tk+2
btcku.

The first integral is zero so we get

1

2

∞∑

q=1

∫ q+1

q
qk

dt

tk+2
=

1

2(k + 1)
lim
n→∞

n∑

q=1

qk
(

1

qk+1
− 1

(q + 1)k+1

)

=
1

2(k + 1)

∞∑

q=1

(
1

q
− 1

q + 1

(q + 1− 1)k

(q + 1)k

)

=
1

2(k + 1)

∞∑

q=1


1

q
− 1

(q + 1)k+1


(q + 1)k +

k−1∑

j=0

(
k

j

)
(−1)j−k(q + 1)j






=
1

2(k + 1)

∞∑

q=1




1

q
− 1

q + 1︸ ︷︷ ︸
telescope

−
k−1∑

j=0

(
k

j

)
(−1)j−k(q + 1)j−k−1




=
1

2(k + 1)


1−

∞∑

q=1

k∑

i=1

(
k

i

)
(−1)i(q + 1)−i−1




=
1

2(k + 1)

(
1−

k∑

i=1

(
k

i

)
(−1)i(ζ(i+ 1)− 1)

)
=

−1

2(k + 1)

k∑

i=1

(
k

i

)
(−1)i(ζ(i+ 1).
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Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland Beach,
FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

End Notes

Sachit Misra of Delhi, India should have been credited with having solved 5440, and
David Stone and John Hawkins of Georgia Southern University, Statesboro, GA
should have been credited for having solved 5444. Once again, mea culpa.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
February 15, 2018

• 5469: Proposed by Kenneth Korbin, New York, NY

Let x and y be positive integers that satisfy the equation 3x2 = 7y2 + 17. Find a pair of
larger integers that satisfy this equation expressed in terms of x and y.

• 5470: Proposed by Moshe Stupel, “Shaanan” Academic College of Education and
Gordon Academic College of Education, and Avi Sigler, “Shaanan” Academic College of
Education, Haifa, Israel

Prove that there are an infinite number of Heronian triangles (triangles whose sides and
area are natural numbers), whose side lengths are three consecutive natural numbers.

• 5471: Proposed by Arkady Alt, San Jose, CA

For natural numbers p and n where n ≥ 3 prove that

n
1
np > (n+ p)

1
(n+1)(n+2)(n+3)···(n+p) .

• 5472: Proposed by Francisco Perdomo and Ángel Plaza, both at Universidad Las Palmas
de Gran Canaria, Spain

Let α, β, and γ be the three angles in a non-right triangle. Prove that

1 + sin2 α

cos2 α
+

1 + sin2 β

cos2 β
+

1 + sin2 γ

cos2 γ
≥ 1 + sinα sinβ

1− sinα sinβ
+

1 + sinβ sin γ

1− sinβ sin γ
+

1 + sin γ sinα

1− sin γ sinα.

• 5473: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x1, · · · , xn be positive real numbers. Prove that for n ≥ 2, the following inequality
holds:

(
n∑

k=1

sinxk

((n− 1)xk + xk+1)
1/2

)(
n∑

k=1

cosxk

((n− 1)xk + xk+1)
1/2

)
≤ 1

2

n∑

k=1

1

xk.

(Here the subscripts are taken modulo n)
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• 5474: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a, b ∈ <, b 6= 0. Calculate

lim
n→∞




1− a

n2
b

n

b

n
1 +

a

n2
.




n

.

Solutions

• 5451: Proposed by Kenneth Korbin, New York, NY

Given triangle ABC with sides a = 8, b = 19 and c = 22. The triangle has an interior
point P where AP, BP , and CP each have positive integer length. Find AP and BP , if
CP = 4.

Solution 1 by David E. Manes, Oneonta, NY

We will show that BP = 6 and AP = 17.
Using the law of cosines in ∆ABC, one obtains

cos 6 C =
82 + 42 − 222

2 · 8 · 19
=
−59

304

so that 6 C = arccos

(−59

304

)
. Let x = BP and y = AP . By the triangle inequality in

∆PCB, it follows that 5 ≤ x ≤ 11. If x = 5, then

cos 6 BCP =
82 + 42 − 52

2 · 8 · 4 =
55

64
.

Therefore, 6 BCP = arccos

(
55

64

)
and

6 PCA = 6 C − 6 BCP = arccos

(−59

304

)
− arccos

(
55

64

)
. Using the identity

cos(α− β) = cosα · cosβ + sinα · sinβ, we get

cos 6 PCA =

(−59

304

)(
55

64

)
+

(
77
√

15

304

)(
3
√

7 · 17

64

)
=
−3245 + 231

√
3 · 5 · 7 · 17

304 · 64
.

Thus,

y2 = 42 + 192 − 2 · 4 · 19 cos 6 PCA = 377− 19

(
−3245 + 231

√
15 · 119

304 · 8

)

=
916864 + 61655− 4389

√
1785

2432
.

Therefore,

y =

√
978519− 4389

√
1785

2432
≈ 18.058
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is not an integer. Hence, x 6= 5.
However, if x = 6, then

cos 6 BCP =
82 + 42 − 62

64
=

11

16

so that 6 BCP = arccos

(
11

16

)
and

6 PCA = 6 C − 6 BCP = arccos

(−59

304

)
− arccos

(
11

16

)
. Thus,

cos 6 PCA = cos

[
arccos

(−59

304

)
− arccos

(
11

16

)]

=

(−59

304

)(
11

16

)
+

(
77
√

15

304

)(
3
√

15

16

)
=
−649 + 3465

4864

=
11

19
.

Therefore,

y2 = 42 + 192 − 2 · 4 · 19

(
11

19

)
= 289

whence y = 17. Hence, x = BP = 6 and y = AP = 17. The solution is unique since
x = 7 does not yield an integer value for y while each of the values x = 8, 9, 10, 11 does
not yield a triangle for ∆BPA.

Solution 2 by Michael N. Fried, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Let BP = x and AP = y. Because of the triangle inequality, 8 < x+ 4, x < 8 + 4 or
5 ≤ x ≤ 11. Similarly, we have 16 ≤ y ≤ 22.
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These inequalities can be improved slightly using Stewart’s formula for the length of
cevians: if ABC is a triangle with sides AC = b and BC = a and if d is the length of a
cevian from A which divides AB into segments of lengths AB = m and AB = n, then:

d2 =
ma2 + nb2

m+ n
−mn

(this is just an easy consequence of the law of cosines). Since the maximum value of y

occurs when P lies on BC, by Stewart’s formula, y2max = 222+192

2 − 42 = 406.5 = 20.162,
so y ≤ 20. Similarly, the maximum value of x occurs when P lies on AC, so that P
divides AC into segments of lengths 4 and 15. Thus, again by Stewart’s formula
x2max = 15·82+4·222

19 − 4 · 15 = 92.42 ≈ 9.612, so that x ≤ 9. Hence:

5 ≤ x ≤ 9

16 ≤ y ≤ 20

Since P lies on a circle centered at C, and the lines BP all lie on one side of BC, each
length x of BP corresponds to a unique P and, therefore, to a unique value of y.
To find y for a given value of x, let 6 BCP = θ, 6 PCA = φ, and 6 BCA = γ. The cosine
of γ is fixed and given by the law of cosines:

cos γ =
192 + 82 − 222

2 · 8 · 19
= − 59

304

The sine of γ is just
√

1− cos2 γ, that is:

sin γ =

√
1− 592

3042
=

77

304

√
15

The cosine of θ for a given value of x is also given by the law of cosines:

cos θ =
82 + 42 − x2

2 · 8 · 4 =
80− x2

64

And again, sin θ is given by
√

1− cos2 θ. Hence, the cosine of φ is given:

cosφ = cos(γ − θ) = − 59

304
cos θ +

77

304

√
15 sin θ

Thus, for any x we can calculate y, once again by the law of cosines:

y2 = 42 + 192 − 2 · 4 · 19 · cosφ = 377− 152 cosφ

Calculating y for x = 5, 6, 7, 8, 9 we find one integral value for y: y = 17 corresponding to
x = 6.
So we have our answer:

AP = 17

BP = 6

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

We model the given triangle in the Cartesian plane by first placing A at (19, 0) and C at
(0, 0). Then B must lie on the circles with equations
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x2 + y2 = 64 and (x− 19)2 + y2 = 484,

so we place B in the second quadrant at (d, e), where d = −59/38 and e = 77
√

15/38.
Next, we seek an interior point P = (x, y) such that x2 + y2 = 16, (x− 19)2 + y2 = m2,
and (x− d)2 + (y − e)2 = n2 for positive integers m = AP and n = BP . Since P is
interior to triangle ABC and lies on the circle with equation x2 + y2 = 4, we have
m ∈ {16, 17, 18, 19, 20} and n ∈ {5, 6, 7, 8, 9}. Solving the system

{
x2 + y2 = 16
(x− 19)2 + y2 = m2

yields x = (377−m2)/38 and y =
√
−m4 + 754m2 − 119025/38. Substituting these

values for x and y into (x− d)2 + (y − e)2 = n2 for m ∈ {16, 17, 18, 19, 20}, we find that
only m = 17 produces a positive integer value for n, namely n = 6. Hence
P = (44/19, 16

√
15/19) with AP = 17 and BP = 6.

Comment by Albert Stadler, Herrliberg, Switzerland: There is no other interior
point even if we get rid of the condition that CP = 4. However, letting u = AP, v = BP
and w = CP and if we permit P to lie on a side of the triangle, then (u, v, w) = (16, 6, 7)
is the only additional point.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong,
China; Charles McCracken, Dayton, OH; Vijaya Prasad Nalluri,
Rajahmundry, India; Valentin Shopov, Munich, Germany; Albert Stadler,
Herrliberg, Switzerland; David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA; Students at Taylor University, Upland, IN,ne
Team 1: {Hannah Peters, Ben Robison, Stevanni McCray}
Team 2: {Hannah King, Deborah Settles, Jackson Bronkema}
Team 3: {Gwyneth Terrett, Samantha Korn, Elissa Grace Moore}, and the
proposer.

• 5452: Proposed by Roger Izard, Dallas, TX

Let point O be the orthocenter of a given triangle ABC. In triangle ABC let the
altitude from B intersect line segment AC at E, and the altitude from C intersect line
segment AB at D. If AC and AB are unequal, derive a formula which gives the square
of BC in terms of AC,AB,EO, and OD.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let a = BC, b = CA, c = AB, d = OD, e = EO, f = EA, and g = AD. Applying the
Pythagorean Theorem to 4ABE, 4BCE, 4OEA and 4OAD, and using the fact that
4ABE ∼ 4CAD, because they are both right triangles with common angle at vertex
A, we obtain:

c2 = AB2 = BE2 + EA2 = BC2 − CE2 + EA2 = a2 − (b− f)2 + f2 = a2 − b2 + 2bf,

e2 + f2 = EO2 + EA2 = OA2 = OD2 +AD2 = d2 + g2, and
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b

g
=

CA

AD
=
AB

EA
=
c

f
.

From these two last lines, we obtain

e2 + f2 = d2 +
b2f2

c2

c2e2 + c2f2 = c2d2 + b2f2,

and since b 6= c by hypothesis, we see that f2 =
c2
(
e2 − d2

)

b2 − c2 , and from the equality

c2 = a2 − b2 + 2bf gives us a2 in terms b, c, e and d. Namely,

a2 =
(
b2 + c2 − 2bf

)
= b2 + c2 − 2bc

√
e2 − d2
b2 − c2 .

Solution 2 by Kee-Wai Lau,Hong Kong, China

By the cosine formula, we have

EO

OA
= sin 6 OAE = cos 6 ACB =

AC2 +BC2 −AB2

2(AC)(BC)
, and similarly

OD

OA
= sin 6 OAD = cos 6 ABC =

AB2 +BC2 −AC2

2(AB)(BC)
. Hence,

EO

OD
=
AB(AC2 +BC2 −AB2)

AC(AB2 +BC2 −AC2)
. (1)

Since AC 6= AB, so
EO

OD
6= AB

AC
or (AB)(OD)− (AC)(EO) 6= 0. Solving (1) for BC2 we

obtain

BC2 =
(AB +AC)(AB −AC) ((AB)(OD) + (AC)(EO))

(AB)(OD)− (AC)(EO)
.

Also solved by Ed Gray, Highland Beach, FL; David E. Manes, Oneonta,
NY; Vijaya Prasad Nalluri, Rajahmundry, India; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

• 5453: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu,“George Emil Palade” School, Buzău, Romania

If a, b, c ∈ (0, 1) or a, b, c ∈ (1,∞) and m,n are positive real numbers, then prove that

loga b+ logb c

m+ n loga c
+

logb c+ logc a

m+ n logb a
+

logc a+ loga b

m+ n logc b
≥ 6

m+ n

Solution 1 by Moti Levy, Rehovot, Israel
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Let x := loga b, y := logb c, z := logc a. Then xyz = loga b logb c logc a = 1, and the
condition a, b, c ∈ (0, 1) or a, b, c ∈ (1,∞) implies that x, y, z > 0.

The original inequality may be rephrased as:

x+ y

m+ z−1n
+

y + z

m+ x−1n
+

z + x

m+ y−1n
≥ 6

m+ n
, xyz = 1, x, y, z > 0, (1)

or as
3

∑
cyc

(
m+z−1n

x+y

)−1 ≤
m+ n

2
.

Since the harmonic mean is less than or equal to the geometric mean,

3
∑

cyc

(
m+z−1n

x+y

)−1 ≤ 3

√
m+ z−1n
x+ y

m+ x−1n
y + z

m+ y−1n
z + x

.

Hence it is enough to prove (2):

m+ z−1n
x+ y

m+ x−1n
y + z

m+ y−1n
z + x

≤ (m+ n)3

8
,

1

xyz

(n+mz) (n+mx) (n+my)

(x+ y) (x+ z) (y + z)
≤ (m+ n)3

8
,

(n+mz) (n+mx) (n+my)

(x+ y) (x+ z) (y + z)
≤ (m+ n)3

8
. (2)

Further simplification of (2) results in

n3 +mn2x+mn2y +mn2z +m2nxy +m2nxz +m2nyz +m3xyz

(x+ y) (x+ z) (y + z)
≤ (m+ n)3

8

n3 +mn2 (x+ y + z) +m2n (xy + yz + xz) +m3

(x+ y) (x+ z) (y + z)
≤ (m+ n)3

8
(3)

Equating the left and right sides of (3) shows that the inequality (3) is equivalent to (4)
and (5):

x+ y + z

(x+ y) (x+ z) (y + z)
≤ 3

8
, (4)

xy + yz + xz

(x+ y) (x+ z) (y + z)
≤ 3

8
. (5)

We now use the p, q, r notation:

p := x+ y + z,

q := xy + yz + zx,

r := xyz.

In this notation, (4) and (5) become

p

pq − r ≤
3

8
, (6)

q

pq − r ≤
3

8
. (7)
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In our case r = 1, which implies (by AM-GM inequality) that p ≥ 3 and q ≥ 3. Now
proving (4) and (5) is straightforward:

p

pq − 1
≤ 3

8
,

3pq − 3− 8p ≥ 0,

3pq − 3− 8p ≥ p− 3 ≥ 0.

q

pq − 1
≤ 3

8
,

3pq − 3− 8q ≥ 0,

3pq − 3− 8q ≥ q − 3 ≥ 0.

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Note that since loga b =
ln b

ln a
and a, b, c ∈ (0, 1) or a, b, c ∈ (0, 1), all the logarithms in the

proposed inequality are positive, so the right-hand side is positive.

We will apply the following parametrized Nesbitt’s inequality (see reference 1, theorem
7).

Let x, y, z, tx+ ky + lz, ty + kz + lx, tz + kx+ ly be positive real numbers and let

−k − l < t <
k + l

2
.

Then
x

tx+ ky + lz
+

y

ty + kz + lx
+

z

tz + kx+ ly
≥ 3t+ k + l. (1)

We will consider two inequalities, from which the stated problem will follow.

loga b

m+ n loga c
+

logb c

m+ n logb a
+

logc a

m+ n logc b
≥ 3

m+ n
(2)

logb c

m+ n loga c
+

logc a

m+ n logb a
+

loga b

m+ n logc b
≥ 3

m+ n
. (3)

Notice that the right-hand side of (2) is

RHS =
ln b

m ln a+ n ln c
+

ln c

m ln b+ n ln a
+

ln a

m ln c+ n ln b
≥ 3

m+ n

by the parametrized Nesbitt’s inequality with t = 0, k = m and l = n, and x = ln b,
y = ln c, and z = ln a. It also should be noticed that in the last expression we may
assume that all the ln’s are positive.

Now, the right-hand side of (3) is

RHS =
ln a ln c

m ln a ln b+ n ln b ln c
+

ln a ln b

m ln b ln c+ n ln a ln c
+

ln b ln c

m ln a ln c+ n ln a ln b
≥ 3

m+ n

by the parametrized Nesbitt’s inequality with t = 0, k = m and l = n, and x = ln a ln c,
y = ln a ln b, and z = ln b ln c.
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Solution 3 by Soumitra Mandal, Chandar Nagore, India

∑

cyc

loga b+ logb c

m+ n loga c
=
∑

cyc

log b+ log a·log c
log b

m log a+ n log c

=
∑

cyc

log b

m log a+ n log c
+
∑

cyc

log a·log c
log b

m log a+ n log c

=
∑

cyc

(log b)2

n log a · log b+ n log c · log b
+
∑

cyc

(
1

log b

)2

m
log b·log c + n

log b·log a

BERGSTROM︷︸︸︷
≥ (log a+ log b+ log c)2

(m+ n)(log a · log b+ log b · log c+ log c · log a)
+

+

(
1

log a + 1
log b + 1

log c

)2

(m+ n)
(

1
log a·log b + 1

log b·log c + 1
log c·log a

) ≥ 3

m+ n
+

3

m+ n
=

6

m+ n

Editor’s Comments: Anna V. Tomova of Varna, Bulgaria approached the solution as
follows: She showed that the left hand side of the inequality can be put into the canonical form

of X + Y +
1

XY
. She then showed that this canonical form has a global minimum at (1, 1),

forcing it to have a minimal value of 3, and working with this she produced the final result.

Bruno Salgueiro Fanego of Viveiro, Spain noted that the stated problem is a specific case
of a more general result. Namely: If x, y, z ∈ (0,∞) and xyz = 1, then

x+ y

m+
n

z

+
y + z

m+
n

x

+
z + x

m+
n

y

≥ 6

m+ n
.

He proved the more general result, and applied it to the specific case.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego of Viveiro,
Spain; Ed Gray of Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Shravan
Sridhar, Udupi, India; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova
of Varna, Bulgaria, and the proposer.

5454: Proposed by Arkady Alt, San Jose, CA

Prove that for integers k and l, and for any α, β ∈
(
0, π2

)
, the following inequality holds:

k2 tanα+ l2 tanβ ≥ 2kl

sin(α+ β)
−
(
k2 + l2

)
cot(α+ β).
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Solution 1 by Ed Gray, Highland Beach, FL

We rewrite the inequality by transposing

1) k2
(

sin a

cos a
+

cos(a+ b)

sin(a+ b)

)
+ t2

(
sin b

cos b
+

cos(a+ b)

sin (a+ b)

)
≥ 2kt

sin(a+ b)

Multiplying by sin(a+ b)

2) k2
(

sin a(sin(a+ b))

cos a
+ cos(a+ b)

)
+ t2

(
sin b sin(a+ b)

cos b
+ cos(a+ b)

)
≥ 2kt

3) k2
(

sin a sin(a+ b) + cos a cos(a+ b)

cos a

)
+ t2

(
sin b sin(a+ b) + cos b cos(a+ b)

cos b

)
≥ 2kt

4) k2
(

cos b

cos a

)
+ t2

(cos a

cos b

)
≥ 2kt

5)
k2 cos2 b+ t2 cos2 a

cos a cos b
≥ 2kt

6) k2 cos2 b+ t2 cos2 a ≥ 2kt cos a cos b, and transposing,

7) (k cos b− t cos a)2 ≥ 0..

So we retrace our steps to obtain the original inequality.

Solution 2 by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC

First we consider the case when α + β =
π

2
, then sin(α + β) = 1, cot(α + β) = 0, and

tanβ = cotα. From these we have

k2 tanα+t2 tanβ− 2kl

sin(α+ β)
+
(
k2 + l2

)
cot(α+β) = k2 tanα+l2 cotα−2lk =

(
k
√

tanα− l
√

cotα
)2
≥ 0,

which completes the proof when α+ β =
π

2
.

Now suppose that α+ β 6= π

2
. By using the identity cot(α+ β) =

1− tanα tanβ

tanα+ tanβ
, we have

k2 tanα+ l2 tanβ + (k2 + l2) cot(α+ β)− 2kl

sin(α+ β)

= k2 tanα+ l2 tanβ + (k2 + l2)
1− tanα tanβ

tanα+ tanβ
− 2kl

sin(α+ β)

=
k2 tan2 α+ k2 tanα tanβ + l2 tanβ tanα+ l2 tan2 β + (k2 + l2)−

(
k2 + l2

)
tanα tanβ

tanα+ tanβ
− 2kl

sin(α+ β)

=
k2 tan2 α+ l2 tan2 β + (k2 + l2)

tanα+ tanβ
− 2kl

sin(α+ β)

=
k2(1 + tan2 α) + l2(1 + tan2 β)

sinα

cosα
+

sinβ

cosβ

− 2kl

sin(α+ β)
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=
k2 sec2 α+ l2 sec2 β

sin(α+ β)

cosα cosβ

− 2kl

sin(α+ β)

=

k2
cosβ

cosα
+ l2

cosα

cosβ

sin(α+ β)
− 2kl

sin(α+ β)

=

(√
k

cosβ

cosα
− l
√
k

cosα

cosβ

)2

sin(α+ β)
≥ 0.

Editor’s Note: Most of the solvers mentioned that the inequality holds for all real values of k and
l. David Stone and John Hawkins of Georgia Southern University when a bit further.
They stated: “the conditions that α and β be first quadrant angles is an easy way to make
sin(α+β) 6= 0 and tanα, tanβ, cot(α+β) be defined and guarantee that cosα cosβ sin(α+β) >
0.” But the proof shows that the inequality would be true for any values of α and β which satisfy
these conditions.

Also solved by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; Kee-Wai
Lau, Hong Kong, China; Moti Levy, Rehovot, Israel; Boris Rays, Brooklyn, NY;
Daniel Sitaru, “Theodor Costescu” National Economic College, Severin Mehedinti;
Albert Stadler, Herrliberg, Switzerland; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA; Anna V. Tomova, Varna, Bulgaria, and the
proposer.

5455: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find all real solutions to the following system of equations:

1

a
+

1

b
+

1

c
=

1

abc

a+ b+ c = abc+
8

27

(
a+ b+ c)3

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand Forks,
ND

Suppose a, b, c are real numbers satisfying our system. Consider the polynomial

g(x) = (x− a)(x− b)(x− c)
= x3 − (a+ b+ c)x2 + (ab+ ac+ bc)x− abc.

The first equation of our original system implies ab+ ac+ bc = 1. So

g(x) = x3 − λx2 + x− µ

where λ = a + b + c and µ = abc. Note that the second equation of our original system
can be written as λ = µ + 8

27λ
3. We make the usual substitution to get a depressed cubic:
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g(x+ λ/3) = x3 + px+ q where

p = 1− 1

3
λ2 and q =

−2

27
λ3 +

1

3
λ− µ.

Using λ = µ+ 8
27λ

3 we have

q =
2

9
λ3 − 2

3
λ

which we factor to get

q =
−2

3
λ

(
1− 1

3
λ2
)

=
−2

3
λp.

The discriminant of g(x+ λ/3) is

D = −4p3 − 27q2

= −4p3 − 12λ2p2

= −4p2(p+ 3λ2)

= −4p2
(

1 +
8

3
λ2
)

Note that D ≥ 0 if and only if p = 0. Recall that a real cubic polynomial has three real
roots if and only if its discriminant is ≥ 0. Thus g(x + λ/3) has three real roots if and only if
p = 0 if and only if λ = ±

√
3. Note that when λ = ±

√
3 we have g(x + λ/3) = x3, and hence

g(x) = (x− λ/3)3. Therefore the only solutions to the original system are

a = b = c =

√
3

3
and a = b = c =

−
√

3

3
.

Solution 2 by Moti Levy, Rehovot, Israel

1

a
+

1

b
+

1

c
=

1

abc
implies ab+ bc+ ca = 1.

Substitution of abc =
1

1

a
+

1

b
+

1

c

in the second equation gives

a+ b+ c− 1
1

a
+

1

b
+

1

c

− 8

27
(a+ b+ c)3 = 0,

(a+ b) (a+ c) (b+ c)

ab+ ac+ bc
− 8

27
(a+ b+ c)3 = 0,

(a+ b) (a+ c) (b+ c)− 8

27
(a+ b+ c)3 = 0. (1)

Let x = a+ b, y = b+ c and z = c+ a then (1) becomes

xyz −
(
x+ y + z

3

)3

= 0,

or 3
√
xyz =

x+ y + z

3
. The geometric mean is equal to the arithmetic mean if and only if

x = y = z which implies that a = b = c.

Therefore the system of equation has only two solutions:

a = b = c =
1√
3
, a = b = c = − 1√

3
.
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Solution 3 by Kee-Wai Lau, Hong Kong, China

Let p = a+ b+ c, q = ab+ bc+ ca, and r = abc. The first given equation becomes

q = 1 (1)

and the second equations becomes

r = p− 8p3

27
. (2)

It can be checked readily that

p2q2 − 4p3r + 18pqr − 4q3 − 27r2 = (a− b)2(b− c)2(c− a)2. (3)

Using (1) and (2) we reduce the left side of (3) to
−4(p2 − 3)2(8p2 + 3)

27
, which is non-positive.

Since the right side of (3) is nonnegative, so both sides of (3) equal to zero. It follows that

p2 = 3 and by (2), r =
p

9
. Moreover, either a = b or b = c or c = a. By symmetry we only

consider the case a = b. Hence either 2a+c =
√

3, a2 +2ac = 1, or 2a+c = −
√

3, a2 +2ac = 1,

giving respectively a = c =
1√
3

and a = c =
−1√

3
. Thus the solutions to the original system are

precisely (a, b, c) =

(
1√
3
,

1√
3
,

1√
3

)
,

(−1√
3
,
−1√

3
,
−1√

3

)
.

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro, Spain;
Ed Gray, Highland Beach, FL; Le Van, Ho Chi Minh City, Vietnam; Albert Stadler,
Herrliberg, Switzerland; Anna V. Tomova, Varna, Bulgaria, and the proposer.

5456: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let k be a positive integer. Calculate

lim
x→∞

e−x
∞∑

n=k

(−1)n
(
n

k

)(
ex − 1− x− x2

2!
− · · · − xn

n!

)
.

Solution 1 Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany

By the Taylor formula we have

ex = 1 + x+ x2/2! + · · ·+ xn/n! +

∫ x

0

(x− t)n
n!

etdt.

It follows that

e−x
∞∑

n=k

(−1)n
(
n

k

)(
ex − 1− x− x2/2!− · · · − xn/n!

)

=
∞∑

n=k

(−1)n
(
n

k

)∫ x

0

(x− t)n
n!

et−xdt

=
1

k!

∞∑

n=k

(−1)n
∫ x

0

tn

(n− k)!
e−tdt

=
1

k!

∞∑

n=0

(−1)n+k
∫ x

0

tn+k

n!
e−tdt

=
(−1)k

k!

∫ x

0
tke−2tdt.
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The limit as x→ +∞ is given by

(−1)k

k!

∫ ∞

0
tke−2tdt =

(−1)k

2k+1
.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

lim
x→

e−x
∞∑

n=k

(−1)n
(
n

k

)(
ex − 1− x− x2

2!
− · · · − xn

n!

)

= lim
x→∞

e−x
∞∑

n=k

(−1)n
n(n− 1)(n− 2) · · · (n− k + 1)

k!

∞∑

p=n+1

xp

p!

= lim
x→∞

e−x
1

k!

∞∑

n=k

(−1)n
(
dk

dtk
tn
)∣∣∣∣

t=1

∞∑

p=n+1

xp

p!
=

1

k!
lim
x→∞

e−x
dk

dtk



∞∑

n=k

(−1)ntn
∞∑

p=n+1

xp

p!



∣∣∣∣∣
t=1

=
1

k!
lim
x→∞

e−x
dk

dtk



∞∑

n=1

xn

n!

n−1∑

p=0

(−1)ptp



∣∣∣∣∣
t=1

=
1

k!
lim
x→∞

e−x
dk

dtk

(
1

1 + t

( ∞∑

n=1

xn

n!
−
∞∑

n=1

(−xt)n
n!

))∣∣∣∣∣
t=1

=
1

k!
lim
x→∞

dk

dtk

(
1

1 + t
e−x

(
ex − 1−

(
e−x − 1

)))
∣∣∣∣∣
t=1

=
1

k!
lim
x→∞

dk

dtk

(
1

1 + t

(
1− e−x(1+t)

)) ∣∣∣∣∣
t=1

=
1

k!

dk

dtk

(
1

1 + t
lim
x→∞

(
1− e−x(1+t)

)) ∣∣∣∣∣
t=1

=
1

k!

(
dk

dtk
1

1 + t

) ∣∣∣∣∣
t=1

=
(−1)k

(1 + t)k+1

∣∣∣∣∣
t=1

=
(−1)k

2k+1
.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

Repeated integration by parts yields

∫ x

0
e−t

tn

n!
dt = −e−xx

n

n!
+

∫ x

0
d−t

tn−1

(n− 1)!
dt = −e−x

(
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x

)
+

∫ x

0
e−tdt

= −e−x
(
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x+ 1

)
+ 1.

So,

e−x −
(
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x+ 1

)
= ex

∫ x

0
e−t

tn

n!
dt

and

e−x
∞∑

n=k

(−1)n
(
n

k

)(
ex −

(
xn

n!
+

xn−1

(n− 1)!
+ · · ·+ x+ 1

))
=

1

k!

∞∑

n=k

(−1)n

(n− k)!

(∫ x

0
e−ttndt

)
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=
(−1)k

k!

∞∑

n=0

(−1)n

n!

(∫ x

0
e−ttn+kdt

)

=
(−1)k

k!

∫ x

0
e−2ttkdt→ (−1)k

k!

∫ ∞

0
e−2ttkdt =

(−1)k!

k!2k+1
=

(−1)k

2k+1
, as x →∞.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that the given limit equals (−1)k2−(k+1).

For real x let f(x) = e−xxk =

∞∑

m=k

(−1)m−k
xm

m− k)!
so that

fn(0) =





0, 0 ≤ n ≤ k − 1

(−1)n−kn(n− 1) · · · (n− k + 1), n ≥ k
.

where fn(x) is the n th derivative of f(x).

According to problem 3.89(a) on pp124, 227 of the book [Ovidiu Furdui; Limits, Series, and
Fractional Part Integrals, Springer 2013] we have

∞∑

n=0

fn(0)

(
ex − 1− x− x2

2!
− · · · − xn

n!

)
=

∫ x

0
ex−tf(t)dt.

Hence,

e−x
∞∑

n=k

(−1)n
(
n

k

)(
ex − 1− x− x2

2!
− · · · − xn

n!

)
=

(−1)k

k!

∫ x

0
e−2ttkdt

=
(−1)k

2k+1k!

∫ 2x

0
e−ttkdt.

Now our result for the limit follows from the well-known fact that

∫ ∞

0
e−ttkdt = k!.

Also solved by Moti Levy, Rehovot, Israel; Anna V. Tomova, Varna, Bulgaria, and
the proposer.

Editor’s Comment: In Anna’s solution to 5456 she acknowledged contributing conversations
with Peter Breuer and Joachim Domsta of Bulgaria.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
March 15, 2019

5523: Proposed by Kenneth Korbin, New York, NY

For every prime number P , there is a circle with diameter 4P 4 + 1. In each of these
circles, it is possible to inscribe a triangle with integer length sides and with area
(2P )(2P + 1)(2P − 1)(2P 2 − 1). Find the sides of the triangles if P = 2 and if P = 3.

5524: Proposed by Michael Brozinsky, Central Islip, NY

A billiard table whose sides obey the law of reflection is in the shape of a right triangle
ABC with legs of length a and b where a > b and hypotenuse c. A ball is shot from the
right angle and rebounds off the hypotenuse at point P on a path parallel to leg CB that

hits let CA at point Q. Find the ratio
AQ

QC
.

5525: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu”,
Drobeta Turnu-Severin, Mehedinti, Romania

Find real values for x and y such that:

4 sin2(x+ y) = 1 + 4 cos2 x+ 4 cos2 y.

5526: Proposed by Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece

The lengths of the sides of a triangle are 12, 16 and 20. Determine the number of
straight lines which simultaneously halve the area and the perimeter of the triangle.

5527: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b and c be positive real numbers such that a+ b+ c = 3. Prove that for all real
α > 0, holds:

1

2

(
1− aα+1bα

aαbα
+

1− bα+1cα

bαcα
+

1− cα+1aα

cαaα

)
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≤
√(

1− aα+1

aα
+

1− bα+1

bα
+

1− cα+1

cα

)(
1− aαbαcα
aαbαcα

)
.

5528: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let a > 0. Calculate

∫ ∞

a

∫ ∞

a

dxdy

x6(x2 + y2)
.

Solutions

5505: Proposed by Kenneth Korbin, New York, NY

Given a Primitive Pythagorean Triple (a, b, c) with b2 > 3a2. Express in terms of a and
b the sides of a Heronian Triangle with area ab(b2 − 3a2).

(A Heronian Triangle is a triangle with each side length and area an integer.)

Solution 1 by Stanley Rabinowitz, Chelmsford, MA

One way of doing this would be to form an obtuse triangle ABC as shown with base of
length b2 − 3a2 and altitude of length 2ab, so that the area of 4ABC is ab(b2 − 3a2) as
desired. If the line segment from B to D, the foot of the altitude from C, has length 2a2,
then hypotenuse BC in 4BDC would have length 2ac, since this triangle would be
similar to an a–b–c right triangle, scaled up by 2a. Then AD would have length b2 − a2,
and by the Pythagorean Theorem, AC would have length a2 + b2.
Thus, 4ABC is the desired Heronian Triangle, with sides b2 − 3a2, 2a

√
a2 + b2, and

a2 + b2.

A
B

C

D
b2 − 3a2

2ac
a
2 + b

2

2a2

2ab

Solution 2 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

Given a primitive Pythagorean triple (a, b, c) with b2 > 3a2, let

x = b2 − 3a2,

y = 2a
√
a2 + b2,

z = a2 + b2.

Note that y = 2ac and z = c2. Since c2 − 4a2 = b2 − 3a2 > 0 we have c > 2a.
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We calculate

−x+ y + z = −(b2 − 3a2) + 2ac+ (a2 + b2)

= 4a2 + 2ac > 0,

x− y + z = (b2 − 3a2)− 2ac+ c2

= (b2 − 3a2) + c(c− 2a) > 0,

and

x+ y − z = (b2 − 3a2) + 2ac− (a2 + b2)

= 2a(c− 2a) > 0.

Thus x+ y > z, x+ z > y, and y + z > x so (x, y, z) gives the sides of a Heronian
triangle. Let s be the semiperimeter and A the area of this triangle.
By Heron’s formula we have

A2 = s(s− x)(s− y)(s− z).

We have

s =
x+ y + z

2
= b2 − a2 + ac,

s− x = b2 − a2 + ac− (b2 − 3a2)

= ac+ 2a2,

s− y = b2 − a2 + ac− 2ac

= b2 − a2 − ac,

and

s− z = b2 − a2 + ac− (a2 + b2)

= ac− 2a2.

So

A2 = (b2 − a2 + ac)(ac+ 2a2)(b2 − a2 − ac)(ac− 2a2)

= [(b2 − a2)2 − (ac)2][(ac)2 − (2a2)2].

Now

(b2 − a2)2 − (ac)2 = b4 − 2a2b2 + a4 − a2(a2 + b2)

= b4 − 3a2b2

= b2(b2 − 3a2)

and

(ac)2 − (2a2)2 = a2(c2 − 4a2)

= a2(b2 − 3a2)
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so A2 = a2b2(b2 − 3a2)2.

Thus if (a, b, c) is a primitive Pythagorean triple with b2 > 3a2 then (x, y, z) with

x = b2 − 3a2, y = 2a
√
a2 + b2, z = a2 + b2

is a Heronian triangle with area ab(b2 − 3a2).

N.B. For a particular (a, b, c) there can be other Heronian triangles with area
ab(b2 − 3a2). For example, for the primitive Pythagorean triple (5, 12, 13) we are looking
for a Heronian triangle with area 4140. The formulas above give the triangle
(69, 130, 169), but (41, 202, 207) is another triangle with area 4140.

Solution 3 by Trey Smith, Angelo State University, San Angelo, TX

Let x = b2 − 3a2, y = 2a
√
a2 + b2, and z = a2 + b2 be the lengths of the three sides of

the triangle. We first observe that all of these are positive integers; x and z obviously so,
and y since a2 + b2 = c2, so that

2a
√
a2 + b2 = 2a

√
c2 = 2ac.

The perimeter of the triangle is

x+ y + z

= (b2 − 3a2) + (2a
√
a2 + b2) + (a2 + b2)

= (c2 − 4a2) + 2ac+ c2

= 2c2 + 2ac− 4a2.

Then the semiperimeter is s = c2 + ac− 2a2. Applying Heron’s formula to find the area
A, we have

A2

= s(s− x)(s− y)(s− z)

= s(s− (b2 − 3a2))(s− (2a
√
a2 + b2))(s− (a2 + b2))

= s(s− (c2 − 4a2))(s− 2ac)(s− c2)

= (c2 + ac− 2a2)((c2 + ac− 2a2)− (c2 − 4a2))((c2 + ac− 2a2)− 2ac)((c2 + ac− 2a2)− c2)

= (c2 + ac− 2a2)(ac+ 2a2)(c2 − ac− 2a2)(ac− 2a2)

= [(c+ 2a)(c− a)][a(c+ 2a)][(c+ a)(c− 2a)][a(c− 2a)]

= a2(c2 − a2)(c2 − 4a2)2

= a2b2(b2 − 3a2)2.
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Thus A = ab(b2 − 3a2).

Editor′s Comment : David Stone and John Hopkins of Georgia Southern University
added the following comment to their solution to this problem: “So how did we find
x, y, z? We first tired the simplest possible example; (a, b, c) = (3, 5, 12). After some
algebra and some computer help, we found the triangle (x, y, z) = (69, 169, 130) has the
appropriate area. From this we conjectured the form for arbitrary x, y, z.

x = 169 = 132 = c2

y = 69 = 122 − 3 · 52 = b2 − 3a2

z = 130 = 2 · 5 · 13 = 2ac.

Then it only required simple algebra to verify this construction. Some Excel
computations also lead us to the broader result (when b2 < 3a2). The perfect example of
computing power assisting a person!”

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC; Ed
Gray, Highland Beach, FL; Ioannis D. Sfikas, National and Kapodistrian
University of Athens, Greece; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.

5506: Proposed by Daniel Sitaru, “Theodor Costescu” National Economic College,
Drobeta Turnu-Severin, Mehedinti, Romania

Find Ω = det

[(
1 5
5 25

)100

+

(
25 −5
−5 1

)100
]

.

Solution 1 by Michel Bataille, Ronen, France

Let A =

(
1 5
5 25

)
, B =

(
25 −5
−5 1

)
, O2 =

(
0 0
0 0

)
, I2 =

(
1 0
0 1

)
.

It is readily checked that AB = BA = O2 and A+B = 26I2.
Since AB = BA, the binomial theorem gives

(A+B)100 =

100∑

k=0

(
100

k

)
AkB100−k. (1)

Now, if k ∈ {1, 2, . . . , 50}, then

AkB100−k = AkBkB100−2k = (AB)kB100−2k = O2 ·B100−2k = O2

(note that AkBk = (AB)k since AB = BA) and similarly, if k ∈ {51, 52, . . . , 99},
then AkB100−k = A2k−100(AB)100−k = O2.

As a result, (1) gives (A+B)100 = A100 +B100, that is, 26100I2 = A100 +B100. We can
conclude:

Ω = det(26100I2) = 26200.

Solution 2 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND

Observe
(

1 5
5 25

)100

=

([
1
5

] [
1 5

])100

=

[
1
5

]([
1 5

] [ 1
5

])99 [
1 5

]
= 2699

(
1 5
5 25

)
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and

(
25 −5
−5 1

)100

=

([
5
−1

] [
5 −1

])100

=

[
5
−1

]([
5 −1

] [ 5
−1

])99 [
5 −1

]
= 2699

(
25 −5
−5 1

)
.

It follows that

Ω = det

[
2699

(
1 5
5 25

)
+ 2699

(
25 −5
−5 1

)]
= det

[(
26100 0

0 26100

)]
= 26200.

Solution 3 by David A. Huckaby, Angelo State University, San Angelo, TX

Let A =

(
1 5
5 25

)
and B =

(
25 −5
−5 1

)
. Matrices A and B are each symmetric, hence

orthogonally diagonalizable.

Solving the equation det (λI −A) = 0 yields λ1 = 0 and λ2 = 26 as the eigenvalues of A.

Solving the equation (λI −A)−→x =
−→
0 successively for λ = 0 and λ = 26 yields

−→x1 =

( −5√
26
1√
26

)
and −→x2 =

(
1√
26
5√
26

)
as corresponding unit eigenvectors. So

A =

( −5√
26

1√
26

1√
26

5√
26

)(
0 0
0 26

)( −5√
26

1√
26

1√
26

5√
26

)
. Similarly,

B =

(
1√
26

−5√
26

5√
26

1√
26

)(
0 0
0 26

)( 1√
26

5√
26−5√

26
1√
26

)
.

Since for both A and B the matrix of eigenvectors is orthogonal, we have

A100 =

( −5√
26

1√
26

1√
26

5√
26

)(
0 0
0 26100

)( −5√
26

1√
26

1√
26

5√
26

)
=

(
2699 5

(
2699

)

5
(
2699

)
25
(
2699

)
)
, and

B100 =

(
1√
26

−5√
26

5√
26

1√
26

)(
0 0
0 26100

)( 1√
26

5√
26−5√

26
1√
26

)
=

(
25
(
2699

)
−5
(
2699

)

−5
(
2699

)
2699

)
.

So Ω = det
[
A100 +B100

]
= det

(
26100 0

0 26100

)
= 26200.

Solution 4 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

A way to calculate An for a 2× 2 matrix is to use the Hamilton-Cayley Theorem:

A2 − Tr(A) ·A+ detA · I2 = 0.

For example, if we have a 2× 2 matrix A =

(
1 a
a a2

)
(or A =

(
a2 −a
−a 1

)
) with

detA = 0 and Tr(A) = a2 + 1, then the Hamilton-Cayley theorem becomes:

A2 = Tr(A) = (a2 + 1)2A.
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A3 = (a2 + 1)A2 = (a2 + 1)2A,

· · ·

An = (a2 + 1)An−1 = (a2 + 1)n−1A.

So we have:

(
1 5
5 25

)100

= (52 + 1)99
(

1 5
5 25

)
= 2699

(
1 5
5 25

)
,

(
25 −5
−5 1

)100

= (52 + 1)99
(

25 −5
−5 1

)
= 2699

(
25 −5
−5 1

)
,

(
1 5
5 25

)100

+

(
25 −5
5 1

)100

= 2699
((

1 5
5 25

)
+

(
25 −5
5 1

))
= 26100

(
1 0
0 1

)
,

and finally we have:

Ω = det

((
1 5
5 25

)100

+

(
25 −5
5 1

)100
)

= det

(
26100

(
1 5
5 25

)100

+

(
1 0
0 1

))
= 26100.

Solution 5 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Let c =
√

26. We know that

(
1 5
5 25

)
=

(
−5/c 1/c
1/c 5/c

)(
0 0
0 26

)(
−5/c 1/c
1/c 5/c

)
.
= AΛA−1

(
25 −5
−5 1

)
=

(
1/c −5/c
5/c 1/c

)(
0 0
0 26

)(
1/c 5/c
−5/c 1/c

)
.
= BΛB−1

Ω = AΛ100A−1 +BΛ100B−1

AΛ100A−1 =

(
2699 5 · 2699

5 · 2699 25 · 2699

)

BΛ100B−1 =

(
25 · 2699 −5 · 2699

−5 · 2699 2699

)

Thus

Ω = det

(
2699 · 26 0

0 2699 · 26

)
= 26200.

Also solved by Arkady Alt, San Jose, CA; Ashland University
Undergraduate Problem Solving Group, Ashland University, Ashland, Ohio;
Brian D. Beasley, Presbyterian College, Clinton, SC; Anthony J.
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Bevelacqua, University of North Dakota, Grand Forks, ND; Dionne Bailey,
Elsie Campbell and Charles Diminnie, Angelo Sate University, San Angelo,
TX; Pat Costello, Eastern Kentucky University, Richmond, KY; David
Diminnie, Texas Instruments Inc., Dallas, TX; Michael Faleski, University
Center, MI; Bruno Salgueiro Fanego Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel;
Carl Libis, Columbia Southern University, Orange Beach, AL; Ismayil
Mammadzada (student), ADA University, Baku, Azerbaijan; Pedro Pantoja,
Natal/RN, Brazil; Ravi Prakash, Oxford University Press; New Delhi, India;
Neculai Stanciu “George Emil Palade” School, Buzău, Romania and Titu
Zvonaru, Comănesti, Romania; Henry Ricardo (four different proofs),
Westchester Area Math Circle, NY; Trey Smith, Angelo State University,
San Angelo, TX; Albert Stadler, Herrliberg, Switzerland; David Stone and
John Hawkins, Georgia Southern University, Statesboro, GA; Marian
Ursărescu, “Roman Vodă” College, Roman, Romania; Daniel Văcaru,
Pitesti, Romania, and the proposer.

5507: Proposed by David Benko, University of South Alabama, Mobile, AL

A car is driving forward on the real axis starting from the origin. Its position at time
0 ≤ t is s(t). Its speed is a decreasing function: v(t), 0 ≤ t. Given that the drive has a
finite path (that is lim

t→∞
s <∞), that v(2t)/v(t) has a real limit c as t→∞, find all

possible values of c.

Solution 1 by Moti Levy, Rehovot, Israel

We will show that the set of all possible values of c, is the interval
[
0, 12
]
, i.e., 0 ≤ c ≤ 1

2 .

Let us summarize the conditions on the speed function v (t):
1) v (t) ≥ 0,
2) v (t) is decreasing function for all t ≥ 0,
3)
∫∞
0 v (t) dt <∞

4) limt→∞
v(2t)
v(t) = c, c is real number.

Since v(t) ≥ 0, then clearly c ≥ 0. Since v (t) is decreasing function, then c ≤ 1. It
follows that 0 ≤ c ≤ 1.

Now we show that c can attain any value in the interval
[
0, 12
]
.

Let r be a real number and r > 1. Then v (t) = 1
1+tr satisfies all four requirements from

the speed function, in particular

∫ ∞

0

1

1 + tr
dt <∞, for r > 1,

and

lim
t→∞

v (2t)

v (t)
= lim

t→∞
1 + tr

1 + 2rtr
=

1

2r
= c.

It follows that c ∈
(
0, 12
)
.

To see that c can attain also the value zero, choose v (t) = e−t.

To see that c can attain also the value 1
2 , choose v (t) =

{ 1
2 ln2 2

, for 0 ≤ t ≤ 2,
1

t ln2 t
, for 2 < t.
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Then v (t) satisfies all the four requirements from the speed function, in particular

∫ ∞

0
v (t) dt =

1

ln2 2
+

1

ln 2
,

and

lim
t→∞

v (2t)

v (t)
= lim

t→∞
t ln2 t

2t ln2 (2t)
=

1

2
.

To finish the proof, we have to show that c /∈
(
1
2 , 1
]
.

Suppose limt→∞
v(2t)
v(t) = c, then for every ε > 0, there is a real number t0 such that t > t0

implies v(2t)
v(t) > c− ε.

Now we define a staircase function s (t), as follows:

s (t) := (c− ε)k v (t0) , for 2k−1t0t0 ≤ t < 2kt0, k = 1, 2, . . .

Since the function v (t) is positive decreasing function for all t ≥ 0, then v (t) ≥ s (t),
hence ∫ ∞

t0

v (t) dt ≥
∫ ∞

t0

s (t) dt.

Integrating the staircase function, we get

∫ ∞

t0

s (t) dt = v (t0)
∞∑

k=1

(c− ε)k 2k−1 = v (t0) (c− ε)
∞∑

k=0

(2 (c− ε))k .

If c− ε ≥ 1
2 then

∫∞
t0
s (t) dt diverges and so

∫∞
t0
v (t) dt diverges.

We conclude that if c > 1
2 then

∫∞
t0
v (t) dt diverges, contradicting property 3) of the

speed function.

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that

0 ≤ c ≤ 1

2
(1)

Let lim
t→∞

s(t) = L <∞. Then lim
t→∞

s(2t) = L and 0 ≤ s(t) < s(2t) < L for t > 0. Hence,

by L’Hôpital’s rule, we have

1 ≥ lim
t→∞

L− s(2t)
L− s(t) = lim

t→∞

ds(2t)

dt
ds(t)

dt

= 2 lim
t→∞

v(2t)

v(t)
= 2c.

Thus (1) holds.

By taking s(t) = 1− e−t, s(t) = 1− (t+ 1)
ln(2c)
ln 2 , s(t) = 1− 1

ln(1 + e)
according as

c = 0, 0 < c <
1

2
, c =

1

2
we see that each c in (1) is in fact admissible.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We claim that the set C of possible values of c is the closed interval

[
0,

1

2

]
.
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Indeed, if v(t) = v0e
−t, then v(t) is a decreasing function ,

∫ ∞

0
v(t)dt <∞, and

lim
t→∞

v(2t)

v(t)
= 0. So 0 ∈ C.

If a ≥ 1 and v(t) =
v0

1 + ta ln2(1 + t)
then v(t) is a decreasing function,

∫ ∞

0
v(t)dt <∞

and

lim
t→∞

v(2t)

v(t)
= lim

t→∞
1 + ta ln2(1 + t)

1 + 2ata ln2(1 + 2t)
=

1

2a
. So

(
0,

1

2

]
⊂ C. It remains to prove that if

c >
1

2
then c/∈ C.

Suppose if possible that lim
t→∞

v(2t)

v(t)
= c, where c >

1

2
. Let ε :=

c− 1/2

2
> 0. Then there

is a number T = T (ε) > 0 such that −ε < v(2t)

v(t)
− c < ε, whenever t > T . We conclude

that
∫ ∞

2T
v(t)dt = 2

∫ ∞

T
v(2t)dt > 2(c−ε)

∫ ∞

T
v(t)dt ≥ 2(c−ε)

∫ ∞

2T
v(t)dt = (1+2ε)

∫ ∞

2T
v(t)dt >

∫ ∞

2T
v(t)dt,

which is a contradiction, and the proof is complete.

Also solved by the proposer.

5508: Proposed by Pedro Pantoja, Natal RN, Brazil

Let a, b, c be positive real numbers such that a+ b+ c = 1. Find the minimum value of

f(a, b, c) =
a

3ab+ 2b
+

b

3bc+ 2c
+

c

3ca+ 2a
.

Solution 1 by Solution by Dionne Bailey, Elsie Campbell, and Charles
Diminnie, Angelo State University, San Angelo, TX

To begin, we note that since a, b, c > 0 and a+ b+ c = 1, the Arithmetic - Geometric
Mean Inequality implies that

a2 + b2 + c2 = (a+ b+ c)
(
a2 + b2 + c2

)

= a3 + b3 + c3 + ab2 + bc2 + ca2 + a2b+ b2c+ c2a

=
(
a3 + ab2

)
+
(
b3 + bc2

)
+
(
c3 + ca2

)
+ a2b+ b2c+ c2a

≥ 2
√
a4b2 + 2

√
b4c2 + 2

√
c4a2 + a2b+ b2c+ c2a

= 3
(
a2b+ b2c+ c2a

)
. (1)

As a result of (1), we have

1 = (a+ b+ c)2

= a2 + b2 + c2 + 2 (ab+ bc+ ca)

≥ 3
(
a2b+ b2c+ c2a

)
+ 2 (ab+ bc+ ca)

=
(
3a2b+ 2ab

)
+
(
3b2c+ 2bc

)
+
(
3c2a+ 2ca

)
. (2)
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Then, using property (2), the convexity of g (x) =
1

x
on (0,∞), and Jensen’s Theorem,

we obtain

f (a, b, c) =
a

3ab+ 2b
+

b

3bc+ 2c
+

c

3ca+ 2a

= ag (3ab+ 2b) + bg (3bc+ 2c) + cg (3ca+ 2a)

≥ g [a (3ab+ 2b) + b (3bc+ 2c) + c (3ca+ 2a)]

= g
[(

3a2b+ 2ab
)

+
(
3b2c+ 2bc

)
+
(
3c2a+ 2ca

)]

=
1

(3a2b+ 2ab) + (3b2c+ 2bc) + (3c2a+ 2ca)

≥ 1

= f

(
1

3
,
1

3
,
1

3

)
.

It follows that under the conditions a, b, c > 0 and a+ b+ c = 1, the minimum value of

f (a, b, c) is f

(
1

3
,
1

3
,
1

3

)
= 1.

Solution 2 by David E. Manes, Oneonta, NY

We will show that the minimum value of f is 1.
By the Arithmetic Mean-Geometric Mean inequality, we get

f(a, b, c) ≥ 3 3

√
a

b(3a+ 2)
· b

c(3b+ 2)
· c

a(3c+ 2)
=

3
3
√

(3a+ 2)(3b+ 2)(3c+ 2)
.

We again use the AM-GM inequality to obtain

3
√

(3a+ 2)(3b+ 2)(3c+ 2) ≤ (3a+ 2) + (3b+ 2) + (3c+ 2)

3
=

3(a+ b+ c) + 6

3
= 3.

Hence,
1

3
√

(3a+ 2)(3b+ 2)(3c+ 2)
≥ 1

3

so that

f(a, b, c) ≥ 3
3
√

(3a+ 2)(3b+ 2)(3c+ 2)
≥ 3 · (1/3) = 1

with equality if and only if a = b = c =
1

3
.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

From Bergström’s and the Arithmetic mean -Geometric mean inequalities,

f(a, b, c) =

(√
a

b

)2

3a+ 2
+

(√
b

c

)2

3b+ 2
+

(√
c

a

)2

3c+ 2
≥

(√
a

b
+

√
b

c
+

√
c

a

)2

3a+ 2 + 3b+ 2 + 3c+ 2
=




√
a

b
+

√
b

c
+

√
c

a

3




2
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≥ 3

√√
a

b

√
b

c

√
c

a
= 1.

Equality is attained iff it occurs in those two inequalities, that is, iff√
a

b

3a+ 2
=

√
b

c
3b+ 2

=

√
c

ba

3c+ 2
and

a

b
=
b

c
=
c

a
. These last identities are true if and only if

a = b = c, that is, if and only if a = b = c =
1

3
. In this case equality is also obtained in

Bergström’s inequality. So, the minimum value of f(a, b, c) is 1, and this occurs if and

only if a = b = c =
1

3
.

Solution 4 by Arkady Alt, San Jose,CA

Since

(
a

3a+ 2
− b

3b+ 2

)((
−1

a

)
−
(
−1

b

))
=

2 (a− b)2
ab (3b+ 2) (3a+ 2)

≥ 0 then triples
(

a

3a+ 2
,

b

3b+ 2
,

c

3c+ 2

)
,

(
−1

a
,−1

b
,−1

c

)
are agreed in order and, therefore, by the

Rearrangement Inequality
∑
cyc

a

3a+ 2
·
(
−1

a

)
≥∑

cyc

a

3a+ 2
·
(
−1

b

)
⇐⇒

∑
cyc

a

(3a+ 2) b
≥∑

cyc

a

3a+ 2
· 1

a
=
∑
cyc

1

3a+ 2
.

Also, by Cauchy Inequality
∑
cyc

(3a+ 2) ·∑
cyc

1

3a+ 2
≥ 9 ⇐⇒ 9 ·∑

cyc

1

3a+ 2
≥ 9 ⇐⇒

∑
cyc

1

3a+ 2
≥ 1.Thus, f(a, b, c) ≥ 1 and since f(

1

3
,
1

3
,
1

3
) = 1 we may conclude that

min f(a, b, c) = 1.

Solution 5 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

Since c = 1− a− b, then we have:

f(a, b, c) =
a

3ab+ 2b
+

b

3b(1− a− b) + 2(1− a− b) +
1− a− b

3(1− a− b)a+ 2a
.

That means that we may assume the function:

g(a, b) =
a

3ab+ 2b
− b

(3b+ 2)(a+ b− 1)
+

a+ b+−1

a(3a+ 3b− 5)
.

To find the stationary points of g(a, b), work out
∂g

∂a
and

∂g

∂b
and set both to zero .

This gives two equations for two unknowns a and b. We may solve these equations for a
and b (often there is more than one solution). Let (x, y) be a stationary point. If gaa > 0
and gbb > 0 at (x, y) then (x, y) is a minimum point . So,

∂g

∂a
= −(a+ b− 1)(6a+ 3b− 5)

a2(3a+ 3b− 5)2
− 3a

b(3a+ 2)2
+

b

(3b+ 2)(a+ b− 1)2
+

1

3ab+ 2b
+

1

a(3a+ 3b− 5)
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∂g

∂b
= − a

(b2(3a+ 2)
+

b(3a+ 6b− 1)

(3b+ 2)2(a+ b− 1)2
− 1

(3b+ 2)(a+ b− 1)
+

1

a(3a+ 3b− 5)
− 3(a+ b− 1)

a(3a+ 3b− 5)2
,

and for (a, b) =

(
1

3
,
1

3

)
, we have:

min g(a, b) = min

[
a

3ab+ 2b
− b

(3b+ 2)(a+ b− 1)
+

a+ b− 1

a(3a+ 3b− 5)

]
= 1.

and for (a, b) =

(
1

3
,
1

3

)
, we have:

min g(a, b) = min

[
a

3ab+ 2b
− b

(3b+ 2)(a+ b− 1
+

a+ b− 1

a(3a+ 3b− 5)

]
= 1.

Solution 6 by Albert Stadler, Herrliberg, Switzerland

We will prove that the minimum value equals 1 and the minimum is assumed if and only
if a = b = c = 1/3. To that end we must prove that

f(a, b, c) =
a(a+ b+ c)

3ab+ 2b(a+ b+ c)
+

a(a+ b+ c)

3ab+ 2b(a+ b+ c)
+

a(a+ b+ c)

3ab+ 2b(a+ b+ c)
≥ 1.

We clear denominators and get the equivalent inequality

10
∑

cycl

a4b2+24
∑

cycl

a3b3+18
∑

cycl

a4c2+4
∑

cycl

a5c ≥ 2
∑

cycl

a4bc+15
∑

cycl

a3b2c+11
∑

cycl

a3bc2+28
∑

cycl

a2b2c2. (1)

By the (weighted)AM-GM inequality,

∑

cycl

a4b2 +
∑

cycl

a4c2 ≥ 2
∑

cycl

a4bc,

15
∑

cycl

a3b3 = 15
∑

cycl

(
2

3
a3b3 +

1

3
c3a3

)
≥ 15

∑

cycl

a3b2c,

11
∑

cycl

a4c2 = 11
∑

cycl

(
2

3
a4c2 +

1

6
b4a2 +

1

6
c4b2

)
≥ 11

∑

cycl

a3bc2,

9
∑

cycl

a4b2 ≥ 27a2b2c2,

9
∑

cycl

a3b3 ≥ 27a2b2c2,

6
∑

cycl

a4c2 ≥ 18a2b2c2,

4
∑

cycl

a5c ≥ 12a2b2c2,

and (1) follows if we add the last seven inequalities. In all seven inequalities equality
holds if and only if a = b = c.
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Comment by Stanley Rabinowitz of Chelmsford, MA. Problems such as this are
easily solvable by computer algebra systems these days. For example; the Mathematica
command
Minimize [{a/(3a ∗ b + 2b) + b/(3b ∗ c + 2c) + c/(3c ∗ a + 2a), a > 0 && b > 0 && c > 0 &&
a+ b+ c = 1}, {a, b, c}] responds by saying that the minimum value is 1 and occurs

when a = b = c =
1

3
.

Also solved by Konul Aliyeva (student), ADA University, Baku, Azerbaijan;
Michel Bataille, Rouen, France; Ed Gray, Highland Beach, FL; Tran Hong
(student), Cao Lanh School, Dong Thap, Vietnam; Sanong Huayrerai,
Rattanakosinsomphothow School, Nakon, Pathom, Thailand; Seyran
Ibrahimov, Baku State University, Maasilli, Azerbaijan; Kee-Wai Lau, Hong
Kong, China; Moti Levy, Rehovot, Israel; Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy; Stanley Rabinowitz of
Chelmsford, MA; Neculai Stanciu “George Emil Palade” School, Buză,
Romania and Titu Zvonaru, Comănesti, Romania; Daniel Văcaru, Pitesti,
Romania; Nicusor Zlota “Traian Vuia Technical College, Focsani, Romania,
and the proposer.

5509: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let x, y, z be positive real numbers that add up to one and such that

0 <
x

y
,
y

z
,
z

x
<
π

2
. Prove that

√
x cos

(y
z

)
+

√
y cos

( z
x

)
+

√
z cos

(
x

y

)
<

3

5

√
5.

Solution 1 by Michel Bataille, Rouen, France

The Cauchy-Schwarz inequality provides

√
x

√
cos
(y
z

)
+
√
y

√
cos
( z
x

)
+
√
z

√
cos

(
x

y

)
≤ (x+y+z)1/2

(
cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

))1/2

.

Since x+ y + z = 1, it follows that the left-hand side L of the proposed inequality
satisfies

L ≤
(

cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

))1/2

.

Thus, it suffices to show that

cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

)
<

9

5
. (1)

Now, Jensen’s inequality applied to the cosine function, which is concave on (0, π2 ), yields

cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

)
≤ 3 cos

(
y/z + z/x+ x/y

3

)
. (2)

14

X
ia
ng
’s
T
ex
m
at
h



But we have 1 = 3

√
y
z · zx · xy ≤

y/z+z/x+x/y
3 (by AM-GM) and

0 < y/z+z/x+x/y
3 <

3·π
2
3 = π

2 , hence

cos

(
y/z + z/x+ x/y

3

)
≤ cos(1)

(since the cosine function is decreasing on (0, π2 )).

Then (2) gives cos
(y
z

)
+ cos

(
z
x

)
+ cos

(
x
y

)
≤ 3 cos(1). There just remains to remark that

cos(1) < 0.6 = 3
5 to obtain the desired inequality (1).

Solution 2 by Tran Hong (student), Cao Lanh School, Dong Thap, Vietnam

LHS
BCS
≤ √x+ y + z

√
cos
(y
z

)
+ cos

( z
x

)
+ cos

(x
y

)

=
√

1 ·
√

cos
(y
z

)
+ cos

( z
x

)
+ cos

(x
y

)
(1)

Let f(t) = cos t, t ∈
(

0,
π

2

)
⇒ f ′′(t) = − cos t < 0

Using Jensen’s we have:

f
(y
z

)
+ f

( z
x

)
+ f

(x
y

)
≤ 3 · f

(
y
z + z

x + x
y

3

)

= 3 cos

(
y
z + z

x + x
y

3

)
≤ 3 cos(1).

⇒ {(1) ≤
√

3 cos(1) ≈ 1, 2731 < 3 ·
√

5

5
≈ 1, 3416.

Solution 3 by David E. Manes, Oneonta, NY

Let J =
√
x cos

(y
z

)
+
√
y cos

(
z
x

)
+

√
z cos

(
x
y

)
. We will show that J ≤

√
3 cos 1 <

3

5

√
5.

By the Cauchy-Schwarz inequality, one obtains

J =

√
x cos

(y
z

)
+

√
y cos

( z
x

)
+

√
z cos

(
x

y

)
≤ √x+ y + z

√
cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

)

=

√
cos
(y
z

)
+ cos

( z
x

)
+ cos

(
x

y

)
.

At the risk of being redundant, note that

J ≤
√∑

cyc

cos
(y
z

)
=

√
(x+ y + z)

∑

cyc

cos
(y
z

)

=

√
(x+ y + z) cos

(y
z

)
+ (x+ y + z) cos

( z
x

)
+ (x+ y + z) cos

(
x

y

)
.
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Since the cosine function is concave on the interval (0, π/2), it follows by Jensen’s
inequality that for each of the following terms in the cyclic sum under the square root
sign, we get

x cos
(y
z

)
+ y cos

( z
x

)
+ z cos

(
x

y

)
≤ cos

(
xy

z
+
yz

x
+
xz

y

)

y cos
(y
z

)
+ z cos

( z
x

)
+ x cos

(
x

y

)
≤ cos

(
y2

z
+
z2

x
+
x2

y

)

z cos
(y
z

)
+ x cos

( z
x

)
+ y cos

(
x

y

)
≤ cos(y + z + x) = cos 1.

Therefore, J ≤
√

cos

(
xy

z
+
yz

x
+
zx

y

)
+ cos

(
y2

z
+
z2

x
+
x2

y

)
+ cos 1. For the first

term,
xy

z
+
yz

x
+
zx

y
, in parentheses above, observe that using the Arithmetic

Mean-Geometric Mean inequality, one obtains

1

2

(xy
z

+
yz

x

)
≥
√
xy2z

xz
= y,

1

2

(
yz

x
+
zx

y

)
≥
√
xyz2

xy
= z,

1

2

(
zx

y
+
xy

z

)
≥
√
x2yz

yz
= x.

Summing the above terms yields

xy

z
+
yz

x
+
zx

y
≥ x+ y + z = 1. (1)

Using the Cauchy-Schwarz inequality in the Engel-Titu form for the second term in
parentheses in J above, one immediately obtains

y2

z
+
z2

x
+
x2

y
≥ (y + z + x)2

z + x+ y
= 1. (2)

Since the cosine function is decreasing on the interval [0, π/2] and as a result of

inequalities (1) and (2), it follows that cos
(
xy
z + yz

x + zx
y

)
≤ cos 1 and

cos
(
y2

z + z2

x + x2

y

)
≤ cos 1. Therefore,

J =

√
x cos

(y
z

)
+

√
y cos

( z
x

)
+

√
z cos

(
x

y

)
≤
√

3 cos 1.

Finally, note that for each of the above steps the inequalities become equalities if and

only if x = y = z =
1

3
.

Solution 4 by Daniel Văcaru, Pitesti, Romania

One has
√
x cos

y

z
+

√
y cos

z

x
+

√
z cos

x

y
≤ √x+ y + z︸ ︷︷ ︸ ·

√
cos

y

z
+ cos

z

x
+ cos

x

y
=

√
cos

y

z
+ cos

z

x
+ cos

x

y
=
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√
sin
(π

2
− y

z

)
+ sin

(π
2
− z

x

)
+ sin

(
π

2
− x

y

) ︷︸︸︷
<

√(π
2
− y

z

)
+
(π

2
− z

x

)
+

(
π

2
− x

y

)

=

√
3
π

2
−
(
y

z
+
z

x
+
x

y

)
.

The inequality under the brace is true because sinx < x, ∀x ∈
(
0, π2

)
. On the other

hand, one knows that
y

z
+
z

x
+
x

y
≥ 3 by the MA-MG inequality. Therefore one has

√
x cos

y

z
+

√
cos

z

x
+

√
cos

x

y
<

√
3
π

2
− 3 =

√
3 ·
(π

2
− 1
)
<

√
3 ·
(

32

20
− 1

)
=

√
3 · 12

20
=

3√
(5

=
3

5

√
5.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Ed Gray, Highland
Beach, FL; Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel;
Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome,
Italy; Ioannis D. Sfikas, National and Kapodistrian University of Athens,
Greece; Albert Stadler, Herrliberg, Switzerland and the proposer.

5510: Proposed by Ovidiu Furdui and Alina Ŝıntămărian both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate ∞∑

n=1

[4n (ζ(2n)− 1)− 1] ,

where ζ denotes the Riemann zeta function.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

∞∑

n=1

(4n(ζ(2n)− 1)− 1) =

∞∑

n=1

(
4n

( ∞∑

m=2

1

m2n

)
− 1

)
=

∞∑

n=1

∞∑

m=3

(
2

m

)2n

=

=

∞∑

m=3

∞∑

n=1

(
2

m

)2n

=

∞∑

m=3

(
2

m

)2

1−
(

2

m

)2 =

∞∑

m=3

4

m2 − 4
=

∞∑

m=3

(
1

m− 2
− 1

m+ 2

)
=

= 1 +
1

2
+

1

3
+

1

4
=

25

12
.

Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy
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∞∑

n=1

[4n(ζ(2n)− 1)− 1] =

∞∑

n=1

[4n
∞∑

k=2

1

k2n
− 1] =

∞∑

n=1

∞∑

k=3

4n

k2n
=

=

∞∑

k=3

∞∑

n=1

4n

k2n
=

∞∑

k=3

4

k2
1

(1− 4
k2

)
=

∞∑

k=3

4

k2 − 4
=

= lim
n→∞

n∑

k=3

[
1

k − 2
− 1

k − 1

]
+ lim
n→∞

n∑

k=3

[
1

k − 1
− 1

k

]
+ lim
n→∞

n∑

k=3

[
1

k
− 1

k + 1

]
+

+ lim
n→∞

n∑

k=3

[
1

k + 1
− 1

k + 2

]
= 1 +

1

2
+

1

3
+

1

4
=

25

12

Solution 3 by Moti Levy, Rehovot, Israel

Let

S :=
∞∑

n=1

(4n (ζ (2n)− 1)− 1) , SN :=
N∑

n=1

(4n (ζ (2n)− 1)− 1) .

Then

SN =
N∑

n=1

((
22n

∞∑

k=2

1

k2n

)
− 1

)
=

(
N∑

n=1

∞∑

k=2

22n

k2n

)
−N

=
∞∑

k=3

N∑

n=1

22n

k2n
=
∞∑

k=3

4

k2 − 4

(
1−

(
2

k

)2N
)

S = lim
N→∞

SN =

∞∑

k=3

4

k2 − 4
=

∞∑

k=3

(
1

k − 2
− 1

k + 2

)

=

∞∑

k=1

1

k
−
∞∑

k=5

1

k
= 1 +

1

2
+

1

3
+

1

4
=

25

12
.

Now, as a bonus, let us evaluate parametrized version of the above sum:

S (t) :=

∞∑

n=1

(
t2n (ζ (2n)− 1)− t2n

22n

)
, SN (t) :=

N∑

n=1

(
t2n (ζ (2n)− 1)− t2n

22n

)

Then

S (t)N =

N∑

n=1

((
t2n

∞∑

k=2

1

k2n

)
− t2n

22n

)
=

(
N∑

n=1

∞∑

k=2

t2n

k2n

)
−

N∑

n=1

t2n

22n

=

( ∞∑

k=2

N∑

n=1

t2n

k2n

)
−

N∑

n=1

t2n

22n
=
∞∑

k=3

N∑

n=1

t2n

k2n
=
∞∑

k=3

t2

k2 − t2

(
1−

(
t

k

)2N
)

S (t) = lim
N→∞

S (t)N =
∞∑

k=3

t2

k2 − t2
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Let us assume that t is not a positive integer and satisfies the inequality t > −1, then

∞∑

k=1

1

k2 − t2 =
ψ (t+ 1)− ψ (−t+ 1)

2t
,

where ψ (t) is the Digamma function.

ψ (−z + 1) = ψ (z) + π cot (πz)

∞∑

k=1

1

k2 − t2 =
1

2t

(
1

t
− cot (πt)

)

S (t) = t2
1

2t

(
1

t
− π cot (πt)

)
− t2

12 − t2 −
t2

22 − t2

=
5t4 − 15t2 + 4− πt

(
t4 − 5t2 + 4

)
cot (πt)

2 (t4 − 5t2 + 4)
.

We summarize our result as follows,

S (t) =





5t4 − 15t2 + 4− πt
(
t4 − 5t2 + 4

)
cot (πt)

2 (t4 − 5t2 + 4)
, |t| < 3

lim
t→1

5t4 − 15t2 + 4− πt
(
t4 − 5t2 + 4

)
cot (πt)

2 (t4 − 5t2 + 4)
=

5

12
, |t| = 1,

lim
t→2

5t4 − 15t2 + 4− πt
(
t4 − 5t2 + 4

)
cot (πt)

2 (t4 − 5t2 + 4)
=

25

12
, |t| = 2.

Remark: The function S (t) , as defined above, is continuous in the interval |t| < 3.

Reference:
Borwein, Jonathan; Bradley, David M.; Crandall, Richard (2000). ”Computational
Strategies for the Riemann Zeta Function”. J. Comp. App. Math. 121 (1–2): 247–296.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Denote the sum of the problem by S so that S =
∞∑

n=1

∞∑

k=3

(
2

k

)2n

.

Since the summands are positive, so interchanging the order of summation, we have

S =

∞∑

k=3

∞∑

n=1

(
2

k

)2n

= 4
∞∑

k=3

1

k2 − 4
.

For any integer M ≥ 3, we have

4

∞∑

k=3

1

k2 − 4
=

M∑

k=3

(
1

k − 2
− 1

k + 2

)
=

25

12
−

M+2∑

k=M−1

1

k
.

It follows that S =
25

12
.
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Comment by Editor : Ed Gray of Highland Beach, FL wrote: “I didn’t know any
recursive formula that would help, so I did the sum by brute force, computing the sum
of the first 10 terms, getting a result of 2.0828.....This aroused my curiosity, so I went to
Wolfram-alpha and sought the sum for a great number of terms, like 100 and 300. It
became clear that the answer is 2.0833333333 · · · forever. Converting this to a fraction,
we get a beautiful answer of 25/24”. He continued on saying that he did not actually
solve the problem. This is being mentioned here as a very useful heuristic for getting a
feel for the problem, and as a caveat that there are an infinite number of different ways
to express a closed form representation for a specific decimal.

Also solved by Michel Bataille, Rouen, France; Bruno Salgueiro Fanego,
Viveiro, Spain; Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece, and the proposer.

Mea Culpa

Mary Wagner-Krankel of St. Mary’s University in San Antonio, TX should
have been credited with having solved problem 5500.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
April 15, 2019

5529: Proposed by Kenneth Korbin, New York, NY

Convex cyclic quadrilateral ABCD has integer length sides and integer area. The
distance from the incenter to the circumcenter is 91. Find the length of the sides.

5530: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygon ABCD is an 11 by 12 rectangle (AB > AD). Points P,Q,R, and S are on sides
AB,BC,CD, and DA, respectively, such that PR and SQ are parallel to AD and AB,
respectively. Moreover, X = PR ∩QS. If the perimeter of rectangle PBQX is 5/7 the
perimeter of rectangle SAPX, and the perimeter of rectangle RCQX is 9/10 the
perimeter of rectangle PBQX, find the area of rectangle SDRX.

5531: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,”
Drobeta Turnu-Severin, Mehedinti, Romania

For real numbers x, y, z prove that if x, y, z > 1 and xyz = 2
√

2, then

xy + yz + zx + yx + zy + xz > 9.

5532: Proposed by Arkady Alt, San Jose, CA

Let a, b, c be positive real numbers and let an =
an+ b

an+ c
, n ∈ N . For any natural number

m find lim
n→∞

nm∏

k=n

ak.

5533: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find the value of the sum
+∞∑

n=1

n2αn

(n− 1)!

for any real number α > 0. (Here, 0! = 1! = 1).
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5534: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate

∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy.

Solutions

5511: Proposed by Kenneth Korbin, New York, NY

A trapezoid with perimeter 58 + 14
√

11 is inscribed in a circle with diameter 17 + 7
√

11.
Find its dimensions if each of its sides is of the form a+ b

√
11 where a and b are positive

integers.

Solution 1 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

We define four points

P =

(
b

2
,

√
d2 − b2

2

)

Q =

(
− b

2
,

√
d2 − b2

2

)

R =

(
−a

2
,−
√
d2 − a2

2

)

S =

(
a

2
,−
√
d2 − a2

2

)

where a = 20 + 6
√

11, b = 12 + 2
√

11, c = 13 + 3
√

11, and d = 17 + 7
√

11. Note that PQ
and SR are parallel and that OP = OQ = OR = OS = d/2. Thus PQRS is a trapezoid
inscribed in the circle with center O = (0, 0) and diameter d.
We have PQ = b, SR = a, and PS = QR. Now

(PS)2 =

(
b

2
− a

2

)2

+

(√
d2 − b2

2
+

√
d2 − a2

2

)2

.

Thus

4(PS)2 = (b− a)2 + (
√
d2 − b2 +

√
d2 − a2)2

= 2d2 − 2ab+ 2
√
d2 − b2

√
d2 − a2

so
2(PS)2 = d2 − ab+

√
d2 − b2

√
d2 − a2. (1)

We have

(d2 − b2)(d2 − a2) = 16300 + 4800
√

11

= (80 + 30
√

11)2
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and
d2 − ab = 456 + 126

√
11.

Therefore, by (1), we have

(PS)2 = 268 + 78
√

11

= c2.

Finally, the perimeter of PQRS is

PQ+QR+RS + SP = b+ c+ a+ c

= 58 + 14
√

11.

Thus the desired trapezoid has parallel sides of lengths a = 20 + 6
√

11 and
b = 12 + 2

√
11 and the other two sides of length c = 13 + 3

√
11.

Here it is.

O

PQ

R S

b

c

a

c

Solution 2 by Kee-Wai Lau, Hong Kong, China

We show that the dimensions of the trapezoid are 12 + 2
√

11, 20 + 6
√

11, 13 + 3
√

11,
and 13 + 3

√
11.

Let ABCD be the trapezoid with AB||CD. Since it is inscribed in a circle so it is in
fact isosceles. Let AB = x, CD = y, AD = BC = z, BD = w, with x ≥ y.

Since the perimeter of the trapezoid is 58 + 14
√

11 so

x+ y + 2z = 58 + 14
√

11 (1)

Applying the cosine formula respectively to triangles ABD and CDB, we obtain

cos 6 DAB =
x2 + z2 − w2

2xz
and cos 6 DCB =

y2 + z2 − w2

2yz
. From 6 DAB + 6 DCB = π,

we have cos 6 DAB = − cos 6 DCB, and deduce that

w2 = xy + z2. (2)
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Let h be the length of the perpendicular from D to AB, and d be the diameter of the

circumcircle of 4ABD. By the Pythagorean theorem, we have

h2 = z2 −
(
x− y

2

)2

=
(2z + x− y)(2z − x+ y)

4
. Applying the sine formula to

triangle ABD, we have d =
w

sin 6 DAB
=

w(
h

z

) or dh = zw. Since d = 17 + 7
√

11, by

(2) we obtain from d2h2 − z2w2 = 0 that

(414 + 119
√

11)(2z + x− y)(2z − x+ y)(2z − x+ y)− 2z2(xy + z2) = 0. (3)

Let x = p+ q
√

11 and y = r + s
√

11, where p, q, r, s are positive integers. We substitute

z of (1) into (3) so that the left side of (3) equals f + h
√

11 where f and g are integers

depending only on p, q, r, s. Thus, (3) holds if and only if f = g = 0.

From (1), we see that both p and r do not exceed 56 and that both q and s do not
exceed 12. By a compute search, we find that (3) holds if and only if
p = 20, q = 6, r = 12, s = 2. Hence our solution for the dimensions of the trapezoid.

Solution 3 by Brian D. Beasley, Presbyterian College, Clinton, SC

Since the trapezoid must be isosceles, we denote the lengths of the bases by x and y
(with x ≤ y) and the length of each leg by z. Then (see [1]) the radius r of the circle is
given by

r = z

√
xy + z2

4z2 − (x− y)2
.

We write x = a+ b
√

11 and y = c+ d
√

11, where a, b, c, and d are positive integers.
Then z = (58 + 14

√
11− x− y)/2 = e+ f

√
11, with e = 29− a/2− c/2 and

f = 7− b/2− d/2 also positive integers. Using r = (17 + 7
√

11)/2, we eventually obtain
t+ u

√
11 = v + w

√
11, where:

t = 414(4e2+44f2−a2+2ac−c2−11b2+22bd−11d2)+1309(8ef−2ab+2ad+2bc−2cd);

u = 414(8ef−2ab+2ad+2bc−2cd)+119(4e2 +44f2−a2 +2ac−c2−11b2 +22bd−11d2);

v = (2e2 + 22f2)(ac+ 11bd+ e2 + 11f2) + 44ef(ad+ bc+ 2ef);

w = (2e2 + 22f2)(ad+ bc+ 2ef) + 4ef(ac+ 11bd+ e2 + 11f2).

Setting t = v and u = w, we obtain the following results via computer search:

x = 12 + 2
√

11, y = 20 + 6
√

11, and z = 13 + 3
√

11.

[1] https://en.wikipedia.org/wiki/Isosceles trapezoid

Editor′s comments : Computers were called into service on this problem and that
seemed to bother some of the solvers. David Stone and John Hawkins of Georgia
Southern University also obtained the correct result and described their solution as
follows: “We do not have an algebraic derivation for this result. Instead, we wrote
algebraic conditions on the sides of the trapezoids, used the fact that there are only
finitely many chords of the form a+ b

√
11, (i.e. possibilities for the sides), then used a

BASIC program to test them and find the solution amongst all possibilities.” They went
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on to say that “another approach would be using analytic geometry. This lead us to the
same end game−−write a program to check all possible values.”

Ken Korbin, proposer of the problem, attached a note to the problem giving us some
insights into how he constructed it. He stated: Begin with a circle with diameter K3

with K ≥ 3. It is possible to inscribe in this circle a trapezoid with parallel sides of
lengths 2K2 and 6K2 − 32, and with each slant side of length K3 − 8K. He then
checked this statement by computing:

Arcsin

(
2K2

K3

)
+2Arcsin

(
K3 − 8K

K3

)
=Arcsin

(
6K2 − 32

K3

)
.

For this trapezoid, Perimeter = 2K3 + 8K2 − 16K − 32.

In this problem, let

K = 1 +
√

11 ≈ 4.3166

Diameter = K3 = 34 + 14
√

11 and the sides of the trapezoid are:

24 + 4
√

11, 40 + 12
√

11, 26 + 6
√

11 and 26 + 6
√

11.

Divide each length by 2 to get diameter 17 + 7
√

11 and sides





12 + 2
√

11

20 + 6
√

11

13 + 3
√

11

13 + 3
√

11

Perimeter = 58 + 14
√

11

Check to see if this trapezoid can be inscribed in a circle with diameter = 17 + 7
√

11.

Check:

Arcsin

(
12 + 2

√
11

17 + 7
√

11

)
+2Arcsin

(
13 + 3

√
11

17 + 7
√

11

)
=Arcsin

(
20 + 6

√
11

17 + 7
√

11

)
.

Also solved by David Stone and John Hawkins, Georgia Southern
University, Statesboro, GA, and the proposer.

5512: Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain

If ak > 0, (k = 1, 2, . . . , n) then
n

n∑

k=1

1
1
k + ak

− n
n∑

k=1

1

ak

≥ 2

n+ 1
.

Solution 1 by Moti Levy, Rehovot, Israel

F (x) :=





2
n+1 , for x = 0,

n∑n
k=1

1
1
k
+akx

− n∑n
k=1

1
akx

, for x > 0. (1)
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Note that F (x) is continuous at x = 0, since limx→0 F (x) = F (0).

lim
x→0

F (x) = lim
x→0

n∑n
k=1

1
1
k
+akx

− lim
x→0

n∑n
k=1

1
akx

=
n∑n
k=1

1
1
k

− 0 =
2

n+ 1
.

Thus, in terms of F (x) , our original inequality is F (1) ≥ F (0) .
Now we show that dF

dx ≥ 0 for x > 0 (i.e., F (x) is monotone increasing for x > 0),

dF

dx
= − n

(∑n
k=1

1
1
k
+akx

)2
d
(∑n

k=1
1

1
k
+akx

)

dx
+

n
(∑n

k=1
1
akx

)2
d
(∑n

k=1
1
akx

)

dx
(2)

= n




∑n
k=1

ak

( 1
k
+akx)

2

(∑n
k=1

1
1
k
+akx

)2 −
∑n

k=1
ak

(akx)
2

(∑n
k=1

1
akx

)2


 . (3)

dF
dx ≥ 0 is equivalent to

∑n
k=1

ak

( 1
k
+akx)

2

(∑n
k=1

1
1
k
+akx

)2 ≥
∑n

k=1
ak

(akx)
2

(∑n
k=1

1
akx

)2 ,

or to (
n∑

k=1

ak(
1
k + akx

)2

)(
n∑

k=1

1

akx

)2

≥
(

n∑

k=1

ak

(akx)2

)(
n∑

k=1

1
1
k + akx

)2

.

We simplify by multiplying both sides by x2 and obtain,

(
n∑

k=1

ak(
1
k + akx

)2

)(
n∑

k=1

1

ak

)
≥
(

n∑

k=1

1
1
k + akx

)2

(4)

But (5) is a direct consequence of the Cauchy-Schwarz inequality.
We conclude that F (x) ≥ F (0) in the interval [0, 1] , hence F (1) ≥ F (0) .

Solution 2 by Michel Bataille, Rouen, France

Since 2
n+1 = n

n∑
k=1

k
, it suffices to show that more generally

(∑
(ak + bk)

−1)−1 ≥
(∑

a−1k
)−1

+
(∑

b−1k
)−1

(1)

holds whenever ak, bk > 0, (k = 1, 2, . . . , n). [The problem is the particular case bk = 1
k .]

(Here and in what follows
∑

means
n∑
k=1

.)

We propose two proofs of (1).

Proof 1:
If p is a negative real number, then

(
∑

(ak + bk)
p)1/p ≥

(∑
apk
)1/p

+
(∑

bpk
)1/p

.

(see G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, C.U.P., 1934, p. 30). Taking
p = −1 gives (1).
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Proof 2:
Let xk = 1

ak
, yk = 1

bk
and Xn =

∑
xk, Yn =

∑
yk. It is readily seen that (1) rewrites as

Ln ≤ Rn where Ln =
∑ xkyk

xk+yk
and Rn = XnYn

Xn+Yn
.

Since 4Ln =
∑ (xk+yk)

2−(xk−yk)2
xk+yk

= Xn + Yn − Zn where Zn =
∑ (xk−yk)2

xk+yk
, the inequality

Ln ≤ Rn is successively equivalent to

Xn + Yn − Zn ≤
4XnYn
Xn + Yn

(Xn + Yn)2 − 4XnYn ≤ (Xn + Yn)Zn

(Xn − Yn)2 ≤ (Xn + Yn)Zn

(
∑

(xk − yk))2 ≤ (
∑

(xk + yk))
(∑ (xk−yk)2

xk+yk

)
.

With uk =
√
xk + yk, vk = xk−yk√

xk+yk
, the latter is just (

∑
ukvk)

2 ≤ (
∑
u2k)(

∑
v2k), which

holds by the Cauchy-Schwarz inequality. Thus Ln ≤ Rn holds as well and we are done.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Adrian Naco, Polytechnic University of Tirana, Albania; Albert
Stadler, Herrliberg, Switzerland, and the proposer.

5513: Proposed by Michael Brozinsky, Central Islip, NY

In an n× n× n cube partitioned into n3 congruent cubes by n− 1 equally spaced planes
parallel to each pair of parallel faces, there are 20 times as many non-cubic rectangular
parallelepipeds that could be formed as were cubic parallelepipeds. What is n?

Solution 1 by Albert Stadler, Herrliberg, Switzerland

The number of cubic parallelepipeds equals

n∑

r=1

(n+ 1− r)3 =
n∑

r=1

r3 =

(
n(n+ 1)

2

)2

,

while the number of non-cubic rectangular parallelepipeds equals

∑

1≤r,s,t≤n
r,s,t not all equal

(n+ 1− r)(n+ 1− s)(n+ 1− t) =

(
n∑

r=1

(n+ 1− r)
)3

−
n∑

r=1

(n+ 1− r)3 =

=

(
n∑

r=1

r

)3

−
n∑

r=1

r3 =

(
n(n+ 1)

2

)3

−
(
n(n+ 1)

2

)2

.

Therefore (
n(n+ 1)

2

)3

−
(
n(n+ 1)

2

)2

= 20

(
n(n+ 1)

2

)2

,

which implies that
n(n+ 1)

2
= 21 and finally, n = 6.

Solution 2 by Kee-Wai Lau, Hong Kong, China
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Clearly the total number of parallelepipeds is

(
n+ 1

2

)3

=
n3(n+ 1)3

8
.

It can be counted readily that the number of (n− k)× (n− k)× (n− k) cubic

parallelepipeds equals (k+ 1)3 for k = 0, 1, 2, · · · , n− 1. Hence the total number of cubic

parallelepipeds equals
n−1∑

k=0

(k + 1)3 =
n2(n+ 1)2

4
. So according to the given conditions of

the problem we have

n3(n+ 1)3

8
− n2(n+ 1)2

4
= 20

(
n2(n+ 1)2

4

)
,

which reduces to the equation n2 + n− 42 = 0. It follows that n = 6.

Also solved by the proposer.

5514: Proposed by D. M. Batinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania

If a ∈
(

0,
π

2

)
and b = arcsin a, then calculate lim

n→∞
n
√
n!

(
sin

(
b · n+1

√
(2n+ 1)!!

n
√

(2n− 1)!!

)
− a
)

.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Let
n+1
√

(2n+ 1)!!
n
√

(2n− 1)!!

.
= qn.

Result I. lim
n→∞

qn = 1.

It is equivalent to

lim
n→∞

ln(2n+ 1)!!

n+ 1
− ln(2n− 1)!!

n
= 0 (1)

that is

lim
n→∞

1

n+ 1
ln

(2n+ 2)!

2n+1(n+ 1)!
− 1

n
ln

(2n)!

2nn!
= 0

Let’s break the above limit as

lim
n→∞

(
ln(2n+ 2)!

n+ 1
− ln(2n)!

n

)
+ lim
n→∞

(
ln(2−n−1)
n+ 1

− ln(2−n)

n

)
+

+ lim
n→∞

(− ln((n+ 1)!)

n+ 1
+

lnn!

n

)

lim
n→∞

[
ln(2n+ 2)!

n+ 1
− ln(2n)!

n

]
= lim

n→∞

[
ln(2n)!

n+ 1
− ln(2n)!

n
+

ln(2n+ 2)

n+ 1
+

ln(2n+ 1)

n+ 1

]
=

= lim
n→∞

− ln(2n)!

n(n+ 1)
=︸︷︷︸
C.S.

lim
n→∞

− ln(2n+ 2)!− ln(2n)!

(n+ 1)(n+ 2)− n(n+ 1)
=

= lim
n→∞

− ln((2n+ 2)(2n+ 1))

2n+ 2
= 0
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C.S. stands for Cesàro–Stolz.

ln(2−n−1)
n+ 1

− ln(2−n)

n
= 0

lim
n→∞

− ln((n+ 1)!)

n+ 1
+

lnn!

n
= lim

n→∞
lnn!

n
− − ln((n)!)

n+ 1
− lim
n→∞

− ln(n+ 1)

n+ 1
=

= lim
n→∞

lnn!

n(n+ 1)
=︸︷︷︸
C.S.

lim
n→∞

ln((n+ 1)!)− lnn!

(n+ 1)(n+ 2)− n(n+ 1)
= lim

n→∞
ln(n+ 1)

2n+ 2
= 0

Result II.

lim
n→∞

n
√
n!

n
=︸︷︷︸
C.S.

lim
n→∞

(
n!

nn

)n
= lim

n→∞
(n+ 1)!

(n+ 1)n+1

nn

n!
=

1

e

Result III.

lim
n→∞

n(qn − 1) = lim
n→∞

n ln qn ·
qn − 1

ln qn
= lim

n→∞
n ln qn =

= lim
n→∞

n

[
ln(2n+ 1)!!

n+ 1
− ln(2n− 1)!!

n

]
= lim

n→∞
ln

(2n+ 1)!!

(2n− 1)!!
− ln(2n+ 1)!!

n+ 1
=

= lim
n→∞

(n+ 1) ln(2n+ 1)− ln(2n+ 1)!!

n+ 1
=︸︷︷︸
C.S.

= lim
n→∞

(n+ 2) ln(2n+ 3)− (n+ 1) ln(2n+ 1)− ln((2n+ 1)!!) + ln((2n− 1)!!)

n+ 2− n− 1
=

= lim
n→∞

(n+ 2) ln

(
1 +

2

2n+ 1

)
= 1

The limit we are searching is

lim
n→∞

n
√
n!

n
n [sin(bqn)− sin b] = lim

n→∞
n

e
2


sin

b(qn − 1)

2
cos

b(qn + 1)

2︸ ︷︷ ︸
→
√
1−a2


 =

= lim
n→∞

2

e

√
1− a2n(qn − 1)

sin b(qn−1)
2

qn − 1
=
b

e

√
1− a2 lim

n→∞
n(qn − 1) =

=
b

e

√
1− a2

|a| ≤ 1 should have been in the statement.

Solution by 2 Moti Levy, Rehovot, Israel

(2n− 1)!! =
(2n)!

2nn!
. (1)

Using the Stirling ’s asymptotic formula, we have

n! ∼ nn

en
. (2)
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Applying (2) to (1) yields

n
√
n! ∼ n

e
,

n
√

(2n− 1)!! ∼ 2n

e
, n+1

√
(2n+ 1)!! ∼ 2n+ 2

e
,

n+1
√

(2n+ 1)!!
n
√

(2n− 1)!!
∼ 2n+ 2

e

e

2n
= 1 +

1

n
.

n
√
n!

(
sin

(
b

n+1
√

(2n+ 1)!!
n
√

(2n− 1)!!

)
− a
)
∼ n

e

(
sin

(
b

(
1 +

1

n

))
− sin b

)

= 2
n

e
sin

b
(
1 + 1

n

)
− b

2
cos

b
(
1 + 1

n

)
+ b

2

=
b

e

(
sin b

2n
b
2n

)
cos

(
b

(
1 +

1

2n

))
→ b cos b

e
.

We conclude that limn→∞
n
√
n!

(
sin

(
b

n+1
√

(2n+1)!!
n
√

(2n−1)!!

)
− a
)

=
b cos b

e
.

Also solved by Michel Bataille, Rouen, France; Kee-Wai Lau, Hong Kong,
China; Albert Stadler, Herrliberg, Switzerland, and the proposer.

5515: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n be a positive integer. Prove that

1

2n




n∑

k=1

√
1

n2
+

(
n− 1

k − 1

)2



2

≥ 1.

Solution 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey
Smith, Angelo State University, San Angelo, TX

Let n ≥ 1 and 1 ≤ k ≤ n. Then, since f (x) =
√
x is concave on (0,∞), Jensen’s
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Theorem implies that

√
1

n2
+

(
n− 1
k − 1

)2

=
√

2

√√√√√
1

n2
+

(
n− 1
k − 1

)2

2

=
√

2f




1

n2
+

(
n− 1
k − 1

)2

2




≥
√

2

f

(
1

n2

)
+ f

[(
n− 1
k − 1

)2
]

2

=

1

n
+

(
n− 1
k − 1

)

√
2

.

If we let i = k − 1 for k = 1, . . . , n and use the known result that
m∑

i=0

(
m
i

)
= 2m

for m ≥ 0, it follows that

n∑

k=1

√
1

n2
+

(
n− 1
k − 1

)2

≥ 1√
2

[
n∑

k=1

1

n
+

n∑

k=1

(
n− 1
k − 1

)]

=
1√
2

[
1 +

n−1∑

i=0

(
n− 1
i

)]

=
1√
2

(
1 + 2n−1

)
.

Further, the Arithmetic - Geometric Mean Inequality yields

1 + 2n−1 ≥ 2
√

2n−1

= 2 · 2n−1
2

= 2
n+1
2 .

Hence,

n∑

k=1

√
1

n2
+

(
n− 1
k − 1

)2

≥ 1√
2

(
1 + 2n−1

)

≥ 1√
2

2
n+1
2
.

= 2
n
2 ,

and we have

1

2n




n∑

k=1

√
1

n2
+

(
n− 1
k − 1

)2



2

≥ 1

2n

(
2

n
2

)2

= 1.
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Solution 2 by Albert Stadler, Herrliberg, Switzerland

The statement hold true for n = 1. Let n > 1. Then

1

2n




n∑

k=1

√
1

n2
+

(
n− 1

k − 1

)2



2

≥ 1

2n

(
n∑

k=1

(
n− 1

k − 1

))2

=
1

2n
(
2n−1)2 = 2n−2 ≥ 1,

as claimed.

Solution 3 by Angel Plaza, University of Las Palmas de Gran Canaria, Spain

For n = 1 the equality holds. For n > 1, we have

1

2n




n∑

k=1

√
1

n2
+

(
n− 1

k − 1

)2



2

>
1

2n

(
n∑

k=1

(
n− 1

k − 1

))2

=
1

2n

(
n−1∑

k=0

(
n− 1

k

))2

=
1

2n
(
2n−1

)2

=
22n−2

2n

= 2n−2

≥ 1.

Also solved by Michel Bataille, Rouen, France; Bruno Salgueiro Fanego,
Viveiro, Spain; Ed Gray, Highland Beach, FL; Henry W. Gould, West
Virginia University, Morgantown, WV with Scott H. Brown, Auburn
University, Montgomery, AL; Kee-Wai Lau, Hong Kong, China; Moti Levy,
Rehovot, Israel; Adrian Naco, Polytechnic University of Tirana, Albania;
Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome,
Italy Ioannis D.Sfikas, National and Kapodistrian University of Athens,
Greece; Ramiz Valizada (student of Yagub N. Aliyev), ADA University,
Baku, Azerbaijan, and the proposer.

5516: Proposed by Ovidiu Furdui and Alina Ŝıntămărian both at the Technical
University of Cluj-Napoca, Cluj-Napoca, Romania

Calculate
∞∑

n=1

n

(
ζ(3)− 1− 1

23
− · · · − 1

n3
− 1

2n2

)
.

Solution 1 by Michel Bataille, Rouen, France

Let S =
∞∑
n=1

n
(
ζ(3)− 1− 1

23
− · · · − 1

n3 − 1
2n2

)
. We claim that S = 1

4 − π2

12 .

We have ζ(3)− 1− 1
23
− · · · − 1

n3 =
∞∑

k=n+1

1
k3

and

1

n2
=

∞∑

k=n+1

(
1

(k − 1)2
− 1

k2

)
=

∞∑

k=n+1

2k − 1

k2(k − 1)2
,
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hence

ζ(3)− 1− 1

23
− · · · − 1

n3
− 1

2n2
=

∞∑

k=n+1

(
1

k3
− 2k − 1

2k2(k − 1)2

)
=

∞∑

k=n+1

2− 3k

2k3(k − 1)2

and so S =
∞∑
n=1

nan with an =
∞∑

k=n+1

2−3k
2k3(k−1)2 .

Now, let SN =
N∑
n=1

nan where N is an integer with N > 2. Summing by parts gives

SN =

N−1∑

n=1

n(n+ 1)

2
(an − an+1) +

N(N + 1)

2
aN . (1)

But, as k →∞, we have

2− 3k

2k3(k − 1)2
=

1

k3
− 2k(1− 1

2k )

2k4(1− 1
k )2

=
1

k3
− 1

k3

(
1− 1

2k

)(
1− 1

k

)−2

=
1

k3

(
1−

(
1− 1

2k

)(
1 +

2

k
+ o(1/k)

))

=
1

k3

(
− 3

2k
+ o(1/k)

)
∼ −3

2k4

and so

aN ∼ −
3

2

∞∑

k=N+1

1

k4
∼ −3

2
· 1

3N3
= − 1

2N3
(N →∞).

It readily follows that lim
N→∞

N(N+1)
2 aN = 0.

On the other hand, an − an+1 = 2−3(n+1)
2(n+1)3n2 = 1

(n+1)3
− 2n+1

2n2(n+1)2
and a simple calculation

yields

n(n+ 1)

2
(an − an+1) =

−(3n+ 1)

4n(n+ 1)2
= −1

4
·
(

1

n
− 1

n+ 1
+

2

(n+ 1)2

)
.

As a result, we obtain

N−1∑

n=1

n(n+ 1)

2
(an − an+1) = −1

4

(
N−1∑

n=1

(
1

n
− 1

n+ 1

)
+

N−1∑

n=1

2

(n+ 1)2

)
.

Since lim
N→∞

N−1∑
n=1

(
1
n − 1

n+1

)
= 1 and lim

N→∞

N−1∑
n=1

2
(n+1)2

= 2
(
π2

6 − 1
)

, we deduce (using (1))

that

S = lim
N→∞

SN = −1

4

(
1 +

π2

3
− 2

)
=

1

4
− π2

12
,

as claimed.

Solution 2 by Paola Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy
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The sum is

lim
N→∞

N∑

n=1

n

( ∞∑

k=n+1

1

k3
− 1

2n2

)

Summation by parts

n∑

k=1

akbk = Anbn +

n∑

k=2

Ak−1(bk−1 − bk), An =

n∑

k=1

ak

gives

N(N + 1)

2

( ∞∑

k=N+1

1

k3
− 1

2N2

)
+

N∑

k=2

k(k − 1)

2

(
1

2k2
− 1

2(k − 1)2
+

1

k3

)
=

=
N(N + 1)

2

( ∞∑

k=N+1

1

k3
− 1

2N2

︸ ︷︷ ︸
=A

)
+

N∑

k=2

(
− 1

2k2
+

1

4k
− 1

4(k − 1)

)

We know that

1

2(N + 1)2
− 1

2N2
=

∫ ∞

N+1

dx

x3
− 1

2N2
< A <

∫ ∞

N

dx

x3
− 1

2N2
= 0

and

lim
N→∞

N(N + 1)

2

( 1

2(N + 1)2
− 1

2N2

)
= lim

N→∞
−4N − 2

2N(N + 1)
= 0

thus

lim
N→∞

N(N + 1)

2

(∫ ∞

N+1

dx

x3
− 1

2N2

)
= 0

while

lim
N→∞

N∑

k=2

(
− 1

2k2
+

1

4k
− 1

4(k − 1)

)
= −π

2

12
+

1

2
− 1

4
=

3− π2
12

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that

∞∑

n=1

n(

(
ζ(3)− 1− 1

23
− · · · 1

n3
− 1

2n2

)
=

3− π2
12

(1)

For x > 0, denote by f(x) the function
1

x3
, so that

ζ(3)− 1− 1

23
− . . .− 1

n3
=

∞∑

k=n+1

f(k).

It can be proved readily by induction that for positive integers M , we have
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2
M∑

n=1

n

( ∞∑

k=n+1

f(k)− 1

2n2

)
= M(M + 1)

∞∑

n=M+2

f(n) +
1

M + 1
−
M+1∑

n=1

1

n2
. (2)

Since f(x) is strictly decreasing, so

1

2(M + 2)2
=

∫ ∞

M+2
f(x)dx <

∞∑

n=M+2

f(n) <

∫ ∞

M+1
f(x)dx =

1

2(M + 1)2
.

It follows that

lim
M→∞

M(M + 1)

∞∑

n=M+2

f(n) =
1

2
(3)

Now (1) follows from (2), (3) and the facts that lim
M→∞

1

M + 1
= 0 and

∞∑

n=1

1

n2
=
π2

6
.

Also solved by Ed Gray, Highland Beach, FL (partial solution); Moti Levy,
Rehovot, Israel; Albert Stadler, Herrliberg, Switzerland, and the proposer.

Mea Culpa

Stanley Rabinowitz of Chelmsford, MA should have been credited with having
solved 5506. Like several of the other readers, he generalized problem 5506 and I had
marked his solution to this generalization for publication. It was inadvertently omitted
from the January issue of the column, and so it is being listed here.

Solution to 5506 by Stanley Rabinowitz, Chelmsford, MA

We will find the more general solution: Ωn = det

[(
1 c
c c2

)n
+

(
c2 −c
−c 1

)n]
.

Let A =

(
1 c
c c2

)
, B=

(
c2 −c
−c 1

)
, and S = A + B. Although matrix multiplication is

not commutative, it is associative. In the expansion of (A + B)n , every term except An

and Bnhas an A next to a B. Since AB = BA = 0, therefore Sn = An + Bn .

Thus, Ωn = det[An + Bn ] = det[Sn ] = (det[S])n =

∣∣∣∣
1 + c2 0

0 c2 + 1

∣∣∣∣
n

= (c2 + 1)2n .

The solution by Paul M. Harms of North Newton, KS to 5506 was received by
yours truly three weeks after he had mailed it. His method of solution is also unique.

Let A be the matrix in the problem with two elements of 5 and let B be the matrix in
the problem with two elements of −5. We have

A2 = 26A, A3 = 26A2 = 262A, . . . , A100 = 2699A.

In a similar manner, B2 = 26B, B3 = 262B, . . . , B100 = 2699B. Then the matrix
A100 +B100 has the number 2699(1 + 25) = 26100 along the main diagonal and
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2699(5 + (−5)) = 0 for the other two elements . The value of the determinate in the
problem is then (26100)2 = 26200.

G. C. Greubel of Newport News, VA should have been credited for solving 5505
and 5510. His solution to 5505 also developed the generalization stated above, and his
solution for 5510 also generalized the problem showing:

S(a) =

∞∑

n=1

[
a2n (ζ(2n)− 1)−

a∑

k=2

(a
k

)2n
]
,

can be reduced to

S(a) =
a

2

2a∑

k=1

1

k
=
a

2
H2a,

where Hn is the nth Harmonic number. By setting a = 2, 3, 4 he quickly determined that

∞∑

k=1

[4n (ζ(2n)− 1)− 1] = H4 =
25

12
,

∞∑

k=1

[
9n (ζ(2n)− 1)− 1−

(
3

2

)2n
]

= H6 =
49

20
, and

∞∑

k=1

[
16n (ζ(2n)− 1)− 1− 4n −

(
4

3

)2n
]

= H8 =
761

280
.

Editor′s Comments

Late solutions were received to the following problems;

5506: Aydin Javadov, (student of Yagub Aliyev), ADA University, Baku,
Azerbaijan.

5508: Rasul Balayev, Ilkin Guluzada, Nuru Nurdil, and Leyla Shamoyeva
(students of Yagub Aliyev), ADA University, Baku, Azerbaijan.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
May 15, 2019

5535: Proposed by Kenneth Korbin, New York, NY

Given positive angles A and B with A+B = 180o. A circle with radius 3 and a circle of
radius 4 are each tangent to both sides of 6 A. The circles are also tangent to each other
Find sinA.

5536: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu,“George Emil Palade” School, Buzău,
Romania

If a ∈ (0, 1) then calculate lim
n→∞

n
√

(2n− 1)!!

(
sin

(
a · n+1

√
(n+ 1)!

n
√
n!

)
− sin a

)
.

5537: Proposed by Mohsen Soltanifar, Dalla Lana School of Public Health, University
of Toronto, Canada

Let X,Y be two real-valued continuous random variables on the real line with
associated mean, median and mode x, x̃, x̂, and y, ỹ, ŷ, respectively. For each of the
following conditions, show that there are variables X,Y satisfying them or prove such
random variables do not exist.

(i) x ≤ y, x̃ ≤ ỹ, x̂ ≤ ŷ, (v) x > y, x̃ ≤ ỹ, x̂ ≤ ŷ
(ii) x ≤ y, x̃ ≤ ỹ, x̂ > ŷ, (vi) x > y, x̃ ≤ ỹ, x̂ > ŷ
(iii) x ≤ y, x̃ > ỹ, x̂ ≤ ŷ, (vii) x > y, x̃ > ỹ, x̂ ≤ ŷ
iv) x ≤ y, x̃ > ỹ, x̂ > ŷ, (viii) x > y, x̃ > ỹ, x̂ > ŷ

5538: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan

Solve for all real numbers x 6= π

2
(2k + 1), k ∈ Z.

2− 2019x = etanx + 3sinx + tan−1 x.

5539: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Let α, β, γ be nonzero real numbers. Find the minimum value of


∑

cyclic

(
1 + sin2 α sin2 β

sin2 α

)3



1/3

5540: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Let A ∈M2(<) be a matrix which has real eigenvalues. Prove that if sinA is similar to
A then sinA = A.

Solutions

5517: Proposed by Kenneth Korbin, New York, NY

Find positive integers (a, b, c) such that

arccos
( a

1331

)
= arccos

(
b

1331

)
+ arccos

( c

1331

)
with a < b < c.

Solution 1 by David E. Manes, Oneonta, NY

If (a, b, c) = (370, 869, 1210), then

arccos

(
370

1331

)
= arccos

(
869

1331

)
+ arccos

(
1210

1331

)
≈ 1.28 909 899 845.

Writing the arccosine equation in terms of the cosine function and using the identity
sin(arccosx) =

√
1− x2, one obtains

cos
(

arccos
( a

1331

))
= cos

[
arccos

(
b

1331

)
+ arccos

( c

1331

)]
.

Therefore,

a

1331
= cos

(
arccos

(
b

1331

))
cos
(

arccos
( c

1331

))
− sin

(
arccos

(
b

1331

))
sin
(

arccos
( c

1331

))

=

(
b

1331

)( c

1331

)
−
√

1−
(

b

1331

)2
√

1−
( c

1331

)2

=
bc

(1331)2
−
√

1− b2

(1331)2
− c2

(1331)2
+

b2c2

(1331)4

=
bc

(1331)2
−
√

(1331)4 − (1331)2b2 − (1331)2c2 + b2c2

(1331)2
.

Thus, √
(1331)4 − (1331)2b2 − (1331)2c2 + b2c2

1331
=

bc

1331
− a.
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Squaring both sides of this equation yields

(1331)4 − (1331)2b2 − (1331)2c2 + b2c2

(1331)2
= a2 +

b2c2

(1331)2
− 2abc

1331
,

(1331)4 − (1331)2b2 − (1331)2c2 = (1331)2a2 − 2abc(1331),

(1331)3 − 1331b− 1331c = 1331a2 − 2abc.

Writing this equation as a quadratic in a, we get

1331a2 − (2bc)a+ 1331
(
b2 + c2 − (1331)2

)
= 0.

Therefore, by the quadratic formula

a =
2bc±

√
4b2c2 − 4(1331)2 (b2 + c2 − (1331)2)

2(1331)
.

This equation reduces to

a =
bc

1331
±
√(

bc

1331

)2

− (b2 + c2 − (1331)2).

Noting that 1331 = 113, we choose values for b and c that are divisible by powers of 11.
We summarize the results.
1. If b = 79 · 11 = 869 and c = 10 · 112 = 1210, then

a =

(
(79 · 11)

(
10 · 112

)

1331

)
±
√

((79 · 10)2 − ((79 · 11)2 + (10 · 112)2 − (1331)2))

= 790± 420.

If a = 790 + 420 = 1210 = c, then this root is extraneous. If a = 790− 420 = 370, then
a < b < c and

arccos

(
370

1331

)
= arccos

(
869

1331

)
+ arccos

(
1210

1331

)
≈ 1.28 909 899 845.

All of the following solutions are obtained from integer values for b′ and c′ such that a′ is
also an integer that satisfies the above equation for a with b′ and c′ substituted for b and
c, respectively. The integer values for a′, b′ and c′ do not satisfy the parameters of the
problem. The values for a, b and c are then obtained as a permutation of a′, b′ and c′

such that a < b < c and the inverse cosine equation is satisfied.
2. If b′ = 49 · 11 = 539 and c′ = 6 · 112 = 726, then a′ = 294± 1020. Therefore, define a,
b and c so that a = 539, b = 726 and c = 294 + 1020 = 1314. Then a < b < c and

arccos

(
539

1331

)
= arccos

(
726

1331

)
+ arccos

(
1314

1331

)
≈ 1.15 386 269 047.

3. If b′ = 89 · 11 = 979 and c′ = 4 · 112 = 484, then a′ = 356± 840. Define the values of
a, b and c so that a = 484, b = 979 and c = 356 + 840 = 1196. Then a < b < c and

arccos

(
484

1331

)
= arccos

(
979

1331

)
+ arccos

(
1196

1331

)
≈ 1.19 862 779 283.
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4. If b′ = 103 · 11 = 1133 and c′ = 3 · 112 = 363, then a′ = 309± 672. The values of a, b
and c are then a = 363, b = 309 + 672 = 981 and c = 1133. Then a < b < c and

arccos

(
363

1331

)
= arccos

(
981

1331

)
+ arccos

(
1133

1331

)
≈ 1.29 456 969 603.

5. If b′ = 113 · 11 = 1243 and c′ = 2 · 112 = 242, then a′ = 226± 468. The values of a, b
and c are now a = 242, b = 226 + 468 = 694 and c = 1243. Then a < b < c and

arccos

(
242

1331

)
= arccos

(
694

1331

)
+ arccos

(
1243

1331

)
≈ 1.38 796 118 98.

Solution 2 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg,
Germany

A computer program found the following 8 integer solutions (a, b, c) of

arccos
a

1331
= arccos

b

1331
+ arccos

c

1331

with 0 < a < b < c:

(121, 359, 1309)

(242, 694, 1243)

(253, 847, 1169)

(363, 981, 1133)

(370, 869, 1210)

(484, 979, 1196)

(539, 726, 1314)

(605, 781, 1315)

Remark: Unfortunately, I don’t know a systematic way to find these solutions without a
computer.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We note that

a

113
= cos

(
arccos

( a

113

))
= cos

(
arccos

(
b

113

)
+ arccos

( c

113

))
=

=
b

113
· c

113
−
√

1− b2

116
·
√

1− c2

116
,

which implies (
a

113
− bc

116

)2

=

(
1− b2

116

)(
1− c2

116

)
,

or equivalently,
113

(
a2 + b2 + c2

)
= 119 + 2abc. (*)

An exhaustive computer search in the range 0 < a < b < c ≤ 1331 reveals that (∗)
implies (a, b, c) ∈ {(121, 359, 1309), (242, 694, 1243), (253, 847, 1169), (363, 981, 1133),
(370, 869, 1210), (484, 979, 1196), (539, 726, 1314), (605, 781, 1315)}.
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Note: (∗) is equivalent to
( a

113

)2
+

(
b

113

)2

+
( a

113

)2
= 1 + 2

a

113
· b

113
· c

113
.

The Diophantine equation

x2 + y3 = 2 + z2 = 1 + 2xyz

has been extensively studied in the literature, see the references

[1] L. J. Mordell, On the Integer Solutions of the Equation x2 + y2 + z2 + 2xyz = n
Journal of the London Mathematical Society, Volumes 1-28, Issue 4, 1 October 1953,
Pages 500-510, https://doi.org/10.1112/jlms/s1-28.4.500

[2] A. Oppenheim, “On the Diophantine Equation x2 + y2 + z2 + 2xyz = 1.” The
American Mathematical Monthly, vol. 64, no. 2, 1957, pp. 101-103. DOI:
10.2307/2310390.

A. Oppenheim provides the general solution of x2 + y2 + z2 + 2xyz = 1 in rational
integers. The given problem asks for the solutions in rational numbers whereby the
denominators equal 113.

Editor′s comment: Ken Korbin, proposer of the problem, included in his solution some
algebraic expressions and a geometric interpretation of the problem that gives us some
insight into how he constructed the problem.

The expressions he listed are:

a) 121N
b)

∣∣(22N2 − 1331
)∣∣

c)
∣∣(363N − 4N3

)∣∣ with

0 < N <
11
√

2

2
or

11
√

3

2
< N < 11.

So if N = 19, then (a, b, c) = (370, 869, 1210), and if N = 7, then
(a, b, c) = (253, 847, 1169), and if N = 6, then (a, b, c) = (539, 726, 1314), etc.

Suppose (a, b, c) = (370, 869, 1210). Arrange four points A,B,C,D in a circular
arrangement with the vertices being in a clockwise direction. Connecting the segments
AB,BD,AC, and CD gives us a diagram that resembles a butterfly.

Ken then stated that for this triplet, (a, b, c), there is a convex cyclic quadrilateral
A,B,C,D with

AC = Diameter = 1331,
AB = 1210,

Diagonal BD = 869, and CD = 370.

Also solved by, Brian D. Beasley, Presbyterian College, Clinton, SC;
Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND; Ed
Gray, Highland Beach, FL; David Stone and John Hawkins of Georgia
Southern University, Statesboro GA, and the proposer.

5518: Proposed by Roger Izard, Dallas, TX
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Let triangle PQR be equilateral and let it intersect another triangle ABC at points
U,U ′,W,W ′, V, V ′ such that WU ′, UV ′, V W ′ are equal in length, and triangles
AU ′W,BV ′U,CW ′V are equal in area (see Figure 1). Show that triangle ABC must
then also be equilateral

Solution 1 by Kee-Wai Lau, Hong Kong, China

Without loss of generality let WU ′ = UV ′ = VW ′ = 1. Let

6 PU ′U = α, 6 RW ′W = β, 6 QV ′V = γ. It is easy to check that

6 BUV ′ =
2π

3
− α, 6 BV ′U = γ, 6 UBV ′ =

π

3
− γ + α. Applying the sine formula to

triangle BV ′U , we have BU =
sin γ

sin
(
π
3 − γ + α

) , BV ′ = sin
(
π
3 + α

)

sin
(
π
3 − γ + α

) . Hence the

area of triangle BV ′U equals
sin γ sin

(
π
3 + α

)

2 sin
(
π
3 − γ + α

) =
1

2
(
cot γ − cot

(
π
3 + α

)) ,

using the formula sinx− y) = sinx cos y − cosx sin y. Similarly the areas of triangles

AU ′W and CW ′V are respectively
1

2
(
cotα− cot

(
π
3 + β

)) and
1

2
(
cotβ − cot

(
π
3 + γ

)) .

Given that these areas are equal, so,

cot γ − cot
(π

3
+ α

)
= cotα− cot

(π
3

+ β
)

= cotβ − cot
(π

3
+ γ
)
.

We only consider the case α ≥ β, since the case α ≤ β can be treated similarly. We have

cotα− cot
(π

3
+ β

)
= cot γ − cot

(π
3

+ α
)
≥ cot γ − cot

(π
3

+ β
)
,

so that γ ≥ α. Hence

cot γ − cot
(π

3
+ α

)
= cotβ − cot

(π
3

+ γ
)
≥ cotβ − cot

(π
3

+ α
)
,
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implying β ≥ γ. It follows that β = γα. Thus 6 UBV ′ =
π

3
, and similarly

6 WAU ′ = 6 V CW ′ =
π

3
. This shows that triangle ABC is also equilateral.

Solution 2 by Michael Fried, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

We can turn this into an equivalent problem in the following way. First, slide triangle
AU ′W ′ along AB so that U ′ and U coincide and CW ′V along CB so that V ′ and V
coincide (see Figure 2). Since PQR is an equilateral triangle the angles WUV and
W ′V U are both 60◦. But since also WU ′ = UV ′ = VW ′, the points W ′ and W must
also coincide so that we have an equilateral triangle UVW inscribed in another triangle
ABC (the latter is a triangle since AW and W ′C are always parallel to AB so that
AWC is a straight line, while AUB and CV B are just segments of the original lines
AU ′UB and CV V ′B, respectively).
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So the new problem can be stated as follows:
If a triangle ABC is circumscribed about an equilateral triangle UVW so that the areas
AUW,BV U,CWV are equal, then ABC must also be equilateral.
But we can still do better. Suppose the common area of AUW,BV U,CWV is K, then
the locus of all points A such that AUW = K is a line parallel to UW . Similarly, the
locus of all points B such that BV U = K is a line parallel to UV . This line is also at the
same distance from UV as the previous line is from UW . Finally, the locus of points C
such that CWV = K is again a line parallel to VW and at the same distance from VW
as the previous line is from UV . These three parallel lines thus form another equilateral
triangle XY Z whose sides are parallel to those of UVW and equidistant from them. So,
the triangle ABC will circumscribe UVW and be inscribed in XY Z (see Figure 3). As
a terminological convention, we will say that ABC is situated between UVW and XY Z

With that, we can formulate yet another problem equivalent to the first:
If UVW and XY Z are concentric equilateral triangles whose respective sides are parallel
(UVW inside XY Z), then any triangle ABC situated between UVW and XY Z must be
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equilateral.1

Now it is easy to show that if there is any such triangle ABC at all, there is at least one
which is equilateral. Indeed, there is exactly one such equilateral triangle or there are
exactly two: there cannot be more than two, but there can be none.
On each side of UVW draw circular arcs so that each side subtends an angle of 60◦. If
the circles do not touch the sides of XY Z then can be no triangle such as ABC, for its
angles, such as UAW , would all have to be less than 60◦ since their vertices would have
to fall outside the circles (see Figure 4, left).
If the circles are tangent to the sides of XY Z (see Figure 4, right), then joining UA and
UB, we that angle XAU = XBU = 60◦ so that AUB is a straight line parallel to Y Z.
Similarly BV C and AWC are straight lines, so we obtain in this way one equilateral
triangle ABC situated between UVW and XY Z. Moreover, there can be no other such
triangle, for the angles of any other triangle, such as the angle UA′W would fall outside
the circle and therefore would, again, all be less than 60◦.

Consider then the last case in which the circles intersect each of the sides of XY Z in
two points such as A and A′ and B and B′ in Figure 5.

1All triangle centers of equilateral triangles coincide, so one can speak about concentric triangles without further
ado. The two conditions assure that the corresponding sides of the two triangles are the same distance from
one another

9

X
ia
ng
’s
T
ex
m
at
h



Join AU and UB. The angles at B and A are of course, by construction, both 60◦.
Then since the distance between the sides of the two equilateral triangles is the same for
all three sides (and because all the circles are obviously congruent) the arcs
BV,B′U,AU,A′W are all equal, so that also angle AWU = BUV . Hence,
AUW = 120◦ −AWU = 120◦ −BUV , and therefore,

BUV + V UW +AUW = BUV + 60◦ + 120◦ −BUV = 180◦

so that AUB is a straight line. Joining and extending AW and BV to the point C, we
obtain an equilateral triangle situated between UVW and XY Z. A second equilateral
triangle can be obtained by repeating the process beginning with points A′ and B′.
Now, to finish the proof, note that any other line from, say, XY to XZ via U must
either begin from B′B and end on A′A or must begin outside B′B and end outside A′A
(see Figure 6).

But, in the first case, a triangle ABC situated between UVW andXY Z would have all
of its angles greater than 60◦ while, in the second case, all of the angles would be less
than 60◦, which is impossible in either case (see Figure 7)

Thus, we can state the final version of the theorem as follows:
Given two concentric equilateral triangles whose sides are parallel there can only be
either 0, 1, or 2 triangles situated between the two equilateral triangles, and in every
case the triangles are themselves equilateral
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Solution 3 by Ed Gray of Highland Beach, FL

Editor′s comment: Following is a heuristic argument using the contrapositive of the
statement.

Given equilateral triangle PQR, we have a triangle erected on each side of PQR such
that each of the three triangles has equal area and equal base. As a consequence, each of
the three must have equal altitudes. (We will attempt the proof going the other way).
Let A,B, and C be the apex of each triangle and D,E, and F be points on PQ,QR,
and RP respectively which are the feet of the three altitudes. (That is, the altitudes are
BD,CF, and AD). If we connect A and B, this line intersects PQ at point U and PR
at point U ′. If we connect A with C, this line intersects PR at W and QR at W ′.
Finally, if we connect B with C, this line intersects PQ at V ′ and QR at V . There is a
severe restriction that the lengths WU ′ on PR, UV ′ on PQ, and VW ′ on RQ must all
be of the same length. The plan is to show that this can only happen if the points D,E,
and F are the mid-points of PQ,QR, and RP respectively. First, we show that indeed,
if D,E, and F are the mid-points, then the triangle ABC will be equilateral.

If we picture a coordinate system with R = (0, 0), P =

(
−s
2
,

√
3s

2

)
, and

Q =

(
s

2
,

√
3s

2

)
, s = side length of triangle PQR, the slope of PR is −

√
3, so the slope

of AF is
1√
3

; similarly, the slope of QR is +
√

3, so the slope of EC is
−1√

3
. Since AF

and EC are the same length, the difference in coordinates between C and E and A and
F would be the same. It follows that AC is parallel to PQ. Similarly, BC is parallel to
PR and AB is parallel to RQ. It follows that the angles A,B, and C are the same as
P,Q and R = 60◦ and ABC is equilateral. Clearly, UV ′ = VW ′ = WU ′.

Suppose now, at least one altitude foot is not the mid-point of an equilateral triangle
side. For instance, if D is closer to P than Q, it is clear that BA is less than BC. If we
try to compensate, say, by moving F closer to R, then AC will be the smaller side.

Also solved by the proposer.

5519: Proposed by Titu Zvonaru, Comănesti, Romania

Let a, b, c be positive real numbers. Prove that

a2

b2
+
b2

c2
+
c2

a2
+

2abc

a3 + b3 + c3
≥ 11

3
. (1)

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let
a2

b2
+
b2

c2
+
c2

a2
+

2abc

a3 + b3 + c3
− 11

3
=

f(a, b, c)

3a2b2c2(a3 + b3 + c3)
.

Then

f(a, b, c) = 3a5b4 + 3a2b7 + 3a7c2 − 11a5b2c2 + 3a4b3c2 − 11a2b5c2 + 6a3b3c3 +
3a2b4c3 + 3a3b2c4 + 3b5c4 + 3a4c5 − 11a2b2c5 + 3b2c7,
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and f(a, b, c) is a cyclic polynomial in the variables a, b, c. We may assume without loss
of generality that a = min(a, b, c). Therefore there are numbers u ≥ 0, v ≥ 0, w ≥ 0 such
that either a = u, b = u+ v, c = u+ v + w or a = u, c = u+ v, b = u+ v + w.

A brute force calculation reveals that

f(u, u+ v, u+ v + w)
= 30u7v2 + 152u6v3 + 353u5v4 + 480u4v5 + 401u3v6 + 200u2v7 + 54uv8 + 6v9 + 30u7vw
+264u6v2w + 850u5v3w + 1461u4v4w + 1470u3v5w + 856u2v6w + 264uv7w + 33v8w
+30u7w2+228u6vw2+885u5v2w2+1892u4v3w2+2311u3v4w2+14589u2v5w2+567uv6w2

+81v7w2 + 58u6w3 + 388u5vw3 + 1197u4v2w3 + 1930u3v3w3 + 1648u2v4w3 + 702uv5w3

+117v6w3 + 71u5w4 + 396u4vw4 + 918u3v2w4 + 1025u2v3w4 + 540uv4w4 + 108v5w4

+55u4w5 + 230u3vw5 + 367u2v2w5 + 252uv2w5 + 63v4w5 + 21u3w6 + 63u2vw6 +
63u2w6 + 21v3w6 + 3u2w7 + 6uvw7 + 3v2w7

and

f(u, u+ v, u+ v + w)
= 30u7v2 + 152u6v3 + 353u5v4 + 480u4v5 + 401u3v6 + 200u2v7 + 54uv8 + 6v9 + 30u7vw
+192u6v2w + 562u5v3w + 939u4v4w + 936u3v5w + 544u2v6w + 168uv7w + 21v8w
+30u7w2 + 156u6vw2 + 453u5v2w2 + 848u4v3w2 + 976u3v4w2 + 653u2v5w2 + 231uv6w2

+33v7w2 + 58u6w3 + 244u5vw3 + 513u4v2w3 + 634u3v3w3 + 457u2v4w3 + 180uv5w3

+30v6w3 + 71u5w4 + 234u4vw4 + 309u3v2w4 + 203u2v3w4 + 75uv4w4 + 15v5w4

+55u4w5 + 116u3vw5 + 70u2v2w5 + 12uv2w5 + 3v4w5 + 21u3w6 + 21u2vw6 + 3u2w7.

All coefficients are positive. Therefore f(a, b, c) ≥ 0, if a ≥ 0, b ≥ 0, c ≥ 0.

Note: Let f(a, b, c) be a cyclic real polynomial in the variables a, b, c (that is
f(a, b, c) = f(b, c, a) = f(c, a, b)), which is claimed to be nonnegative for
a ≥ 0, b ≥ 0, c ≥ 0. It has happened to me multiple times that I was unable to apply the
AM-GM inequality directly to prove that f(a, b, c) ≥ 0 (assuming that a ≥ 0, b ≥, c ≥ 0).
However the following brute force approach was mostly successful: due to the fact that
f(a, b, c) is cyclic one may assume that a = min(a, b, c). Then there are nonnegative
variables u, v, w such that either (a, b, c) = (u, u+ v, u+ v + w) or
(a, b, c) = (u, u+ v+w, u+ v). Then f(u, u+ v, u+ v+w) and f(u, u+ v+w, u+ v) are
polynomials in u, v, w, and when multiplied out one sees (very often) that all coefficients
are positive (as in the case above), showing that f(a, b, c) ≥ 0 if a ≥ 0, b ≥ 0, c ≥ 0.
Multiplying out requires a computational effort, no doubt about that, but it is a purely
mechanical task and does not require any creativity. Computer algebra systems are a
very useful assistant for this specific computation.

Solution 2 by Moti Levy, Rehovot, Israel

Since the inequality is homogenous, then we may assume without loss of generality that
a+ b+ c = 1.
By Titu’s lemma,

a2

b2
+
b2

c2
+
c2

a2
≥ (a+ b+ c)2

a2 + b2 + c2
.

Hence it is enough to prove that

(a+ b+ c)2

a2 + b2 + c2
+

2abc

a3 + b3 + c3
≥ 11

3
. (1)

Now we use the p, q, r notation: p = a+ b+ c, q = ab+ bc+ ca, r = abc.
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The following equations and inequalities are well known:

a2 + b2 + c2 = p2 − 2q, (2)

a3 + b3 + c3 = p3 − 3pq + 3r, (3)

r ≤ pq

9
, (4)

r ≤ p3

27
. (5)

Using (2), (3) and setting p = 1, inequality (1) can be rewritten as follows,

1

1− 2q
+

2r

1− 3q + 3r
− 11

3
≥ 0.

By inequality (4) r ≤ q
9 , so that

1

1− 2q
+

2r

1− 3q + 3r
− 11

3
≥ 1

1− 18r
+

2r

1− 24r
− 11

3

=
8
(
r − 1

27

) (
r − 2

45

)

3
(
r − 1

18

) (
r − 1

24

) .

By inequality (5), r ≤ 1
27 and it follows immediately that

8(r− 1
27)(r− 2

45)
3(r− 1

18)(r− 1
24)
≥ 0.

Solution 3 by Michel Bataille, Rouen France

Let L denote the left-hand side of the inequality and let x = a
b , y = b

c , z = c
a . Then,

x, y, z > 0, xyz = 1 and

L = x2 + y2 + z2 +
2

x
z + y

x + z
y

.

By the Cauchy-Schwarz inequality, we have

(
x

z
+
y

x
+
z

y

)2

≤ (x2 + y2 + z2)

(
1

z2
+

1

x2
+

1

y2

)
= (x2 + y2 + z2)(x2y2 + y2z2 + z2x2).

It follows that

L ≥ x2 + y2 + z2 +
2√

(x2 + y2 + z2)(x2y2 + y2z2 + z2x2)

and it is sufficient to prove that

u+ v + w +
2√

(u+ v + w)(uv + vw + wu)
≥ 11

3
(1)

whenever u, v, w > 0 and uvw = 1.
Now, from (u+ v+w)2 = u2 + v2 +w2 + 2(uv+ vw+wu) ≥ 3(uv+ vw+wu) we deduce
that (u+ v + w)3 ≥ 3(u+ v + w)(uv + vw + wu) so that (1) will certainly hold if

u+ v + w +
2
√

3

(u+ v + w)3/2
≥ 11

3
. (2)

To prove (2), we consider the function f defined on (0,∞) by f(x) = x+ 2
√

3x−3/2.
From the derivative f ′(x) = x−5/2(x5/2 − 33/2) we deduce that f is increasing on
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[33/5,∞). Since u+ v+w ≥ 3 3
√
uvw = 3 > 33/5, the inequality f(u+ v+w) ≥ f(3) = 11

3
holds and (2) follows.

Solution 4 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

Two inequalities will be used.

a2

b2
+
b2

c2
+
c2

a2
≥ a2 + b2 + c2

2
√
abc

≥ 3
a2 + b2 + c2

ab+ bc+ ca

The L.H.S. is
a2c+ b2a+ c2b ≥ (a+ b+ c)(abc)2/3

and

a2c+ a2c+ b2a

3
≥ a 5

3 (bc)
2
3 ,

b2a+ b2a+ c2b

3
≥ (ac)

2
3 b

5
3 ,

a2c+ b2a+ c2b

3
≥ (ab)

2
3 c

5
3

Moreover
a

5
3 (bc)

2
3 + (ac)

2
3 b

5
3 + (ab)

2
3 c

5
3 = (a+ b+ c)(abc)2/3

The R.H.S. follows trivially by ab+ bc+ ca ≥ 3(abc)
2
3

It suffices to prove

3
a2 + b2 + c2

ab+ bc+ ca
+

2abc

a3 + b3 + c3
≥ 11

3
(1)

Let’s change variables a+ b+ c = 3u, ab+ bc+ ca = 3v2, abc = w3. The inequality (1) is

3
9u2 − 6v2

3v2
+

2w3

27u3 − 27uv2 + 3w3
≥ 11

3

3(−3v2w3 + 3u2w3 − 56u3v2 + 29v4u+ 27u5)

v2(w3 + 9u3 − 9uv2)
≥ 0

This is a linear increasing function of w3 because u2 ≥ v2 by the AGM thus the
inequality holds true if and only if it holds true for the minimum value of the variable
w3. Once fixed the values of (u, v), the minimum value occurs when c = 0 (or cyclic) or
c = b (or cyclic).

Let c = 0. The inequality becomes

9a5 + 9a2b3 + 9b2a3 + 9b5 − 11ab4 − 11a4b

3ab(a3 + b3)
≥ 0

9a5 + 9b2a3 ≥ 18a4b, 9b5 + 9b3a2 ≥ 18b4a

If c = b the inequality becomes

(9a3 − 4a2b− 10ab2 + 14b3)(−b+ a)2

3b(2a+ b)(a3 + 2b3)

10

3
b3 +

10

3
b3 +

10

3
a3 ≥ 10ab2

4

3
a3 +

4

3
a3 +

4

3
b3 ≥ 4a2b
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and the proof is complete.

Solution 5 by Adrian Naco, Polytechnic University, Tirana, Albania

Firstly let us prove the following inequality, using the well known ABC method:

2abc

a3 + b3 + c3
+

2

3
≥ ab+ bc+ ca

a2 + b2 + c2
, (2)

The last inequality is equivalent to the following one,

f(a, b, c) = abc

(a,b,c∑

cyc

a2
)

+
2

3

(a,b,c∑

cyc

a3
)(a,b,c∑

cyc

a2
)
−
(a,b,c∑

cyc

a3
)(a,b,c∑

cyc

ab

)
≥ 0

Since the expression on the left of the last inequality is of the third degree and
is a symmetrical one in terms of a, b, c, based on the ABC method for solving
inequalities in three variables, the minimum value is attainable when,

(a− b)(b− c)(c− a) = 0 or/and abc = 0.

WLOG let check first the case a = b and then the case a = 0.
Considering a = b and doing easy manipulations, the inequality (2) is
transformed equivalently to the following inequalities,

2a2c

2a3 + c3
+

2

3
≥ a2 + 2ac

2a2 + c2
⇔ 3a2c+ 4a3 + 2c3

6a3 + 3c3
≥ a2 + 2ac

2a2 + c2

⇔ (3a2c+ 4a3 + 2c3)(2a2 + c2) ≥ (6a3 + 3c3)(a2 + 2ac)

⇔ 2(a− c)4(a+ c) ≥ 0

The last inequality is true since a and b are positive real numbers.
If a = 0 and doing easy manipulations the inequality (2) is transformed equivalently to
the following inequalities,

2

3
≥ bc

b2 + c2
⇔ 2(b2 + c2) ≥ 3

b
c ⇔ 3

2
(b+ c)2 +

1

2
(b2 + c2) ≥ 0.

The last inequality is true, since b and c are positive real numbers.
Referring to the book, Secrets in Inequalities,
Vol.1, Pham Kim Hung, 2007, BIL Publishing House, Page 193-195,
it has been proved the following inequality,

a2

b2
+
b2

c2
+
c2

a2
+

9(ab+ bc+ ca)

a2 + b2 + c2
≥ 12, (3).

15

X
ia
ng
’s
T
ex
m
at
h



Using the inequalities (2) and (3), the given inequality (1), the statement of the
problem, is transformed to the following inequalities,

a2

b2
+
b2

c2
+
c2

a2
+

2abc

a3 + b3 + c3
≥a

2

b2
+
b2

c2
+
c2

a2
+

2(ab+ bc+ ca)

a2 + b2 + c2
− 4

3
=

=
7

9

(
a2

b2
+
b2

c2
+
c2

a2

)
+

2

9

[
a2

b2
+
b2

c2
+
c2

a2
+

9(ab+ bc+ ca)

a2 + b2 + c2

]
− 4

3
≥

≥ 7

9
· 3 · 3

√
a2

b2
· b

2

c2
· c

2

a2
+

8

3
− 4

3
=

11

3
.

Equality is obtained for a = b = c.

Solution 6 by Nicusor Zlota, “Traian Vuia” Technical College, Focsani,
Romania

The equality given in the statement of the problem is equivalent to

a2

b2
+
b2

c2
+
c2

a2
− 3 ≥ 2

(
a+ b3 + c3

)
− 2abc

3(a3 + b3 + c3)
, or

(a2 − b2)2
a2b2

+
(a2 − b2)(c2 − b2)

a2c2
≥ 2(a+ b+ c)((a− b)2 + (c− a)(c− b))

3(a3 + b3 + c3)
, or

(a−b)2
(

(a+ b)2

a2b2
− 2(a+ b+ c)

3(a3 + b3 + c3)

)
+(c−a)(c−b)

(
(a+ c)(b+ c)

acc2
− 2(a+ b+ c)

3(a3 + b3 + c3)

)
≥ 0.

Finally, we only need to prove that

(a+ b)2

a2b2
− 2(a+ b+ c)

3(a3 + b3 + c3)
≥ (a+ b)2

a2b2
− 2(a+ b+ a+b

2 )

3(a3 + b3)
=

(a+ b)2

a2b2
− 1

a2 − ab+ b2
> 0

and

(a+ c)(b+ c)

a2c2
− 2(a+ b+ c)

3(a3 + b3 + c3)
≥ ab

a2b2
− 2(a+ b+ a+b

2 )

3(a3 + b3)
=

1

ab
− 1

a2 − ab+ b2
≥ 0.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Daniel Văcaru, Pitesti, Romania, and the proposer.

5520: Proposed by Raquel León (student) and Angel Plaza, University of Las Palmas
de Gran Canaria, Spain

Let n be a positive integer. Prove that

2n∑

k=0

(
2n+ k

k

)(
2n

k

)
(−1)k

2k
1

k + 1
= 0.

Solution 1 by Kee-Wai Lau, Hong Kong, China

We first need the following well-known indentities:
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∞∑

k=0

(
2k

k

)
tk =

1√
1− 4t

, (1)

(1− t)−n−1 =

∞∑

m=0

(
n+m

n

)
tm, (2)

for |t| < 1

4
.

Let x, y be real numbees satisfying |x| ≤ 1

2
and |y| < 1

4
. By substituting t = xy(1− y)−2

into (1) and then using (2), we have

(1− 2(1 + 2x)y + y2)1/2 = (1− y)−1
(
1− 4xy(1− y)−2

)−1/2

=
∞∑

k=0

(
2k

k

)
xkyk (1− y)−2k−1

=

∞∑

k=0

∞∑

m=0

(
2k

k

)(
2k +m

2k

)
xkym+k

Replacing y by −y we have

(1 + 2(1 + 2x)y + y2)−1/2 =

∞∑

k=0

∞∑

m=0

(−1)m+k

(
2k

k

)(
2k +m

2k

)
xkym+k.

Hence,

(1− 2(1 + 2x)y + y2)−1/2 + (1 + 2(1 + 2x)y + y2)−1/2

= 2
∞∑

k=0

∞∑

n=0

(
2n+ k

2k

)(
2k

k

)
xky2n

= 2

∞∑

k=0

∞∑

n=0

(
2n+ k

2k

)(
2n

k

)
xky2n

Thus,

∞∑

n=0

(
2n∑

k=0

(
2n+ k

k

)(
2n

k

)
(−1)k

2k
1

k + 1

)
y2n

= 2

∫ 0

−1/2

2n∑

k=0

∞∑

n=0

(
2n+ k

k

)(
2n

k

)
xky2ndx

=

∫ 0

−1/2

(
1− 2(1 + 2x)y + y2

)−1/2
dx+

∫ 0

−1/2

(
1 + 2(1 + 2x)y + y2

)−1/2
dx
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=

√
1 + y2 − 1 + y

2y
+

1 + y −
√

1 + y2

2y

= 1,

whenever |y| < 1

4
. It follows that

2n∑

k=0

(
2n+ k

k

)(
2n

k

)
(−1)k

2k
1

k + 1
= 0 as desired.

Solution 2 by G.C. Greubel, Newport News, VA

Consider the series

Sn(x) =
n∑

k=0

(
n+ k

k

)(
n

k

)
xk

k + 1
.

Now consider the generating function of this series. This will be determined in the
following. One component that will be required is the use of Catalan numbers, Cn, and
the generating function

∞∑

n=0

Cn t
n =

1−
√

1− 4t

2t
. (6)

With in mind, then:

∞∑

n=0

Sn(x) tn =
∞∑

n=0

n∑

k=0

(
n+ k

k

)(
n

k

)
xk tn

k + 1

=
∞∑

n,k=0

(
n+ 2k

k

)(
n+ k

k

)
(xt)k tn

k + 1

=

∞∑

n,k=0

(n+ 2k)! (xt)k tn

n! k! (k + 1)!

=
∞∑

k=0

(2k)! (xt)k

k! (k + 1)!
·
∞∑

n=0

(2k + 1)n t
n

n!

=
∞∑

k=0

(2k)! (xt)k

k! (k + 1)!
(1− t)−2k−1

=
1

1− t
∞∑

k=0

Ck

(
xt

(1− t)2
)k

=
1

1− t
(1− t)2

2xt

(
1−

√
1− 4xt

(1− t)2

)

=
1

2xt

(
1− t−

√
1− 2(1 + 2x)t+ t2

)
.

Since a generating function of the series has been established consider the reduction
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when x = −1/2. This reduces to

∞∑

n=0

Sn

(
−1

2

)
tn = 1− 1−

√
1 + t2

t
. (7)

which, by use of (1), becomes

∞∑

n=0

Sn

(
−1

2

)
tn = 1 +

∞∑

n=0

(−1)nCn
22n+1

t2n+1.

By considering even and odd terms it can be stated that

Sm

(
−1

2

)
=





1 m = 0
(−1)n Cn

22n+1 m = 2n+ 1

0 m = 2n, n ≥ 1

.

This leads to

2n∑

k=0

(
2n+ k

k

)(
2n

k

)
(−1)k

2k (k + 1)
= 0

2n+1∑

k=0

(
2n+ k + 1

k

)(
2n+ 1

k

)
(−1)k

2k (k + 1)
=

(−1)nCn
22n+1

.

Editor’s comment: The proposers of this problem also used the notion of a generating
function They stated: “We will show that the generating function of the sequence

(am)m≥0 with am =
m∑

k=0

(
m+ k

k

)(
m

k

)(−1

2

)k 1

k + 1
only has odd terms, from where

the result follows.”

Also solved by Michele Bataille, Rouen, France; Ed Gray, Highland Beach,
FL; Moti Levi, Rehovot, Israel; Albert Stadler, Herrliberg, Switzerland, and
the proposer.

5521: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a > 0 be a real number. If f is an odd non-constant real function having second
derivative in the interval [−a, a] and f ′(−a) = f ′(a) = 0, then prove that there exists a
point c ∈ (−a, a) such that

1

2
f ′′(c) ≥ |f(a)|

a2

Solution 1 by Michel Bataille, Rouen, France

We shall use the following lemma: Let u, v be real numbers with u < v and let
g : [u, v]→ R. If g has a second derivative in [u, v] and g′(u) = g′(v) = 0, then for some
c0 ∈ (u, v),

|g′′(c0)| ≥
4|g(v)− g(u)|

(v − u)2
.
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To deduce the required result, we take u = −a, v = a, g = f ; because f is odd, this yields

|f ′′(c0)| ≥
4|f(a)− f(−a)|

(a+ a)2
=

2|f(a)|
a2

for some c0 ∈ (u, v). If f ′′(c0) ≥ 0, we take c = c0.

Otherwise, we have f ′′(−c0) = −f ′′(c0) = |f ′′(c0)| (note that f ′′ is odd) and we take
c = −c0.

Proof of the lemma. Let m =
u+ v

2
; for some c1, c2 in the interval (u, v), we have

g(m)− g(u) = (m− u)g′(u) +
(m− u)2

2
g′′(c1) =

(v − u)2

8
g′′(c1)

and

g(m)− g(v) = (m− v)g′(v) +
(m− v)2

2
g′′(c2) =

(v − u)2

8
g′′(c2)

(from the Taylor-Lagrange formula), hence

|g(v)− g(u)| ≤ |g(m)− g(v)|+ |g(m)− g(u)| ≤ (v − u)2

8
(|g′′(c1)|+ |g′′(c2)|)

≤ (v − u)2

4
max(|g′′(c1)|, |g′′(c2)|).

Now, taking c0 = c1 if |g′′(c1)| ≥ |g′′(c2)| and c0 = c2 otherwise, we obtain

|g′′(c0)| ≥
4|g(v)− g(u)|

(v − u)2
.

Note. The hypothesis f non constant is not necessary: if f is odd and constant, then f
is the zero function and the result remains true.

Solution 2 by Moti Levy, Rehovot, Israel

Let us assume that the statement ∃c ∈ (−a, a) such that f
′′

(c) ≥ 2
a2
|f (a)| is false, then

we have

f
′′

(x) <
2

a2
|f (a)| for all x ∈ (−a, a) . (1)

The second derivative of an odd function is odd, i.e., f ′′(x) is an odd function,

−f ′′
(x) = f

′′
(−x) . (2)

Inequality (1) is valid if we replace x by −x, hence

f
′′

(−x) <
2

a2
|f (a)| for all x ∈ (−a, a) . (3)

By (2) and (3) we have

f
′′

(x) > − 2

a2
|f (a)| . (4)

Equations (1) and (4) imply that that

∣∣∣f ′′
(x)
∣∣∣ < 2

a2
|f (a)| for all x ∈ (−a, a) . (5)
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By integration by parts,

f (t)− f (−a) =

∫ t

−a
f

′
(x) dx = xf

′
(x)
]t
−a
−
∫ t

−a
xf

′′
(x) dx. (6)

= tf
′
(t)−

∫ t

−a
xf

′′
(x) dx.

Setting t = a in (6),

f (a)− f (−a) = af
′
(a)−

∫ a

−a
xf

′′
(x) dx.

Noting that f (a) = −f (−a) and f
′
(a) = 0, we get

2f (a) = −
∫ a

−a
xf

′′
(x) dx

and by taking the absolute value of both sides,

2 |f (a)| =
∣∣∣∣
∫ a

−a
xf

′′
(x) dx

∣∣∣∣ ≤
∫ a

−a
|x|
∣∣∣f

′′
(x)
∣∣∣ dx.

Now we use (5) and
∫ a
−a |x| dx = a2 to obtain

∫ a

−a
|x|
∣∣∣f ′′

(x)
∣∣∣ dx < 2

a2
|f(a)|

∫ a

−a
|x| dx = 2|f(a)|.

We arrived at the absurd |f(a)| < |f(a)|, therefore our assumption is false and we

deduce that indeed there exists a point c ∈ (−a, a) such that f
′′
(c) ≥ 2

a2
|f(a)|.

Solution 3 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

We find c ∈ (−a, a) such that
1

2
f

′′
(c) =

|f(a)|
a2

. By Taylor’s theorem, there exists

c1 ∈ (0, a) such that:

0 = f(0) = f(a)− f ′(a)a+
f ′′(c1)

2
a2 = f(a) +

f(c1)

2
a2,

which gives:
f

′′
(c1)

2
= −f(a)

a2
. Similarly, there exists c2 ∈ (−a, 0), such that:

0 = f(0) = f(−a) + f
′
(−a)a+

f
′′
(c2)

2
a2 = −f(−a) +

f
′′
(c2)

2
a2,

which gives:
f ′′(c2)

2
=
f(a)

a2
. So if f(a) > 0, then

f
′′
(c2)

2
=
|f(a)|
a2

, and if f(a) < 0, then

f
′′
(c1)

2
=
|f(a)|
a2

.

Solution 4 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Since f is odd on [−a,+a] we have

2f (a) = f (a)− f (−a) =

∫ a

−a
f ′ (t) dt.
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By the condition f ′ (a) = f ′ (−a) = 0, integration by parts yields

2f (a) = −
∫ a

−a
tf ′′ (t) dt.

If we assume that f ′′ (t) < 2a−2 |f (a)|, for all t ∈ (−a,+a), it would follow the
contradiction

2 |f (a)| =
∣∣∣∣−
∫ a

−a
tf ′′ (t) dt

∣∣∣∣ < 2a−2 |f (a)|
∫ a

−a
|t| dt < 2 |f (a)| .

Remark: In my opinion, it is not necessary to propose that f is non-constant. The only
constant odd function is the zero function. In this case the inequality
f ′′ (c) ≥ 2a−2 |f (a)| is valid, for all c ∈ (−a,+a).

Also solved by Kee Wai Lau, Hong Kong, China; Paolo Perfetti, Department
of Mathematics, Tor Vegata University, Rome, Italy; Albert Stadler,
Herrliberg, Switzerland, and the proposer.

5522: Proposed by Ovidiu Furdui and Cornel Vălean from Technical University of
Cluj-Napoca, Cluj-Napoca, Romania and Timiş, Romania, respectively

Calculate ∫ 1

0

∫ 1

0

log(1− x)− log(1− y)

x− y dxdy.

Solution 1 by G.M. Greubel, Newport News, VA

First consider the integrand by expanding the logarithms into power series as follows.

f(x, y) =
ln(1− x)− ln(1− y)

x− y

= −
∞∑

n=1

1

n

xn − yn
x− y

= −
∞∑

n=1

n−1∑

r=0

1

n
xn−r−1 yr.

Now, integration with respect to x and y yields

I =

∫ 1

0

∫ 1

0

ln(1− x)− ln(1− y)

x− y dx dy

= −
∞∑

n=1

n−1∑

r=0

1

n

∫ 1

0

∫ 1

0
xn−r−1 yr dx dy

= −
∞∑

n=1

n−1∑

r=0

1

n (r + 1)(n− r)

= −
∞∑

n=1

Sn
n
,
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where Sn is the sum, and evaluation, given by

Sn =
n−1∑

r=0

1

(r + 1)(n− r)

=
1

n+ 1

n−1∑

r=0

(
1

r + 1
+

1

n− r

)

=
1

n+ 1

(
n∑

r=1

1

r
+
n−1∑

r=0

1

n− r

)

=
2Hn

n+ 1
.

Here, Hn denotes the harmonic number. Returning to the integral it is determined that

I = −
∞∑

n=1

2Hn

n (n+ 1)

= 2
∞∑

n=1

(
Hn

n+ 1
− Hn

n

)

= 2

( ∞∑

n=2

Hn − 1
n

n
−
∞∑

n=1

Hn

n

)

= −2 ζ(2) = −π
2

3
.

It can now be stated that
∫ 1

0

∫ 1

0

ln(1− x)− ln(1− y)

x− y dx dy = −2 ζ(2) = −π
2

3
.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

We have

I =

∫ 1

0

∫ 1

0

log(1− x)− log(1− y)

x− y dxdy = −
∫ 1

0

∫ 1

0

+∞∑

n=1

xn

n
−

+∞∑

n=1

yn

n

x− y dxdy

= −
∫ 1

0

∫ 1

0

1

x− y
+∞∑

n=1

xn − yn
n

dxdy

= −
∫ 1

0

∫ 1

0

+∞∑

n=1

(x− y)
(
xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

)

n(x− y)
dxdy

= −
∫ 1

0

∫ 1

0

+∞∑

n=1

1

n

(
xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

)
dxdy
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= −
∫ 1

0

[
+∞∑

n=1

1

n

∫ 1

0

(
xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

)
dx

]
dy

= −
∫ 1

0

+∞∑

n=1

1

n

[
1

n
+

y

n− 1
+ · · ·+ yn−2

2
+ yn−1

]
dy

= −
+∞∑

n=1

1

n

∫ 1

0

1

n

[
1

n
+

y

n− 1
+ · · ·+ yn−2

2
+ yn−1

]
dy

= −
+∞∑

n=1

1

n

[
1

n
+

1

2(n− 1)
+

1

3(n− 2)
+ · · ·+ 1

3(n− 2)
+

1

2(n− 1)
+

1

n

]

= −
+∞∑

n=1

2

n

[
1

n
+

1

2(n− 1)
+

1

3(n− 2)
+ · · ·

]

= −
+∞∑

n=1

2

n2
−

+∞∑

n=1

1

n(n− 1)
−

+∞∑

n=1

2

3n(n− 2)
− · · ·

∼= −π
2

3
.

So,

I ∼= −π
2

3
∼= −3.28986813.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

∫ 1

0

∫ 1

0

log(1− x)− log(1− y)

x− y dxdy =

∫ 1

0

∫ 1

0

−
∞∑

n=1

xn

n
+
∞∑

n=1

yn

n

x− y dxdy

=

∫ 1

0

∫ 1

0

∞∑

n=1

yn − xn
n

x− y dxdy

= −
∫ 1

0

∫ 1

0

∞∑

n=1

1

n

yn − xn
y − x dxdy

= −
∫ 1

0

∫ 1

0

∞∑

n=1

1

n

n−1∑

k=0

xkyn−k−1dxdy
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= −
∞∑

n=1

1

n

n−1∑

k=0

∫ 1

0
xkdx

∫ 1

0
yn−k−1dy

= −
∞∑

n=1

1

n

n−1∑

k=0

1

k + 1

1

n− k

= −
∞∑

n=1

1

n

n−1∑

k=0

1

n+ 1

(
1

k + 1
+

1

n− k

)

= −
∞∑

k=0

1

n(n+ 1)

n−1∑

k=0

(
1

k + 1
+

1

n− k

)

= −
∞∑

n=1

1

n(n+ 1)

(
−
n−1∑

k=0

1

k + 1
+

n−1∑

k=0

1

n− k

)

= −
∞∑

n=1

1

n(n+ 1)

(
n−1∑

k=0

1

k + 1
+
n−1∑

k=0

1

n− k

)

= −
∞∑

n=1

1

n(n+ 1)
(Hn +Hn)

= −2

∞∑

n=1

Hn

n(n+ 1)
= −π

2

3
,

where this last identity follows from entry 55.2.7 on page 361 of the book by E.R.
Hansen A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975;
∞∑

n=2

1

n(x+ n)
[ψ(x+ n)− ψ(x+ 1)] =

1

x2

[
π2x

6
− γ − ψ(x+ 1)

]
is valid for all positive

integers, and in this particular case, when x = 1.

Solution 4 by Moti Levy, Rehovot, Israel

Define

I (α) :=

∫ 1

0

∫ 1

0

ln (1− αx)− ln (1− αy)

x− y dxdy.

We will differentiate under the integral sign.

dI

dα
=

∫ 1

0

∫ 1

0

∂
(
ln(1−αx)−ln(1−αy)

x−y

)

∂α
dxdy = −

∫ 1

0

∫ 1

0

1

(1− αx) (1− αy)
dxdy

= −
(∫ 1

0

1

1− αxdx
)(∫ 1

0

1

1− αydy
)

= −
(

ln (1− α)

α

)2

, α ≤ 1.
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I (α) =

∫ α

0

(
− 1

t2

)
ln2 (1− t) dt+ constant

But since I (0) =
∫ 1
0

∫ 1
0

ln(1)−ln(1)
x−y dxdy = 0, then the constant is zero.

Setting α = 1 , we get

I (1) =

∫ 1

0
ln2 (1− t)

(−1

t2

)
dt

By integration by parts,

I (1) = −2

∫ 1

0

1

1− t
1

t
ln (1− t) dt.

By change of variable x = − ln (1− t) ,

I (1) = −2

∫ ∞

0

x

ex − 1
dx = −2ζ (2) = −π

2

3
.

Excerpt from Richard P. Feynman, the American theoretical physicist, book “Surely You’re
Joking, Mr. Feynman:”

“One thing I never did learn was contour integration. I had learned to do integrals by various
methods show in a book that my high school physics teacher Mr. Bader had given me. The book
also showed how to differentiate parameters under the integral sign - It’s a certain operation. It
turns out that’s not taught very much in the universities; they don’t emphasize it. But I caught
on how to use that method, and I used that one damn tool again and again. So because I was
self-taught using that book, I had peculiar methods of doing integrals. The result was that, when
guys at MIT or Princeton had trouble doing a certain integral, it was because they couldn’t do it
with the standard methods they had learned in school. If it was contour integration, they would
have found it; if it was a simple series expansion, they would have found it. Then I come along
and try differentiating under the integral sign, and often it worked. So I got a great reputation
for doing integrals, only because my box of tools was different from everybody else’s, and they
had tried all their tools on it before giving the problem to me.”

Also solved by Michel Bataille, Rouen, France; Ed Gray, Highland Beach, FL; Kee
-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, Tor
Vergata University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland, and the
proposer.

Addendum

A late solution by G.C. Greubel of Newport News, VA was received for problem
5515.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
June 15, 2019

5541: Proposed by Kenneth Korbin, New York, NY

A convex cyclic quadrilateral has inradius r and circumradius R. The distance from the
incenter to the circumcenter is 169. Find positive integers r and R.

5542: Proposed by Michel Bataille, Rouen, France

Evaluate in closed form: cos
π

13
+ cos

3π

13
− cos

4π

13
.

(Closed form means that the answer should not be expressed as a decimal equivalent.)

5543: Proposed by Titu Zvonaru, Comănesti, Romania

Let ABDC be a convex quadrilateral such that
6 ABC = 6 BCA = 25◦, 6 CBD = 6 ADC = 45◦ . Compute the value of 6 DAC. (Note
the order of the vertices.)

5544: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan

Solve in <: 



tan−1 x = tan y + tan z
tan−1 y = tanx+ tan z
tan−1 z = tanx+ tan y

5545: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let p, q be two twin primes. Show that

1 + 4




p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋


is a perfect square and determine it. (Here bxc represents the integer part of x).
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5546: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Calculate ∞∑

n=1

(−1)bn2 c
(

ex − 1− x

1!
− x2

2!
− · · · − xn

n!

)
.

Solutions

5523: Proposed by Kenneth Korbin, New York, NY

For every prime number P , there is a circle with diameter 4P 4 + 1. In each of these
circles, it is possible to inscribe a triangle with integer length sides and with area
(2P )(2P + 1)(2P − 1)(2P 2 − 1). Find the sides of the triangles if P = 2 and if P = 3.

Solution 1 by Ed Gray, Highland Beach, FL

Case 1. P = 2. Then Area = 4 · 5 · 3 · 7 = 22 · 31 · 51 · 71 = 420.

By Brahmaguptas formula, A2 = s(s− a)(s− b)(s− c), where a, b, and c are the sides,
and s is the semi-perimeter. We note that (s− a) + (s− b) + (s− c) = 3s− 2s = s. So
we seek a factor, s, and three other factors whose sum is s.
A2 = (24)(32)(52)(72) = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7. A discerning eye sees that

49 = 20 + 20 + 9, so

s = 7 · 7
s− a = 2 · 2 · 5, so a = 49− 20 = 29.

s− b = 2 · 2 · 5, so b = 49− 20 = 29.

s− c = 3 · 3, so c = 49− 9 = 40.

Each side is less than 4P 4 + 1 = 65, and the triangle inequality holds.

Case 2. P = 3. The area = 6 · 5 · 7 · 17 = (21)(31)(51)(71)(171) = 3570.

A2 = s(s− a)(s− b)(s− c) = (22)(32)(52)(72)(172) = 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 · 17 · 17.

Let s = 2 · 3 · 5 · 7 = 210. Then

s− a = 7 · 17 = 119, a = 210− 119 = 91.

s− b = 5 · 17 = 85, b = 210− 85 = 125.

s− c = 2 · 3 = 6, c = 210− 6 = 204.

Each side is less than 4P 4 + 1 = 325, and the triangle inequality holds.

Solution 2 by David E. Manes, Oneonta, NY

Given triangle 4ABC with side lengths a, b and c opposite the respective vertices A, B
and C. Moreover, assume that the triangle has area
[ABC] = (2P )(2P + 1)(2P − 1)(2P 2 − 1) and is inscribed in a circle with diameter
4P 4 + 1, where P is a prime. If P = 2, then the area [ABC] = 4 · 5 · 3 · 7 = 420 and the
circle has diameter 4 · 24 + 1 = 65. Therefore, the radius R of the circumscribed circle
has value R = 32.5. The formula relating the radius R, the area [ABC] and the side
lengths a, b and c is R = abc/(4[ABC]). With R = 32.5, [ABC] = 420, one obtains
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abc = 4R[ABC] = 4(32.5)(420) = 54600 = 23 · 3 · 52 · 7 · 13. Using the prime factorization
of 54600, we then assign values to a, b and c so that [ABC] = 420. If a = 3 · 13 = 39,
b = 52 = 25 and c = 23 · 7 = 56, then the semi-perimeter s of 4ABC is given by
s = (a+ b+ c)/2 = (39 + 25 + 56)/2 = 60 and Heron’s formula for the area yields

[ABC] =
√
s(s− a)(s− b)(s− c) =

√
60 · 21 · 35 · 4 = 420.

Accordingly, if P = 2, then the triangle with integer length sides 25, 39 and 56 is
inscribed in a circle with diameter 4P 4 + 1 = 65 and has area
(2P )(2P + 1)(2P − 1)(2P 2 − 1) = 420.

If P = 3, then 4ABC has area
[ABC] = (2P )(2P + 1)(2P − 1)(2P 2 − 1) = 6 · 7 · 5 · 17 = 3570 and is inscribed in a circle
with diameter 4P 4 + 1 = 4 · 34 + 1 = 325, whence the radius R of the circumscribed
circle is R = 162.5. Therefore, the product of the side lengths a, b and c satisfies the
equation abc = 4R[ABC] = 4(162.5)(3570) = 2320500 = 22 · 3 · 53 · 7 · 13 · 17. For this
case, let a = 22 · 3 · 17 = 204, b = 53 = 125 and c = 7 · 13 = 91. Then the semi-perimeter
s = (a+ b+ c)/2 = (204 + 125 + 91)/2 = 210 so that the area of 4ABC is given by

[ABC] =
√
s(s− a)(s− b)(s− c) =

√
210 · 6 · 85 · 119 = 3570.

Therefore, if P = 3, then the triangle with integer side lengths 91, 125 and 204 is
inscribed in a circle with diameter 4P 4 + 1 = 325 and the triangle 4ABC has area
[ABC] given by [ABC] = (2P )(2P + 1)(2P − 1)(2P 2 − 1) = 3570.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

The condition that P be prime is not necessary.

Note: This problem is similar to SSM Problem 5356 published May 2015. Our solution
is based on Brian Beasley’s solution (December 2015) to that problem.

We show that for a positive integer P , the triangle with sides given by

a = (2P + 1)
(
2P 2 − 2P + 1

)
= 4P 3 − 2P 2 + 1

b = (2P − 1)
(
2P 2 + 2P + 1) = 4P 3 + 2P 2 − 1

c = 4P
(
2P 2 + 1) = 8P 3 − 4P

has area 2P (2P + 1)(2P − 1)
(
2P 2 − 1) and can be inscribed in a circle with diameter

4P 4 + 1.

In particular:

For P = 2, the sides of the triangle are 25, 39 and 56; the diameter of the circle is 65 and
the area of the triangle is 420.

For P = 3, the sides of the triangle are 91, 125 and 204; the diameter of the circle is 325
and the area of the triangle is 3570.

We do not know whether our formula produces all such triangles. We used a computer
program to determine that it does produce the unique triangle for each positive integer
P from 1 through 12.

SOLUTION:
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We let a, b, and c be the sides of the triangle, A its area, and R its circumradius. It is

known that R is given by R =
abc

4A
.

Thus since we are given A = 2P (2P + 1)(2P − 1)
(
2P 2 − 1

)
and diameter 4P 4 + 1, we

have

abc = 4AR = 4 · 2P (2P + 1)(2P − 1)
(
2P 2 − 1

) 4P 4 + 1

2

= 4P (2P + 1)(2P − 1)
(
2P 2 − 1

) (
4P 4 + 1

)

= 4P (2P + 1)(2P − 1)
(
2P 2 − 1

) (
2P 2 + 2P + 1

) (
2P 2 − 2P + 1

)
.

We found a, b, c (as given above) by judiciously selecting the above factors of abc so that
1 ≤ a, b, c ≤ 2R = 4P 4 + 1 and the sum of any two of them exceeds the third.

It is easy to verify that our a, b, and c are ≥ 1.

We must show that a, b, c satisfy the requirements of the problem. Note that

a+ b+ c = 16P 3 − 4P = 4P (2P − 1)(2P + 1);

a+ b− c = 4P > 0, so a+ b > c;

a+ c− b = 8P 3 − 4P 2 − 4P + 2 = 2(2P − 1)
(
2P 2 − 1

)
> 0, so a+ c > b;

b+ c− a = 8P 3 + 4P 2 − 4P − 2 = 2(2P + 1)
(
2P 2 − 1

)
> 0, so b+ c > a.

This shows that a, b, c do form a triangle. It also puts us in position to calculate the
area by Herons Formula;

A2 =
1

16
(a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a)

=
1

16
4P (2P − 1)(2P + 1)(4P )

[
2(2P − 1)]

(
2P 2 − 1

)] [
2(2P + 1)

(
2P 2 − 1

)]

= 4P 2(2P − 1)2(2P + 1)2
(
2P 2 − 1)2.

Therefore, A− 2P (2P − 1)(2P1)(2P
2 − 1), as desired.

Finally, we calculate the diameter of the circumscribed circle:

D = 2R =
abc

2A
=

4P (2P + 1)(2P − 1)
(
2P 2 − 1

) (
2P 2 + 2P + 1

) (
2P 2 − 2P + 1

)

4P (2P − 1)(2P + 1) (2P 2 − 1)

=
(
2P 2 + 2P + 1

) (
2P 2 − 2P + 1

)
= 4P 4 + 1, as desired.

Because the sides a, b, c produce the appropriate circumradius, we know that the sides
actually fit into the circle: each is ≤ D.
Here are the results for P = 1, 2, . . . , 12. Each of these is the unique triangle satisfying
the given conditions.
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P a b c Area Diameter

1 3 5 4 6 5

2 25 39 56 420 65

3 91 125 204 3570 325

4 225 287 496 15624 1025

5 451 549 980 48510 2501

6 793 935 1704 121836 5185

7 1275 1469 2716 264810 9605

8 1921 2175 4064 518160 16385

9 2755 3077 5796 936054 26245

10 3801 4199 7960 1588020 40001

11 5083 5565 10604 2560866 58565

12 6625 7199 13776 3960600 82945




Comment: There are other ways to factor
abc = 4P (2P + 1)(2P − 1)

(
2P 2 − 1

) (
2P 2 + 2P + 1

) (
2P 2 − 2P + 1

)
so the sides form a

triangle, but which do not give the desired area. For example, with P = 2, the sides
50, 39, 28 form a triangle whose area is not the desired area (420).

Ditto for 35, 39, 40.

Also these triangles do not have the desired circumradius of 4P 4 + 1.

Also solved by Brian D. Beasley, Presbyterian College, Clinton, SC;
Kee-Wai Lau, Hong Kong, China, and the proposer.

5524: Proposed by Michael Brozinsky, Central Islip, NY

A billiard table whose sides obey the law of reflection is in the shape of a right triangle
ABC with legs of length a and b where a > b and hypotenuse c. A ball is shot from the
right angle and rebounds off the hypotenuse at point P on a path parallel to leg CB

that hits CAat point Q. Find the ratio
AQ

QC
.

Solution 1 by Ed Gray, Highland Beach,FL

Usually in a triangle, especially right triangles, sides are labeled with small letters, and
the vertices are labeled with capital letters, the same letter being used to designate a
side being opposite a vertex. To make this problem work, the drawing must be as
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follows (not withstanding rotations). The right angle C is at lower right, the hypotenuse
is c. Vertex A is North of C, and B is at the left of C. However, AC > BC to
accommodate the law of reflection. So, if a > b,AC = a, and BC = b.

Let D be a point on the hypotenuse such that DC is perpendicular to the hypotenuse.
Point P is on the hypotenuse where the ball strikes and BD < BP , (i.e., P is between
D and A). Let PF be the normal to the hypotenuse where F is a point on AC.

Let r = the angle of incidence = CPF . The angle of reflection = r = 6 FPQ. Since
6 PQC is a right angle, then 6 QCP = 90◦ − 2r. Note that 6 PCD = r since PF ‖ CD
and alternate interior angles are equal.

Therefore,
6 DCB + r + (90◦ − 2r) = 6 ACB = 90◦, so 6 DCB = r ,

and 6 DBC = 90◦ − r, 6 APQ = 90◦ − r by corresponding angles, so 6 BAC = r.

Then tan( 6 APQ) = tan(90◦ − r) =
1

tan(r)
=
AQ

PQ
, and tan(6 QPC) = tan(2r) =

CQ

PQ
.

So,
AQ

CQ
=

1

tan(r)

tan(2r)
=

1− tan2(r)

2 tan2(r)
. From 4ABC, tan(r) =

b

a
. So,

AQ

CQ
=
a2 − b2

2b2
.

Editor′s comment : Ed’s comment that nonstandard labeling was being used in this
problem is absolutely correct. I wrote to the proposer and he acknowledged the mix up,
but stated that everything will still work out with standard notation but then we must
state that a < b.

Solution 2 by Michel Bataille, Rouen, France

Since PQ is parallel to BC, we have 6 PQA = 90◦, hence 6 QPA = B. Let the
perpendicular to AB at P intersect the line AC at N . Then
6 NPC = 6 QPN = 90◦ −B = A and 6 ACP = 6 QCP = 90◦ − 2A. Thus, we must have
A ≤ 45◦ and so B ≥ 45◦ ≥ A. Therefore the longest leg is a = CA while b = CB (see
figure).
Now, 6 PCB = 2A and 6 CPB = B = 6 PBC, from which we deduce
PB = 2CB cosB = 2b cosB = 2b · bc = 2b2

c . It follows that

AP = c− 2b2

c = c2−2b2
c = a2−b2

c and so AP
PB = a2−b2

2b2
. Since PQ is parallel to BC, we have

AQ
QC = AP

PB and we can conclude that AQ
QC = a2−b2

2b2
.
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Also solved by Kenneth Korbin, NY, NY; David Stone and John Hawkins,
Georgia Southern University Statesboro GA, and the proposer.

5525: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu”,
Drobeta Turnu-Severin, Mehedinti, Romania

Find real values for x and y such that:

4 sin2(x+ y) = 1 + 4 cos2 x+ 4 cos2 y.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Put u = e2ix, v = e2iy. Then the given equation reads as

0 =
(
e2ix+2iy + e−2ix−2iy − 2

)
+ 1 +

(
e2ix + e−2ix + 2

)
+
(
e2iy + e−2iy + 2

)
=

= u
1

uv
+ u+

1

u
+ v +

1

v
+ 3 =

(uv + u+ 1)(uv + v + 1)

uv
.

So either v = −1

u
− 1 or

1

v
= −u− 1. If x and y run through the real numbers v and

1

v
represent circles in the complex plane with radius 1 and center 0, while −u− 1 and
−1

u
− 1 represent circles with radius 1 and center −1. Therefore

(u, v) ∈
{(
e2πi/3, e2πi/3

)
,
(
e−2πi/3, e−2πi/3

)}
which translates to x ≡ y ≡ ±π

3
(mod π).

Solution 2 by Michael C. Faleski, University Center, MI

Let’s rewrite the statement of the problem using several trigonometric indentities. This
leads to

4(sinx cos y + sinx cos y)2 = 1 + 4 cos2 x+ 4 cos2 y

4(sin2 x cos2 y + sin2 y cos2 x+ 2 sinx sin y cosx cos y) = 1 + 4 cos2 x+ 4 cos2 y
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4
(
(1− cos2 x) cos2 y + cos2 x(1− cos2 y) + 2 sinx sin y cosx cos y

)
= 1 + 4 cos2 x+ 4 cos2 y

−8 cos2 x cos2 y + 8 sinx sin y cosx cos y = 1

−8

(
1

2
+

1

2
cos(2x)

)(
1

2
+

1

2
cos(2y)

)
+ 2 sin 2x sin 2y = 1

−2(1 + cos 2x+ cos 2y + cos 2x cos 2y) + 2 sin 2x sin 2y = 1

−2− 2 cos 2x− 2 cos 2y − 2 cos 2x cos 2y + 2 sin 2x sin 2y = 1

−2 cos 2x− 2 cos 2y − 2(cos 2x cos 2y − sin 2x sin 2y) = 3

cos 2x+ cos 2y + cos(2x+ 2y) = −3

2
.

And now we use cos a = cos b = 2 cos

(
1

2
(a+ b)

)
cos

(
1

2
(a− b)

)

to produce 2 cos(x+ y) cos(x− y) + (2 cos2(x+ y)− 1) = −3

2
,

and so we have 2 cos2(x+ y) + 2 cos(x− y) cos(x+ y) +
1

2
= 0, or

cos2(x+ y) + cos(x− y) cos(x+ y) +
1

4
= 0.

We will now use the quadratic formula to solve for cos(x+ y).

cos(x+ y) =
− cos(x− y)±

√
cos2(x− y)− 1

2
.

As we are required to have real solutions, this means that
cos2(x− y)− 1 ≥ 0 −→ cos2(x− y) ≥ 1. This condition is only true for

cos2(x− y) = 1 −→ cos(x− y) = 1.

Letting y = x− a, we find cos a = 1 −→ a = 2nπ,∀n ∈ Z.

cos(x+ y) = −cos(x− y)

2
= −1

2
.

Since y = ±2nπ, then for 0 ≤ x ≤ 2π, x = y. Hence, cos 2x = −1

2
, which leads to

2x =
2

3
π,

4

3
π −→ x =

(
1

3
π,

2

3
π

)
. So, for 0 ≤ x, y ≤ 2π, (x, y) =

(
1

3
π,

1

3
π

)
,

(
2

3
π,

2

3
π

)
.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

4 sin2((x+y) = 1+4 cos2 x+4 cos2 y ⇐⇒ 4
(
1− cos2(x+ y)

)
= 1+2 cos(2x)+2+2 cos(2y)

⇐⇒ 4− 4 cos2(x+ y) = 5 + 4 cos

(
2x+ 2y

2

)
cos

(
2x− 2y

2

)

⇐⇒ 0 = 4− 4 cos2(x+ y) + 4 cos(x+ y) cos(x− y) + 1
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⇐⇒ 0 = (2 cos(x+ y) + cos(x− y))2 − cos2(x− y) + 1

⇐⇒ 0 = (2 cos(x+ y) + cos(x− y))2 + sin2(x− y)

⇐⇒ 2 cos(x+ y) + cos(x− y) = 0 = sin(x− y) ⇐⇒ x− y = kπ, k ∈ Z

cos(x+ y) + cos(kπ) = 0 ⇐⇒ x− y = kπ; cos(x+ y) =
(−1)k+1

2
, k ∈ Z

⇐⇒ x− y = kπ; x+ y = arccos
(−1)k+1

2
, ∈ Z

⇐⇒ x =
1

2

(
arccos

(−1)k+1

2
+ kπ

)
, y =

1

2

(
arccos

(−1)k+1

2
− kπ

)
, k ∈ Z.

Solution 4 by Kee-Wai Lau, Hong Kong, China

Since sin(x+ y) = sinx cos y + cosx sin y, so the given equation is equivalent to
1− 8 sinx cosx sin y cos y + 8 cos2 x cos2 y = 0. Clearly cosx 6= 0 and cos y 6= 0. So
dividing both sides of the last equation by cos2 x cos2 y, we obtain
sec2 x sec2 y − 8 tanx tan y + 8 = 0 or (1 + tan2 x)(1 + tan2 y)− 8 tanx tan y + 8 = 0, or

(tanx− tan y)2 + (tanx tan y − 3)2 = 0.

Thus tanx = tan y and tanx tan y = 3, so that tanx = tan y =
√

3 or
tanx = tan y = −

√
3. It follows that

(x, y) =
(π

3
+mπ,

π

3
+ nπ

)
,

(
2π

3
+mπ,

2π

3
+ nπ

)
,

where m and n are arbitrary integers.

Solution 5 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

Using cos (2x) = 2 cos2 (x)− 1 = 1− 2 sin2 (x) we see that the equation

4 sin2 (x+ y) = 1 + 4 cos2 (x) + 4 cos2 (y)

is equivalent to

0 = 3 + 2 cos (2x+ 2y) + 2 cos (2x) + 2 cos (2y) =: f (x, y) .

Using sin (2a) + sin (2b) = 2 sin (a+ b) cos (a− b) we obtain

gradf (x, y) = −4 · (sin (2x+ 2y) + sin (2x) , sin (2x+ 2y) + sin (2y))

= −8 · (sin (2x+ y) cos y, sin (x+ 2y) cosx) .

Therefore, gradf (x, y) = (0, 0) happens if

• 2x = π (mod 2π) and 2y = π (mod 2π). The critical points

(
2n+ 1

2
π,

2m+ 1

2
π

)
with

integers n,m satisfy

f

(
2n+ 1

2
π,

2m+ 1

2
π

)
= 3 + 2 · 1 + 2

(
−1)n+1 + 2(−1)m+1 > 0.
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• 2x = π (mod 2π) and 2x+ y = 0 (mod π). The critical points(
2n+ 1

2
π,mπ − (2n+ 1)π

)
with integers n,m satisfy

f

(
2n+ 1

2
π,mπ − (2n+ 1)π

)
= 3 + 2 · (−1) + 2 (−1)n+1 + 2 · 1 > 0.

• 2y=π (mod 2π) and x+ 2y = 0 (mod π) is symmetrical to the preceding case.

• 2x+ y = 0 (modπ) and x+ 2y = 0 ( modπ). This implies 3x+ 3y = (n+m)π and

x− y = (n−m)π with integers n,m. We infer that (x, y) =
π

3
(2n−m, 2m− n) are the

remaining critical points of f .

f

(
2n−m

3
π,

2m− n
3

π

)

= 3 + 2 cos
2 (n+m)π

3
+ 2 cos

(4n− 2m)π

3
+ 2 cos

(4m− 2n)π

3

= 3 + 2

(
2 cos2

(n+m)π

3
− 1

)
+ 4 cos

(n+m)π

3
cos (n−m)π

= 1 + 4 cos2
Nπ

3
+ 4 (−1)N cos

Nπ

3
=

(
1 + 2 (−1)N cos

Nπ

3

)2

≥ 0

with N := n+m. Consequently, the function value is equal to zero iff N is not a
multiple of 3.

In total, we have f (x, y) ≥ 0 on R2 and f (x, y) = 0 if and only if (x, y) = (2n−m, 2m− n)
π

3
,

for all integers n,m satisfying n + m 6= 0 (mod 3). The solutions of the above trigonometric
identity are exactly the zeros of f .

Also solved by Hatef I. Arshagi, Guilford Technical Community College, Jamestown,
NC; Michel Bataille, Rouen, France; Brian D. Beasley, Presbyterian College, Clin-
ton, SC; Ed Gray, Highland Beach, FL; David E. Manes, Oneonta, NY; Adrian
Naco, Polytechnic University, Tirana, Albania; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; David Stone and John Hawkins, Geor-
gia Southern University, Statesboro, GA; Marian Ursărescu, “Roman Vodă Col-
lege,” Roman, Romania, and the proposer.

5526: Proposed by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece

The lengths of the sides of a triangle are 12, 16 and 20. Determine the number of straight lines
which simultaneously halve the area and the perimeter of the triangle.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We claim that there is exactly one straight line which simultaneously halves the area and the
perimeter of the triangle.

If the line passes through the sides of length 12 and 16, and its intersection with side 12 is x
units from the acute angle on that side, then the line cuts off a right triangle of base 12 − x
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and height 12 + x. The area of this triangle is
144− x2

2
. Setting this equal to 48, we would

have x = ±4
√

3, but the construction of this line requires 0 ≤ x ≤ 4, so there is no such line
that cuts the triangle’s area in half.

If the line passes through the sides of length 16 and 20, and its intersection with side 16 is
x units from the acute angle on that side, then it cuts off a triangle with base x and height
3

5
(24 − x). The area of this triangle is

1

2
x

3

5
(24 − x) =

3

10
x(24 − x), which takes a maximum

value
432

10
< 48 at x = 12, so no such line can cut the triangle’s area in half.

The remaining case is a line through sides 12 and 20. Let the line intersect side 12 at a point

x units from the right angle. Then it cuts off a triangle of base 12 − x and height
4

5
(12 + x),

which has area
2

5
(144 − x2). Setting this equal to 48, we find that x = ±2

√
6, but 0 ≤ x ≤ 8

by the construction of the line, so we have one solution, x = 2
√

6.

Comment: this problem is not new. It was discussed (for instance) in an internet site called
“Problem of the Month”, run by the University of Regina in Regina, Saskatchewan, Canada.

The problem of the month of April 2012 stated
(see http://mathcentral.uregina.ca/mp/previous2011/apr12sol.php):

Recall that the incenter I of a triangle is the point where the three internal angle bisectors
meet. Prove that any line through I that divides the area of the triangle in half also divides
its perimeter in half; conversely, any line through I that divides the perimeter of the triangle
in half also divides its area in half.

In the solution the problem editor referred to a theorem of Verena Haider which states that for
any triangle ABC and any line l , l divides the area and the perimeter of 4ABC in the same
ratio if and only if it passes through the triangle’s incenter. Furthermore the problem editor
made the statement that it is not hard to prove that every triangle has exactly one, two, or
three bisecting lines, and no other values are possible, and provided a few references.

Solution 2 by Adrian Naco, Polytechnic University, Tirana, Albania

Let be a right angle triangle ABC where AB = 20, AC = 12, BC = 16.

Case 1. The straight line intersect the sides AC and AB in the points M and N respectively.
Let us sign AM = x,AN = y.
The area of the traiangle AMN (we sign the area of the triangle by [AMN ]) is half the area of
the triangle ABC ([ABC]), that is’

[AMN ] =
1

2
[ABC] ⇒ AM ·AN · sin 6 MAN

2
=

1

2
· AC ·AB · sin

6 CAB
2

⇒ xy sin 6 MAN

2
=

1

2
· 12 · 20 · sin 6 CAB

2
⇒ xy = 120
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Furthermore, the straight line MN halve the perimeter of the triangle ABC, that is, x+y = 24.
So, the lengths x, y of the respective sides AM and AN of the triangle AMN are roots of the
following quadratic equation,

t2 − 24t+ 120 = 0 ⇒ {x, y} = {10, 14}
⇒ x = AM = 10, y = AN = 14

Case 2. The straight line intersect the sides BC and AB in the points M and N respectively.
Let us sign BM = x,BN = y.
The area of the traiangle BMN is half the area of the triangle ABC, that is,

[BMN ] =
1

2
[ABC] ⇒ BM ·BN · sin 6 MBN

2
=

1

2
· BC ·AB · sin

6 CBA
2

⇒ xy sin 6 MBN

2
=

1

2
· 16 · 20 · sin 6 CAB

2
⇒ xy = 160

Furthermore, the straight line MN halve the perimeter of the triangle ABC that is, x+y = 24.
So, the lengths x, y of the respective sides BM and BN of the triangle BMN are roots of the
following quadratic equation,

t2 − 24t+ 160 = 0 ⇔ (t− 12)2 + 16 = 0

which have no solution. So this case is not possible. Case 3. The straight line intersect the
sides AC and BC in the points M and N respectively. Let us sign CM = x,CN = y.
The area of the traiangle CMN is half the area of the triangle ABC, that is,

[CMN ] =
1

2
[ABC] ⇒ CM · CN · sin 6 MCN

2
=

1

2
· AC ·BC · sin

6 ACB
2

⇒ xy sin 6 MCN

2
=

1

2
· 12 · 16 · sin 6 ACB

2
⇒ xy = 96

Furthermore, the straight line MN halve the perimeter of the triangle ABC, that is, x+y = 24.
So, the lengths x, y of the respective sides CM and CN of the triangle CMN are roots of the
following quadratic equation,

t2 − 24t+ 96 = 0 ⇒ {x, y} = {12− 2
√

7, 12 + 2
√

7}
⇒ x = CM = 12− 2

√
7, y = CN = 12 + 2

√
7

This case is not possible since 12 + 2
√

7 > 16 = BC.

Finally, the only possible case is when the straight line intersect the sides AC = 12 and AB = 20
in the respective points M and N such that AM = 10 and AN = 14.

Editor′s comment: The proposer, Ioannis D. Sfikas of National and Kapodistrian Uni-
versity in Athens, Greece accompanied his solution with an interesting discussion of the
problem’s history. He wrote the following:
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Comments. An interesting issue arising from classical Euclidean geometry concerns the exis-
tence of lines called “equalizers” that bisect both the area and the perimeter of a triangle. The
search for such lines can be seen as a trivial process, but this abstains from the real picture.
The complete study concerning the special case of a triangle was conducted by Kontokostas
(2010). The possibility of the existence of an equalizer that can be applied to an arbitrary
planar shape is an important parameter. However, a general method may not exist in order to
solve this problem.

In general, an equalizer can be applied to any body and that is a fact that came up from a useful
topology theorem: the Ham-Sandwich Theorem, also called the Stone-Tukey Theorem (after
Arthur H. Stone and John W. Tukey). The theorem states that, given d ≥ 2 measurable solids
in <d, it is possible to bisect all of them in half with a single (d − 1)-dimensional hyperplane.
In other words, the Ham-Sandwich Theorem provides the following paraphrased statement:
Take a sandwich made of a slice of ham and two slices of bread. No matter where one places
the pieces of the sandwich in the kitchen, or house, or universe, so long as one’s knife is long
enough one can cut all three pieces in half in only one pass. Proving the theorem for d = 2
(known as the Pancake Theorem) is simple and can be found in Courant and Robbins (1996,
p. 267).

In 1994, Alexander Shen, professor at the Independent University of Moscow, published in The
Mathematical Intelligencer a selection of problems, known as “coffin problems,” which were of-
fered to “undesirable” applicants at the entrance examinations at the Department of Mechanics
and Mathematics (Mekh-mat) of Moscow University at 1970s and 1980s. Four examinations
were held at the Mekh-Mat: written math, oral math, literature essay composition, and oral
physics (Frenkel, 2013, p. 28). These problems appear to resemble greatly with the Olympiad
problems. It should be noted that these problems also differ from the Olympiad problems by
being, in many cases, either false or poorly stated. Their solution does not require knowledge
of a higher level of mathematics, but require, however, ingenuity, creativity and unorthodox
attitudes. Solutions to these problems were thoroughly analyzed by Ilan Vardi (2005a, 2005b,
2005c).

The Mathematics Department of Moscow State University, the most prestigious mathematics
school in Russia, had at that time been actively trying to keep Jewish students (and other
“undesirables”) from enrolling in the department (Vershik, 1994, p. 5). One of the methods
they used for doing this was to give the unwanted students a different set of problems on
their oral exam. These problems were carefully designed to have elementary solutions (so that
the Department could avoid scandals) that were nearly impossible to find. Any student who
failed to answer could be easily rejected, so this system was an effective method of controlling
admissions. These kinds of math problems were informally referred to as “Jewish” problems
or “coffins.” Coffins is the literal translation from Russian (Khovanova and Radul, 2012, p.
815). These problems along with their solutions were, of course, kept as a secret, but Valera
Senderov and his friends had managed to collect a list. In 1975, they approached us to solve
these problems, so that they could train the Jewish students following these mathematical ideas.
Problem 5 of Shen’s catalogue, which had been proposed by Podkolzin in 1978, states: Draw
a straight line that halves the area and perimeter of a triangle. A solution was included in the
first chapter of Mikhail Shifman’s book (2005, pp. 50-51).

The Canadian Mathematical Olympiad is an annual premier national advanced mathematics
competition sponsored by the Canadian Mathematical Society. In 1985, 17th Canadian Math-
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ematical Olympiad was held, and the first problem was:

17th Canadian Mathematical Olympiad 1985, Problem 1
A triangle has sides 6, 8, 10. Show that there is a unique line, which bisects the area and the
perimeter.

The solution to the above problem is given in detail by Doob (1993, p. 169). The same subject
seems to appear as Problem 9 at the Canadian mathematical magazine Crux Mathematicorum
destined for students. Readers are invited to search for the number of equalizers included on a
right triangle whose sides differ from those presented in Problem 1 (Woodrow, 1991, p. 72):

Problem 9, Crux Mathematicorum 1991

The lengths of the sides of a triangle are 3, 4 and 5. Determine the number of straight lines
which simultaneously halve the area and the perimeter of the triangle.

A solution to the magazine’s Problem 9 was given by Michael Selby from the University
of Windsor. A solution was also already given to Problem 1 of the Canadian Mathematical
Olympiad stating that the questioned right triangle contains only one equalizer. The solution
of the particular problem doesn’t abstain from Problem 1. A relative problem was also proposed
by the Flemish Mathematical Olympiad in 2004 in Belgium. It states:

Flanders Mathematics Olympiad 2004, Problem 1

Consider a triangle with side lengths 501 m, 668 m, 835 m. How many lines can be drawn with
the property that such a line halves both area and perimeter?

[1] Courant, Richard and Robbins, Herbert (1996). What is Mathematics? An elementary
approach to ideas and methods, second edition. Oxford, England: Oxford University Press.

[2] Doob, Michael (1993).The Canadian Mathematical Olympiad (1969-1993): celebrating the
first twenty-five years. Canadian Mathematical Society.

[3] Frenkel, Edward (2013). Love and Math: the heart of hidden reality . BasicBooks.

[4] Khovanova, Tanya and Radul, Alexey (2012). Killer problems. The American Mathematical
Monthly, 119 (10): 815-823.

[5] Kodokostas, Dimitrios (2010). Triangle equalizers. Mathematics Magazine, 83 (2): 141-146.

[6] Shen, Alexander (1994). Entrance examinations to the Mekh-mat. The Mathematical Intel-
ligencer, 16 (4): 6-10.

[7] Shifman, Mikhail (2005). You failed your math test, Comrade Einstein: adventures and
misadventures of young mathematicians or test your skills in almost recreational mathematics.
World Scientific.

[8] Vardi, Ilan (2005a). Mekh-mat entrance examination problems. In Shifman, Mikhail A.
(2005). You failed your math test, Comrade Einstein: adventures and misadventures of young
mathematicians or test your skills in almost recreational mathematics, pp. 22-95. World
Scientific.
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[9] Vardi, Ilan (2005b). Solutions to the year 2000 International Mathematical Olympiad. In
Shifman, Mikhail A. (2005). You failed your math test, Comrade Einstein: adventures and
misadventures of young mathematicians or test your skills in almost recreational mathematics,
pp. 96-121. World Scientific.

[10] Vardi, Ilan (2005c). My role as an outsider. In Shifman, Mikhail A. (2005). You failed
your math test, Comrade Einstein: adventures and misadventures of young mathematicians or
test your skills in almost recreational mathematics, pp. 122-125. World Scientific.

[11] Vershik, Anatoly (1994). Admission to the mathematics faculty in Russia in the 1970s and
1980s. Mathematical Intelligencer, 16 (4): 4-5.

[12] Woodrow, Robert E. (March 1991). The Olympiad Corner: No 123. Crux Mathematicorum,
17(3), 65-74.

Also solved by Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China;
David Stone and John Hawkins, Georgia Southern University, Statesboro, GA, and
the proposer.

5527: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let a, b and c be positive real numbers such that a + b + c = 3. Prove that for all real α > 0,
holds:

1

2

(
1− aα+1bα

aαbα
+

1− bα+1cα

bαcα
+

1− cα+1aα

cαaα

)

≤
√(

1− aα+1

aα
+

1− bα+1

bα
+

1− cα+1

cα

)(
1− aαbαcα
aαbαcα

)
.

Editor′s comment : A mistake was detected in the statement of the problem by Michel
Bataille of Rouen, France. He noticed the following:

The inequality easily rewrites as

A := aα + bα + cα − 3aαbαcα ≤ B := 2
√

(1− aαbαcα)(aαbα + bαcα + aαcα − 3aαbαcα). (1)

We take a = 1
2 , b = 1, c = 3

2 and first consider the case α = 2. We obtain A = 1.8125 and

B =
√
154
8 = 1.55...., hence (1) does not hold.

In the case α = 1, we find A = 0.75 and B =
√
2
2 = 0.707..., hence (1) does not hold.

In the case α = 1/2, A = 0.333.. and B = 0.327.., hence (1) does not hold.
However, we prove the reverse inequality in the case α = 1, that is,

3− 3abc ≥ 2
√

(1− abc)(ab+ bc+ ca− 3abc). (2)

Since 3 = a + b + c ≥ 3 3
√
abc, we have 1 − abc ≥ 0 and (2) will certainly holds if 3

√
1− abc ≥

2
√
ab+ bc+ ca− 3abc or, squaring and arranging,

9 + 3abc− 4(ab+ bc+ ca) ≥ 0. (3)
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Now, From Schur’s inequality a(a− b)(a− c) + b(b− c)(b− a) + c(c− a)(c− b) ≥ 0, we obtain

(a+ b+ c)(ab+ bc+ ca)− 3abc ≤ (a+ b+ c)
(
(a+ b+ c)2 − 3(ab+ bc+ ca)

)
+ 6abc

or since a + b + c = 3, 3(ab + bc + ca) − 3abc ≤ 3(9 − 3(ab + bc + ca)) + 6abc, that is,
4(ab+ bc+ ca) ≤ 9 + 3abc and (3) holds.
Perhaps the reverse inequality does hold when α > 0, α 6= 1 but I have not been able to find a
proof.

Editor again : With respect to the above, the solution to this problem remains open.

5528: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let a > 0. Calculate

∫ ∞

a

∫ ∞

a

dxdy

x6(x2 + y2)
.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We easily verify that
∫ ∫

dxdy

x6(x2 + y2)
=

1

6xy5
− 1

18x3y3
+

1

30x5y
+

arctan x
y

6y6
− arctan y

x

6x6
+ C.

Therefore, ∫ ∞

a

∫ ∞

a

dxdy

x6(x2 + y2)
=

13

90a6
.

Solution 2 by Michael C. Faleski, University Center, MI

We start by evaluating the y−integral using trigonometric substitution with y = x tan θ, dy =
x sec2 θdθ to give

∫ ∞

a

dy

x6(x2 + y2)
→
∫

1

x6

( x
x2

)
dθ → 1

x7
tan−1

(y
x

) ∣∣∣∣
∞

a

=
1

x7

(π
2
− tan−1

(a
x

))
.

This quantity is now integrated with respect to x by braking it into two terms written as

∫ ∞

a

π

2

dx

x7
−
∫ ∞

a

tan−1
(a
x

)

x7
dx.

The first term evaluates as ∫ ∞

a

πdx

2x7
= − π

12

1

x6

∣∣∣∣
∞

a

=
π

12a6
.

For the second term, we start with integration by parts using u = − tan−1
(a
x

)
→ du =

a

x2 + a2

and dv =
1

x7
dx→ v = − 1

6x6
which yields

tan−1
(a
x

)

6x6

∣∣∣∣
∞

a

−
(
−a

6

)∫ ∞

a

dx

x6(x2 + a2)
=
(

0− π

24a6

)
+
a

6

∫ ∞

a

dx

x6(x2 + a2)
.
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For the last term, one approach would be to make a u−substitution 0f x = a tan θ → dx =
a sec2 θdθ leading to

a

6
a

∫ ∞

a

dx

x6(x2 + a2)
→ a

6

∫ π/2

π/4

1

a8
a sec2 θ dθ

tan6 θ sec2 θ
=

We can use (which is easily shown using cot2 x = (csc 2x− 1) repeatedly) that

∫
cot6 xdx =

cot5 x

5
+

cot3 x

3
− cotx

1
− x+ C.

For our scenario, we have

1

6a6

∫ π/2

π/4
cot6 θdθ =

1

6a6

(
−cot5 θ

5
+

cot3 θ

3
− cot θ

1
− θ

)∣∣∣∣
π/2

π/4

=
1

6a6

(
1

5
− 1

3
+ 1− π

4

)
.

So finally, putting putting all of the numerical terms together yields:

∫ ∞

a

∫ ∞

a

dxdy

x6(x2 + y2)
=

π

12a6
− π

24a6
+

1

6a6

(
13

15
− π

4

)
=

13

90a6
.

Solution 3 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

We show that, for a > 0,

I :=

∫ ∞

a

∫ ∞

a

dxdy

x6 (x2 + y2)
=

13

90a6
.

Integrating both sides of the identity

1

x6 (x2 + y2)
+

1

y6 (x2 + y2)
=

x6 + y6

x6y6 (x2 + y2)
=
x4 − x2y2 + y4

x6y6
=

1

x2y6
− 1

x4y4
+

1

x6y2

we conclude that

2I =

∫ ∞

a

∫ ∞

a

(
1

x2y6
− 1

x4y4
+

1

x6y2

)
dxdy

=

(
1

x · 5y5 −
1

3x3 · 3y3 +
1

5x5 · y

)∣∣∣∣
∞

x=a

∣∣∣∣
∞

y=a

= −
(

1

5
− 1

9
+

1

5

)
1

a6
=

13

45a6
.

Solution 4 by Brian Bradie, Christopher Newport University, Newport, News, VA

Let a > 0, n be a positive integer, and consider

∫ ∞

a

∫ ∞

a

dx dy

xn(x2 + y2)
.
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With the substitutions u = x/a and v = y/a,

∫ ∞

a

∫ ∞

a

dx dy

xn(x2 + y2)
=

1

an

∫ ∞

1

∫ ∞

1

du dv

un(u2 + v2)

=
1

an

∫ ∞

1

1

un
tan−1(v/u)

u

∣∣∣∣
∞

1

du

=
1

an

∫ ∞

1

1

un+1

(
π

2
− tan−1

1

u

)
du

=
1

an

∫ ∞

1

1

un+1
tan−1 u du.

By integration by parts, we next find

∫ ∞

a

∫ ∞

a

dx dy

xn(x2 + y2)
=

1

nan

(
π

4
+

∫ ∞

1

u−n

1 + u2
du

)
;

the substitution u = 1/w then yields

∫ ∞

a

∫ ∞

a

dx dy

xn(x2 + y2)
=

1

nan

(
π

4
+

∫ 1

0

un

1 + u2
du

)
.

Let

In =

∫ 1

0

un

1 + u2
du

Then

I1 =

∫ 1

0

u

1 + u2
du =

1

2
ln 2;

I2 =

∫ 1

0

u2

1 + u2
du =

∫ 1

0

(
1− 1

1 + u2

)
du = 1− π

4
;

and, for n > 2,

In =
1

n− 1
−
∫ 1

0

un−2

1 + u2
du =

1

n− 1
− In−2.

Thus,

I3 =
1

2
− I1 =

1

2
− 1

2
ln 2;

I4 =
1

3
− I2 =

π

4
− 2

3
;

I5 =
1

4
− I3 =

1

2
ln 2− 1

4
; and

I6 =
1

5
− I4 =

13

15
− π

4
.
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Finally,

∫ ∞

a

∫ ∞

a

dx dy

x(x2 + y2)
=

1

a

(
π

4
+

1

2
ln 2

)

∫ ∞

a

∫ ∞

a

dx dy

x2(x2 + y2)
=

1

2a2

(π
4

+ 1− π

4

)
=

1

2a2∫ ∞

a

∫ ∞

a

dx dy

x3(x2 + y2)
=

1

3a3

(
π

4
+

1

2
− 1

2
ln 2

)

∫ ∞

a

∫ ∞

a

dx dy

x4(x2 + y2)
=

1

4a4

(
π

4
+
π

4
− 2

3

)
=

1

4a4

(
π

2
− 2

3

)

∫ ∞

a

∫ ∞

a

dx dy

x5(x2 + y2)
=

1

5a5

(
π

4
+

1

2
ln 2− 1

4

)

∫ ∞

a

∫ ∞

a

dx dy

x6(x2 + y2)
=

1

6a6

(
π

4
+

13

15
− π

4

)
=

13

90a6

Solution 5 by Kee-Wai Lau, Hong Kong, China

We show that the integral of the problem, denoted by I, equals
13

90a6
.

Since

∫ ∞

a

dy

x2 + y2
=

1

x

[
arctan

(y
x

)]∞
a

=
arctan

(x
a

)

x
for x > 0, so I =

∫ ∞

a

arctan
(x
a

)

x7
.

By the substitution t =
x

a
,we obtain I =

1

a6

∫ ∞

1

arctan t

t7
dt. Integrating by parts, we obtain

I =
π

24a6
+

J

6a6
, where J =

∫ ∞

1

dt

(1 + t2)t6
. We now substitute t = cot θ to reduce J to the

standard integral

∫ π/4

0
tan6 θdθ. which equals

13

15
− π

4
. Hence our result for I.

Also solved by Michel Bataille, Rouen, France; Pat Costello, Eastern Kentucky
University, Richmond, KY; Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, Na-
tional and Kapodistrian University, Athens, Greece, and the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
Sept. 15, 2019

5547: Proposed by Kenneth Korbin, New York, NY

Given Heronian Triangle ABC with AC = 10201 and BC = 10301. Observe that the
sum of the digits of AC is 4 and the sum of the digits of BC is 5. Find AB if the sum of
its digits is 3.

(An Heronian Triangle is one whose side lengths and area are integers.)

5548: Proposed by Michel Bataille, Reoun, France

Given nonzero real numbers p and q, solve the system





2p2x3 − 2pqxy2 − (2p− 1)x = y

2q2y3 − 2pqx2y + (2q + 1)y = x

5549: Proposed by Arkady Alt, San Jose, CA

Let P be an arbitrary point in 4 ABC that has side lengths a, b, and c .
a) Find minimal value of

F (P ) :=
a2

da (P )
+

b2

db (P )
+

c2

dc (P )
;

b) Prove the inequality
a2

da (P )
+

b2

db (P )
+

c2

dc (P )
≥ 36r, where r is the inradius.

5550: Proposed by Ángel Plaza, University of the Las Palmas de Gran Canaria, Spain

Prove that
∞∑

n=4

n−2∑

k=2

1

k
(
n
k

) =
1

2
.

5551: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain
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Let α1, α2, . . . , αn with n ≥ 2 be positive real numbers. Prove that the following
inequality holds:

1 +
1

n2

∑

1≤i<j≤n

(√
αiαj+1 −√αjαi+1

)2

αiαj
≤
(

1

n

n∑

k=1

(
αk+1

αk

)2
)1/2

(Here the subscripts are taken modulo n.)

5552: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Find all differentiable functions f : < → < such that f ′(x)− f(−x) = ex,∀x ∈ <, with
f(0) = 0.

Solutions

5529: Proposed by Kenneth Korbin, New York, NY

Convex cyclic quadrilateral ABCD has integer length sides and integer area. The
distance from the incenter to the circumcenter is 91. Find the length of the sides.

Solution 1 by David E. Manes, Oneonta, NY

Let ABCD be a bicentric quadrilateral with inradius r and circumradius R and side
lengths AB = a, BC = b, CD = c and DA = d. Then a+ c = b+ d since the
quadrilateral has an inscribed circle. Denote the diagonals AC = p and BD = q.
Finally, let D = 2R represent the diameter of the circumscribed circle. If x = 91 denotes
the distance between the incenter and the circumcenter, then Fuss’ theorem gives a
relation between r, R and x = 91; namely;

1

(R− x)2
+

1

(R+ x)2
=

1

r2
.

Solving this equation for r, one obtains

r =
R2 − x2√
2(R2 + x2)

=
R2 − 912√
2(R2 + 912)

.

Substituting values for R > 91 in this equation, one quickly finds that if R = 221, then
r = 120. Therefore,

pq = 2r
(
r +
√

4R2 + r2
)

= 2(120)
(

120 +
√

4 · 2212 + 1202
)

= 138720.

Consider the quadrilateral with side lengths a = AB = 170, b = BC = 408,
c = CD = 408 and d = DA = 170. Then a+ c = b+ d = 578 = s, the semi-perimeter of
ABCD. Moreover,

a2 + c2 = 1702 + 4082 = b2 + d2 = D2 = 4422 = p2;

hence, the quadrilateral is a kite. It consists of two congruent right triangles with a
common hypotenuse, the diameter D of the circumscribed circle which is also the
diagonal p = AC. For the given side lengths, note that the circumradius R is given by

R =
1

2

√
a2 + c2 =

1

2

√
1702 + 4082 =

1

2

√
b2 + d2 = 221.
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and the inradius r is given by

r =
pq

2
√
pq + 4R2

=
138720

2
√

138720 + 4(221)2
= 120.

Since the quadrilateral ABCD is a kite, the two diagonals p = AC and q = BD are
perpendicular so that sin θ = 1, where θ is the angle between p and q. Therefore, the
following formulas for the area K of ABCD all agree:

K =
√

(s− a)2(s− c)2 =
√

(578− 170)2(578− 408)2

=
√
abcd =

√
(ab)2 = ab = 170 · 408

= r
(
r +

√
4R2 + r2

)
sin θ = 120

(
120 +

√
4 · 2212 + 1202

)

= 69360.

Finally, the four sides a, b, c, d of a bicentric quadrilateral with inradius r = 120,
circumradius R = 221 and semi-perimeter s = 578 are the four roots of the quartic
equation

y4 − 2sy3 +
(
s2 + 2r2 + 2r

√
4R2 + r2

)
y2 − 2rs

(√
4R2 + r2 + r

)
y + r2s2 = 0.

Therefore,
y4 − 1156y3 + 472804y2 − 80180160y + 4810809600 = 0,

(y − 408)2(y − 170)2 = 0.

Hence, the roots are 170 and 408, each of multiplicity two. This completes the solution.

Solution 2 by Ed Gray, Highland Beach, FL

We start with Fuss’ Theorem which says: Given R = circumradius, r = inradius,, x =
distance between the incenter and the circumcenter, then:

1.
1

(R+ x)2
+

1

(R− x)2
=

1

r2

2.
(R− x)2 + (R+ x)2

(R+ x)2 · (R− x)2
=

1

r2

3.
R2 − 2Rx+ x2 +R2 + 2Rx+ x2

(R2 − x2)2 =
1

r2

4. 2r2 · (R2 + x2) = (R2 − x2)2

5. 2 · r2 ·R2 + 2 · r2 · x2 = R4 − 2 ·R2 · x2 + x4

Writing (5) as a quadratic in R2,

6. R4 − (2 · r2 + 2 · x2)R2 + x4 − 2 · r2 · x2 = 0, with solution
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7. 2R2 = 2r2 + 2x2 +
√

4r4 + 8 · r2 · x2 + 4x4 − 4(x4 − 2 · r2 · x2)

The + sign is used to ensureR ≥ r
√

2.

8. 2R2 = 2(r2 + x2) +
√

4r4 + 16 · r2 · x2, and

9. R2 = r2 + x2 + r
√
r2 + 4x2

Letting x = 91, consider the discriminant:

10. D2 = r2 + 33124

11. (D − r)(D + r) = 22 · 72 · 132

(D − r) and (D + r) must have the same parity since their sum is even. Since their
product is even, each factor is even. D − r must be less than 2 · 7 · 13, D + r must be
greater than 2 · 7 · 13. We try for a solution assuming that r is an integer. The possible
values for D− r are, 2, 14, 26, 98. Since x = 91, the disparity between r and R cannot be
exceedingly large. Accordingly, we start with the largest value for D − r.

12. D − r = 98

13. D + r = 338

14. 2D = 436, D = 218, r = 120. Substituting these values into (9),

15. R2 = 14400 + 8281 + 120 · 218 = 48841. Then:

16. R = 221.

To get an idea of the character of the sides, we co-ordinate the quantities in a Cartesian
coordinate system. For convenience, we put the circumcenter, O, at the origin, (0, 0).
The incenter, I, will be on the positive y−axis and have coordinates (0, 91). With
r = 120, notice that the incircle has its extreme point on the y− axis with coordinates
(0, 211). The upper extreme for the circumcenter is (0, 221), so that they only differ by
10. The lower extreme for the incircle has coordinates (0,−29). Clearly, picturing the
sides shows the quadrilateral must have two long sides for the lower two, and two much
shorter sides for the upper two, suggesting a kite-like shape for the quadrilateral. In fact,
we will pursue this concept, placing vertex A at (0, 221), vertex C at (0,−221). Vertex B
will have x > 0, y > 0, Vertex D will have x < 0, y > 0. We have AB = AD,BC +DC,
and, of course, as in all bi-centric quadrilaterals, AB + CD = BD + CB.

Now consider the side AB. It is tangent to the incircle at point T , so that IT is
perpendicular to AB. Triangle AIT is a right triangle, with hypotenuse AI = 130, leg
IT = r = 120.
So that AT = 50. Let 6 TAI = t. We note that cos(t) = 5/13, sin(t) = 12/13. The
equation of side AB is y = mx+ b, where

m = tan(t− 90) =
sin(t− 90)

cos(t− 90)
=

(sin(t) · cos(90)− cos(t) · sin(90)

cos(t) · cos(90) + sin(t) · sin(90)
=

(−5/13)

(12/13)
= − 5

12
.

When x = 0, y = 221, so the equation of the chord AB is: 17. y = 2215x/12. The
equation of the circumcircle is: 18. x2 + y2 = 48841.
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The coordinates of vertex B can be found by solving (17), (18) simultaneously.

19. x2 + (215x/12)2 = 48841

20. x2 + 488412210 · x/12 + (25x2)/144 = 48841

21. x2(1 + 25/144) = 2210x/12

22. (169/144)x = 2210/12

23. x = (2210/12) · (144/169) = (12) · (13.07692308) = 156.9230769

24. y = 2215(156.9230769)/12 = 22165.38461538 = 155.6153846

25. The coordinates of vertex B = (156.9230769, 155.6153846)

Using the distance formula, we can compute the length of side AB.

26. AB =
√

(156.92307690)2 + (221155.6153846)2

27. AB =
√

24624.85206 + 4275.147931

28. AB =
√

28900) = 170.

29. We can now compute the length of chord BC by the Law of Cosines, using 4ABC.

We have: (BC)2 = 1702 + 44222 · 170 · 442 · (5/13) 30.
(BC)2 = 28900 + 19536457800 = 166464

31. BC = 408.

The sides appear to be 170, 170, 408, 408. As noted, integer area did not come into play,

Explicitly. We show that, indeed, the area is an integer by using Brahmaguptas formula:

32. A =
√

(s− a)(s− b)(s− c)(s− d) =
√

408 · 408 · 170 · 170 = 408 · 170 = 69, 360.

33. As a check, r = A/s = 69, 369/578 = 120.

Solution 3 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

For clarity we label the lengths of the sides of quadrilateral ABCD so AB has length
a, BC has length b, CD has length c, and DA has length d.

We will show that a quadrilateral with sides a = d = 408 and b = c = 170 is a cyclic
quadrilateral with integer area and distance from its incenter to its circumcenter is 91.

We were not able to show that this is the only such quadrilateral.

Because our quadrilateral is given to have an incenter, there must be an inscribed circle,
tangent to all four sides (hence, known as a tangential quadrilateral).

Such a cyclic, tangential, quadrilateral is termed a bicentric quadrilateral. (Wikipedia:
https://en.wikipedia.org/wiki/Bicentric quadrilateral).
FromWikipedia(URL https : //en.wikipedia.org/wiki/Pitot theorem), we find the
following:

The Pitot theorem, named after the French engineer Henri Pitot, states that in a
tangential quadrilateral the two sums of lengths of opposite sides are the same. Both
sums of lengths equal the semiperimeter of the quadrilateral.

A convex quadrilateral ABCD with sides a, b, c, d is bicentric if and only if opposite
sides satisfy Pitot’s theorem for tangential quadrilaterals and the cyclic quadrilateral
property that opposite angles are supplementary; that is,
opposite sides equal: a+ c = b+ d
opposite angles are supplementary: A+B = C +D = π.

For a bicentric quadrilateral, Fuss’ Theorem gives a relation between the inradius r, the
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circumradius R and the distance x between the incenter and the circumcenter:

1

(R− x)2
+

1

(R+ x)2
=

1

r2

Some relevant facts about a bicentric quadrilateral:
(1) the area is given by A =

√
abcd

(2) the inradius is given by r =
A

s
=

√
abcd

s
=

√
abcd

a+ c
=

√
abcd

b+ d
.

By (2), the inradius of our quadrilateral must be rational. There are no a priori
restrictions on the circumradius R.

However, well first look for integer values for r and R.

Substituting our known value, x = 91, into Fuss’ Theorem and solving for r yields

r =
R2 − 912√

(R+ 91)2 + (R− 91)2
=

R2 − 912√
2(R2 + 912)

.

At the worst, the quantity inside the radical must be the square of a rational; well
impose the condition that it be the square of an integer:

2(R2 + 912) = z2 so r =
R2 − 912

z
.

Thus, z must be even; say z = 2w:
2(R2 + 912) = (2w)2 = 4w2.

R2 + 912 = 2w2

(3) R2 − 2w2 = −912.

This is a Pell-like equation. With some initial assistance from Excel, we can find
infinitely many solutions in integers. Because R must be larger than 91, the smallest
valid solution is R = 221, w = 169, soz = 338.
This yields an integer value for r : r = 120.

Now the fun begins we must find values for a, b, c, d.

We want

120 =

√
abcd

a+ c
=
abcd

b+ d
,

1202(a+ c)2 = abcd and 1202(b+ d)2 = abcd.

Using the prime factorization of 120 and applying some ingenuity, we find that the values
a = d = 408 and b = c = 170. satisfy the conditions.
This would make our quadrilateral a (convex) kite, which is automatically a tangential
quadrilateral.

However, the lengths of the sides by themselves do not completely specify a
quadrilateral. We must proscribe its shape.

Noting that
a = d = 408 = 34 · 12
and
b = c = 170 = 34 · 5, we build the quadrilateral so the principal diagonal
AC = 442 = 34 · 13.

This forces ABC and ADC to be right triangles (scaled-up copies of the 5-12-13
triangle), with AC being a diameter of the circumcircle.
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Hence, our quadrilateral is inscribed in a circle, hence is cyclic and bicentric, as
required. The difference x between the incenter and the circumcenter must equal 91 by
our derivation of R, r.  

 
 

D 

A C 

B 

OC 

OI 

d c 

b 
a 

In fact, the only kite which is cyclic is one formed by two congruent right triangles
joined along the hypotenuse (= the diameter). Its sometimes known as a right kite.

Comment: We make no claim that our solution is unique. For instance, even after R and
r were determined, the conditions r2(a+ c)2 = abcd and r2(b+ d)2 = abcd could admit
other solutions (although a computer search found none).

Moreover, the Pell equation R2 − 2w2 = −912 has infinitely many solutions.

Using

(
R0

w0

)
=

(
221
169

)
or

(
299
221

)
or

(
637
455

)
as a base, we can generate infinitely

many more solutions by the recursive scheme(
Rk+1

wk+1

)
=

(
3 4
2 3

)(
Rk
wk

)
.

Of the solutions that we have checked, each produces a rational, non-integer value for
the inradius r (which is acceptable but makes it much more difficult to find a, b, c, d). So
there could be many other solutions to the problem.

Also solved by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece and the proposer.

5530: Proposed by Arsalan Wares, Valdosta State University, Valdosta, GA

Polygon ABCD is an 11 by 12 rectangle (AB > AD). Points P,Q,R, and S are on sides
AB,BC,CD, and DA, respectively, such that PR and SQ are parallel to AD and AB,
respectively. Moreover, X = PR ∩QS. If the perimeter of rectangle PBQX is 5/7 the
perimeter of rectangle SAPX, and the perimeter of rectangle RCQX is 9/10 the
perimeter of rectangle PBQX, find the area of rectangle SDRX.

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain

Let u = SD and v = DR. Then AS = AD−SD = 11−u and RC = DC−DR = 12− v.

Since BQ = AS, PB = RC, and QC = SD, the perimeter of rectangles
PBQX, SAPX, and RCQX are, respectively,
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2(PB +BQ) = 2(12− v + 11− u), 2(AS +AP ) = 2(11− u+ v), and
2(RC +QC) = 2(12− v + u).

Hence,

2(12− v + 11− u) =

(
5

7

)
2(11− u+ v), and 2(12− v + u) =

(
9

10

)
2(12− v + 11− u),

which implies (u, v) = (5, 8), so the area of rectangle SDRX is SD ·DR = uv = 40.

Solution 2 by David A. Huckaby, Angelo State University, San Angelo, TX

From the given dimensions of rectangle ABCD, we have PX +RX = 11 and
QX + SX = 12. Since the perimeter of rectangle PBQX is 5

7 the perimeter of rectangle
SAPX, we have BQ+ PX +BP +QX = 5

7 (AP + SX +AS + PX), that is,
2PX + 2QX = 5

7 (2SX + 2PX) or PX +QX = 5
7 (SX + PX). Similarly, since the

perimeter of rectangle RCQX is 9
10 the perimeter of rectangle PBQX, we have

QX +RX = 9
10 (QX + PX).

So we have the following system of four equations in four unknowns:



PX +RX = 11
QX +SX = 12

2

7
PX +QX −5

7
SX = 0

− 9

10
PX +

1

10
QX +RX = 0

Solving this systems yields PX = 6, QX = 4, RX = 5, and SX = 8, whence the area of
rectangle SDRX is (RX)(SX) = (5)(8) = 40.

Also solved by Ashland University Undergraduate Problem Solving Group,
Ashland, Ohio; Michel Bataille, Rouen, France; Ed Gray, Highland Beach,
FL; David E. Manes, Oneonta, NY; David Stone and John Hawkins, Georgia
Southern University, Statesboro, GA, and the proposer.)

5531: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,”
Drobeta Turnu-Severin, Mehedinti, Romania

For real numbers x, y, z prove that if x, y, z > 1 and xyz = 2
√

2, then

xy + yz + zx + yx + zy + xz > 9.

Solution 1 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

If f(t) = t ln

(
2
√

2

t

)
, with t > 1, the f ′(t) = ln

(
2
√

2

t

)
− 1, and for f ′(tk) = 0, we have

tk =
2
√

2

e
> 1. So, we have: f(t) ≥ f

(
2
√

2

e

)
=

2
√

2

e
ln

(
2
√

2 · e

2
√

2

)
=

2
√

2

e
.

Furthermore, we have:
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xy ≥ 1 + y lnx, yx ≥ 1 + x ln y, yx ≥ 1 + z ln y,

zy ≥ 1 + y ln z, zx ≥ 1 + x ln z, xz ≥ 1 + z ln z,

So, we have:

xy + yz + zx + yx + zy + xz ≥ 6 + x ln(yz) + y ln(xz) + z ln(xy)

= 6 + x ln

(
2
√

2

x

)
+ y ln

(
2
√

2

y

)
+ z ln

(
2
√

2

z

)

≥ 6 + 3 · 2
√

2

e
> 9.

Solution 2 by Adrian Naco, Polytechnic University of Tirana, Albania

Since, x > 1, y > 1, and using the Bernoulli inequality, we have that

xy = [1 + (x− 1)]y > 1 + y(x− 1). (2)

Acting analogously it implies that,

xy + yz + zx + yx + zy + xz > 6 + 2(xy + yz + zx)− 2(x+ y + z). (3)

To prove the given inequality (1), it is enough to prove the following equivalent
inequalities,

6 + 2(xy+ yz+ zx)− 2(x+ y+ z) > 9 or equivalently (xy+ yz+ zx)− (x+ y+ z) >
3

2

Let

f(x, y, z) = (xy + yz + zx)− (x+ y + z)− 3

2
. g(x, y, z) = xyz − 2

√
2

and using Langrange Multipliers method, we have that,

F (x, y, z) = f(x, y, z)− λg(x, y, z) = (xy + yz + zx)− (x+ y + z)− 3

2
− λ(xyz − 2

√
2).

Fx = y + z − 1− λyz = 0

Fy = x+ z − 1− λxz = 0

Fz = x+ y − 1− λxy = 0

Fλ = −xyz + 2
√

2 = 0

Subtracting side by side, each couple of the last three first equations, we get the
following:

(z − 1)(x− y) = 0

(y − 1)(x− z) = 0

(x− 1)(z − y) = 0

xyz = 2
√

2
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So, x = y = z =
√

2, is the only solution (since x > 1, y > 1, z > 1). Finally,

minf(x, y, z) = f(
√

2;
√

2;
√

2) = 2 + 2 + 2− 3
√

2− 3

2
=

3

2
(3− 2

√
2) > 0.

Note. Even if we consider the case when x = 1, we have that,

f(1, y, z) = y+yz+z−1−z−y− 3

2
= 2
√

2)− 5

2
> f(

√
2;
√

2;
√

2) =
3

2
(3−2

√
2) > 0.

Solution 3 by Moti Levy, Rehovot, Israel

Let f (u, v) := uv + vu, u, v > 1. By verifying that the Hessian of f (u, v) is positive
semi-definite, it becomes evident that f (u, v) is convex function in the domain u, v > 1.

Hess (uv + vu) =

[
uv−2(v − 1)v + vu ln2 v uv−1 + vu−1 + vuv−1 lnu+ uvu−1 ln v

uv−1 + vu−1 + vuv−1 lnu+ uvu−1 ln v (u− 1)uvu−2 + uv ln2 v

]

Then by Jensen’s inequality

xy + yz + zx + yx + zy + xz (1)

= f (x, y) + f (y, z) + f (z, x) ≥ 3f

(
x+ y + z

3
,
y + z + x

3

)

By AM-GM inequality,

xyz = 2
√

2 =⇒ x+ y + z

3
≥ 3

√
2
√

2 =
√

2. (2)

Inequalities (1) and (2) imply the required result,

xy + yz + zx + yx + zy + xz ≥ 3f
(√

2,
√

2
)

= 6
(√

2
)√2

> 9.

Also solved by Khaled Abd Imouti, Zaki Al Arzousi School, Damascus,
Syria, (communicated to SSM by Daniel Sitaru of Romania); Michael
Brozinsky, Central Islip, NY; Ed Gray, Highland Beach, FL; Tran Hong
(student), Cao Lang School, Dong Thap, Vietnam (communicated to SSM
by Daniel Sitaru of Romania) and the proposer.

5532: Proposed by Arkady Alt, San Jose, CA

Let a, b, c be positive real numbers and let an =
an+ b

an+ c
, n ∈ N . For any natural number

m find lim
n→∞

nm∏

k=n

ak.

Solution 1 by Brian Bradie, Christopher Newport University, Newport
News, VA

For large n,

an =
an+ b

an+ c
=

1 + b
an

1 + c
an

∼ 1 +
b− c
an

.
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Thus,

ln
mn∏

k=n

ak =
mn∑

k=n

ln ak ∼
mn∑

k=n

b− c
an

=
b− c
a

(Hmn −Hn−1) ,

where Hn denotes the nth Harmonic number. Now,

Hn ∼ lnn+ γ,

where γ is the Euler-Mascheroni constant, so

Hmn −Hn−1 ∼ ln
mn

n− 1

and

ln

mn∏

k=n

ak ∼
b− c
a

ln
mn

n− 1
.

Thus,

lim
n→∞

ln
mn∏

k=n

ak =
b− c
a

lnm,

and

lim
n→∞

mn∏

k=n

ak = exp

(
b− c
a

lnm

)
= m(b−c)/a.

Solution 2 by Moti Levy, Rehovot, Israel

We rewrite the product as

mn∏

k=n

ak =

mn∏

k=n

(
1 +

α

k + β

)
, α =

b− c
a

, β =
c

a
.

ln

mn∏

k=n

ak =

mn∑

k=n

ln

(
1 +

α

k + β

)
=

mn∑

k=n

(
α

k + β
+O

(
1

k2

))
=

mn∑

k=n

(
α

k
+O

(
1

k2

))

lim
n→∞

ln

mn∏

k=n

ak = lim
n→∞

mn∑

k=n

α

k
= α lim

n→∞

mn∑

k=n

1

k

mn∑

k=n

1

k
=

1

n

(m−1)n∑

k=0

1

1 + k
n

lim
n→∞

1

n

(m−1)n∑

k=0

1

1 + k
n

=

∫ m−1

0

1

1 + x
dx = lnm.

lim
n→∞

ln

mn∏

k=n

ak = α lnm,

hence
mn∏

k=n

ak = mα = m
b−c
a .

Solution 3 by Albert Stadler, Herrliberg, Switzerland
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The Euler gamma function Γ(x) satisfies the functional equation Γ(x+ 1) = xΓ(x).
Therefore

mn∏

k=n

ak =
mn∏

k=n

k + b
a

k + c
a

=
Γ
(
mn+ 1 + b

a

)

Γ
(
n+ b

a

) · Γ
(
n+ b

a

)

Γ
(
mn+ 1 + c

a

)
.

Stirling’s asymptotic formula for the Euler gamma function states that

Γ(x) =

√
2π

x

(x
e

)x(
1 +O

(
1

x

))
, as x→∞ . So,

mn∏

k=n

ak ∼

√√√√
2π

mn+ 1 +
b

a



mn+ 1 +

b

a
e




mn+1+ b
a

√√√√
2π

n+
b

a



n+

b

a
e




n+ b
a

·

√√√√
2π

n+
c

a



n+

c

a
e



n+ c

a

√√√√
2π

mn+ 1 +
c

a



mn+ 1 +

c

a
e



mn+1+ c

a

∼

∼

(
mn+ 1 +

b

a

) b
a

(
n+

b

a

) b
a

·

(
n+ 1 +

c

a

) c
a

(
mn+ 1 +

c

a

) c
a

∼ m b−c
a as n→∞.

Solution 4 by Michel Bataille, Rouen, France

We show that the required limit is m(b−c)/a.

We shall use the following well-known result about the Gamma function: if s is a
positive real number, then

lim
n→∞

n! · ns
s(s+ 1)(s+ 2) · · · (s+ n)

= Γ(s).

For n ≥ 2, we have

nm∏

k=n

(ak + b) = anm−n+1
nm∏

k=n

(
b

a
+ k

)
= anm−n+1 ·

nm∏
k=0

(
b
a + k

)

n−1∏
k=0

(
b
a + k

)

so that, as n→∞,

nm∏

k=n

(ak + b) ∼ anm−n+1 · (nm)!(nm)b/a

Γ(b/a)
· Γ(b/a)

(n− 1)!(n− 1)b/a
= Km,n ·

(
nm

n− 1

)b/a

where Km,n = anm−n+1 · (nm)!
(n−1)! .

Similarly,
nm∏
k=n

(ak + c) ∼ Km,n ·
(
nm
n−1

)c/a
and it follows that

nm∏

k=n

ak ∼
(
nm

n− 1

)(b−c)/a
.
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Since lim
n→∞

nm
n−1 = m, we obtain that lim

n→∞

nm∏
k=n

ak = m(b−c)/a.

Solution 5 by Kee-Wai Lau, Hong Kong, China

We have ln ak = ln

(
1 +

b− c
ak + c

)
=

b− c
ak + c

+O

(
1

k2

)
as k →∞, where the constant

implied by O depends at most on a, b, c. Hence

mn∑

k=n

ln ak = (b− c)
nm∑

k=n

1

ak + c
+O

(
1

n

)
.

For x > 0, let f(x) be the decreasing function
1

ax+ c
so that

1

a
ln

(
anm+ c

an+ c

)
=

∫ nm

n

dx

ax+ c
<

nm∑

k=n

1

ak + c
<

∫ nm

n−1

dx

ax+ c
=

1

a
ln

(
anm+ c

an+ c− a

)
.

It follows that lim
n→∞

nm∑

k=n

1

ak + c
=

lnm

a
. Thus

lim
n→∞

nm∏

ki=n

ak = e

lim
n→∞

nm∑

k=n

1

ak + c
= m(b−c)/a.

Also solved by Ed Gray, Highland Beach, FL; G. C. Greubel, Newport
News,VA; and the proposer.

5533: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Find the value of the sum
+∞∑

n=1

n2αn

(n− 1)!

for any real number α > 0. (Here, 0! = 1! = 1).

Solution 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie, and Trey
Smith, Angelo State University, San Angelo, TX

The solution is
(
α3 + 3α2 + α

)
eα =

∞∑

n=1

n2αn

(n− 1)!

for all real α. To avoid encountering the disputed expression 00 in our work, we note
first that for α = 0,

(
α3 + 3α2 + α

)
eα = 0 =

∞∑

n=1

n2αn

(n− 1)!
.

For α 6= 0, we proceed as follows. Since

eα =

∞∑

n=0

αn

n!
,
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we have

αeα =
∞∑

n=0

αn+1

n!
=
∞∑

n=1

αn

(n− 1)!
.

Then, if we differentiate with respect to α, we obtain

(α+ 1) eα =
∞∑

n=1

nαn−1

(n− 1)!

and hence,
(
α2 + α

)
eα =

∞∑

n=1

nαn

(n− 1)!
.

Differentiate again with respect to α to get

(
α2 + 3α+ 1

)
eα =

∞∑

n=1

n2αn−1

(n− 1)!

and therefore,
(
α3 + 3α2 + α

)
eα =

∞∑

n=1

n2αn

(n− 1)!
.

Comment: Once we know the answer, we can verify this result directly as follows. As
noted above, when α = 0,

(
α3 + 3α2 + α

)
eα = 0 =

∞∑

n=1

n2αn

(n− 1)!
.

For α 6= 0,

(
α3 + 3α2 + α

)
eα =

(
α3 + 3α2 + α

) ∞∑

n=1

αn−1

(n− 1)!

=
∞∑

n=1

αn+2

(n− 1)!
+
∞∑

n=1

3αn+1

(n− 1)!
+
∞∑

n=1

αn

(n− 1)!

=

∞∑

n=3

αn

(n− 3)!
+

∞∑

n=2

3αn

(n− 2)!
+

∞∑

n=1

αn

(n− 1)!

= 3α2 +
(
α+ α2

)
+
∞∑

n=3

[
1

(n− 3)!
+

3

(n− 2)!
+

1

(n− 1)!

]
αn

= α+ 4α2 +

∞∑

n=3

(n− 2) (n− 1) + 3 (n− 1) + 1

(n− 1)!
αn

= α+ 4α2 +
∞∑

n=3

n2αn

(n− 1)!

=
∞∑

n=1

n2αn

(n− 1)!
.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece
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We have:
n2 = (n− 1)(n− 2) + 3(n− 1) + 1,

for n ∈ N with n ≥ 1. So we have:

n2αn

(n− 1)!
=

αn

(n− 3)!
+

3αn

(n− 2)!
+

αn

(n− 1)!
,

and
+∞∑

n=1

n2αn

(n− 1)!
= α3

+∞∑

n=1

αn−3

(n− 3)!
+ 3α2

+∞∑

n=1

αn−2

(n− 2)!
+ α

+∞∑

n=1

αn−1

(n− 1)!

= α3eα + 3α2eα + αeα = (α3 + 3α2 + α)eα.

Solution 3 by Moti Levy, Rehovot, Israel

Let F (z) be the generating function of the sequence
(

n2

(n−1)!

)∞
n=1

,

F (z) :=

∞∑

n=1

n2

(n− 1)!
zn.

Then by two repeated integrations, one may write,
∫ z

0

1

v

∫ v

0

1

u
F (u) du =

∞∑

n=1

1

(n− 1)!
zn = zez.

Now we can express F (z) by

F (z) = z
d
(
z d(ze

z)
dz

)

dz
= z

(
z2 + 3z + 1

)
ez.

We conclude that
∞∑

n=1

n2αn

(n− 1)!
= α

(
α2 + 3α+ 1

)
eα, for α ∈ C.

Remark: the value of the sum holds true for any complex number α. There is no reason
to restrict to positive real numbers.

Solution 4 by Henry Ricardo, Westchester Area Math Circle, NY

We start with the power series expansion ez =
∑∞

n=0 z
n/n!, convergent for all complex

numbers z and note that the series may be differentiated term-by-term.

Then

d

dz
(ez) =

∞∑

n=0

nzn−1

n!
=
∞∑

n=1

zn−1

(n− 1)!
, z

d

dz
(ez) =

∞∑

n=1

zn

(n− 1)!
,

d

dz

{
z
d

dz
(ez)

}
=
∞∑

n=1

nzn−1

(n− 1)!
, z

d

dz

{
z
d

dz
(ez)

}
=
∞∑

n=1

nzn

(n− 1)!
,

d

dz

[
z
d

dz

{
z
d

dz
(ez)

}]
=
∞∑

n=1

n2zn−1

(n− 1)!
,
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and, finally,

z
d

dz

[
z
d

dz

{
z
d

dz
(ez)

}]
=

∞∑

n=1

n2zn

(n− 1)!
. (∗)

After some tedious but simple differentiations and multiplications, the left-hand side of
(∗) becomes zez(z2 + 3z + 1). Letting z = α ∈ C in (∗) gives us

∞∑

n=1

n2αn

(n− 1)!
= αeα(α2 + 3α+ 1).

Solution 5 by Kee-Wai Lau, Hong Kong, China

Since
n2

(n− 1)!
=

1

(n− 3)!
+

3

(n− 2)!
+

1

(n− 1)!
for n ≥ 3, so

+∞∑

n=1

n2αn

(n− 1)!
= α+ 4α2 +

+∞∑

n=3

αn

(n− 3)!
+ 3

+∞∑

n=3

αn

(n− 2)!
+

+∞∑

n=3

αn

(n− 1)!

= α+ 4α2 + α3eα + 3α2(eα − 1) + α(eα − 1− α)

= αeα
(
α2 + 3α+ 1

)
.

Solution 6 by Arkady Alt, San Jose, CA

Since ex =
+∞∑
n=1

xn−1

(n− 1)!
then (xex)′ =

(
+∞∑
n=1

xn

(n− 1)!

)′
⇐⇒ ex + xex =

+∞∑
n=1

nxn−1

(n− 1)!

and, therefore,
(
xex + x2ex

)′
=

(
+∞∑
n=1

nxn

(n− 1)!

)′
⇐⇒ ex

(
x2 + 3x+ 1

)
=

+∞∑
n=1

n2xn−1

(n− 1)!
.

Hence,
+∞∑
n=1

n2αn

(n− 1)!
= αeα

(
α2 + 3α+ 1

)

Editor′s Comment: David Stone and John Hawkins of Georgia Southern
University in Statesboro, GA, generalized the procedure used in (4) and (6) above,

and showed that
∞∑

n=1

n3αn

(n− 1)!
= (α4 + 6α3 + 7α2 + α)en.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Michel Bataille, Rouen, France; Naren Bhandari, Bajura
School, Nepal, India; Brian Bradie, Christopher Newport University,
Newport, News, VA; Michael Brozinsky, Central Islip, NY; Bruno Salgueiro
Fanego,Viveiro, Spain; Ed Gray, Highland Beach, FL; G. C. Greubel,
Newport News,VA; David E. Manes, Oneonta, NY; Adrian Naco,
Polytechnic University of Tirana, Albania; Angel Plaza, University of Las
Palmas de Gran Canaria, Spain; Ravi Prakash, Oxford University Press,
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New Delhi, India; Albert Stadler, Herrliberg, Switzerland; David Stone and
John Hawkins of Georgia Southern University, Statesboro, GA, and the
proposer.

5534: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania

Calculate

∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy.

Solution 1 by Albert Stadler, Herrliberg, Switzerland

We note that
∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy =

∫ 1

0

∫ 1

0
(x+ y) ln(1− (1− x)(1− y))dxdy =

= −
∞∑

k=1

1

k

∫ 1

0

∫ 1

0
(x+ y)(1− x)k(1− y)kdxdy = −2

∞∑

k=1

1

k

k!

(k + 2)!

1

(k + 1)
=

= −2

∞∑

k=1

1

k(k + 1)2(k + 2)
= −2

∞∑

k=1

(
1

2k
− 1

(k + 2)2
− 1

2(k + 2)

)
= 2

(
1

2
+

1

4
− π1

6
+ 1

)
=

=
π2

3
− 7

2
where we have used that for natural numbers m and n,∫ 1

0
xm(1− x)ndx =

m!n!

(m+ n+ 1)!
and

∞∑

k=1

1

k2
=
π2

6
.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

We prove that

∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy =

π2

3
− 7

2
. By symmetry we have:

I =

∫ 1

0

∫ 1

0
(x+ y) ln(x− xy + y)dxdy. =

∫ 1

0
2

∫ 1

0
ln(x− xy + y)dxdy.

and integration by parts we have:
∫ 1

0
ln(x− xy + y)dxdy = −

∫ 1

0

y(1− x)

(1− x)y + x
dy = −1 +

∫ 1

0

dy

y + x
1−x

= −1− x lnx

1− x.

So we have;

I = −2

∫ 1

0
x

(
1 +

x lnx

1− x

)
dx = −1− 2

∫ 1

0

x2 lnx

1− x dx,

and if x = et, then:

I = −1 + 2

∫ +∞

0

te−3t

1− e−tdt = −1 + 2

∫ +∞

0
te−3t

∑

n≥0
e−ntdt
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= −1 + 2
∑

n≥0

∫ +∞

0
te−(n+3)tdt = −1 + 2

∑

n≥0

1

(n+ 3)2

= −1 + 2


∑

n≥0

1

n2
− 1− 1

4




= −1 + 2

(
π2

6
− 5

4

)
=
π2

3
− 7

2
.

Also solved by Michel Bataille, Rouen, France; Brian Bradie, Christopher
Newport University, Newport News, VA; Bruno Salgueiro Fanego, Viveiro,
Spain; Ed Gray, Highland Beach, FL; G. C. Greubel, Newport News,VA;
Kee-Wai Lau, Hong Kong, China; Moti Levy, Rehovot, Israel, and the
proposer.

Mea Culpa

Received from Ed Gray, Highland Beach, FL.

“I have been reviewing my solution to 5523 which you published in the last column. I
regret to say that the case for P = 2 is not correct. The problem is that the formula for
the circumscribed circle, R, is not satisfied. R = abc/4A. If you recall, we got excited
about discovering more than 1 solution, later found to be incorrect. You sent a note
asking if there could be three solutions? P=2, area = 420, sides (25,39,56), diameter 65.
And if so, are there still others? The answer is that there is only 1 solution, the one you
sent. I would be most happy if you printed my error in the next column.”

Arkady Alt of San Jose, CA should have been credited with having solved problem
5525. Mea Culpa.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
December 15, 2019

• 5553: Proposed by Kenneth Korbin, New York, NY

A triangle with sides (x, x, 57) has the same area as a triangle with sides (x+1, x+1, 55).
Find x.

• 5554: Proposed by Michel Bataille, Rouen, France

Find all pairs of complex numbers (a, b) such that the polynomial x5 + x2 + ax + b has
two roots of multiplicity 2.

• 5555: Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy

Show that xx − 1 ≤ x1−x2ex−1 (x− 1) for 0 < x ≤ 1.

• 5556: Proposed by Pedro Jesús Rodŕıguez de Rivera (student) and Ángel Plaza, Univer-
sidad de Las Palmas de Gran Canaria, Spain

Let αk =
k +
√
k2 + 4

2
. Evaluate lim

k→∞

∞∏

n=1

(
1 +

(k − 1)αk + 1

αnk + αk

)

αk
.

• 5557: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let n ≥ 2 be an integer. If for all k ∈ {1, 2, . . . , n} we have

Ak =

(
k + 1 k
k + 3 k + 2

)
,

compute the value of
∑

1≤i<j≤n
det (Ai +Aj).

• 5558: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania
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Find all continuous functions f : < → < such that

∫ 0

−x
f(t)dt+

∫ x

0
tf(x− t)dt = x,∀x ∈ <.

Solutions

• 5535: Proposed by Kenneth Korbin, New York, NY

Given positive angles A and B with A+B = 180o. A circle with radius 3 and a circle of
radius 4 are each tangent to both sides of ∠A. The circles are also tangent to each other
Find sinA.

Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX

See the figure below, in which angle QPR is
A

2
.

We have
QR

PQ
=
ST

PS
, that is,

3

PQ
=

4

PQ+ 7
, whence PQ = 21. So sin

(
A

2

)
=

1

7
and

cos

(
A

2

)
=

√
1−

(
1

7

)2

=
4
√

3

7
.

So sinA = 2 sin

(
A

2

)
cos

(
A

2

)
= 2

(
1

7

)(
4
√

3

7

)
=

8
√

3

49
.

Solution 2 by David E. Manes, Oneonta, NY

The value of sinA is 8
√

3/49.

Let X,Y denote the centers of the circles with radii 3 and 4, respectively. From vertex
A, draw the line through the centers X and Y . This line splits the circles and the angle
into two equal parts so that it is the angle bisector of ∠A. Construct the radius vector
XR from the center of the circle with radius 3 to the point of tangency R with angle A.
Similarly, Y S is the radius vector from the circle of radius 4 to the point of tangency S
of angle A. Then triangles AXR and AY S are similar right triangles with right angles at
points R and S, respectively. If x denotes the hypotenuse AX of 4AXR, then x+7 is the
hypotenuse AY of 4AY S. By the similarity of the two right triangles, it follows that the
ratio of corresponding sides are equal. Therefore, AX/XR = AY/Y S or x/3 = (x+ 7)/4
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implies x = 21. Let s denote the side length AR. Then s2 + 32 = 212 or s = 12
√

3.
Therefore,

sin(A/2) = XR/AX = 3/21 = 1/7 and cos(A/2) = AR/AX = 12
√

3/21 = 4
√

3/7.

Hence,
sinA = 2 sin(A/2) cos(A/2) = 2(1/7)(4

√
3/7) = 8

√
3/49 = sinB.

Solution 3 by Ed Gray, Highland Beach, FL

Let:

∠A = ∠DAC, where AC lies on the x-axis, and the coordinates of vertex A = (0, 0).

Let O = center of circle with radius 3, O′ = center of circle with radius 4. The angle
bisector passes through both circle centers. Let OP be perpendicular to AC, and AP = x.
The coordinates of O = (x, 3). Let O′Q be perpendicular to AC, and PQ = y.

AQ = x+y, and the coordinates of O′ = (x+y, 4). The distance from O to O′ = 3+4 = 7.

(1) tan(A/2) = 3/x = 4/(x+ y).

(2) 4x = 3x+ 3y, and x = 3y.

(3) Let T have coordinates (x+ y, 3), so that OT is parallel to AC.

(4) OTO′ is a right triangle with legs of 1 and y, and hypotenuse of 7.

(5) Then y2 + 1 = 49, y2 = 48, and y = 4
√

3, x = 3y = 12
√

3.

(6) sin(A) = sin[2(A/2)] = 2 sin(A/2) cos(A/2) = 2

(
1

7

)(
y

7

)
=

2y

49
=

8
√

3

49
.

Solution 4 by Michel Bataille, Rouen, France

Let γ and γ′ be the circles with radii 3 and 4, respectively. The circle γ (resp. γ′) is
tangent to the sides of ∠A at T and U (resp. at T ′ and U ′) [see figure]. Note that the
centres C and C ′ of γ and γ′ lie on the internal bisector of ∠A. Let O be the vertex of
∠A. The homothety with centre O and scale factor 4

3 transforms γ into γ′ and C into C ′.
Thus, we have OC′

OC = 4
3 and, since γ and γ′ are tangent to each other, CC ′ = 4 + 3 = 7.

It follows that
OC ′

4
=
OC

3
=
OC ′ −OC

4− 3
=
CC ′

1
= 7.

As a result, we obtain OC = 21 and so sin A
2 = CT

OC = 3
21 = 1

7 . In addition, since

0 < A
2 < 90◦, we have cos A2 > 0 hence cos A2 =

√
1− sin2 A

2 = 4
√
3

7 . We can now conclude

that

sinA = 2 sin
A

2
cos

A

2
=

8
√

3

49
.
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Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms,
North Newton, KS; Ioannis D. Sfikas, National and Kapodistrian Univer-
sity of Athens, Greece; Albert Stadler, Herrliberg, Switzerland; David Stone
and John Hawkins, Georgia Southern University, Statesboro, GA, and the
proposer.

• 5536: Proposed by D.M. Bătinetu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania and Neculai Stanciu,“George Emil Palade” School, Buzău, Romania

If a ∈ (0, 1) then calculate lim
n→∞

n
√

(2n− 1)!!

(
sin

(
a · n+1

√
(n+ 1)!

n
√
n!

)
− sin a

)
.

Solution 1 by Brian Bradie, Christopher Newport University, Newport News,
VA

By Stirling’s approximation,

n! ∼ nn

en
,

so
n
√
n! ∼ n

e
and n+1

√
(n+ 1)! ∼ n+ 1

e
.

Moreover,

(2n− 1)!! =
(2n)!

2nn!
∼ (2n)2n/e2n

2nnn/en
=

2nnn

en
,

so
n
√

(2n− 1)!! ∼ 2n

e
.

It follows that

n
√

(2n− 1)!!

(
sin

a n+1
√

(n+ 1)!
n
√
n!

− sin a

)
∼ 2n

e

(
sin a

(
1 +

1

n

)
− sin a

)
.

Using the identity

sinA− sinB = 2 sin
A−B

2
cos

A+B

2

with

A = a

(
1 +

1

n

)
and B = a,

we find

sin a

(
1 +

1

n

)
− sin a = 2 sin

a

2n
cos

(
a+

1

2n

)
.

Thus,

n
√

(2n− 1)!!

(
sin

a n+1
√

(n+ 1)!
n
√
n!

− sin a

)
∼ 4n

e
sin

a

2n
cos

(
a+

1

2n

)

=
2a

e

sin a
2n
a
2n

cos

(
a+

1

2n

)
.
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Finally,

lim
n→∞

n
√

(2n− 1)!!

(
sin

a n+1
√

(n+ 1)!
n
√
n!

− sin a

)
= lim

n→∞
2a

e

sin a
2n
a
2n

cos

(
a+

1

2n

)

=
2a

e
cos a.

Note the restriction a ∈ (0, 1) is not necessary.

Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.

The solution is lim
n→∞

n
√

(2n− 1)!!

(
sin

(
a · n+1

√
(n+ 1)!

n
√
n!

)
− sin a

)
=

2a cos a

e
.

Note first that by Stirling formula n
√

(2n− 1)!! ∼ 2n

e
, and also that

n+1
√

(n+ 1)!
n
√
n!

→ 1,

for n → ∞, and therefore, by Taylor expassion of sin ax at x = 1, it follows that the
proposed limit, say L, is

L =
2

e
lim
n→∞

−1
2(x− 1)2

(
a2 sin(a)

)
+ a(x− 1) cos(a) + sin(a)− sin(a)

1

n

=
2

e
lim
n→∞

−1
2(x− 1)2

(
a2 sin(a)

)
+ a(x− 1) cos(a)

1

n

=
2a cos a

e
,

where we have used x =
n+1
√

(n+ 1)!
n
√
n!

, so, by the Stolz-Cezaro Lemma,

lim
n→∞

x− 1
1

n

= lim
n→∞

n+1
√

(n+ 1)!− n
√
n!

n√
n!
n

= e lim
n→∞

n+1
√

(n+ 1)!

n+ 1
= 1

and consequently lim
n→∞

(x− 1)2

1

n

= 0, and the conclusion follows.

Solution 3 by Michel Bataille, Rouen, France

The required limit is
2a cos a

e
.

Recall the well-known asymptotic expansion of ln(n!) as n→∞:

ln(n!) = n ln(n)− n+ o(n) (1).

From (1), we deduce n
√
n! ∼ n

e as n→∞ [because n
√
n! = e

ln(n!)
n = eln(n)−1+o(1) = n

e ·eo(1)
so that lim

n→∞
e
n ·

n
√
n! = 1]. It follows that

n
√

(2n− 1)!! ∼ 2n

e

5

X
ia
ng
’s
T
ex
m
at
h



as n→∞. Indeed, since (2n− 1)!! = (2n− 1)(2n− 3) · · · 3 · 1 = (2n)!
2nn! , we have

n
√

(2n− 1)!! =

(
2n
√

(2n)!
)2

2 n
√
n!

∼ 1

2
· (2n/e)2

n/e
=

2n

e
.

To address the second factor, we first remark that un =
n+1
√

(n+1)!
n√
n!

satisfies un ∼ n+1
e · en =

n+1
n so that lim

n→∞
un = 1. Since ln(x) ∼ x− 1 as x→ 1, it follows that

un − 1 ∼ ln(un) =
1

n+ 1
(ln(n+ 1) + ln(n!))− 1

n
ln(n!)

=
1

n+ 1

(
ln(n+ 1)− 1

n
ln(n!)

)

=
1

n

(
1 +

1

n

)−1(
ln

(
1 +

1

n

)
+ ln(n)− 1

n
ln(n!)

)

and so un − 1 ∼ 1
n as n→∞ (note that (1) gives lim

n→∞
(
ln(n)− 1

n ln(n!)
)

= 1).

Now, since sinx ∼ x as x→ 0, we obtain

sin(aun)− sin a = 2 sin
a(un − 1)

2
cos

a(un + 1)

2
∼ (2 cos a) · a(un − 1)

2
∼ (a cos a) · 1

n

as n→∞ and deduce that the desired limit is

lim
n→∞

2n

e
· (a cos a) · 1

n
=

2a cos a

e
.

Editor′s comment: The statement that there is no need to restrict a to (0, 1) was also
noted in the solution submitted by Moti Levy of Rehovot Israel. Indeed, the result
is valid for a ∈ C .

Also solved by Ed Gray, Highland Beach, FL; Moti Levy, Rehovot, Israel;
Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece;
Albert Stadler, Herrliberg, Switzerland and the proposer.

• 5537: Proposed by Mohsen Soltanifar, Dalla Lana School of Public Health, University of
Toronto, Canada

Let X,Y be two real-valued continuous random variables on the real line with associated
mean, median and mode x, x̃, x̂, and y, ỹ, ŷ, respectively. For each of the following condi-
tions, show that there are variables X,Y satisfying them or prove such random variables
do not exist.

(i) x ≤ y, x̃ ≤ ỹ, x̂ ≤ ŷ, (v) x > y, x̃ ≤ ỹ, x̂ ≤ ŷ
(ii) x ≤ y, x̃ ≤ ỹ, x̂ > ŷ, (vi) x > y, x̃ ≤ ỹ, x̂ > ŷ
(iii) x ≤ y, x̃ > ỹ, x̂ ≤ ŷ, (vii) x > y, x̃ > ỹ, x̂ ≤ ŷ
iv) x ≤ y, x̃ > ỹ, x̂ > ŷ, (viii) x > y, x̃ > ỹ, x̂ > ŷ

Solution 1 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

We provide examples that satisfy each of the 8 conditions. They can all happen.
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Note that examples satisfying conditions (i) through (iv) with strict inequality satisfy
conditions (viii), (vii), (vi), and (v) respectively, if X and Y are reversed. For example, if
X and Y satisfy condition (i), then Y and X satisfy condition (viii); (ii) and (vii), (iii)
and (vi), and (iv) and (v). So we only need four examples.

We’ll define the random variables, X,Y1, Y2, Y3, Y4.

The probability density function for X:

fX(t) =





0, t < 0;

2.5t, 0 ≤ t ≤ .8;

10(1− t), .8 ≤ t ≤ 1;

0, 1 < t.

It is straightforward to verify that

∫ ∞

−∞
fX (t) dt = 1.

Then the cumulative distribution function is FX(x) =

∫ x

−∞
fx (t) dt.

The mean of X is

X =

∫ ∞

−∞
tfX(t)dt =

∫ .8

0
t(2.5t)dt+

∫ 1

.8
10(1− t)tdt =

32

75
+

13

75
= .6.

To find the median of X, we must find the value for x which makes

FX(x) =

∫ x

−∞
fX(t)dt =

1

2
.

By the definition of the pdf, this spot must occur before x = .8. So either by geometry

or solving

∫ x

0
2.5tdt =

1

2
, we find that the median is x̃ =

√
2

5
=

√
10

6
≈ .63246.

The maximum value of the pdf fX is .4, which occurs at x = .8.
That is the mode of X is x̂ = .8.

Conditions (viii) and (i).

We define Y1 by the density function

fY1(t) =





0, t < −.5;

4(t+ .5), −.5 ≤ t ≤ 0;

4(.5− t), 0 ≤ t ≤ .5;

0, .5 < t.

As above, we calculate our three measures:
Mean of Y1 : y1 = 0.
Median of Y1 : ỹ1 = 0.
Mode of Y1 : ŷ1 = 0.
We see that
x = .6 > y1 = 0.
x̃ = .6325 > ỹ1 = 0.
x̂ = .8 > ŷ1 = 0.
Thus, X and Y1 satisfy condition (viii). Reversing X and Y1 gives an example which
satisfies condition (i)

Conditions (iv) and (v).
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We define Y2 by the density function

fY 2(t) =





0, t < .12;

4(t− .12), .12 ≤ t ≤ .62;

4(1.12− t), .62 ≤ t ≤ 1.12;

0, 1.12 < t.

As above, we calculate our three measures:
Mean of Y2 : y2 = .62.
Median of Y2 : ỹ2 = .62.
Mode of Y2 : ŷ2 = .62
We see that
x = .6 < y2 = .62
x̃ = .6325 > ỹ2 = .62
x̂ = .8 > ŷ2 = .62.
Thus, X and Y2 satisfy condition (iv),

Reversing X and Y2 gives an example which satisfies condition (v)

Conditions (ii) and (vii).

We define Y3 by the density function

fY3(t) =





0, t < .2;

4(t− .2), .2 ≤ t ≤ .7
4(1.2− t), .7 ≤ t ≤ 1.2;

0, 1.2 < t.

As above, we calculate our three measures:
Mean of Y3 : y3 = .7.
Median of Y3 : ỹ3 = .7.
Mode of Y3 : ŷ3 = .7.

We see that
x = .6 < y3 = .7
x̃ = .6325 < ỹ3 = .7
x̂ = .8 > ŷ3 = .7.
Thus, X and Y3 satisfy condition (ii), Reversing X and Y3 gives an example which satisfies
condition (vii)

Conditions (iii) and (vi).

We define Y4 by the density function, which is piecewise continuous and defined for all
real numbers. Thus the cumulative distribution function for Y4 is also continuous and
defined everywhere. Thus Y4 is a continuous random variable.
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fY4(t) =





0, t < .47;

10/3, .47 ≤ t ≤ .62

8.33/3, .62 ≤ t ≤ .8

2000000(t− 8), .8 ≤ t ≤ .80001

2000000(.80002− t), .80001 ≤ t ≤ .80002

0, .80002 < t.

It is more tedious, but we calculate our three measures:
Mean of Y4 : y4 = .62736.
Median of Y4 : ỹ4 = .62.
Mode of Y4 : ŷ4 = .80001

We see that
x = .6 < y4 = .62736
x̃ = .6325 > ỹ4 = .62
x̂ = .8 < ŷ4 = .80001.
Thus, X and Y4 satisfy condition (iii)

Reversing X and Y4 gives an example which satisfies condition (vi).

So for each condition (i) . . . (viii), we have an example satisfying it.

Note: If a random variable that has a continuous probability density function is desired,
the following can be used for the definition of Y4, (but the mathematics to compute its
mean and median is much more tedious):

fY4(t) =





0, t < .45;
29167
9303 (t− .45), .45 ≤ t < .46

29167
9303 , .46 ≤ t ≤ .61

(
833
3 − 2916700

9303

)
(t− .61) + 29167

9303 , .61 < t < .62

8.33
3 , .62 < t ≤ .8

5167000
3 (t− .8) + 8.33

3 , .8 ≤ t ≤ .80001

60
.000025835(.80001− t) + 20, .8000 ≤ t ≤ .80001 + .000025835

3

0, t > .80001 + .000025835
3
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Solution 2 by Albert Stadler, Herrliberg, Switzerland

Let 0 < r < s < 1, u > 0, v > 0, w > 0 such that

(i) ur + v(s− r)/2 = 1,
(ii) v(s− r)/2 + w(1− s) = 1.

Let p(x) be the continuous probability density function that is zero in ] −∞, 0] ∪ [1,∞[
and piecewise linear in [0, 1] such that the graph of p(x) consists of line segments joining
the points (0, 0) and (r/2, u), (r/2, u) and (r, 0), (r, 0) and ((r + s)/2, v), ((r + s)/2, v)
and (s, 0), (s, 0) and ((s+ 1)/2, w), ((s+ 1)/2, w) and (1, 0). p(x) is a probability density
function with three “peaks.”

Let X be the random variable whose probability density function is p(x). Let r, s, v be
given. We solve (i) and (ii) for u and w and find:

u =
2− v(s− r)

2r
,

w =
2− v(s− r)

2(1− s) .

Clearly, v <
2

s− r , since both u > 0 and v > 0.

We next calculate the mean, median and mode of X, and express these quantities in terms
of r, s, v:

x =

∫ 1

0
xp(x)dx =

∫ r/2

0
x

(
2u

r
x

)
dx+

∫ r

r/2
x

(
−2u

r
(x− r)

)
dx+

∫ (r+s)/2

r
x

(
2v

s− r (x− r)
)
dx+

+

∫ s

(r+s)/2
x

(
− 2v

s− r (x− s)
)
dx+

∫ (s+1)/2

s
x

(
2w

1− s(x− s)
)
dx+

∫ 1

(s+1)/2
x

(
− 2w

1− s(x− 1)

)
dx =

=
1

4

(
r2u− r2v + s2v + w − s2w

)
=

1 + r + s

4
+ v

(s− r)(r + s− 1)

8
.

Clearly, x̃ =
r + s

2
, since

∫ x̃

0
p(x)dx =

1

2
by (i).

The mode x̂ is defined as the value x̂ for which we have p(x̂) = max(u, v, w).

We have

x̂ =
r

2
, if u > v and u > w which is equivalent to v <

2

r + s
and r + s < 1.

x̂ =
r + s

2
, if v > w and v > u which is equivalent to v >

2

r + s
and v >

2

2− r − s .

x̂ =
s+ 1

2
, if w > u and w > v which is equivalent to v <

2

2− r − s and r + s > 1.

We have three free parameters at our disposal, namely r, s, v, we can play with. It turns
out that by a suitable choice of these parameters all 8 variants can be realized as is
evidenced by the subsequent table:
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case r s u v w Mean Median Mode

(i) 0.296 0.615 0.528 5.289 0.406 0.459 0.456 0.456
0.301 0.728 0.513 3.961 0.567 0.513 0.515 0.515

(ii) 0.301 0.509 0.547 8.031 0.336 0.413 0.405 0.405
0.143 0.824 2.459 1.904 1.998 0.486 0.484 0.072

(iii) 0.407 0.881 2.214 0.418 7.571 0.579 0.644 0.941
0.299 0.944 1.449 1.757 7.739 0.595 0.622 0.972

(iv) 0.502 0.953 1.652 0.758 17.640 0.633 0.728 0.977
0.536 0.849 0.234 5.590 0.829 0.680 0.693 0.693

(v) 0.155 0.720 2.970 1.910 1.644 0.452 0.438 0.078
0.260 0.630 0.462 4.756 0.325 0.448 0.445 0.445

(vi) 0.364 0.845 1.224 2.306 2.874 0.581 0.605 0.923
0.485 0.744 1.603 1.719 3.037 0.570 0.615 0.872

(vii) 0.250 0.619 2.460 2.087 1.614 0.455 0.435 0.125
0.269 0.452 3.507 0.620 1.721 0.426 0.361 0.135

(viii) 0.595 0.763 0.879 5.675 2.208 0.632 0.679 0.679
0.371 0.752 1.401 2.521 2.096 0.546 0.562 0.562

The table was generated by a computer program that selected values for r, s, v randomly,
thereby creating instances of the random variables X and Y, until a pair of random
variables was found for each of the eight cases.

Editor′s comment: This problem asked us to determine if certain relationships can exist
between the mean, median, and mode in two sets of data that are subject to certain
constrains. If the constraints on the data are relaxed, and by focusing on the mean,
median, and mode on small finite sets of data, one can easily determine the validity of
the relationships in this question.

Also solved by the proposer.

• 5538: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan

Solve for all real numbers x 6= π

2
(2k + 1), k ∈ Z.

2− 2019x = etanx + 3sinx + tan−1 x.

Solution 1 by Michel Bataille, Rouen, France

For k ∈ Z, let Ik denote the open interval
(
π
2 (2k − 1), π2 (2k + 1)

)
. We first show that the

equation has no solution in Ik for k ≥ 1.
If t ∈ Ik is a solution to the equation, then we have 2− 3sin t− tan−1 t = etan t + 2019t and
so
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2019t < 2019t+ etan t = 2− 3sin t − tan−1 t < 2− 1

3
+
π

2

(since 3sin t ≥ 3−1 and tan−1 t > −π
2 ). It follows that t < 1

2019

(
5
3 + π

2

)
< π

2 and so we
must have k ≤ 0.

Now, we consider the function f defined by f(x) = etanx + 3sinx + tan−1 x + 2019x
whose derivative is f ′(x) = (1 + tan2 x)etanx + (ln 3)(cosx)3sinx + 1

1+x2
+ 2019.

Since |(ln 3)(cosx)3sinx| ≤ (ln 3)3sinx ≤ 3 ln 3, we have (ln 3)(cosx)3sinx + 2019 > 0,
hence f ′(x) > 0. It follows that the restriction fk of f to the interval Ik, which is con-
tinuous and strictly increasing, is a bijection from Ik onto the interval (αk, βk) where
αk = lim

x→π
2
(2k−1)

fk(x) and βk = lim
x→π

2
(2k+1)

fk(x). Since etanx tends to 0 when tanx tends

to −∞ and to ∞ when tanx tends to ∞, it is readily seen that for k ≤ 0, αk < 0 and
βk = ∞. Thus, the equation fk(x) = 2 has a unique solution xk in Ik for k ≤ 0; in par-
ticular x0 = 0. Therefore the given equation has infinitely many solutions, the numbers
xk = f−1k (2) for k ≤ 0.

Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC

We show that there are infinitely many solutions, one of which is zero and the rest of
which are negative real numbers.

For each integer k, let Dk be the interval (π(2k− 1)/2, π(2k+ 1)/2). Let D = ∪∞k=−∞Dk.
Define f(x) = 3sinx + tan−1 x+ 2019x− 2 for each x in R, and define g(x) = f(x) + etanx

for each x in D. Then

f ′(x) = (cosx)3sinx(ln 3) + 1/(1 + x2) + 2019

and g′(x) = f ′(x) + (sec2 x)etanx. Since |(cosx)3sinx(ln 3)| ≤ 3 ln 3 for all real numbers
x, we have f ′(x) > 0 on R and g′(x) > 0 on D. Thus f is increasing on R, while g is
increasing on each Dk.

Next, we note that on each Dk,

lim
x→π

2
(2k−1)+

g(x) = f
(π

2
(2k − 1)

)
and lim

x→π
2
(2k+1)−

g(x) =∞.

Then there is exactly one zero of g(x) in Dk if and only if f
(
π
2 (2k − 1)

)
< 0. Since

f(−π/2) < 0 and f(π/2) > 0, we have exactly one zero xk of g(x) in Dk if and only if k is
a non-positive integer. In particular, x0 = 0, x−1 ≈ −1.693068317, x−2 ≈ −4.820854357,
x−3 ≈ −7.956873841, etc.

Graph of g(x) = etanx + 3sinx + tan−1 x+ 2019x− 2:
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Also solved by Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

• 5539: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let α, β, γ be nonzero real numbers. Find the minimum value of


∑

cyclic

(
1 + sin2 α sin2 β

sin2 α

)3



1/3

Solution 1 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

If we let: a = tanα, b = tanβ, and c = tan γ then,

sin2 α =
tan2 α

1 + tan2 α
=

a2

1 + a2

sin2 β =
tan2 β

1 + tan2 β
=

b2

1 + b2
sin2 γ =

tan2 γ

1 + tan2 γ
=

c2

1 + c2
.

Since 0 ≤ sin2 x ≤ 1, then 0 ≤ tan2 x

1 + tan2 x
≤ 1 for x ∈ {α, β, γ}. So, we have:

1 + sin2 α sin2 β

sin2 α
=

(1 + a2)(1 + b2) + a2b2

a2(1 + b2)
=

1 + a2

a2
+

b2

1 + b2
≥ 1 +

1 + a2

a2
.

Since lim
a→±∞

(
1 +

1 + a2

a2

)
= 2, then

1 + sin2 α sin2 β

sin2 α
≥ 3, and:


∑

cyclic

(
1 + sin2 α sin2 β

sin2 α

)3


1/3

≥ 3
3
√

3 ≈ 4.32674871.

Solution 2 by Kee-Wai Lau, Hong Kong, China

Denote the expression of the problem by E. We show that the minimum of E is 2 3
√

3.

Since

∑

cyclic

1 + sin2 α sin2 β

sin2 α
=

∑

cyclic

1

sin2 α
+
∑

cyclic

sin2 β
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=
∑

cyclic

(
1

sin2 α
+ sin2 α

)

=
∑

cyclic

((
1

sinα
− sinα

)2

+ 2

)

≥ 6,

so by Hölder’s inequality, we have E ≥ 3−2/3
∑

cyclic

1 + sin2 α sin2 β

sin2 α
≥ 2

3
√

3.

When α = β = γ =
π

2
, we obtain E = 2 3

√
3 and hence our claimed minimum.

Solution 3 by Albert Stadler, Herrliberg, Switzerland

We claim that the minimum value equals 2 3
√

3 and is assumed for α = β = γ =
π

2
.

Let u = sinα, v = sinβ,w = sin γ. The by the AM-GM inequality,

3)

√√√√
∑

cyclic

(
1 + sin2 α2β

sin2 α

)
=

3

√(
1

u
+ v

)3

+

(
1

v
+ w

)3

+

(
1

w
+ u

)3

≥

≥ 3

√(
2

√
v

u

)3

+

(
2

√
w

v

)3

+

(
2

√
u

w

)3

≥ 2
3
√

3 3

√
v

u
· w
v
· u
w

= 2
3
√

3.

Also solved by Brian Bradie, Christopher Newport University, Newport News,
VA; Michel Bataille, Rouen, France; Ed Gray, Highland Beach, FL; Moti Levy
Rehovot, Israel; David E. Manes, Oneonta, NY, and the proposer.

• 5540: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Ro-
mania

Let A ∈ M2(<) be a matrix which has real eigenvalues. Prove that if sinA is similar to
A then sinA = A.

Solution 1 by Moti Levy, Rehovot, Israel
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The matrix A ∈ M2 (R), with real eigenvalues must be similar (according to the Jordan

canonical form) to

[
λ1 0
0 λ2

]
, or to

[
λ1 1
0 λ1

]
.

If A = P−1
[
λ1 0
0 λ2

]
P then An = P−1

[
λn1 0
0 λn2

]
P and it follows that

sinA =

∞∑

n=1

anA
n = P−1

[ ∑∞
n=1 anλ

n
1 0

0
∑∞

n=1 anλ
n
2

]
P = P−1

[
sinλ1 0

0 sinλ2

]
P. (1)

If A = P−1
[
λ1 1
0 λ1

]
P then An = P−1

[
λn1 nλn−11

0 λn2

]
P and it follows that

sinA =

∞∑

n=1

anA
n = P−1

[ ∑∞
n=1 anλ

n
1

∑∞
n=1 nanλ

n−1
1

0
∑∞

n=1 anλ
n
2

]
P = P−1

[
sinλ1 cosλ1

0 sinλ1

]
P.

(2)
Similar matrices have the same eigenvalues, hence from (1)

sinλ1 = λ1,

sinλ2 = λ2,

which implies λ1 = λ2 = 0. In this case A = sinA = P−1
[

0 0
0 0

]
P =

[
0 0
0 0

]
.

Similarly, it follows from (2) that

sinλ1 = λ1,

cosλ1 = 1,

which implies λ1 = 0. In this case A = sinA = P−1
[

0 1
0 0

]
P =

[
0 1
0 0

]
.

Solution 2 by Michel Bataille, Rouen, France

Let λ1, λ2 be the eigenvalues of A. First, we suppose that λ1 6= λ2 and we show that sinA
cannot be similar to A in that case. Since its eigenvalues are distinct, the matrix A is

diagonalizable, that is, A = PDP−1 where D =

(
λ1 0
0 λ2

)
and P ∈ GL2(R). Then

sinA = P (sinD)P−1 = P

(
sin(λ1) 0

0 sin(λ2)

)
P−1

so that the eigenvalues of sinA are sin(λ1) and sin(λ2). If sinA were similar to A,
then we would have {λ1, λ2} = {sin(λ1), sin(λ2)}. However, sin(λ1) = λ1, sin(λ2) =
λ2 implies λ1 = λ2(= 0) contradicting λ1 6= λ2. Nor can the remaining possibility
sin(λ1) = λ2, sin(λ2) = λ1 occur; indeed, in that case λ1, λ2 ∈ [−1, 1] and sin(sin(λ1)) =
λ1, sin(sin(λ2)) = λ2. But the function φ : x 7→ x− sin(sinx) is strictly increasing, hence
injective, on [−1, 1] (its derivative x 7→ 1 − (cosx) cos(sinx) is nonnegative and vanishes
only at 0 since 0 < cosx < 1 for x ∈ [−1, 1], x 6= 0). Thus, from φ(λ1) = φ(λ2) we deduce
λ1 = λ2, again a contradiction.
Suppose now that A has a unique eigenvalue λ.
If A is diagonalizable, then A = λI2 and so sinA = (sinλ)I2. If sinA is similar to A, then
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sinλ = λ, hence λ = 0 and we conclude that sinA = A(= O2).

If A is not diagonalizable, the A is similar to its Jordan form J =

(
λ 1
0 λ

)
: A = QJQ−1

for some matrix Q ∈ GL2(R). Since Jn =

(
λn nλn−1

0 λn

)
for any positive integer n (easy

induction), we obtain that

sinA = Q

( ∞∑

n=0

(−1)n

(2n+ 1)!
J2n+1

)
Q−1 = Q

[ ∞∑

n=0

(−1)n

(2n+ 1)!

(
λ2n+1 (2n+ 1)λ2n

0 λ2n+1

)]
Q−1,

that is,

sinA = Q

(
sin(λ) cos(λ)

0 sin(λ)

)
Q−1.

Now, if sinA is similar toA, then sinλ = λ, hence λ = 0 and thereforeA = Q

(
0 1
0 0

)
Q−1 =

sinA.
We conclude that sinA = A whenever sinA is similar to A.

Solution 3 by Kee-Wai Lau, Hong Kong, China

Let λ1 and λ2 be the real eigenvalues of A, so that the eigenvalues of sinA are sinλ1 and
sinλ2. Since sinA and A are similar, they have the same eigenvalues. Thus either a)
sinλ1 = λ1, sinλ2 = λ2 or b) sinλ1 = λ2, sinλ2 = λ1 .

For case a) let f(x) = x− sinx, where x is any real number. We have f ′(x) = 1− /cosx,
so that f(x) is strictly increasing for x ∈ (−1, 0) ∪ (0, 1). Since f(0) = 0 and f(x) is
nondecreasing in general, so f(x) = 0 if and only if x = 0. It follows that λ1 = λ2 = 0.

For case b), we have sin(sinλ1) = λ1 and sin(sinλ2) = λ2. For real numbers x let
g(x) = x = sin(sinx) so that g′(x) = 1 − cosx cos(sinx). Similar to a), we see that
g(x) = 0 if and only if x = 0. Again λ1 = λ2 = 0.

It is known ([1] p.200, Theorem 4.11) that if A has equal eigenvalues λ, then = (cosλ)A+
(sinλ− λ cosλ)I2, where I2 is the identity matrix of order 2.

Since λ = 0, so sinA = A, as desired.

Reference 1. V. Pop, O. Furdui: Square Matrices of Order 2, Springer, 2017

Solution 4 by Albert Stadler, Herrliberg, Switzerland

Let a, b be the eigenvalues of A which are assumed to be real. Any matrix A (with real or
complex entries) is similar to an upper triangular matrix whose diagonal entries are the
eigenvalues of A, i.e. there is an invertible 2 by 2 matrix T such that

T−1AT =

(
a ∗
0 b

)
.

We conclude that

T−1 sinAT = T−1
( ∞∑

k=0

(−1)k

(2k + 1)!
Ak

)
T =

∞∑

k=0

(−1)k

(2k + 1)!

(
T−1AT

)k
=

(
sin a ∗

0 sin b

)
.
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By assumption A and sinA are similar. Similar matrices have the same eigenvalues.
Therefore {a, b} = {sin a, sin b}. So either a = sin a and b = sin b or a = sin b and
b = sin a.

In the first case we have a = b = 0, since a and b are real. In the second case we
have a = sin sin a and b = sin sin b which implies again a = b = 0 . (Note that for
x 6= 0| sinx| < |x|.)

Thus A = T

(
0 ∗
0 0

)
T−1. which implies that Ak is the null-matrix for all k > 1 and

therefore

sinA =
∞∑

k=0

(−1)k

(2k + 1)!
Ak = A.

Also solved by the proposer.
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Problems Ted Eisenberg, Section Editor

*********************************************************

This section of the Journal offers readers an opportunity to exchange interesting mathematical
problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics,
Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning
proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously
stated problems can be seen at <http://www.ssma.org/publications>.

————————————————————–

Solutions to the problems stated in this issue should be posted before
January 15, 2020

• 5559: Proposed by Kenneth Korbin, New York, NY

For every positive integer N there are two Pythagorean triangles with area
(N)(N + 1)(2N + 1)(2N − 1)(4N + 1)(4N2 + 2N + 1). Find the sides of the triangles if
N = 4.

• 5560: Proposed by Michael Brozinsky, Central Islip, NY

Square ABCD (in clockwise order) with all sides equal to x has point E as the midpoint of
side AB. The right triangle EBC is folded along segment EC so that what was previously
corner B is now at point B′ which is at a distance d from side AD. Find d and also the
distance of B′ from AB.

• 5561: Proposed by Pedro Pantoja, Natal/RN, Brazil

Calculate the exact value of:

cos
5π

28
+ cos

13π

28
− cos

17π

28
.

• 5562: Proposed by Daniel Sitaru, National Economic College “Theodor Costescu,” Mehed-
inti, Romania

Prove: If a, b, c ≥ 1, then

eab + ebc + eca > 3 +
c

a
+
b

c
+
a

b
.

• 5563: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Without the aid of a computer, find the value of

+∞∑

n=1

15

25n2 + 45n− 36
.
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• 5564: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania

Let a > 0 and let f : [0, a]→ < be a Riemann integrable function. Calculate

lim
n→∞

∫ a

0

f(x)

1 + nxn
dx.

Solutions

5541: Proposed by Kenneth Korbin, New York, NY

A convex cyclic quadrilateral has inradius r and circumradius R. The distance from the
incenter to the circumcenter is 169. Find positive integers r and R.

Solution 1 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

Fuss’ theorem gives a relation between the inradius r, the circumradius R, and the
distance d between the incenter I and the circumcenter O, for any bicentric
quadrilateral. The relation is:

1

(R+ d)2
+

1

(R− d)2
=

1

r2
, (1)

or equivalently:
2r2(R2 + d2) = (R2 − d2)2.

It was derived by Nicolaus Fuss (1755-1826) in 1792. Solving for d yields:

d =

√
R2 + h2 − r

√
4R2 + h2.
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Since d = 169 = 132, then we may assume the relation (1) as a Diophantine equation:

1

(R+ 132)2
+

1

(R− 132)2
=

1

r2
,

with r,R > 0 or:

r2 =
(R2 − 134)2

2(R2 + 134)

We may assume the Diophantine equation:

2(R2 + 134) = y2,

and:

R = −169

2

[
(
√

2 + 1)(3− 2
√

2)n − (
√

2− 1)(3 + 2
√

2)n
]
,

R =
169

2

[
(
√

2 + 2)(3− 2
√

2)n − (
√

2− 2)(3 + 2
√

2)n
]
,

for n ≥ 1 and n ∈ N . So, we have: r = r(n) which must be an integer. By calculations,
we have:

r = 28560 and R = 40391.

Solution 2 by Albert Stadler, Herrliberg, Switzerland
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By Fuss’ theorem (https://en.wikipedia.org/wiki/Bicentric-quadrilateral),

1

(R− x)2
+

1

(R+ x)2
=

1

r2
,

or equivalently

r =
R2 − x2√
2(R2 + x2)

,

where r is the inradius, R the circumradius and x the distance between the incenter and
the circumcenter of the bicentric quadrilateral.

By assumption, x = 169 and r is an integer. Therefore
√

2(R2 + x2) is a (rational)
integer. We note that

2r =
2R2 + 2x2 − 42√

2(R2 + x2)
=
√

2(R2 + x2)− 4x2√
2(R2 + x2)

,

which implies that
√

2(R2 + x2) divides 22134. We conclude that 2(R2 + x2) ∈
{4, 16, 676, 2704, 114244, 456976, 19307236, 77228944, 3262922884, 13051691536}.
The only feasible value for R is R = 40391 which leads to r = 28560.

Solution 3 by Ed Gray of Highland Beach, FL

Editor′s comment: I am taking the liberty of jumping into the middle of Ed’s solution.
Like those above, his solution started off using Fuss’ Formula, and immediately
substituted d = 169 into it. After some algebra he obtained that

R4 − (2r2 + 57122)R2 = 815730721− 57122r2,

that he solved as a quadratic in R2. Solving this he obtained that
R2 = r2 + 28561± r

√
r2 + 114244. Letting e2 = r2 + 114244, he continued on as follows:

Then 114244 = 2 · 2 · 134 = e2 − r2 = (e− r)(e+ r). The sum of the factors e− r and
e+ r is even and equals 2e. Therefore the factors are both even or both odd. Since their
product is even, they both must be even. There are only 2 possibilities:

(i) e− r = 2 and e+ r = 2 · 28561 = 57122. Then 2e = 57124, e = 28562, and r = 28560.
From the equation R2 = r2 + 28561±−r

√
r2 + 114244),

R2 = 815673600 + 28561± (28560)(28562) = 815702161± 815730720.

Clearly the negative sign is not viable.

So R2 = 815702161 + 815730720 = 1631432881 and R = 40391. The solution pair (r,R)
is (28560, 40391), and they satisfy Fuss’ Theorem.

(ii) e− r = 2 · 13 = 26 and e+ r = 2 · (133) = 4394. Then 2e = 4420, e = 2210, and
r = 2184. From the equation R2 = r2 + 28561±−r

√
r2 + 114244) we see that

R2 = 4769856 + 28561± (2184)(2210). However, in this is the case, then R2 will end in
7, and so R cannot be an integer.

Also solved by Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.
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5542: Proposed by Michel Bataille, Rouen, France

Evaluate in closed form: cos
π

13
+ cos

3π

13
− cos

4π

13
.

(Closed form means that the answer should not be expressed as a decimal equivalent.)

Solution 1 by David E. Manes, Oneonta, NY

We will show that cos
π

13
+ cos

3π

13
− cos

4π

13
=

√
7 +
√

13

8
=

1 +
√

13

4
. To do so, we

assume the following identities:

cos2
( π

13

)
+ cos2

(
3π

13

)
+ cos2

(
4π

13

)
=

11 +
√

13

8
,

n∑

k=1

cos

(
2kπ

2n+ 1

)
= cos

(
2π

2n+ 1

)
+ cos

(
4π

2n+ 1

)
+ · · ·+ cos

(
2nπ

2n+ 1

)
= −1

2
,

where n is a positive integer. Let C = cos
π

13
+ cos

3π

13
− cos

4π

13
. Then

C2 = cos2
( π

13

)
+ cos2

(
3π

13

)
+ cos2

(
4π

13

)
+ 2 cos

π

13
cos

3π

13
− 2 cos

π

13
cos

4π

13
− 2 cos

3π

13
cos

4π

13

=
11 +

√
13

8
+ 2 cos

π

13
cos

3π

13
− 2 cos

π

13
cos

4π

13
− 2 cos

3π

13
cos

4π

13
.

By the product-to-sum formulas, one finds

2 cos
π

13
cos

3π

13
= cos

4π

13
+ cos

2π

13

−2 cos
π

13
cos

4π

13
= − cos

5π

13
− cos

3π

13

−2 cos
3π

13
cos

4π

13
= − cos

7π

13
− cos

π

13
.

Using the addition formula for cos(π − x) = − cosx, we get

− cos
5π

13
= cos

(
π − 5π

13

)
= cos

8π

13
,− cos

3π

13
= cos

10π

13
,

− cos
7π

13
= cos

(
π − 7π

13

)
= cos

6π

13
,− cos

π

13
= cos

12π

13
.

Therefore, rearranging the terms, one obtains,

2 cos
π

13
cos

3π

13
− 2 cos

π

13
cos

4π

13
− 2 cos

3π

13
cos

4π

13
=

6∑

k=1

cos

(
2kπ

13

)
= −1

2
.

Therefore,

C2 =
11 +

√
13

8
− 1

2
=

7 +
√

13

8
, whence C =

√
7 +
√

13

8
.

Note that

√
7 +
√

13

8
=

1 +
√

13

4
since

(
1 +
√

13

4

)2

=
7 +
√

13

8
.
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Solution 2 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Let x = cos
π

13
+ cos

3π

13
− cos

4π

13
, θ =

π

13
and c = cos θ. If ck = cos kθ, then

c2k = 2c2k − 1, 2cpcq = cp+q + cp−q, and c13+k = c13−k. Notice that x > 0. Therefore

x2 = c21 + c23 + c24 + 2c1c3 − 2c1c4 − 2c3c4

=
c2 + 1

2
+
c6 + 1

2
+
c8 + 1

2
+ c4 + c2 − c5 − c3 − c7 − c1,

x2 + x =
1

2
(3 + 3c2 − 2c5 + c6 − 2c7 + c8)

=
1

2
(3 + 3c2 + 3c6 + 3c8).

Now, if y = c2 + c6 + c8, then

y2 =
c4 + 1

2
+
c12 + 1

2
+
c16 + 1

2
+ c8 + c4 + c10 + c6 + c14 + c2

2y2 = 3c4 + 3c10 + 3c12 + 2y + 3

2y2 = 3(c4 + c10 + c12) + 2y + 3.

Now, since c2 + c4 + c6 + c8 + c10 + c10 + c12 = −1
2 because

c2 + c4 + c6 + c8 + c10 + c10 + c12 = <
(

6∑

k=1

e(2kπi)/13

)
and applying the sum of a

geometric series, we get −1

2
. Then, c4 + c10 + c12 = −1

2
− (c2 + c6 + c8) = −1

2
− y and

so, 2y2 = 3(−1
2 − y) + 2y + 3 from where, since y > 0, y =

−1 +
√

13

4
.

Finally, by solving x2 + x =
1

2
(3 + 3y) and, since x > 0 it is obtained x =

1 +
√

13

4
.

Solution 3 by Andrea Fanchini, Cantú, Italy

Let p be an odd prime number. Then we know that

gp =

p−1∑

k=0

exp(2πk2/p)

is a quadratic Gaussian sum, where gp =
√
p or i

√
p according to whether p ≡ 1 or p ≡ 3

(mod 4). So g13 =
√

13. Therefore,

√
13 = 1 + e2πi/13 + e8πi/13 + e−8πi/13 + e6πi/13 + e−2πi/13 + e−6πi/13

+ e−6πi/13 + e−2πi/13 + e6πi/13 + e−8πi/13 + e8πi/13 + e2πi/13.

Recalling that eix + e−ix = 2 cosx we then have:

cos
2π

13
+ cos

6π

13
+ cos

8π

13
=

√
13− 1

4
, (1)

Now we consider the sum of cosines with arguments in arithmetic progression.
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n−1∑

k=0

cos (a+ kd) =
sin (nd/2)

sin (d/2)
cos

(
a+

(n− 1)d

2

)

where a, d ∈ R, d 6= 0, and that n is a positive integer.

In our case, we set a = d = 2π
13 and n = 6, then

cos
2π

13
+ cos

4π

13
+ cos

6π

13
+ cos

8π

13
+ cos

10π

13
+ cos

12π

13
=

sin 6π
13 cos 7π

13

sin π
13

=
−2 sin 6π

13 cos 6π
13

2 sin π
13

= − sin 12π
13

2 sin π
13

= − sin π
13

2 sin π
13

= −1

2
.

Substituting the sum in (1) into this last expression we obtain;

cos
4π

13
+ cos

10π

13
+ cos

12π

13
= −1

2
−
√

13− 1

4
= −
√

13 + 1

4
.

So finally we have:

− cos
12π

13
− cos

10π

13
− cos

4π

13
= cos

π

13
+ cos

3π

13
− cos

4π

13
=

√
13 + 1

4
.

Solution 4 by Kee-Wai Lau, Hong Kong, China

We show that

cos
π

13
+ cos

3π

13
− cos

3π

13
=

1 +
√

13

4
. (1)

Denote the left side of (1) by x, which is clearly positive. So (1) will follow from

4x2 − 2x− 3 = 0. (2)

Let θ =
π

13
and i =

√
−1. Since cos2 θ =

1 + cos 2θ

2
, cos2 3θ =

1 + cos 6θ

2
,

cos2 4θ =
1− cos 5θ

2
, 2 cos θ cos 3θ = cos 2θ+cos 4θ, 2 cos θ cos 4θ = cos 3θ+cos 5θ, and

2 cos 3θ cos 4θ = cos θ − cos 6θ, so

4x2 − 2x− 3 = 3 + 6

6∑

k=1

(−1)k cos(kθ) = 3

12∑

k=0

(−1)k cos(kθ)

= 3Re
12∑

k=0

(−1)keikθ = 3Re

(
1 + e13iθ

1 + eiθ

)
= 0.
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This proves (2) and completes the solution.

Solution 5 by Brian D. Beasley, Presbyterian College, Clinton, SC

We show that the given expression equals
1 +
√

13

4
.

Let a = cos(π/13), b = cos(3π/13), and c = cos(4π/13). Using the multiple-angle
formulas for cosine, we have b = 4a3 − 3a and c = 8a4 − 8a2 + 1. Then
a+ b− c = (1 +

√
13)/4 if and only if

[4(−8a4 + 4a3 + 8a2 − 2a− 1)− 1]2 = 13.

This in turn holds if and only if f(a)(16a2 − 8a− 12) = 0, where

f(x) = 64x6 − 32x5 − 80x4 + 32x3 + 24x2 − 6x− 1.

Using another multiple-angle formula for cosine, namely
cos(13θ) = 4096r13−13312r11+16640r9−9984r7+2912r5−364r3+13r = (r+1)[f(r)]2−1
with r = cos θ, we have

(a+ 1)[f(a)]2 = 0.

Since a 6= −1, we conclude f(a) = 0, completing the proof.

Also solved by Brian Bradie, Christopher Newport University, Newport
News,VA; Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, National and
Kapodistrian University of Athens, Greece; Albert Stadler, Herrliberg,
Switzerland, and the proposer.

5543: Proposed by Titu Zvonaru, Comănesti, Romania

Let ABDC be a convex quadrilateral such that
6 ABC = 6 BCA = 25◦, 6 CBD = 6 ADC = 45◦. Compute the value of 6 DAC. (Note
the order of the vertices.)

Solution 1 by David A. Huckaby, Angelo State University, San Angelo, TX

From the given facts 6 ABC = 6 BCA = 25◦ and 6 CBD = 45◦, we know that
6 CAB = 130◦ and that D lies on the ray emanating from point B at a 45◦ angle from
BC, as shown in the figure below.

45

130

2525

A

C B

D

From the additional given fact 6 ADC = 45◦, by inspection one solution is the kite
shown in the figure below, in which 6 DAC = 65◦.
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6565

45

4545

25 25

45

D

A

BC

It is clear that if D is farther from B (on the ray emanating from point B at a 45◦ angle
from BC), then 6 ADC < 45◦, and that as D moves closer to B that 6 ADC > 45◦ and
increases, reaches a maximum, and then decreases to approach 6 ABC = 25◦ as D
approaches B. This implies that there is one more location for point D such that
6 ADC = 45◦.

To find it, let us place the points on a coordinate grid. See the figure below.

1.4

1.2

1

0.8

0.6

0.4

0.2

-0.2

-0.5 0.5 1 1.5

(0.5, 0.5)

D(x, x)

B(1, 1)C(0, 1)

A(0.5, 1 + 0.5tan 25 )

Consider 6 ADC = 45◦ to be an inscribed angle of the circle passing through the points
A, C, and the first location for D, namely (12 ,

1
2). The other point where this circle

intersects the line y = x is the second location for D.

If the circle has center (h, k) and radius r, we have
(0− h)2 + (1− k)2 = (12 − h)2 + (1 + 1

2 tan 25◦ − k)2 = (12 − h)2 + (12 − k)2. The second
equation gives 1 + 1

2 tan 25◦ − k = k − 1
2 , whence k = 1

4(3 + tan 25◦). Using this value for
k in the first equation gives
(0− h)2 + (1− 1

4 [3 + tan 25◦])2 = (12 − h)2 + (1 + 1
2 tan 25◦ − 1

4 [3 + tan 25◦])2. Expanding
terms and solving for h yields h = 1

4(1 + tan 25◦).

To find r2, we substitute the point C(0, 1) into the equation of the circle
(x− 1

4 [1 + tan 25◦])2 + (y − 1
4 [3 + tan 25◦])2 = r2. Doing this and expanding terms yields

r2 = 1
8(1 + tan2 25◦). So the equation of the circle is

(x− 1
4 [1 + tan 25◦])2 + (y − 1

4 [3 + tan 25◦])2 = 1
8(1 + tan2 25◦).

The circle intersects the line y = x when
(x− 1

4 [1 + tan 25◦])2 + (x− 1
4 [3 + tan 25◦])2 = 1

8(1 + tan2 25◦). Expanding this yields the
quadratic equation 2x2 − (2 + tan 25◦)x+ 1

2(1 + tan◦) = 0. The quadratic formula yields
the two solutions x = 1

2 , which we already know, and x = 1
2(1 + tan 25◦).
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Referring to the figure below, we see that

tan 6 ADE = AE
DE =

1
2
(1+tan 25◦)− 1

2

1+ 1
2
tan 25◦− 1

2
(1+tan 25◦)

= tan 25◦ so that 6 ADE = 25◦. So

6 ADB = 25◦ + 45◦ = 70◦, whence 6 DAB = 180◦ − 70◦ − 70◦ = 40◦, so that
6 DAC = 130◦ − 40◦ = 90◦.

1.4

1.2

1

0.8

0.6

0.4

0.2

-0 2

5 0.5 1 1.5

E(0.5[1+ tan 25 ], 1+ 0.5tan 25 ])

25

45

45
25

(0.5, 0.5)

D(0.5[1+ tan 25 ], 0.5[1+ tan 25 ])

B(1, 1)C(0, 1)

A(0.5, 1 + 0.5tan 25 )

So the two possible values of 6 DAC are 65◦ and 90◦.

Solution 2 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

The triangle ABC is isosceles and BCD is right isosceles, making AD the angle bisector
of 6 BAC. So 6 DCA = 65◦. Furthermore, there are two possible answers since there are
two positions for D.

Let F lie on BD, such that CF and BD are perpendicular. Let the circumcircle of
ACF intersect BD at E. Now, 6 EAC = 90◦, or 6 BAE = 40◦, or 6 AEB = 6 ABE. So,
AB = AE. But AB = AC. So, AE = AC and 6 AEC=6 AFC=45◦. So, E and F both
satisfy the conditions imposed on D and in each case, we have 6 DAC = 90◦, 65◦,
respectively (as D=E,F).

Solution 3 by Ed Gray, Highland Beach, FL

From the information given, triangle ABC is isosceles, with AB = AC. To enhance the
lucidity of the calculations, we assign the value of 2.0 to each of these sides. We define
6 DAC = x, 6 BAD = a, 6 BCD = c, and 6 BDA = b.

(1) In triangle ABC, by the Law of Sines,
BC

sin(130◦)
=

2

sin(c)
;BC = 3.625231148

(2) In triangle CBD, c+ 45◦ + b+ 45◦ = 180◦, so b+ c = 90◦.

(3) In triangle CBD, by the Law of Sines,
BC

sin(b+ 45◦)
=

BD

sin(c)
, or

(4)
BC

sin (b+ 45◦)
=

BD

cos (b)
.

(5) In triangle ABD,
BD

sin (a)
=

2

sin (b)
, BD =

2 sin (a)

sin (b)

(6) In triangle ABD, a+ 70◦ + b = 180◦, a+ b = 110◦, a = 110◦ − b.
From Equation (4),

(7)
BC

sin (b+ 45◦)
=

2 · sin(a)

sin(b) · cos(b)
,

(8)
BC

sin (b+ 45◦)
=

2 · sin(110◦ − b)
sin(b) · cos(b)
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Substituting BC from Equation (1), we have a trigonometric equation for b.

(9) 1.812615574· sin(b) · cos(b) =
[sin(110◦) · cos(b)− cos(110◦) · sin(b)] · [sin(b) · cos(45◦) + cos(b) · sin(45◦)].

Since cos(45◦) = sin(45◦) =

√
2

2
, we divide both sides by 0.707106781

(10) 2.563425529· sin(b) · cos(b) =
sin(110) · sin(b) · cos(b) + sin(110◦) · cos2(b)− cos(110◦) · sin2(b)− cos(110◦) · sin(b) · cos(b)

(11) 2.563425529 · sin(b) · cos(b) = 0.939692621 · sin(b) · cos(b) + 0.939692621 · cos2(b) +
0.342020143 · sin2(b) + 0.342020143 · sin(b) · cos(b)

(12) 1.281712765· sin(b) · cos(b) = 0.342020143 · sin2(b) + 0.939692621 · cos2(b).

Squaring,

(13) 1.6427876 · sin2(b) · cos2(b) =
0.116977778 · sin4(b) + 0.642787609 · sin2(b) · cos2(b) + 0.8883022222 · cos4(b),

(14) cos2(b) = 1− sin2(b)

(15) cos4(b) = 1− 2 · sin2(b) + sin4(b)

(16) 0.116977778 · sin4(b)− sin2(b) · cos2(b) + 0.883022222(1− 2 · sin2(b) + sin4(b)) = 0

(17) 0.116977778· sin4(b)− sin2(b)(1− sin2(b)) + 0.883022222− 1.766044444 · sin2(b) +
0.883022222 · sin4(b) = 0

(18) 2 · sin4(b)− 2.766044444 · sin2(b) + 0.883022222 = 0

This is a quadratic equation in sin2(b), with solutions:

(19) 4 · sin2(b) = 2.766044444±
√

7.651001866− 7.064177776), or

(20) 4 · sin2(b) = 2.766044444± 7.66044444

(21) So sin2(b1) =
2

4
, sin(b1) = 0.707106781, b1 = 45◦.

(22) sin2(b2) =
3.532088888

4
= 0.883022222, sin(b2) = 0.939692621, b2 = 70◦.

When b = 45◦, a = 65◦, x = 65◦.

When b = 70◦, a = 40◦, x = 90◦.

Editor′s comment: The following remark followed this solution: “I must admit having 2
answers is a surprise,..., however both solutions satisfy Equation (12), which is a good
sign, because that is the fundamental equation and no extraneous root was introduced
by squaring.”

Solution 4 by Michel Bataille, Rouen, France
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We consider ∆ABC, which we suppose positively oriented, and let M be the midpoint
of BC (see figure). Since 6 ABC = 6 BCA, AM is the perpendicular bisector of BC.

First, let D1 be the image of B under the rotation with centre M and angle +90◦.
Then, ABD1C is a convex quadrilateral and 6 CBD1 = 6 AD1C = 45◦.

Second, let D2 on BD1 be such that 6 CAD2 = 90◦. Since 6 BAC = 130◦, we have
6 BAD2 = 40◦. Also, 6 ABD2 = 25◦ + 45◦ = 70◦ and so
6 AD2B = 180◦ − 40◦ − 70◦ = 70◦ = 6 ABD2. It follows that AD2 = AB = AC and the
triangle CAD2 is right-angled at A and isosceles. As a result the quadrilateral ABD2C
is convex with 6 AD2C = 45◦ = 6 CBD2.

Thus, we have found two candidates D1, D2 for the vertex D. There cannot be more:
indeed, because of the convexity of ABDC, D must be on the ray BD1 (to ensure that
6 CBD = 45◦) and on the arc of circle, locus of the points P such that
6 (
−−→
PC,

−→
PA) = +45◦ (to ensure that 6 ADC = 45◦). We conclude that the answer to the

problem is twofold: if D = D1, then 6 DAC = 1
2
6 BAC = 65◦; if D = D2, then

6 DAC = 90◦.

Also solved by Andrea Fanchini, Cantú, Italy; Kee-Wai Lau, Hong Kong,
China; Raquel Rosado, Hallie Kaiser, Mitch DeJong, and Caleb Edington,
students at Taylor University, Upland, IN; David Stone and John Hawkins,
Georgia Southern University, Statesboro, GA, and the proposer.

5544: Proposed by Seyran Brahimov, Baku State University, Masalli, Azerbaijan

Solve in <: 



tan−1 x = tan y + tan z
tan−1 y = tanx+ tan z
tan−1 z = tanx+ tan y

Solution by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

Adding the equations we have:
∑

cyc

(2 tanx− tan−1 x) = 0.

Let f(x) =
∣∣2 tanx− tan−1 x

∣∣ , for ever
{
x ∈ < : kπ − π

2
< x < kπ +

π

2
and k ∈ Z

}
.
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Then f ′(x) =
2

cos2 x
− 1

x2 + 1
> 0 for every x ∈ <. So, f(x) is an increasing monotonic

function and f(x) ≥ f(0) = 0, since equality holds if x = 0.

Similarly, f(y) ≥ f(0) = 0 and f(z) ≥ f(0) = 0, since equality holds if y = z = 0.

Then, the only real solution is x = y = z = 0.

Also solved by Ed Gray, Highland Beach, FL and the proposer.

5545: Proposed by José Luis Dı́az-Barrero, Barcelona Tech, Barcelona, Spain

Let p, q be two twin primes. Show that

1 + 4




p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋


is a perfect square and determine it. (Here bxc represents the integer part of x).

Solution 1 by Albert Stadler, Herrliberg, Switzerland

The integers p and q are odd (since they are twin primes) and so their difference is two.
Let x = (p+ q)/2. Then min(p, q) = x− 1, max(p, q) = x+ 1.

We consider the rectangle R with vertices A(0, 0), B(p/2, 0), C(p/2, q/2), D(0, q/2) in the
Euclidean plane. The number of lattice points that are strictly inside R equals

L =
p− 1

2
· q − 1

2
.

There are no lattice points on the diagonal AC, since p and q are relatively prime.
Clearly L equals the number of lattice points strictly inside the triangle ABC plus the
number of lattice points strictly inside the triangle CDA. Therefore

L =

p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kq

p

⌋
.

We conclude that

1 + 4




p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kq

p

⌋
 = 1 + 4L = 1 + (p− 1)(q − 1) = 1 + (x− 2)x = (x− 1)2 =

= (min(p, q))2.

Solution 2 by Charles Diminnie and Simon Pfeil, Angelo State University,
San Angelo, TX

We will assume only that p is odd, p ≥ 3, and q = p+ 2. It is unnecessary to restrict p

and/or q to be prime. To begin, if j = 1, 2, . . . ,
p− 1

2
, then
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j <
jq

p

=
j (p+ 2)

p

= j +
2j

p

≤ j +

(
2

p

)(
p− 1

2

)

= j +
p− 1

p

< j + 1.

Hence,

⌊
jq

p

⌋
= j for j = 1, 2, . . . ,

p− 1

2
.

Further, for k = 1, 2, . . . ,
q − 1

2
,

k >
kp

q

=
k (q − 2)

q

= k − 2k

q

≥ k −
(

2

q

)(
q − 1

2

)

= k − q − 1

q

> k − 1.

Therefore,

⌊
kp

q

⌋
= k − 1 for k = 1, 2, . . . ,

q − 1

2
=
p+ 1

2
.

Using the known result that
n∑

i=1

i =
n (n+ 1)

2

for n ≥ 1, we obtain

p−1
2∑

j=1

⌊
jq

p

⌋
=

p−1
2∑

j=1

j

=

(
1

2

)(
p− 1

2

)(
p+ 1

2

)

=
p2 − 1

8
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and

q−1
2∑

k=1

⌊
kp

q

⌋
=

p+1
2∑

k=1

(k − 1)

=

p+1
2∑

k=2

(k − 1)

=

p−1
2∑

i=1

i

=
p2 − 1

8
,

(substituting i = k − 1 in the last sum.)

As a result,

1 + 4




p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋


= 1 + 4

(
p2 − 1

8
+
p2 − 1

8

)

= 1 +
(
p2 − 1

)

= p2.

Solution 3 by Anthony J. Bevelacqua, University of North Dakota, Grand
Forks, ND

For any relatively prime odd integers p, q ≥ 3 we have




p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋
 =

p− 1

2
· q − 1

2

by, for example, Theorem 86 of Nagell’s Number Theory. (The proof is standard and
elementary: Consider the set of integer points (j, k) with 1 ≤ j ≤ (p− 1)/2 and
1 ≤ k ≤ (q − 1)/2. There are p−1

2
q−1
2 such points. None of these are on the line py = qx.

The number of points below the line is
∑ p−1

2
j=1

⌊
jq
p

⌋
while the number of points above is

∑ q−1
2

k=1

⌊
kp
q

⌋
.)

Now suppose p and q are twin primes with p < q. Then p and q are relatively prime odd
integers ≥ 3 with q = p+ 2. So

1 + 4




p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋
 = 1 + 4 · p− 1

2
· q − 1

2

= 1 + 4 · p− 1

2
· p+ 1

2
= p2.
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(Note that we only need p and q to be consecutive odd integers ≥ 3 in this argument.)

Solution 4 by Brian Bradie, Christopher Newport University, Newport
News,VA

Without loss of generality, suppose p is the smaller of the two primes. Then p ≥ 3, and
p+ 2 = q. Therefore,

p−1
2∑

j=1

⌊
jq

p

⌋
=

p−1
2∑

j=1

⌊
j

(
1 +

2

p

)⌋
=

p−1
2∑

j=1

j

=
p−1
2 ·

p+1
2

2
=
p2 − 1

8
,

q−1
2∑

k=1

⌊
kp

q

⌋
=

q−1
2∑

k=1

⌊
k

(
1− 2

q

)⌋
=

q−1
2∑

k=1

(k − 1)

=
q−3
2 ·

q−1
2

2
=

p−1
2 ·

p+1
2

2
=
p2 − 1

8
,

and

1 + 4




p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋
 = 1 + 4

(
p2 − 1

8
+
p2 − 1

8

)

= p2.

Solution 5 by Moti Levy, Rehovot, Israel

Without loss of generality, suppose p is the smaller of the two primes. Then p ≥ 3, and
p+ 2 = q. Therefore,

p−1
2∑

j=1

⌊
jq

p

⌋
=

p−1
2∑

j=1

⌊
j

(
1 +

2

p

)⌋
=

p−1
2∑

j=1

j

=
p−1
2 ·

p+1
2

2
=
p2 − 1

8
,

q−1
2∑

k=1

⌊
kp

q

⌋
=

q−1
2∑

k=1

⌊
k

(
1− 2

q

)⌋
=

q−1
2∑

k=1

(k − 1)

=
q−3
2 ·

q−1
2

2
=

p−1
2 ·

p+1
2

2
=
p2 − 1

8
,

and

1 + 4




p−1
2∑

j=1

⌊
jq

p

⌋
+

q−1
2∑

k=1

⌊
kp

q

⌋
 = 1 + 4

(
p2 − 1

8
+
p2 − 1

8

)

= p2.
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Solution 6 by Ulrich Abel, Technische Hochschule Mittelhessen, Germany

We show the slightly more general formula

1 + 4




(n−1)/2∑

j=1

⌊
j
n+ 2

n

⌋
+

(n+1)/2∑

k=1

⌊
k

n

n+ 2

⌋
 = n2 (n = 3, 5, 7, 9, . . .) .

Proof: Let n ≥ 3 be an odd integer. Since j < j n+2
n = j + 2j

n < j + 1, for

1 ≤ j ≤ (n− 1) /2, and k− 1 < k− 2k
n+2 = k n

n+2 < k, for 1 ≤ k ≤ (n+ 1) /2, we conclude
that

1 + 4




(n−1)/2∑

j=1

⌊
j
n+ 2

n

⌋
+

(n+1)/2∑

k=1

⌊
k

n

n+ 2

⌋


= 1 + 4




(n−1)/2∑

j=1

j +

(n+1)/2∑

k=1

(k − 1)




= 1 + 4
n− 1

2

n+ 1

2
= n2.

Also solved by Michel Bataille, Rouen, France; Brian D. Beasley,
Presbyterian College, Clinton, SC; Ed Gray, Highland Beach, FL; Kee-Wai
Lau, Hong Kong, China; David E. Manes, Oneonta, NY; Ángel Plaza,
University of Las Palmas de Gran Canaria, Spain; Henry Ricardo,
Westchester Area Math Circle, Purchase, NY; Ioannis D. Sfikas, National
and Kapodistrian University of Athens, Greece; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA; Nicusor Zlota,
“Traian Vuia” Technical College, Focsani, Romania, and the proposer.

5546: Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of
Cluj-Napoca, Cluj-Napoca, Romania

Calculate ∞∑

n=1

(−1)bn2 c
(

ex − 1− x

1!
− x2

2!
− · · · − xn

n!

)
.

Solution 1 by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain

Since ex − 1− x

1!
− x2

2!
− . . .− xn

n!
=

∞∑

k=n+1

xk

k!
, the proposed series, say S, is absolutely

17

X
ia
ng
’s
T
ex
m
at
h



convergent, and

S =
∞∑

n=1

(−1)bn2 c
∞∑

k=n+1

xk

k!

=
∞∑

k=2

xk

k!

k−1∑

n=1

(−1)bn2 c

=
∞∑

k=1

xk

k!
cos

(
(k − 2)π

2

)

=
∞∑

k=1

(−1)n+1 x
2k

(2k)!

= 1− cosx.

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

∞∑

n=1

(−1)bn2 c
(
ex − 1− x

1!
− x2

2!
− . . .− xn

n!

)
=

∞∑

n=1

((−1)bn2 c
( ∞∑

k=1

xk

k!
− 1− x

1!
− x2

2!
− . . .− xn

n!

)

=

∞∑

n=1

(−1)bn2 c
( ∞∑

k=n+1

xk

k!

)
=

∞∑

n=1

( ∞∑

k=n+1

(−1)bn2 c x
k

k!

)
=

∞∑

k=2

(
k−1∑

n=1

(−1)bn2 c x
k

k!

)

= 1
x2

2!
+ 0

x3

3!
− 1

x4

4!
+ 0

x5

5!
+ 1

x6

6!
+ . . . = −

∞∑

i=1

(−1)i
x2i

i!
= 1−

∞∑

i=0

(−1)i
x2i

i!
= 1− cosx.

Solution 3 by Kee-Wai Lau, Hong Kong, China

We show that the given sum equals 1− cosx.

Let f(x) = sinx+ cosx, so that

f (n)(x) =





sinx+ cosx n ≡ 0(mod 4)
cosx− sinx n ≡ 1(mod 4)
− sinx− cosx n ≡ 2(mod 4)
− cosx+ sinx n ≡ 3(mod 4)

It follows that the given sum
∞∑

n=1

f (n)(0)

(
ex − 1− x

1!
− x2

2!
− · · · − xn

n!

)
.

According to entry 3.89 (a) on pp. 154, 227 of [1], we have

∞∑

n=1

f (n)(0)

(
ex − 1− x

1!
− x2

2!
− · · · − xn

n!

)
=

∫ x

0
ex−tf(t)dt

which equals 1− cosx, by standard integration. Our claimed result now follows easily.

Reference:
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1. O. Furdui: Limits, Series, and Fractional Part Integrals, Springer, 2013.

Solution 4 by Michel Bataille, Rouen, France

For every nonnegative integer n and any real number x, let

Rn(x) = ex − 1− x
1! − x2

2! − · · · − xn

n! =
∞∑

k=n+1

xk

k! and let f(x) =
∞∑
n=1

(−1)bn2 cRn(x) be the

required sum. We show that f(x) = 1− cosx.

Let A > 0 and x ∈ [−A,A]. Since ex = 1 + x
1! + x2

2! + · · ·+ xn

n! + xn+1ec

(n+1)! for some c

beteween 0 and x (Taylor-Lagrange relation), we see that

|Rn(x)| ≤ An+1

(n+ 1)!
· eA.

It follows that the series
∞∑
n=1

(−1)bn2 cRn(x) is uniformly convergent on any interval

[−A,A] (A > 0). Since the derivative R′n(x) is equal to Rn−1 (n ∈ N), the same is true

of the series
∞∑
n=1

(−1)bn2 cR′n(x) =
∞∑
n=1

(−1)bn2 cRn−1(x). As a result, we have

f ′(x) =
∞∑

n=1

(−1)bn2 cRn−1(x) = ex − 1 +
∞∑

n=2

(−1)bn2 cRn−1(x)

for any x ∈ R.

Likewise, f ′ is differentiable on R and for any real number x,

f ′′(x) = ex +
∞∑

n=2

(−1)bn2 cRn−2(x)

= ex −R0(x) +

∞∑

n=3

(−1)bn2 cRn−2(x)

= 1 +
∞∑

n=1

(−1)bn+2
2 cRn(x)

= 1 +
∞∑

n=1

(−1)1+bn2 cRn(x) = 1− f(x).

Thus, f is the solution to the differential equation y′′ + y = 1 satisfying
f(0) = 0 = f ′(0). Solving is classical and we readily obtain f(x) = 1− cosx.

Solution 5 by David Stone and John Hawkins, Georgia Southern University,
Statesboro, GA

The sum of the series is 1− cos(x).

Recall the Maclaurin series for cos(x) : cos(x) =
∞∑

n=0

(−1)2n
x2n

(2n)!
= 1 +

∞∑

n=1

(−1)2n
x2n

(2n)!
.

As expected, we’ll also use the Maclaurin series representation for the exponential
function:

ex =

∞∑

n=0

xn

n!
= Ek +Rk, for any k ≥ 1,
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where Ek =
k∑

n=0

xn

n!
is the kth partial sum and Rk =

∞∑

n=k+1

xn

n!
is the remainder.

Because the series converges, we know that the sequence {Ri}k≥1 has limit 0.

Note also that ex − Ek = Rk, and Ek+1 − Ek =
xk+1

(k + 1)!
.

Consider the partial sums of our given series:

let Sm =

m∑

n=1

(−1)bn2 c
(
ex − 1 =

x

1!
− x2

2!
− x3

3!
− . . .− xn

n!

)
=

m∑

n=1

(−1)bn2 c (ex − En).

We compute the first few partial sums.

To simplify the calculations, we first handle the sign term:

its pattern is 1,−1,−1, 1, 1,−1,−1, 1, 1,−1, . . .

This “block of four” pattern suggests that it will be productive to consider pairing
consecutive terms (although we cannot be content with just carrying out a regrouping of
a series without a guarantee of convergence).

S1 = ex − E1 = ex − 1− x

1!

S2 = (ex − E1)− (ex − E2) = E2 − E1 =
x2

2!
S3 = (ex − E1)− (ex − E2)− (ex − E3) = E2 − E1 = S2 −R2

S4 = (ex − E1)− (ex − E2)− (ex − E3) + (ex − E4) = S2 − (E4 − E3) =
x2

2!
− x4

4!
S5 = S4 + (ex − E5) = S4 +R5

S6 = S4 + (ex − E5)− (ex − E6) = S4 + (E6 − E5) =
x2

2!
− x4

4!
+
x6

6!
S7 = S6 + (ex − E7) = S6 +R7

S8 = S6 + (ex − E7)− (ex − E8) = S6 + (E8 − E7) =
x2

2!
− x4

4!
+
x6

6!
− x8

8!
.

Inductively, we can show that, for even subscripts

S4k =
x2

2!
− x4

4!
+
x6

6!
− . . . x

4k

(4k)!

S4k+2 =
x2

2!
− x4

4!
+
x6

6!
− . . .+ x4k−2

(4k − 2)!

and for odd subscripts

S4k+1 = S4k +R4k+1

S4k+3 = S4k+2 −R4k+3.

We see that the subsequence {S2k}k≥1 has as its limit the Maclaurin series for 1− cos(x).

If we had a priori knowledge that our given series is convergent, this would guarantee
that our series has sum 1− cos(x).

However, looking at the odd-subscript partial sums will give us enough information to
draw that conclusion. The subsequence {S2k+1}k≥1 has as the same limit as {S2k}k≥1
because the sequence Rn −→ 0.

Therefore, the limit of the sequence of partial sums, i.e. the sum of the given series, is
1− cos(x).
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Also solved by Ulrich Abel, Technische Hochschule Mittelhessen, Germany;
Brian Bradie, Christopher Newport University, Newport News, VA; Ed
Gray, Highland Beach, FL; G. C. Greubel, Newport News, VA; Moti Levy,
Rehovot, Israel; Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece; Albert Stadler, Herrliberg, Switzerland, and the proposer.
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