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10701. Proposed by Fred Galvin, University of Kansas, Lawrence, KS. Let G be a (finite, 
undirected, simple) graph with vertex set V. Let C = tCx: x E V} be a family of sets 
indexed by the vertices of G. For X C V, let Cx = UxExCx. A set X C V is C-colorable 
if one can assign to each vertex x E X a "color" cx E Cx so that cx 0 cy whenever x and y 
are adjacent in G. 
(a) Prove that if ICxI > {X whenever X induces a connected subgraph of G, then V is 
C-colorable. 
(b) Prove that if every proper subset of V is C-colorable and if ICy > IV{, then V is 
C-colorable. 
(c) For every connected graph G, find a family C = tCx: x E V} showing that the condition 
ICvI > Vi inpart(b)cannotbeweakenedto ICv I> VI -1. 

10702. Proposed by Kent D. Boklan, Baltimore, MD. What is the length of the longest 
nonconstant arithmetic progression of integers with the property that the kth term (for all 
k > 1) is a perfect kth power? 

10703. Proposed by Jean Anglesio, Garches, France. Given triangle XYZ, let its incenter 
be I, its centroid C, its circumcenter 0, its orthocenter H, the center of its nine-point circle 
W, its Gergonne point (the point of concurrency of the segments joining each vertex to the 
point of the incircle on the opposite side) G, and its Nagel point (the point of concurrency 
of the segments joining each vertex to the point of an excircle on the opposite side) N. Let 
S denote the intersection of the line IG with the Euler line (the line containing 0, C, W, 
and H), and let T, U, and V denote respectively the intersections of line I G with lines NO, 
NW, and NH. 
(a) Show that C lies one-third of the way from H to S (so that SO = HO). 
(b) Show that ST: SI: SU: SV = 10: 15: 18: 30. 
(c) Show that NO TO = 3: 1, NW: UW = 5: 3, and NH = VH. (We may now infer 
that NH = 2 . 0I and that these segments are parallel.) 

SOLUTIONS 

A Doubly Rational Generating Function 

10493 [1995, 930]. Proposed by Richard P Stanley, Massachusetts Institute of Technology, 
Cambridge, MA, and Christophe Reutenauer Universite du Quebec, Montreal, Canada. 
Fix a positive integer k. Let fk(m, n) be the number of m-tuples a = (ao, a1, . * *, am-I) 
of integers satisfying: (a) 0 < ai < n - 1 for all i, and (b) any k circularly consecutive 
entries of a (i.e., ai, ai?+, .I . , ai+k_ , where the subscripts are taken modulo m so that they 
lie between 0 and m - 1) are all distinct. Show that the generating function Fk(x, n) = 
Emm>I fk(m, n)xm is a quotient of two polynomials in x and n. 

Solution by Robin J. Chapman, University of Exeter, Exeter U. K. Since fi (m, n) = nm, 
the result is immediate for k = 1, so we restrict attention to k > 2. In the first part of 
the solution, we obtain a recurrence that shows that Fk(x, n) is a rational function in x for 
each n; we then study the dependence on n. In the second part, it is convenient to use zero 
as a special symbol, so we adopt an equivalent formulation using only positive integers. 
Thus, we note that fk(m, n) is the number of (m + k - 1)-tuples b = (bl, b2, ., bm+k-1) 
such that (a) 1 < bj < n for all j, (b) any k consecutive elements of b are all distinct, 
and (c) bj = bm+j when 1 < j < k-1. This number is n(n-1) ... (n-k + 2) times 
the number of such b also satisfying bj = j for 1 < j < k - 1. Fix n as well as k. For 
c = (cl, . . ., ck-1), where the cj are distinct integers, define g(m; c) = g(m; Ci, . * *, Ck-1) 
to be the number of (m + k - 1)-tuples b = (bl, b2,..., bm+k-1) such that 1 < bj < n 
for all j, any k consecutive elements of b are all distinct, and bj= jand bm+j = cj for 
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10709. Proposed by Zoltdn Sasvari, Technical University of Dresden, Dresden, Germany. 
Let X be a standard normal random variable, and choose y > 0. Show that 

-ey Pr(a < X < a + y) < -ay+(1/2)ay3 
Pr(a - y < X < a) 

when a > O. Show that the reversed inequalities hold when a < 0. 

10710. Proposed by Bogdan Suceava, Michigan State University, East Lansing, MI. Let 
ABC be an acute triangle with incenter I, and let D, E, and F be the points where the circle 
inscribed in ABC touches BC, CA, and AB, respectively. Let M be the intersection of the 
line through A parallel to BC and DE, and let N be the intersection of the line through 
A parallel to BC and DF. Let P and Q be the midpoints of DM and DN, respectively. 
Prove that A, E, F, I, P, and Q are on the same circle. 

SOLUTIONS 

When 0-H-I Is Isosceles 

10547 [1996, 695]. Proposed by Dan Sachelarie, ICCE Bucharest, and Vlad Sachelarie, 
University of Bucharest, Bucharest, Romania. In the triangle ABC, let 0 be the circum- 
center, H the orthocenter, and I the incenter. Prove that the triangle OHI is isosceles if 
and only if 

a3 +b3 +c3 R 
3abc 2r 

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. We denote by MPV 
the reference D. S. Mitrinovic, J. E. Pecaric, and V. Volenec, Recent Advances in Geometric 
Inequalities, Kluwer, 1989. Neither IO nor HI is ever as large as HO [MPV, p. 288], so 
the only way triangle I H O can be isosceles is if I 0 = HI. Also 102 = R2 2Rr [MPV, 
p. 279] and HI2 = 4R2 + 4Rr + 3r2 - S2 [MPV, p. 280], where s is the semiperimeter. 
Hence HI = IO if and only if R2 - 2Rr = 4R2 + 4Rr + 3r2 - S2. This rearranges to 
2s(s2 - 3r2 -6Rr)/12Rrs = R/2r, or, using abc = 4Rrs [MPV, p. 52] and a3 +b3 +c3 - 

2s(s2 - 3r2 - 4Rr) [MPV, p. 52], to (a3 + b3 + c3)/3abc = R/2r. 

Editorial comment. Another condition equivalent to HI = IO, given in problem E2282 
[1971, 196; 1972, 397] from this MONTHLY, is that ABC has one angle equal to 60?. 
Solved also by J. Anglesio (France), R. Barbara (Lebanon), F. Bellot Rosado (Spain), C. W. Dodge, J. S. Frame, Z. Franco, 

M. S. Klamkin (Canada), W. W. Meyer, V. Mihai (Canada), C. R. Pranesachar (India), B. Prielipp, V. Schindler (Germany), 

I. Sofair, M. Tabaa (Morocco), T. V. Trif (Romania), M. Vowe (Switzerland), GCHQ Problems Group (U. K.), and the proposers. 

The Divisible Differences Property 

10553 [1996, 809]. Proposed by Bjorn Poonen, Mathematical Sciences Research Institute, 
Berkeley, CA, Jim Propp, Massachusetts Institute of Technology, Cambridge, MA, and 
Richard Stong, Rice University, Houston, TX. Say that a sequence (q) = ql, ql, q2, ... 
of integers has the divisible differences property if (n - m) I (qn - qn) for all n and m. 
(a) Show that if (q) has the divisible differences property and lim sup Iqn Il/n < e - 1, then 
there is a polynomial Q such that qn = Q(n) 
(b) Show that there is a sequence (q) that has the divisible differences property and satisfies 
lim sup Iqn I l/n < e, for which qn is not given by a polynomial in n. 
(c)* Is it true that lim sup Iqn I l/n > e for all non-polynomial (q) with the divisible differences 
property? 
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10716. Proposed by Michael L. Catalano-Johnson and Daniel Loeb, Daniel Wagner As- 
sociates, Malvern, PA. What is the largest cubical present that can be completely wrapped 
(without cutting) by a unit square of wrapping paper? 

10717. Proposed by Marcin Mazur, University of Chicago, Chicago, IL. We say that a 
tetrahedron is rigid if it is determined by its volume, the areas of its faces, and the radius of 
its circumscribed sphere. We say that a tetrahedron is very rigid if it is determined just by 
the areas of its faces and the radius of its circumscribed sphere. 
(a) Prove that every tetrahedron with faces of equal area is rigid. 
(b) Prove that a very rigid tetrahedron with faces of equal area is regular. 
(c)* Is every tetrahedron rigid? 
(d)* Is every very rigid tetrahedron regular? 

SOLUTIONS 

Subtracting Square Roots Repeatedly 

10568 [1997, 68]. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Let 
n be a nonnegative integer. The sequence defined by xo = n and Xk+1 = Xk - F lN 1 
for k > 0 converges to 0. Let f (n) be the number of steps required; i.e., Xf(n) = 0 but 
Xf (n)-1 > 0. Find a closed form for f (n). 
Solution by Denis Constales, University of Gent, Gent, Belgium. Every positive integer n 
can be written uniquely in the form p2 - q, where p and q are integers satisfying p > 1 
and 0 < q < 2p - 2 (take p = / 1 and q = p2 _ n). We call this standardform for n. 
We obtain the desired formula in terms of these parameters p and q. 

Using standard- form, let n' = n - F/H 1 = p2 - (q + p). We distinguish two cases. 
Case 1: p-1 < q < 2p-2. We rewrite n' as (p - 1)2-(q-(p-1)). Since q > p-1, 
this expresses nl in standard form with p' = p-l and q' = q -(p-1) (when p > 2). 
Case 2: 0 < q < p - 1. Now n' = p2 - (q + p) is standard form for n' with p' = p and 
ql = q + p. The next value n" = n' - FrVW 1 = p2 - (q + 2p). Expressed in standard 
form, this is n" = (p - 1)2 - (q + 1) (when p > 2). 

We have applied the transformation once in Case 1 and twice in Case 2. Thus 

f(p2 q)= 2+ f((p - 1)2 - (q + 1)) if O < q < p - 2 
I 1+f((p-1)2-(q-p+1)) if p-1 <q <2p-2 

whenever p > 2 and 0 < q < 2p -2. The cases p < 2 occur for n E {1, 2,3, 4}, where 
f (n) = 1, 1, 2, 2, respectively. With the recurrence, these initial conditions define f. Our 
closed form is 

(2 J 2p - [log2(p + q) - 1 if 0 < q < p- 
f(p qj - 12p- [log2 qJ-2 if p<q <2p-2 

for integers p, q such that 1 < p and 0 < q < 2p - 2. Also, we set f (O) = 0. 
The proof of the formula is immediate by induction, using the recurrence in the three 

cases 0 < q < p - 2, q = p - 1, and p < q < 2p - 2. The only simplification needed 
occurs in the second case, where [log2(2p - 1)] = 1 + [log2(p - )1, which follows 
immediately when p > 1. 

Editorial comment. Robin J. Chapman and the GCHQ Problems Group expressed f (n) 
using the single formula f (n) = L4n + 2m+3 - 3] - (m + 2), where m = Llog2 (4I/ + 1)]. 
Solved also by T. Amdeberhan, K. L. Bernstein, R. J. Chapman (U. K.), D. A. Darling, M. N. Deshpande & N. N. Kasturiwale 
(India), K. Ferguson, R. Holzsager, W. Janous (Austria), F. Kemp, P. G. Kirmser, N. Komanda, Y. Kong, J. H. Lindsey II, 
W. A. Newcomb, C. R. Pranesachar (India), K. Schilling, J. H. Steelman, D. Trautman, X. Wang, D. Yuen, GCHQ Problems Group 
(U. K.), Westmont Problems Group, and the proposer. 
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10730. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. Fix an 
integer n > 2. Determine the largest constant C(n) such that 

(xj -Xi) > C(n) * min (Xi+l_Xi) 
f<i<i2<n <<i< 

for all real numbers x I < X2 < ...-< n 

10731. Proposed by M. J. Pelling, London, England. Let A be an n-by-n real symmetric ma- 
trix, and consider the quadratic form Q(x) = xTAx forx E R'n. Let C be the cube [-1, l]fn. 
Prove that maxxec Q(x) is at least as large as the sum of the positive real eigenvalues of A. 

SOLUTIONS 

Connected Sets of Periodic Functions 

10434 [1995, 170]. Proposed by Daniel Goffinet, Saint Etienne, France. Let P be the set 
of nonconstant periodic mappings from 1Rt to IR, endowed with the topology derived from 
the supremum norm. Find the components of P. 

Composite solution I by Kiran S. Kedlaya, Massachusetts Institute of Technology, Cam- 
bridge, MA, Kenneth Schilling, University of Michigan, Flint, MI, and Arlo W Schurle, 
University of Guam, Mangilao, Guam. For any function f: R --* R, define ilf 11 to be 
sup{ i f (x)I: x E ]R, which is taken to be cc when the set of values of f is unbounded. 

We first show that f and g are in different components of P if llf - gi = oo. Let 
Bg = { k e P: Ilk-gil < oo}. By the triangle inequality Bg is an open set, and if h V Bg, 
then the triangle inequality again shows that { z: liz - hi < 1} fn Bg = 0. Consequently 
Bg is both open and closed, and so the component of P containing any given g E P must 
lie in Bg. 

Conversely, if f - g is bounded for f, g E P, then there is an arc in P joining f 
to g. First, suppose that f and g have a common period p. The standard path kt (x) = 
(1 - t)f (x) + tg(x) for 0 < t < 1 consists of functions having p as a period, and since 
lf - gil is finite, kt depends continuously on t. There is a danger that some kt(x) is a 

constant function, but this can happen only if f is an affine function of g, that is, there are 
constants A and B with f = Ag + B. In this case, the function h(x) that is equal to f (x) 
except at integer multiples of p, where it is f (x) + 1, is at bounded distance from both f 
and g and is not an affine function of either. A path from f to g can be obtained by taking 
the standard path from f to h followed by the standard path from h to g. 

Suppose now that f and g have no common period. Let r be a period of f and let s be 
a period of g. We wish to construct h that has both r and s as periods such that ilf-h 11 
(and hence also iIg-h 11) is finite. To do this, pick an arbitrary set of coset representatives 
for R/(rZ + sZ), define h to agree with f at these values, and extend by periodicity. Then 
for any x, let x = y + rm + sn, where y represents the coset containing x. Then 

Ih(x) - f(x)l = If(y) - f (y + sn)l 
= if (y) - g(y) + g(y + sn) - f(y + sn)l < 2 lif - gi 

Since f and h have common period r and 11 f-h 11 is finite, there is a path from f to h, and 
since h and g have common period s and iih -g ll is finite, there is a path from h to g. 

Composite solution II by Fredric D. Ancel, University of Wisconsin, Milwaukee, WI, Phil 
Bowers and John Bryant, The Florida State University, Tallahassee, FL, and the proposer 
We assume that "mapping" means "continuous function". Then two functions in P belong 
to the same component if and only if they have commensurate periods. As in solution I, the 
components are path-components. 
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PROBLEMS AND SOLUTIONS 
Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West 

with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline, Ezra 
A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton, Ira M. 
Gessel, Bart Goddard, Jerrold R. Griggs, Douglas A. Hensley, Richard Holzsager, John R. Isbell, 
Robert Israel, Kiran S. Kedlaya, Murray S. Klamnkin, Fred Kochman, Frederick W. Luttmann, Vania 
Mascioni, Frank B. Miles, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, 
Kenneth Stolarsky, Richard Stong, Charles Vanden Eynden, and William E. Watkins. 

Proposed problems and solutions should be sent in duplicate to the MONTHLY 
problems address on the inside front cover. Submitted problems should include 
solutions and relevant references. Submitted solutions should arrive at that ad- 
dress before October 31, 1999; Additional information, such as generalizations 
and references, is welcome. The problem number and the solver's name and ad- 
dress should appear on each solution. An acknowledgement will be sent only if a 
mailing label is provided. An asterisk (*) after the number of a problem or a part 
of a problem indicates that no solution is currently available. 

PROBLEMS 

10732. Proposed by M. N. Deshpande, Nagpuri India. Let n and k be positive integers 
with k < n. Select a permutation Xr of n objects at random, and let the random variable Xk 
denote the number of objects that lie in cycles of 7r of length less than or equal to k. Find 
the expected value and the variance of Xk. 

10733. Proposed by Sung Soo Kim, Hanyang University, Ansan, Korea. Let { Ea la e be 
a partition of the unit interval I = [0, 1] into nonempty sets that are closed in the usual 
topology. Is it possible that 
(a) Q is uncountable and E, is uncountable for each a e zQ? 
(b) Q is uncountable but E is countably infinite for each a E Q? 
(c) Q is countably infinite? 

10734. Proposed by Floor van Lamoen, Goes, The Netherlands. Let ABC be a triangle 
with orthocenter H, incenter I, and circumcenter 0. Let [P, r] denote the circle with 
center P and radius r. Show that the radical center of [A, CA + AB], [B, AB + BC], and 
[C, BC + CA] is the point obtained by reflecting H through 0 and then reflecting the result 
through I. 

10735. Proposed by Gustavus J. Simmons, Sandia Park, NM. If Ln is the n-by-n matrix 
with i,j-entry equal to (i1j), then L- I,n mod 2, where I, is the n-by-n identity matrix. 
Show that if Rn is the n-by-n matrix with i,j-entry equal to (n-'1), then Rn -In mod 2. 

10736. Proposed by Mizan R. Khan, Eastern Connecticut State University, Willimantic, CT 
For a given n > 2, let M(n) = max{ la-bl: a, b E {1, 2,..., n} and ab- 1 mod n }. 
(a) Find a closed-form expression U(n) such that M(n) < U(n) for all n, with equality in 
infinitely many cases. 
(b) Show that lim,?O M(n)/n = 1. 
(c)* Prove or disprove that lim,+0 log(n - M(n))/ logn = 1/2. 
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10744. Proposed by Peter Lindqvist, Norwegian University of Science and Technology, 
Trondheim, Norway, and Jaak Peetre, University of Lund, Lund, Sweden. Fix p > 0, and 
define functions S(x), C(x), and T(x) for sufficiently small x by 

jS(x) dt -I1 dt T(x) dt 
X = Jo ( tP)(P-lp X= JC(X) (1 tp,'P-)l/p X =1 (1 + tpd2t p 

Show that S(x)P + C(x)P = 1 and that T(x) = S(x)/C(x). The case p = 2 yields the 
familiar trigonometric formulas. 

10745. Proposed by M. J. Pelling, London, England. For n > 1, let f (n) be the number of 
solutions (r, s, t) in positive integers to the Diophantine equation rst = n(r + s + t). 
(a) Prove that f (n) = O(n1/2+?) for every 3 > 0. 
(b)* Prove that f (n) = O(n ) for every 3 > 0. 

SOLUTIONS 

Using the Walls to Find the Center 

10386 [1994, 474]. Proposed by Jordan Tabov, Bulgarian Academy of Sciences, Sofia, 
Bulgaria. Let a tetrahedron with vertices A1, A2, A3, A4 have altitudes that meet in a point 
H. For any point P, let P1, P2, P3, and P4 be the feet of the perpendiculars from P to 
the faces A2A3A4, A3A4A1, A4AIA2, and AIA2A3, respectively. Prove that there exist 
constants a I, a2, a3, and a4 such that one has 

aiPPI + a2PP2 + a3PP3 + a4PP4 = PH 
for every point P. 

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. More 
generally, let H and P be any two points in the space of the given tetrahedron and let P1, 
P2, P3, P4 be the feet of the lines through P parallel to HA1, HA2, HA3, HA4 in the faces 
of the tetrahedron opposite A1, A2, A3, A4, respectively. Then there exist constants a1, a2, 
a3, a4, independent of P, such that 

al PPI + a2PP2 + a3PP3 + a4PP4 = PH. 
Let V denote the vector from an origin outside the space of the given tetrahedron to any 

point V in the space of the tetrahedron. Then H and P have the representations (barycentric 
coordinates) 

H = xlAl + x2A2 + x3A3 + x4A4 (x + X2 + x3 + x4=1), 

P = ulAl + U2A2 + u3A3 + u4A4 (Ul + U2 + U3 + = 1). 
Since P1 has the representation P1 = r2A2 + r3A3 + r4A4, where r2 + r3 + r4 = 1, we 
must have 

r2A2+r3A3 +r4A4-P = XI(H-Al). 

Since A1, A2, A3, A4 are independent vectors, we get ' 1 = uI/(I - x1), so that PPi = 

(P1 - P) = (H - A1)uI/(I - xi). Similarly, 

(Pi -P) = (H-Ai) ui fori = 1,2,3,4. 
1-Xi 

Choosing ai = 1 - xi, we obtain 

Zai(Pi -P) = ui(H-Ai) =H-P= PH. 
This proof generalizes to give an analogous result for n-dimensional simplices. 

Solved also by J. Anglesio (France), R. J. Chapman (U. K.), M. Golomb, K. Hanes, N. Komanda, 0. P. Lossers (The Netherlands), 
and the proposer. 
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10766. Proposed by Szildrd Andras, Babe,-Bolyai University, Cluj-Napoca, Romania. Let 
x, y, and z be nonnegative real numbers. Prove that 

(a) (x + y + z)x?Y?z xXyyzz < (x + y)X?Y (y + z)Y+z (z + x)z?x. 

(b) (x ? y + z)(x+y+z)2 XX2YY2ZZ2 > (x + y)(X+Y)2 (y ? Z)(y+z)2 (Z ? X)(Z?X)2. 

SOLUTIONS 

Cramer's Rule for Non-Square Matrices 

10618 [1997, 768]. Proposed by S. Lakshminarayanan, S. L. Shah, and K. Nandakumar; 
University of Alberta, Edmonton, Canada. Let A be a real m x n matrix of full rank with 
m < n and let b be a real m x 1 matrix. For 1 < i < n, define 

det(Ai*AT) - det(Ai AT) 
Xi= det(AAT) 

where A* is obtained by replacing the ith column of A by b, and Ai is obtained by deleting 
the ith column of A. Show that x = [XI,..., X ]T is a solution to the linear system Ax = b. 

Solution by the GCHQ Problems Group, Cheltenham, U. K. We write A' (b) instead of A* 
to emphasize the role of the vector b; thus A' (0) indicates A with its ith column zeroed out. 
Observe that Ai A[ A' (0)AT, by comparing corresponding entries. 

Extend A to a nonsingular n x n matrix (A), where C is an (n - m) x n matrix whose 
rows form an orthonormal basis for the orthogonal complement of the row space of A. That 
is, each row of C has norm 1 and is orthogonal to all other rows of (A). We have 

(A) (A) T (AAT ) and (AI (b)) (A) T( Ai (b)AT M) 

where I is the (n - m) x (n - m) identity matrix and M is some n x (n - m) matrix. 
By substituting these computations into the definition of xi, canceling the nonzero factor 
det () T, and using the linearity of the determinant in its ith column, we obtain 

det ((Ai(b))(A)T) - det ((A (?))(C ) ) det (A (b)) - det (A (O)) det (A) (b) 

det ((A) 
T ) det (c) det (c) 

By Cramer's rule, x is the solution to the linear system (A)x = (b), and hence x is a solution 
to Ax = b. 
Solved also by J. Fuelberth & A. Gunawardena, J. H. Lindsey II, M. Sharma & P. G. Poonacha (India), WMC Problems Group, 
and the proposers. 

An Identity for Strongly Connected Digraphs 

10620 [1997, 870]. Proposed by James Propp, Massachusetts Institute of Technology, 
Cambridge, MA. A digraph on a vertex set V is a subset A C {(v, w): v, w E V, v $& w} 
and is strongly connected if it is possible to get from any vertex a to every other vertex e 
by a finite succession of arcs (a, b), (b, c), . . ., (d, e) in A. For n > 1, let En (respectively, 
On) denote the number of strongly connected digraphs on the vertex set V = {1, 2, . . ., n} 
with an even (respectively odd) number of arcs. Show that En -n = (n - 1)! for all 
n> 1. 

Solution I by the proposer, currently at University of Wisconsin, Madison, WI. The termi- 
nology of the problem statement is somewhat nonstandard. In common usage, a digraph is 
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10773. Proposed by JeanAnglesio, Garches, France. Let ao, a1, . . ., ak be positive integers. 
For 0 < i < k, let Pi /qi be the fraction in lowest terms with continued fraction expansion 
[ao, a1, . ai]. Find the continued fraction expansions of 

k k-I k qk 2 2p 2 q2 2 2- , and k 
qk qk-1 Pk-1 qk-1 q2 q qk Pk + qk2 

in terms of ao, a, . ak. 

SOLUTIONS 

Tracking the Incenters 

10631 [1997, 975]. Proposed by Greg Huber, University of Chicago, Chicago, IL. Given a 
triangle T, let the intriangle of T be the triangle whose vertices are the points where the circle 
inscribed in T touches T. Given a triangle To, form a sequence of triangles To, Ti, T2, . 
in which each Tn+l is the intriangle of Tn. Let dn be the distance between the incenters of 
Tn and Tn+i. Find limnO, dn+?/dn when To is not equilateral. 
Solution by the GCHQ Problems Group, Cheltenham, U. K. We show that dn+ I /dn - 1/4. 
Let A, B, C be the angles of a triangle, r its inradius, R its circumradius, and d the distance 
from its incenter to its circumcenter. Then 

d2 =R2 -2Rr (1) 

and 
r = 4R sin(A/2) sin(B/2) sin(C/2). (2) 

(H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, MAA, 1967). Now let A', B', C' 
be the angles of the intriangle of ABC (with A' on side BC, etc.). Then A' = 7r/2 - A/2, 
so 

A' -.7r/3 = (-1/2)(A -.7r/3), (3) 

and similarly for B' and C'. From (3) we infer that triangle Tn approaches equilateral as 
n x . For the triangle Tn, with angles An, Bn, Cn, define an = An-7/3, bn = Bn-7/3, 
Cn= Cn - 7r/3, and Sn = a2 + b2 + c2. Then (3) implies that Sn+I/Sn = 1/4. Also, 
an + bn + Cn = 0, sO (an + bn + cn)2 = 0, and therefore 

Sn = -2(anbn + bncn + cnan). (4) 
Now define Un = 1 - 8 sin(An/2) sin(Bn/2) sin(Cn/2). Using (1) and (2) and observing 
that Rn+? = rn, we obtain 

(dn? 2 R2? f~1 * Ufl+1 (n n1 R 
U 
u+1 = 16 sin2 (An/2) sin2 (Bn/2) sin2 (Cn/2) (5) 

Note that 
2sin(An/2) = 2sin(an/2 + 7r/6) = VX sin(an/2) + cos(an/2) 

= 1 + 3an- an2 + O(a'). 

Therefore 

Un = 1-( + a a-8 -an +- *3( + b b-8 bn + 3- + 2c -8Cz2 + 3 
= a Sn - 3(anbn + bncn + cnan) + terms of degree 3 or higher 

1 
-- Sn ? terms of degree 3 or higher, 
2 
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10780.* Proposed by Kiran Kedlaya, Massachusetts Institute of Technology, Cambridge, 
MA. Let T be a triangle. Two circles in T are called partners if they are the incircles of 
two triangles with disjoint interior whose union is T. Every circle tangent to exactly two 
sides of T has two partners. Let C1, C2, .. ., C6 be disjoint circles such that Ci and Ci+ 
are partners for each i E {1, 2, 3, 4, 5}. Show that C6 and C1 are partners. 

SOLUTIONS 

Elliptic Curves to the Rescue 

10612 [1997, 665]. Proposed by John P. Robertson, Anistics/Aon, New York, NY Fermat 
proved that there are no nontrivial 4-term arithmetic progressions all of whose terms are 
integer squares. 
(a) Find all 5-term arithmetic progressions such that all terms but the fourth are squares. 
(b) Call two arithmetic progressions essentially different if the ratios of corresponding terms 
differ. For each integer m > 6, show that there are infinitely many essentially different m- 
term arithmetic progressions such that the first 3 terms and the mth term are squares. 

Solutioni by the proposer (a) Let two 3-term arithmetic progressions of rational squares be 
equivalent if one is a nonzero rational multiple of the other. Each equivalence class other 
than {(0, 0, 0)} contains exactly one progression consisting of pairwise relatively prime 
integers. To see this, we first multiply by the denominators to obtain an integer progression 
with difference d. If two terms have a common odd prime factor p, then p divides their 
difference, which is d or 2d. In either case, p divides the difference of consecutive terms. 
Thus p and p2 divide all three terms. If two consecutive terms are even, then the remaining 
term is even and a factor of 4 can be removed. If the first and third terms are even but the 
second is not, then modulo 4 we obtain (0, 1, 0), which is not an arithmetic progression. 

Call rational numbers s and t equivalent if {s, t} C {1, -1, oc, 0} or s E {t, -1/t, 
(t + 1)/(t - 1), (1 - t)/(1 + t)}. Reflexivity is obvious; symmetry and transitivity are 
easily checked by cases. 

We first establish a bijection between the set of equivalence classes of 3-term arithmetic 
progresssions and the set of equivalence classes of rational numbers. 

If (a2, b2, c2) is an increasing progression with a, b, c positive and pairwise relatively 
prime, then there are relatively prime positive integers p and q, with p > q and pq 
even, such that (a2, b2, c2) = ((p2 - q2 - 2pq)2, (p2 + q2)2, (p2 - q2 + 2pq)2). This 

follows because c2 -b2 = b2 - a2 implies that c and a have the same parity, and thus 
((c - a)/2, (c + a)/2, b) is a Pythagorean triple of pairwise relatively prime integers. 
Hence there exist p, q as described with {(c - a)/2, (c + a)/2} = {2pq, p2 _ q2} and 
b = p2+q2. Note that settingt = p/q yields ((t2 _ 1 - 2t)2, (t2 + 1)2, (t2 - 1 + 2t)2) - 

(a2, b2, c2)/q4, so these are equivalent progressions. 
Similarly, if (a2, b2, c2) is a decreasing progression with a, b, c positive and pairwise 

relatively prime, then there are relatively prime positive integers p and q, with p > q and 
pq even, such that (a2,b2,c2) = ((q2 _ p2 - 2pq)2, (p2 q2)2, (q2 _ p2+2pq)2) 
Setting t = q/p yields ((t2 _ 1 - 2t)2, (t2 + 1)2, (t2 _ 1 + 2t)2) = (a2, b2, c2)/p4, and 
again these are equivalent progressions. 

With t = 0, we have (12, 12, 12) = ((t2 _ 1 - 2t)2, (t2 + 1)2, (t2 1 + 2t)2) 
Algebraic manipulation shows that under the map sending s to ((s2 1 - 2s)2, (S2 + 1)2, 

(52 _ 1 + 2s)2), the four rational numbers t, -1/t, (t + 1)/(t - 1), and (1 - t)/(1 + t) 
yield equivalent progressions. 

Conversely, we claim that if progressions ((t2 _ 1 - 2t)2, (t2 + 1)2, (t2 _ 1 + 2t)2) 
and ((S2 - 1 - 2s)2, (S2 + 1)2, (S2 -_ + 2s)2) are equivalent, then s and t are equivalent. 
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PROBLEMS AND SOLUTIONS 
Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West 

with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline, Ezra 
A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton, Ira M. 
Gessel, Bart Goddard, Jerrold R. Griggs, Douglas A. Hensley, John R. Isbell, Kiran S. Kedlaya, 
Murray S. Klamkin, Fred Kochman, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard 
Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, Kenneth Stolarsky, Richard Stong, 
Charles Vanden Eynden, and William E. Watkins. 

Proposed problems and solutions slhould be sent in duplicate to the MONTHLY 
problems address on the inside front cover. Submitted problems should include 
solutions andrelevantreferences. Submitted solutions should arrive at that address 
before August 31,2000; Additional information, such as generalizations andrefer- 
ences, is welcome. The problem number and the solver's name and address should 
appear on each solution. An acknowledgement will be sent only if a mailing label 
is provided. An asterisk (*) after the number of a problem or a part of a problem 
indicates that no solution is currently available. 

PROBLEMS 

10788. Proposed by Howard M. Taylor, Towson, MD. Imagine a random walk on the 
nonnegative integers that begins at 1 and that takes steps according to the following rule: 
When located at n, the next location is chosen uniformly from {0, 1, . . n, n + 1 }. The 
walk ends when it first arrives at 0. 
(a) What is the expected number of steps in the walk? 
(b) What is the probability that the final step of the walk is from 1 to 0? 
(c) For m E N, what is the probability that the walk never exceeds m? 

10789. Proposed by Robin Chapman, University of Exeter, Exeter, U. K. The Bernoulli 
numbers Bo, B 1, B2, .. . are defined by x / (ex - 1) = SZ=O BkXk/ k!. Show that 

m = i(i + 1) (mr-i)! (m + i + 1)! k 

for each positive integer m. 

10790. Proposed by Jean Anglesio, Garches, France. Given a real number x, let To be 
the triangle whose vertices are (0, 0), (1, x), and (1, -x). For n > 1, let Tn be the orthic 
triangle of Tn -, the triangle whose vertices are the feet of the altitudes of Tn -.I Denote by 
(0, un) the vertex of Tn that is on the x-axis, and let f (x) = limnO un . Show that f (x) 
exists for every x and that f is a continuous but nowhere differentiable function of x. 

10791. Proposed by Antal Fekete, Memorial University of Newfoundland, St. John's, NE; 
Canada. Show that 

(00 (2i + 1)n 
2 0 (2i)n 

2 0 (2i +1In2 0 \2 
'\ (2i?+1)! ) ( (2i)! and (2i ?i=o (2i)! 

are integers for every nonnegative integer n. 
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PROBLEMS AND SOLUTIONS 

Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West 
with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline, Ezra 
A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton, Kevin 
Ford, Ira M. Gessel, Jerrold R. Griggs, Douglas A. Hensley, John R. Isbell, Kiran S. Kedlaya, Murray 
S. Klamkin, Fred Kochman, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer, 
Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, Kenneth Stolarsky, Richard Stong, Charles 
Vanden Eynden, and William E. Watkins. 

Proposed problems and solutions should be sent in duplicate o the MONTHLY 

probleins address on the inside front covers Submitted problenms should include 
solutions and relevant references. Submitted solutions slhould arrive at that ad- 
dress before October 31, 2000; Additional informiation, suchi as ocneralizations 
and references, is welcome. The problem number and the solver's name and ad- 
dress shiould appear onI each solution. An acknowledgement will be sent onily if a 
mailing label is provided. An asterisk (-*) after the num1ber of a problem or a part 
of a problem indicates that no solution is currently available. 

PROBLEMS 

10802. Proposed by Doru Caragea and Viviana Ene, Constanta, Romania. Let S be the set 
of monic irreducible polynomials with degree 2000 and integer coefficients. Find all P E S 
such that P (a) i P (a2) for every natural number a. 

10803. Proposed by Stephen Penrice, Morristown, NJ. Let k and n be positive integers such 
that k < n. Consider the following method for generating a permutation wr of the integers 
{1, 2, ... I n}. The values ir(1), ir(2), . i.., r(k) are determined by randomly selecting a list 
of k distinct integers from {1, 2, .. ., n}, with all n!/(n - k)! such lists equally likely. The 
remaining values are then assigned so that ir(k + 1) < ir(k + 2) < . < wr(n). What is 
the expected value of the random variable Xi -= r 1(i) for each i with 1 < i < n? (From 
1987 to 1989, the National Basketball Association used this method with k = 3 and n = 7 
to determine the drafting order for teams that did not participate in playoff competition.) 

10804. Proposed by Achilleas Sinefakopoulos, University of Athens, Athens, Greece. Let 
A B CD be a convex quadrilateral with an incircle that contacts AB at E and C D at F. Show 
that ABCD has a circumcircle if and only if AE/EB = DF/FC. 

10805. Proposed by Antal Fekete, Memorial University of Newfoundland, St. John's, NFi, 
Canada. Let Bn be the nth Bell number, the number of partitions of {1, 2, ... , n}. Let [ n 

be the unsigned Stirling number of the first kind, the number of permutations of { 1, 2, . . ., n} 
with k cycles. Prove that 

n-1 n h 

Z&_).1) Ln-j Bn-j+h = ($)Bjn 
for eh svn e ad n aetrj=O 

for each positive integer n and nonnegative integer h. 

10806. Proposed by Hassan Ali Shah Ali, Tehran, Iran. Prove that a complex number with 

real part lk+ 1 - Vik for some positive integer k cannot be a root of unity. 
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10807. Proposed by Marc Dele'glise, Universite' Lyon, Lyon, France. For positive parame- 
ters u and v, evaluate 

lim 1 ? 4k) 

10808. Proposed by Enrico Valdinoci, University of Texas, Austin, TX. Prove that the series 
1I00 (cos(nx))n diverges for all x e IR if r < 2 but converges for almost every x E Et 
with respect to Lebesgue measure if r > 2. 

SOLUTIONS 

Intersecting Curves 

10712 [1999, 166]. Proposed by Paul Deiermann, Lindenwood University, St. Charles, 
MO, and Rick Mabry, Louisiana State University, Shreveport, LA. Let f(x) and g(y) be 
twice continuously differentiable functions defined in a neighborhood of 0, and assume that 
f (0) = 1, g(0) = f'(0) = g'(0) = 0, f"(0) < 0, and g"(0) > 0. 
(a) For sufficiently small r > 0, show that the curves x = g(y) and y = rf(x/r) have 
a common point (Xr, Yr) in the first quadrant with the property that, if (x, y) is any other 
common point, then xr < x. 
(b) Let (tr, 0) denote the x-intercept of the line passing through (0, r) and (Xr, Yr). Show 
that limr?o+ tr exists, and evaluate it. 
(c) Is the continuity of f" and g" a necessary condition for limr,o+ tr to exist? 

Solution by Alain Tissier, Monifermeil, France. The conclusions in (a) and (b) remain correct 
even if we do not assume continuity of f" and g". We retain only the continuity of the 
first derivative and the existence and sign of f" and g" at zero. We prove a generalization, 
weakening the hypotheses as follows: Assume that f is a continuous mapping on [0, a] 
witha > 0 and that f(x) 1 - xP +o(xP) as x -0 for some p > 0 and X > 0. Assume 
also that g is a continuous mapping on [0, b] with b > 0 and that g(y) = gyq + 0(yq) as 
y -+ 0 for some q > 1 and ,tu > 0. The conditions on f and g in the problem statement 
imply these hypotheses with p = q = 2, X = -f"(O)/2, and ,u = g"(0)/2. 

(a) With a and b sufficiently small, we may suppose f (x) > 0 on [0, a] and g(y) > 0 on 
(0, b]. Let m > 0 be the maximum of f (x) on [0, a]. For each r > 0, let fr (x) = rf (x/r). 
Then fr is a continuous mapping on [0, ra], fr(x) = r - Xrl-PxP + o(xP), and the 
maximum of fr on [0, ra] is mr. Assume that r < b/m. Then fr(x) < b on [0, ra]. 

The function hr defined by hr(x) = g(fr(x)) - x is defined and continuous on [0, ra], 
and it satisfies hr(0) = g(r) > 0 and hr(ra) = g(rf(a)) - ra. Since g(rf(a)) = O(rq) 
as r -- 0 and since q > 1, we have g(rf (a)) = o(r). Hence there exists a > 0 so that 
hr(ra) < 0 if r < 8. Assume that r < 8. The function hr is continuous on [0, ra], 
hr(0) > 0, and hr(ra) < 0, so by the intermediate value theorem there exists xr > 0 such 
that hr(xr) = 0 and hr(X) > 0 on [0, xr). The curves y = fr(x) and x = g(y) have a 
common point (Xr, Yr) with Yr = fr (Xr) and Xr = g (Yr), and every other common point 
has a larger x-coordinate. 

(b) We show that, in our more general setting, a finite nonzero limit exists if and only if 
i/p + 1/q = 1, and then the limit is 1/(X,uP-1). Since 0 < Xr < ra, we have xr = 0(r) 
as r -+ 0. Hence Yr = r - XrIPx 1 + o(xfP) = 0(r) as r -* 0. We may use this to obtain 

Xr = g(Yr) = ,Lyq + o(yq) = O(rq) and Yr = r -Xrl-Px?p + o(xP) = r + 0(rl-P+Pq) 
as r -- 0. This in turn leads to the further refinement xr = Arq + o(rq) and Yr = 
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10813. Proposed by Fred Richman, Florida Atlantic University, Boca Raton, FL. Let F be 
an arbitrary field, and let V be the vector space of 2-by-2 matrices over F. Given A and B in 
V, let SA,B = {C: AC = CB}. Show that the vector space SA,B cannot be 3-dimensional, 
but that every 2-dimensional subspace of V is SA B for some A and B. 

10814. Proposed by Razvan Satnoianu, Oxford University, Oxford, United Kingdom. Let 
P be a point in the interior of triangle A B C. Let r, s, t be the distances from P to the vertices 
A, B, C, respectively, and let x, y, z be the distances from P to the sides BC, CA, AB, 
respectively. 
(a) Provethat qr + qS + qt + 3 > 2(qx + qY + qz) for any q > 1. 
(b) Prove that qS+t + q?t+r + qr+? + 6 > q2X + q2Y, + q2z+2(qx+qY'+qz)foranyq > 1. 

10815. Proposed by Barbara S. Bertram and Otto G. Ruehr, Michigan Technological 
University, Houghton, MI. Let 

00 

F(x) = 2x E ne-xn 
n=1 

for x > 0. Show that F(s + t) < F(s)F(t) when s, t > 0. 

SOLUTIONS 

Permutation Parameters with the Same Distribution 

10634 [1998, 68]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY, and 
Ira M. Gessel, Brandeis University, Waltham, MA. For each permutation .7 of {1, 2, ..., n}, 
define 

maxjump(w7) = max (7i- - 
l<i<n 

maxinv(w7) = max I{k: Tk > 7ri, k< i}I, and 
l<i<n 

maxrise(7) = Jo0 if.7w = (nn-l n-2 ... 321), 
maxl<i<n-I (r?i+l - 7ri) otherwise. 

Show that these parameters have the same distribution. 

Solution by David Callan, Madison, WI. We first show that maxjump and maxrise have the 
same distribution. The standard cycle form of a permutation lists its cycles in order so that 
the smallest element in each cycle occurs first and these smallest elements are in decreasing 
order. For example, (46)(3)(1752) is the standard cycle form for the permutation whose 
wordform is 7136245. Let ft be the permutation whose word form is obtained by writing 7r 
in standard cycle form and erasing the parentheses (4631752 in our example). The cycles of 
fr can easily be recovered from *t; they start wherever an entry is smaller than all preceding 
entries. Hence fr i-+ ft defines a bijection. If 7i > i, then 7i immediately follows i in ft. 
Conversely, if i = i < ?i+1, then r=i = + 1? Thus the positive jumps of wf are the same 
as the positive rises of *t, and maxjump(wf) = maxrise(ft). 

We now prove that maxjump(w7) = maxinv(71-1) and hence that maxjump and maxinv 
have the same distribution. When j = zi > i, we seek inversions at j in 7r - l. The values 
of k less than j that satisfy .7k > 7r, I all belong to {7i+I, ..7, I n}. At most i - 1 of 
the numbers less than j appear in {7i, . J..,7ri -I}, and hence at least (j - 1) -(i - 1) 
of them appear later (strict inequality may hold, as when 7r = 7136245 and i = 4). For 
each positive jump 7ri = j, there are thus at least j - i inversions at j in 7- , and hence 
maxjump(7) < maxinv(7 -1). 

June-July 20001 PROBLEMS AND SOLUTIONS 567 

This content downloaded from 147.8.31.43 on Tue, 15 Dec 2015 00:30:21 UTC
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



This content downloaded from 134.117.10.200 on Wed, 21 Oct 2015 14:57:58 UTC
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



10821. Proposed by Gerard J. Foschini, Bell Laboratories, Holmdel, NJ. Find a sequence 
of functions fl, f2, . .. in L2 10, 1] that satisfies the following conditions. 
(1) For allG E (0, 1), the space spanned by {fi,, f2,,e. ...} is L2[E, 1], where fnE is the 
restriction of fn to [E, 1]. 
(2) The space spanned by {If, f2j . . } has an infinite-dimensional orthogonal complement 
in L210, 1]. 

10822. Proposed by Jeffrey Lagarias, AT&T Laboratories, Florham Park, NJ, and Jade 
Vinson, Princeton University, Princeton, NJ. 
(a) Let f (z) = 1/(2 - z2). Prove that all periodic points of f are real. 
(b) More generally, set fx(z) = 1/(A - z2). For which positive real values of A does fx 
have only real periodic points? 

SOLUTIONS 

The Asymptotics of the Birthday Problem 

10665 [1998, 464]. Proposed by Jerrold R. Griggs, University of South Carolina, Columbia, 
SC. For positive integers s and t, let P(s, t) denote the probability that a random function 
f: S -> T is injective, where S, T are sets with ISI = s, ITI = t, and, for each x E S, f (x) 
is chosen uniformly and independently from T. For example, P(n, 365) approximates the 
probability that, in a class with n students, no two students have the same birthday. 
(a) Show that P(s, t) -> 0 as s -> oo if t - ks for some constant k > 1. 
(b) What happens to P(s, t) as s -- oo if t - cs2 for some constant c > 0? 

Solution I by Darryl K. Nester, Bluffton College, Bluffton, OH. Since P(s, t) = 

Hs-0(t -i)/t, we have-ln P(s, t) = - j7s-' ln(1-i/t). 
(a) Since -ln(1 -x) > x for x E (0, 1), we have 

s-lI i (5 -l)s s-1I 
-In P(s,t) > t t 2k =ass -oo. 

i=l t 2 

Thus - ln P(s, t) -> oo as s -> oo, which yields P(s, t) -> 0. 
(b) We show that P(s, t) e-el/(2c) as s -> oo. Note that - ln(1 - x) < x + x2 for 
x E (0, 1/2). Since t - cs2, for all sufficiently large s we have (s - 1)/t < 1/2, and thus 

( )s s-I . s- i i2) (5 l )s (s-1I)s(2s -1) 
2t i~ t(st< ) t+t2J 2t + 6t2 

For t - cs2, both bounds are asymptotic to 1/(2c). 

Solution II by Sung Soo Kim, Hanyang University, Ansan, Kyunggi, Korea. If b > a, then 
(x-b)(x + b) < (x-a)(x + a). Thus, 

(1 5- I s2 p( t(t -1) .. (t - s+1) (I -_) 

(a) If t - ks for some constant k > 1, then 0 < P(s, t) < (1 - 1/(4k))S for all sufficiently 
large s, and P(s, t) -- 0. 
(b) If t - cs2 for some constant c > 0, then for all sufficiently large s, 

(I s/2 I 1 
(1 c- (s))s 

< P(s,t) < 1 - 2(c +(s))s ' 

where s(s) is positive and tends to 0. Both bounds tend to e-11(2c) 
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PROBLEMS AND SOLUTIONS 

Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West 
with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline, 
Ezra A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Kevin Ford, Zachary 
Franco, Ira M. Gessel, Jerrold R. Griggs, Douglas A. Hensley, John R. Isbell, Kiran S. Kedlaya, 
Murray S. Klamkin, Fred Kochman, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard 
Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, Kenneth Stolarsky, Richard Stong, 
Charles Vanden Eynden, and William E. Watkins. 

Proposed problems and solutions should be sent in duplicate to the MONTHLY 
problems address on the inside front cover. Submitted problems should include 
solutions and relevant references. Submitted solutions should arrive at that address 
before March 31. 2001: Additional information, such as generalizations and refer- 
ences, is welcome. The problem number and the solver's name and address should 
appear on each solution. An acknowledgement will be sent only if a mailing label 
is provided. An asterisk (*) after the number of a problem or a part of a probIem 
indicates that no solution is currently available. 

PROBLEMS 

10823. Proposed by George E. Andrews, Pennsylvania State University, University Park, PA. 
GivenS = {al, a2, .. ., ak},whereai E Nforalli and 1 < al < a2 < ... < ak < n, define 
f (S) tobe 1al -P1, a2 -1, .. ., akS- 1f if al 1 and s1ubse S of {1, 2, a3-1, . ak-1 
if a, = 1. Prove that ?on+ I(S) = S for every nonempty subset S of {1, 2, . . ., n} 

10824. Proposed by Ho-joo Lee, Kwangwoon University, Seoul, South Korea. Suppose that 
P is a point in the interior of triangle ABC such that ZPAB = ZPBC = ZPCA = 300. 
Prove that ABC is equilateral. 

10825. Proposed by Carl Miller, Duke University, Durham, NC. Given real numbers x 
and y, define Sk(x, y) for k E Z by So(x, y) = x, SI(x, y) = y, and the recurrence 

Sn(X,Y) = Sn I(x, y) + Sn-2(x,y) for all n E Z. Show that 

inf Sn(x, y)I < 
x2?xy - y2 

and determine when equality holds. 

10826. Proposed by Felix Martfnez-Gimenez, Universidad Politecnica de Valencia, Valen- 
cia, Spain. Given an infinite matrix A = (ai,j)i,jy-N of real numbers satisfying 0 < ai,j < 
ai, j+? for all i, j E N, we say A satisfies condition (*) if for every n E N, there exists m E N 

such that Ei N ai,n/ai,m is convergent. For any real number 0 > 0, prove that A satisfies 
condition (*) if and only if AM0) satisfies condition (*), where A(0) is the matrix whose i, j 
entry is a? . 

10827. Proposed by Ulrich Abel, Fachhochschule Giessen-Friedberg, Friedberg, Germany. 
For n E N and x > 0, let 

fn()=X>XnZ k 
k=1 

Prove that limnoo sup,>1 fn(x) exists. 
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10828. Proposed by David Beckwith, Sag Harbor, NY Given a set M of natural numbers, 
there is a unique subset A c M, whose elements we call the additive atoms of M, such 
that every element of M can be written as >SES S for some S c A, while no element of A 
can be written as a sum of two or more distinct elements of A. For example, the additive 
atoms of {1, 2, 3, . . .} are the powers of 2. For m > 1, what are the additive atoms of 
{m,m+ 1,m+2,...}? 

10829. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. For a 
positive integer m, let f (m) = Em 1 m/ gcd(m, r). Evaluate f (m) in terms of the canonical 
factorization of m into a product of powers of distinct primes. 

SOLUTIONS 

Periodic Points and Forests 

10666 [1998, 464]. Proposed by David Callan, University of Wisconsin, Madison, WI. Let 
r and n be positive integers with r < n, and let [n] denote {1, 2, . .., n}. We say thatx e [r] 
is a periodic point of a function f: [ri -? [n] if fk(x) = x for some k > 1. 
(a) How many of the nr functions from [r] to [n] have at least one periodic point? 
(b) How many of the n(n - 1) ... (n - r + 1) injective functions from [r] to [n] have no 
periodic points? 

Solution I by David Beckwith, Sag Harbor, NY The answer to (a) is rnrl, and the answer 
to (b) is (n- 1)!/(n- 1 -r)!. 

Given a function f: [r] -- [n], let S be a largest subset of [r] such that the restriction 
of f to S is a permutation. The number of periodic points of f is ISI. If f has m periodic 
points, then S can be chosen in (,;) ways, and for each choice, f can be defined on S in m! 
ways. 
(a) Let a'(r, n) denote the number of functions with no periodic point, with a'(0, n) = 1. 
Counting the functions from [r] to [n] by periodic points yields r (=0)m !a' (r - m, n) = 

nr, and thus 
1 nr -m) ! 

a'(r-m, n) = . 
m=o (r m)!r 

The terms for m > 0 form the full summation when r is replaced with r - 1; hence they 
total nr-l/(r - 1)!. Canceling these yields a'(r, n) = nr n mr-i. 

(b) Let b(r, n) denote the number of injective functions with no periodic point. Counting 
the injective functions by periodic points yields Er (=)m !b(r - m, n - m) = (r)r!, and 
thus 

1 
b(r-m,n-m)= . 

__(r -in)!r 

The terms for m > 0 form the full summation when r is replaced with r -1 and n is replaced 

with n -1; hence they total (n-1). Canceling these yields b(r, n) = r! ((n) (n-) = 

(n -1)!/(n - 1-r)!. 

Solution II by Anchorage Math Solutions Group, University of Alaska, Anchorage, AK. We 
extend each function f: [r] -- [n] to a function f': [n] -- [n] by letting all points of 
[n] - [r] be fixed points. In the functional digraph of f', the digraph on vertex set [n] 
containing an arc from i to j if and only if f'(i) = j, each element of [n] - [r] is the root 
of a component that is a tree (except for the self-loop at the root). Any other component 
contains a cycle of elements from [r]. Thus f has no periodic point if and only if f' has 
only its n - r tree components. 
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PROBLEMS AND SOLUTIONS 

Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West 
with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline, 
Ezra A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton, 
Kevin Ford, Zachary Franco, Ira M. Gessel, Jerrold R. Griggs, Douglas A. Hensley, John R. Isbell, 
Kiran S. Kedlaya, Mufray S. Klamkin, Fred Kochman, Frederick W. Luttmann, Vania Mascioni, 
Frank B. Miles, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, Kenneth 
Stolarsky, Richard Stong, Charles Vanden Eynden, and William E. Watkins. 

Proposed problems and solutions should be sent in duplicate to the MONTHLY 
problems address on the inside front cover. Submitted problems should include 
solutions andrelevantreferences. Subbmitted solutions should arrive at that address 
before April 30, 2001; Additional information, such as generalizations and refer- 
ences, is welcome. Theproblem number and tle solver's name and address should 
appear on each solution. An acknowledgeinent will be sent only if a mailing label 
is provided. An asterisk (*) after the number of a problem or a part of a problem 
indicates that no solution is currently available. 

PROBLEMS 

10830. Proposed by Floor van Lamoen, Goes, The Netherlands. A triangle is divided by 
its three medians into 6 smaller triangles. Show that the circumcenters of these smaller 
triangles lie on a circle. 

10831. Proposed by George E. Andrews, Pennsylvania State University, University Park, 
PA, and P Paule and A. Riese, University of Linz, Linz, Austria. Given positive integers m 
and n, let Dm,n (a, b, c, d) be the determinant of the following matrix: On the main diagonal, 
there are m entries of a followed by n entries of d. The entries on the diagonal of length n 
above the main diagonal are all b. The entries on the diagonal of length m below the main 
diagonal are all c. All other entries are 0. For example 

~a O O O O b O O- 
O a O O O O b O 
O O a O O O O b 

D 5,3 (a, b, c, d) = det c O O a O O O O 

O O c O O d O O 
O O O c O O d O 

_O O O O c O O d_ 
Let g = gcd(m, n), r = mlg, and s = nlg. Prove that 

Dmn,n(a, b, c, d) = (ards -(-l)r+sbsCr) . 

10832. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Evaluate 

( k%k 1I 

k=1V k! e 

10833. Proposed by Charles Vanden Eynden, Illinois State University, Normal, IL. Let r 
be a positive integer. Prove that there are infinitely many integers k > r! with the property 
that j !/(j -r)! does not divide k!/(k -r)! whenever r! < j < k. 
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10834. Proposed by Sung Soo Kim, Hanyang University, Ansan, Korea. For n E N, let Mn 
be the set of n-by-n matrices with nonnegative entries and with zeroes on the diagonal. De- 
fine a binary operation o on Mn by setting the i, j-entry of A o B equal to minl<k<n aik + bkj. 
For A E Mn, define a sequence of matrices recursively by setting A1 = A and setting 
Ak+1 = Ak o A fork > 1. Show that Ar o A, = A, o Ar for all r, s e N. 

10835. Proposed by Anna Dyubina, Tel Aviv University, Tel Aviv, Israel, and Pierre de 
la Harpe, Universite' de Geneve, Geneve, Switzerland. Let G be the group defined by 
the presentation that has an infinite sequence bo, bl, b2, . .. of generators and an infinite 
sequence blbobp1 = b2bib-1 = b3b2b-1 = ... of relations. Show that G is not finitely 
generated. 

10836. Proposed by Jon A. Wellner, University of Washington, Seattle, WA. Show that 

4Va(1 -x2)312 Lx2k I(k+ 1) 4+x2k(2k)! j2 (k - )! 

k=O +k= __l j! 2 (2k - 2j)! 
for alil XE [0, 1). 

SOLUTIONS 

Bernoulli, Stirling, and Stirling 

10700 [1998, 955]. Proposed by Leroy Quet, Denver, CO. Let c(m, n) be the unsigned 
Stirling numbers of the first kind, the number of permutations of {1, 2, .. ., m} with n 
cycles. Let S(m, n) be the Stirling numbers of the second kind, the number of partitions of 
{1, 2, .. ., m } with n blocks. Let B(n) be the nth Bernoulli number, defined by x /(eX 1) = 

??%0 B(n)xn/n!. Show that 

n!WS (r, n) 1 q 
(-1)n n!S(r. ) - L B(r + n - 1)c(q, n) 

n=1 n+q 

for all positive integers r and q. 

Solution by Robin Chapman, University of Exeter, Exeter, U. K. We use the following three 
formulas: 

E m EB(m i) (m)ki+1 (for every nonnegative integer m), (1) 
j=O i=O 

1 

, c(q, n)xn - q! (x ? qI1) (for every positive integer q), and (2) 
n=1q 

xr= E S(r, n)n! (x) (for every positive integer r), (3) 

where(t) =x(x-1)(x-2) ... (x-t 1)/t! forx ER andt E N. 

For a polynomial f, let f(k) = k 5I:j f (j) when k is a positive integer. For f (x) = 

xm, (1) yields 

f() = B(m i(m)ki 
i=O A+I [il 
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problems address on the inside front cover. Submitted problems should include 
solutions andrelevantreferences. Submittedsolutions should arrive at that address 
before May 31, 2001; Additional information, such as generalizations and refer- 
ences, is welcome. Theproblem numberand the solver's name and address should 
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indicates that no solution is currently available. 

PROBLEMS 

10837. Proposed by Ho-joo Lee, Kwangwoon University, Seoul, South Korea. Let m and 
n be positive integers, and let yp(k) be the number of integers in { 1, 2, . . . 1, k-} that are 
relatively prime to k. Prove that, for some positive integer a, each of q(a), q0(a + 1), 
qp(a + 2), . .. , (p(a + n) is a multiple of m. 

10838. Proposed by Florian S. Parvanescu, Slatina, Romania. Let M be any point in the 
interior of triangle ABC, and let D, E, and F be points on the perimeter such that AD, BE, 
and CF are concurrent at M. Show that if the triangles BMD, CME, and AMF all have 
equal areas and equal perimeters, then ABC is equilateral. 

10839. Proposed by Beresford N. Parlett, University of California, Berkeley, CA. Let A 
be a symmetric positive definite matrix with bandwidth 2b - 1. Thus, when b = 1, A is 
diagonal, and when b = 2, A is tridiagonal. Prove that the largest eigenvalue of A is no 
greater than the maximum of all sums of b consecutive entries on the main diagonal.of A. 

10840. Proposed by Jiansheng Yang and Shulin Zhou, Peking University, Beijing, P. R. 
China. Is the series Jn??I xn/(l + xn)n uniformly convergent on the interval [0, 1]? 

10841. Proposed by Erwin Just, Bronx Community College, Bronx, NY Let R be a ring 
with the property that, for every x E R, there is an integer n = n(x) > 4 such that 
x +x2 +x3 = xn +Xn+I +xn+2 

(a) Prove that x3n(x)-2 - x for every element x E R. 
(b) Prove that multiplication in R is commutative. 
(c) Prove that every element of R has finite additive order. 

10842. Proposed by Bruce Reznick, University of Ilinois, Urbana, IL. 
(a) Let n be a positive integer not equal to 1, 2, 3, or 5. Show that there is at least one k 
with 0 < k < n such that (2) is not divisible by (n). 
(b) Let m be a positive integer. Show that there is a positive integer Nm such that, whenever 
n> Nm, there is at least one k with 0 < k < n such that (C) is not divisible by (k). 
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10843. Proposed by Andrew Vince, University of Florida, Gainesville, FL. Define a mapping 
f: [0, 1) -* [0, 1) by f(x) = 2x (mod 1). Find supN(A) =/2X(A n f-1A), where X 

denotes Lebesgue measure and the supremum is taken over all sets A that are the union of 
finitely many intervals and that satisfy A(A) = 1/2. 

SOLUTIONS 

The Maximum Length of a Powerful Arithmetic Progression 

10702 [1998, 956]. Proposed by Kent D. Boklan, Baltimore, MD. What is the length of the 
longest nonconstant arithmetic progression of integers with the property that the kth term 
(for all k > 1) is a perfect kth power? 

Solution by John P. Robertson, St. Paul Re, New York, NY The longest such progression has 
length 5. 

For an example of a sequence of length 5, take the sequence j1, 9, 17, 25, 33} and multiply 
each of its terms by 32453011241720. 

Suppose there were such a progression of length 6. Let the second, third, and sixth terms 
be a2, b3, and c6, respectively, so 3a2 -4b3-c6. If c 0, then taking x = 12(b/c2) and 
y = 36(a/c3) yields y2 = x3- 432, with x and y rational. This elliptic curve has only two 
rational points (L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969, 
p. 247). These are x = 12, y = L36, both of which produce a constant progression. 

If c = 0, then the progression would be {5r, 4r, 3r, 2r, r, O} for some nonzero integer r. 
This would make both 4r and 2r squares, which is impossible. 

Solved also by J. Manoharmayum (U. K.), M. Reid, GCHQ Problems Group (U. K.), and the proposer with N. D. Elkies. 

A Union of Proper Subspaces? 

10707 [1999, 67]. Proposed by John Isbell, State University of New York, Buffalo, NY 
Show that 
(a) no vector space over an infinite field is a finite union of proper subspaces; and 
(b) no vector space over an n-element field is a union of n or fewer proper subspaces. 

Composite solution by Julio Kuplinsky, Montclair, NJ, and Leon Mattics, Semmes, AL. Let 
V be a vector space over a field K. We show that, if K has at least n elements and Si, ..., Sr 
are proper subspaces of V such that V = Ui=i Si, then r > n + 1. Parts (a) and (b) then 
follow immediately. 

Let r be the smallest possible number of proper subspaces S, . ,Sr of V whose union 
is V. Clearly r > 2. . Also Sl Z Ui=2 Si by the minimality of r. Hence we may choose 
v e Si - U=2 Si. Similarly, we may choose w e S2-S1. 

For X E K, we now have Xv + w ? Sl, since Sl is a subspace and w ? S1. If X and , 
are distinct elements of K such that both Xv + w and ,uv + w are in Sj, then (X - W)v e Si. 
This yields v e Si, which is a contradiction. 

Since K contains at least n elements, we conclude that there are at least n subspaces in 
the union other than Si, and hence r > n + 1. 

Editorial comment. These results have appeared previously. David Callan cites K. P. S. 
Bhaskara Rao and A. Ramachandra Rao, Unions and common complements of subspaces, 
this MONTHLY 98 (1991) 127-131. Frank Dangello, Lenny Jones, and Mike Seyfried re- 
fer to D. B. Leep and G. Myerson, Marriage, magic, and solitaire, this MONTHLY 106 
(1999) 419-429. Stephen Gagola points out a similarity to his problem E 2785 [1979, 592; 
1980, 672] of this MONTHLY. Robert Gilmer mentions A. Bialynicki-Birula, J. Browkin, and 
A. Schinzel, Colloq. Math. 7 (1959) 31-32 and R. D. Bird, Simultaneous complements in 
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Proposed problems and solutions should be sent in duplicate to the MONTHLY prob- 
lems address on the inside front cover. Submitted solutions should arrive at that 
address before June 30, 2002. Additional information, such as generalizations and 
references, is welcome. The problem number and the solver's name and address 
should appear on each solution. An acknowledgement will be sent only if -a mailing 
label is provided. An asterisk (*) after the number of a problem or a part of .a 
problem i.ndicates that no solution is currently available. 

PROBLEMS 

10914. Proposed by Giovannii Falcone, University of Palermo, Italy. Given two 
cyclotomic polynomials bm and 4n with m -7 n, find the smallest natural number 
k such that integer polynomials a and b with the property that a'Dm+b'Dn identically 
equals k. 

10915. Proposed by C. P. Rupert, Durham, NC. Given nonzero polynomials p and 
q in Z[x] satisfying p2 + mq #7 0 for 1 < m < 4, define polynomials t7 recursively 
by tn+2 -ptn+ + qtn with initial conditions to = 0 and t1 = 1. With ,u denoting 
the Mobius function, prove for n > 1 that the polynomial sn E Q[x] defined by 
s (X) = d tj (n/d) actually belongs to Z [x]. 

10916. Proposed by Gertrude Ehrlich, University of Maryland, College Park, MD. 
Available are two beakers A and B, having volumes a liters and b liters, respectively, 
a source of water, and a drain. Water may be poured into the beakers from the 
source or from each other, either filling the receiving beaker or emptying the source 
beaker, and beakers may be emptied into the drain. Using only these operations, 
show that if a and b are relatively prime positive integers, then for every integer m 
with 1 < m < b it is possible to reach a state in which beaker B contains m liters. 

10917. Proposed by Jirgen GroJ3 and Gotz Trenkler, University of Dortmund, 
Germany. Let P and Q be n-by-n self-adjoint, idempotent matrices, that is, P* = 
p = p2 and Q* = Q2 = Q. Equivalently, P and Q are orthogonal projections of 
the same dimension. Show that the product PQ is an orthogonal projection if and 
only if all nonzero eigenvalues of P + Q are greater than or equal to 1. 

10918. Proposed by Matthias Beck, State University of New York, Binghamton 
NY. Prove that for all positive integers a and b, 
a (1) aa(1) -[ b + ( 1) Lb (1) Lb 1 mod 4. 

10919. Proposed by Michael Becker, University of South Carolina Sumter, SC. Let 
H(t) = f0 sn dt, and let F(k) = 0 t2k+le-tH(t) dt. Find a formula for F(k) 
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PROBLEMS AND SOLUTIONS 

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West 
with the collaboration of Paul T. Bateman, Mario Benedicty, Itshak Borosh, Paul 
Bracken, Ezra A. Brown, Randall Dougherty, Roger Eggleton, Dennis Eichhorn, 
Tamas Erdelyi, Kevin Ford, Zachary Franco, Christian Friesen, Ira M. Gessel, Jer- 
rold R. Griggs, Kiran S. Kedlaya, Frederick W. Luttman, Vania Mascioni, Frank B. 
Miles, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, 
Kenneth Stolarsky, Richard Stong, and Charles Vanden Eynden. 

Proposed problems and solutions should be sent in duplicate to the MONTHLY prob- 
lems address on the inside front cover. Submitted solutions should arrive at that 
address before July 31, 2002. Additional information, such as generalizations and 
references, is welcome. The problem number and the solver's name and address 
should appear on each solution. An acknowledgement will be sent only if a mailing 
label is provided. An asterisk (*) after the number of a problem or a part of a 
problem indicates that no solution is currently available. 

PROBLEMS 

10921. Proposed by David M. Bloom, Brooklyn College CUNY, New York, NY. 
Let cn Ln/2J Prove that 

Kn 
k (k)CkCn-k = CnCn+l 

k= 

10922. Proposed by Mizan R. Khan, Eastern Connecticut State University, Willi- 
mantic, CT. For each positive integer n, let 6k(n) denote the largest divisor of n 
that is relatively prime to k. Show that 

lim ao(n) _ 
n- ?O? klo n 6k(n) 

10923. Proposed by Stephen B. Gray, Santa Monica, CA. Given a full-dimensional 
simplex S in R1 , a step is an affine transformation that takes S into a new simplex 
S' by fixing all but one vertex and moving the remaining vertex parallel to the 
hyperplane determined by the others. 
(a) Prove that every triangle in I2 can be made equilateral in at most two steps. 
(b) Prove that for every postive integer n there exists a positive integer Nn such 
that every full-dimensional simplex in IRT can be made regular in at most Nn steps. 

10924. Proposed by A. J. Sasane, University of Groningen, The Netherlands. A 
regular polygon of 2001 sides is inscribed in a circle of unit radius. Prove that its 
side and all its diagonals have irrational lengths. 

10925. Proposed by David Callan, University of Wisconsin, Madison, WI. Define 
a 0,1-matrix An with rows and column indexed by the binary n-tuples with no two 
consecutive ls, such that position (u, v) is 1 if and only if v is 0 in each position 
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where u has a 1 or has a 0 immediately preceded by a 1. A1 and A2 are shown. 
Prove that the permanent of An is 1. 

00 01 10 
0 1 00 1 1 1' 

O t1 18 01 1 0 1 
1 (1 oJ 10 1 0 0/ 

10926. Proposed by Harold Diamond, University of Illinois, Urbana, IL. Let x 
and y be real numbers with x 7 y and xy > -1. Show, for suitable K, that 
tan-1 y - tan-1 x has the continued fraction expansion 

K3+ 

3K + 
4 

5K+ 
7K +... 

(The coefficients in the numerators continue with successive squares, those in the 
denominators are the consecutive odd numbers.) 

10927. Proposed by Jeffrey C. Lagarias, E. M. Rains, and N. J. A. Sloane, AT&T 
Labs, Florham Park, NJ. Define a sequence (a) by letting a1 = 1, a2 = 2, and a3 = 3, 
and for n > 3 letting an be the smallest integer among those not already used such 
that gcd(an-1, an) > 3. The sequence begins 1, 2, 3, 6, 9, 12, 4, 8, 16, 20, 5, 10, 15, ... 
Prove that it is a permutation of N. 

SOLUTIONS 

Continued Fractions for Some Quadratic Surds 

10773 [1999, 964]. Proposed by Jean Anglesio, Garches, France. Let ao, a1, .. ,k 

be positive integers. For 0 < i < k, let pi/qi be the fraction in lowest terms with con- 
tinued fraction expansion [ao, a1, . . , ai]. Find the continued fraction expansion of 

qkk-k , , and 
+ qk 

qkqk-1 Pk-lqk-1 q2 + qk-1 pk-1 + q 1 

in terms of ao, a,.. ak. 

Solution by Reiner Martin, New York, N. Y. We show that the following four ex- 
pansions have the desired values (overlining indicates periodic parts). 

a = [ao, ai,. . . , ak_l, 2ak,akl, ... , a,, 2ao ] , 

p = [ak, ak-l, ... , a1, 2ao, a1, . .., ak-l, 2ak], 

= [ao7 a1, *... , ak-1, ak, ak, ak-l, ... , a,, 2ao ], 

6 = [ak, ak-l, ..., a,, ao, ao, a,, ... , ak1l ,2ak] - 
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the inside front cover. Submitted solutions should arrive at
that address before May 31, 2010. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11474. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Valentin Vornicu, Aops-MathLinks forum, San Diego, CA. Show that when x ,
y, and z are greater than 1,

�(x)x2+2yz�(y)y2+2zx + �(z)z2+2xy ≥ (�(x)�(y)�(z))xy+yz+zx .

11475. Proposed by Ömer Eğecioğlu, University of California Santa Barbara, Santa
Barbara, CA. Let hk = ∑k

j=1
1
j , and let Dn be the determinant of the (n + 1) × (n + 1)

Hankel matrix with (i, j) entry hi+ j+1 for 0 ≤ i, j ≤ n. (Thus, D1 = −5/12 and D2 =
1/216.) Show that for n ≥ 1,

Dn =
∏n

i=1 i !4∏2n+1
i=1 i ! ·

n∑
j=0

(−1) j (n + j + 1)!(n + 1)h j+1

j !( j + 1)!(n − j)! .

11476. Proposed by Panagiote Ligouras, “Leonardo da Vinci” High School, Noci,
Italy. Let a, b, and c be the side-lengths of a triangle, and let r be its inradius. Show

a2bc

(b + c)(b + c − a)
+ b2ca

(c + a)(c + a − b)
+ c2ab

(a + b)(a + b − c)
≥ 18r 2.

11477. Proposed by Antonio González, Universidad de Sevilla, Seville, Spain, and José
Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela. Several boxes sit in a row,
numbered from 0 on the left to n on the right. A frog hops from box to box, starting
at time 0 in box 0. If at time t , the frog is in box k, it hops one box to the left with
probability k/n and one box to the right with probability 1 − k/n. Let pt (k) be the
probability that the frog launches its (t + 1)th hop from box k. Find limi→∞ p2i (k)

and limi→∞ p2i+1(k).

doi:10.4169/000298910X475032
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11478. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let K be a field of characteristic zero, and let f and g be relatively prime
polynomials in K [x] with deg(g) < deg( f ). Suppose that for infinitely many λ in
K there is a sublist of the roots of f + λg (counting multiplicity) that sums to 0.
Show that deg(g) < deg( f ) − 1 and that the sum of all the roots of f (again counting
multiplicity) is 0.

11479. Proposed by Vitaly Stakhovsky, National Center for Biotechnological Informa-
tion, Bethesda, MD. Two circles are given. The larger circle C has center O and radius
R. The smaller circle c is contained in the interior of C , and has center o and radius r .
Given an initial point P on C , we construct a sequence 〈Pk〉 (the Poncelet trajectory
for C and c starting at P) of points on C : Put P0 = P , and for j ≥ 1, let Pj be the
point on C to the right of o as seen from Pj−1 on a line through Pj−1 and tangent to c.
For j ≥ 1, let ω j be the radian measure of the angle counterclockwise along C from
Pj−1 to Pj . Let

�(C, c, P) = lim
k→∞

1

2πk

k∑
j=1

ω j .

(a) Show that �(C, c, P) exists for all allowed choices of C , c, and P , and that it is
independent of P .
(b) Find a formula for �(C, c, P) in terms of r , R, and the distance d between O
and o.

11480. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technol-
ogy, Damascus, Syria. Let a, b, and c be the lengths of the sides opposite vertices A,
B, and C , respectively, in a nonobtuse triangle. Let ha , hb, and hc be the corresponding
lengths of the altitudes. Show that(

ha

a

)2

+
(

hb

b

)2

+
(

hc

c

)2

≥ 9

4
,

and determine the cases of equality.

SOLUTIONS

Powerful Polynomials

11348 [2008, 262]. Proposed by Richard P. Stanley, Massachusetts Institute of Tech-
nology, Cambridge, MA. A polynomial f over a field K is powerful if every irreducible
factor of f has multiplicity at least 2. When q is a prime or a power of a prime, let
Pq(n) denote the number of monic powerful polynomials of degree n over the finite
field Fq . Show that for n ≥ 2,

Pq(n) = q	n/2
 + q	n/2
−1 − q	(n−1)/3
.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Let
Aq(n) and Sq(n) be the numbers of monic and monic square-free polynomials of de-
gree n over Fq , respectively. Introduce the ordinary generating functions:

Aq(x) =
∞∑

n=0

Aq(n)xn, Pq(x) =
∞∑

n=0

Pq(n)xn, Sq(x) =
∞∑

n=0

Sq(n)xn.
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A monic polynomial g of degree 2n over Fq is a square if and only if g = f 2, where
f is a monic polynomial over Fq of degree n. Thus the ordinary generating func-
tion for monic polynomials that are squares is Aq(x2). Since any polynomial can be
written uniquely as a square times a square-free polynomial, Aq(x) = Aq(x2)Sq(x).
Hence Sq(x) = Aq (x)

Aq (x2)
. A straightforward counting argument shows that Aq(n) = qn ,

so Aq(x) = ∑∞
n=0 qn xn = 1

1−qx , and it follows that Sq(x) = 1−qx2

1−qx .
Any powerful polynomial can be written uniquely as a square times the cube of a

square-free polynomial. As before, the number of cubes of square-free polynomials
having degree 3n equals the number of square-free polynomials of degree n. Thus

Pq(x) = Aq(x2)Sq(x3) = 1

1 − qx2

1 − qx6

1 − qx3
= 1 + x + x2 + x3

1 − qx2
− x + x2 + x3

1 − qx3
.

Expanding,

Pq(x) =
∞∑

m=0

qm(x2m + x2m+1 + x2m+2 + x2m+3 − x3m+1 − x3m+2 − x3m+3),

and the coefficient of xn is as claimed.

Also solved by R. Chapman (U. K), P. Corn, O. P. Lossers (Netherlands), J. H. Smith, A. Stadler (Switzerland),
B. Ward (Canada), BSI Problems Group (Germany), GCHQ Problems Group (U. K), Microsoft Research
Problems Group, and the proposer.

Popoviciu’s Inequality Again

11349 [2008, 262]. Proposed by Cezar Lupu (student), University of Bucharest,
Bucharest, Romania. In triangle ABC , let ha denote the altitude to the side BC and let
ra be the exradius relative to side BC , which is the radius of the circle that is tangent
to BC and to the extensions of AB beyond B and AC beyond C . Define hb, hc, rb,
and rc similarly. Let p, r , R, and S be the semiperimeter, inradius, circumradius, and
area of ABC . Let ν be a positive number. Show that

2(hν
ar ν

a + hν
br ν

b + hν
cr ν

c ) ≤ r ν
a r ν

b + r ν
b r ν

c + r ν
c r ν

a + 3Sν

(
3p

4R + r

)ν

.

Solution by Elton Bojaxhiu, Albania, and Enkel Hysnelaj, Australia. Let a, b, and
c be the side lengths of triangle ABC . Recall that ha = 2S/a, ra = S/(p − a), and
symmetrically for b and c, while S = pr = abc/(4R) = √

p(p − a)(p − b)(p − c).
Putting everything in terms of a, b, and c and simplifying verifies that

(p − a)(p − b) + (p − b)(p − c) + (p − c)(p − a) = S(4R + r)

p
.

Writing x = 1/(p − a), y = 1/(p − b), and z = 1/(p − c), we obtain

3p

4R + r
= 3Sxyz

x + y + z
, hara = 2S2xyz

y + z
, rarb = S2xy.

Letting f (x) = 1/xν and plugging these in, the desired inequality is equivalent to

2

[
f

(
x + y

2

)
+ f

(
y + z

2

)
+ f

(
z + x

2

)]

≤ f (x) + f (y) + f (z) + 3 f

(
x + y + z

3

)
.
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Since f (x) is convex for x > 0, this is an instance of Popoviciu’s inequality (S.
Savchev and T. Andreescu, Mathematical Miniatures, Mathematical Association of
America, 2003, pp. 19–20).

Editorial comment. Pál Péter Dályay and GCHQ Problem Solving Group provided
(quite different) proofs of Popoviciu’s inequality. Michel Bataille noted the paper: V.
Cirtoaje, “Two generalizations of Popoviciu’s Inequality,” Crux Mathematicorum with
Mathematical Mayhem, vol. 31 no. 5 (2005) 313–318.

Also solved by M. Bataille (France), R. Chapman (U. K.), P. P. Dályay (Hungary), R. Stong, M. Tetiva (Ro-
mania), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

A Partially Random Permutation

11350 [2008, 262]. Proposed by Bhavana Deshpande, Poona College of Arts, Science
& Commerce Camp, Pune, India, and M. N. Deshpande, Nagpur, India. Given a pos-
itive integer n and an integer k with 0 ≤ k ≤ n, form a permutation (a1, . . . , an) of
(1, . . . , n) by choosing the first k positions at random and filling the remaining n − k
positions in ascending order. Let En,k be the expected number of left-to-right maxima.
(For example, E3,1 = 2, E3,2 = 11/6, and E4,2 = 13/6.) Show that En+1,k − En,k =
1/(k + 1).

Solution by Richard Stong, Center for Communications Research, San Diego, CA.
Consider the following way of generating permutations: Choose a random permuta-
tion (b1, . . . , bn). Set ai = bi for 1 ≤ i ≤ k, and sort the elements bk+1, . . . , bn to
produce ak+1, . . . , an . This is equivalent to the algorithm given in the statement, since
(b1, . . . , bk) is a random choice of the first k positions. For j ≤ k, the probability that
b j is a left-to-right maximum is the probability that b j is the largest of {b1, . . . , b j },
which is 1/j . For j > k, the probability that b j becomes a left-to-right maximum of a
is the probability that b j is the largest of {b1, . . . , bk, b j }, which is 1/(k + 1). Hence

En,k =
(

k∑
j=1

1

j

)
+ n − k

k + 1
,

from which the claim follows immediately.

Editorial comment. Christopher Carl Heckman noted that the formula for En,k yields

En,k+1 − En,k = k + 1 − n

(k + 1)(k + 2)
,

and Stephen Herschkorn obtained the following recurrence (free of n) for the variance
Vn,k of the number of left-to-right maxima:

Vn+2,k − 2Vn+1,k + Vn,k = 2k

(k + 1)2(k + 2)
.

Also solved by M. Andreoli, D. Beckwith, B. Bradie, R. Chapman (U. K.), P. Corn, C. Curtis, K. David &
P. Fricano, J. Ferdinands, J. Freeman, J. Guerreiro & J. Matias (Portugal), C. C. Heckman, S. J. Herschkorn,
G. Keselman, J. H. Lindsey II, O. P. Lossers (Netherlands), K. McInturff, R. Mosier, D. Nacin, J. H. Nieto
(Venezuela), D. Poore & B. Rice, R. Pratt, B. Schmuland (Canada), A. Stadler (Switzerland), M. Tetiva (Ro-
mania), L. Wenstrom, BSI Problems Group (Germany), CMC 328, GCHQ Problem Solving Group (U. K.),
and the proposers.
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Forcing Three Integers with Zero Sum

11351 [2008, 262]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Given positive integers p and q, find the least positive
integer m such that among any m distinct integers in [−p, q] there are three that sum
to zero.

Solution by Brian Rice (student), Harvey Mudd College, Claremont, CA, and Daniel
Poore (student), Pomona College, Claremont, CA. The answer is max{p, q} + c,
where c = 3 if p and q are even and equal, and c = 2 otherwise.

We may assume that p ≤ q, since the problem is symmetric with respect to nega-
tion. For the lower bound, note that [−p, q] contains q + 1 nonnegative integers,
and no three of them sum to 0. When p = q = 2k, we need a larger set: choose
{−2k, . . . , −k, k, . . . , 2k}, which consists of the 2k + 2 numbers with largest abso-
lute value. The magnitudes of any two of these numbers with the same sign sum to
more than the magnitude of any other, so no three sum to 0.

For the upper bound, first note that since there are q distinct nonzero absolute
values, the pigeonhole principle implies that any set containing 0 and at least q + 1
other elements has three elements that sum to zero. Thus we need only show that if
X ⊆ [−p, q] − {0} such that no three integers in X sum to 0, then |X | ≤ q + 1 + δ,
where δ = 1 if q is even and p = q, and δ = 0 otherwise. We consider three cases.

Case 1: p and q are equal and odd. We prove by induction that |X | ≤ q + 1. For
q = 1 this is immediate. For q > 1, let Y = X ∩ {−q, −(q − 1), q − 1, q}. If |Y | ≤ 2,
then |X | ≤ q + 1 by the induction hypothesis, so we may assume that |Y | ≥ 3. Now Y
has two elements with the same sign; we may assume that it has two negative numbers,
so −q ∈ X . For 1 ≤ i ≤ (q − 1)/2, it follows that only one element from {i, q − i}
lies in X . Hence at most (q + 1)/2 positive integers are in X , with equality only if
q ∈ X .

If q ∈ X , then by symmetry X contains at most (q + 1)/2 negative integers, so
|X | ≤ q + 1, as desired. Otherwise, q − 1 ∈ X , since |Y | ≥ 3. Now X cannot con-
tain −i and −q + 1 + i , for 1 ≤ i ≤ (q − 3)/2. Altogether X contains both −q and
−q + 1, at most (q − 1)/2 positive integers, at most one from each of (q − 3)/2
pairs of distinct negative integers summing to −(q − 1), and possibly the integer
−(q − 1)/2. Hence again |X | ≤ q + 1.

Case 2: p and q are equal and even. By Case 1, |X ∩ [−q + 1, q − 1]| ≤ q, and X
has at most two other elements. Hence |X | ≤ q + 2, as desired.

Case 3: p ≤ q − 1. If q is even, then X − {q} ⊆ [−(q − 1), q − 1], so by Case
1, |X − {q}| ≤ (q − 1) + 1 = q. If q is odd, then X ⊆ [−q, q] and Case 1 yields
|X | ≤ q + 1.

Also solved by D. Beckwith, C. Curtis, P. P. Dályay (Hungary), J. Ferdinands, J. H. Lindsey II, J. H. Nieto
(Venezuela), T. Rucker, B. Schmuland (Canada), J. Simpson (Australia), M. Tiwari, BSI Problems Group
(Germany), GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

Taylor Remainder Limit

11352 [2008, 263]. Proposed by Daniel Reem, The Technion-Israel Institute of Tech-
nology, Haifa, Israel. Let I be an open interval containing the origin, and let f be
a twice-differentiable function from I into R with continuous second derivative. Let
T2 be the Taylor polynomial of order 2 for f at 0, and let R2 be the corresponding
remainder. Show that

lim
(u,v)→(0,0)

u �=v

R2(u) − R2(v)

(u − v)
√

u2 + v2
= 0.

90 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117

This content downloaded from 150.108.161.71 on Mon, 25 Mar 2013 00:34:12 AM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



Solution by the BSI Problems Group, Bonn, Germany. Let g(t) = R′
2(t)/t =

( f ′(t) − f ′(0))/t − f ′′(0) for t ∈ I \ {0}, and g(0) = 0. Note that g is continuous on
I and

R2(u) − R2(v) =
∫ u

v

R′
2(t) dt =

∫ u

v

tg(t) dt.

Without loss of generality, suppose u > v. By the Cauchy–Schwarz inequality,

(
R2(u) − R2(v)

)2 ≤
(∫ u

v

t2 dt

)(∫ u

v

g2(t) dt

)

=
(

(u − v)
u2 + v2 + uv

3

)(∫ u

v

g2(t) dt

)
.

Since uv ≤ (u2 + v2)/2,(
R2(u) − R2(v)

)2

(u − v)2(u2 + v2)
≤ 1

2(u − v)

∫ u

v

g2(t) dt ≤ 1

2
max

{
g2(t) : t ∈ [v, u]}.

This tends to 0 as (u, v) → (0, 0) since g is continuous at 0 and g(0) = 0.

Editorial comment. The GCHQ Problem Solving Group provided a generalization. If
f is k times differentiable with continuous kth derivative, and Rk is the remainder term
in the Taylor approximation to f of order k at 0, then

lim
(u,v)→(0,0)

u �=v

Rk(u) − Rk(v)

(u − v)(u2 + v2)(k−1)/2
= 0.

Also solved by R. Bagby, R. Chapman (U. K.), P. P. Dályay (Hungary), P. J. Fitzsimmons, J.-P. Grivaux
(France), J. Guerreiro & J. Matias (Portugal), E. A. Herman, G. Keselman, J. H. Lindsey II, O. P. Lossers
(Netherlands), K. Schilling, B. Schmuland (Canada), A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania),
GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

An Integral Inequality

11353 [2008, 263]. Proposed by Ernst Schulte-Geers, BSI, Bonn, Germany. For s > 0,
let f (s) = ∫ ∞

0 (1 + x/s)s e−x dx and g(s) = f (s) − √
sπ/2. Show that g maps R+

onto (2/3, 1) and is strictly decreasing on its domain.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. De-
fine k(t) = t − log(1 + t) for t ≥ 0. Note that k is increasing, differentiable, and
unbounded on [0, ∞). Let h be the function on [0, ∞) given by h(u) = k−1(u2/2).
From the limiting properties of k, it follows that limu→∞ h(u) = ∞. Note also that
u2/2 = h(u) − log(1 + h(u)), so that h′(u) = u/h(u) + u, and thus h′ is positive
on [0, ∞). Moreover, h is analytic in a neighborhood of 0, as it is the inverse of
the function p given by p(t) = √

2k(t), which is analytic in a disk about 0. From
the Lagrange inversion theorem, h has a Taylor’s series expansion, and we compute
h(u) = u + (1/3)u2 + O(u3), from which it follows that h(0) = 0, h′(0) = 1, and
h′′(0) = 2/3. We claim that for u > 0, h(u)3 > u3(1 + h(u)). Indeed, from the defini-
tion of h this is equivalent to

log(1 + h) − h + h2

2(1 + h)2/3
> 0.
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Equality holds at h = 0, so it suffices to show that the left side is a strictly increasing
function of h, that is,

1

1 + h
− 1 + h

(1 + h)2/3
− h2

3(1 + h)5/3
> 0

or (multiplying out and canceling a factor of h)

1 + 2

3
h > (1 + h)2/3,

which follows from Bernoulli’s inequality. This proves the claim.
Now substituting x = sh(t/

√
s ) yields

f (s) =
∫ ∞

0
e−x+s log(1+x/s) dx = √

s
∫ ∞

0
e−t2/2h′

(
t√
s

)
dt.

Since
∫ ∞

0 e−t2/2 dt = √
π/2 we have

g(s) =
∫ ∞

0
e−t2/2 √

s

(
h′

(
t√
s

)
− 1

)
dt.

We compute

d

ds

(√
s

(
h′

(
t√
s

)
− 1

))
= d

ds

(
t

h(t/
√

s )
+ t − √

s

)
= t3(1 + h) − h3s3/2

2h3s2
,

and this last is negative. Here we have written h for h(t/
√

s ) and have used h3 >

t3(1 + h)/s3/2 from the claim proved above. It follows that g is a decreasing function
of s and in fact that the integrand is decreasing. Hence the monotone convergence
theorem yields

lim
s→∞ g(s) =

∫ ∞

0
e−t2/2th′′(0) dt = h′′(0) = 2

3
.

From the original definition and monotone convergence, we conclude that

lim
s→0+ g(s) = lim

s→0+ f (s) =
∫ ∞

0
e−x lim

s→0+(1 + x/s)s dx = 1.

Thus g decreases from 1 to 2/3 as claimed.

Also solved by R. Bagby, P. Bracken, J. Grivaux (France), F. Holland (Ireland), P. Perfetti (Italy), B. Schmuland
(Canada), A. Stadler (Switzerland), B. Ward(Canada), Y. Yu, and the proposer.

An Absolute Value Sum

11354 [2008, 263]. Proposed by Matthias Beck, San Francisco State University, San
Francisco, CA, and Alexander Berkovich, University of Florida, Gainesville, FL. Find
a polynomial f in two variables such that for all pairs (s, t) of relatively prime integers,

s−1∑
m=1

t−1∑
n=1

|mt − ns| = f (s, t).

Solution I by Byron Schmuland, University of Alberta, Edmonton, Alberta, Canada.
Let A denote the expression to be evaluated. From −(mt − ns) = (s − m)t − (t − n)s,
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we see that each nonzero contribution |mt − ns| occurs once with mt − ns > 0 and
once with mt − ns < 0, using symmetric indices. Therefore, it suffices to double the
positive contributions: A = 2

∑s−1
m=1

∑	mt/s

n=1 (mt − ns). The inner sum, call it Am , eval-

uates to mt	mt/s
 − 1
2 s	mt/s
(	mt/s
 + 1).

Now let mt = sqm + rm , where 0 ≤ rm ≤ s − 1, so 	mt/s
 = (mt − rm)/s. Thus

A = 2
s−1∑
m=1

Am = 1

6
t (s − 1)(2ts − 3s − t) + 1

s

s−1∑
m=1

rm(s − rm).

When s and t are relatively prime, the remainders rm for 1 ≤ m ≤ s − 1 are distinct
and take on all nonzero values, so

s−1∑
m=1

rm(s − rm) =
s−1∑
m=1

m(s − m) = 1

6
(s − 1)s(s + 1).

Summing the contributions and simplifying yields

s−1∑
m=1

t−1∑
n=1

|mt − ns| = 1

6
(s − 1)(t − 1)(2st − s − t − 1).

Solution II by Allen Stenger, Alamogordo, NM. Let s and t be relatively prime positive
integers. A nonnegative integer is called representable if it can expressed as a linear
combination of s and t with nonnegative integer coefficients; otherwise it is nonrepre-
sentable. T. C. Brown and P. J.-S. Shiue (A remark related to the Frobenius problem,
Fibonacci Quarterly 31 (1993) 32–36) showed that the sum of all nonrepresentable
positive integers is

1

12
(s − 1)(t − 1)(2st − s − t − 1). (1)

This was recently reproved by A. Tripathi (On sums of positive integers that are not of
the form ax + by, this MONTHLY 115 (2008) 363–364).

We show that the positive values of mt − ns in our sum are the nonrepresentable
positive integers. As in solution I, the negative values of mt − ns are the negatives of
the positive values, so the desired sum is twice (1).

Fix a positive integer a. By the Chinese remainder theorem, the integer solutions
(m, n) to mt − ns = a are {(m0 + ks, n0 + kt) : k ∈ Z} for a fixed solution (m0, n0).
The nonrepresentable a are those for which no solution has m ≥ 0 and n ≤ 0. There
is one solution with 0 ≤ m ≤ s − 1. If the corresponding n is nonpositive, then a is
representable. If it is positive, then a is nonrepresentable, since increasing m requires
increasing n.

Hence the positive values of mt − ns with 0 ≤ m ≤ s − 1 and n > 0 are the
nonrepresentable numbers. If m = 0, then mt − ns is negative, and if n ≥ t then
mt − ns ≤ (s − 1)t − st < 0. Thus the nonrepresentable numbers indeed are exactly
the positive values of mt − ns in our sum.

Also solved by R. Chapman (U. K.), P. Corn, P. P. Dályay (Hungary), A. Fok, J. R. Gorman, J. Guerreiro
and J. Matias (Portugal), S. J. Herschkorn, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands),
K. Schilling, R. A. Simón (Chile), J. Simpson (Australia), A. Stadler (Switzerland), R. Stong, R. Tauraso
(Italy), M. Tetiva (Romania), B. Ward (Canada), H. Widmer (Switzerland), J. B. Zacharias, GCHQ Problem
Solving Group (U. K.), Microsoft Research Problems Group, NSA Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West

with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the inside front cover. Submitted solutions should arrive at
that address before July 31, 2010. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11488. Proposed by Dennis I. Merino, Southeastern Louisiana University, Hammond,
LA, and Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, FL.
(a) Show that if k is a positive odd integer, and A and B are Hermitian matrices of the
same size such that Ak + Bk = 2I , then 2I − A − B is positive semidefinite.
(b) Find the largest positive integer p such that for all Hermitian matrices A and B of
the same size, 2p−1 (Ap + B p) − (A + B)p is positive semidefinite.

11489. Proposed by Panagiote Ligouras, “Leonardo da Vinci” High School, Noei,
Italy. Let a0, a1, and a2 be the side lengths, and r the inradius, of a triangle. Show that∑

i mod 3

a2
i ai+1ai+2

(ai+1 + ai+2)(ai+1 + ai+2 − ai )
≥ 18r 2.

11490. Proposed by Gábor Mészáros, Kemence, Hungary. A semigroup S agrees with
an ordered pair (i, j) of positive integers if ab = b j ai whenever a and b are distinct
elements of S. Find all ordered pairs (i, j) of positive integers such that if a semigroup
S agrees with (i, j), then S has an idempotent element.

11491. Proposed by Nicolae Anghel, University of North Texas, Denton, TX. Let P be
an interior point of a triangle having vertices A0, A1, and A2, opposite sides of length
a0, a1, and a2, respectively, and circumradius R. For j ∈ {0, 1, 2}, let r j be the distance
from P to A j . Show that

r0

a2
0

+ r1

a2
1

+ r2

a2
2

≥ 1

R
.

11492. Proposed by Tuan Le, student, Freemont High School, Anaheim, CA. Show that
for positive a, b, and c,

√
a3 + b3

a2 + b2
+

√
b3 + c3

b2 + c2
+

√
c3 + a3

c2 + a2
≥ 6(ab + bc + ca)

(a + b + c)
√

(a + b)(b + c)(c + a)
.

doi:10.4169/000298910X480135
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11493. Proposed by Johann Cigler, Universität Wien, Vienna, Austria. Consider the
Hermite polynomials Hn , defined by

Hn(x, s) =
∑

0≤k≤n/2

(
n

2k

)
(2k − 1)!!(−s)k xn−2k,

where m!! = ∏
i<m/2(m − 2i) for positive m, with (−1)!! = 1. Let L be the lin-

ear transformation from Q[x, s] to Q[x] determined by L1 = 1, Lxks j = xk Ls j

for j, k ≥ 0, and L H2n(x, s) = 0 for n > 0. (Thus, for example, 0 = L H2(x, s) =
L(x2 − s) = x2 − Ls, so Ls = x2.) Define the tangent numbersT2n+1 by tan z =∑

n≥0 T2n+1z2n+1/(2n + 1)!, and the Euler numbers E2n by sec(z) = ∑
n≥0

E2n
(2n)! z

2n .
(a) Show that

L H2n+1(x, s) = (−1)nT2n+1x2n+1.

(b) Show that

Lsn = E2n

(2n − 1)!! x2n.

11494. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Let A be the
Glaisher-Kinkelin constant, given by

A = lim
n→∞ n−n2/2−n/2−1/12en2/4

n∏
k=1

kk = 1.2824 . . . .

Show that

∞∏
n=1

(
n!√

2πn(n/e)n

)(−1)n−1

= A3

27/12π1/4
.

SOLUTIONS

A Reciprocal Diophantine Equation

11355 [2008, 365]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann
Arbor, MI. Determine for which integers a the Diophantine equation

1

x
+ 1

y
+ 1

z
= a

xyz

has infinitely many integer solutions (x, y, z) such that gcd(a, xyz) = 1.

Solution by Éric Pité, Paris, France. Suppose first that a is odd. Let x = an + 2,
y = −(an + 1), and z = a − xy = a2n2 + 3an + a + 2, where n is any integer such
that xyz 	= 0 (there are infinitely many such n). Since x + y = 1 and z = a − xy =
a−xy
x+y , we have 1

x + 1
y + 1

z = a
xyz . Also gcd(a, y) = 1, and both gcd(a, x) and gcd(a, z)

divide 2, but since a is odd we have gcd(a, xyz) = 1.
If a is even and gcd(a, xyz) = 1, then x , y, and z are odd. Now xy + yz + zx is odd

and cannot equal a. Hence there is no solution when a is even, and there are infinitely
many when a is odd.

Also solved by D. Beckwith, B. S. Burdick, S. Casey (Ireland), R. Chapman (U. K.), K. S. Chua (Singapore),
P. Corn, C. Curtis, K. Dale (Norway), D. Degiorgi (Switzerland), J. Fresán (Spain), D. Gove, E. J. Ionascu
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& A. A. Stancu, I. M. Isaacs, T. Keller, K. Kneile, O. Kouba (Syria), O. P. Lossers (Netherlands), S. Me-
skin, A. Nakhash, J. H. Nieto (Venezuela), C. R. Pranesachar (India), K. Schilling, B. Schmuland (Canada),
A. Stadler (Switzerland), R. Stong, J. V. Tejedor (Spain), M. Tetiva (Romania), V. Verdiyan (Armenia), B. Ward
(Canada), BSI Problems Group (Germany), Con Amore Problem Group (Denmark), GCHQ Problem Solving
Group (U. K.), Microsoft Research Problems Group, Northwestern Univ. Math Problem Solving Group, and
the proposer.

Integral Inequalities

11360 [2008, 365]. Proposed by Cezar Lupu, student, University of Bucharest, Bucha-
rest, and Tudorel Lupu, Decebal High School, Constanta, Romania. Let f and g be
continuous real-valued functions on [0, 1] satisfying the condition

∫ 1
0 f (x)g(x) dx =

0. Show that
∫ 1

0 f 2
∫ 1

0 g2 ≥ 4
(∫ 1

0 f
∫ 1

0 g
)2

and
∫ 1

0 f 2
(∫ 1

0 g
)2 + ∫ 1

0 g2
(∫ 1

0 f
)2 ≥

4
(∫ 1

0 f
∫ 1

0 g
)2

.

Solution by Nate Eldredge, University of California San Diego, San Diego, CA. Let
〈u, v〉 = ∫ 1

0 u(x)v(x) dx . By scaling, we may assume 〈 f, f 〉 = 〈g, g〉 = 1. Let a =
〈 f, 1〉 and b = 〈g, 1〉. The desired inequalities then read 1 ≥ 4a2b2 and b2 + a2 ≥
4a2b2. Bessel’s inequality yields 1 ≥ a2 + b2, and a2 + b2 ≥ 2ab is trivial. Hence
1 ≥ a2 + b2 ≥ (a2 + b2)2 ≥ 4a2b2, which proves both inequalities.

Editorial comment. Charles Kicey noted that the inequalities are best possible: let
f (x) = √

2/2 + cos πx and g(x) = √
2/2 − cos πx .

Also solved by U. Abel (Germany), K. F. Andersen (Canada), R. Bagby, A. Bahrami (Iran), M. W. Botsko,
S. Casey (Ireland), R. Chapman (U. K.), H. Chen, J. Freeman, J. Grivaux (France), J. Guerreiro & J. Ma-
tias (Portugal), E. A. Herman, G. Keselman, C. Kicey, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), J. H. Nieto (Venezuela), M. Omarjee (France), J. Rooin & M. Bayat (Iran), X. Ros (Spain), K.
Schilling, B. Schmuland (Canada), A. Shafie & M. F. Roshan (Iran), A. Stadler (Switzerland), R. Stong, R.
Tauraso (Italy), J. V. Tejedor (Spain), P. Xi and Y. Yi (China), Y. Yu, L. Zhou, GCHQ Problem Solving Group
(U. K.), Microsoft Research Problems Group, NSA Problems Group, and the proposers.

Supremum of a Nonlinear Functional

11366 [2008, 462]. Proposed by Nicolae Anghel, University of North Texas, Denton,
TX. Let φ : R → R be a continuously differentiable function such that φ(0) = 0 and
φ′ is strictly increasing. For a > 0, let Ca denote the space of all continuous func-
tions from [0, a] into R, and for f ∈ Ca , let I ( f ) = ∫ a

x=0 (φ(x) f (x) − xφ( f (x))) dx .
Show that I has a finite supremum on Ca and that there exists an f ∈ Ca at which that
supremum is attained.

Solution by Eugen J. Ionascu, Columbus State University, Columbus, GA. For ev-
ery x ∈ [0, a] we let gx(u) = φ(x)u − xφ(u), defined for all u ∈ R. The deriva-
tive is g′

x(u) = φ(x) − xφ′(u). By the mean value theorem, φ(x) = φ(x) − φ(0) =
(x − 0)φ′(cx) for some cx between 0 and x . If x > 0, then g′

x(u) = x(φ′(cx) − φ′(u)).
Because φ′ is strictly increasing, cx is uniquely determined, and gx attains its max-
imum at cx . If x = 0, then gx ≡ 0, and we simply define c0 = 0. This gives us a
function x �→ cx which we denote by f0. Clearly

f0(x) =
{

φ′−1
(
φ(x)/x

)
, if 0 < x ≤ a,

0, if x = 0.
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This function is continuous at every positive point x , since φ′ is continuous and strictly
increasing. Also, because 0 < cx < x for x > 0, this function is also continuous at 0.
Thus, f0 ∈ Ca . For all f ∈ Ca , we have

I ( f ) =
∫ a

0
gx

(
f (x)

)
dx ≤

∫ a

0
gx

(
f0(x)

)
dx = I ( f0).

This inequality answers both parts of the problem.

Editorial comment. Richard Bagby noted that it is not necessary to explicitly assume
the continuity of φ′. If φ is differentiable everywhere, then φ′ has the intermediate
value property by Darboux’s theorem, and every monotonic function on R with the
intermediate value property is continuous.

Also solved by R. Bagby, M. W. Botsko, P. Bracken, R. Chapman (U. K.), P. J. Fitzsimmons, J.-P. Gabardo
(Canada), J.-P. Grivaux (France), J. Guerreiro & J. Matias (Portugal), E. A. Herman, R. Howard, G. Keselman,
J. H. Lindsey II, O. P. Lossers (Netherlands), K. Schilling, A. Stadler (Switzerland), R. Stong, M. Tetiva
(Romania), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

Points Generated by the Nine Points

11370 [2008, 568]. Proposed by Michael Goldenberg and Mark Kaplan, Baltimore
Polytechnic Institute, Baltimore, MD. Let A0, A1, and A2 be the vertices of a non-
equilateral triangle T . Let G and H be the centroid and orthocenter of T , respectively.
Treating all indices modulo 3, let Bk be the midpoint of Ak−1 Ak+1, let Ck be the foot
of the altitude from Ak , and let Dk be the midpoint of Ak H .

The nine-point circle of T is the circle through all Bk , Ck , and Dk . We now introduce
nine more points, each obtained by intersecting a pair of lines. (The intersection is not
claimed to occur between the two points specifying a line.) Let Pk be the intersection
of Bk−1Ck+1 and Bk+1Ck−1, Qk the intersection of Ck−1 Dk+1 and Ck+1 Dk−1, and Rk

the intersection of Ck−1Ck+1 and Dk−1 Dk+1.
Let e be the line through {P0, P1, P2}, and f be the line through {Q0, Q1, Q2}.

(By Pascal’s theorem, these triples of points are collinear.) Let g be the line through
{R0, R1, R2}; by Desargues’ theorem, these points are also collinear.
(a) Show that the line e is the Euler line of T .
(b) Show that g coincides with f .
(c) Show that f is perpendicular to e.
(d) Show that the intersection S of e and f is the inverse of H with respect to the
nine-point circle.

Solution by the proposers. (a) Let k, m, n be 1, 2, 3 in some order. Applying Pappus’s
theorem to points Bm, Cm, An on line Ak An and to points Bn, Cn, Am on line Ak Am , we
get that the three points Pk , G, and H , defined by Pk = BmCn ∩ BnCm , G = Am Bm ∩
An Bn , and H = AmCm ∩ AnCn , are collinear. So all Pk lie on the Euler line G H .

(b) Let N be the nine-point circle. Consider the cyclic quadrilateral CmCn Dm Dn .
Because H = Cm Dm ∩ Cn Dn , Qk = Cm Dn ∩ Cn Dm , and Rk = CmCn ∩ Dm Dn , we
conclude that points Qk and Rk are on the polar of H with respect to N (see Theorem
6.51, p. 145, in H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, Mathematical
Association of America, Washington, DC 1967). So f and g coincide.

(c) By the definition of polar, we have N H ⊥ f or e ⊥ f .
(d) This also follows from the definition of polar.

Editorial comment. Most solvers proceeded analytically. Some solvers simplified the
algebra by using complex numbers or determinants. Some used Maple to help.
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Also solved by P. P. Dályay (Hungary), D. Gove, J.-P. Grivaux (France), R. Stong, GCHQ Problem Solving
Group (U. K.).

For Grid Triangles, the Brocard Angle is Irrational in Degrees

11375 [2008, 568]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania. The first Brocard point of a triangle ABC is that interior point �

for which the angles �BC , �C A, and �AB have the same radian measure. Let ω be
that measure. Regarding the triangle as a figure in the Euclidean plane R2, show that
if the vertices belong to Z × Z, then ω/π is irrational.

Editorial comment. The claim follows from combining several well-known results.

(a) cot ω = cot A + cot B + cot C = (a2 + b2 + c2)/4S ≥ √
3, where S is the area

of the triangle. The first equality is shown in [1]; see also [5] and [7]. The second
is an easy consequence of the law of sines and the law of cosines. The inequality
is due to Weitzenböck [2], also proved in [8].

(b) Because the cotangent is decreasing on (0, π/2), we conclude that ω ≤ π/6.
This is also deduced in [1] and [7].

(c) The squares of the sides (by the distance formula), the area S (by Pick’s The-
orem), and all six trigonometric functions of the angles (by various elementary
trigonometric relationships) are rational because the vertices belong to Z × Z.

(d) Every angle in (0, π/2) that is a rational multiple of π and has rational trigono-
metric functions is larger than π/6 (using Lambert’s theorem; see also [6]); so
ω cannot be a rational multiple of π .

REFERENCES

1. F. F. Abi-Khuzam and A. Boghossian, Some recent geometric inequalities, Amer. Math. Monthly 96 (1989)
576–589.

2. R. Weitzenböck, Über eine Ungleichung in der Dreiecksgeometrie, Math. Z. 5 (1919) 137–146.
3. H.-J. Lee, Problem 10824, Amer. Math. Monthly 107 (2000) 752.
4. E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 1999.
5. R. A. Johnson, Advanced Euclidean Geometry, Dover Publications, 1960/2001.
6. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 1960.
7. R. Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, New Mathematical

Library, Mathematical Association of America, Washington, DC, 1995.
8. Brocard points, available at http://en.wikipedia.org/wiki/Brocard_points.
9. O. Bottema et al., Geometric Inequalities, Nordhoff, Groningen, 1969.

Jerry Minkus showed that a similar result can be obtained for triangles whose ver-
tices lie in the set of vertices of the unit triangular tiling of the plane, except that
of course equilateral triangles (for which ω = π/6) must be excluded. He also con-
jectured a generalization. Given a square-free positive integer d other than 3, let the
lattice Ld be defined by {h + kδ : h, k ∈ Z}, where δ = i

√
d when d is congruent to

1 or 2 mod 4, and δ = (−1 + i
√

d)/2 when d ≡ 3 (mod 4). The conjecture is that if
the vertices of triangle ABC lie on Ld , then the Brocard angle ω of triangle ABC is
an irrational multiple of π .

Solved by R. Chapman (U. K.), P. P. Dályay (Hungary), V. V. Garcı́a (Spain), J.-P. Grivaux (France), O. Kouba
(Syria), J. Minkus, A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), GCHQ Problem Solving Group,
and the proposer.
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Riemann Sums Don’t Converge?

11376 [2008, 664]. Proposed by Proposed by Bogdan M. Baishanski, The Ohio State
University, Columbus, OH. Given a real number a and a positive integer n, let

Sn (a) =
∑

an<k≤(a+1)n

1√
kn − an2

.

For which a does the sequence 〈Sn (a)〉 converge?

Solution by Vitali Stakhovsky, Rockville, MD. The sequence 〈Sn (a)〉 converges if and
only if a is rational. Letting j = k − �an�, an < k ≤ (a + 1) n becomes 1 ≤ j ≤ n,
so Sn (a) = n−1/2

∑n
j=1 ( j − {an})−1/2 = (n − n {an})−1/2 + Tn (a), where Tn (a) =

n−1/2
∑n

j=2 ( j − {an})−1/2. For j ≥ 2,

2
(√

j + 1 − √
j
)

< j−1/2 ≤ ( j − {an})−1/2

≤ 2
(√

j − 1 − √
j − 2

)
< ( j − 1)−1/2 ,

whence

2n−1/2
(√

n + 1 − √
2
)

≤ Tn (a) ≤ 2n−1/2
√

n − 2

and limn→∞ Tn (a) = 2. Thus, Sn (a) converges if and only if (n − n {an})−1/2 does;
that is, it converges when Rn (a) = n − n {an} has a positive limit, finite or infinite. If a
is rational, then writing a = p/q with p and q relatively prime yields 1 − {an} ≥ 1/q,
so Rn (a) ≥ n/q → ∞ and Sn (a) converges.

If a is irrational, then its continued fraction convergents pk/qk satisfy 0 < a −
pk/qk < 1/q2

k for even k, and 0 < pk/qk − a < 1/q2
k for odd k. Thus for even k,

{qka} < 1/qk so that Rqk (a) ≥ qk − 1; on even k, this subsequence tends to infinity.
For odd k, on the other hand, {qka} > 1 − 1/qk so that Rqk (a) ≤ 1; this subsequence
remains bounded. Thus 〈Rn(a)〉 has neither a positive nor infinite limit, and therefore
〈Sn(a)〉 diverges.

Editorial comment. Several solvers noted that Sn (a) is a Riemann sum for the expres-
sion

∫ a+1
a dx/

√
x − a, which evaluates to 2. Since the integral is improper, it need not

equal the limit of its Riemann sums.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), J.-P. Grivaux (France), S. James (Canada), G.
Kouba (Syria), J. H Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany), P. Perfetti (Italy), É. Pité
(France), M. A. Prassad (India), N. Singer, A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), M. Wildon
(U. K.), BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), NSA Problems Group,
Northwestern University Math Problem Solving Group, and the proposer.

An Infinite Product for the Exponential

11381 [2008, 665]. Proposed by Jésus Guillera, Zaragoza, Spain, and Jonathan Son-
dow, New York, NY. Show that if x is a positive real number, then

ex =
∞∏

n=1

(
n∏

k=0

(kx + 1)
(−1)k+1

(n
k

))1/n

.

Solution by BSI Problems Group, Bonn, Germany. Let fn be the nth factor. Using

log(1 + kx) =
∫ x

0

k dy

1 + ky
=

∫ x

0

∫ ∞

0
ke−(1+ky)t dt dy =

∫ ∞

0

1 − e−kxt

t
e−t dt,
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we find

log fn = 1

n

n∑
k=0

(−1)k+1

(
n

k

)
log(1 + kx) = 1

n

∫ ∞

0

(1 − e−xt)n

t
e−t dt.

For t ≥ 0 we have

0 ≤
N∑

n=1

(1 − e−xt)n

n
↗ − log

(
1 − (1 − e−xt)

) = xt

as N → ∞. Hence, by the monotone convergence theorem,

log

(
N∏

n=1

fn

)
−→

∫ ∞

0

xt

t
e−t dt = x .

Also solved by R. Bagby, D. Beckwith, R. Chapman (U. K.), H. Chen, Y. Dumont (France), M. L. Glasser,
R. Govindaraj& R. Ramanujan & R. Venkatraj (India), J. Grivaux (France), O. Kouba (Syria), O. P. Lossers
(Netherlands), A. Plaza & S. Falcon (Spain), R. Pratt, N. C. Singer, A. Stadler (Switzerland), V. Stakhovsky,
R. Stong, M. Tetiva (Romania), M. Vowe (Switzerland), L. Zhou, GCHQ Problem Solving Group (U. K.), and
the proposers.

Can You See the Telescope?

11383 [2008, 0757]. Proposed by Michael Nyblom, RMIT University, Melbourne, Aus-
tralia. Show that

∞∑
n=1

cos−1

(
1 + √

n2 + 2n
√

n2 + 4n + 3

(n + 1)(n + 2)

)
= π

3
.

Solution by Simon J. Smith, La Trobe University, Vendigo, Victoria, Australia. In fact,
the answer is π/6. To see this, let

θn = cos−1

(
1

n + 1

)
= sin−1

(√
n2 + 2n

n + 1

)
,

so that

N∑
n=1

cos−1

(
1 + √

n2 + 2n
√

n2 + 4n + 3

(n + 1)(n + 2)

)

=
N∑

n=1

cos−1
(

cos θn cos θn+1 + sin θn sin θn+1

)

=
N∑

n=1

cos−1
(

cos(θn+1 − θn)
) = θN+1 − θ1,

which converges to π/2 − π/3 = π/6 as N → ∞.

Also solved by Z. Ahmed (India), B. T. Bae (Spain), R. Bagby, M. Bataille (France), D. Beckwith, M. Bello-
Hernández & M. Benito (Spain), P. Bracken, B. Bradie, R. Brase, N. Caro (Brazil), R. Chapman (U. K.), H.
Chen, C. Curtis, P. P. Dályay (Hungary), Y. Dumont (France), J. Freeman, A. Gewirtz (France), M. L. Glasser,
M. Goldenberg & M. Kaplan, J.-P. Grivaux (France), E. A. Herman, C. Hill, W. P. Johnson, D. Jurca, O.
Kouba (Syria), V. Krasniqi (Kosova), G. Lamb, W. C. Lang, K.-W. Lau (China), O. P. Lossers (Netherlands),
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G. Martin (Canada), K. McInturff, M. McMullen, R. Nandan, A. Nijenhuis, M. Omarjee (France), É. Pité
(France), Á. Plaza (Spain), C. R. Pranesachar (India), M. T. Rassias (Greece), A. H. Sabuwala, V. Schindler
(Germany), A. S. Shabani (Kosova), N. C. Singer, A. Stadler (Switzerland), R. Stong, J. Swenson, M. Tetiva
(Romania), J. V. Tejedor (Spain), D. B. Tyler, Z. Vörös (Hungary), M. Vowe, J. B. Zacharias, BSI Problems
Group (Germany), FAU Problem Solving Group, Szeged Problem Solving Group “Fejéntaláltuka” (Hungary),
GCHQ Problem Solving Group (U. K.), Hofstra University Problem Solvers, Microsoft Research Problems
Group, Missouri State University Problem Solving Group, NSA Problems Group, Northwestern University
Math Problem Solving Group.

Angles of a Triangle

11385 [2008, 757]. Proposed by José Luis Dı́az-Barrero, Universidad Politécnica de
Cataluña, Barcelona, Spain. Let α0, α1, and α2 be the radian measures of the angles of
an acute triangle, and for i ≥ 3 let αi = αi−3. Show that

2∑
i=0

α2
i

αi+1αi+2

(
3 + 2 tan2 αi

)1/4 ≥ 3
√

3.

Solution by Rob Brase, Lincoln, NE. We may assume α0 ≤ α1 ≤ α2. Then

α2
0

α1α2
≤ α2

1

α2α0
≤ α2

2

α0α1
and

(2 + 2 tan2 α0)
1/4 ≤ (2 + 2 tan2 α1)

1/4 ≤ (2 + 2 tan2 α2)
1/4.

By Chebyshev’s inequality,

∑ α2
i

αi+1αi+2
(3 + 2 tan2 αi )

1/4 ≥ 1

3

[∑ α2
i

αi+1αi+2

] [∑
(3 + 2 tan2 αi )

1/4
]
.

Calculation shows that the second derivative of (3 + 2 tan2 θ)1/4 is positive on (0lπ/2).
Apply the AM–GM inequality to the first factor and Jensen’s inequality on the second
factor to obtain

1

3

[∑ α2
i

αi+1αi+2

] [∑
(3 + 2 tan2 αi )

1/4
]

≥ 1

3

[
3

(
α2

0

α1α2

α2
1

α2α0

α2
2

α0α1

)1/3
] [

3

(
3 + 2 tan2

(
α0 + α1 + α2

3

))1/4
]

= 3
(

3 + 2 tan2
(π

3

))1/4 = 3
√

3.

Note: equality holds only if α0 = α1 = α2 = π/3.

Also solved by B. T. Bae (Spain), D. Baralić (Serbia), M. Bataille (France), D. Beckwith, M. Can, C. Curtis,
P. P. Dályay (Hungary), P. De (India), Y. Dumont (France), O. Faynshteyn (Germany), V. V. Garcı́a (Spain), M.
Goldenberg & M. Kaplan, J.-P. Grivaux (France), H. S. Hwang (Korea), B.-T. Iordache (Romania), O. Kouba
(Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), P. Perfetti (Italy), É. Pité (France), M. A. Prasad (India),
S. G. Sáenz (Chile), V. Schindler (Germany), A. S. Shabani (Kosova), A. Stadler (Switzerland), R. Stong, V.
Verdiyan (Armenia), Z. Vörös (Hungary), M. Vowe (Switzerland), L. Zhou, “Fejéntaláltuka Szeged” Problem
Group (Hungary), GCHQ Problem Solving Group (U. K.), Hofstra University Problem Solvers, Microsoft
Research Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the inside front cover. Submitted solutions should arrive at
that address before August 31, 2010. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11474. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Valentin Vornicu, Aops-MathLinks forum, San Diego, CA. (Correction) Show
that when x , y, and z are greater than 1,

�(x)x2+2yz�(y)y2+2zx�(z)z2+2xy ≥ (�(x)�(y)�(z))xy+yz+zx .

11483. Proposed by Éric Pité, Paris, France. (Correction) The word “nonnegative”
should read “positive.”

11495. Proposed by Marc Chamberland, Grinnell College, Grinnell, IA. Let a, b, and
c be rational numbers such that exactly one of a2b + b2c + c2a, ab2 + bc2 + ca2, and
a3 + b3 + c3 + 6abc is zero. Show that a + b + c = 0.

11496. Proposed by Benjamin Bogoşel, student, West University of Timisoara, Timi-
soara, Romania, and Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia. For a matrix X with real entries, let s(X) be the sum of its entries. Prove that if A
and B are n × n real matrices, then

n
(
s(AAT ) + s(B BT ) − s(ABT )s(AT B)

) ≥
s(AAT )(s(B))2 + s(B BT )(s(A))2 − s(A)s(B)

(
s(ABT ) + s(AT B)

)
.

11497. Proposed by Mihály Bencze, Brasov, Romania. Given n real numbers x1, . . . , xn

and a positive integer m, let xn+1 = x1, and put

A =
n∑

k=1

(
x2

k − xk xk+1 + x2
k+1

)m
, B = 3

n∑
k=1

x2m
k .

Show that A ≤ 3m B and A ≤ (3m B/n)n .

doi:10.4169/000298910X480865
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11498. Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan. Let
ABC D be a convex quadrilateral. A line through the intersection O of the diagonals
AC and B D intersects the interior of edge BC at L and the interior of AD at N .
Another line through O likewise meets AB at K and C D at M . This dissects ABC D
into eight triangles AK O , K BO , BL O , and so on. Prove that the arithmetic mean
of the reciprocals of the areas of these triangles is greater than or equal to the sum of
the arithmetic and quadratic means of the reciprocals of the areas of triangles ABO ,
BC O , C DO , and D AO . (The quadratic mean is also known as the root mean square;
it is the square root of the mean of the squares of the given numbers.)

11499. Proposed by Omran Kouba, Higher Institute for Applied Science and Technol-
ogy, Damascus, Syria. Let Hn be the nth harmonic number, given by Hn = ∑n

k=1 1/k.
Let

Sk =
∞∑

n=1

(−1)n−1 (log k − (Hkn − Hn)) .

Prove that for k ≥ 2,

Sk = k − 1

2k
log 2 + 1

2
log k − π

2k2

�k/2�∑
l=1

(k + 1 − 2l) cot

(
(2l − 1)π

2k

)
.

11500. Proposed by Bhavana Deshpande, Poona College, Camp Pune, Maharashtra,
India, and M. N. Deshpande, Institute of Science, Nagpur, India. We have n balls,
labeled 1 through n, and n urns, also labeled 1 through n. Ball 1 is put into a randomly
chosen urn. Thereafter, as j increments from 2 to n, ball j is put into urn j if that urn is
empty, otherwise, it is put into a randomly chosen empty urn. Let the random variable
X be the number of balls that end up in the urn bearing their own number. Show that
the expected value of X is n − Hn−1.

11501. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let

g(z) = 1 − 3

1 − 1
1−az + 1

1−i z + 1
1+i z

.

Show that the coefficients in the Taylor series expansion of g are all nonnegative if and
only if a ≥ √

3.

SOLUTIONS

An Unusual GCD/LCM Relationship

11346 [2008, 167]. Proposed by Christopher Hillar, Texas A&M University, College
Station, TX, and Lionel Levine, University of California, Berkeley, CA. Let n be an
integer greater than 1, and let S = {2, . . . , n}. For each nonempty subset A of S, let
π(A) = ∏

j∈A j . Prove that when k is a positive integer and k < n,

n∏
i=k

lcm({1, . . . , �n/ i�}) = gcd({π(A) : |A| = n − k}).

(In particular, setting k = 1 yields
∏n

i=1 lcm({1, . . . , �n/ i�}) = n!.)
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Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove that both sides equal

∏
p pep(n,k), where ep(n, k) = ∑n

i=k

⌊
logp(n/ i)

⌋
and the

product runs over all primes (only finitely many primes contribute). Let vp(n) denote
the maximum r such that pr divides n.

For the left side, letting l(x) = lcm({1, . . . , �x�}), we have vp(l(x)) = ⌊
logp x

⌋
,

since pr divides l(x) if and only if x ≥ pr . Hence
∏n

i=k l(n/ i) = ∏
p pep(n,k).

For the right side, let (b1, . . . , bn−1) be the result of putting (vp(2), . . . , vp(n)) in
nonincreasing order. The number of terms with vp(k) ≥ r equals the number of mul-
tiples of pr in S, namely �n/pr�. Thus bk ≥ r if and only if k ≤ n/pr , and hence
bk = ⌊

logp(n/k)
⌋
. The smallest value of vp(π(A)) such that |A| = n − k will be

achieved when A consists of exactly the elements of S corresponding to bk, . . . , bn−1.
Hence

vp(gcd({π(A) : |A| = n − k})) =
n−1∑
i=k

bi = ep(n, k),

using the fact that the term for i = n in the summation for ep(n, k) always equals 0.
Applying this formula over all primes shows that the right side also equals

∏
p pep(n,k).

Also solved by D. R. Bridges, J. H. Lindsey II, O. P. Lossers (Netherlands), M. A. Prasad (India), T. Rucker,
K. Schilling, A. Stadler (Switzerland), M. Tetiva (Romania), S. Vandervelde, B. Ward (Canada), GCHQ Prob-
lem Solving Group (U. K.), NSA Problems Group, and the proposers.

Some Triangle Inequalities

11363 [2008, 461]. Proposed by Oleh Faynshteyn, Leipzig, Germany. Let ma , mb,
and mc be the lengths of the medians of a triangle T . Similarly, let Ia , Ib, Ic, ha , hb,
and hc be the lengths of the bisectors and altitudes of T , and let R, r , and S be the
circumradius, inradius, and area of T . Show that

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
≥ 3(2R − r),

and
ma Ib

hc
+ mb Ic

ha
+ mc Ia

hb
≥ 35/4

√
S.

Solution by GCHQ Problem Solving Group, Cheltenham, U. K. We write a, b, c for
the lengths of the three sides, and s = (a + b + c)/2 for the semiperimeter. We will
write

∑
or

∏
for a three or six term sum or product, respectively, over permutations

of the triangle, with three terms if the sum is formally independent of the direction
of the cycle, and six if not. Thus,

∑
ab denotes ab + bc + ca while

∑
a2b = a2b +

b2c + c2a + ab2 + bc2 + ca2. We use several results from (or easily deduced from)
Geometric Inequalities by Bottema et. al. (Nordhoff, Groningen, 1969), including:

Ia = 2S

(b + c) sin(A/2)
, abc = 4Rrs,

r

4R
=

∏
sin

A

2
,

∑
a2 = 2(s2 − 4Rr − r 2),

∑
a2b = 2s(s2 − 2Rr + r 2),∑

a2b2c = 4Rrs(s2 + 4Rr + r 2),∑
a3b2 = 2s(s4 + r 4 + 6Rr 3 + 8R2r 2 + 2r 2s2 − 10Rrs2),∑
a4b = 2s(s4 − 3r 4 − 14Rr 3 − 8R2r 2 − 2r 2s2 − 6Rrs2).

372 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117

This content downloaded from 146.201.208.22 on Thu, 21 Mar 2013 00:23:09 AM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



The first inequality must be reversed. In fact, we will show that

16

9
(2R − r) <

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
≤ 3(2R − r).

We begin with

∑ Ia Ib

Ic
=

∑ 2S
(b+c) sin(A/2)

2S
(c+a) sin(B/2)

2S
(a+b) sin(C/2)

= 2S∏
(a + b)

∏
sin(A/2)

∑
(a + b)2 sin2 C

2
.

Now

2
∑

(a + b)2 sin2 C

2
=

∑
(a + b)2(1 − cos C)

= 2
∑

a2 + 2
∑

ab −
∑

a2 cos C − 2
∑

ab cos C.

But 2
∑

ab cos C = ∑
(a2 + b2 − c2) = ∑

a2, so

2
∑

a2 + 2
∑

ab − 2
∑

ab cos C = (
∑

a)2 = 4s2

and∑
a2 cos C = 1

abc

∑
a3bc cos C = 1

2abc

∑
a2c(a2 + b2 − c2)

= 1

2abc

(∑
a4c + 2

∑
a2b2c −

∑
a2c3

)

= 1

4Rr

[
s4 − 3r 4 − 14Rr 3 − 8R2r 2 − 2r 2s2 − 6Rrs2 + 4Rr(s2 +
4Rr + r 2) − (s4+r 4+6Rr 3+8R2r 2+2r 2s2−10Rrs2)

]
= 2Rs2 − 4Rr 2 − r 3 − rs2

R
.

Therefore

2
∑

(a + b)2 sin2 C

2
= 2Rs2 + 4Rr 2 + r 3 + rs2

R
.

Furthermore,
∏

(a + b) = ∑
a2b + 2abc = 2s(s2 + 2Rr + r 2) and

∏
sin(A/2) =

r/(4R). Hence

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
= 2(2Rs2 + 4Rr 2 + r 3 + rs2)

s2 + 2Rr + r 2
. (∗)

Now by Geometric Inequalities (5.9), 4R2 + 4Rr + 3r 2 ≥ s2 ≥ r(16R − 5r). For our
lower bound: 2Rs2 + 36Rr 2 + 17rs2 + 17r 3 ≥ 32R2r + 26Rr 2 + 17rs2 + 17r 3 >

32R2r , so 9(2Rs2 + 4Rr 2 + rs2 + r 3) > 8(2Rs2 + 4R2r − rs2 − r 3) = 8(s2 +
2Rr + r 2)(2R − r). Hence

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
>

16

9
(2R − r).
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For our upper bound: R ≥ 2r , so 0 ≤ (R − 2r)(24R + 10r)r = 24R2r − 38Rr 2 −
10r 3, and hence 44R2r − 10Rr 2 ≥ 20R2r + 28Rr 2 + 20r 3. Therefore 2Rs2 + 12R2r
≥ 44R2r − 10Rr 2 ≥ 20R2r + 28Rr 2 + 20r 3 ≥ 8Rr 2 + 5rs2 + 5r 3, and 3(2R −
r)(s2 + 2Rr + r 2) = 6Rs2 + 12R2r − 3rs2 − 3r 3 ≥ 4Rs2 + 8Rr 2 + 2r 3 + 2rs2.
This inequality, in combination with (∗), gives

Ia Ib

Ic
+ Ib Ic

Ia
+ Ic Ia

Ib
≤ 3(2R − r).

Now consider the second inequality. By elementary calculus, a function of the form
f (x) = x2 + 2λ/x achieves its minimum at x = λ1/3, so f (x) ≥ 3λ2/3.

Letting λ = ∏
ma Ib/hc, we have(∑ ma Ib

hc

)2

=
∑ m2

a I 2
b

h2
c

+2
∑ ma Ib

hc

mb Ic

ha
=

∑(
m2

a I 2
b

h2
c

+ 2λ
hc

ma Ib

)
≥ 9λ2/3.

Denote the exradii of T by ra , rb, and rc. By Geometric Inequalities (8.21) and (6.27),
we have mambmc ≥ rarbrc = S2/r = Ss. By (8.7) we have

Ia Ib Ic = 8a2b2c2∏
(a + b)

∏
cos

A

2
= 8a2b2c2∏

(a + b)

∏ √
s(s − a)

bc

= 8a2b2c2∏
(a + b)

Ss

abc
= 8abcSs∏

(a + b)
= 32RsS2∏

(a + b)
,

hahbhc =
∏ 2S

a
= 8S3

abc
= 2S3

Rrs
.

Now

λ = Ss
32RsS2∏
(a + b)

Rrs

2S3
= 16R2rs3∏

(a + b)
and

(∑ ma Ib

hc

)2

≥ 9

(
16R2rs3∏

(a + b)

)2/3

.

By (5.5) and (5.1), s2 ≥ 3r(4R + r) ≥ 3r(9r) = 27r 3, so s ≥ 3
√

3r . By (5.8) s2 ≤
4R2 + 4Rr + 3r 2, and thus s2 + 2Rr + r 2 ≤ 4R2 + 6Rr + 4r 2 ≤ 4R2 + 3R2 + R2 =
8R2. Hence

∏
(a + b) = ∑

a2b + 2abc = 2s(s2 − 2Rr + r 2) + 8Rrs = 2s(s2 +
2Rr + r 2) ≤ 2s(8R2) = 16R2s. This leads to 3

√
3(

∏
(a + b))2 ≤ s(16R2s)2 =

256R4s3. Now 315/2S3 = 315/2r 2s3, and

315/2r 3s3 ≤ 729
256R4r 2s6(∏

(a + b)
)2 ⇒ 35/2S ≤ 9

(
16R2rs3∏
(a + b)

)2/3

≤
(∑ ma Ib

hc

)2

,

so that finally 35/4
√

S ≤ ∑
ma Ib/hc.

Also solved by V. V. Garcı́a (Spain) and R. Stong.

A Multiple of a Prime

11364 [208, 461]. Proposed by Pál Péter Dályay, Szeged, Hungary. Let p be a prime
greater than 3, and let t be the integer nearest p/6.
(a) Show that if p = 6t + 1, then

(p − 1)!
2t−1∑
j=0

(−1) j

(
1

3 j + 1
+ 1

3 j + 2

)
≡ 0 (mod p).
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(b) Show that if p = 6t − 1, then

(p − 1)!
(

2t−1∑
j=0

(−1) j

3 j + 1
+

2t−2∑
j=0

(−1) j

3 j + 2

)
≡ 0 (mod p).

Solution by Robin Chapman, University of Exeter, Exeter, U. K. The desired congru-
ence in both cases is

(p − 1)!
p−1∑
k=1

χ(k)

k
≡ 0 (mod p), (1)

where

χ(k) =

⎧⎪⎨
⎪⎩

0 if k ≡ 0, 3 (mod 6),

1 if k ≡ 1, 2 (mod 6),

−1 if k ≡ 4, 5 (mod 6).

Note that χ(k) = (ζ k − ζ−k)/
√−3, where ζ = eπ i/3 = 1

2(1 + √−3). Letting

F(z) = ∑p−1
k=1 zk/k, we have

p−1∑
k=1

χ(k)

k
= F(ζ ) − F(ζ−1)√−3

. (2)

For the value on the right, note that F ′(z) = ∑p−1
k=1 zk−1 = 1−z p−1

1−z , so F ′(1 − z) =∑p−2
k=0 (−1)k+1

(p−1
k+1

)
zk . Note also that

(p−1
j

) ≡ (−1) j (mod p). Hence F ′(1 − z) =
pG(z) + F ′(z) (mod p), where G is a polynomial having integer coefficients and
degree at most p − 2. We conclude that

d

dz
(F(z) − F(1 − z)) = −pG(z). (3)

Let G(z) = ∑p−1
k=1 bk zk−1 with each bk ∈ Z. Integrating (3) from 0 to z gives

F(z) − F(1 − z) + F(1) = −p
p−1∑
k=1

bk

k
zk .

Setting z = ζ and using 1 − ζ = ζ−1 yields

F(ζ ) − F(ζ−1) = −F(1) − p
p−1∑
k=1

bk

k
zk .

Since p is odd, F(1) = ∑(p−1)/2
k=1 ( 1

k + 1
p−k ) = ∑(p−1)/2

k=1
p

k(p−k)
. It follows that

(p − 1)! F(1) is a multiple of p. We conclude that in the context of algebraic inte-
gers, (p − 1)! (F(ζ ) − F(ζ−1)) ≡ 0 (mod p). Multiplying by

√−3 yields a rational
integer, and dividing by −3 (justified by p > 3) and invoking (2) yields the desired
congruence (1).

Editorial comment. Stong showed also that (p − 1)! F(ζ ) ≡ (p − 1)! F(ζ−1) ≡ 0
(mod p), which leads to (p − 1)! ∑p−1

k=1
χ(k+s)

k ≡ 0 (mod p) for every integer s.

Also solved by J. H. Lindsey II, M. A. Prasad (India), A. Stadler (Switzerland), R. Tauraso (Italy), M. Tetiva
(Romania), A. Wyn-Jones, GCHQ Problem Solving Group (U. K.), and the proposer.
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Relating Two Integer Sequences

11365 [2008, 462]. Proposed by Aviezri S. Fraenkel, Weizmann Institute of Science,
Rehovot, Israel. Let t be a positive integer. Let γ = √

t2 + 4, α = 1
2 (2 + γ − t), and

β = 1
2(2 + γ + t). Show that for all positive integers n,

�nβ� = �(�nα� + n(t − 1))α� + 1 = �(�nα� + n(t − 1) + 1)α� − 1.

Solution I by Donald R. Bridges, Woodstock, MD. Letting ε = (γ − t)/2, we have
α = 1 + ε and β = 1 + t + ε. Note that t2 < γ 2 < (t + 2)2, so γ and ε are irrational
and 0 < ε < 1.

We write the expressions in terms of ε. For the first, �nβ� = n + nt + �nε�. For the
second,

�nα� + n(t − 1) = nt + �nε� ,

(�nα� + n(t − 1))α = nt + �nε� + ntε + �nε� ε.

Squaring both sides of
√

t2 + 4 = t + 2ε yields tε + ε2 = 1, so ntε + nε2 = n. Also,
ntε + �nε� ε > ntε + (nε − 1)ε, so the floor of the last displayed expression is nt +
�nε� + n − 1, since 0 < ε < 1. This proves the first equality.

To compute the rightmost expression in the problem statement, begin with

(�nα� + n(t − 1) + 1)α = nt + �nε� + 1 + ntε + �nε + 1� ε.

Since ntε + �nε + 1� ε ≤ ntε + nε2 + ε < n + 1, we obtain the desired equality

�(�nα� + n(t − 1) + 1)α� = �nβ� + 1.

Solution II by the proposer. First, observe that α and β are irrational numbers satisfy-
ing 1 < α < β and α + β = αβ, and that as a result, β > 2. It is well known that under
these conditions, A ∪ B = N, where A = {�nα� : n ≥ 1} and B = {�nβ� : n ≥ 1}.

Since β > 2, the set B does not contain consecutive integers. Hence each term of
B lies between two consecutive terms of A. That is, for each positive integer n there
exists m such that �mα�, �nβ�, and �(m + 1)α� are consecutive integers. Given n, the
problem is to determine m.

Among the integers from 1 to �nβ�, exactly n lie in B, so �nβ� − n lie in A. There-
fore, m = �nβ� − n. Thus

�(�nβ� − n) α� , �nβ�, �((�nβ� − n) + 1) α�
are consecutive integers. It remains only to show that �nβ� − n = �nα� + n(t − 1).
This reduces to

⌊
1
2 n(γ + t)

⌋ = ⌊
1
2 n(γ − t)

⌋ + nt , which is true.

Editorial comment. The claim that A ∪ B = N in Solution II is well known; the pro-
poser cited A. S. Fraenkel, How to beat your Wythoff games opponent on three fronts,
Amer. Math. Monthly 89 (1982) 353–361. The result is so astonishing and yet easily
proved that we include a short proof for the reader’s pleasure.

First note that a + b = ab is equivalent to 1
a + 1

b = 1. Also, a, b > 1. For any
k ∈ N, the number of terms less than k in A ∪ B is �k/a� + �k/b�, since a and b are
irrational. We compute⌊

k

a

⌋
+

⌊
k

b

⌋
=

⌊
k

a

⌋
+

⌊
k

(
1 − 1

a

)⌋
= k +

⌊
k

a

⌋
+

⌊−k

a

⌋
= k − 1.

Similarly, A ∪ B contains k terms less than k + 1. Hence there is exactly one term less
than k + 1 but not less than k; it equals k.
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Also solved by R. Chapman (U. K.), P. Corn, C. Curtis, J. H. Lindsey II, O. P. Lossers (Netherlands),
M. A. Prasad (India), A. Stadler (Switzerland), R. Stong, GCHQ Problem Solving Group (U. K.), and the
proposer.

An Exponential Inequality

11369 [2008, 567]. Proposed by Donald Knuth, Stanford University, Stanford, CA.
Prove that for all real t , and all α ≥ 2,

eαt + e−αt − 2 ≤ (
et + e−t

)α − 2α.

Solution by Knut Dale, Telemark University College, Bø, Norway. For t ∈ R and
α ≥ 0, let f (t, α) = ((et + e−t)α − 2α) − (eαt + e−αt − 2). Since f (0, α) = 0 and
f (−t, α) = f (t, α), we need only consider t > 0. Write

f (t, α) = α

∫ t

0

{
(ex + e−x)α sinh x

cosh x
− (eαx − e−αx)

}
dx

= α

∫ t

0
(ex + e−x)α

{
g(x, 1) − g(x, α)

}
dx,

where g(x, α) = (eαx − e−αx)/(ex + e−x)α. Let x > 0 and observe that g(x, α) ≥ 0,
g(x, 2) = g(x, 1) > 0, and g(x, 0) = g(x, ∞) = 0. Note that

∂g(x, α)

∂α
> 0 ⇐⇒ ln(ex + e−x) + x

ln(ex + e−x) − x
> e2αx . (∗)

Likewise, equivalence holds if we replace “>” with “=” or with “<” throughout (∗).
Since e2αx is an increasing function of α,

ln(ex + e−x) + x

ln(ex + e−x) − x
= e2αx

has a unique solution α in the interval (1, 2). Thus, as a function of α, g(x, α) increases
from 0 to a maximum in (1, 2) and then decreases towards 0. Hence f (t, α) > 0 for
α ∈ (0, 1) ∪ (2, ∞), f (t, α) < 0 for α ∈ (1, 2), and f (t, α) = 0 for α ∈ {0, 1, 2}.
Editorial comment. Grahame Bennett (Indiana University) provided an instructive so-
lution including a general context for this inequality. That solution is now incorporated
into a paper, appearing in the current issue of this MONTHLY (see p. 334).

Also solved by F. Alayont, K. Andersen (Canada), R. Bagby, G. Bennett, D. & J. Borwein (Canada), P. Bour-
don, P. Bracken, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), K. Endo, G. C. Greubel, J. Grivaux
(France), J. A. Grzesik, S. J. Herschkorn, M. Hildebrand, F. Holland (Ireland), A. Incognito & T. Mengesha,
V. K. Jenner (Switzerland), O. Kouba (Syria), K.-W Lau (China), W. R. Livingston, O. P. Lossers (Nether-
lands), K. McInturff, K. Nagasaki (Japan), T. Nakata (Japan), O. Padé (Israel), P. Perfetti (Italy), Á. Plaza
& J. M. Pacheco (Spain), D. S. Ross, V. Rutherfoord, B. Schmuland (Canada), A. Stadler (Switzerland), R.
Stong, R. Tauraso (Italy), M. Tetiva (Romania), M. Thaler (Australia), J. Vinuesa (Spain), Z. Vörös (Hungary),
T. Wilkerson, Y. Yu, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), Microsoft
Research Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the inside front cover. Submitted solutions should arrive at
that address before September 30, 2010. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11502. Proposed by Pál Péter Dályay, Deák Ferenc High School, Szeged, Hungary.
For a triangle with area F , semiperimeter s, inradius r , circumradius R, and heights
ha , hb, and hc, show that

5(ha + hb + hc) ≥ 2Fs

Rr
+ 18r ≥ 10r(5R − r)

R
.

11503. Proposed by K. S. Bhanu, Institute of Science, Nagpur, India, and M. N. Desh-
pande, Nagpur, India. We toss an unbiased coin to obtain a sequence of heads and tails,
continuing until r heads have occurred. In this sequence, there will be some number R
of runs (runs of heads or runs of tails) and some number X of isolated heads. (Thus,
with r = 4, the sequence H H T H T T H yields R = 5 and X = 2.) Find the covariance
of R and X in terms of r .

11504. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let N
be a positive integer and x a positive real number. Prove that

N∑
m=0

1

m!

(
N−m+1∑

k=1

xk

k

)m

≥ 1 + x + · · · + x N .

11505. Proposed by Bruce Burdick, Roger Williams University, Bristol, RI. Define {an}
to be the periodic sequence given by a1 = a3 = 1, a2 = 2, a4 = a6 = −1, a5 = −2,
and an = an−6 for n ≥ 7. Let {Fn} be the Fibonacci sequence with F1 = F2 = 1. Show
that

∞∑
k=1

ak Fk F2k−1

2k − 1

∞∑
n=0

(−1)kn

Fkn+2k−1 Fkn+3k−1
= π

4
.

doi:10.4169/000298910X486003

458 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117

This content downloaded from 128.206.9.138 on Sun, 31 Mar 2013 14:50:28 PM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



11506. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY. Show that for
positive integers m and n with m + n < mn, and for positive a and b,

sin
(π

n

) ∫ ∞

x=0

x1/n

x + a

b1/m − x1/m

b − x
dx = sin

(π

m

) ∫ ∞

x=0

x1/m

x + b

a1/n − x1/n

a − x
dx .

11507. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let n be a positive integer and let R be a plane region of perimeter 1. Inside
R there are a finite number of line segments the sum of whose lengths is greater than
n. Prove that there exists a line that intersects at least 2n + 1 of the segments.

11508. Proposed by Mihály Bencze, Brasov, Romania. Prove that for all positive inte-
gers k there are infinitely many positive integers n such that kn + 1 and (k + 1)n + 1
are both perfect squares.

SOLUTIONS

Special Divisors of Factorials

11358 [2008, 365]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bârlad, Romania. Let d be a square-free positive integer greater than 1.
Show that there are infinitely many positive integers n such that dn2 + 1 divides n!.
Solution I by O. P. Lossers, Technical University of Eindhoven, Eindhoven, The Nether-
lands. The condition that d is square-free is unnecessary. Consider the following fac-
torization: x105 + 1 = p(x)q(x)r(x) (obtained from the factorization of x210 − 1 in
irreducible cyclotomic polynomials), where

p(x) = 1 + x − x5 − x6 − x7 − x8 + x10 + x11 + x12 + x13

+ x14 − x16 − x17 − x18 − x19 + x23 + x24,

q(x) = 1 − x3 + x6 − x9 + x12 + x21 − x24 + x27 − x30 + x33,

r(x) = 1 − x + x2 + x5 − x6 + 2x7 − x8 + x9 + x12 − x13 + x14 − x15

+ x16 − x17 − x20 − x22 − x24 − x26 − x28 − x31 + x32 − x33

+ x34 − x35 + x36 + x39 − x40 + 2x41 − x42 + x43 + x46 − x47 + x48.

For x ≥ 2, we have p(x) < x25 < q(x) < x34 < r(x) < x52. Taking n = a105d52,
where a ≥ 1 is any integer, we have

dn2 + 1 = (da2)105 + 1 = p(da2)q(da2)q(da2).

This product divides n!, since the three factors are different and all three are less than
a104d52, which is at most n.

Solution II by João Guerreiro, student, Insituto Superior Técnico, Lisbon, Portugal.
We prove the claim for every positive integer d. Let

n = dk2(d + 1)2 + k(d + 1) + 1,

where k is a positive integer greater than 1. We claim that all such n have the prop-
erty that dn2 + 1 divides n!. With n so defined, we put m = dn2 + 1 and factor the
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expression for m, obtaining

m = d[dk2(d + 1)2 + k(d + 1) + 1]2 + 1

= [dk2(d + 1)2 + 1][d2k2(d + 1)2 + d + 2dk(d + 1)] + dk2(d + 1)2 + 1

= [dk2(d + 1)2 + 1](d + 1)[d2k2(d + 1) + 2dk + 1]
For k > 1, we also have

d + 1 < d2k2(d + 1) + 2dk + 1 < dk2(d + 1)2 + 1 < n.

Since these quantities are distinct integers less than n, their product m divides n!.
Solution III by GCHQ Problem Solving Group, Cheltenham, U. K. The Pell equation
y2 − dn2 = 1 has infinitely many positive integer solutions (y, n). If (Y, N ) is any
solution, then an infinite family of solutions is generated using (y − n

√
d) = (Y −

N
√

d)r for r ∈ N. This follows immediately from the standard result that, if (y0, n0)

is the smallest positive solution, then (y − n
√

d) = (y0 − n0

√
d)k for k ∈ N generates

all positive solutions.
For some solution (Y, N ) with Y > 3

√
d, generate solutions (yr , nr) as above. Use

only odd r , so that Y divides yr . Also make r large enough so that yr > 2Y 2.
Let (y, n) be the solution given by any such r . Let s = y/Y , so s > 2Y . Since

y2 = dn2 + 1 < 9
4 dn2, we have y < 3

2 n
√

d. Dividing by Y and using Y > 3
√

d yields
s < n/2.

Since y2 = Y 2s2, we have (dn2 + 1) | Y · 2Y · s · 2s. Since 2Y < s < n/2, these
four factors are distinct and less than n. Thus their product divides n!.
Editorial comment. Most solvers used solutions to the Pell equation. John P. Robert-
son proved a more general result: whenever d and c are integers not both 0, there are
infinitely many positive integers n such that dn2 + c divides n!. The proposer gener-
alized this further: if a, b, and c are not all 0, then there are infinitely many positive
integers n such that an2 + bn + c divides n!. The proposer asks whether the result
extends to polynomials of higher degree.

Also solved by S. Casey (Ireland), R. Chapman (U. K.), K. Dale (Norway), P. W. Lindstrom, U. Milutinović
(Slovenia), J. P. Robertson, B. Schmuland (Canada), N. C. Singer, A. Stadler (Switzerland), R. Stong, Mi-
crosoft Research Problems Group, and the proposer.

A Weighted Sum in a Triangle

11368 [2008, 462]. Proposed by Wei-Dong Jiang, Weihai Vocational College, Weihai,
ShanDong, China. For a triangle of area 1, let a, b, c be the lengths of its sides. Let
s = (a + b + c)/2. Show that the weighted average of (s − a)2, (s − b)2, and (s − c)2,
weighted by the angles opposite a, b, and c respectively, is at least 1/

√
3.

Solution by Richard Stong. We begin with a computational lemma.

Lemma. If x, y, z > 0 and xy + yz + zx = 1, then

yz arctan x

x
+ zx arctan y

y
+ xy arctan z

z
≥ 2π√

3
. (1)

Proof. Let α = (2π
√

3 − 3)/8 ≈ 0.98, β = α − 3/4 > 0. Calculus shows that for
t ≥ 0, we have (arctan t)/t ≥ α − βt2. Using this, we conclude that the left side of (1)
is at least (xy + yz + zx)α − (x2 yz + y2zx + z2xy)β. Applying

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) ≥ 3(ab + bc + ca)
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(a corollary of the Cauchy–Schwarz inequality), we get

x2 yz + y2zx + z2xy = (xy)(xz) + (yz)(yx) + (zx)(zy) ≤ 1

3
(xy + yz + zx)2.

Since xy + yz + zx = 1, the left side of (1) is at least α − β/3 = 2π/
√

3.

Now consider a triangle 	ABC . Let a, b, c be the lengths of the sides opposite
A, B, C , respectively. Let x = r/(s − a), y = r/(a − b), and z = r/(s − c), where
r is the inradius. The tangents to the incircle from vertex A have length s − a, so
A = 2 arctan x , and symmetrically for the other two vertices. By Heron’s formula, the
area K is given by K 2 = s(s − a)(s − b)(s − c). But also K = rs, so

yz

x
= r(s − a)

(s − b)(s − c)
= rs(s − a)2

K 2
= (s − a)2,

and two other similar equations. Thus the desired inequality follows from the lemma.

Editorial comment. Some solvers pointed out that the problem concerns a weighted
sum not a weighted average, and that the weighted average version is false.

Also solved by J. Grivaux (France), K. McInturff, Con Amore Problem Group (Denmark), GCHQ Problem
Solving Group (U. K.), and the proposer.

Glaisher–Kinkelin Infinite Product

11371 [2008, 567]. Proposed by Ovidiu Furdui, University of Toledo, Toledo, OH. Let
A denote the Glaisher-Kinkelin constant, given by

A = lim
n→∞ n−n2/2−n/2−1/12en2/4

n∏
k=1

kk = 1.2824 · · · .

Evaluate in closed form

A6
∞∏

n=1

(
e−1(1 + 1/n)n

)(−1)n

.

Solution by Richard Stong, Center for Communications Research, San Diego CA. The
terms in the infinite product tend to 1, so it suffices to show that the even-numbered
partial products converge. Using Stirling’s formula and the definition of A, we obtain

N∑
k=1

log k = log N ! = N log N − N + 1

2
log N + 1

2
log(2π) + O(1/N ),

N∑
k=1

k log k = N (N + 1)

2
log N − N 2

4
+ 1

12
log N + log A + O(1/N ).

Therefore
2N∑
k=1

(−1)k log k = 2
N∑

k=1

log(2k) −
2N∑
k=1

log k = 1

2
log N + 1

2
log π + O(1/N ),

2N∑
k=1

(−1)kk log k = 2
N∑

k=1

2k log(2k) −
2N∑
k=1

k log k

= N log N + N log 2 + 1

4
log N − 1

12
log 2 + 3 log A + O(1/N ).
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Subtracting twice the second equation from the first yields
∑2N

k=1(−1)k−1(2k −
1) log k = −2N log(2N ) − 6 log A + 1

6 log(2π3) + O(1/N ). Therefore

log

⎡
⎣ 2N∏

k=1

(
e−1

(
1 + 1

k

)k
)(−1)k ⎤

⎦ =
2N∑
k=1

(−1)k
(
k log(k + 1) − k log k − 1

)

=
2N∑
k=1

(−1)k
(
k log(k + 1) − k log k

)

= 2N log(2N + 1) +
2N∑
k=1

(−1)k−1(2k − 1) log k

= 2N log

(
2N + 1

2N

)
− 6 log A + 1

6
log(2π3) + O(1/N ).

The first term on the right tends to 1. Exponentiate both sides and multiply this result
by A6 to see that the desired limit is 21/6e

√
π .

Also solved by J. Borwein (Canada), B. Bradie, B. S. Burdick, R. Chapman (U. K.), P. P. Dályay (Hungary),
G. C. Greubel, J. Grivaux (France), O. Kouba (Syria), J. H. Lindsey II, W. R. Livingston, P. Perfetti (Italy),
A. Stadler (Switzerland), M. Tetiva (Romania), GCHQ Problem Solving Group (U. K.), Microsoft Research
Problems Group, and the proposer.

Fibonacci Fixed Points

11373 [2008, 568]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn,
NY. Let Sn be the symmetric group on {1, . . . , n}. By the canonical cycle decomposi-
tion of an element π of Sn, we mean the cycle decomposition of π in which the largest
entry of each cycle is at the beginning of that cycle, and the cycles are arranged in
increasing order of their first elements.

Let ψn : Sn → Sn be the mapping that associates to each π ∈ Sn the permuta-
tion whose one-line representation is obtained by removing the parentheses from the
canonical cycle decomposition of π . (Thus the permutation

( 12345
34521

)
has one-line repre-

sentation 34521 and canonical cycle representation (42)(513) and is mapped by ψ5 to
42513.) Describe the fixed points of ψn and find their number.

Solution by John H. Lindsey II, Cambridge, MA. Let f (n) be the number of fixed
points of ψn .

If π is a fixed point of ψn such that π(n) = n, where n ≥ 1, then π |{1,...,n−1} is a
fixed point of ψn−1. Conversely, every fixed point π of ψn−1 may be extended to a
fixed point of ψn by setting π(n) = n. Hence there are f (n − 1) fixed points π of ψn

with π(n) = n.
Let π be a fixed point of ψn such that π(n) < n, where n ≥ 2. Since n is the

largest element of its cycle, this cycle in the canonical representation appears as
(n, π(n), . . . ). Thus the one-line representation of ψn(π) ends with n, π(n), . . . .
Since π is a fixed point of ψn and the one-line representation of π ends with π(n), it
must end with n, π(n). Thus π(n − 1) = n, and the cycle of π containing n has only
the two elements n and n − 1. Furthermore, π |{1,...,n−2} is a fixed point of ψn−2, and
conversely every fixed point of ψn−2 yields a fixed point of ψn by adding the cycle
(n, n − 1).

Thus f (n) = f (n − 1) + f (n − 2) for n ≥ 2, with f (0) = f (1) = 1, so f (n) is
the (n + 1)st Fibonacci number, and the fixed points of ψn are products of disjoint
transpositions of consecutive integers.
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Editorial comment. Marian Tetiva pointed out that a related problem, also proposed
by Emeric Deutsch, appeared as problem 1525 in the June 1997 issue of Mathematics
Magazine, solved by José Nieto on pages 227–228 of the June 1998 issue (volume 71).
That problem asks about the fixed points for a similar mapping in which the canonical
representation for permutations puts the smallest entry of each cycle last, with the
cycles in increasing order. There are 2n−1 fixed points for that mapping.

Also solved by R. Bagby, D. Beckwith, J. C. Binz (Switzerland), R. Chapman (U. K.), M. T. Clay, P. Corn,
C. Curtis, P. P. Dályay (Hungary), K. David & P. Fricano, M. N. Deshpande & K. Laghale (India), A. Incog-
nito, C. Lanski, O. P. Lossers (Netherlands), R. Martin (Germany), J. H. Nieto (Venezuela), R. Pratt, M. Reid,
K. Schilling, E. Schmeichel, B. Schmuland (Canada), P. Spanoudakis (U. K.), R. Stong, J. Swenson, R. Tauraso
(Italy), M. Tetiva (Romania), BSI Problems Group (Germany), Szeged Problem Group “Fejéntaláltuka” (Hun-
gary), GCHQ Problem Solving Group (U. K.), Houghton College Problem Solving Group, Missouri State
University Problem Solving Group, NSA Problems Group, and the proposer.

Circle Radii Related to a Triangle

11386 [2008, 757]. Proposed by Greg Markowsky, Somerville, MA. Consider a tri-
angle ABC . Let O be the circumcircle of ABC , r the radius of the incircle, and s
the semiperimeter. Let arc (BC) be the arc of O opposite A, and define arc (C A) and
arc (AB) similarly. Let OA be the circle tangent to AB and AC and internally tangent
to O along arc (BC), and let RA be its radius. Define OB , OC , RB , and RC similarly.
Show that

1

aRA
+ 1

bRB
+ 1

cRC
= s2

rabc
.

Solution by George Apostolopoulos, Greece.
Let K be the center of OA, so
AK = RA/ sin(A/2). Also
AO = R, O K = R − RA, and
� O AK = ( � B − � C)/2.

O

K

A2
 

RA

RA

A

B C

The law of cosines gives O K 2 = AO2 + AK 2 − 2 · O A · AK · cos � O AK , or put
another way,

(R − RA)2 = R2 + R2
A

sin2(A/2)
− 2R

RA

sin(A/2)
cos

B − C

2
.

Therefore

−2R + RA = RA

sin2(A/2)
− 2R cos((B − C)/2)

cos((B + C)/2)
.

Equivalently,

RA = 4R sin(A/2) sin(B/2) sin(C/2)

cos2(A/2)
= r

cos2(A/2)
= rbc

s(s − a)
.
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Similarly, RB = rca/(s(s − b)) and RC = rab/(s(s − c)). Thus

1

aRA
+ 1

bRB
+ 1

cRC
= s(s − a)

rabc
+ s(s − b)

rabc
+ s(s − c)

rabc

= 3s2 − s(a + b + c)

rabc
= s2

rabc
.

Also solved by B. T. Bae (Spain), D. Baralı́c (Serbia), M. Bataille (France), M. Can, C. Curtis, P. P. Dályay
(Hungary), P. De (India), Y. Dumont (France), O. Faynshteyn (Germany), V. V. Garcı́a (Spain), M. Goldenberg
& M. Kaplan, J. Grivaux (France), J. G. Heuver (Canada), E. J. Ionascu, B. T. Iordache (Romania), O. Kouba
(Syria), J. H. Lindsey II, A. Nijenhuis, P. Nüesch (Switzerland), V. Schindler (Germany), E. A. Smith, A.
Stadler (Switzerland), R. Stong, M. Tetiva (Romania), G. Tsapakidis (Greece), D. Vacaru (Romania), Z. Vörös
(Hungary), M. Vowe (Switzerland), J. B. Zacharias & K. Greeson, L. Zhou, Szeged Problem Solving Group
“Fejéntaláltuka” (Hungary), GCHQ Problem Solving Group (U. K.), and the proposer.

Complex Hermitian Matrix

11396 [2008, 856]. Proposed by Gérard Letac, Université Paul Sabatier, Toulouse,
France. For complex z, let Hn(z) denote the n × n Hermitian matrix whose diagonal
elements all equal 1 and whose above-diagonal elements all equal z. For n ≥ 2, find
all z such that Hn(z) is positive semi-definite.

Solution by Mark Wildon, University of Bristol, Bristol, U. K. If z is real, then
∑n

1 ek

is an eigenvector of Hn(z) with corresponding eigenvalue 1 + (n − 1)z, while for k ∈
{2, . . . , n}, e1 − ek is an eigenvector of Hn(z) with corresponding eigenvalue 1 − z.
This shows that 1 + (n − 1)z and 1 − z are the only eigenvalues of Hn(z). Hence Hn(z)
is positive semi-definite if and only if

− 1

n − 1
≤ z ≤ 1.

Now suppose that z is not real. By replacing Hn(z) with its transpose, we may
assume that Im z > 0. Under this assumption, we shall prove that Hn(z) is positive
semi-definite if and only if

arg(z − 1) ≥ arg z

n
+ (n − 1)π

n

(where for Im z > 0 we take 0 < arg z < π).
We first claim that Hn(z) is singular if and only if(

1 − z

1 − z

)n

= z

z
.

Let w = (1 − z)/(1 − z) and v ∈ Cn . The difference between the i th and (i + 1)st
components of vHn(z) is (1 − z)vi − (1 − z)vi+1. Hence vHn(z) has constant compo-
nents if and only if v is a scalar multiple of the vector (1, w, w2, . . . , wn−1). The first
component of (1, w, w2, . . . , wn−1)Hn(z) is

1 + z(w + w2 + · · · + wn−1) = z(wn − w) + w − 1

w − 1
= zwn − z

w − 1
.

This vanishes if and only if wn = z/z, which proves the claim.
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If λ ∈ R is an eigenvalue of Hn(z) then (provided λ �= 1), the matrix Hn(z/(1 − λ))

is singular. Hence Hn(z) has an eigenvalue less than zero if and only if there exists a
λ < 0 such that (

1 − λ − z

1 − λ − z

)n

= z

z
,

or equivalently, if and only if

arg(z + λ − 1) = arg z

n
+ kπ

n

for some λ < 0 and k ∈ Z. As λ decreases from 0 to −∞, the argument of z + λ − 1
increases from arg(z − 1) to π . Hence if this equation has a solution, it has one with
k = n − 1 and a solution exists if and only if

arg(z − 1) <
arg z

n
+ (n − 1)π

n
.

This proves our claimed criterion for Hn(z) to be positive semi-definite.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), A. Stadler (Switzerland), R. Stong, T. Tam, S. E.
Thiel, F. Vial (Chile), E. I. Verriest, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.),
and the proposer.

A Max and Min Inequality

11397 [2008, 948]. Proposed by Grahame Bennett, Indiana University, Bloomington,
IN. Suppose a, b, c, x, y, z are positive numbers such that a + b + c = x + y + z
and abc = xyz. Show that if max{x, y, z} ≥ max{a, b, c}, then min{x, y, z} ≥
min{a, b, c}.
Solution by Marian Tetiva, Bı̂rlad, Romania. For q = ab + ac + bc and r = xy +
xz + yz, the identity

(t − a)(t − b)(t − c) − (t − x)(t − y)(t − z) = (q − r)t (1)

follows from the hypotheses. If x = max{x, y, z} and z = min{x, y, z}, for example,
and we replace t in (1) by x and z, then we obtain

(x − a)(x − b)(x − c) = (q − r)x, (z − a)(z − b)(z − c) = (q − r)z,

respectively. Since x ≥ max{a, b, c}, it follows that q − r = (x − a)(x − b)(x −
c)/x ≥ 0, which implies (z − a)(z − b)(z − c) = (q − r)z ≥ 0. This implies that
z ≥ min{a, b, c}.
Editorial comment. Richard Stong remarked that if a ≤ b ≤ c and x ≤ y ≤ z, then
a ≤ x ≤ y ≤ b ≤ c ≤ z.

Also solved by B. M. Abrego, M. Afshar (Iran), K. Andersen (Canada), D. Beckwith, D. Borwein (Canada), R.
Brase, P. Budney, R. Chapman (U. K.), J. Christopher, P. Corn, C. Curtis, L. W. Cusick, P. P. Dályay (Hungary),
Y. Dumont (France), D. Fleischman, T. Forgács, J. Freeman, D. Grinberg, J. Grivaux (France), E. Hysnelaj &
E. Bojaxhiu (Australia & Albania), B.-T. Iordache (Romania), K.-W. Lau (China), J. H. Lindsey II, O. P.
Lossers (Netherlands), M. Nyenhuis (Canada), E. Pité (France), C. Pohoata (Romania), M. A. Prasad (India),
R. E. Rogers, J. Schaer (Canada), B. Schmuland (Canada), R. A. Simón (Chile), A. Stadler (Switzerland), J.
Steinig (Switzerland), R. Stong, S. E. Thiel, V. Verdiyan (Armenia), E. I. Verriest, J. Vinuesa (Spain), Z. Vörös
(Hungary), S. Wagon, H. Widmer (Switzerland), Y. Yu, J. B. Zacharias, Armstrong Problem Solvers, GCHQ
Problem Solving Group (U. K.), Microsoft Research Problems Group, NSA Problems Group, Northwestern
University Math Problem Solving Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the inside front cover. Submitted solutions should arrive at
that address before October 31, 2010. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11496 (April, 2010, p. 370) Correction: On the left, square s(AAT ) and s(B BT ).

11509. Proposed by William Stanford, University of Illinois-Chicago, Chicago, IL. Let
m be a positive integer. Prove that

m2−m+1∑
k=m

(m2−2m+1
k−m

)
k
(m2

k

) = 1

m
(2m−1

m

) .

11510. Proposed by Vlad Matei, student, University of Bucharest, Bucharest, Roma-
nia. Prove that if I is the n-by-n identity matrix, A is an n-by-n matrix with rational
entries, A �= I , p is prime with p ≡ 3 (mod 4), and p > n + 1, then Ap + A �= 2I .

11511. Proposed by Retkes Zoltan, Szeged, Hungary. For a triangle ABC , let fA denote
the distance from A to the intersection of the line bisecting angle B AC with edge
BC , and define fB and fC similarly. Prove that ABC is equilateral if and only if
f A = fB = fC .

11512. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let N
be a nonnegative integer. For x ≥ 0, prove that

N∑
m=0

1

m!

(
N−m+1∑

k=1

xk

k

)m

≥ 1 + x + · · · + x N .

11513. Proposed by Pál Péter Dályay, Szeged, Hungary. For a triangle with area F ,
semiperimeter s, inradius r , circumradius R, and heights ha, hb, and hc, show that

5(ha + hb + hc) ≥ 2s F

Rr
+ 18r ≥ 10r(5R − r)

R
.

doi:10.4169/000298910X492862
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11514. Proposed by Mihaly Bencze, Brasov, Romania. Let k be a positive integer, and
let a1, . . . , an be positive numbers such that

∑n
i=1 ak

i = 1. Show that
n∑

i=1

ai + 1∏n
i=1 ai

≥ n1−1/k + nn/k .

11515. Proposed by Estelle L. Basor, American Institute of Mathematics, Palo Alto,
CA, Steven N. Evans, University of California, Berkeley, CA, and Kent E. Morrison,
California Polytechnic State University, San Luis Obispo, CA. Find a closed-form ex-
pression for

∞∑
n=1

4n sin4
(
2−nθ

)
.

SOLUTIONS

An Old Four-Squares Chestnut

11374 [2008, 568]. Proposed by Harley Flanders and Hugh L. Montgomery, Univer-
sity of Michigan, Ann Arbor, MI. Let a, b, c, and m be positive integers such that
abcm = 1 + a2 + b2 + c2. Show that m = 4.

Solution by Afonso Bandeira and Joel Moreira, Universidade de Coimbra, Portugal,
and João Guerreiro, Instituto Superior Técnico, Portugal. Viewing the equation mod-
ulo 4 shows that 4 divides m. Let n = m/4. Now suppose there is a solution with
n > 1. Let (a, b, c) be such a solution where a + b + c is minimal. Name the values
so that a ≥ b ≥ c.

Now a is a solution to the quadratic equation x2 − x(4bcn) + (b2 + c2 + 1) = 0.
By Vieta’s formula, another solution is a′, where a′ = 4bcn − a. If a′ ≥ a, then a2 +
b2 + c2 + 1 = 4abcn ≥ 2a2, and so a2 ≤ b2 + c2 + 1 ≤ 2b2 + 1. Now a2 < a2 + 1 ≤
2b2 + 2 ≤ 4b2, so a < 2b. This yields 4abcn > 2a2cn ≥ 4a2 ≥ a2 + b2 + c2 + 1,
which contradicts (a, b, c) being a solution.

Thus (a′, b, c) is a solution that contradicts the minimality of a + b + c. We con-
clude that n > 1 is impossible, so n = 1 and m = 4.

Editorial comment. We print this proof because of its brevity. A. Hurwitz showed in
Über eine Aufgabe der unbestimmten Analysis, Arch. Math. Phys. 3 (1907) 185–196,
that x2

1 + x2
2 + · · · + x2

n = kx1x2 . . . xn has no solution in positive integers if k > n,
from which the present claim follows directly. This reference was supplied by each
of S. Gao, W. C. Jagy, J. H. Jaroma, and J. P. Robertson. A new proof of Hurwitz’s
theorem may be found in S. Gao, C. Caliskan, and S. Rong, Some properties of n-
dimensional generalized Markoff equation, Congr. Numer. 177 (2005) 217–221.

Also solved by R. Chapman (U.K.), J. Christopher, P. Corn, S. Gao, H. S. Hwang & K. J. Kim (Korea),
I. M. Isaacs, W. C. Jagy, J. H. Jaroma, O. Kouba (Syria), O. P. Lossers (Netherlands), É. Pité (France),
C. R. Pranesachar (India), J. P. Robertson, B. Schmuland (Canada), N. C. Singer, R. Stong, H. T. Tang,
M. Tetiva (Romania), Fisher Problem Group, Szeged Problem Solving Group “Fejéntaláltuka” (Hungary),
GCHQ Problem Solving Group (U.K.), Microsoft Research Problems Group, NSA Problems Group, and the
proposers.

Perpendicular Half-Area

11392 [2008, 855]. Proposed by Omran Kouba, Higher Institute for Applied Science
and Technology, Damascus, Syria. Let the consecutive vertices of a regular n-gon P
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be denoted A0, . . . , An−1, in order, and let An = A0. Let M be a point such that for
0 ≤ k < n the perpendicular projections of M onto each line Ak Ak+1 lie interior to the
segment (Ak, Ak+1). Let Bk be the projection of M onto Ak Ak+1. Show that

n−1∑
k=0

Area(	(M Ak Bk)) = 1

2
Area(P).

Solution by Pál Péter Dályay, Szeged, Hungary.
Select as unit of length the
radius of the circumcircle of
the regular n-gon. Use the
coordinate system x Oy in the
plane so that vertex Ak has
coordinates (xk, yk) with
xk = cos(2kπ/n) and
yk = sin(2kπ/n) for
0 ≤ k ≤ n. Let M have
coordinates (ρ cos φ, ρ sin φ).
Fix one index k. If the axes of
coordinate system x Oy are
rotated by the angle(
(2k + 1)π

)
/n − π , then we

obtain the axes of a new
coordinate system X OY . Note

Ak

Ak+1

M

x

y

X
Y

A0

O

Ck

Bk

� X O M = φ − (
(2k + 1)π

)
/n + π . Let Hk be the point where Bk M crosses OY , and

let Ck be the midpoint of the segment Ak Ak+1. Since the axes of the coordinate system
X OY are parallel to Bk M and Ak Ak+1, respectively, we have

Ak Bk = AkCk − BkCk = 1

2
Ak Ak+1 − ρ sin

(
φ − (2k + 1)π

n
+ π

)
= sin

(π

n

)
+ ρ sin

(
φ − (2k + 1)π

n

)
,

Bk M = Ck O + Hk M = Ck O + ρ cos

(
φ − (2k + 1)π

n
+ π

)
= cos

(π

n

)
− ρ cos

(
φ − (2k + 1)π

n

)
.

Therefore,

2 Area
(	(M Ak Bk)

) = Ak Bk · Bk M

=
(

sin
(π

n

)
+ ρ sin

(
φ − (2k + 1)π

n

))(
cos

(π

n

)
− ρ cos

(
φ − (2k + 1)π

n

))
= 1

2
sin

(
2π

n

)
+ ρ sin

(
φ − 2(k + 1)π

n

)
− ρ2

2
sin

(
2φ − 2(2k + 1)π

n

)
. (1)

Recall that for α, β ∈ R and β �= 2sπ with s ∈ Z,

n−1∑
k=0

sin(α + kβ) = sin(nβ/2)

sin(β/2)
sin

(
α + 1

2
(n − 1)β

)
.
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Thus, since n ≥ 3 implies that 2π/n �= 2sπ with s ∈ Z, and since φ − 2(k + 1)π/n =
(φ − 2π/n) − 2kπ/n, we have

n−1∑
k=0

sin

((
φ − 2(k + 1)π

n

))
= 0 =

n−1∑
k=0

sin

(
2φ − 2(2k + 1)π

n

)
.

Summing both sides of (1) over k, we obtain the required result:

2
n−1∑
k=0

Area
(	(M Ak Bk)

) = n

2
sin

(
2π

n

)
,

and this last expression gives the area of P .

Also solved by M. Bataille (France), D. Beckwith, R. Chapman (U.K.), C. Curtis, J. Freeman, D. Grinberg, J.-P.
Grivaux (France), K. Hanes, E. A. Herman, S. Hitotumatu (Japan), E. J. Ionascu, L. R. King, P. T. Krasopoulos
(Greece), J. H. Lindsey II, O. P. Lossers (Netherlands), V. Mihai (Canada), C. R. Pranesachar (India), M. A.
Prasad (India), R. A. Russell, A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), J. Vinuesa (Spain),
A. Vorobyov, Z. Vörös (Hungary), M. Vowe (Switzerland), GCHQ Problem Solving Group (U.K.), Microsoft
Research Problems Group, and the proposer.

Concurrent Lines

11393 [2008, 856]. Proposed by Cosmin Pohoata, student, National College “Tudor
Vianu,” Bucharest, Romania. In triangle ABC, let M and Q be points on segment
AB, and similarly let N and R be points on AC, and P and S, points on BC. Let
d1 be the line through M , N , d2 the line through P , Q, and d3 the line through
R, S. Let ρ(X, Y, Z) denote the ratio of the length of XZ to that of XY . Let m =
ρ(M, A, B), n = ρ(N , A, C), p = ρ(P, B, C), q = ρ(Q, B, A), r = ρ(R, C, A),
and s = ρ(S, C, B). Prove that the lines (d1, d2, d3) are concurrent if and only if
mpr + nqs + mq + nr + ps = 1.

Solution by Michel Bataille, Rouen, France. We use barycentric coordinates rela-
tive to (A, B, C), and accordingly we write U(u1, u2, u3) as an abbreviation for
“U = (u1 A + u2 B + u3C)/(u1 + u2 + u3).” (When u1 + u2 + u3 = 0 we obtain a
“point at infinity”). With this convention we have M(m, 1, 0), N (n, 0, 1), P(0, p, 1),
Q(1, q, 0), R(1, 0, r), and S(0, 1, s). The equation of line d1 is∣∣∣∣∣∣

x m n
y 1 0
z 0 1

∣∣∣∣∣∣ = 0, that is, x = my + nz.

Similarly, the equation of line d2 is y = pz + qx , and the equation of line d3 is z =
r x + sy. These three lines are parallel (concurrent at a point at infinity) or concurrent
(literally) if and only if ∣∣∣∣∣∣

−1 q r
m −1 s
n p −1

∣∣∣∣∣∣ = 0.

This can be rewritten as

mpr + nqs + mq + nr + ps = 1, (∗)

so this is a necessary condition for concurrence of d1, d2, d3.
Conversely, suppose that (∗) holds. If d1, d2, d3 were parallel, then the point at in-

finity on d1, namely (n − m, −1 − n, 1 + m), would also lie on d2 and d3. This means
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mq = 1 + n + p + mp + qn and nr = 1 + s + m + sn + rm. Since m, n, q, r, s are
nonnegative, it follows that mq + nr ≥ 2. But mq + nr ≤ 1 follows from (∗). This
contradiction shows that d1, d2, d3 cannot be parallel, and must instead be concurrent.

Also solved by R. Chapman (U.K.), P. P. Dályay (Hungary), M. Goldenberg & M. Kaplan, D. Grinberg, J. Gri-
vaux (France), S. Hitotumatu (Japan), B.-T. Iordache (Romania), O. Kouba (Syria), J. H. Lindsey II, R. Nandan,
C. R. Pranesachar (India), R. Stong, M. Tetiva (Romania), R. S. Tiberio, A. Vorobyov, Z. Vörös (Hungary),
J. B. Zacharias, GCHQ Problem Solving Group (U.K.), and the proposer.

Jensenoid Inequalities

11399 [2008, 948]. Proposed by Biaggi Ricceri, University of Catania, Catania, Italy.
Let (�,F , μ) be a measure space with finite nonzero measure M , and let p > 0.
Let f be a lower semicontinuous function on R with the property that f has no global
minimum, but for each λ > 0, the function t �→ f (t) + λ|t |p does have a unique global
minimum. Show that exactly one of the two following assertions holds:
(a) For every u ∈ L p(�) that is not essentially constant,

M f

((
1

M

∫
�

|u(x)|p dμ

)1/p
)

<

∫
�

f (u(x)) dμ,

and f (t) < f (s) whenever t > 0 and −t ≤ s < t .
(b) For every u ∈ L p(�) that is not essentially constant,

M f

(
−

(
1

M

∫
�

|u(x)|p dμ

)1/p
)

<

∫
�

f (u(x)) dμ,

and f (−t) < f (s) whenever t > 0 and −t < s ≤ t .

Solution by Julien Grivaux, student, Université Pierre et Marie Curie, Paris, France.
First note that we may assume that p = 1. Indeed, let θ : R → R be defined by θ(t) =
signum(t)|t |p, and let f̃ (t) = f (θ−1(t)) and ũ(t) = θ(u(t)). Then∫

�

f̃
(̃
u(t)

) =
∫

�

f
(
u(t)

)
and f̃

(
±

∫
�

∣∣̃u∣∣) = f

(
±

(∫
�

|u|p

)1/p
)

.

We may also assume without loss of generality that M = 1.
For λ > 0, let φ(λ) be the unique value where the function t �→ f (t) + λ|t | reaches

its minimum.

Lemma 1. The function φ is continuous on (0, ∞).

Proof. Let λ be positive and let 〈λn〉 be a sequence of positive numbers converging
to λ. Letting tn = φ(λn), we have f (t) + λn|t | ≥ f (tn) + λn|tn|. Let λ0 be such that
0 < λ0 < λ and m = infR( f (t) + λ0|t |). Now

f (tn) + λn|tn| = f (tn) + λ0|tn| + (λn − λ0)|tn| ≥ m + (λn − λ0)|tn|.
This proves that for all t , (λn − λ0)|tn| ≤ f (t) + λn|t | − m, so that for n large enough
that λn − λ0 > 1

2(λ − λ0), taking t = 0 gives |tn| < 2( f (0) − m)/(λ − λ0). Thus 〈tn〉
is bounded. Let t ′ be a limit point of 〈tn〉. There exists a subsequence 〈tψ(n)〉 which
converges to t ′. For all t in R, f (t) + λn|t | ≥ f (tn) + λn|tn|. By lower semicontinuity,
for all t ,

f (t) + λ|t | = lim inf
[

f (t) + λψ(n)|t |
] ≥ lim inf

[
f (tψ(n)) + λψ(n)

∣∣tψ(n)

∣∣]
= lim inf f (tψ(n)) + λ|t ′| ≥ f (t ′) + λ|t ′|.
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By the uniqueness of the minimum, t ′ = φ(λ). Since 〈tn〉 is bounded we conclude that
〈tn〉 converges to φ(λ). This shows that φ is continuous.

Lemma 2. limλ→+∞ φ(λ) = 0 and limλ→0+ |φ(λ)| = +∞.

Proof. Let 〈λn〉 be a sequence such that limn→∞ λn = +∞, and let tn = φ(λn). For
t ∈ R, we have f (tn)/λn + |tn| ≤ f (t)/λn + |t |, and in particular f (tn)/λn + |tn| ≤
f (0)/λn. Let λ0 be a fixed positive value, and let m = infR[ f (t) + λ0|t |]. Now f (tn) ≥
m − λ0|tn|, so (1 − λ0/λn)|tn| ≤ (

f (0) − m
)
/λn. Therefore limn→∞ tn = 0.

For the other claim of the lemma, let 〈λn〉 be a positive sequence that tends to zero,
let tn = φ(λn), and let t ′ be a limit point of 〈tn〉 (if one exists). The argument of Lemma
1 proves that for any real t , f (t) ≥ f (t ′). That makes f (t ′) a global minimum for f ,
contrary to the hypothesis. Since 〈tn〉 has no limit point, limn→∞ |tn| = +∞.

From these two lemmas, we see that the range of φ contains (0, ∞) or (−∞, 0)

(but not both). We will show that in the first case conclusion (a) holds. Similarly, the
second case leads to (b).

Assume the range contains (0, ∞), and let m(λ) = infR
(

f (t) + λ|t |). Now f (t) ≥
supλ

(
m(λ) − λ|t |). If t = φ(λ), then f (φ(λ)) = m(λ) − λ|φ(λ)|. Thus f is the point-

wise supremum of a family of affine functions on (0, ∞), so f is convex there. We
claim that f is actually strictly convex. Indeed, if f is affine on some interval [a, b]
with 0 < a < b, then we can choose λ such that the function fλ given by fλ(t) =
f (t) + λ|t | reaches its infimum at a point of (a, b). Since fλ is is affine on this in-
terval, it is minimized at an interior point only if it is constant on that interval, which
contradicts the uniqueness of the minimum point.

Let s, t be given with t > 0 and −t ≤ s < t . There exists λ such that t = φ(λ).
Thus

f (s) + λ|s| > f (t) + λ|t | ≥ f (t) + λ|s|.
We obtain f (s) > f (t). (If −t ≤ s ≤ t , we obtain f (s) ≥ f (t).) For the integral
inequality, we have −|u(x)| ≤ u(x) ≤ |u(x)|. So f (u(x)) ≥ f

(|u(x)|). Since f is
convex, Jensen’s inequality yields∫

�

f (u) ≥
∫

�

f
(|u|) ≥ f

(∫
�

|u|
)

.

It is a strict inequality since u is not essentially constant and f is strictly convex.

Also solved by R. Stong.

Squares On Graphs

11402 [2008, 949]. Proposed by Doru Catalin Barboianu, Infarom Publishing,
Craiova, Romania Let f : [0, 1] → [0, ∞) be a continuous function such that
f (0) = f (1) = 0 and f (x) > 0 for 0 < x < 1. Show that there exists a square
with two vertices in the interval (0,1) on the x-axis and the other two vertices on the
graph of f .

Solution by Byron Schmuland and Peter Hooper, University of Alberta, Edmonton, AB,
Canada. Extend f by letting f (x) = 0 for x ≥ 1. Define g(x) = f (x + f (x)) − f (x)

for x ≥ 0. If there exists x ∈ (0, 1) with g(x) = 0, then a square as required exists with
vertices

(x, 0), (x + f (x), 0), (x, f (x)), (x + f (x), f (x)).
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Now g is continuous, so to show that such x exists we will show that y, z ∈ (0, 1)

exist with g(y) ≥ 0 and g(z) ≤ 0. Let z be a value where f takes its maximum. Then
f (z) ≥ f (z + f (z)), so that g(z) ≤ 0. Since 0 + f (0) = 0 < z < z + f (z), by conti-
nuity there is a value y ∈ (0, z) so that y + f (y) = z. Hence g(y) = f (y + f (y)) −
f (y) = f (z) − f (y) ≥ 0.

Editorial comment. Pál Péter Dályay (Hungary) noted a generalization: Given any
p > 0, there exists a rectangle with base-to-height ratio p having two vertices on the
x-axis and the other two vertices on the graph of f .

Also solved by B. M. Ábrego & S. Fernández-Merchant, F. D. Ancel, K. F. Andersen (Canada), R. Bagby,
N. Caro (Brazil), D. Chakerian, R. Chapman (U.K.), B. Cipra, P. Corn, C. Curtis, P. P. Dályay (Hungary), C.
Diminnie & R. Zarnowski, P. J. Fitzsimmons, D. Fleischman, T. Forgács, O. Geupel (Germany), D. Grinberg, J.
Grivaux (France), J. M. Groah, E. A. Herman, S. J. Herschkorn, E. J. Ionascu, A. Kumar & C. Gibbard (U.S.A.
& Canada), S. C. Locke, O. P. Lossers (Netherlands), R. Martin (Germany), K. McInturff, M. McMullen,
M. D. Meyerson R. Mortini M. J. Nielsen, M. Nyenhuis (Canada), Á. Plaza & S. Falcón (Spain), K. A. Ross,
T. Rucker, J. Schaer (Canada), K. Schilling, E. Shrader, A. Stadler (Switzerland), R. Stong, B. Taber, M. Tetiva
(Romania), T. Thomas (U.K.), J. B. Zacharias & K. Greeson, BSI Problems Group (Germany), GCHQ Problem
Solving Group (U.K.), Lafayette College Problem Group, Microsoft Research Problems Group, Missouri State
University Problem Solving Group, Northwestern University Math Problem Solving Group, NSA Problems
Group, and the proposer.

A Trig Series Rate

11410 [2009, 83]. Proposed by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria. For 0 < φ < π/2, find

lim
x→0

x−2

(
1

2
log cos φ +

∞∑
n=1

(−1)n−1

n

sin2(nx)

(nx)2
sin2(nφ)

)
.

Solution by Otto B. Ruehr, Michigan Technological University, Houghton, MI. We be-
gin with three elementary identities. The first is

∞∑
n=1

r n sin2 nφ = r(r + 1) sin2 φ

(1 − r)
[
(1 − r)2 + 4r sin2 φ

] . (i)

This is derived by writing sin2 nφ in terms of exponentials and summing the resulting
geometric series. Now divide (i) by r and integrate with respect to r to get

∞∑
n=1

r n

n
sin2 nφ = 1

4
log

[
(1 − r)2 + 4r sin2 φ

(1 − r)2

]
. (ii)

Differentiate (i) with respect to r to obtain
∞∑

n=1

nr n−1 sin2 nφ = 1

2(1 − r)2
− 1

2

[
(r − 1)2 − 2(r 2 + 1) sin2 φ

[(1 − r)2 + 4r sin2 φ]2

]
. (iii)

The limit at r = −1 in (ii) gives us
∞∑

n=1

(−1)n−1

n
sin2 nφ = −1

2
log cos φ.

Now we can write the requested limit as

lim
x→0

x−2 lim
r→−1+

∞∑
n=1

r n

n

[
1 − sin2 nx

n2x2

]
sin2 nφ.
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Here we have anticipated the divergent series that would result if the limx→0 were
taken directly. Since the series as written is convergent, by the regularity of the Abel
summation process it is equal to its Abel sum. Now, for |r | < 1, we can bring the outer
limit under the sum, which yields

lim
r→−1+

1

3

∞∑
n=1

nr n sin2 nφ.

From (iii) we obtain 1
24 tan2 φ as the desired limit.

Also solved by R. Bagby, D. H. Bailey & J. M. Borwein (Canada), D. Beckwith, P. Bracken, R. Chapman
(U.K.), H. Chen, P. P. Dályay (Hungary), J. Grivaux (France), F. Holland (Ireland), K. L. Joiner, G. Keselman,
A. Stadler (Switzerland), R. Stong, E. I. Verriest, and the proposer.

A Minimum Determinant

11415 [2009, 180]. Proposed by Finbarr Holland, University College Cork, Cork, Ire-
land. Let (A1, . . . , An) be a list of n positive-definite 2 × 2 matrices of complex num-
bers. Let G be the group of all unitary 2 × 2 complex matrices, and define the function
F on the Cartesian product Gn by

F(U) = F(U1, . . . , Un) = det

(
n∑

k=1

U ∗
k AkUk

)
.

Show that

min
U∈Gn

F(U) =
n∑

k=1

σ1(Ak) ·
n∑

k=1

σ2(Ak),

where σ1(A j) and σ2(A j) denote the greatest and least eigenvalue of A j , respectively.

Solution by Roger A. Horn, University of Utah, Salt Lake City, UT. It suffices to
assume that the matrices Ai are positive semidefinite and therefore Hermitian. Let A =∑n

i=1 U ∗
i AiUi , α = ∑n

i=1 σ1(Ai ), and β = ∑n
i=1 σ2(Ai ). Note that α ≥ β ≥ 0 and

(α + β)/2 ≥ β. Let λ = σ1(A) and μ = σ2(A), so that λ ≥ μ and λ + μ = tr(A) =∑n
i=1 tr(U ∗

i AiUi ) = ∑n
i=1 trAi = ∑n

i=1(σ1(Ai) + σ2(Ai)) = α + β.
For Hermitian matrices C and D, Weyl’s inequality ensures that σ2(C) + σ2(D) ≤

σ2(C + D). From this along with the definition of A it follows that μ = σ2(A) ≥∑n
i=1 σ2(U ∗

i AiUi ) = ∑n
i=1 σ2(Ai ) = β. Since det A = λμ, we want to determine

min{λμ : λ + μ = α + β and λ ≥ μ ≥ β}. That is, for f (μ) = (α + β − μ)μ,
we require min{ f (μ) : β ≤ μ ≤ 1

2(α + β)}. Clearly, f ′(μ) = α + β − 2μ ≥ 0 for
μ ∈ [β, 1

2 (α + β)], so the minimum value of f (μ) is f (β) = αβ.
If the unitary matrices are chosen such that U ∗

i AiUi = diag(σ1(Ai ), σ2(Ai)) for
i = 1, . . . , n, then A = diag(α, β), and it follows that det(A) = αβ.

Also solved by R. Chapman (U.K.), M. J. Englefield (Australia), J.-P. Grivaux (France), E. A. Herman, O.
Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Stong, M. Tetiva (Romania), E. I. Verriest,
GCHQ Problem Solving Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the inside front cover. Submitted solutions should arrive at
that address before December 31, 2010. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11516. Proposed by Elton Bojaxhiu, Albania, and Enkel Hysnelaj, Australia. Let T be
the set of all nonequilateral triangles. For T in T , let O be the circumcenter, Q the
incenter, and G the centroid. Show that infT∈T � OG Q = π/2.

11517. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Tudorel Lupu, Decebal High School, Constanta, Romania. Let f be a three-
times differentiable real-valued function on [a, b] with f (a) = f (b). Prove that∣∣∣∣

∫ (a+b)/2

a
f (x) dx −

∫ b

(a+b)/2
f (x) dx

∣∣∣∣ ≤ (b − a)4

192
sup

x∈[a,b]
| f ′′′(x)|.

11518. Proposed by Mihaly Bencze, Brasov, Romania. Suppose n ≥ 2 and let
λ1, . . . , λn be positive numbers such that

∑n
k=1 1/λk = 1. Prove that

ζ(λ1)

λ1
+

n∑
k=2

1

λk

(
ζ(λk) −

k−1∑
j=1

j−λk

)
≥ 1

(n − 1)(n − 1)! .

11519. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Find

∞∑
n=1

∞∑
m=1

(−1)n+m Hn+m

n + m
,

where Hn denotes the nth harmonic number.

11520. Proposed by Peter Ash, Cambridge Math Learning, Bedford, MA. Let n and k
be integers with 1 ≤ k ≤ n, and let A be a set of n real numbers. For i with 1 ≤ i ≤ n,
let Si be the set of all subsets of A with i elements, and let σi = ∑

s∈Si
max(s). Express

the kth smallest element of A as a linear combination of σ0, . . . , σn.

doi:10.4169/000298910X496796
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11521. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let n be a positive integer and let A1, . . . , An, B1, . . . , Bn , C1, . . . , Cn be
points on the unit two-dimensional sphere S2. Let d(X, Y ) denote the geodesic distance
on the sphere from X to Y , and let e(X, Y ) be the Euclidean distance across the chord
from X to Y . Show that
(a) There exists P ∈ S2 such that

∑n
i=1 d(P, Ai ) = ∑n

i=1 d(P, Bi ) = ∑n
i=1 d(P, Ci ).

(b) There exists Q ∈ S2 such that
∑n

i=1 e(Q, Ai ) = ∑n
i=1 e(Q, Bi ).

(c) There exist a positive integer n, and points A1, . . . , An,B1, . . . , Bn , C1, . . . , Cn on
S2, such that for all R ∈ S2,

∑n
i=1 e(R, Ai ),

∑n
i=1 e(R, Bi ), and

∑n
i=1 e(R, Ci ) are not

all equal. (That is, part (b) cannot be strengthened to read like part (a).)

11522. Proposed by Moubinool Omarjee, Lycée Jean Lurçat, Paris, France. Let E
be the set of all real 4-tuples (a, b, c, d) such that if x, y ∈ R, then (ax + by)2 +
(cx + dy)2 ≤ x2 + y2. Find the volume of E in R4.

SOLUTIONS

Cevian Subtriangles

11404 [2009, 83]. Proposed by Raimond Struble, North Carolina State at Raleigh,
Raleigh, NC. Any three non-concurrent cevians of a triangle create a subtriangle. Iden-
tify the sets of non-concurrent cevians which create a subtriangle whose incenter coin-
cides with the incenter of the primary triangle. (A cevian of a triangle is a line segment
joining a vertex to an interior point of the opposite edge.)

Solution by M. J. Englefield, Monash University, Victoria, Australia. Label the vertices
of the primary triangle ABC in counterclockwise order, and let I be the incenter.
The following construction identifies the required triples of cevians. Take an arbitrary
cevian AA′ not passing through I and consider the circle κ centered at I tangent to
AA′, say at PA. There are two points on κ for which the line joining them to B is
tangent to κ . Choose for PB the one that is counterclockwise from PA on κ , and take
B ′ to be the intersection of the line through B and PB with AC . Similarly choose PC

to lie counterclockwise from PB on κ , and let C ′ be the intersection of AB with the
tangent from C to κ at PC . By construction, κ is the incircle of the subtriangle.

Editorial comment. Little attention has been given to the subtriangle that is the topic of
this problem. If the non-concurrent cevians divide the sides of �ABC in ratios λ, μ, ν,
Routh’s theorem gives the area of the subtriangle as (λμν − 1)2/((λμ + λ + 1)(μν +
μ + 1)(νλ + ν + 1)) times the area of ABC . It is also known (H. Bailey, Areas and
centroids for triangles within triangles, Math. Mag. 75 (2002) 371) that the centroids
of the two triangles coincide if and only if λ = μ = ν.

Also solved by R. Chapman (U. K.), C. Curtis, J. H. Lindsey II, M. D. Meyerson, J. Schaer (Canada), R. A.
Simon (Chile), R. Stong, Con Amore Problem Group (Denmark), GCHQ Problem Solving Group (U. K.), and
the proposer.

A Limit of an Alternating Series

11412 [2009, 179]. Proposed by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria. Let f be a monotone decreasing function on [0, ∞)

such that limx→∞ f (x) = 0. Define F on (0, ∞) by F(x) = ∑∞
n=0(−1)n f (nx).

(a) Show that if f is continuous at 0 and convex on [0, ∞), then limx→0+ F(x) =
f (0)/2.
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(b) Show that the same conclusion holds if we drop the second condition on f from (a)
and instead require that f have a continuous second derivative on [0, ∞) such that∫ ∞

0 | f ′′(x)| dx < ∞.
(c) Dropping the conditions of (a) and (b), find a monotone decreasing function f on
[0, ∞) with f (0) > 0 such that

lim sup
x→0+

sup
0<y<x

F(y) = f (0), lim sup
x→0+

inf
0<y<x

F(y) = 0.

Solution by Richard Bagby, New Mexico State University, Las Cruces, NM. For f a
monotone decreasing function on [0, ∞) with limx→∞ f (x) = 0, define

F(x) =
∞∑

n=0

(−1)n f (nx) =
∞∑

n=0

[ f (2nx) − f ((2n + 1)x)], x > 0.

By the alternating series test, the series defines F(x) with 0 ≤ F(x) ≤ f (0).
(a) If f is convex, then for each x > 0, the difference f (kx) − f ((k + 1)x) is a

nonincreasing function of the positive integer k. Therefore, we have

F(x) ≥
∞∑

n=0

[ f ((2n + 1)x) − f ((2n + 2)x)] = f (0) − F(x),

as well as

F(x) ≤ f (0) − f (x) +
∞∑

n=1

[ f ((2n − 1)x) − f (2nx)] = 2 f (0) − f (x) − F(x).

Thus we see that f (0) ≤ 2F(x) ≤ 2 f (0) − f (x) for all x > 0 when f is convex. In
particular, limx→0+ F(x) = 1

2 f (0) if f (x) is also continuous at the origin.
(b) Suppose that instead of assuming that f (x) is convex, we assume that f ∈

C2[0, ∞) with
∫ ∞

0 | f ′′(x)| dx < ∞. Observe that since f (x) → 0 as x → ∞, we
may write

F(x) = 1

2
f (0) + 1

2

∞∑
n=0

(−1)n[ f (nx) − f ((n + 1)x)]

= 1

2
f (0) + 1

2

∞∑
n=0

[∫ (2n+2)x

(2n+1)x
f ′(t) dt −

∫ (2n+1)x

2nx
f ′(t) dt

]

= 1

2
f (0) + 1

2

∞∑
n=0

∫ (2n+1)x

2nx

(∫ x

0
f ′′(s + t) ds

)
dt

= 1

2
f (0) + 1

2

∫ x

0

( ∞∑
n=0

∫ (2n+1)x

2nx
f ′′(s + t) dt

)
ds.

This implies that ∣∣∣∣F(x) − 1

2
f (0)

∣∣∣∣ ≤ x

2

∫ ∞

0
| f ′′(t)| dt,

so once again F(x) → 1
2 f (0) as x → 0 from the right.

(c) A simple choice of a monotone decreasing function f with f (0) > 0 for which

lim sup
x→0+

F(x) = f (0), lim inf
x→0+ F(x) = 0
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is given by f (x) = 1 for 0 ≤ x < 1 and f (x) = 0 for 1 ≤ x < ∞. For each positive
integer k, we then have F(1/(2k)) = 1 and F(1/(2k + 1)) = 0.

Also solved by M. Bello-Hernández & M. Benito (Spain), N. Caro (Colombia), R. Chapman (U. K.), P. P.
Dályay (Hungary), P. J. Fitzsimmons, J. Grivaux (France), J. H. Lindsey II, O. P. Lossers (Netherlands), K.
Schilling, R. Stong, Szeged Problem Solving Group “Fejéntaláltuka” (Hungary), GCHQ Problem Solving
Group (U. K.), Microsoft Research Problems Group, and the proposer.

A Definite Hyperbolic

11418 [2009, 276]. Proposed by George Lamb, Tucson, AZ. Find

∫ ∞

−∞

t2sech2t

a − tanh t
dt

for complex a with |a| > 1.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. The answer is 1

12

(
Log3( a+1

a−1) + π2Log( a+1
a−1)

)
, where Log is the prin-

cipal branch of the logarithm defined on the complex plane cut along the negative real
numbers. The formula is valid for every complex number a with a /∈ [−1, 1].

For a /∈ [−1, 1] the integral is convergent. Denote its value by I (a). Compute

I (a) =
∫ ∞

−∞

t2 dt

(a cosh t − sinh t) cosh t
=

∫ ∞

−∞

4t2e2t dt

((a − 1)e2t + a + 1)(e2t + 1)

= 1

2

∫ ∞

−∞

x2ex dx

((a − 1)ex + a + 1)(ex + 1)
= 1

2(a − 1)
J

(
a + 1

a − 1

)
,

with

J (b) =
∫ ∞

−∞

x2ex dx

(ex + b)(ex + 1)
.

In order to evaluate J (b) for b ∈ C \ (−∞, 0], let

F(z) = (z3 + π2z)ez

(1 − ez)(b − ez)
.

For large positive R, consider the contour γR consisting of a positively oriented rect-
angle ABC D with vertices A, B, C, D at −R − iπ , R − iπ , R + iπ , and −R + iπ ,
respectively. The only points inside the rectangle γR where the denominator of F van-
ishes are 0 and Log b, but 0 is a removable singularity for F and Log b is a simple
pole with residue

Res(F, Log b) = Log3b + π2Log b

b − 1
.

The residue formula says that∫
γR

F(z) dz = 2π i

b − 1
(Log3b + π2Log b).
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However,

∫
AB

F(z) dz +
∫

C D
F(z) dz =

∫ R

−R
F(x − iπ) dx −

∫ R

−R
F(x + iπ) dx

=
∫ R

−R

(
(x + iπ)3 + π2(x + iπ) − (x − iπ)3 − π2(x − iπ)

)
ex

(1 + ex)(b + ex)
dx

= 6π i
∫ R

−R

x2ex dx

(1 + ex)(b + ex)
,

so

lim
R→∞

(∫
AB

F(z) dz +
∫

C D
F(z) dz

)
= 6π i

∫ ∞

−∞

x2ex dx

(1 + ex)(b + ex)
= 6π i J (b).

Next,
∫

BC F(z) dz = i
∫ π

−π
F(R + i t) dt , so if R > 1 + |b|, then

∣∣∣∣
∫

BC
F(z) dz

∣∣∣∣ ≤ 2π sup
t∈[−π,π]

|F(R + i t)| ≤ 2π

√
R2 + π2(R2 + 2π2)eR

(eR − 1)(eR − |b|) .

Therefore, limR→∞
∫

BC F(z) dz = 0. Similarly, limR→∞
∫

D A F(z) dz = 0. Combining
our results, we conclude that

6π i J (b) = 2π i

b − 1
(Log3b + π2Log b),

or, equivalently,

J (b) = 1

3(b − 1)
(Log3b + π2Log b).

Therefore, as claimed, we get

I (a) = a − 1

2
J

(
a + 1

a − 1

)
= 1

12

(
Log3

(
a + 1

a − 1

)
+ π2Log

(
a + 1

a − 1

))
.

Also solved by R. Bagby, D. H. Bailey & J. M. Borwein (U.S.A. & Canada), D. Beckwith, R. Chapman (U. K.),
H. Chen, P. Corn, Y. Dumont (France), M. L. Glasser, J. Grivaux (France), J. A. Grzesik, K. McInturff, L. A.
Medina, P. Perfetti (Italy), Á. Plaza (Spain), O. G. Ruehr, A. Stadler (Switzerland), V. Stakhovsky, R. Stong,
N. Thornber, GCHQ Problem Solving Group (U. K.), and the proposer.

A Triangle Construction

11419 [2009, 276]. Proposed by Vasile Mihai, Belleville, Ontario, Canada. Let G
be the centroid, H the orthocenter, O the circumcenter, and P the circumcircle of a
triangle ABC that is neither isosceles nor right.
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Let A′, B ′, and C ′ be the orthic
points of ABC , that is, the respec-
tive feet of the altitudes from A, B,
and C . Let A1 be the point on P such
that AA1 is parallel to BC , and de-
fine B1, C1 similarly. Let A′

1 be the
point on P such that A1 A′

1 is parallel
to AA′, and define B ′

1, C ′
1 similarly

(see sketch).
Show that

(a) A1 A′
1, B1 B ′

1, and C1C ′
1 are con-

current at the point I opposite H
from O on the Euler line H O .

(b) A1 A′, B1 B ′, and C1C ′ are concur-
rent at the centroid G.

OB

BA

CC1

B1

A1

C

A1

C1

B1

H

AG

(c) the circumcircles of O A1 A′
1, O B1 B ′

1, and OC1C ′
1 (which are clearly concurrent

at O) are concurrent at a second point K lying on H O , and |O H | · |O K | = abc/p,
where a, b, and c are the edge lengths of ABC , and p is the perimeter of A1 B1C1.

Solution by Paul Yiu, Florida Atlantic University, Boca Raton, FL.
(a) Each of the lines A1 A′

1, B1 B ′
1, and C1C ′

1 is the reflection of an altitude in the
perpendicular bisector of the corresponding side, and these bisectors each contain the
circumcenter O . Since the altitudes intersect at the orthocenter H , these reflected lines
intersect at the reflection of H in O .

(b) Let D be the midpoint of BC . Since AA1 and BC are parallel and AA1 = 2 · D A′,
the lines A1 A′ and AD intersect at a point that divides each of A1 A′ and AD in the
ratio 2 : 1. This point is the centroid G of triangle ABC . The same holds for B1 B ′ and
C1C ′.
(c) The inverse of the line A1 A′

1 in the circumcircle P is the circle O A1 A′
1. This circle

contains the inverse K of I in P . The same holds for the lines B1 B ′
1 and C1C ′

1. Note
that |O H | · |O K | = |O I | · |O K | = R2, where R is the circumradius.

If ABC is acute, then the angles of A1 B1C1 are π − 2A, π − 2B, and π − 2C . The
perimeter p of triangle A1 B1C1 is given by

p = 2R(sin 2A + sin 2B + sin 2C) = 2a cos A + 2b cos B + 2c cos C

= a2(b2 + c2 − a2) + b2(c2 + a2 − b2) + c2(a2 + b2 − c2)

abc

= 16	2

abc
=

(
abc

R

)2

· 1

abc
= abc

R2
.

Therefore, R2 = abc/p.
This formula is correct only for acute triangles. If angle A is obtuse, the angles of

triangle A1 B1C1 are 2A − π , 2B, and 2C .

Also solved by M. Bataille (France), J. Cade, R. Chapman (U. K.), P. P. Dályay (Hungary), M. Goldenberg
& M. Kaplan, J.-P. Grivaux (France), J. G. Heuver (Canada), L. R. King, O. Kouba (Syria), J. H. Lindsey II,
O. P. Lossers (Netherlands), R. Minkus, C. R. Pranesachar (India), R. Stong, M. Tetiva (Romania), Z. Vörös
(Hungary), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.
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Matrix Normality

11422 [2009, 277]. Proposed by Christopher Hillar, The Mathematical Sciences Re-
search Institute, Berkeley, CA. Let H be a real n × n symmetric matrix with dis-
tinct eigenvalues, and let A be a real matrix of the same size. Let H0 = H , H1 =
AH0 − H0 A, and H2 = AH1 − H1 A. Show that if H1 and H2 are symmetric, then
AAt = At A; that is, A is normal.

Solution by Patrick Corn, St. Mary’s College of Maryland, St. Mary’s City, MD. If
we conjugate H0, H1, H2, and A by the same orthogonal matrix, then the hypotheses,
definitions, and conclusion remain unchanged. There exists an orthogonal matrix that
diagonalizes H0, since H0 is a real, symmetric matrix. Without loss of generality, then,
we may assume that H0 is diagonal with distinct entries.

Since H1 is symmetric, it follows that AH0 − H0 A = (AH0 − H0 A)t = H0 At −
At H0, and thus (A + At)H0 = H0(A + At). Since the matrix A + At commutes with
H0, it must be diagonal. Now write A = D + S, where D = (1/2)(A + At) is diagonal
and S = (1/2)(A − At) is skew-symmetric.

Since H2 is symmetric, we have H1(A + At) = (A + At)H1, and H1 D = DH1.
That is, (AH0 − H0 A)D = D(AH0 − H0 A). Since D and H0 commute, AH0 −
H0 A = SH0 − H0S, and then (SH0 − H0S)D = D(SH0 − H0S), so H0(DS − SD) =
(DS − SD)H0. Thus DS − SD commutes with H0, so it must be diagonal. However,
DS and SD both have zero diagonals, since S does, and therefore DS = SD.

Expanding and using DS = SD, we conclude that

AAt − At A = (D + S)(Dt + St) − (Dt + St)(D + S) = 2(SD − DS) = 0.

This gives the desired result.

Also solved by R. Chapman (U. K.), C. Curtis, P. P. Dályay (Hungary), A. Fok, S. M. Gagola Jr., M. Goldenberg
& M. Kaplan, D. Grinberg, J.-P. Grivaux (France), E. A. Herman, R. Howard, O. Kouba (Syria), C. Lanski,
J. H. Lindsey II, O. P. Lossers (Netherlands), A. Muchlis (Indonesia), J. Simons (U. K.), J. H. Smith, R. Stong,
E. I. Verriest, L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

A Lobachevsky Integral

11423 [2009, 277]. Proposed by Gregory Minton, D. E. Shaw Research, LLC, New
York, NY. Show that if n and m are positive integers with n ≥m and n − m even, then∫ ∞

x=0 x−m sinn x dx is a rational multiple of π .

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA. We
use induction on m. Let I (n, m) = ∫ ∞

0 x−m sinn x dx . First, for any odd positive inte-
ger n = 2k + 1, we recall that

sin2k+1 x = 1

22k

k∑
i=0

(−1)k−i

(
2k + 1

i

)
sin

(
(2k − 2i + 1)x

)
and ∫ ∞

0

sin(ax)

x
dx = π

2

for a > 0. Hence

I (2k + 1, 1) = 1

22k+1

k∑
i=0

(−1)k−i

(
2k + 1

i

)
π
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is a rational multiple of π . For m = 2, note that integration by parts gives

I (n, 2) = n
∫ ∞

0

sinn−1 x cos x

x
dx .

Using the product to sum formula for sine and cosine, for n = 2k we can expand
sin2k−1 x cos x as

1

22k−1

k−1∑
i=0

(−1)k−i+1

(
2k − 1

i

)(
sin

(
(2k − 2i)x

) + sin
(
(2k − 2i − 2)x

))
,

so

I (2k, 2) = k

22k−2

(
1

2

(
2k − 1

k − 1

)
+

k−2∑
i=0

(−1)k−i+1

(
2k − 1

i

))
π

is also a rational multiple of π . For m ≥ 2, integrating by parts twice leads to

I (n, m + 1) = − n2

m(m − 1)
I (n, m − 1) + n(n − 1)

m(m − 1)
I (n − 2, m − 1).

When n − (m + 1) is even and nonnegative, the right side is a rational multiple of
π by the induction hypothesis. Therefore, the left side is also such a multiple, which
completes the proof.

Editorial comment. The integrals I (n, m) were apparently first considered by N. I.
Lobachevskiı̆, Probabilité des résultats moyens tirés d’observations répétées, J. Reine
Angew. Math. 24 (1842) 164–170.

T. Hayashi, in “On the integral
∫ ∞

0
sinn x

xm dx ,” Nieuw Arch. Wiskd. (2) 14 (1923)
13–18, gave the following explicit evaluation:

I (n, m) = π(−1)(n−m)/2

2n−m+1(m − 1)!
∑

0≤ j≤(n−1)/2

(−1) j

(
n

j

) (n

2
− j

)m−1

which for m = 1 or 2 simplifies to

I (2k + 1, 1) = π

2k+1

(2k − 1)!!
k! = π

22k+1

(
2k

k

)

I (2k, 2) = π

2k

(2k − 3)!!
(k − 1)! = π

22k−1

(
2k − 2

k − 1

)
,

and these more than suffice for the current problem.

Also solved by K. F. Andersen (Canada), R. Bagby, M. Bataille (France), D. Beckwith, D. Borwein (Canada),
K. N. Boyadzhiev, R. Buchanan, R. Chapman (U. K.), P. Corn, J. Dai & C. Goff, P. P. Dályay (Hungary),
Y. Dumont (France), G. C. Greubel, J. Grivaux (France), J. A. Grzesik, E. A. Herman, G. Keselman, J. Kolk
(Netherlands), T. Konstantopoulis (U. K.), O. Kouba (Syria), I. E. Leonard (Canada), J. H. Lindsey II, O. P.
Lossers (Netherlands), Y. Mikata, M. Omarjee (France), É. Pité (France), Á. Plaza (Spain), R. E. Rogers,
O. G. Ruehr, J. Simons (U. K.), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Tetiva (Romania),
N. Thornber, E. I. Verriest, Z. Vörös (Hungary), M. Vowe (Switzerland), H. Widmer (Switzerland), L. Zhou,
Columbus State University Problem Solvers, GCHQ Problem Solving Group (U. K.), Microsoft Research
Problems Group, NSA Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Submitted solutions should arrive
at that address before February 28, 2011. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11523. Proposed by Timothy Chow, Princeton, NJ. Given boxes 1 through n, put balls
in k randomly chosen boxes. The score of a permutation π of {1, . . . , n} is the least
i such that box π(i) has a ball. Thus, if π = (3, 4, 1, 5, 2) with (n, k) = (5, 2), and
boxes 1 and 4 have balls, then π has score 2.
(a) A permutation π is fair if, regardless of the value of k, the probability that π scores
lower than the identity permutation equals the probability that it scores higher. Show
that π is fair if and only if for each i in [1, n], either π(i) > i and π−1(i) > i , or
π(i) ≤ i and π−1(i) ≤ i .
(b) Let f (n) be the number of fair permutations of {1, . . . , n}, with the convention
that f (0) = 1. Show that

∑∞
n=0 f (n)xn/n! = ex sec(x).

(c) Assume now that n = m3 with m ≥ 2, and the boxes are arranged in m rows of
length m2. Alice scans the top row left to right, then the row below it, and so on, until
she finds a box with a ball in it. Bob scans the leftmost column top to bottom, then the
next column, and so on. They start simultaneously and both check one box per second.
For which k are Alice and Bob equally likely to be the first to discover a ball?

11524. Proposed by H. A. ShahAli, Tehran, Iran. A vector v in Rn is short if ‖v‖ ≤ 1.
(a) Given six short vectors in R2 that sum to zero, show that some three of them have
a short sum.
(b)∗ Let f (n) be the least M such that, for any finite set T of short vectors in Rn that
sum to 0, and any integer k with 1 ≤ k ≤ |T |, there is a k-element subset S of T such
that ‖ ∑

v∈S v‖ ≤ M . The result of part (a) suggests f (2) = 1. Find f (n) for n ≥ 2.

11525. Proposed by Grigory Galperin, Eastern Illinois University, Charleston, IL, and
Yury Ionin, Central Michigan University, Mount Pleasant, MI.
(a) Prove that for each n ≥ 3 there is a set of regular n-gons in the plane such that
every line contains a side of exactly one polygon from this set.

doi:10.4169/000298910X515820
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(b) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly one circle from the set?
(c) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly two circles from the set?
(d) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly three circles from the set?

11526. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Prove that there is no function f from R3 to R2 with the property that
‖ f (x) − f (y)‖ ≥ ‖x − y‖ for all x, y ∈ R3.

11527. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia. Prove that in an acute triangle with sides of length a, b, c, inradius r , and circum-
radius R,

a2

b2 + c2 − a2
+ b2

c2 + a2 − b2
+ c2

a2 + b2 − c2
≥ 3

2
· R

r
.

11528. Proposed by Alina Sı̂ntămărian, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let p, a, and b be positive integers with a < b. Consider a sequence
〈xn〉 defined by the recurrence nxn+1 = (n + 1/p)xn and an initial condition x1 
= 0.
Evaluate

lim
n→∞

xan + xan+1 + · · · + xbn

nxan
.

11529. Proposed by Walter Blumberg, Coral Springs, FL. For n ≥ 1, let An =(
3
∑n

k=1

⌊
k2

n

⌋)
− n2. Let p and q be distinct primes with p ≡ q (mod 4). Show

that Apq = Ap + Aq − 2.

SOLUTIONS

Splitting Elements of Set Systems

11372 [2008, 568]. Proposed by Jennifer Vandenbussche and Douglas B. West, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL. In a family of finite sets, let a
splitting element be an element that belongs to at least two of the sets and is omit-
ted by at least two of the sets. Determine the maximum size of a family of subsets of
{1, . . . , n} for which there is no splitting element.

Solution by David Gove, California State University, Bakersfield, CA. The maximum
size is n + 1. Consider a largest such family. Removing x from the sets it lies in and
adding it to the others yields another such family. Hence we may assume that each
element appears in at most one of the sets. If any of the sets has more than one element,
then we can obtain a bigger family by replacing that set by its singleton subsets. Thus
the family consisting of the empty set and the singleton sets is a largest such family.

Editorial comment. By the argument above, there are 2n extremal families. Marian
Tetiva sent a thorough discussion of a more general problem. Let gs(n) be the maxi-
mum size of a family of subsets of {1, . . . , n} such that every element appears in at
most s sets or avoids at most s sets; the stated problem is g1(n) = n + 1, and clearly
g0(n) = 1. By the complementation argument above, we may equivalently seek the
largest family such that every element appears in at most s sets. Tetiva proved a bound
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and conjectured equality. Intuitively, the idea is that one should take all the small sets
until the bound on the number of appearances of each element is reached. For example,
if s = ∑k

i=1

(n−1
i−1

)
, then one should take all the sets of size at most k. When s is not of

this form, the exact solution is more difficult.

Also solved by D. Beckwith, P. Corn, D. L. Craft, C. Curtis, P. P. Dályay (Hungary), K. David & P. Fricano,
D. Degiorgi (Switzerland), J. Gately, J. Guerreiro (Portugal), H. S. Hwang (Korea), K. Kneile, J. H. Lindsey II,
O. P. Lossers (Netherlands), R. Martin (Germany), M. D. Meyerson, J. H. Nieto (Venezuela), R. E. Prather,
T. Rucker, V. Rutherfoord, K. Schilling, E. Schmeichel, B. Schmuland (Canada), R. Stong, J. Swenson,
M. Tetiva (Romania), B. Tomper, Fisher Problem Group, Szeged Problem Group “Fejéntaláltuka” (Hungary),
GCHQ Problem Solving Group (U. K.), Houghton College Problem Solving Group, Microsoft Research Prob-
lems Group, NSA Problems Group, and the proposers.

A Determinant Generated by a Polynomial

11377 [2008, 664]. Proposed by Christopher Hillar, Texas A&M University, College
Station, TX and Lionel Levine, Massachusetts Institute of Technology, Cambridge, MA.
Given a monic polynomial p of degree n with complex coefficients, let Ap be the
(n + 1) × (n + 1) matrix with p(−i + j) in position (i, j), and let Dp be the determi-
nant of Ap. Show that Dp depends only on n, and find its value in terms of n.

Solution by John H. Lindsey II, Cambridge, MA. The value of Dp is (n!)n+1, which
we prove by induction on n. The result is trivial when n = 0. For n > 0, use indices
0, . . . , n for the rows and columns of Ap. In Ap, let C j be column j and Ri be row i .
Given a function f , define � f by � f (k) = f (k + 1) − f (k). By induction on n, if f
is a monic polynomial of degree n, then �n f (x) = n! for all x .

Replacing Cn with
∑n

j=0

(n
j

)
(−1)n− j C j does not change the determinant, but it turns

the i th entry of column n into �n p(−i), which equals n!. Now for 0 ≤ i ≤ n − 1 in
order, subtract the next row from Ri , replacing Ri with Ri − Ri+1. This puts 0 in the last
column, except for the last row. For j < n, the new entry a′

i, j is p(−i + j) − p(−i −
1 + j), which equals �p(−i − 1 + j). Since �p has leading coefficient n, the upper
left (n − 1)-by-(n − 1) block has the form n A f , where f (x) = (1/n)�p(x − 1).

Since f is a monic polynomial with degree n − 1, by the induction hypothe-
sis D f = (n − 1)!n . Expanding the altered Dp down the last column yields Dp =
n! nn(n − 1)!n = n!n+1.

Editorial comment. Solvers used a variety of methods, including Vandermonde deter-
minants. Roger Horn proved a substantial generalization. Given a matrix A, let p(A)

denote the entrywise application of the polynomial p to A; that is, the (i, j)-entry of
p(A) is p(ai, j ). For x ∈ Cn+1, let A(x) be the matrix given by ai, j = xi + j − 1. If p
is a monic polynomial of degree n, then

det p(A(x)) =
(∏

i> j

(xi − x j )

)
(−1)�(n+1)/2�(n!)n∏n−1

i=1 i ! , (1)

which depends only on x and n, not p. The originally stated problem is the case x =
(0, −1, . . . , −n)T .

Also solved by D. Beckwith, R. Chapman (U. K.), P. Corn, P. P. Dályay (Hungary), J. Grivaux (France), J. Hart-
man, C. C. Heckman, R. A. Horn, R. Howard, G. Keselman, O. Kouba (Syria), S. C. Locke, O. P. Lossers
(Netherlands), K. McInturff, J. H. Nieto (Venezuela), É. Pité (France), C. R. Pranesachar (India), M. A. Prasad
(India), N. C. Singer, J. H. Smith, A. Stadler (Switzerland), V. Stakhovsky, R. Stong, T. Tam, M. Tetiva (Ro-
mania), B. Tomper, M. Vowe (Switzerland), L. Zhou, BSI Problems Group (Germany), FAU Problem Solving
Group, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposers.
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The Column Space of a Very Nilpotent Matrix

11379 [2008, 664]. Proposed by Oskar Maria Baksalary, Adam Mickiewicz Univer-
sity, Poznań, Poland, and Götz Trenkler, Technische Universität Dortmund, Dortmund,
Germany. Let A be a complex matrix of order n whose square is the zero matrix. Show
that R(A + A∗) = R(A) + R(A∗), where R(·) denotes the column space of a matrix
argument.

Solution by M. Andreoli, Miami Dade College, Miami, FL. Note first that A2 = 0
implies R(A) ⊆ N (A), where N (A) is the nullspace of A. This holds because y =
Ax implies Ay = A2x = 0.

For y ∈ R(A + A∗), there exists x such that y = (A + A∗)x = Ax + A∗x . Hence
y ∈ R(A) + R(A∗), and we conclude that R(A + A∗) ⊆ R(A) + R(A∗).

Conversely, for y ∈ R(A) + R(A∗), there exist vectors x1 and x2 such that y =
Ax1 + A∗x2. Since N (A∗) and R(A) are orthogonal complements in Cn , there exist
vectors u ∈ R(A) and v ∈ N (A∗) such that x1 − x2 = u + v. Since R(A) ⊆ N (A),
we have u ∈ N (A). Letting x = x1 − u = x2 + v, we have

(A + A∗)x = Ax + A∗x = A(x1 − u) + A∗(x2 + v)

= Ax1 − Au + A∗x2 + A∗v = Ax1 + A∗x2 = y.

Thus y ∈ R(A + A∗), and hence R(A) + R(A∗) ⊆ R(A + A∗).

Also solved by M. Bataille (France), P. Budney, R. Chapman (U. K.), P. Corn, C.-K. Fok, J. Freeman, J.-
P. Grivaux (France), J. Hartman, E. A. Herman, R. A. Horn, O. Kouba (Syria), C. Lanski, J. H. Lindsey II,
O. P. Lossers (Netherlands), R. Martin (Germany), I. Pinelis, É. Pité (France), N. C. Singer, J. H. Smith,
R. Stong, J. Stuart, F. Vrabec (Austria), BSI Problems Group (Germany), GCHQ Problem Solving Group
(U. K.), and the proposers.

A Generalized Binomial Coefficient

11380 [2008, 665]. Proposed by Hugh Montgomery, University of Michigan, Ann
Arbor, MI, and Harold S. Shapiro, Royal Institute of Technology, Stockholm, Sweden.
For x ∈ R, let

(x
k

) = 1
k!

∏k−1
j=0(x − j). For k ≥ 1, let ak be the numerator and qk the de-

nominator of the rational number
(−1/3

k

)
expressed as a reduced fraction with qk > 0.

(a) Show that qk is a power of 3.
(b) Show that ak is odd if and only if k is a sum of distinct powers of 4.

Solution by Stephen M. Gagola Jr., Kent State University, Kent, OH. We prove more
generally that if m > 1 and m + 1 is a power of a prime p, and the rational number(−1/m

k

)
has numerator ak and denominator qk in lowest terms with qk > 0, then

(a′) all prime factors of qk divide m, and
(b′) p � ak if and only if k is a sum of distinct powers of m + 1.

The stated problem is the case m = 3, where p = 2.
(a′) For clarity, let ck = (−1/m

k

) = ak/qk . In the formal power series ring Q[[x]],

(1 + x)−1/m =
∞∑

k=0

ck xk . (1)

Therefore,

∞∑
k=0

(−1)k xk = (1 + x)−1 =
( ∞∑

k=0

ck xk

)m

=
∞∑

k=0

∑
ci1 · · · cim xk, (2)
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where the inner sum extends over all m-tuples (i1, . . . , im) of nonnegative integers
summing to k. Exactly m such m-tuples have k as an entry. Equating coefficients of xk

in (2) then yields

mck +
∑

ci1 · · · cim = (−1)k, (3)

where the sum extends over m-tuples (i1, . . . , im) with sum k and entries less than k.
Let Rm = ⋃

i≥0(1/mi )Z. Note that Rm is the subring of Q consisting of all rational
numbers whose denominators factor into primes dividing m. Also, c0 = 1, so c0 ∈ Rm .
Since m is a unit of Rm , (3) yields ck ∈ Rm for all k, inductively. Thus (a′) follows.
(b′) View (1) and (2) above in the formal power series ring Rm[[x]]. We write
f (x) ≡ g(x) when f (x) − g(x) = ph(x) for some power series h(x) ∈ Rm[[x]].
Since f (x)p ≡ f (x p) for all f (x) ∈ Rm[[x]], also f (x)m+1 ≡ f (xm+1). Therefore,

∞∑
k=0

ck xk = (1 + x)−1/m = (1 + x)((1 + x)−1/m)m+1 = (1 + x)

( ∞∑
k=0

ck xk

)m+1

≡ (1 + x)

∞∑
k=0

ck x (m+1)k =
∞∑

k=0

(ck x (m+1)k + ck x (m+1)k+1). (4)

We conclude that ck ≡ 0 mod p if k is not congruent to 0 or 1 modulo m + 1, and the
same holds for ak .

Note that c0 = 1 and c1 = −1/m ≡ 1 mod p. Hence p divides neither a0 nor a1. For
k > 1, if m + 1 divides k or k − 1, then write k = (m + 1)k ′ + ε, where ε ∈ {0, 1}.
Note that k is a sum of distinct powers of m + 1 if and only if k ′ is. The congruence in
(4) implies that ck ≡ ck′ mod p, and (b′) follows by induction.

Also solved by R. Chapman (U. K.), H. Chen, P. Corn, P. P. Dályay (Hungary), Y. Dumont (France), E. Errthum,
S. M. Gagola Jr., J. H. Lindsey II, O. P. Lossers (Netherlands), J. Minkus, M. A. Prasad (India), B. Schmuland
(Canada), N. C. Singer, J. H. Smith, A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), Z. Vörös (Hun-
gary), BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), NSA Problems Group, and
the proposers.

Convergence of a Prime-denominated Series

11384 [2008, 757]. Proposed by Moubinool Omarjee, Lycée Jean-Lurçat, Paris,
France. Let pn denote the nth prime. Show that

∞∑
n=1

(−1)�√n�

pn

converges.

Solution by Greg Martin, University of British Columbia, Vancouver, CA. Let SN =∑N
n=1

(−1)�
√

n�
pn

. It suffices to show that the subsequence {SM2−1 : M ≥ 1} converges,

since SN is between SM2−1 and S(M+1)2−1 for N between M2 − 1 and (M + 1)2 − 1.
However, SM2−1 = ∑M

m=2 Tm , where

Tm =
m2−1∑

n=(m−1)2

(−1)�√n�

pn
= (−1)m−1

m2−1∑
n=(m−1)2

1

pn
.
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Since {Tm : m ≥ 1} alternates in sign, it suffices to show that lim Tm = 0, by the alter-
nating series test. Using the crude inequality pn > n, we obtain

|Tm| <

m2−1∑
n=(m−1)2

1

n
<

1

(m − 1)2

m2−1∑
n=(m−1)2

1 = 2m − 1

(m − 1)2
,

and thus lim Tm = 0.
A similar proof works if the sequence of primes is replaced by an arbitrary sequence

q satisfying qn/
√

n → ∞.

Editorial comment. Many solvers used detailed information about the distribution of
the prime numbers, but the proof above shows that this is unnecessary.

Also solved by R. Bagby, H. Chen, P. P. Dályay (Hungary), Y. Dumont (France), V. V. Garcia (Spain), S. James
(Canada), O. Kouba (Syria), K. Y. Li (China), J. Oelschlager, P. Perfetti (Italy), É. Pité (France), Á. Plaza
(Spain), C. R. Pranesachar (India), M. T. Rassias (Greece), V. Schindler (Germany), B. Schmuland (Canada),
N. C. Singer, A. Stadler (Switzerland), R. Stong, T. Tam, R. Tauraso (Italy) & M. Lerma, D. B. Tyler, J. Vinuesa
(Spain), Z. Vörös (Hungary), GCHQ Problem Solving Group (U. K.), and the proposer.

Capturing Eigenvalues in an Interval

11387 [2008, 758]. Proposed by Oskar Maria Baksalary, Adam Mickiewicz Univer-
sity, Poznań, Poland, and Götz Trenkler, Technische Universität Dortmund, Dortmund,
Germany. Let Cn,n denote the set of n × n complex matrices. Determine the shortest
interval [a, b] such that if P and Q in Cn,n are nonzero orthogonal projectors, that is,
Hermitian idempotent matrices, then all eigenvalues of P Q + Q P belong to [a, b].
Solution I by O. P. Lossers, Eindhoven University of Technology, Einhoven, The
Netherlands. The eigenvalues of P Q + Q P lie in [− 1

4 , 2]. The matrix P + Q is Her-
mitian, and hence there is an orthonormal basis of its eigenvectors. The eigenvalues
of P + Q are real and in [0, 2], since |(P + Q)x | ≤ |Px | + |Qx | ≤ 2|x |. The matrix
P Q + Q P equals (P + Q)2 − (P + Q) and thus has the same eigenvectors as P + Q,
with eigenvalues of the form λ2 − λ with 0 ≤ λ ≤ 2. It follows that the eigenvalues of
P Q + Q P lie in [−1/4, 2].

The maximum is attained when P and Q both equal the identity matrix, while the
minimum is attained for the projections on two lines intersecting at an angle of π/3.

Solution II by Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, FL.
Since |(P Q + Q P)x | ≤ |P Qx | + |Q Px | ≤ 2|x | for all x , the eigenvalues are at most
2. For the lower bound, write X ≥ Y if X and Y are Hermitian and X − Y is positive
semidefinite. Note that

0 ≤
(

P + Q − 1

2
I

)2

= P2 + Q2 + 1

4
I + P Q + Q P − P − Q = 1

4
I + P Q + Q P.

It follows that P Q + Q P ≥ − 1
4 I , and therefore each eigenvalue of P Q + Q P is at

least − 1
4 .

For the extreme cases, taking P = Q = I gives the largest eigenvalue 2. Setting

P = [ 1
0

0
0

]
and Q = 1

4

[
1√
3

√
3

3

]
yields − 1

4 as an eigenvalue.

Editorial comment. The part P Q + Q P ≥ − 1
4 I of this problem appeared in F. Zhang,

Linear Algebra: Challenging Problems for Students (2nd ed.), Johns Hopkins Univer-
sity Press, Baltimore, 2009, p. 81.
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Also solved by R. Chapman (U. K.), J. Freeman, J.-P. Grivaux (France), J. Hartman, E. A. Herman, O. Kouba
(Syria), T. Laffey & H. Šmigoc (Ireland), J. H. Lindsey II, M. Omarjee (France), R. Stong, S. E. Thiel,
N. Thornber, Szeged Problem Solving Group “Fejéntaláltuka” (Hungary), GCHQ Problem Solving Group
(U. K.), and the proposers.

Distinct Multisets with the Same Pairwise Sums

11389 [2008, 758]. Proposed by Elizabeth R. Chen and Jeffrey C. Lagarias, Univer-
sity of Michigan, Ann Arbor, MI. Given a multiset A = {a1, . . . , an} of n real num-
bers (not necessarily distinct), define the sumset S(A) of A to be {ai + a j : 1 ≤ i <

j ≤ n}, a multiset with n(n − 1)/2 not necessarily distinct elements. For instance, if
A = {1, 1, 2, 3}, then S(A) = {2, 3, 3, 4, 4, 5}.
(a) When n is a power of 2 with n ≥ 2, show that there are two distinct multisets A1

and A2 such that S(A1) = S(A2).
(b) When n is a power of 2 with n ≥ 4, show that if r distinct multisets A1, . . . , Ar all
have the same sumset, then r ≤ n − 2.
(c*) When n is a power of 2 with n ≥ 4, can there be as many as 3 distinct multisets
with the same sumset?

(Distinct multisets are known to have distinct sumsets when n is not a power of 2.)

Solution by BSI Problems Group, Bonn, Germany.
(a) We recursively construct multisets Am and Bm of size 2m for m ≥ 0. For m ≥ 0,
choose arbitrary positive cm . Let A0 = {0} and B0 = {c0}. For m > 0, let Am =
Am−1 ∪ {b + cm : b ∈ Bm−1} and Bm = Bm−1 ∪ {a + cm : a ∈ Am−1}. Inductively,
|Am| = |Bm | = 2m and S(Am) = S(Bm). Also min Am = 0 < min Bm , which yields
Am 
= Bm .

(b) First we prove three claims. Let A = {a1, . . . , an} with a1 ≤ · · · ≤ an , and let
S(A) = {s1, . . . , sn(n−1)/2} with s1 ≤ · · · ≤ sn(n−1)/2.

Claim 1: a2 + a3 ∈ {s3, . . . , sn}. Since a1 + a2 ≤ a1 + a3 ≤ a2 + a3, we have a2 +
a3 ≥ s3. Also, the only sums that can be strictly smaller than a2 + a3 are {a1 + ai : 2 ≤
i ≤ n}. Thus a2 + a3 ≤ sn .

Claim 2: Let B = {b1, . . . , bn} with b1 ≤ · · · ≤ bn. If a1 = b1 and S(A) = S(B),
then A = B. We prove ai = bi by induction on i . Let A(i) = {a1, . . . , ai } and B(i) =
{b1, . . . , bi }. If A(i − 1) = B(i − 1), then a1 + ai and b1 + bi are both minimal among
S(A) − S(A(i − 1)). Thus ai+1 = bi+1.

Claim 3: Let B = {b1, . . . , bn} with b1 ≤ · · · ≤ bn. If a2 + a3 = b2 + b3 and
S(A) = S(B), then A = B. Since the two smallest sums from the two sets are
equal, a1 + a2 = s1 = b1 + b2 and a1 + a3 = s2 = b1 + b3. With the hypothesis
a2 + a3 = b2 + b3, we have a1 = b1. Claim 2 now applies.

Given these claims, let A1, . . . , An−1 be multisets of size n having the same sum-
set. Write Ak = {a(k)

1 , . . . , a(k)
n } with a(k)

1 ≤ · · · ≤ a(k)
n . By Claim 1, there are at most

n − 2 values for the sum of the second and third smallest elements. By the pigeonhole
principle, there exist distinct k and l such that a(k)

2 + a(k)

3 = a(l)
2 + a(l)

3 . By Claim 3,
Ak = Al . Thus at most n − 2 multisets can have the same sumset.

(c) The answer is yes. Let A = {0, 4, 4, 4, 6, 6, 6, 10}, B = {2, 2, 2, 4, 6, 8, 8, 8}, and
C = {1, 3, 3, 3, 7, 7, 7, 9}. With exponents denoting multiplicity, S(A), S(B), and
S(C) all equal {4(3), 6(3), 8(3), 10(10), 12(3), 14(3), 16(3)}.
Editorial comment. The GCHQ Problem Solving Group solved part (a) by letting A1

be the set of nonnegative integers less than 2n whose binary expansion has an even
number of ones and setting A2 = {0, 1, . . . , 2n − 1} − A1. This results from the con-
struction given above by setting cm = 2m .
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For part (c), Daniele Degiorgi gave the example A = {0, 6, 7, 9, 11, 13, 14, 20},
B = {1, 5, 6, 8, 12, 14, 15, 19}, and C = {2, 4, 5, 9, 11, 15, 16, 18}, showing that it
can be solved with sets (i.e., multisets with no repeated elements).

It remains open whether there are quadruples of multisets of size greater than 2
with the same sumset, or whether there are triples of multisets of any size greater than
2 other than 8 with the same sumset. Richard Stong showed that the search for such
triples can be restricted to multisets whose size is an odd power of 2.

Also solved by D. Degiorgi (Switzerland), R. Stong, and the GCHQ Problem Solving Group (U. K.). Parts (a)
and (b) solved also by O. P. Lossers (Netherlands), M. A. Prasad (India), Microsoft Research Problems Group,
and the proposers.

Tetrahedral Cevians

11405 [2009, 82]. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Let P be
an interior point of a tetrahedron ABCD. When X is a vertex, let X ′ be the intersection
of the opposite face with the line through X and P . Let X P denote the length of the
line segment from X to P .
(a) Show that P A · P B · PC · P D ≥ 81P A′ · P B ′ · PC ′ · P D′, with equality if and
only if P is the centroid of ABC D.
(b) When X is a vertex, let X ′′ be the foot of the perpendicular from P to the plane of
the face opposite X . Show that P A · P B · PC · P D = 81P A′′ · P B ′′ · PC ′′ · P D′′ if
and only if the tetrahedron is regular and P is its centroid.

Solution by Kit Hanes, Bellingham, WA. We will consider the more general case of an
n-simplex with vertices A0, . . . , An. Let P be a point in the interior, and let A′

i be the
point where the line Ai P meets the face opposite Ai . We will show that

∏n
k=0 P Ak ≥

nn+1
∏n

k=0 P A′
k , with equality if and only if P is the centroid of the simplex. Let P =

a0 A0 + · · · + an An where a0 + · · · + an = 1 and each ai is positive. For each j , A′
j is

a convex combination of the Ai with A j omitted and P is a convex linear combina-
tion of A j and A′

j . Hence P = a j A j + (1 − a j )A′
j . Hence P A j/P A′

j = (1 − a j )/a j .
The inequality of (a) is equivalent to

∏n
j=0(1 − a j ) ≥ nn+1

∏n
j=0 a j . This inequality

follows by applying the arithmetic-geometric mean inequality

1 − a j

n
= a0 + · · · + â j + · · · + an

n
≥ n

√
a0 . . . â j . . . an

to each term separately and taking the product. (Here, the hats indicate that the hatted
term is to be skipped.) Equality holds if and only if all the ai are equal, and hence
ai = 1/(n + 1) for all i and P is the centroid of the simplex. For part (b), note that
P A′

i ≥ P A′′
i with equality if and only if A′

i = A′′
i , i.e., if and only if the line P Ai is

an altitude of the simplex. Hence the stated equality holds exactly when P is both the
centroid and the orthocenter of the simplex. That this is equivalent to the simplex being
regular is half of Problem 11087 from this MONTHLY, December, 2005.

Editorial comment. Part (a) of this problem is the generalization from triangles to
tetrahedra of Problem 11325, this MONTHLY, November, 2007.

Also solved by S. Amghibech (Canada), M. Bataille (France), M. Can, R. Chapman (U. K.), P. P. Dályay
(Hungary), O. Geupel (Germany), M. Goldenberg & M. Kaplan, J. Grivaux (France), K. Hanes, J. G. Heuver
(Canada), B.-T. Iordache (Romania), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), J. Schaer
(Canada), R. Stong, M. Tetiva (Romania), Z. Vörös (Hungary), M. Vowe (Switzerland), GCHQ Problem Solv-
ing Group (U. K.), and the proposer.
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with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Submitted solutions should arrive
at that address before March 31, 2011. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11501. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. (Cor-
rection) Let

g(z) = 1 − 3
1

1−az + 1
1−i z + 1

1+i z

.

Show that the coefficients in the Taylor series expansion of g about 0 are all nonnega-
tive if and only if a ≥ √

3.

11530. Proposed by Pál Peter Dályay, Szeged, Hungary. Let A be an m × m matrix
with nonnegative entries ai, j and with the property that there exists a permutation σ

of {1, . . . , m} for which
∏m

i=1 ai,σ (i) ≥ 1. Show that the union over n ≥ 1 of the set of
entries of An is bounded if and only if some positive power of A is the identity matrix.

11531. Proposed by Nicuşor Minculete, “Dimitrie Cantemir” University, Brasov, Ro-
mania. Let M be a point in the interior of triangle ABC and let λ1, λ2, λ3 be positive
real numbers. Let Ra , Rb, and Rc be the circumradii of triangles M BC , MC A, and
M AB, respectively. Show that

λ2
1 Ra + λ2

2 Rb + λ2
3 Rc ≥ λ1λ2λ3

( |M A|
λ1

+ |M B|
λ2

+ |MC |
λ3

)
.

(Here, for V = A, B, C , |MV | denotes the length of the line segment MV . )

11532. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Ro-
mania, and Vicenţiu Rădulescu, Institute of Mathematics “Simon Stoilow” of the
Romanian Academy, Bucharest, Romania. Find all prime numbers p such that there
exists a 2 × 2 matrix A with integer entries, other than the identity matrix I , for which
Ap + Ap−1 + · · · + A = pI .

doi:10.4169/000298910X521724
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11533. Proposed by Erwin Just (emeritus), Bronx Community College of the City Col-
lege of New York, Bronx, NY. Let t be a positive integer and let R be a ring, not neces-
sarily having an identity element, such that x + x2t+1 = x2t + x10t+1 for each x in R.
Prove that R is a Boolean ring, that is, x = x2 for all x in R.

11534. Proposed by Christopher Hillar, Mathematical Sciences Research Institute,
Berkeley, CA. Let k and n be positive integers with k < n. Characterize the n × n
real matrices M with the property that for all v ∈ Rn with at most k nonzero entries,
Mv also has at most k nonzero entries.

11535. Proposed by Marian Tetiva, Bı̂rlad, Romania. Let f be a continuously differ-
entiable function on [0, 1]. Let A = f (1) and let B = ∫ 1

0 x−1/2 f (x) dx . Evaluate

lim
n→∞ n

(∫ 1

0
f (x) dx −

n∑
k=1

(
k2

n2
− (k − 1)2

n2

)
f

(
(k − 1)2

n2

))

in terms of A and B.

11536. Proposed by Mihaly Bencze, Brasov, Romania. Let K , L , and M denote the
respective midpoints of sides AB, BC , and C A in triangle ABC, and let P be a point
in the plane of ABC other than K , L , or M . Show that

|AB|
|P K | + |BC |

|P L| + |C A|
|P M| ≥ |AB| · |BC | · |C A|

4|P K | · |P L| · |P M| ,
where |U V | denotes the length of segment U V .

SOLUTIONS

The Number of k-cycles in a Random Permutation

11378 [2008, 664]. Proposed by Daniel Troy (Emeritus), Purdue University–Calumet,
Hammond, IN. Let n be a positive integer, and let U1, . . . , Un be random variables
defined by one of the following two processes:

A: Select a permutation of {1, . . . , n} at random, with each permutation of equal
probability. Then take Uk to be the number of k-cycles in the chosen permutation.

B: Repeatedly select an integer at random from {1, . . . , M} with uniform distribu-
tion, where M starts at n and at each stage in the process decreases by the value
of the last number selected, until the sum of the selected numbers is n. Then take
Uk to be the number of times the randomly chosen integer took the value k.

Show that the probability distribution of (U1, . . . , Un) is the same for both processes.

Solution by O.P. Lossers, Eindhoven University of Technology, Netherlands. First we
introduce a standard notation for the permutations: in each cycle put the lowest num-
ber in front, and list the cycles with the first elements in decreasing order. Next we
count the permutations of n objects where the last cycle has length k. The last cycle
starts with 1, and the other k − 1 elements are arbitrary, in any order. Hence there are
(n − 1)!/(n − k)! ways to fill the last cycle, and then the permutation can be completed
in (n − k)! ways. Hence the number of permutations in which the last cycle has length
k is (n − 1)!, independent of k. It follows that the length of the last cycle is uniformly
distributed, and the remaining cycles are produced by the same process on the remain-
ing n − k elements. Hence the production of cycle lengths from back to front under
process A emulates process B.
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Editorial comment. Erich Bach noted that the use of process B to generate the cycle
lengths of random permutations has appeared before, such as in E. Bach, Exact Anal-
ysis of a Priority Queue Algorithm for Random Variate Generation, Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA), 1994, 48–56.

Also solved by E. Bach, D. Beckwith, R. Chapman (U. K.), S. J. Herschkorn, J. H. Lindsey II, R. Martin
(Germany), J. H. Nieto (Venezuela), M. A. Prasad (India), K. Schilling, J. H. Smith, P. Spanoudakis (U. K.),
R. Stong, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), and the proposer.

When HI = IO

11398 [2008, 948]. Proposed by Stanley Huang, Jiangzhen Middle School, Huaining,
China. Assume acute triangle ABC has its middle-sized angle at A. Suppose further
that the incenter I is equidistant from the circumcenter O and the orthocenter H . Show
that angle A has measure 60 degrees and that the circumradius of I BC is the same as
that of ABC.

Composite solution by the Editors. The restriction to acute triangles appears to be
unnecessary.

V. V. Garcia (Huelva, Spain) pointed to Problem E2282, this MONTHLY, April
1972, pp. 397–8, where it is shown that (excepting only equilateral triangles, for
which I O = 0, and not excluding right or obtuse triangles) H I/I O is (1) less than 1,
(2) equal to 1, or (3) greater than 1, according as the middle-sized angle of the triangle
is (1) greater than, (2) equal to, or (3) less than 60◦. Geometrically, this means that
with respect to the perpendicular bisector λ of the Euler segment, I is (1) on the H
side of λ, (2) on λ, or (3) on the O side of λ. Thus when I is equidistant from O and
H , i.e., on λ, the middle-sized angle must be 60◦.

The second claim of this problem is too humble. Actually, when angle A has mea-
sure 60◦, the reflection C ′ of the circumcircle C of ABC across BC , which of course
has the same radius, contains not only I (making it the circumcircle of B I C) but also
O and H . A proof of this expanded claim was submitted to this MONTHLY in 1998 by
W. W. Meyer as part of a solution to Problem 10547. Here, we will give a proof based
on the solution by Jerry Minkus (San Francisco, CA): Let the angles at A, B, and C
be α, β, and γ , respectively. We have shown that α = 60◦.

Claim. I lies on C ′. Proof. Designate the midpoint of BC as M . Let P be the
point on the opposite side of BC from A at which the perpendicular bisector of BC
meets C. Triangles B P M and C P M are congruent, so arcs B P and C P are congruent.
Therefore angles B AP and C AP are congruent. Thus AP is the angle bisector of
B AC , and therefore AP contains I .

It is known that R2 − I O2 = 2Rr , which may also be observed by constructing the
diameter of C through I . Thus I A · I P = (R + O I ) · (R − O I ) = R2 − O I 2 = 2Rr .
Since I A = r/ sin(α/2), we have I P = 2R sin(α/2). Similarly, B P and C P are also
equal to 2R sin(α/2). Hence B, C , and I all lie on a circle about P . When Eα = 60◦,
the radius of that circle is R, because sin(60◦/2) = 1/2. Hence P is the reflection in
BC of O , and the circle just referenced containing B, C , and I is the circle C ′.

Claim. O lies on C ′. Proof. O and P are reflections of each other in BC .
Claim. H lies on C ′. Proof. Note that AH = 2R cos α. This may be seen by ex-

tending ray C O to meet C, say at Q. Then since C Q is a diameter, its length is 2R,
angle C B Q is right, and 
 B QC = 
 B AC = α, so B Q = 2R cos α. Now B Q is par-
allel to AH , and similarly, AQ is parallel to B H . Thus AH B Q is a parallelogram and
AH = B Q = 2R cos α. Here we have α = 60◦ and cos 60◦ = 1/2, so AH = R. We
may conclude that AO P H is a parallelogram, since AH is parallel to O P and of the
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same length. (It is in fact a rhombus.) It follows that P H = AO = R. Thus as claimed
H lies on C ′.

Editorial comment. The Blundon result from E2282 may be strengthened in an inter-
esting way due to Francisco Bellot Rosado (Spain), who submitted it to this MONTHLY

in 1998 as part of a solution to Problem 10547: Let G denote the centroid of the tri-
angle. The incenter I always lies inside the circle whose diameter is G H , because the
angle G I H is always obtuse. Since the perpendicular bisector λ of the Euler segment
O H divides the circle of Bellot Rosado into a larger and a smaller piece, I is (1) in the
larger piece, (2) on line λ, or (3) in the smaller piece, according as the middle-sized
angle of ABC is (1) greater than, (2) equal to, or (3) less than 60◦.

Also solved by M. Bataille (France), R. Chapman (U. K.), C. Curtis, Y. Dumont (France), D. Fleischman,
V. V. Garcia (Spain), D. Grinberg, J.-P. Grivaux (France), E. Hysnelaj (Australia) & E. Bojaxhiu (Albania), O.
Kouba (Syria), J. H. Lindsey II, J. Minkus, R. Stong, M. Tetiva (Romania), D. Vacaru (Romania), Z. Vörös
(Hungary), M. Vowe (Switzerland), J. B. Zacharias & K. Greeson, GCHQ Problem Solving Group (U. K.),
Microsoft Research Problems Group, and the proposer.

An Alternating Series

11409 [2009, 83]. Proposed by Paolo Perfetti, Mathematics Department, University
“Tor Vergata,” Rome, Italy. For positive real α and β, let

S(α, β, N ) =
N∑

n=2

n log(n)(−1)n
n∏

k=2

α + k log k

β + (k + 1) log(k + 1)
.

Show that if β > α, then limN→∞ S(α, β, N ) exists.

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA. Let
ωk = k log k. Write

an = ωn

n∏
k=2

α + ωk

β + ωk+1
= bn

n∏
k=3

(
1 − β − α

β + ωk

)
, where bn = (α + ω2)ωn

β + ωn+1
, (1)

and suppose β > α. We will prove that
∞∑

n=2

(−1)n an converges,

so limN→∞ S(α, β, N ) exists. By the alternating series test of Leibniz, and noting an >

0, it suffices to prove

(i) an+1/an < 1 for all sufficiently large n, and
(ii) an → 0 as n → ∞.

(i) From the definition of an in (1),

an+1

an
= ωn+1(α + ωn+1)

ωn(β + ωn+2)
,

so an+1/an < 1 is equivalent to ωn+1 α + (ω2
n+1 − ωn ωn+2) < ωn β. Calculation shows

ω2
n+1 − ωn ωn+2 = (log n)2 + log n + 1 + o(1). Because β > α and ωn+1 ∼ ωn =

n log n, the required result follows.
(ii) Because limn→∞ bn exists, to show limn→∞ an = 0 it suffices to show that the

infinite product
∞∏

k=3

(
1 − β − α

β + ωk

)
(2)
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diverges to zero. Recall that if 0 < ck < 1 for all k and
∑∞

k=1 ck diverges, then∏∞
k=1(1 − ck) diverges to 0. In the present case, the divergence of

∞∑
k=3

1

ωk
=

∞∑
k=3

1

k log k

shows that the infinite product in (2) diverges to 0. (That the sum diverges is well
known, as it follows from the integral test or Cauchy condensation test.)

Also solved by S. Amghibech (Canada), P. Bracken, R. Chapman (U. K.), P. P. Dályay (Hungary), D. Grinberg,
J. Grivaux (France), E. A. Herman, O. Kouba (Syria), J. H. Lindsey II, A. Stadler (Switzerland), R. Stong, M.
Tetiva (Romania), BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), and the proposer.

A Fix for a Triangle Inequality

11413 [2009, 179]. Proposed by Mihály Bencze, Brasov, Romania. Let θi for 1 ≤ i ≤ 5
be nonnegative, with

∑3
1 θi = π , θ4 = θ1, and θ5 = θ2. Let S = ∑3

i=1 sin θi . Show that

S ≤ 3
√

3

2
− 4 max

1≤i≤3

(
sin2

(
1

(4)
(θi − θi+1)

)
cos

(
1

2
θi+2

)
+ √

3 sin2

(
1

12
(π − 3θi+2)

))
.

Solution by Richard Stong, San Diego, CA. (The originally published statement had
a misprint, with “2” where “(4)” now stands.) If A, B, C ≥ 0 with A + B + C = π ,
then

S = sin A + sin B + sin C = 4 cos(A/2) cos(B/2) cos(C/2).

Hence

S + 4 sin2((A − B)/4) cos(C/2) = 4 cos2((A + B)/4) cos(C/2)

= 4 cos2(π − C)/4) cos(C/2).

Applying the identity

4 cos(x + 2y) cos2(x − y) + 8 sin2 y cos x = 4 cos3 x − 4 sin2 y cos(x − 2y)

with x = π/6 and y = (π − 3C)/12, we have

4 cos
C

2
cos2 π − C

4
+ 4

√
3 sin2 π − 3C

12
= 3

√
3

2
− 4 sin2 π − 3C

12
cos

2π − 3C

6

or, combined with the above,

S + 4 sin2 A − B

4
cos

C

2
+ 4

√
3 sin2 π − 3C

12
= 3

√
3

2
− 4 sin2 π − 3C

12
cos

2π − 3C

6
.

Since 0 ≤ C ≤ π , the last cosine is nonnegative, and hence

S + 4 sin2 A − B

4
cos

C

2
+ 4

√
3 sin2 π − 3C

12
≤ 3

√
3

2
.

Apply this result three times, taking (A, B, C) to be (θ1, θ2, θ3), then (θ2, θ3, θ1), and
finally (θ3, θ1, θ2), to obtain the desired result.

Editorial comment. Some solvers corrected the problem by showing that it holds as
originally printed but with the inequality reversed.
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Also solved by R. Bagby, P. P. Dályay (Hungary), J. H. Lindsey II, GCHQ Problem Solving Group (U. K.),
and Microsoft Research Problems Group.

Blundon’s Inequality Improved

11414 [2009, 179]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Let ABC be a triangle with largest angle at A, let A also
denote the measure of that angle, let c = cot(A/2), and let s, r , and R be the semi-
perimeter, inradius, and circumradius of the triangle, respectively. Show that Blundon’s
Inequality s ≤ 2R + r(3

√
3 − 4) can be strengthened to

s ≤ 2R + r

(
3
√

3 − 4 − (
√

3 − c)3

4c

)
.

Solution by Oliver Geupel, Brühl, NRW, Germany.

Lemma. If a, b, c are positive real numbers such that a + b + c = abc and c =
min{a, b, c}, then (a − 1)(b − 1)(c − 1) ≤ 6

√
3 − 10 − (

√
3 − c)3/(2c).

Proof. Note that ba = (abc)/c > (abc)/(a + b + c) = 1, and similarly bc > 1 and
ca > 1. Thus at most one of the numbers a, b, c can be less than 1. Hence a ≥ 1 and
b ≥ 1. The equality a + b + c = abc yields c = (a + b)/(ab − 1). We must show that
if a, b ≥ 1 and ab > 1, then f (a, b) ≤ 0, where

f (a, b) = (a − 1)(b − 1)

(
a + b

ab − 1
− 1

)
− (6

√
3 − 10) −

(√
3(ab − 1) − (a + b)

)3

2(ab − 1)2(a + b)
.

Put a = 1 + x and b = 1 + y with x, y ≥ 0, and rewrite the function as

f (1 + x, 1 + y) = −2(x + y + 2)(x + y + xy)
(
x2 y2

+(6
√

3 − 12)xy + (6
√

3 − 10)(x + y)
)

.

Observe x + y ≥ 2
√

xy and substitute t = √
xy to reduce the inequality to p(t) ≥ 0

for all t ≥ 0, where p(t) = t4 + (6
√

3 − 12)t2 + (12
√

3 − 20)t . This follows from the
factorization p(t) = t (t − (

√
3 − 1))2(t + 2

√
3 − 2).

In triangle ABC, the numbers a = cot(A/2), b = cot(B/2), and c = cot(C/2) sat-
isfy a + b + c = s/r = abc, ab + bc + ca = (4R + r)/r , and c = min{a, b, c}. By
the lemma,

s = r

2

[
(a − 1)(b − 1)(c − 1) + ab + bc + ca + 1

]

≥ r

2

(
6
√

3 − 10 − (
√

3 − c)3

2c
+ 4R + r

r
+ 1

)

= 2R + r

(
3
√

3 − 4 − (
√

3 − c)3

4c

)
.

Equality holds if and only if the triangle is equilateral.
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Editorial comment. Richard Stong proved the stronger inequality

s ≤ 2R + r

(
3
√

3 − 4 − 9(2 − √
3 )

8

(
√

3 − c)2

c2

)
.

Also solved by J. H. Lindsey II, C. R. Pranesachar (India), R. Stong, GCHQ Problem Solving Group (U. K.),
and the proposer.

Closed-Form Definite Integral

11416 [2009, 180]. Proposed by Yaming Yu, University of California Irvine, Irvine,
CA. Let f be the decreasing function on (0, ∞) that satisfies

f (x)e− f (x) = xe−x .

(To visualize, draw a graph of the function xe−x and a horizontal line that is tangent to
it or crosses it at two points; if one of these points is x , then the other is f (x).) Show
that ∫ ∞

0
x−1/6( f (x))1/6 dx = 2π2

3
.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. From the definition of f , we have f (x)/x = e f (x)−x . Writing u =
f (x)/x and eliminating f (x) gives x = log u/(u − 1), so that as x increases from
0 to ∞, u decreases from ∞ to 0. The integral to be computed, call it A, can then
be written as A = ∫ ∞

0 uα(x) dx (with α = 1/6). Integrating first by parts and then
changing variables from x to u in the resulting integral gives

A =
∫ ∞

x=0
uα(x) dx = xuα(x)

∣∣∣∞
x=0

+ α

∫ ∞

u=0

uα−1 log u

u − 1
du.

Here we could refer to Gradshteyn & Ryzhik (formula 4.254.1) and Abramowitz &
Stegun (formula 6.4.7). In this special case, though, there is a simpler solution. For
0 < α < 1 the integral converges. The first term on the right-hand side is zero because
it is equal to uα log(u)/(u − 1)|0u=∞. Split the second term into two parts:

−α

∫ 1

0

uα−1 log u

1 − u
du + α

∫ ∞

1

uα−2 log u

1 − 1/u
du.

Expand (1 − u)−1 and (1 − 1/u)−1 as geometric series, then integrate:

α

∞∑
n=0

1

(n + α)2
+ α

∞∑
n=1

1

(n + 1 − α)2
.

Using the Hurwitz zeta function notation ζ(s, a) = ∑∞
n=0(n + a)−s , for arbitrary

α in (0, 1) this can be written as α(ζ(2, α) + ζ(2, 1 − α)). Starting with the known
fact that ζ(2) = ζ(2, 1) = π2/6, elementary calculations give ζ(2, 1/2) = 3ζ(2) and
ζ(2, 1/3) + ζ(2, 2/3) = 8ζ(2), so that ζ(2, 1/6) + ζ(2, 5/6) is given by

6∑
k=1

ζ(2, k/6) −
2∑

k=1

ζ(2, k/3) − ζ(2, 1/2) − ζ(2, 1) = (36 − 8 − 3 − 1)ζ(2) = 4π2.

The required sum is thus 4απ2 = 2π2/3.
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Also solved by R. Bagby, D. Beckwith, P. Bracken, B. S. Burdick, P. Corn, L. Gerber, M. L. Glasser, J. Grivaux
(France), E. A. Herman, F. Holland & T. Carroll (Ireland), K. McInturff, O. G. Ruehr, V. Rutherfoord, R. Stong,
J. B. Zacharias, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), Microsoft Research
Problems Group, and the proposer.

An Integral-Derivative Inequality

11417 [2009, 180]. Proposed by Cezar Lupu (student), University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanţa, Roma-
nia. Let f be a continuously differentiable real-valued function on [0, 1] such that∫ 2/3

1/3 f (x) dx = 0. Show that
∫ 1

0 ( f ′(x))2 dx ≥ 27
(∫ 1

0 f (x) dx
)2

.

Solution by Moubinool Omarjee, Paris, France. Let h(x) be the continuous, piecewise
linear function given by

h(x) =

⎧⎪⎨
⎪⎩

−x, 0 ≤ x ≤ 1/3,

2x − 1, 1/3 ≤ x ≤ 2/3,

1 − x, 2/3 ≤ x ≤ 1.

Integrating by parts gives

∫ 1

0
h(x) f ′(x) dx =

∫ 1

0
f (x) dx − 3

∫ 2/3

1/3
f (x) dx =

∫ 1

0
f (x) dx,

and we compute that

∫ 1

0
h(x)2 dx = 1

27
.

Hence the Cauchy-Schwarz inequality applied to h and f ′ reads

∫ 1

0
( f ′(x))2 dx ≥ 27

(∫ 1

0
f (x) dx

)2

,

as desired.

Editorial comment. Several solvers remarked that this problem generalizes with
essentially the same proof. In the simplest form, suppose that φ(x) is an inte-
grable function with

∫ 1
0 φ(x) dx = 1, and define h(x) = −x + ∫ x

0 φ(t) dt and C =∫ 1
0 h(x)2 dx . For any continuously differentiable real-valued function f on [0, 1] such

that
∫ 1

0 f (x)φ(x) dx = 0, one has

C
∫ 1

0
( f ′(x))2 dx ≥

(∫ 1

0
f (x) dx

)2

.

More generally, this holds with φ(x) dx replaced by a signed Borel measure.

Also solved by K. F. Andersen (Canada), R. Chapman (U. K.), P. P. Dályay (Hungary), P. J. Fitzsimmons,
O. Geupel (Germany), J. Grivaux (France), G. Keselman, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), D. S. Ross, R. Tauraso (Italy), P. Venkataramana, E. I. Verriest, FAU Problem Solving Group,
GCHQ Problem Solving Group (U. K.), St. John’s University Problem Solving Group, and the proposers.
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Gamma Products

11426 [2009, 365]. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY.
Find

�(1/14)�(9/14)�(11/14)

�(3/14)�(5/14)�(13/14)
,

where � denotes the usual gamma function, given by �(z) = ∫ ∞
0 t z−1e−t dt .

Solution by Matthew A. Carlton, Cal Poly State University, San Luis Obispo, CA. The
multiplication formula for the gamma function may be written as

�(z) = 2
√

π · 2−2z · �(2z)

�(z + 1/2)
.

Apply this with z equal to each of the six values in the original expression, e.g.

�(1/14) = 2
√

π · 2−1/7 · �(1/7)

�(4/7)
.

The numerator of the original expression can then be written

(2
√

π )3 · 2−1/7−9/7−11/7 · �(1/7)�(9/7)�((11/7)

�(4/7)�(8/7)�(9/7)

= 8π3/2 · 1

8
· �(1/7) · 4/7�(4/7)

�(4/7) · 1/7�(1/7)
= 4π3/2.

Similarly, the denominator simplifies to 2π3/2. Thus the quotient is 2.

Editorial comment. Some solvers provided generalizations. The most interesting and
complete was from Albert Stadler (Switzerland). Let p be an odd prime, and denote
the Legendre symbol by

(
k
p

)
. Then

p∏
k=1

�

(
2k − 1

2p

)(
2k−1

p

)
=

⎧⎪⎨
⎪⎩

1, if p ≡ 1 (mod 8),
ε(p)h(p), if p ≡ 5 (mod 8),

2− ∑p−1
k=1

(
k
p

)
k
p , if p ≡ 7 (mod 8),

(∗)

where ε(p) denotes the fundamental unit and h(p) the class number of the real
quadratic field Q(

√
p ). The case p ≡ 3 (mod 8) was not resolved. The fundamental

unit ε(p) = (x + y
√

p )/2 is a solution of Pell’s equation x2 − py2 = 4 with the
property that both x and y are positive and y is minimal. The result asked for here is
the case p = 7. Other examples (p = 5, 13, 17):

�(1/10)�(9/10)

�(3/10)�(7/10)
= 3 + √

5

2
,

�(1/26)�(3/26)�(9/26)�(17/26)�(23/26)�(25/26)

�(5/26)�(7/26)�(11/26)�(15/26)�(19/26)�(21/26)
= 11 + 3

√
13

2
,

�(1/34)�(9/34)�(13/34)�(15/34)�(19/34)�(21/34)�(25/34)�(33/34)

�(3/34)�(5/34)�(7/34)�(11/34)�(23/34)�(27/34)�(29/34)�(31/34)
= 1.

Since the values in (∗) are algebraic numbers, we have a corollary: If p is an odd prime

≡ 3 (mod 8), then the p − 1 numbers �((2k − 1)/(2p)), 1 ≤ k ≤ p, k 
= (p − 1)/2,
are algebraically dependent.
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Also solved by Z. Ahmed & M. A. Prasad (India), K. F. Andersen (Canada), R. Bagby, B. Bauldry, D. Beck-
with, P. Bracken, M. A. Carlton, R. Chapman (U. K.), H. Chen, C. K. Cook, P. Costello, P. P. Dályay (Hungary),
F. Flores & F. Mawyer, M. R. Gopal, D. Gove, G. C. Greubel, D. Grinberg, J. Grivaux (France), J. A. Grze-
sik, C. C. Heckman, E. A. Herman, D. Hou, R. Howard, E. Hysnelaj (Australia) & E. Bojaxhiu (Albania), G.
Keselman, T. Konstantopoulis (U. K.), O. Kouba (Syria), V. Krasniqi (Kosova), H. Kwong, G. Lamb, O. P.
Lossers (Netherlands), R. Martin (Germany), K. McInturff, A. Nijenhuis, O. Padé (Israel), R. Padma (India),
C. R. Pranesachar (India), H. Riesel (Sweden), I. Rusodimos, O. A. Saleh & S. Byrd, A. S. Shabani (Kosova),
M. A. Shayib, N. C. Singer, A. Stadler (Switzerland), R. Stong, T. Tam, R. Tauraso (Italy), Z. Vörös (Hun-
gary), M. Vowe (Switzerland), Z. Wenlong (China), Con Amore Problem Group (Denmark), GCHQ Problem
Solving Group (U. K.), Microsoft Research Problems Group, NSA Problems Group, and the proposer.

An Equilateral Condition

11427 [2009, 365]. Proposed by Viorel Bǎndilǎ, C.A. Rosetti High School, Bucharest,
Romania. In a triangle ABC, let m be the length of the median from A, l the length
of the angle bisector from B, and h the length of the altitude from C . Let a, b, and
c be the lengths of the edges opposite A, B, and C , respectively. Show that ABC is
equilateral if and only if a2 + m2 = b2 + l2 = c2 + h2.

Solution by Bianca-Teodora Iordache, student,“Carol I” High School, Craiova, Ro-
mania. If ABC is equilateral, then a = b = c and m = l = h, so the equations hold.
We must prove the converse. Let ma , la , and ha denote the lengths of the median, angle
bisector, and altitude, respectively, corresponding to the edge a, and define similar no-
tation for edges b and c. We must prove that

a2 + m2
a = b2 + l2

b = c2 + h2
c �⇒ a = b = c.

Claim 1. a2 + m2
a ≤ b2 + m2

b ⇐⇒ a ≤ b. Indeed,

a2 + m2
a = a2 + 2(b2 + c2) − a2

4
= 3a2 + 2b2 + 2c2

4
.

Hence a2 + m2
a ≤ b2 + m2

b ⇐⇒ 3a2 + 2b2 + 2c2 ≤ 3b2 + 2a2 + 2c2 ⇐⇒ a2 ≤
b2 ⇐⇒ a ≤ b.

Claim 2. a2 + h2
a ≤ b2 + h2

b ⇐⇒ a ≤ b. Using ha = 2S/a, where S is the area of
ABC, we have a2 + h2

a = a2 + 4S2/a2, so

a2 + h2
a ≤ b2 + h2

b ⇐⇒ (b2 − a2)
a2b2 − 4S2

a2b2
≥ 0 ⇐⇒ b ≥ a.

Also recall that ha ≤ la ≤ ma and similarly for b, c. Next suppose that a2 + m2
a =

b2 + l2
b = c2 + h2

c . We have a2 + m2
a = c2 + h2

c ≤ c2 + m2
c , so a ≤ c from Claim 1.

We have c2 + h2
c = b2 + l2

b ≥ b2 + h2
b, so b ≤ c by Claim 2. From the Heron formula,

16S2 = (a + b + c)(−a + b + c)(a − b + c)(a + b − c) = 2
∑

a2b2 − ∑
a4, using∑

for sums over cyclic permutations of the triangle. Now a2 + m2
a = c2 + h2

c so

3a2 + 2b2 + 2c2

4
= c2 + 2

∑
a2b2 − ∑

a4

4c2
,

so c2(3a2 + 2b2 − 2c2) = 2(a2b2 + b2c2 + c2a2) − (a4 + b4 + c4) and thus

c2(c2 − a2) = (b2 − a2)2. (1)

Since c2 ≥ b2 > b2 − a2 and c2 − a2 ≥ b2 − a2, for equality in (1) we must have
c2 − a2 = b2 − a2 = 0. This shows a = c and a = b as required.

Also solved by R. Bagby, M. Bataille (France), H. Caerols (Chile), R. Chapman (U. K.), G. Crandall, P. P.
Dályay (Hungary), D. Fleischman, D. Gove, J. Grivaux (France), O. Kouba (Syria), J. H. Lindsey II, J.
McHugh, J. Minkus, M. A. Prasad (India), A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), Z. Vörös
(Hungary), GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Submitted solutions should arrive
at that address before April 30, 2011. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11537. Proposed by Lang Withers, Jr., MITRE, McClean, VA. Let p be a prime and a
be a positive integer. Let X be a random variable having a Poisson distribution with
mean a, and let M be the pth moment of X . Prove that M ≡ 2a (mod p).

11538. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania. Prove that a finite commutative ring in which every element can
be written as a product of two (not necessarily distinct) elements has a multiplicative
identity.

11539. Proposed by William C. Jagy, MSRI, Berkeley, CA. Let E be the set of all
positive integers not divisible by 2 or 3 or by any prime q represented by the quadratic
form 4u2 + 2uv + 7v2. (Thus, the first few members of E are 1, 5, 11, 17, 23, and 25.)
Show that 4x2 + 2xy + 7y2 + z3 is not in {2n3, −2n3, 32n3, −32n3} for n ∈ E and
x, y, z ∈ Z.

11540. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let n be an integer greater than 1, other than 4. Let p and q be positive
integers less than n and relatively prime to n. Let a = cos(2πp/n)

cos(2πq/n)
. Show that if ak is

rational for some positive integer k, then ak is either 1 or −1.

11541. Proposed by Nicuşor Minculete, “Dimitrie Cantemir” University, Brasov, Ro-
mania. Let M be a point in the interior of triangle ABC . Let Ra , Rb, and Rc be the
circumradii of triangles M BC , MC A, and M AB, respectively. Let |M A|, |M B|, and
|MC | be the distances from M to A, B, and C . Show that

|M A|
Rb + Rc

+ |M B|
Ra + Rc

+ |MC |
Ra + Rb

≤ 3

2
.

11542. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Vicenţiu Rădulescu, Institute of Mathematics “Simion Stoilow” of the Ro-
manian Academy, Bucharest, Romania. Show that for x, y, z > 1, and for positive

doi:10.4169/000298910X523434
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α, β, γ ,

(2x2 + yz)�(x) + (2y2 + zx)�(y) + (2z2 + xy)�(z)

≥ (x + y + z)(x�(x) + y�(y) + z�(z)),

and

B(x, α)x2+2yz B(y, β)y2+2zx B(z, γ )z2+2xy

≥ (B(x, α)B(y, β)B(z, γ ))xy+yz+zx .

Here, B(x, α) is Euler’s beta function, defined by B(x, α) = ∫ 1
0 t x−1(1 − t)α−1dt .

11543. Proposed by Richard Stong, Center for Communications Research, San Diego,
CA. Let x, y, z be positive numbers with xyz = 1. Show that (x5 + y5 + z5)2 ≥ 3(x7 +
y7 + z7).

SOLUTIONS

A Euclidean Path

11390 [2008, 855]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann
Arbor, MI. Let G be the undirected graph on the vertex set V of all pairs (a, b) of
relatively prime integers, with edges linking (a, b) to (a + kab, b) and (a, b + kab)

for all integers k.
(a) Show that for all (a, b) in V , there is a path joining (a, b) and (1, 1).
(b)∗ Call an edge linking (a, b) to (a + kab, b) or (a, b + kab) positive if k > 0, and
negative if k < 0. Let the reversal number of a path from (1, 1) to (a, b) be one more
that the number of sign changes along the path, and let the reversal value of (a, b)

be the minimal reversal number over all paths from (1, 1) to (a, b). Are there pairs of
arbitrarily high reversal value?

Solution by M. D. Meyerson and M. E. Kidwell, U.S. Naval Academy.
(a) Suppose first that a and b are positive; we may assume that a < b. Let c = b − a.
Note that b and c are relatively prime (if d divides both, then it also divides a); hence
there are integers m and n such that mb + nc = 1. We may choose m positive and n
negative, since increasing m by c and decreasing n by b does not change mb + nc. We
can link (a, b) to (a, c) via two negative edges, since (a, b − mab) = (a, b − a(1 −
nc)) = (a, b − a + nac) = (a, c + nac). We can similarly link (b, a) to (c, a) via two
negative edges. By the Euclidean algorithm, we can thus reach (1, 1) via only negative
edges.

If ab = 0 then there is a negative edge from one of (−1, 1), (1, −1), or (1, 1) to
(a, b).

If exactly one of {a, b} is negative, then we can add (−2)ab to the negative compo-
nent of (a, b) to reach a pair with positive components via a negative edge, followed
by linking as above to (1, 1). If both a and b are negative, then to make at least one
coordinate positive we must use a sufficiently large positive multiple of their prod-
uct, after which we can reach (1, 1) via only negative edges. This process misses four
points, (0, ±1) and (±1, 0), which can easily be linked to (1, 1) via at most two edges.

(b)∗ By the process in part (a), we can reach (1, 1) via only negative edges unless a
and b are both negative, in which case we only need to use one positive edge to start
after which we can reach (1, 1) using only negative edges. Thus there is always a path
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from (a, b) to (1, 1) with reversal number at most 2, so there are no pairs (a, b) of
arbitrarily high reversal value.

Editorial comment. The sign of an edge is well defined; if the link can be viewed from
both ends, then the corresponding choices for k are equal and thus have the same sign.

Both parts also solved by P. Corn, K. Schilling, B. Schmuland (Canada), R. Stong, A. Vorobyov, and the Texas
State University Problem Solvers Group. Part (a) also solved by D. Klyve & C. Storm, M. A. Prasad (India),
GCHQ Problem Solving Group (U.K.), Microsoft Research Problems Group, and the proposer.

A Congruence for Vanishing Modular Sums

11391 [2008, 855]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Let p be a positive prime and s a positive integer. Let n
and k be integers such that n ≥ k ≥ ps − ps−1, and let x1, . . . , xn be integers. For
1 ≤ j ≤ n, let m j be the number of expressions of the form xi1 + · · · + xi j with
1 ≤ i1 < · · · < i j ≤ n that evaluate to 0 modulo p, and let n j denote the number
of such expressions that do not. (Set m0 = 1 and n0 = 0.) Apart from the cases
(s, k) = (1, p − 1) and s = p = k = 2, show that

k∑
j=0

(−1) j

(
n − k + j

j

)
mk− j ≡ 0 (mod ps),

and show that the same congruence holds with nk− j in place of mk− j .

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove a much stronger statement. Let X = {x1, . . . , xn}, and let q j be the number of
j-element subsets of X whose sum is congruent to a modulo p. For n ≥ k ≥ 1 +
s(p − 1), we prove that

k∑
j=0

(−1) j

(
n − k + j

j

)
qk− j ≡ 0 (mod ps), (1)

except in the excluded cases. The desired result for mk− j is the case a = 0, and the
result for nk− j follows by summing the remaining residue classes.

We first show that it suffices to prove the case n = k, which reduces to

k∑
j=0

(−1) j qk− j ≡ 0 (mod ps) (2)

for k ≥ 1 + s(p − 1). Assume (2), then, and let [n] denote {1, . . . , n}. For S ⊆ [n],
let S∗ = {T ⊆ S : ∑

i∈T xi ≡ a (mod p)}. For general n and k, (2) implies, modulo
ps ,

0 ≡
∑
S⊆[n]
|S|=k

(
k∑

j=0

(−1) j
∑
T ∈S∗

|T |=k− j

1

)
≡

k∑
j=0

(−1) j
∑

T ∈[n]∗
|T |=k− j

∑
T ⊆S⊆[n]

|S|=k

1

≡
k∑

j=0

(−1) j
∑

T ∈[n]∗
|T |=k− j

(
n − (k − j)

j

)
≡

k∑
j=0

(−1) j

(
n − k + j

j

)
qk− j .

This proves that (1) follows from (2). To prove (2), we work in the ring Z[t]/(t p − 1),
where t p = 1. In this ring, let

f (t) =
∏
x∈X

(1 − t x) = (1 − t)k
∏
x∈X

(1 + t + · · · + t x−1).
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The terms in the expansion of f have the form (−1)|Y | ∏
y∈Y t y , where Y ⊆ X . For

fixed a, (−1) j q j is the contribution to the coefficient of ta in the expansion of f due
to Y of size j and sum congruent to a mod p, and

∑k
j=0(−1) j q j = [ta] f (t). We now

show that each coefficient of f is a multiple of ps , from which (2) follows. To see that
each coefficient is a multiple of ps , we show that when k > (p − 1)s, every coefficient
of (1 − t)k is a multiple of ps .

First we construct a polynomial h(t) such that (1 − t)p = p · (1 − t)h(t). For p = 2
we have (1 − t)2 = 1 − 2t + t2 = 2 − 2t = 2(1 − t). For odd p, we have

(1 − t)p = 1 +
p−1∑
k=1

(
p

k

)
(−1)kt k − t p =

(p−1)/2∑
k=1

(
p

k

)
(−1)kt k(1 − t p−2k)

= p · (1 − t)
(p−1)/2∑

k=1

(
p

k

)
/p(−1)k t k(1 + t + · · · + t p−2k−1).

Now induction on s and the previous result imply when k > s(p − 1) that (1 − t)k =
ps · (1 − t)k−s(p−1)hs(t) for some polynomial hs(t).

Also solved by R. Chapman (U.K.), D. Grinberg, J. H. Lindsey II, and the proposer.

Runs Versus Isolated Heads in Coin Tossing

11394 [2008, 856]. Proposed by K. S. Bhanu, Institute of Science, Nagpur, India, and
M. N. Deshpande, Nagpur, India. A fair coin is tossed n times, with n ≥ 2. Let R be
the resulting number of runs of the same face, and X the number of isolated heads.
Show that the covariance of the random variables R and X is n/8.

Solution by Michael Andreoli, Miami Dade College, Miami, FL. Define binary n-
tuples U and V by letting Uk = 1 if and only if an isolated head occurs at toss k,
and Vk = 1 if and only if a run begins at toss k. Now X = ∑

k Uk and R = ∑
k Vk .

Because E(Uk) = P(Uk = 1), we have E(U1) = E(Un) = 1/4 and E(Uk) = 1/8 for
2 ≤ k ≤ n − 1. Similarly, E(V1) = 1 and E(Vk) = 1/2 for 2 ≤ k ≤ n. It follows that
E(X) = (n + 2)/8 and E(R) = (n + 1)/2.

Because E(Ui Vj ) = P(Ui = 1 and Vj = 1), we obtain
• E(U1V1) = E(U1V2) = 1/4 and E(U1Vj ) = 1/8 for 3 ≤ j ≤ n;
• E(Un V1) = E(Un Vn) = 1/4 and E(Un Vj ) = 1/8 for 2 ≤ j ≤ n − 1; and
• for 2 ≤ i ≤ n − 1 and 1 ≤ j ≤ n,

E(Ui Vj ) =
{

1/8 if j ∈ {1, i, i + 1};
1/16 otherwise.

Therefore,

E(X R) =
n∑

i=1

n∑
j=1

E(Ui Vj ) =
n∑

j=1

E(U1Vj ) +
n−1∑
i=2

n∑
j=1

E(Ui Vj ) +
n∑

j=1

E(Un Vj )

= n + 2

8
+ (n − 2)(n + 3)

16
+ n + 2

8
= n2 + 5n + 2

16
.

It follows that

Cov(X R) = E(X R) − E(X)E(R) = n2 + 5n + 2

16
− n + 2

8
· n + 1

2
= n

8
.
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Also solved by D. Beckwith, M. A. Carlton, N. Caro (Brazil), R. Chapman (U.K.), M. P. Cohen, C. Curtis,
P. J. Fitzsimmons, N. Grivaux (France), C. C. Heckman, S. J. Herschkorn, G. Keselman, J. H. Lindsey II,
K. McInturff, E. Orney & S. Van Gulck (Belgium), A. Plaza & J. J. Gonzalez (Spain), M. A. Prasad (India),
R. Pratt & E. Lada, K. Schilling, B. Schmuland (Canada), A. Stadler (Switzerland), J. H. Steelman, R. Stong,
R. Tauraso (Italy), Armstrong Problem Solvers, GCHQ Problem Solving Group (U.K.), Microsoft Research
Problems Group, and the proposer.

Finite Subgroups of Continuous Bijections of [0,1]

11395 [2008, 856]. Proposed by M. Farrokhi D.G., University of Tsukuba, Tsukuba
Ibakari, Japan. Prove that if H is a finite subgroup of the group G of all continuous
bijections of [0, 1] to itself, then the order of H is 1 or 2.

Solution by Jeffrey Bergen, DePaul University, Chicago, IL. If g ∈ G, then g is contin-
uous and injective. Hence g is monotonic, by the intermediate value theorem. There-
fore, either (i) g(0) = 0 and g(1) = 1 or (ii) g(0) = 1 and g(1) = 0.

Set g2 = g ◦ g and gn+1 = g ◦ gn for n > 1. If g(0) = 0 and g(a) > a for some a ∈
[0, 1], then the sequence a, g(a), g2(a), . . . is increasing. Similarly, if g(0) = 0 and
g(a) < a, then a, g(a), g2(a), . . . is decreasing. Therefore, if g(0) = 0 and g(x) 
= x
for some x ∈ [0, 1], then g does not have finite order. We conclude that if g ∈ H and
g(0) = 0, then g is the identity map.

Next, if f1, f2 ∈ H with f1(0) = f2(0) = 1, then f1 ◦ f2 ∈ H with f1 ◦ f2(0) = 0.
Our previous argument shows that f1 ◦ f2(x) = x , and so both f2 and f1 are inverses
of f1. Since inverses are unique in a group, it follows that f1 = f2. As a result, H
contains at most one element other than the identity map, and so H has order either 1
or 2, as claimed.

Also solved by M. Barr (Canada), M. Bataille (France), D. R. Bridges, P. Budney, B. S. Burdick, N. Caro
& F. Valenzuela (Brazil), R. Chapman (U.K.), L. Comerford, P. Corn, P. P. Dályay (Hungary), D. Grinberg,
J. P. Grivaux (France), K. Hanes, E. A. Herman, S. P. Herschkorn, E. J. Ionascu, J. Konienczny, O. Kouba
(Syria), J. Kujawa & K. Shankar, J. H. Lindsey II, O. P. Lossers (Netherlands), A. Magidin, R. Martin (Ger-
many), S. Metcalfe, V. Pambuccian, J. W. Pfeffer, E. Pité (France), J. Schaer (Canada), B. Schmuland (Canada),
N. C. Singer, V. Stakhovsky, J. H. Steelman, R. Stong, T. Tam, M. Tetiva (Romania) J. Vinuesa (Venezuela),
G. Wene, M. Wildon (UK), N. Wodarz, Armstrong Problem Solvers, BSI Problems Group (Germany), Szeged
Problem Group “Fejéntaláltuka” (Hungary), GCHQ Problem Solving Group (U.K.), McDaniel College Prob-
lems Group, Microsoft Research Problems Group, Missouri State University Problem Solving Group, North-
western University Math Problem Solving Group, NSA Problems Group, and the proposer.

A Riemann (Zeta) Sum

11400 [2008, 948]. Proposed by Paul Bracken, University of Texas–Pan American,
Edinburg, TX. Let ζ be the Riemann zeta function. Evaluate

∑∞
n=1

ζ(2n)

n(n+1)
in closed

form.

Solution by Oliver Guepel, Brühl, NRW, Germany. The sum is log(2π) − 1
2 . Since

summation of absolutely convergent series can be interchanged, we have

∞∑
n=1

ζ(2n)

n(n + 1)
=

∞∑
n=1

∞∑
k=1

1

k2nn(n + 1)

= 1 +
∞∑

k=2

∞∑
n=1

1

n

(
1

k2

)n

−
∞∑

k=2

(
k2

∞∑
n=1

1

n + 1

(
1

k2

)n+1
)
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= 1 −
∞∑

k=2

log

(
1 − 1

k2

)
+

∞∑
k=2

(
1 + k2 log

(
1 − 1

k2

))

= 1 + lim
n→∞

n∑
k=2

[
1 + (k2 − 1) (log(k + 1) − 2 log k + log(k − 1))

]
.

With f (n) = n2 − 1 and g(n) = log n, this last line can be written as

1 + lim
n→∞

n∑
k=2

(1 + f (k)(g(k + 1) − 2g(k) + g(k − 1))).

Now put h(n) = f (n − 1)g(n) − f (n)g(n − 1). In general, h(n + 1) − h(n) =
f (n)(g(n + 1) − 2g(n) + g(n − 1)) − g(n)( f (n + 1) − 2 f (n) + f (n − 1)). Here,
the second difference of f is identically 2, so

f (n)(g(n + 1) − 2g(n) + g(n − 1)) = h(n + 1) − h(n) + 2 log n.

Thus

1 +
n∑

k=2

(1 + f (k)(g(k + 1) − 2g(k) + g(k − 1)))

= n +
n∑

k=2

(h(k + 1) − h(k) + 2 log k) = n + h(n + 1) − h(2) + 2 log(n!)

= n + (n2 − 1) log(n + 1) − (n2 + 2n) log n + 2 log(n!).
A straightforward application of Stirling’s formula yields log 2π − 1

2 as the limit. It
also follows now from

∞∑
n=1

ζ(2n)

n(2n + 1)
= log 2π − 1

(this MONTHLY 94 (1987), p. 467) that we have the rational sum

∞∑
n=1

ζ(2n)

(n + 1)(2n + 1)
= 1

2
.

Also solved by K. F. Andersen (Canada), R. Bagby, M. Bataille (France), D. Beckwith, B. S. Burdick, R. Chap-
man (U.K.), H. Chen, P. Corn, G. Crandall, P. P. Dályay (Hungary), B. E. Davis, Y. Dumont (France), O. Fur-
dui (Romania), M. L. Glasser, G. C. Greubel, J. Grivaux (France), N. Grossman, J. A. Grzesik, E. Hysnelaj
(Australia) & E. Bojaxhiu (Albania), G. Keselman, O. Kouba (Syria), G. Lamb, O. P. Lossers (Netherlands),
K. McInturff, M. Omarjee (France), P. Perfetti (Italy), E. Pité (France), Á. Plaza & S. Falcón (Spain), C. Po-
hoata (Romania), M. A. Prasad (India), P. R. Refolio (Spain), O. G. Ruehr, V. Rutherfoord, B. Schmuland
(Canada), N. C. Singer, S. Singh, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. R. Teske, M. Tetiva
(Romania), J. Vinuesa (Spain), M. Vowe (Switzerland), BSI Problems Group (Germany), GCHQ Problem
Solving Group (U.K.), Microsoft Research Problems Group, NSA Problems Group, and the proposer.

A Characterization of the Identity Matrix

11401 [2008, 949]. Proposed by Marius Cavachi, “Ovidius” University of Constanţa,
Constanţa, Romania. Let A be a nonsingular square matrix with integer entries. Sup-
pose that for every positive integer k, there is a matrix X with integer entries such that
X k = A. Show that A must be the identity matrix.
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Solution by Microsoft Research Problems Group, c/o Peter Montgomery, Redmond,
WA. For k ∈ N, let Xk be an integer matrix such that X k

k = A. Let p be a prime that
does not divide det A. Viewing Xk mod p as an element of the general linear group G
over the field Fp, Legendre’s theorem implies that X |G|

k ≡ I mod p for all k. Setting
k = |G| yields A = X |G|

|G| ≡ I mod p. That is, all entries of A − I are divisible by p.
Since there are infinitely many choices for p, we obtain A = I .

Also solved by P. Budney, N. Caro (Brazil), R. Chapman (U.K.), P. P. Dályay (Hungary), D. Grinberg, J. Gri-
vaux (France), E. A. Herman, J. Konieczny, K. Koo, T. Laffey & H. Šmigoc (Ireland), J. H. Lindsey II,
O. P. Lossers (Netherlands), A. Nakhash, S. Pierce, E. Pité (France), C. Pohoata (Romania), V. Rutherfo-
ord, R. A. Simon (Chile), N. C. Singer, R. Stong, T. Tam, M. Tetiva (Romania), T. Thomas (U.K.), Z. Vörös
(Hungary), J. Young, GCHQ Problem Solving Group (U.K.), NSA Problems Group, and the proposer.

A Double Factorial Sum

11406 [2009, 82]. Proposed by A. A. Dzhumadil’daeva, Almaty, Republics Physics and
Mathematics School, Almaty, Kazakhstan. Let n!! denote the product of all positive
integers not greater than n and congruent to n mod 2, and let 0!! = (−1)!! = 1. Thus,
7!! = 105 and 8!! = 384. For positive integer n, find

n∑
i=0

(
n

i

)
(2i − 1)!! (2(n − i) − 1)!!

in closed form.

Solution I by Kenneth F. Andersen, University of Alberta, Edmonton, Alberta, Canada.
The sum is 2nn!. To see this, let f (x) = (1 − 2x)−1/2 and g(x) = (1 − 2x)−1 for |x | <

1/2. Induction shows that the i th derivatives of f and g are given by

f (i)(x) = (2i − 1)!! (1 − 2x)−1/2−i

g(i)(x) = 2i i ! (1 − 2x)−1−i
(3)

for each nonnegative integer i . In particular, f (i)(0) = (2i − 1)!!, so

n∑
i=0

(
n

i

)
(2i − 1)!! (2n − 2i − 1)!! =

n∑
i=0

(
n

i

)
f (i)(0) f (n−i)(0).

Since g = f 2, the Leibniz rule for the nth derivative of a product shows that the latter
sum is g(n)(0). In view of (3), this equals 2nn!.
Solution II by Ulrich Abel, University of Applied Sciences Giessen-Friedberg, Fried-
berg, Germany. First note that

n∑
i=0

(
2i

i

)(
2n − 2i

n − i

)
= [zn]

( ∞∑
i=0

(
2i

i

)
zi

)2

= [zn]((1 − 4z)−1/2)2 = 4n.

Using (2k − 1)!! = (2k)!/(2kk!), the original sum becomes

n∑
i=0

(
n

i

)
(2i)!
2i i !

(2n − 2i)!
2n−i (n − i)! = n! 2−n

n∑
i=0

(
2i

i

)(
2n − 2i

n − i

)
= n! 2−n4n = n! 2n.

Also solved by 65 other readers.
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Some Intermediate Value Variants

11429 [2009, 365]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanta, Roma-
nia. For a continuous real-valued function φ on [0, 1], let T φ be the function map-
ping [0, 1] → R given by T φ(t) = φ(t) − ∫ t

0 φ(u) du, and similarly define S by
Sφ(t) = tφ(t) − ∫ t

0 uφ(u) du. Show that if f and g are continuous real-valued func-
tions on [0, 1], then there exist numbers a, b, and c in (0, 1) such that each of the
following is true:

T f (a) = S f (a),

T g(b)

∫ 1

u=0
f (u) du = T f (b)

∫ 1

u=0
g(u) du,

Sg(c)
∫ 1

u=0
f (u) du = S f (c)

∫ 1

u=0
g(u) du.

Solution by Richard Stong, Center for Communications Research, San Diego, CA.

Lemma. If h is continuous on [0, α], and h(α) = 0, then there exists a ∈ (0, α) such
that h(a) = ∫ a

0 h(u) du.

Proof. Let H(t) = e−t
∫ t

0 h(u) du. Note that H(0) = 0, and H is continuously dif-
ferentiable with H ′(t) = e−t(h(t) − ∫ t

0 h(u) du). Thus it suffices to find an a ∈ (0, α)

with H ′(a) = 0. If no such a exists, then H(t) is monotone, and hence J (t) = H(t)2 is
monotone increasing and in particular J (α) > 0. This gives the contradiction J ′(α) =
2H(α)H ′(α) = −2e−2α

(∫ α

0 h(u) du
)2 = −2J (α)2 < 0.

Let F = ∫ 1
0 f (t) dt, G = ∫ 1

0 g(t) dt . Applying the lemma to h(t) = (1 − t) f (t)
with α = 1 gives a ∈ (0, 1) such that (1 − a) f (a) = ∫ a

0 (1 − u) f (u) du or T f (a) =
S f (a). Applying the lemma to h(t) = f (t)G − g(t)F , and noting that

∫ 1
0 h(t) dt = 0

implies the existence of some α ∈ (0, 1) with h(α) = 0, gives b ∈ (0, 1) such that

f (b)G − g(b)F =
∫ b

0
f (u) duG −

∫ b

0
g(u) duF,

or T f (b)G = T g(b)F . Applying the lemma to h(t) = t f (t)G − tg(t)F , and noting
that the α found in the previous case still works, gives c ∈ (0, 1) such that

c f (c)G − cg(c)F =
∫ c

0
u f (u) duG −

∫ c

0
ug(u) duF

or S f (c)G = Sg(c)F .

Also solved by K. F. Andersen (Canada), R. Bagby, R. Chapman (U.K.), W. J. Cowieson, P. P. Dályay (Hun-
gary), E. A. Herman, B.-I. Iordache (Romania), O. Kouba (Syria), J. H. Lindsey II, P. Perfetti (Italy), GCHQ
Problem Solving Group, and the proposers.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Submitted solutions should arrive
at that address before May 31, 2011. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11544. Proposed by Max A. Alekseyev, University of South Carolina, Columbia, SC,
and Frank Ruskey, University of Victoria, Victoria, BC, Canada. Prove that if m is a
positive integer, then

m−1∑
k=0

ϕ(2k + 1)

⌊
m + k

2k + 1

⌋
= m2.

Here ϕ denotes the Euler totient function.

11545. Proposed by Manuel Kauers, Research Institute for Symbolic Computation,
Linz, Austria, and Sheng-Lan Ko, National Taiwan University, Taipei, Taiwan. Find a
closed-form expression for

n∑
k=0

(−1)k

(
2n

n + k

)
s(n + k, k),

where s refers to the (signed) Stirling numbers of the first kind.

11546. Proposed by Kieren MacMillan, Toronto, Canada, and Jonathan Sondow, New
York, NY. Let d, k, and q be positive integers, with k odd. Find the highest power of 2

that divides
∑2d k

n=1 nq .

11547. Proposed by Francisco Javier Garcı́a Capitán, I.E.S Álvarez Cubero, Priego
de Córdoba, Spain, and Juan Bosco Romero Márquez, University of Valladolid, Spain.
Let the altitude AD of triangle ABC be produced to meet the circumcircle again at E .
Let K , L , M , and N be the projections of D onto the lines BA, AC, CE, and EB, and
let P , Q, R, and S be the intersections of the diagonals of DKAL, DLCM, DMEN, and
DNBK, respectively. Let |XY | denote the distance from X to Y , and let α, β, γ be the

doi:10.4169/amer.math.monthly.118.01.084
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radian measure of angles BAC, CBA, ACB, respectively. Show that PQRS is a rhombus
and that |QS|2/|PR|2 = 1 + cos(2β) cos(2γ )/sin2 α.

11548. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Roma-
nia, and Tudorel Lupu, Decebal High School, Constanta, Romania. Let f be a twice-
differentiable real-valued function with continuous second derivative, and suppose that
f (0) = 0. Show that ∫ 1

−1
( f ′′(x))2 dx ≥ 10

(∫ 1

−1
f (x) dx

)2

.

11549. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania. Determine all continuous functions f on R such that for all x ,

f ( f ( f (x))) − 3 f (x) + 2x = 0.

11550. Proposed by Stefano Siboni, University of Trento, Trento, Italy. Let G be a
point inside triangle ABC. Let α, β, γ be the radian measures of angles BGC, CGA,
AGB, respectively. Let O , R, S be the triangle’s circumcenter, circumradius, and area,
respectively. Let |XY| be the distance from X to Y . Prove that

|GA| · |GB| · |GC|(|GA| sin α + |GB| sin β + |GC| sin γ ) = 2S(R2 − |G O|2).

SOLUTIONS

A Consequence of Wolstenholme’s Theorem

11382 [2008, 665]. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,”
Rome, Italy. For k ≥ 1, let Hk be the kth harmonic number, defined by Hk = ∑k

j=1 1/j .
Show that if p is prime and p > 5, then

p−1∑
k=1

H 2
k

k
≡

p−1∑
k=1

Hk

k2
(mod p2).

(Two rationals are congruent modulo d if their difference can be expressed as a reduced
fraction of the form da/b with b relatively prime to a and d.)

Solution by Douglas B. Tyler, Raytheon, Torrance, CA. Let S = {1, 2, . . . , p − 1}. All
summations are over k ∈ S. Note that

3

(∑ Hk

k2
−

∑ H 2
k

k

)
=

∑ (
Hk − 1

k

)3

−
∑

H 3
k +

∑ 1

k3
.

Since Hk − 1
k = Hk−1, the right side telescopes to −H 3

p−1 + ∑ 1
k3 . Since p > 3, it

suffices to show that H 3
p−1 and

∑ 1
k3 are both congruent to 0 modulo p2.

Modulo p, the reciprocals of the elements of S form a permutation of S, so Hp−1 =∑
k−1 ≡ ∑

k = 1
2 p(p − 1) ≡ 0 (mod p). Thus H 3

p−1 ≡ 0 mod p3.
By reversing the index in one copy of the sum, modulo p2 we have

2
∑ 1

k3
=

∑ p3 − 3p2k + 3pk2

k3(p − k)3
≡

∑ 3pk2

k3(p − k)3
= 3p

∑ 1

k(p − k)3
.
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It remains to show
∑ 1

k(p−k)3 ≡ 0 mod p. This sum is congruent to
∑ 1

−k4 . Modulo p,
the reciprocals of the fourth powers of S form a permutation of the fourth powers of
S, so

∑ 1
k4 = ∑

k4 mod p. It is well known that the sum over S of the r th powers is a

polynomial of degree r + 1 in p. In fact,
∑

k4 = p5

5 − p4

2 + p3

3 − p
30 , easily proved by

induction. With no constant term, the polynomial has value 0 mod p when p > 5.

Editorial comment. That Hp−1 ≡ 0 mod p, and that
∑p−1

k=1 k−3 ≡ 0 mod p2, could have
been established by an appeal to Wolstenholme’s theorem.

Also solved by R. Chapman (U. K.), P. Corn, P. P. Dályay (Hungary), Y. Dumont (France), O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), M. A. Prasad (India), N. C. Singer, A. Stadler (Switzerland),
R. Stong, M. Tetiva (Romania), GCHQ Problem Solving Group (U. K.), and the proposer.

Groups with Arbitrarily Sparse Squares

11388 [2008, 758]. Proposed by M. Farrokhi D.G., University of Tsukuba, Tsukuba
Ibakari, Japan. Given a group G, let G2 denote the set of all squares in G. Show that
for each natural number n there exists a finite group G such that the cardinality of G
is n times the cardinality of G2.

Solution by Richard Stong, San Diego, CA. When G has odd order, every element is a
square, so |G|/|G2| = 1. For order 2, only the identity is a square, so |G|/|G2| = 2.

Let p be an odd prime, and let s be the largest integer such that p ≡ 1 mod 2s . The
multiplicative group (Z/pZ)∗ of nonzero congruence classes modulo p is cyclic of
order p − 1 and has an element a of order 2s . Hence a2s−1 ≡ −1 mod p, and no smaller
power of a satisfies this congruence. Now consider the group Hp with presentation

Hp = 〈x, y : x p = y2s+1 = 1, yxy−1 = xa〉.
Every element of this group can be written uniquely as xb yc for b ∈ Z/pZ and c ∈
Z/2s+1Z, and the multiplication law is

xb1 yc1 xb2 yc2 = xb1+ac1 b2 yc1+c2

with operations in the exponents of x and y taken mod p and mod 2s+1, respectively.
Setting b = b1 = b2 and c = c1 = c2, we see that the squares in Hp are precisely
the elements of the form xb(1+ac)y2c. Hence, if xβ yγ = (xb yc)2, then γ is even and
either c = γ /2 or c = γ /2 + 2s . Since a2s = 1, both possibilities give the same value
of 1 + ac. If γ 
= 2s (that is, if c 
= 2s−1), then 1 + ac is nonzero and all choices of
β give squares. If γ = 2s , then c = ±2s−1 and 1 + ac2 = 0, so only β = 0 gives a
square. Thus |H 2

p | = (2s − 1)p + 1. Note that p ≡ 1 + 2s mod 2s+1, so (2s − 1)p + 1
is indeed a multiple of 2s+1. Hence

|Hp|
|H 2

p |
= 2s+1 p

(2s − 1)p + 1
= p

rp
,

where rp is the integer ((2s − 1)p + 1)/(2s+1) and rp < p.
If G and H are finite, then the set of squares in G × H is G2 × H 2, so

|G × H |
|(G × H)2| = |G|

|G2| · |H |
|H 2| .

The result now follows by induction on n. We have given examples for n = 1 and
n = 2, so consider n ≥ 3. When n is even, let Gn/2 be an example with |Gn/2|/|G2

n/2| =
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n/2; now Gn/2 × Z/2Z is the desired example for Gn . When n is odd, let p be an odd
prime divisor of n, let m = nrn/p < n (with rn as above), and let Gm be an example
with |Gm |/|G2

m| = m. Now Gm × Hp is the desired example for Gn .

Also solved by A. J. Bevelacqua, R. Martin (Germany), L. Reid, D. B. Tyler, NSA Problems Group, and the
proposer.

A Nonexistent Ring

11407 [2009, 82]. Proposed by Erwin Just (emeritus), Bronx Community College of
the City University of New York, New York, NY. Let p be a prime greater than 3. Does
there exists a ring with more than one element (not necessarily having a multiplicative
identity) such that for all x in the ring,

∑p
i=1 x2i−1 = 0?

Solution by O.P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. We prove that no such ring R exists by showing that the assumption∑p

i=1 x2i−1 = 0 for all x yields R = {0}, contradicting the hypothesis that |R| ≥ 2.
Multiplying by x2 yields

∑p
i=1 x2i+1 = 0, and then x2p+1 = x by subtraction. Now

x4p = x2p−1x2p+1 = x2p−1x = x2p. We conclude that all positive even powers of x p

are equal. Next compute

0 =
p∑

i=1

(
x2p

)2i−1 =
p∑

i=1

x2(2i−1)p = px2p.

Since x2p+1 = x , we have px = px2p+1 = (
px2p

)
x = 0x = 0. Thus (x + x)p =

x p + x p. Now

2x = (2x)2p+1 = 2x[(x + x)p]2 = 2x(x p + x p)2 = 2x4x2p = 8x2p+1 = 8x .

Therefore, 6x = 8x − 2x = 0, and we already know that px = 0. Therefore, 0 =
gcd(6, p)x = x . Since x is an arbitrary element of R, it follows that R = {0}.
Also solved by E. P. Amendariz, N. Caro (Colombia), R. Chapman (U. K.), Y. Ge (Austria), D. Grinberg,
J. H. Lindsey II, A. Sh. Shabani (Kosova), R. Stong, C. T. Stretch (Ireland), N. Vonessen, FAU Problem
Solving Group, NSA Problem Group, and the proposer.

Summing to kth Powers

11408 [2009, 83]. Proposed by Marius Cavachi, “Ovidius” University of Constanţa,
Constanţa, Romania. Let k be a fixed integer greater than 1. Prove that there exists an
integer n greater than 1, and distinct integers a1, . . . , an all greater than 1, such that
both

∑n
j=1 a j and

∑n
j=1 ϕ(a j ) are kth powers of a positive integer. Here ϕ denotes

Euler’s totient function.

Solution by C. R. Pranesachar, Indian Institute of Science, Bangalore, India. We
first choose a and b such that 2a + 6b = (2k + 2)k and a + 2b = (2k)k , both kth
powers of integers. Solving the linear system yields a = 3(2k)k − (2k + 2)k =
2k(3kk − (k + 1)k) and b = 1

2 ((2k + 2)k − 2(2k)k) = 2k−1((k + 1)k − 2kk). Since
2 < (1 + 1

k )
k < 3 for k > 1, it follows that a and b are positive integers. Express the

even integers 2a and 2b as sums of distinct positive powers of 2:

2a = 2r1 + 2r2 + · · · + 2rl , 1 ≤ r1 < r2 < · · · < rl;
2b = 2s1 + 2s2 + · · · + 2sm , 1 ≤ s1 < s2 < · · · < sm .
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Let ai = 2ri for 1 ≤ i ≤ l and al+ j = 3 · 2s j for 1 ≤ j ≤ m. Let n = l + m, and
consider a1, . . . , an , which are clearly distinct. Note that

∑n
j=1 a j = 2a + 6b =

(2k + 2)k . Since ϕ(2r ) = 2r−1 and ϕ(3 · 2r ) = 2r ,

n∑
h=1

ϕ(ah) =
l∑

i=1

2ri −1 +
m∑

j=1

2si = a + 2b = (2k)k .

Editorial comment. The GCHQ Problem Solving Group used distinct powers of 3, dis-
tinct numbers of the form 3 · 2r , and distinct powers of 2 to show that there are distinct
numbers a1, . . . , an , all greater than 1, such that

∑n
j=1 a j = s and

∑n
j=1 φ(a j ) = t ,

provided that s/2 < t < 8s/15.

Also solved by P. P. Dályay (Hungary), A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), GCHQ
Problem Solving Group (U. K.), and the proposer.

An Inequality

11430 [2009, 366]. Proposed by He Yi, Macao University of Science and Technology,
Macao, China. For real x1, . . . , xn , show that

x1

1 + x2
1

+ x2

1 + x2
1 + x2

2

+ · · · + xn

1 + x2
1 + · · · + x2

n

<
√

n.

Solution by Kenneth F. Andersen, University of Alberta, Edmonton, AB, Canada. Let-
ting x0 = 1, we have

n∑
j=1

x2
j

(1 + x2
1 + · · · + x2

j )
2

≤
n∑

j=1

[
1

x2
0 + x2

1 + · · · + x2
j−1

− 1

x2
0 + x2

1 + · · · + x2
j

]

= 1 − 1

1 + x2
1 + · · · + x2

n

< 1.

The Cauchy–Schwarz inequality shows that, as required,

n∑
j=1

x j

1 + x2
1 + · · · + x2

j

≤
[

n∑
j=1

1

]1/2 [
n∑

j=1

x2
j

(1 + x2
1 + · · · + x2

j )
2

]1/2

<
√

n.

Editorial comment. This problem is known. (1) It was a Romanian proposal for the
IMO 2001; two solutions are on page 676 of The IMO Compendium (Springer, 2006).
(2) It was part of the Indian Team Selection Test for the 2002 IMO; a solution was
published in Crux Mathematicorum with Mathematical Mayhem 35 (2009) 98. (3) It
was Problem 1242 in Elementa der Mathematik 63 (2008) 103.

Also solved by A. Alt, M. S. Ashbaugh & S. G. Saenz (U.S.A. & Chile), R. Bagby, M. Bataille (France), D.
Borwein (Canada), P. Bracken, M. Can, R. Chapman (U. K.), H. Chen, L. Csete (Hungary), P. P. Dályay (Hun-
gary), J. Fabrykowski & T. Smotzer, O. Geupel (Germany), J. Grivaux (France), E. Hysnelaj & E. Bojaxhiu
(Australia & Albania), Y. H. Kim (Korea), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands),
J. Moreira (Portugal), P. Perfetti (Italy), C. Pohoata (Romania), M. A. Prasad (India), A. Pytel (Poland), H.
Ricardo, C. R. & S. Selvaraj, J. Simons (U. K.), A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), D.
Vacaru (Romania), E. I. Verriest, M. Vowe (Switzerland), A. P. Yogananda (India), GCHQ Problem Solving
Group (U. K.), Microsoft Research Problems Group, and the proposer.
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Shur and Definite

11431 [2009, 336]. Proposed by Finbarr Holland and Stephen Wills, University Col-
lege Cork, Cork, Ireland. A matrix is Schur invertible if all its entries are nonzero, and
the Schur inverse is the matrix obtained by taking the reciprocal of each entry. Show
that an n × n complex matrix A with all entries nonzero has the property that it and its
Schur inverse are both nonnegative definite if and only if there are nonzero complex
numbers a1, . . . , an such that for 1 ≤ j, k ≤ n, the ( j, k)-entry of A is a j ak .

Solution by Éric Pité, Paris, France. Let A be an n × n complex matrix with all entries
nonzero such that it and its Schur inverse are both nonnegative definite. Such an A
is a Gramian matrix, i.e., there exist v1, . . . , vn ∈ Cn such that a j,k = 〈v j , vk〉 for all
( j, k).

Using the Cauchy-Schwarz inequality, for 1 ≤ j, k ≤ n we have

|a j,k |2 ≤ ‖v j‖2‖vk‖2 = a j, j ak,k .

The Schur inverse is also Gramian, so 1/|a j,k |2 ≤ 1/(a j, j ak,k) as well. Hence in all
these applications of the Cauchy-Schwarz inequality we have equality. It follows that
the vectors v1, . . . , vn are all proportional. Hence we can write v j = a j u for some
common unit vector u and complex numbers a1, . . . , an and the ( j, k)-entry of A is
a j ak .

The converse is clear: if y is the vector (a1, . . . , an), then A = yyT and vT Av =
|〈y, v〉|2 ≥ 0, so A is nonnegative definite, and similarly for its Schur inverse.

Also solved by P. Budney, R. Chapman (U. K.), P. P. Dályay (Hungary), N. Grivaux (France), E. A. Herman,
O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), A. Muchlis (Indonesia), R. Stong, M. Tetiva
(Romania), Con Amore Problem Group (Denmark), and the proposer.

Interior Evaluation and Boundary Evaluation

11432 [2009, 463]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Let P be a polynomial of degree n with complex coeffi-
cients and with P(0) = 0. Show that for any complex α with |α| < 1 there exist com-
plex numbers z1, . . . , zn+2, all of norm 1, such that P(α) = P(z1) + · · · + P(zn+2).

Solution I by O. P. Lossers, Technical University of Eindhoven, Eindhoven, The Nether-
lands. We prove something stronger. Given α we prove the existence of z1, . . . , zn+2

such that |z j | = 1 and zk
1 + · · · + zk

n+2 = αk for 1 ≤ k ≤ n. Thus, for every polynomial
P of degree n with P(0) = 0, we have P(α) = ∑n+2

j=1 P(z j ).
To any list of numbers (z1, . . . , zn+2) we associate the polynomial Q given by

Q(z) = ∏n+2
k=1(z − z j ), and numbers πk given by πk = ∑n+2

j=1 zk
j . The numbers πk and

the coefficients c j in the expansion Q(z) = ∑n+2
j=0(−1) j c j zn+2− j are related by the

Newton identities: c0 = 1, and

k(−1)kck + πkc0 − πk−1c1 + · · · + (−1)k−1π1ck−1 = 0 for 1 ≤ k ≤ n + 2.

We want πk = αk for 1 ≤ k ≤ n. This can only happen if c1 = α and c j = 0 for
2 ≤ j ≤ n. We must therefore choose Q(z) of the form zn+2 − αzn+1 + Az + B. We
take Q(z) = zn+2 − αzn+1 − αz + 1. With this choice of Q, each z j satisfies zn+1 =
(αz − 1)/(z − α). The expression on the right side of this equation is the value at z of
a Möbius transformation that maps the inside of the unit disk to the outside and vice
versa, so |z j | = 1 for 1 ≤ j ≤ n + 2.

Solution II by Richard Stong. We prove something stronger. If k is any integer ≥
2, then there exist z1, . . . , zk of norm 1 with P(α) = P(z1) + · · · + P(zk). Let B =
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{P(z) : |z| = 1} and F = {P(z) : |z| ≤ 1}. Both sets are closed and bounded, and since
P is an open map (L. Ahlfors, Complex Analysis, Corollary 1, p. 132), the boundary
∂ F of F is a subset of B. Also, F and B are both path connected, since both are the
continuous image of a path connected set.

Lemma. For any p, q ∈ F there exist w, z ∈ B such that p + q = w + z.

Proof. Let m = 1
2 (p + q). It will suffice to show that B ∩ (2m − B) 
= ∅, because

given w ∈ B ∩ (2m − B), we make take z = 2m − w and have w, z ∈ B with w + z =
2m = p + q. Observe next that ∂(2m − F) ⊆ (2m − B). Now ∂(F ∪ (2m − F)) 
=
∅. If ∂ F ∩ ∂(2m − F) 
= ∅, we are done. Otherwise, after replacing u by 2m − u if
necessary, we may assume the existence of u such that u ∈ ∂ F , u /∈ 2m − F . Thus
u ∈ B, u /∈ 2m − F , 2m − u ∈ ∂(2m − F), and 2m − u /∈ F . On the other hand,
p ∈ F ∩ (2m − F) because 2m − p = q. Since 2m − F is path connected, there is
a path in 2m − F from 2m − u to p. Since 2m − u /∈ F and p ∈ F , there is a v

along the path such that v ∈ ∂ F , whence v ∈ (2m − F) ∩ B. Finally, since B too is
path connected, there is a path in B from u /∈ 2m − F to v, and it contains a w in
∂(2m − F). This puts w ∈ (2m − B) ∩ B.

Now taking p = P(α) and q = P(0) = 0 in the lemma, we get P(α) = P(z1) +
P(w), where z1 and w have norm 1. Next, taking p = P(w) and q = 0, we get
P(w) = P(z2) + P(w′), where again z2 and w′ have norm 1. Continuing in this way,
we see that for any k ≥ 2 we can write P(α) = P(z1) + · · · + P(zk) with all z j of
norm 1.

Also solved by R. Chapman (U. K.), O. Kouba (Syria), J. Schaer (Canada), J. Simons (U. K.), GCHQ Problem
Solving Group (U. K.), and the proposer.

A Triangle Inequality

11435 [2009, 463]. Proposed by Panagiote Ligouras, Leonardo da Vinci High School,
Noci, Italy. In a triangle T , let a, b, and c be the lengths of the sides, r the inradius,
and R the circumradius. Show that

a2bc

(a + b)(a + c)
+ b2ca

(b + c)(b + a)
+ c2ab

(c + a)(c + b)
≤ 9

2
r R.

Solution by Chip Curtis, Missouri State Southern University, Joplin, MO. Write K
for the area of T and s for the semiperimeter. Then r = K/s and R = abc/(4K ), so
r R = abc/(4s) = abc/(2(a + b + c)). The claimed inequality is equivalent to

abc

[
a

(a + b)(a + c)
+ b

(b + c)(b + a)
+ c

(c + a)(c + b)

]
≤ 9abc

4(a + b + c)

which simplifies to (a2b + a2c + b2a + b2c + c2a + c2b) ≥ 6abc . In this last form,
it follows from the AM–GM inequality.

Editorial comment. The problem was published with a misprint: 9/4 in place of 9/2.
We regret the oversight.

Also solved by A. Alt, R. Bagby, M. Bataille (France), E. Braune (Austria), M. Can, R. Chapman (U. K.),
L. Csete (Hungary), P. P. Dályay (Hungary), S. Dangc, V. V. Garcı́a (Spain), M. Goldenberg & M. Kaplan,
M. R. Gopal, D. Grinberg, J.-P. Grivaux (France), S. Hitotumatu (Japan), E. Hysnelaj & E. Bojaxhiu (Australia
& Albania), B.-T. Iordache (Romania), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers
(Netherlands), M. Mabuchi (Japan), J. Minkus, D. J. Moore, R. Nandan, M. D. Nguyen (Vietnam), P. E. Nuesch
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(Switzerland), J. Oelschlager, G. T. Prăjitură, C. R. Pranesachar (India), J. Rooin & A. Asadbeygi (Iran), S. G.
Saenz (Chile), I. A. Sakmar, C. R. & S. Selvaraj, J. Simons (U. K.), E. A. Smith, S. Song (Korea), A. Stadler
(Switzerland), R. Stong, W. Szpunar-Łojasiewicz, R. Tauraso (Italy), M. Tetiva (Romania), B. Tomper, E. I.
Verriest, Z. Vörös (Hungary), M. Vowe (Switzerland), J. B. Zacharias, Con Amore Problem Group (Denmark),
GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

Partition by a Function

11439 [2009, 547]. Proposed by Stephen Herschkorn, Rutgers University, New
Brunswick, NJ. Let f be a continuous function from [0, 1] into [0, 1] such that
f (0) = f (1) = 0. Let G be the set of all (x, y) in the square [0, 1] × [0, 1] so
that f (x) = f (y).
(a) Show that G need not be connected.
(b)* Must (0, 1) and (0, 0) be in the same connected component of G?

Composite solution by Armenak Petrosyan (student), Yerevan State University, Yere-
van, Armenia, and Richard Stong, San Diego, CA.
(a) Let f be the piecewise linear function whose graph joins the points (0, 0), (1/6, 1),
(1/3, 1/2), (1/2, 1), (2/3, 0), (5/6, 1/2), and (1, 0). This f has a strict local minimum
at x = 1/3 and a strict local maximum at x = 5/6 with f (1/3) = f (5/6) = 1/2. Thus
(1/3, 5/6) is an isolated point of G, so G is not connected.
(b) We claim that (0, 1) and (0, 0) are in the same component of G. Let D =
{(x, x) : 0 ≤ x ≤ 1}. If (0, 1) and D are in different components of G, then there
are disjoint open sets U , V in the square S = [0, 1] × [0, 1] such that (0, 1) ∈ U ,
D ⊂ V , and G ⊂ U ∪ V . Let C1 = G ∩ U and C2 = G ∩ V . Since C1 and C2 are
both open in G, they are also both closed, hence compact. We may further assume that
C1 lies entirely above the line y = x . For each point p ∈ C1, choose an open square
centered at p with sides parallel to the axes, not lying along any edge of S, and with
closure disjoint from C2. These squares form an open cover of C1, so there is a finite
subcover. Let F be the union of the closed squares corresponding to this subcover.
Let F ′ be the intersection of S with the boundary of F . Now F is closed, lies above
y = x , and contains C1 in its interior and C2 in its complement. Also, F ′ consists
of line segments. From F ′ we define a graph H whose vertices are the intersections
of these line segments with each other or with the boundary of S; vertices of H are
adjacent when connected by a segment contained in F ′. Vertices have degree 1, 2, or
4, with degree 1 only on the boundary of S.

Since (0, 1) ∈ F and D ∩ F = ∅, toggling membership in F at vertices of H along
the left edge of S implies that the number of vertices of degree 1 on the left edge of S
is odd, and similarly along the top edge. Since each component of a graph has an even
number of vertices of odd degree, some component contains vertices of degree 1 on
both of these edges, and hence H must contain at least one path joining these edges.
However, the function φ on S given by φ(x, y) = f (x) − f (y) is continuous, non-
negative on the top edge and nonpositive on the left edge. Thus some point (x, y) on
this path must have φ(x, y) = 0. Such a point lies in G, contrary to our construction.
Thus (0, 1) and D lie in the same component of G.

Editorial comment. A second approach to solving part (b) builds from the case where
f is piecewise linear (essentially the “Two Men of Tibet” problem; see P. Zeitz, The
Art and Craft of Problem Solving, John Wiley & Sons, 1999).

Also solved by D. Ray, V. Rutherfoord, Szeged Problem Solving Group “Fejéntaláltuka” (Hungary). Part (a)
solved by R. Chapman (U. K.), W. J. Cowieson, M. D. Meyerson, J. H. Nieto (Venezuela), A. Pytel (Poland),
Fisher Problem Solving Group, GCHQ Problem Solving Group (U. K.), and Microsoft Research Problems
Group.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Submitted solutions should arrive
at that address before June 30, 2011. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11551. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury Ionin, Central Michigan University, Mount Pleasant, MI. Given a finite set S of
closed bounded convex sets in Rn having positive volume, prove that there exists a
finite set X of points in Rn such that each A ∈ S contains at least one element of X
and any A, B ∈ S with the same volume contain the same number of elements of X .

11552. Proposed by Weidong Jiang, Weihai Vocational College, Weihai, China. In tri-
angle ABC, let A1, B1, C1 be the points opposite A, B, C at which the angle bisectors
of the triangle meet the opposite sides. Let R and r be the circumradius and inradius
of ABC. Let a, b, c be the lengths of the sides opposite A, B, C , and let a1, b1, c1 be
the lengths of the line segments B1C1, C1 A1, A1 B1. Prove that

a1

a
+

b1

b
+

c1

c
≥ 1+

r

R
.

11553. Proposed by Mihály Bencze, Brasov, Romania. For a positive integer k, let α(k)
be the largest odd divisor of k. Prove that for each positive integer n,

n(n + 1)

3
≤

n∑
k=1

n − k + 1

k
α(k) ≤

n(n + 3)

3
.

11554. Proposed by Zhang Yun, Xi’an Jiao Tong University Sunshine High School,
Xi’an, China. In triangle ABC, let I be the incenter, and let A′, B ′, C ′ be the reflections
of I through sides BC, CA, AB, respectively. Prove that the lines AA′, BB′, and CC′ are
concurrent.

11555. Proposed by Duong Viet Thong, National Economics University, Hanoi, Viet-
nam. Let f be a continuous real-valued function on [0, 1] such that

∫ 1
0 f (x) dx = 0.

Prove that there exists c in the interval (0, 1) such that c2 f (c) =
∫ c

0 (x + x2) f (x) dx .

doi:10.4169/amer.math.monthly.118.02.178
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11556. Proposed by Pál Péter Dályay, Deák Ferenc High School, Szeged, Hungary.
For positive real numbers a, b, c, d, show that

9

a(b + c + d)
+

9

b(c + d + a)
+

9

c(d + a + b)
+

9

d(a + b + c)

≥
16

(a + b)(c + d)
+

16

(a + c)(b + d)
+

16

(a + d)(b + c)
.

11557. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let S be a finite set of circles in the Cartesian plane having the property that
any two circles in S intersect in exactly two points, each circle encloses the origin, but
no three circles share a common point. Construct a graph G by taking as the vertices
the set of all intersection points of circles in S, with edges corresponding to arcs of a
circle in S connecting vertices without passing through any intermediate vertex. (Thus,
with four circles, there are 12 vertices and 24 edges.) Show that the resulting graph
contains a Hamiltonian path.

SOLUTIONS

An Arctan Series

11438 [2009, 464]. Proposed by David H. Bailey, Lawrence Berkeley National Labo-
ratory, Berkeley, CA, Jonathan M. Borwein, University of Newcastle, Newcastle, Aus-
tralia and Dalhousie University, Halifax, Canada, and Jörg Waldvogel, Swiss Federal
Institute of Technology ETH, Zurich, Switzerland. Let

P(x) =
∞∑

k=1

arctan

(
x − 1

(k + x + 1)
√

k + 1+ (k + 2)
√

k + x

)
.

(a) Find a closed-form expression for P(n) when n is a nonnegative integer.
(b) Show that limx→−1+ P(x) exists, and find a closed-form expression for it.

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA.
(a) Notice that

1
√

k+1
−

1
√

k+n

1+ 1
√

k+1
·

1
√

k+n

=

√
k + n −

√
k + 1

1+
√

k + 1 ·
√

k + n
.

Rationalizing the numerator gives

1
√

k+1
−

1
√

k+n

1+ 1
√

k+1
·

1
√

k+n

=
n − 1

(k + n + 1)
√

k + 1+ (k + 2)
√

k + n
.

From the identity

arctanα − arctanβ = arctan

(
α − β

1+ αβ

)
,
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we obtain

P(n) =
∞∑

k=1

arctan

(
n − 1

(k + n + 1)
√

k + 1+ (k + 2)
√

k + n

)

=

∞∑
k=1

(
arctan

1
√

k + 1
− arctan

1
√

k + n

)
.

Clearly, P(1) = 0. The series for P(0) telescopes to give

P(0) = − arctan 1+ lim
k→∞

arctan
1

√
k + 1

= −
π

4
.

In general, for n ≥ 2, the series telescopes into the form

P(n) =
n∑

k=2

arctan
1
√

k
.

(b) Now use the inequality arctan t < t for t > 0. If k ≥ 2 and x ≥ −1, then

arctan

(
|x − 1|

(k + x + 1)
√

k + 1+ (k + 2)
√

k + x

)
≤

|x | + 1

k
√

k + 1+ (k + 2)
√

k − 1
.

By the Weierstrass M-test, the series P(x) converges uniformly, and therefore it is
continuous for x > −1. As in (a), we have

P(x) =
∞∑

k=1

(
arctan

1
√

k + 1
− arctan

1
√

k + x

)
,

so

P(x + 1) = P(x)+ arctan
1

√
1+ x

.

Thus,

lim
x→−1+

P(x) = lim
x→−1+

(
P(x + 1)− arctan

1
√

1+ x

)
= P(0)−

π

2
= −

3π

4
.

Editorial comment. The proposers report that they discovered the value −3π/4 ex-
perimentally. They ask whether there are more general closed forms for P , say at
half-integers.

Also solved by R. Bagby, N. Bagis (Greece) & M. L. Glasser, D. Beckwith, M. Benito, Ó. Ciaurri, E. Fernández
& L. Roncal (Spain), M. Chamberland, R. Chapman (U.K.), Y. Dumont (France), M. Goldenberg &
M. Kaplan, O. Kouba (Syria), G. Lamb, O. P. Lossers (Netherlands), R. Nandan, M. Omarjee (France),
A. H. Sabuwala, R. Stong, M. Tetiva (Romania), M. Vowe (Switzerland), GCHQ Problem Solving Group
(U.K.), Microsoft Research Problems Group, and the proposers.

A Vector Differential Equation

11440 [2009, 547]. Proposed by Stefano Siboni, University of Trento, Trento, Italy.
Consider the vector differential equation

x′′(t) = p(t, x(t), x′(t))x′(t)×
(

x(t)
‖x(t)‖

)
(1)
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where x(t) = (x1(t), x2(t), x3(t)), ‖u‖ denotes the usual Euclidean norm of a vector
u,× is the standard cross-product, and p and its first partial derivatives are real-valued
and continuous.
(a) Show that all solutions to (1) are defined on all of R.
(b) Show that any nonconstant solution tends to infinity as t → +∞.
(c) Show that for any nonzero solution x(t), limt→+∞

x(t)
‖x(t)‖ exists.

Solution by Robin Chapman, University of Exeter, Exeter, U.K.
(a) Consider a nonconstant solution of (1) on an open interval I . From (1),

x(t) · x′′(t) = x′(t) · x′′(t) = 0

on I . Therefore,

d

dt
(x′(t) · x′(t)) = 2x′(t) · x′′(t) = 0,

which implies x′(t) · x′(t) = A, where A is a constant. Certainly A ≥ 0. If A = 0, then
x′(t) = 0 on I , so x(t) would have to be constant. Hence A > 0. Next,

d

dt
(x(t) · x′(t)) = x′(t) · x′(t)+ x(t) · x′′(t) = A.

This implies that x(t) · x′(t) = At + B for some constant B. Also, d
dt (x(t) · x(t)) =

2x(t) · x′(t) = 2At + 2B. This in turn implies that

x(t) · x(t) = At2
+ 2Bt + C,

where C is a constant.
By the Cauchy–Schwarz inequality,

(x(t) · x′(t))2 ≤ (x(t) · x(t))(x′(t) · x′(t)).

Upon substituting the results above, this becomes

(At + B)2 ≤ A(At2
+ 2Bt + C).

Thus B2
≤ AC . If B2

= AC , then x(t) and x′(t) are linearly dependent, so x′(t) ×
(x(t)/||x(t)||) = 0. Thus by (1), x′′(t) = 0, so x′(t) is constant. In this case the solution
has the form x(t) = (t + k)u for a fixed k ∈ R and vector u; this extends to all of R.
Moreover, x(t)/||x(t)|| = u/||u|| for t 6= k.

Suppose now that B2 < AC . We then have

x(t) · x(t) =
(At + B)2 + (AC − B2)

A
≥

AC − B2

A
> 0.

Therefore, a problem with the differential equation in (1) being ill-defined when x(t) =
0 does not arise. From the theory of ordinary differential equations, a solution on an
open interval I with an endpoint a extends to a larger open interval J containing a
provided neither x(t) nor x′(t) tends to infinity as t → a. Our formulas for x(t) · x(t)
and x′(t) · x′(t) prevent this. Hence x(t) extends to a solution on all of R.
(b), (c) Since x(t) · x(t) → ∞, it follows that x(t) → ∞ as t → ∞. Let y(t) =
x(t)/||x(t)||. Now d

dt ||x(t)|| =
x(t)·x′(t)
||x(t)|| . Hence,

y′(t) =
x′(t)
||x(t)||

−
(x(t) · x′(t)) x(t)
||x(t)||3

=
(x(t) · x(t)) x′(t)− (x(t) · x′(t))x(t)

||x(t)||3
.
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Consequently,

||y′(t)||2 =
||x(t)||2||x′(t)||2 − (x(t) · x′(t))2

||x(t)||4

=
A(At2

+ 2Bt + C)− (At + B)2

(At2 + 2Bt + C)2
=

AC − B2

(At2 + 2Bt + C)2
.

Hence ||y′(t)|| = O(1/t2) as t →∞. The integral
∫
∞

0 y′(s) ds then converges abso-
lutely, and so

y(t) = y(0)+
∫ t

0
y′(s) ds → y(0)+

∫
∞

0
y′(s) ds,

a finite limit as t →∞.

Also solved by R. Bagby, W. J. Cowieson, H. Guggenheimer, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), J. Simons (U.K.), R. Stong, N. Thornber, and the proposer.

Triangles in a Subdivided Polygon

11441 [2009, 547]. Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbai-
jan. Let n ≥ 4, let A0, . . . , An−1 be the vertices of a convex polygon, and for each i
let Bi be a point in the interior of the segment Ai Ai+1. (Here, and throughout, indices
of points are taken modulo n.) Let Ci denote the intersection of diagonals Bi−2 Bi and
Bi−1 Bi+1. Let a(p, q, r) denote the area of the triangle with vertices p, q, r . Show that

n−1∑
i=0

1

a(Ai , Bi , Bi−1)
≥

n−1∑
i=0

1

a(Ci , Bi , Bi−1)
.

Solution by Jim Simons, Cheltenham, U.K. Fix all the B j (and therefore all the C j ),
and all the A j except Ai and Ai+1 for some particular i , and consider varying the
line Ai Ai+1 through Bi . Let |Bi−1 Bi+1| = l, α = ∠Bi Bi−1 Bi+1,β = ∠Bi Bi−1 Ai ,
γ = ∠Bi Bi+1 Bi−1, δ = ∠Bi Bi+1 Ai+1 and θ = ∠Ai Bi Bi−1, so that α + γ − θ =
∠Ai+1 Bi Bi+1. Now

|Bi−1 Bi | =
l sin γ

sin(α + γ )
and |Bi Bi+1| =

l sinα

sin(α + γ )
.

If hi is the distance of Ai from the line Bi−1 Bi , then

hi =
|Bi−1 Bi |

cotβ + cot θ
and hi+1 =

|Bi Bi+1|

cot δ + cot(α + γ − θ)
.

Writing 1 for 1/a(Ai Bi Bi−1)+ 1/a(Ai+1 Bi+1 Bi ), we conclude that

1 =
2 sin2(α + γ )

l2 sin2 γ
(cotβ + cot θ)+

2 sin2(α + γ )

l2 sin2 α

(
cot δ + cot(α + γ − θ)

)
.

Differentiating with respect to θ here gives

d1

dθ
=

2 sin2(α + γ )

l2

(
−1

sin2 γ sin2 θ
+

1

sin2 α sin2(α + γ − θ)

)
.

Thus d1/dθ = 0 when sin γ sin θ = ± sinα sin(α + γ − θ). Since the sines are all
positive, the only valid case is when sin γ sin θ = sinα sin(α + γ − θ), and this gives a
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minimum of1 since1→∞ as θ → 0 and as θ → α + β. Therefore1 is minimized
when sin γ sin θ = sinα

(
sin(α + γ ) cos θ − sin θ cos(α + γ )

)
, or equivalently, when

tan θ =
sinα sin(α + γ )

sin γ + sinα sin(α + γ )
=

sinα sin(α + γ )

sin γ + sinα cosα cos γ − sin2 α sin γ

=
sinα sin(α + γ )

sin γ cos2 α + sinα cosα cos γ
= tanα.

This occurs when Ai Ai+1 is parallel to Bi−1 Bi+1. Thus in a configuration that min-
imizes

∑n−1
i=0 1/a(Ai , Bi , Bi−1) for a given value of

∑n−1
i=0 1/a(Ci , Bi , Bi−1), every

Ai Ai+1 is parallel to the corresponding Bi−1 Bi+1. In that case every Ai Bi−1Ci Bi is
a parallelogram, so that every a(Ai , Bi , Bi−1) = a(Ci , Bi , Bi−1), and therefore

n−1∑
i=0

1

a(Ai , Bi , Bi−1)
=

n−1∑
i=0

1

a(Ci , Bi , Bi−1)
.

Also solved by R. Chapman (U.K.), P. P. Dályay (Hungary), J. H. Lindsey II, Á. Plaza & S. Falcón (Spain), R.
Stong, GCHQ Problem Solving Group (U.K.), and the proposer.

That’s Sum Inequality

11442 [2009, 547]. Proposed by José Luis Dı́az-Barrero and José Gibergans-Báguena,
Universidad Politécnica de Cataluña, Barcelona, Spain. Let 〈ak〉 be a sequence of
positive numbers defined by an =

1
2 (a

2
n−1 + 1) for n > 1, with a1 = 3. Show that[(

n∑
k=1

ak

1+ ak

)(
n∑

k=1

1

ak(1+ ak)

)]1/2

≤
1

4

(
a1 + an
√

a1an

)
.

Solution by Jim Simons. Cheltenham, U.K. This is an extraordinarily weak inequal-
ity! The left side exceeds 1 for the first time when n = 9, at which point the right
side exceeds 1025. To see that it is true, we first note that ak > 2k . To prove this by
induction, note a1 = 3 > 2 and a2 = 5 > 4; beyond that, ak > 4 and ak+1 > 2ak .
(A stronger bound of ak ≥ 2(3/2)2

k−1
is also easy.) Since ak/(1 + ak) < 1, we have∑n

k=1 ak/(1+ ak) < n. Since 1 + ak ≥ 4 and ak > 2k , we have 1/(ak(1 + ak)) <

2−k−2 and
∑n

k=1 1/ak(1+ ak) < 1/4. Combining these, we see that the left side is
less than

√
n/2. For n ≥ 8, the right side satisfies

1

4

(
a1 + an
√

a1an

)
>

√
an

4
√

3
>

2n/2

4
√

3
>

√
n

2
.

Direct calculation shows that the inequality holds for smaller n, the closest call being
at n = 3.

Also solved by R. Chapman (U.K.), L. Csete (Hungary), P. P. Dályay (Hungary), J.-P. Grivaux (France), E. Hys-
nelaj (Australia) & E. Bojaxhiu (Germany), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands),
K. McInturff, P. Perfetti (Italy), C. R. & S. Selvaraj, R. Stong, M. Tetiva (Romania), Z. Vörös (Hungary),
GCHQ Problem Solving Group (U.K.), Microsoft Research Problems Group, and the proposer.

An Integral with Fractional Parts

11447 [2009, 647]. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Let a
be a positive number, and let g be a continuous, positive, increasing function on [0, 1].

February 2011] PROBLEMS AND SOLUTIONS 183

X
ia
ng
’s
T
ex
m
at
h



Prove that

lim
n→∞

∫ 1

0

{n

x

}a
g(x) dx =

1

a + 1

∫ 1

0
g(x) dx,

where a > 0 and {x} denotes the fractional part of x .

Solution by Ralph Howard, University of South Carolina, Columbia, SC. The result
holds in greater generality; we claim that:

If β : R→ R be a bounded measurable function that is periodic with period 1, so that
β satisfies β(z + 1) = β(z), and if g ∈ L1([0, 1]), then

lim
n→∞

∫ 1

0
β
(n

x

)
g(x) dx =

∫ 1

0
β(z) dz

∫ 1

0
g(x) dx . (1)

Assuming (1) and taking β(z) = {z}a , which has period one and is bounded for a > 0,
we have

lim
n→∞

∫ 1

x=0

{n

x

}a
g(x) dx =

∫ 1

0
za dz

∫ 1

x=0
g(x) dx =

1

a + 1

∫ 1

x=0
g(x) dx .

For the proof of (1), we extend the Riemann–Lebesgue lemma:

Lemma. If f ∈ L1(R) and β : R→ R is a bounded measurable function such that
β(z + 1) = β(z), then

lim
n→∞

∫
∞

−∞

β(ny) f (y) dy =
∫ 1

0
β(z) dz

∫
∞

−∞

f (y) dy. (2)

The proof of this lemma proceeds just as in one of the standard proofs of the Riemann-
Lebesgue lemma: It is easy to check that it holds for f = χ[a,b], the characteristic
function of an interval. By linearity, it then holds for finite linear combinations of
characteristic functions of intervals, that is, for step functions. However, step functions
are dense in L1(R), so the result holds for all f ∈ L1(R) by approximation.

To obtain (1) from the lemma, let g ∈ L1([0, 1]), and define f : R→ R by f (y) =
y−2g(1/y) for y ≥ 1 and f (y) = 0 otherwise. Letting y = 1/x in the change of vari-
able formula yields∫

∞

−∞

f (y) dy =
∫
∞

1
y−2g(1/y) dy =

∫ 1

0
g(x) dx .

This equation holds as well with absolute value bars on the integrands, and therefore
f ∈ L1(R). The same change of variable yields∫

∞

−∞

β(ny) f (y) dy =
∫
∞

1
β(ny)

g(1/y)

y2
dy =

∫ 1

0
β
(n

x

)
g(x) dx .

The required result is now an application of the lemma.

Also solved by K. F. Andersen (Canada), M. R. Avidon, R. Bagby, D. Borwein (Canada), R. Chapman (U.K.),
W. J. Cowieson, M. Eyvasi (Iran), P. J. Fitzsimmons, J.-P. Grivaux (France), E. A. Herman, M. Kochanski
(U.K.), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), V. S. Miller, M. Omarjee (France),
E. Omey (Belgium), P. Perfetti (Italy), Á. Plaza & S. Falcón (Spain), K. Schilling, J. Simons (U.K.), A. Stadler
(Switzerland), A. Stenger, R. Stong, J. V. Tejedor (Spain), M. Tetiva (Romania), E. I. Verriest, L. Zhou, GCHQ
Problem Solving Group (U.K.), NSA Problems Group, and the proposer.
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Asymptotics of a Product

11456 [2009, 747]. Proposed by Raymond Mortini, Université Paul Verlaine, Metz,
France. Find

lim
n→∞

n
n∏

m=1

(
1−

1

m
+

5

4m2

)
.

Solution by Oliver Geupel, Brühl, Germany. We use Stirling’s formula, which says that
n! ≈
√

2π nn+1/2e−n , together with the infinite product

cosh z =
∞∏

m=1

[
1+

4z2

(2m − 1)2π 2

]
.

(Abramowitz & Stegun, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, Dover 1972, Formula 4.5.69, p. 85).

We have

lim
n→∞

n
n∏

m=1

(
1−

1

m
+

5

4m2

)
= lim

n→∞
n

n∏
m=1

(2m − 1)2 + 4

(2m)2

= lim
n→∞

n
n∏

m=1

(2m − 1)2

(2m)2
·

n∏
m=1

(2m − 1)2 + 4

(2m − 1)2

= lim
n→∞

n · (2n)!2

16n · n!4
·

n∏
m=1

[
1+

4π 2

(2m − 1)2π 2

]

= lim
n→∞

n · 2π · (2n)4n+1e−4n

16n · (2π)2 · n4n+2 · e−4n
· cosh(π) =

cosh(π)

π
.

Editorial comment. A generalization was provided by Jerry Minkus (San Francisco,
CA): Let b be a positive integer, and c a nonzero constant such that

∏b
m=1(m

2
− bm +

c) 6= 0. Letting 1 = b2/4− c, we have

lim
n→∞

n(n − 1)(n − 2) · · · (n − b + 1)
n∏

m=1

(
1−

b

m
+

c

m2

)

=
1

c

b∏
m=1

(m2
− bm + c) ·

1

0(b/2−
√
1)0(b/2+

√
1)

.

Several other solvers provided the generalization with b = 1 but general c.

Also solved by R. A. Agnew, K. F. Andersen (Canada), M. S. Ashbaugh (U.S.A.) & F. V. Prado (Chile),
R. Bagby, D. H. Bailey (U.S.A.) & J. M. Borwein (Canada), M. Bataille (France), K. A. Beres, P. Bracken,
B. S. Burdick, M. A. Carlton, R. Chapman (U.K.), H. Chen, P. P. Dályay (Hungary), O. Furdui (Romania),
M. Goldenberg & M. Kaplan, G. C. Greubel, J. Grivaux (France), W.-P. Heidorn (Germany), E. A. Herman,
F. Holland (Ireland), A. Ilić (Serbia), M. E. H. Ismail, T. Konstantopoulos (U.K.), O. Kouba (Syria), O. P.
Lossers (Netherlands), S. de Luxán & Á. Plaza (Spain), R. Martin (Germany), V. S. Miller, J. Minkus, B. Mu-
lansky (Germany), M. Muldoon (Canada), D. K. Nester, M. Omarjee (France), J. Posch, H. Riesel (Sweden),
O. G. Ruehr, B. Schmuland (Canada), J. Simons (U.K.), N. C. Singer, A. Stenger, R. Stong, T. Tam, R. Tauraso
(Italy), J. V. Tejedor (Spain), M. Tetiva (Romania), D. B. Tyler, M. Vowe (Switzerland), S. Wagon, B. Wal-
lace, T. Wiandt, P. Xi (China), S. Xiao, GCHQ Problem Solving Group (U.K.), NSA Problems Group, and the
proposer.
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Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Submitted solutions should arrive
at that address before July 31, 2011. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11558. Proposed by Andrew McFarland, Płock, Poland. Given four concentric circles,
find a necessary and sufficient condition that there be a rectangle with one corner on
each circle.

11559. Proposed by Michel Bataille, Rouen, France. For positive p and x ∈ (0, 1),
define the sequence 〈xn〉 by x0 = 1, x1 = x , and, for n ≥ 1,

xn+1 =
pxn−1xn + (1− p)x2

n

(1+ p)xn−1 − pxn
.

Find positive real numbers α, β such that limn→∞ nαxn = β.

11560. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury Ionin, Central Michigan University, Mount Pleasant, MI.
(a) The diagonals of a convex pentagon P0 P1 P2 P3 P4 divide it into 11 regions, of which
10 are triangular. Of these 10, five have two vertices on the diagonal P0 P2. Prove that if
each of these has rational area, then the other five triangles, and the original pentagon,
all have rational areas.
(b) Let P0, P1, . . . , Pn−1, n ≥ 5 be points in the plane. Suppose no three are collinear,
and, interpreting indices on Pk as periodic modulo n, suppose that for all k, Pk−1 Pk+1

is not parallel to Pk Pk+2. Let Qk be the intersection of Pk−1 Pk+1 with Pk Pk+2. Let αk

be the area of triangle Pk Qk Pk+1, and let βk be the area of triangle Pk+1 Qk Qk+1. For
0 ≤ j ≤ 2n − 1, let

γ j =

{
α j/2, if j is even;
β( j−1)/2, if j is odd.

Interpreting indices on γ j as periodic modulo 2n, find the least m such that if m con-
secutive γ j are rational, then all are rational.

doi:10.4169/amer.math.monthly.118.03.275
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11561. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Roma-
nia. Let f1, . . . , fn be continuous real valued functions on [0, 1], none identically zero,
such that

∫ 1
0 fi (x) f j (x) dx = 0 if i 6= j . Prove that

n∏
k=1

∫ 1

0
f 2
k (x) dx ≥ nn

(
n∏

k=1

∫ 1

0
fk(x) dx

)2

,

n∑
k=1

∫ 1

0
f 2
k (x) dx ≥

(
n∑

k=1

∫ 1

0
fk(x) dx

)2

, and

n∑
k=1

∫ 1
0 f 2

k (x) dx(∫ 1
0 fk(x) dx

)2 ≥ n2.

11562. Proposed by Pál Péter Dályay, Szeged, Hungary. For positive a, b, c, and z,
let 9a,b,c(z) = 0((za + b + c)/(z + 2)), where 0 denotes the gamma function. Show
that 9a,b,c(z)9b,c,a(z)9c,a,b(z) is increasing in z for z ≥ 1.

11563. Proposed by Vlad Matei (student), University of Bucharest, Bucharest, Roma-
nia. For each integer k ≥ 2, find all nonconstant f in Z[x] such that for every prime
p, f (p) has no nontrivial kth-power divisor.

SOLUTIONS

Explaining a Polynomial

11403 [2008, 949]. Proposed by Yaming Yu, University of California–Irvine, Irvine,
CA. Let n be an integer greater than 1, and let fn be the polynomial given by

fn(x) =
n∑

i=0

(
n

i

)
(−x)n−i

i−1∏
j=0

(x + j).

Find the degree of fn .

Solution by Nicolás Caro, IMPA, Rio de Janeiro, Brazil, and independently by Cos-
min Pohoata, Tudor Vianu National College, Bucharest, Romania. The degree of fn

is bn/2c. This follows immediately from the stronger statement that the coefficient of
xr in fn(x) is the number of derangements of [n] with r cycles, since each cycle must
have at least two elements. Here [n] = {1, . . . , n}, and a derangement is a permutation
with no fixed points.

Let c(n, k) be the number of permutations of [n]with k cycles (the unsigned Stirling
number of the first kind). The well-known generating function for these numbers is
given by

∑n
k=1 c(n, k)x k

=
∏n−1

j=0(x + j) (provable in many ways, including induction
on n). Thus

fn(x) =
n∑

i=0

(
n

i

)
(−x)n−i

i∑
k=1

c(i, k)x k
=

n∑
`=0

(
n

`

)
(−x)`

n−`∑
k=0

c(n − `, k)x k

=

n∑
`=0

(
n

`

)
(−1)`

n∑
r=`

c(n−`, r−`)xr
=

n∑
r=0

r∑
`=0

(
n

`

)
(−1)`c(n−`, r−`)xr .
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The coefficient of xr in this expression is precisely the inclusion-exclusion formula
to count permutations with r orbits that have no fixed points. The universe is the set
of permutations with r orbits, and the i th of the n sets to be avoided is the set of
permutations in which element i is a fixed point.

Editorial comment. Let d(n, r) be the number of derangements of [n] with r cycles.
The fact that the coefficient of xr in fn(x) is d(n, r) can also be proved by induction
on n using Pascal’s formula and the recurrence d(n, r) = (n − 1)[d(n − 2, r − 1)+
d(n − 1, r)].

O. P. Lossers (and others) gave a short proof of the degree statement by observ-
ing that fn(x) is the nth derivative (with respect to t) of the product e−t x(1 − t)−x ,
evaluated at t = 0.

This polynomial appears explicitly in An Introduction to Combinatorial Analysis,
chapter 4 section 4, pp. 72–74 by Riordan (Wiley, 1958). It is also mentioned in Ad-
vanced Combinatorics, chapter VI, section 6.7, p. 256, by Comtet (Reidel, 1974) with
some references to previous non-combinatorial appearances in articles by Tricomi and
Carlitz.

Also solved by T. Amdeberhan & S. B. Ekhad, R. Bagby, D. Beckwith, R. Chapman (U.K.), P. Corn,
P. P. Dályay (Hungary), O. Geupel (Germany), D. Grinberg, J. Grivaux (France), S. J. Herschkorn, E. Hys-
nelaj (Australia) & E. Bojaxhiu (Albania), D. E. Knuth, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), Á. Plaza & S. Falcón (Spain), M. A. Prasad (India), R. Pratt, O. G. Ruehr, B. Schmuland
(Canada), A. Stadler (Switzerland), J. H. Steelman, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), BSI
Problems Group (Germany), GCHQ Problem Solving Group (U.K.), Microsoft Research Problems Group,
NSA Problems Group, and the proposer.

Mean Inequalities

11434 [2009, 463]. Proposed by Slavko Simic, Mathematical Institute SANU, Bel-
grade, Serbia. Fix n ∈ N with n ≥ 2. Let x1, . . . , xn be distinct real numbers, and
let p1, . . . , pn be positive numbers summing to 1. Let

S =

∑n
k=1 pk x3

k −
(∑n

k=1 pk xk

)3

3
(∑n

k=1 pk x2
k −

(∑n
k=1 pk xk

)2
) .

Show that min{x1, . . . , xn} ≤ S ≤ max{x1, . . . , xn}.

Solution by Jim Simons, Cheltenham, U.K. Consider a probability distribution on the
real line that takes value x j with probability p j for 1 ≤ j ≤ n. Write µ′i for the i th
moment about 0 and µi for the i th moment about the mean µ′1. Now

S =
µ′3 − µ

′

1
3

3(µ′2 − µ
′

1
2
)
=
µ3 + 3µ′1µ2

3µ2
= µ′1 +

µ3

3µ2
.

From this we obtain inequalities stronger than those proposed:

1

3
min{x1, . . . , xn} +

2

3
µ′1 ≤ S ≤

1

3
max{x1, . . . , xn} +

2

3
µ′1.

Also solved by R. Bagby, R. Chapman (U.K.), M. P. Cohen, W. J. Cowieson, P. P. Dályay (Hungary), H. Deh-
ghan (Iran), P. J. Fitzsimmons, D. Grinberg, E. A. Herman, T. Konstantopoulos (U.K.), O. Kouba (Syria), J. H.
Lindsey II, O. P. Lossers (Netherlands), J. Posch, K. Schilling, B. Schmuland (Canada), R. Stong, M. Tetiva
(Romania), B. Tomper, BSI Problems Group (Germany), GCHQ Problem Solving Group (U.K.), Microsoft
Research Problems Group, and the proposer.
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A Circumradius Equation

11443 [2009, 548]. Proposed by Eugen Ionascu, Columbus State University, Colum-
bus, GA. Consider a triangle ABC with circumcenter O and circumradius R. Denote
the distances from O to the sides AB, BC, CA, respectively, by x, y, z. Show that if
ABC is acute then R3

− (x2
+ y2
+ z2)R = 2xyz, and (x2

+ y2
+ z2)R − R3

= 2xyz
otherwise.

Solution by Philip Benjamin, Berkeley College,Woodland Park, NJ. We first prove the
identity

1−
(
cos2 A + cos2 B + cos2 C

)
= 2 cos A cos B cos C. (∗)

Indeed, C = π − (A + B), so cos C = − cos(A + B) = sin A sin B − cos A cos B.
Isolating sin A sin B and squaring yields cos2 A cos2 B + 2 cos A cos B cos C +
cos2 C = sin2 A sin2 B = 1 − cos2 A − cos2 B + cos2 A cos2 B. This simplifies to
(∗).

Let the side lengths a, b, and c be opposite angles A, B, and C , respectively, so
a/ sin A = b/ sin B = c/ sin C = 2R. The perpendicular from O to side AB bisects
AB, so we have a right triangle with side lengths x , c/2, and R. Since c = 2R sin C ,
we conclude that x = R|cos C |. Similarly y = R|cos A| and z = R|cos B|. If4ABC is
acute, then the three cosines are positive, so multiplying (∗) by R3 produces the desired
result. Otherwise, say angle C is right or obtuse. Now x = −R cos C and the other two
cosines are positive. Again, multiplying (∗) by R3 produces the desired result.

Editorial comment. A similar problem was proposed in Crux Mathematicorum with
Mathematical Mayhem, December, 2008, Problem 3395.

Also solved by A. Alt, H. Bailey, M. Bataille (France), D. Beckwith, R. Chapman (U.K.), L. Csete (Hungary),
C. Curtis, P. P. Dályay (Hungary), P. De (India), D. Fleischman, V. V. Garcı́a (Spain), M. Garner & J. Zacharias,
O. Geupel (Germany), M. Goldenberg & M. Kaplan, M. R. Gopal, D. Gove, J.-P. Grivaux (France), L. Herot,
J. G. Heuver (Canada), E. Hysnelaj (Australia) & E. Bojaxhiu (Germany), Y. K. Jeon (Korea), G. A. Kandall,
Y. H. Kim (Korea), L. R. King, B. Klotzsche, T. Konstantopoulos (U.K.), O. Kouba (Syria), K.-W. Lau (China),
J. C. Linders (Netherlands), J. H. Lindsey II, O. P. Lossers (Netherlands), J. McHugh, J. Minkus, J. H. Nieto
(Venezuela), P. Nüesch (Switzerland), J. Oelschlager, M. Omarjee (France), J. Posch, C. R. & S. Selvaraj, R. A.
Simon (Chile), J. Simons (U.K.), R. Stong, M. Tetiva (Romania), B. Tomper, Z. Vörös (Hungary), M. Vowe
(Switzerland), H. Widmer (Switzerland), S. Xiao (Canada), Con Amore Problem Group (Denmark), GCHQ
Problem Solving Group (U.K.), NSA Problems Group, and the proposer.

Extrema

11449 [2009, 647]. Proposed by Michel Bataille, Rouen, France. (corrected) Find the
maximum and minimum values of

(a3
+ b3
+ c3)2

(b2 + c2)(c2 + a2)(a2 + b2)

given that a + b ≥ c > 0, b + c ≥ a > 0, and c + a ≥ b > 0.

Solution by Jim Simons, Cheltenham, U.K. Call this big expression X . Since X is
homogeneous, we may assume a2

+ b2
+ c2
= 1. The feasible region then consists

of a triangular patch on the positive octant of the unit sphere, excluding the ver-
tices (where one of a, b, c is zero), but including the interiors of the sides (where
two of a, b, c are equal). Using spherical polar coordinates, we may set (a, b, c) =
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(cosα, sinα cos θ, sinα sin θ), where, since a, b, c are positive, θ is uniquely deter-
mined and 0 < θ < π/2. Now

X =

(
cos3 α + sin3 α(cos3 θ + sin3 θ)

)2

sin2 α
(
cos2 α + sin2 α sin2 θ

)(
cos2 α + sin2 α cos2 θ

)
=

(
cos3 α + sin3 α(cos3 θ + sin3 θ)

)2

sin2 α
(
cos4 α + cos2 α sin2 α + sin4 α sin2 θ cos2 θ

) .
If f (θ) = cos3 θ + sin3 θ , then f ′(θ) = 3 cos θ sin θ(sin θ − cos θ). In the feasible re-
gion for θ , this is positive for θ > π/4 and negative for θ < π/4. Thus f , and with
it, the numerator of X for fixed α, is less at θ = π/4 than at any other feasible θ .
Similarly, if g(θ) = sin2 θ cos2 θ , g, and with it, the denominator of X for fixed α, is
increasing in θ for θ < π/4 and decreasing in θ for θ > π/4. Thus X is, for fixed α,
smallest at θ = π/4, and greatest at an edge of the feasible region. By symmetry, the
minimum value of X is 9/8, attained when a = b = c.

From the foregoing, the maximum value of X on the closure of the feasible re-
gion occurs at a point where, with respect to any translation into spherical coordi-
nates, θ is extremal. The only such points are the corners of the region. At (a, b, c) =
(2−1/2, 2−1/2, 0), X = 2. However, this maximum is not attained because these corners
are not in the feasible region.

Also solved by R. Agnew, A. Alt, R. Bagby, D. Beckwith, H. Caerols & R. Pellicer (Chile), R. Chapman
(U.K.), H. Chen, C. Curtis, Y. Dumont (France), D. Fleischman, J.-P. Grivaux (France), E. A. Herman, F.
Holland (Ireland), T. Konstantopoulos (U.K.), O. Kouba (Syria), A. Lenskold, J. H. Lindsey II, P. Perfetti
(Italy), N. C. Singer, R. Stong, T. Tam, R. Tauraso (Italy), M. Tetiva (Romania), E. I. Verriest, Z. Vörös
(Hungary), S. Wagon, G. D. White, GCHQ Problem Solving Group (U.K.), Microsoft Research Problems
Group, and the proposer.

Max Min Coordinate Difference

11450 [2009, 647]. Proposed by Cosmin Pohoata (student), National College “Tudor
Vianu,” Bucharest, Romania. Let A be the unit ball in Rn . Find

max
a∈A

{
min

1≤i< j≤n

∣∣ai − a j

∣∣} .
Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. Let Mn denote the desired maximum. It is implicit in the statement
of the problem that n ≥ 2. We show that Mn =

√
12/(n(n2 − 1)).

Let (a1, . . . , an) be an element of A at which the maximum is achieved, and
let Mn = min{|ai − a j | : 1 ≤ i < j ≤ n}. There is a permutation σ of the set
{1, 2, . . . , n} such that aσ(1) ≤ aσ(2) ≤ · · · ≤ aσ(n). Write for simplicity b j = aσ( j).
For j > i , we then have

b j − bi =

j∑
k=i+1

(bk − bk−1) ≥ ( j − i)Mn.
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From this we conclude that |b j − bi | ≥ | j − i | Mn for 1 ≤ i, j ≤ n. Therefore

M2
n

∑
1≤i, j≤n

( j − i)2 ≤
∑

1≤i, j≤n

(b j − bi )
2
=

∑
1≤i, j≤n

(a j − ai )
2

=

∑
1≤i, j≤n

(a2
j + a2

i − 2ai a j )

≤ 2n
n∑

k=1

a2
k − 2

(
n∑

k=1

ak

)2

≤ 2n,

since
∑n

k=1 a2
k ≤ 1 when (a1, . . . , an) ∈ A. On the other hand,

∑
1≤i, j≤n

( j − i)2 = 2n
n∑

k=1

k2
− 2

(
n∑

k=1

k

)2

=
n2(n2

− 1)

6
.

It follows that M2
n ≤ 12/(n(n2

− 1)), so Mn ≤
√

12/(n(n2 − 1)).
Conversely, if we consider (a(0)1 , a(0)2 , . . . , a(0n ) defined by

a(0)k =

√
12

n(n2 − 1)

(
k −

n + 1

2

)
, k = 1, 2, . . . , n,

then (a(0)1 , . . . , a(0)n ) ∈ A and

min
1≤i< j≤n

∣∣a(0)i − a(0)j

∣∣ = √ 12

n(n2 − 1)
.

Thus Mn ≥
√

12/(n(n2 − 1)).

Editorial comment. Marian Tetiva (Romania) notes that a stronger form of this prob-
lem appeared as Problem E2032, this MONTHLY 76 (1969) 691–692, proposed by
D. S. Mitrinović. See also Problem 3.9.9 in Mitrinović, Analytic Inequalities (Springer-
Verlag, 1970).

Also solved by A. Alt, R. F. de Andrade, M. R. Avidon, R. Bagby, D. Beckwith, J. Cade, R. Chapman (U.K.),
L. Comerford, W. J. Cowieson, P. P. Dályay (Hungary), A. Fielbaum (Chile), D. Fleischman, O. Geupel (Ger-
many), J.-P. Grivaux (France), E. A. Herman, A. Ilić (Serbia), T. Konstantopoulos (U.K.), J. Kuplinsky, J. H.
Lindsey II, O. P. Lossers (Netherlands), M. D. Meyerson, D. Ray, K. Schilling, B. Schmuland (Canada), J.
Simons (U.K.), R. Stong, M. Tetiva (Romania), E. I. Verriest, GCHQ Problem Solving Group (U.K.), NSA
Problems Group, and the proposer.

A Cauchy–Schwarz Puzzle

11458 [2009, 747]. Proposed by Cezar Lupu (student), University of Bucharest,
Bucharest, Romania, and Vicenţiu Rădulescu, Institute of Mathematics “Simon Stoi-
low” of the Romanian Academy, Bucharest, Romania. Let a1, . . . , an be nonnegative
and let r be a positive integer. Show that ∑

1≤i, j≤n

i r j r ai a j

i + j − 1

2

≤

n∑
m=1

mr−1am

∑
1≤i, j,k≤n

i r j r kr ai a j ak

i + j + k − 2
.
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Solution by Francisco Vial, student, Pontificia Universidad Católica de Chile, Santi-
ago, Chile. Let f (x) :=

∑n
i=1 i r ai x i−1, so∫ 1

0
f (x) dx =

n∑
m=1

mr−1 am,

∫ 1

0
f 2(x) dx =

∫ 1

0

 ∑
1≤i, j≤n

i r j r ai a j x i+ j−2

 dx =
∑

1≤i, j≤n

i r j r ai a j

i + j − 1
, and

∫ 1

0
f 3(x) dx =

∫ 1

0

 ∑
1≤i, j,k≤n

i r j r kr ai a j ak x i+ j+k−3

 dx =
∑

1≤i, j,k≤n

i r j r kr ai a j ak

i + j + k − 2
.

The stated inequality is equivalent to(∫ 1

0
f 2(x) dx

)2

≤

(∫ 1

0
f (x) dx

)(∫ 1

0
f 3(x) dx

)
,

which follows by applying the Cauchy–Schwarz inequality to f (x)1/2 and f (x)3/2 .
Remarks. Because a1, . . . , an are nonnegative, f (x) is nonnegative and continuous

on [0, 1], so f (x)1/2 and f (x)3/2 are real and well defined. The parameter r need not
be an integer.

Also solved by M. R. Avidon, R. Chapman (U.K.), P. P. Dályay (Hungary), D. Grinberg, O. Kouba (Syria), O. P.
Lossers (Netherlands), J. Simons (U.K.), R. Stong, GCHQ Problem Solving Group (U.K.), and the proposers.

An Orthocenter Inequality

11461 [2009, 844]. Proposed by Panagiote Ligouras, Leonardo da Vinci High School,
Noci, Italy. Let a, b, and c be the lengths of the sides opposite vertices A, B, and C of
an acute triangle. Let H be the orthocenter. Let da be the distance from H to side BC ,
and similarly for db and dc. Show that

1

da + db + dc
≥

2

3

(
3

abc

(
1
√

bc
+

1
√

ca
+

1
√

ab

))1/4

.

Solution by Michael Vowe, Fachhochschule Nordwestschweiz, Muttenz, Switzerland.
Let R be the circumradius, r the inradius, F the area, and s the semiperimeter. From
da = 2R cos B cos C , db = 2R cos C cos A, dc = 2R cos A cos B, we obtain

da + db + dc = 2R
(
cos A cos B + cos B cos C + cos C cos A

)
≤ 2r

(
1+

r

R

)
(see 6.10, p. 181, in D. Mitrinovic et al., Recent Advances in Geometric Inequalities,
Dordrecht, 1989). From Jensen’s inequality for concave functions (here, the square
root), we have

1
√

ab
+

1
√

bc
+

1
√

ca
≤ 3 ·

√
1

3

(
1

ab
+

1

bc
+

1

ca

)
=

√
6s

abc
.
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From abc = 4RF = 4Rrs and s2
≥ 27r 2 (6.1, p. 180, ibid.) we get

2

3

(
3

abc

(
1
√

bc
+

1
√

ca
+

1
√

ab

))1/4

≤
2

3

(
3
√

6s

(abc)3/2

)1/4

≤
2

3

(
3
√

6

(4Rr)3/2
·

1

3
√

3 r

)1/4

=
23/8

3
·

1

R3/8
·

1

r 5/8
.

Thus it suffices to prove

1

2r
(

1+
r

R

) ≥ 23/8

3
·

1

R3/8
·

1

r 5/8
.

Writing x = r/R, this means we must prove x3/8(1 + x) ≤ 3/(2 · 23/8) for 0 < x ≤
1/2. The function f (x) = x3/8(1 + x) is increasing on [0, 1/2], though, and we are
done.

Equality holds only if x = 1/2, or equivalently, R = 2r , which makes the triangle
equilateral.

Also solved by P. P. Dályay (Hungary), O. Faynshteyn (Germany), K.-W. Lau (China), C. R. Pranesachar (In-
dia), R. Stong, GCHQ Problem Solving Group (U.K.), Microsoft Research Problems Group, and the proposer.

An Erroneous Claim

11465 [2009, 845]. Proposed by Pantelimon George Popescu, Polytechnic University
of Bucharest, Bucharest, Romania, and José Luis Dı́az-Barrero, Polytechnic University
of Catalonia, Barcelona, Spain. Consider three simple closed curves in the plane, of
lengths p1, p2, and p3, enclosing areas A1, A2, and A3, respectively. Show that if
p3 = p1 + p2 and A3 = A1 + A2, then 8π A3 ≤ p2

3 .

Solution by the Texas State University Problem Solvers Group, San Marcos, TX. The
problem as stated is false. Consider the following counterexample. Let the first curve
be a square of side 1, so p1 = 4 and A1 = 1. Let the second curve be a square with
p2 = 40 and A2 = 100. Let the third curve be a rectangle with sides 11 + 2

√
5 and

101/(11+ 2
√

5 ) so that p3 = 44 and A3 = 101. These three curves fulfill the require-
ments of the problem, and yet 8π A3 > p2

3 .
Let us incorporate the additional requirement that p2

1 + p2
2 = 2p1 p2. Then the re-

quired inequality can be proved as follows. The isoperimetric inequality applied to any
of the curves is

Ai ≤ π
( pi

2π

)2
,

and thus 4π Ai ≤ p2
i . Therefore

4π A3 = 4π A1 + 4π A2 ≤ p2
1 + p2

2.

With the newly-added condition we get

8π A3 = 8π A1 + 8π A2 ≤ 2p2
1 + 2p2

2 = p2
1 + p2

2 + 2p1 p2 = (p1 + p2)
2
= p2

3.

Also solved by G. Apostolopoulos (Greece), R. Bagby, B. Burdick, R. Chapman (U.K.), W. J. Cowieson, P. P.
Dályay (Hungary), J.-P. Grivaux (France), K. Hanes, J. H. Lindsey II, M. D. Meyerson, J. Minkus, J. Simons
(U.K.), R. Stong, and the Microsoft Research Problems Group.
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Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Submitted solutions should arrive
at that address before August 31, 2011. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11564. Proposed by Albert Stadler, Herrliberg, Switzerland. Prove that∫
∞

0

e−x(1− e−6x)

x(1+ e−2x + e−4x + e−6x + e−8x)
dx = log

(
3+
√

5

2

)
.

11565. Proposed by Shai Covo, Kiryat-Ono, Israel. Let U1,U2, . . . be independent
random variables, each uniformly distributed on [0, 1].
(a) For 0 < x ≤ 1, let Nx be the least n such that

∑n
k=1

√
Uk > x . Find the expected

value of Nx .
(b) For 0 < x ≤ 1, let Mx be the least n such that

∏n
k=1 Uk < x . Find the expected

value of Mx .

11566. Proposed by Kent Holing, Statoil, Trondheim, Norway. Let q be a monic quartic
polynomial with rational coefficients, that is, q(z) = z4

+ a3z3
+ a2z2

+ a1z + a0 with
all coefficients rational. Let r be the resolvent of q , that is, r(z) = z3

− a2z2
+ (a3a1 −

4a0)z + (4a2a0 − a2
3a0 − a2

1). Suppose r is irreducible over Q and q and r have a
common zero.
(a) Determine the Galois group of q .
Suppose further that the coefficients of q are integers.
(b) Show that a3 6= 0.
(c) Show that only two quartics satisfy the hypotheses of part (b), and find them.

11567. Proposed by David Callan, University of Wisconsin-Madison, Madison, WI.
How many arrangements (a1, . . . , a2n) of the multiset {1, 1, 2, 2, . . . , n, n} satisfy the
following two conditions: (i) All entries between the two occurrences of any given
value i exceed i , and (ii) No three entries increase from left to right with the last two
adjacent? (When n = 3, one such arrangement is 122133.)

doi:10.4169/amer.math.monthly.118.04.371
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11568. Proposed by Kurt Foster, Colorado Springs, CO. For n ≥ 1, let f (n) be the
least-significant nonzero decimal digit of n!. For n ≥ 2, show that f (625n) = f (n).

11569. Proposed by M. H. Mehrabi, Nahavand, Iran. Let a, b, and c be the lengths
of the sides of a triangle, and let s, r , and R be the semi-perimeter, inradius, and
circumradius, respectively, of that triangle. Show that

2 < log

(
(a + b)(b + c)(c + a)

abc

)
< (a + b + c)

(
1
a +

1
b +

1
c

)
− 6

and

8
(r

s

)2
< log

(
b + c

a

)
log

(
c + a

b

)
log

(
a + b

c

)
<

2r

R
.

11570. Proposed by Kirk Bresniker, Hewlett-Packard, Granite Bay, CA, and Stan
Wagon, Macalester College, St. Paul, MN. Alice and Bob play a number game. Start-
ing with a positive integer n, they take turns changing the number; Alice goes first.
Each player in turn may change the current number k to either k − 1 or dk/2e. The
person who changes 1 to 0 wins. For instance, when n = 3, the players have no choice,
k proceeds from 3 to 2 to 1 to 0, and Alice wins. When n = 4, Alice wins if and only
if her first move is to 2. For which initial n does Alice have a winning strategy?

11571. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let
f be a nonnegative Lebesgue-measurable function on [0, 1], with

∫ 1
0 f (x) dx = 1.

Let K (x, y) = (x − y)2 f (x) f (y), F(t) =
∫
[0,t]×[0,t] K (x, y) dy dx , and G(t) =∫

[t,1]×[t,1] K (x, y) dy dx . For 0 ≤ t ≤ 1, prove that√
F(t)+

√
G(t) ≤

√
F(1).

SOLUTIONS

An Occasional Congruence

11411 [2009, 179]. Proposed by Alun Wyn-jones, KPMG, London, U.K. For positive
integers k and n, let Lk(n) =

∑n−1
j=1(−1) j j k .

(a) Show that L1(n) ≡ L5(n) (mod n) if and only if n is not a multiple of 4.
(b) Given distinct, odd, positive integers i and j with {i, j} 6= {1, 5}, show that the set
of n such that L i (n) ≡ L j (n) (mod n) is finite.

Solution to part (a) by A. Kumar, Goleta, CA . By induction on n, one can check that

L5(n)− L1(n) = (−1)n−1(2n − 1)
(n − 2)(n − 1)n(n + 1)

4
.

The numerator contains the product of four consecutive integers. If n is not divisible
by 4, then a factor other than n is divisible by 4, and n divides L5(n)− L1(n). If n is
divisible by 4, then L5(n)− L1(n) = (−1)n−1(2n − 1)(n − 2)(n − 1)(n + 1)(n/4) ≡
(−1)(−1)(−2)(−1)(1)(n/4) = n/2 6≡ 0 (mod n).

Solution to part (b) by Richard Stong, Center for Communications Research, San
Diego, CA . We prove the restriction of the claim to odd n. The functions Lk(n) are
related to the Euler polynomials by Lk(n) =

1
2 [Ek(0)+ (−1)n−1 Ek(n)] (see 23.1.4 in
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M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, Dover, 1972.) The sequence of Euler
polynomials is usually defined by its exponential generating function:

∞∑
r=0

Er (x)
tr

r !
=

2ext

et + 1
. (1)

Since
∞∑

r=0

Er (0)
tr

r !
=

2

et + 1
= 1−

et
− 1

et + 1
= 1− tanh(t/2),

and tanh(t/2) is an odd function, E0(0) = 1 and E2m(0) = 0 for m ≥ 1. Also,(
2

et + 1

)′
=
−2et

(et + 1)2
=
−2

et + 1
+

2

(et + 1)2
=
−2

et + 1
+

1

2

(
2

et + 1

)2

,

so

∞∑
r=0

Er+1(0)
tr

r !
+

∞∑
r=0

Er (0)
tr

r !
=

1

2

(
∞∑

r=0

Er (0)
tr

r !

)2

.

Comparing the coefficients of tr yields

Er+1(0)+ Er (0) =
1

2

r∑
k=0

(
r

k

)
Ek(0)Er−k(0). (2)

With r = 0, we obtain E1(0) = −1/2. Since the even terms vanish, setting r = 2m in
(??) yields a recurrence for the odd terms:

E2m+1(0) =
1

2

m−1∑
s=0

(
2m

2s + 1

)
E2s+1(0)E2(m−s−1)+1(0). (3)

Induction on m yields E2m+1(0) ∈ Z[ 12 ], where Z[ 12 ] is the set of rational numbers with
powers of 2 as denominators.

Let E ′2m+1 = (−1)m+1 E2m+1(0). Multiplying (??) by (−1)m+1 yields E ′2m+1 =

1
2

∑m−1
s=0 E ′2s+1 E ′2(m−s−1)+1. With E1(0) = −1/2, inductively all E ′2m+1 are positive.

In particular, |E2m+1(0)| > m
2 |E2m−1(0)|, so |E5(0)| < |E7(0)| < · · · . Since E1(0) =

E5(0) = − 1
2 and E3(0) = 1

4 , the values E2m+1(0) for m ≥ 0 are distinct except for
E1(0) = E5(0).

Factoring the generating function (??) as ext
·

2
et+1 , we obtain

∞∑
r=0

Er (x)
tr

r !
=

∞∑
r=0

xr tr

r !
·

∞∑
r=0

Er (0)
tr

r !
,

and hence Er (x) =
∑r

k=0

(r
k

)
Er−k(0)x k . Thus Er is a polynomial with coefficients in

Z[ 12 ] and constant term Er (0). For odd i and j , we can now write

L i (2m + 1)− L j (2m + 1) =
1

2
(Ei (0)+ Ei (2m + 1)− E j (0)− E j (2m + 1))

= Ei (0)− E j (0)+ (2m + 1)P(2m + 1),
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where x P(x) = 1
2 [Ei (x)− Ei (0)− E j (x)+ E j (0)]. Note that P is a polynomial with

coefficients in Z[ 12 ]. Thus L i (2m + 1) ≡ L j (2m + 1) (mod 2m + 1) only if 2m + 1
divides the numerator of Ei (0)− E j (0), since its denominator is a power of 2. Since
Ei (0) 6= E j (0) for {i, j} 6= {1, 5}, there are only finitely many such odd numbers.

Editorial comment. In part (b) the restriction to odd n was omitted in error. Several
solvers pointed out that the claim is false when n is allowed to be even. Zoltán Vörös
proved this as follows: For k odd and n even, (n − i)k ≡ (−i)k ≡ −i k (mod n), so
the terms in the sum Lk(n) cancel in pairs except for the middle term. Thus Lk(n) ≡
(n/2)k (mod n). Hence if i and j are odd and n is even but not divisible by 4, then
L i (n) − L j (n) ≡ (n/2)i − (n/2) j

≡ 0 (mod n). If both i and j are at least 3, then
every even n will work.

Also solved by F. Alayont and by R. Chapman (U.K.). Part (a) only solved by D. Beckwith, Z. Vörös (Hun-
gary), BSI Problems Group (Germany), GCHQ Problem Solving Group (United Kingdom), and the proposer.
Falsity for even n also observed by D. Fleischman and J. H. Lindsey II.

Splitting Fields of Cubic Polynomials

11420 [2009, 277]. Proposed by Kent Holing, StatoilHydro, Trondheim, Norway. Let
p be a monic cubic polynomial with integer coefficients and discriminant D. Show
that if r is a zero of p and d =

√
D, then Q(r + d) is the splitting field of p.

Solution by Achava Nakhash, San Diego, CA. Let K be the splitting field of p. Let r ,
s, and t be the roots of p, so d = ±(r − s)(r − t)(s − t). If p splits into linear factors
over Q, then both r and d are rational, and it follows that K = Q(r + d) = Q. If p
splits into a linear and an irreducible quadratic factor, and r is the rational root, then
because d =

√
D and s, t, d ∈ Q(

√
D), K = Q(

√
D) = Q(r + d). A similar proof

works if r is one of the nonrational roots.
If p is irreducible, then the Galois group of K is either A3 or S3. In the former case,

the discriminant is a rational square, so Q(r) = Q(r + d) 6= Q; since K is of degree
3, it follows that K = Q(r) = Q(r + d). Finally, if the Galois group of K is S3, then
it must include the permutation that fixes r and transposes s and t . This permutation
does not fix d , so r + d is not in Q(r), because the latter field is the fixed field of A3.
Thus, Q(r + d) properly contains Q(r) and is a subfield of the splitting field K . Since
K is a degree-six extension of the rationals, it follows that Q(r + d) = K , as claimed.

Also solved by R. Chapman (U.K.), P. Corn, P. P. Dályay (Hungary), S. M. Gagola Jr., J. Grivaux (France),
J. H. Lindsey II, J. Simons (U.K.), J. H. Smith, R. Stong, M. Tetiva (Romania), GCHQ Problem Solving Group
(U.K.), NSA Problem Solving Group, and the proposer.

Recurrences for k-Fibonacci Numbers

11421 [2009, 277]. Proposed by Sergio Falcón and Ángel Plaza, University of las
Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain. Fix a positive integer
k and define the sequence 〈a〉 by a0 = 0, a1 = 1, and an+1 = kan + an−1 for n ≥ 1.
(a) Show that if n, r , and h are nonnegative integers such that r + h ≤ n, then
an+r an+r+h + (−1)h+1an−r−han−r = a2na2r+h .
(b) Show that if i and j are positive integers with i ≥ j , then

k
j−1∑
r=0

ai−r a j−r =

{
ai a j+1, if j is odd;
ai a j+1 − ai− j , if j is even.

[Editor’s note - In the original printing, “an+r ” read “an+1”; we regret the error.]
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Solution I by J. C. Linders, Eindhoven, The Netherlands.
(a) Set φ = (k +

√
k2 + 4)/2 and ω = (k −

√
k2 + 4)/2, which are the roots of x2

−

kx − 1 = 0. Since this is the characteristic equation of the recurrence, checking the
initial conditions confirms that an = (φ

n
− ωn)/(φ − ω) for n ≥ 0. Thus

apaq =
φ p
− ωp

φ − ω
·
φq
− ωq

φ − ω
=
φ p+q

− φ pωq
− ωpφq

+ ωp+q

(φ − ω)2

for p, q ≥ 0. Since φω = −1, this yields

apaq =
φ p+q

+ ωp+q
− (−1)q

(
φ p−q

− ωp−q
)

(φ − ω)2
. (4)

It follows that

ap+saq+s − (−1)sapaq =
φ p+q+2s

+ ωp+q+2s
− (−1)s

(
φ p+q

+ ωp+q
)

(φ − ω)2
.

Applying (??) again yields, for p, q, s ≥ 0,

ap+saq+s − (−1)sapaq = ap+q+sas (5)

The claim follows by setting p = n − r − h, q = n − r , and s = 2r + h.
(b) Setting q = 1 in (??) yields ap+sas+1 − (−1)sap = ap+s+1as . Using this after ap-
plying the recurrence,

kap+sas = (ap+s+1 − ap+s−1)as = ap+sas+1 − (−1)sap − ap+s−1as,

assuming p + s ≥ 1. For positive j and nonnegative p, we obtain

k
j∑

s=1

ap+sas =

j∑
s=1

(
ap+sas+1 − ap+s−1as

)
−

j∑
s=1

(−1)sap

= ap+ j a j+1 − apa1 − ap

j∑
s=1

(−1)s =

{
ap+ j a j+1, if j is odd;
ap+ j a j+1 − ap, if j is even.

The claim follows by setting p = i − j and s = j − r .

Solution II to part (a) by the editors. The claim of (a) reduces to an+r a2n + 0 = a2nan+r

when r + h = n, so in what follows we assume r + h < n. The defining recurrence
generates the k-Fibonacci numbers: an is the number of distinguishable tilings of a
unit-width strip of length n − 1 using squares of k colors and uncolored dominos (see
A. T. Benjamin and J. J. Quinn, Fibonacci and Lucas identities through colored tilings,
Utilitas Math. 56 (1999) 137–142). To facilitate combinatorial proofs, let bn = an+1

for n ≥ 0 and bn = 0 for n < 0.
Start the strip at point 0, so br bs tilings of length r + s have a breakpoint at r .

Similarly, br−1bs+1 have a breakpoint at r − 1. Those with a square in position r are
counted by both products. Thus br bs−1 − br−1bs = br−2bs−1 − br−1bs−2. For r < s,
this yields br bs−1 − br−1bs = (−1)r bs−r−1 by induction on r .

Now consider br+t bs − br bs+t . Among the tilings of length r + s + t counted by
the two products, those not counted by both are those in the first set that don’t break at
r and those in the second that don’t break at r + t . For r < s, we have

br+t bs − br bs+t = br−1bt−1bs − br bt−1bs−1

= bt−1[br−1bs − br bs−1] = (−1)r−1bt−1bs−r−1.
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Setting r = 2m + h − 1, s = n + m − 1, and t = n − m, where m + h < n, converts
this to the desired identity with m written in place of the original r .

Solution II to part (b) by the proposers. To give a combinatorial argument, we keep the
notation from the previous solution to (a) and rewrite the desired identity (for i ≥ j)
as

k
j∑

r=1

bi−r b j−r =

{
bi−1b j , if j is odd;
bi−1b j − bi− j−1, if j is even.

There are bi−1b j pairs of tilings such that one has length i − 1 in positions 2 through i
and the other has length j in positions 1 through j .

To count these another way, group the pairs by the first fault, where a fault is a
position where both tilings have a breakpoint. The first fault immediately follows the
leftmost square in the two tilings, say at position r , and there are k ways to color that
square. This determines both tilings through position r , and there are bi−r b j−r ways to
complete the two tilings.

This counts all the pairs when j is odd, but when j is even there may be no fault. In
this case both tilings begin with j/2 dominos, and there are bi− j−1 ways to complete
the longer tiling.

Editorial comment. The special case of the identity in Solution II of (a) obtained by
setting r = n − 1, t = 1, and s = n + ` was proved (for k = 1) and applied in Br.
A. Brousseau, Summation of infinite Fibonacci series, Fibonacci Quarterly 7 (1969)
143–168.

Also solved by M. Bataille (France), D. Beckwith, R. Chapman (U.K.), P. Corn, C. Curtis, P. P. Dályay (Hun-
gary), Y. Dumont (France), D. Fleischman, J. Grivaux (France), O. Kouba (Syria), H. Kwong, J. H. Lindsey II,
O. P. Lossers (Netherlands), A. Nakhash, J. P. Robertson, J. Simons (U.K.), A. Stadler (Switzerland), R. Stong,
M. Tetiva (Romania), Microsoft Research Problems Group, and the proposer. Part (b) solved by G. C. Greubel
and GCHQ Problem Solving Group (U.K.).

Equally Many Repetitions of Each Type

11424 [2009, 277]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn,
NY. Find the number of bit strings of length n in which the number of 00 substrings
is equal to the number of 11 substrings. For example, when n = 4 we have 4 such bit
strings: 0011, 0101, 1010, and 1100.

Solution by Christopher Carl Heckman, Arizona State University, Tempe, AZ. The
answer is 2 when n = 1 and is 2

( n−2
dn/2e−1

)
when n > 1.

Consider n > 1. Given a bit string of length n, let ai be the number of 0s in the i th
run of 0s, and let bi be the number of 1s in the i th run of 1s. For example, the string
00011011 yields a1 = 3, b1 = 2, a2 = 1, and b2 = 2. The number of copies of 00 is∑

i (ai − 1), and the number of copies of 11 is
∑

i (bi − 1).
Let a =

∑
i ai and b =

∑
i bi . If the first and last bits differ, then the number of

runs of each type is the same, and the desired condition holds if and only if a = b,
which requires n to be even. If the first and last bits are 0, then there is an extra run
of 0, and the desired condition holds if and only if a = b + 1, which requires n to be
odd. Similarly, the condition is a + 1 = b and n odd when the first and last bits are 1.

There are two possibilities for the first bit. Once this bit is chosen, the number of
ways to satisfy the needed condition on a and b is

( n−2
(n−2)/2

)
when n is even, and it is( n−2

(n−1)/2

)
when n is odd. Combining the computations yields 2

( n−2
dn/2e−1

)
for the answer

in both cases.

376 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 118

X
ia
ng
’s
T
ex
m
at
h



Editorial comment. Let s(n, k) be the number of binary n-tuples beginning with 0
in which the number of copies of 00 exceeds the number of copies of 11 by exactly
k. Several solvers showed that s(n, k) =

( n−2
d(n−k)/2e−1

)
; setting k = 0 gives the desired

result. Generalizing the problem in a different direction, Heckman asks how many
binary n-tuples have the same number of copies of 00 and 01. Computational results
suggest that this may be harder.

Also solved by T. Barcume, D. Beckwith, N. Caro (Colombia), R. Chapman (U.K.), P. Corn, C. Curtis,
P. P. Dályay (Hungary), D. Grinberg, N. Grivaux (France), P. Landweber, J. H. Lindsey II, O. P. Lossers
(Netherlands), R. Martin (Germany), D. Nacin, C. M. Nicolas, Á. Plaza & A. Saure & J. P. Pedro (Spain),
C. R. Pranesachar (India), R. E. Prather, J. Riley, T. Rucker, B. Schmuland (Canada), J. Simons (U.K.),
R. Staum, R. Stong, S. Sullivan, R. Tauraso (Italy), M. Tetiva (Romania), B. Tomper, H. Widmer (Switzer-
land), L. Zhou, CMC 328, GCHQ Problem Solving Group (U.K.), Hofstra University Problem Solvers, NSA
Problems Group, Problem Solving Group Magdeburg (Germany), Texas State University Problem Solvers
Group, and the proposer.

Sum of Two Squares in Every Congruence Class

11425 [2009, 366]. Proposed by Erwin Just (emeritus), Bronx Community College,
City University of New York, Bronx, NY. For which positive integers m does every
congruence class mod m contain the sum of two squares?

Solution by John H. Lindsey II, Cambridge, MA . Every congruence class modulo m
contains a sum of two squares if and only if every prime whose square divides m is
congruent to 1 modulo 4.

Necessity. Let p be a prime with p2
| m. If every congruence class modulo m con-

tains a sum of two squares, then the same holds modulo p2. Modulo 4 we cannot get 3
as a sum of squares, so p > 2. If a2

+ b2
≡ p mod p2, then a and b are not both di-

visible by p. Hence in the field Fp we have a2
+ b2
= 0 and may assume a is nonzero;

thus (b/a)2 = −1, and b/a has order 4 in the multiplicative group of p − 1 elements.
This requires 4 | (p − 1), as desired.

Sufficiency. Let p be a prime. We claim that every congruence class modulo p con-
tains a sum of two squares. This is clearly true for p = 2, so suppose p is odd, and let
h be the first quadratic nonresidue among 1, . . . , p − 1. Thus h ≡ a2

+ 1 mod p for
some integer a. The quadratic nonresidues are the p−1

2 numbers of the form b2h, where
b 6= 0. Since b2h = (ba)2 + b2, the quadratic nonresidues are sums of two squares.
The quadratic residues have the form b2

+ 02. Hence every congruence class mod-
ulo p contains a sum of two squares.

If also p ≡ 1 mod 4, then each class contains a sum of two squares that are not
both divisible by p. This is obvious except for class 0; since −1 is a quadratic residue
modulo p, we have a2

+ 1 ≡ 0 mod p for some a with p - a .
We show next that if all classes modulo p occur in the form a2

+ b2 with p not
dividing a, then for i ≥ 2 all classes modulo pi occur in the form (a + pj)2 + b2 for
some j with 0 ≤ j ≤ pi−1

− 1. For this, it suffices to show that for fixed a, the values
(a + pj)2 lie in pi−1 distinct classes modulo pi , all of which are congruent to a2

modulo p. If (a + pj)2 and (a + pk)2 lie in the same class modulo pi , then pi divides
their difference, which equals (2a + pj + pk)p( j − k). We have assumed that p - a
and pi−1 - ( j − k), so (a + pj)2 6≡ (a + pk)2 mod pi . Also, (a + pj)2 ≡ a2 mod p.

Now suppose that m has prime factorization
∏n

j=1 p
i j
j such that i j ≥ 2 implies p j ≡

1 mod 4. Fix a congruence class r mod m. For each j with 1 ≤ j ≤ n, there exist a j

and b j such that a2
j + b2

j ≡ r mod p
i j
j . By the Chinese Remainder Theorem, there

exist a and b such that a ≡ a j mod p
i j
j and b ≡ b j mod p

i j
j for 1 ≤ j ≤ n. Hence
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a2
+ b2

≡ a2
j + b2

j ≡ r mod p
i j
j for 1 ≤ j ≤ n. Since the various p

i j
j are relatively

prime, a2
+ b2
≡ r mod m.

Also solved by R. Chapman (U.K.), S. M. Gagola Jr., J. Grivaux (France), C. Lanski, O. P. Lossers (Nether-
lands), J. Moreira (Portugal), A. Nakhash, K. Schilling, J. Simons (U.K.), N. C. Singer, R. Stong, M. Tetiva
(Romania), Con Amore Problem Group (Denmark), GCHQ Problem Solving Group (U.K.), Microsoft Re-
search Problems Group, NSA Problems Group, and the proposer.

An Arccos Integral

11457 [2009, 747]. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY. For
real numbers a and b with 0 ≤ a ≤ b, find∫ b

x=a
arccos

(
x

√
(a + b)x − ab

)
dx .

Solution by FAU Problem Solving Group, Florida Atlantic University, Boca Raton, FL.
We integrate by parts, using x − ab

a+b as the antiderivative of 1. Notice that

d

dx
arccos

(
x

√
(a + b)x − ab

)
= −

b(x − a)− a(b − x)

2(a + b)
(
x − ab

a+b

)√
(b − x)(x − a)

,

and that arccos(x/
√
(a + b)x − ab) vanishes for x = a and x = b. Thus∫ b

a
arccos

(
x

√
(a + b)x − ab

)
dx=

(
x −

ab

a + b

)
arccos

(
x

√
(a + b)x − ab

)∣∣∣∣b
a

+
1

2(a + b)

[
b
∫ b

a

√
x − a
√

b − x
dx − a

∫ b

a

√
b − x
√

x − a
dx

]

=
1

2(a + b)

[
b
∫ b

a

√
x − a
√

b − x
dx − a

∫ b

a

√
b − x
√

x − a
dx

]
.

Writing B for Euler’s beta function, we have∫ b

a

√
x − a
√

b − x
dx =

∫ b

a

√
b − x
√

x − a
dx = (b − a)B

(
3

2
,

1

2

)
=
(b − a)π

2
.

It follows that ∫ b

a
arccos

(
x

√
(a + b)x − ab

)
dx =

(b − a)2π

4(a + b)
.

Also solved by K. F. Andersen (Canada), G. Apostolopoulos (Greece), M. S. Ashbaugh, M. R. Avidon, R.
Bagby, D. H. Bailey & J. M. Borwein (U.S.A. & Canada), D. Beckwith, K. N. Boyadzhiev, P. Bracken, R.
Chapman (U.K.), H. Chen, C. Curtis, P. P. Dályay (Hungary), P. De (India), M. Goldenberg & M. Kaplan,
J.-P. Grivaux (France), J. A. Grzesik, E. A. Herman, F. Holland (Ireland), M. E. H. Ismail, W. P. Johnson, P.
Khalili, O. Kouba (Syria), C. Koutschan, G. Lamb, O. P. Lossers (Netherlands), K. McInturff, D. K. Nester, M.
Omarjee (France), P. Perfetti (Italy), J. Posch, C. R. Pranesachar (India), O. G. Ruehr, F. Sami, B. Schmuland
(Canada), J. Simons (U.K.), N. C. Singer, S. Singh, R. Stong, T. Tam, A. P. Taraporevala, R. Tauraso (Italy),
M. Tetiva (Romania), T. P. Turiel, D. B. Tyler, E. I. Verriest, M. Vowe (Switzerland), T. Wiandt, H. Widmer
(Switzerland), GCHQ Problem Solving Group (U.K.), Hofstra University Problem Solvers, Missouri State
University Problem Solving Group, and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West

with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before September 30, 2011. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11572. Proposed by Sam Sakmar, University of South Florida, Tampa, FL. Given a
circle C and two points A and B outside C , give a Euclidean construction to find a
point P on C such that if Q and S are the second intersections with C of AP and B P
respectively, then QS is perpendicular to AB. (Special configurations, including the
case that A, B, and the center of C are collinear, are excluded.)

11573. Proposed by Rob Pratt, SAS Institute, Cary, NC. A Sudoku permutation matrix
(SPM) of order n2 is a permutation matrix of order n2 with exactly one 1 in each of the
n2 submatrices of order n obtained by partitioning the original matrix into an n-by-n
array of submatrices. Thus, for n = 2, the permutation 1324 yields an SPM, but the
identity permutation 1234 does not. Find the number of SPMs of order n2.

11574. Proposed by M. Farrokhi D. G., Ferdowsi University of Mashhad, Mashhad,
Iran. Let F be a field with characteristic zero, let p ∈ F[x] be a polynomial over F ,
and let Dp be the set of all polynomials q in F[x] that divide p ◦ r for some r in F[x].
Prove that Dp is closed under multiplication.

11575. Proposed by Tuan Le (student), Worcester Polytechnic Institute, Worcester, MA.
Prove that if a, b, and c are positive, then

16

27

(
a

b + c
+

b

c + a
+

c

a + b

)3

+

(
abc

(a + b)(b + c)(c + a)

)1/3

≥
5

2
.

11576. Proposed by László Tóth, University of Pécs, Hungary. Let ω(n) denote the
number of distinct prime factors of n. Let P(x, k) be the set of integers in [1, x] that
are relatively prime to k, and let φ(x, k) = |P(x, k)|. Let

S(x, k) =
∑

n∈P(x,k)

(−1)ω(n).

doi:10.4169/amer.math.monthly.118.05.463
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Show that for all real x in [1,∞),∑
1≤n≤x

(−1)ω(n)φ(x/n, n) =
∑

1≤n≤x

S(x/n, n) = 1.

11577. Proposed by Pál Péter Dályay, Szeged, Hungary. Let n be a positive even
integer and let p be prime. Show that the polynomial f given by f (x) = p +

∑n
k=1 x k

is irreducible over Q.

11578. Proposed by Roger Cuculière, Clichy la Garenne, France. Let E be a real
normed vector space of dimension at least 2. Let f be a mapping from E to E , bounded
on the unit sphere {x ∈ E : ‖x‖ = 1}, such that whenever x and y are in E , f (x +
f (y)) = f (x)+ y. Prove that f is a continuous, linear involution on E .

SOLUTIONS

Rounding Down

11428 [2009, 365]. Proposed by Walter Blumberg, Coral Springs, FL. Let p be a prime
that is congruent to 3 mod 4, and let a and q be integers, with p - q . Show that

p∑
k=1

b(qk2
+ a)/pc = 2a + 1+

p∑
k=1

b(qk2
− a − 1)/pc.

Solution by Julien Grivaux (student), Université Pierre et Marie Curie, Paris, France.
Let N (x) be the number of congruence classes y such that y2

≡ x mod p. Since p ≡
3 mod 4, the value−1 is not a quadratic residue modulo p, so {x,−x} contains exactly
one quadratic residue modulo p when p - x . Thus always N (x)+ N (−x) = 2.

Define

S(a) =
p∑

k=1

b(qk2
+ a)/pc and T (a) =

p∑
k=1

b(qk2
− a − 1)/pc.

Let [p] = {1, . . . , p}. Now

S(a + 1)− S(a) =
∣∣{k ∈ [p] : p | (qk2

+ a + 1)}
∣∣ = N (−q−1(a + 1)),

T (a)− T (a + 1) =
∣∣{k ∈ [p] : p | (qk2

− a − 1)}
∣∣ = N (q−1(a + 1)).

Thus
[
S(a + 1) − T (a + 1)

]
−
[
S(a) − T (a)

]
= 2. We conclude that S(a) −

T (a) = 2a + [S(0)− T (0)]. Furthermore, using p - q , we have

S(0)− T (0) =
p∑

k=1

⌊
qk2/p

⌋
−

p∑
k=1

⌊
(qk2
− 1)/p

⌋
=
∣∣{k ∈ [p] : p | qk2

}
∣∣ = 1

Thus S(a)− T (a) = 2a + 1.

Also solved by R. Chapman (U.K.), P. P. Dályay (Hungary), D. Fleischman, O. Geupel (Germany), D. Gove,
O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), M. A. Prasad (India), J. Simons (U.K.),
N. C. Singer, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), K. S. Williams (Canada), GCHQ Problem
Solving Group (U.K.), Microsoft Research Problems Group, and NSA Problems Group.
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A Triply-Determined Point on the Sphere

11433 [2009, 463]. Proposed by Marius Cavachi, University “Ovidius,” Constanţa,
Romania. Let n be a positive integer, and let A1, . . . , An , B1, . . . , Bn , and C1, . . . ,Cn

be points on the unit sphere S2. Show that there exists P on S2 such that

n∑
k=1

|P − Ak |
2
=

n∑
k=1

|P − Bk |
2
=

n∑
k=1

|P − Ck |
2.

Solution I by Omran Kouba, Higher Institute for Applied Science and Technol-
ogy, Damascus, Syria. Let U =

∑n
k=1(Bk − Ak) and V =

∑n
k=1(Ck − Ak). Since

dim span(U, V ) ≤ 2, there is a point Q 6= 0 in R3 that is perpendicular to U and
V . Let P = Q/|Q| and d =

∑n
k=1 |P − Ak |

2
−
∑n

k=1 |P − Bk |
2. Expanding, d =∑n

k=1(|P|
2
+ |Ak |

2
− 2P · Ak)−

∑n
k=1(|P|

2
+ |Bk |

2
− 2P · Bk) = 2P ·U = 0. Sim-

ilarly,
∑n

k=1 |P − Ak |
2
−
∑n

k=1 |P − Ck |
2
= 0.

Solution II by Dan Jurca, California State University East Bay, Hayward, California.
Define f : S2

→ R2 by

f (P) =

(
n∑

k=1

(
|P − Ak |

2
− |P − Bk |

2
)
,

n∑
k=1

(
|P − Ak |

2
− |P − Ck |

2
))
.

Note that |P − Ak |
2
− |P − Bk |

2
= −(|−P − Ak |

2
− |−P − Bk |

2) and similarly
|P − Ak |

2
− |P − Ck |

2
= −(|−P − Ak |

2
− |−P − Ck |

2). Thus f (P) = − f (−P)
for all P ∈ S2. Since f is continuous on S2, the Borsuk–Ulam theorem implies that
there exists P ∈ S2 such that f (P) = f (−P) = (0, 0). The result follows.

Also solved by R. Bagby, M. Bataille (France), R. Chapman (U.K.), P. P. Dályay (Hungary), R. Garmanjani
(Portugal), M. Goldenberg & M. Kaplan, D. Grinberg, E. A. Herman, B.-T. Iordache (Romania), Y. K. Jeon
(Korea), H. Katsuura & E. Schmeichel, J. C. Linders (Netherlands), O. P. Lossers (Netherlands), K. McInturff,
J. H. Nieto (Venezuela), J. Schaer (Canada), J. Simons (U.K.), N. C. Singer, R. Stong, M. Tetiva (Romania),
CMC 328, Szeged Problem Solving Group “Fejéntaláltuka” (Hungary), GCHQ Problem Solving Group (U.K.),
Microsoft Research Problems Group, and the proposer.

Diagonal Intersections Not Collinear

11436 [2009, 463]. Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbai-
jan. In a triangle ABC , let B ′ and C ′ be points on sides AC and AB, respectively. Let
M be the intersection of B B ′ and CC ′. Let distinct lines k and l intersecting inside
triangle M BC meet segments C ′B, M B, MC , and B ′C at K1, K2, K3, K4 and L1, L2,
L3, L4, respectively. Show that the intersection points of the diagonals of K1 K2L2L1,
K2L2 K3L3, and K3L3L4 K4 are not collinear.

Solution I by Oliver Geupel, Brühl, Germany. If u and v are lines, let u.v denote their
intersection. Let Q = K1L2.K2L1, O = k.l, and P = K3L4.K4L3. Without loss of
generality suppose that L1 lies on the line segment C ′K1.

Let U = K1 Q.K4 P and V = QL1.P L4. Then U = K1L2.K4L3 = L2 Q.L3 P
and V = K2L1.K3L4 = QK2.P K3. If the points at issue, Q, O, P , are collinear,
then lines K1 K4, L1L4, and Q P are concurrent at O . Hence triangles K1L1 Q and
K4L4 P are perspective from O , as are K2L2 Q and K3L3 P . By Desargues’ theorem,
K1L1.K4L4 (i.e., A), U , and V are collinear, as are K2L2.K3L3 (i.e., M), U , and V .
Thus A,U, V,M are collinear, so U lies on AM . Triangle AK1 K4 contains K1 Q.AM
in its interior but is disjoint from K4 P . This contradicts our assumption that Q, O, P
are collinear.
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Solution II by the GCHQ Problem Solving Group, Cheltenham, U.K. With the above
notation, let k and l denote unit vectors in the directions O K1 and O L1, respec-
tively. For 1 ≤ j ≤ 4, let O K j = α j k and O L j = β j l. Now P = K3L4.K4L3, so
O P = λα3k+ (1− λ)β4l = µα4k+ (1− µ)β3l. Thus λα3 = µα4 and (1− λ)β4 =

(1 − µ)β3. Therefore (α3β3 − α4β4)O P = α3α4(β3 − β4)k + β3β4(α3 − α4)l. Sim-
ilarly, (α1β1 − α2β2)O Q = β1β2(α1 − α2)k + β1β2(α1 − α2)l, (α1β2 − α2β1)O B =
α1α2(β2 − β1)k + β1β2(α1 − α2)l, and (α3β4 − α4β3)OC = α3α4(β4 − β3)k +
β3β4(α3 − α4)l. Note that O P ‖ O N if and only if O B ‖ OC , i.e., if and only if
β1β2α3α4(α1 − α2)(β3 − β4) = α1α2β3β4(β1 − β2)(α3 − α4). Since O = k.l lies in-
side MBC, we conclude O B ∦ OC , so O P ∦ O Q, as desired.

Also solved by R. Chapman (U.K.), P. P. Dályay (Hungary), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), C. R. Pranesachar (India), J. Simons (U.K.), R. Stong, and the proposer.

Zeros of Polynomials with Unit Coefficients

11437 [2009, 464]. Proposed by Tamás Erdélyi, Texas A&M University, College Sta-
tion, TX. Let Lk denote the set of all polynomials of degree k in x with each of their
k + 1 coefficients in {−1, 1}. Let Mk denote the largest multiplicity that a zero of a
P in Lk can have at 1. Let 〈Ck〉 be a sequence of positive integers tending to infinity.
Show that

lim
n→∞

1

n

∣∣{k : 1 ≤ k ≤ n and Mk ≥ Ck}
∣∣ = 0.

Solution by Richard Stong, Center for Communications Research, San Diego, CA . We
claim that Mk < 2r , where 2r is the largest power of 2 dividing k + 1. Let P(x) =∑k

n=0 en xn , where en ∈ {−1, 1}. If P has a zero of multiplicity at least 2r at 1, then 1
also is a zero of the (2r

− 1)th derivative. Thus

0 =
1

(2r − 1)!
P (2r

−1)(1) =
k∑

n=2r−1

en

(
n

2r − 1

)
.

Since en = ±1 ≡ 1 (mod 2), we conclude that

0 =
k∑

n=2r−1

ek

(
n

2r − 1

)
≡

k∑
n=2r−1

(
n

2r − 1

)
=

(
k + 1

2r

)
(mod 2).

By Lucas’s theorem,
(2r s

2r

)
is odd when s is odd. Thus we have a contradiction and

Mk < 2r .
If Ck →∞, then for any r there exists N such that Ck ≥ 2r for k > N . If Mk ≥ Ck ,

then either k ≤ N or 2r divides k + 1. Hence∣∣{k : 1 ≤ k ≤ n and Mk ≥ Ck}
∣∣ ≤ N +

n + 1

2r
.

We conclude that

lim sup
n→∞

1

n

∣∣{k : 1 ≤ k ≤ n and Mk ≥ Ck}
∣∣ ≤ 2−r .

Since the desired limit is nonnegative and r is arbitrary, the limit must be 0.

Editorial comment. The proposer noted that (1− x)(1− x2) · · · (1− x2n−1
) is in L2n−1,

and its zero at 1 has multiplicity n − 1. He also proved the much stronger result that
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for ε > 0, and for almost every natural number k, every polynomial in Lk has at most
(1+ ε) log k log log k zeros at 1.

Also solved by R. Chapman (U.K.), P. P. Dályay (Hungary), O. Geupel (Germany), O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), J. Simons (U.K.), GCHQ Problem Solving Group (U.K.), and
the proposer.

A Triangle Inequality

11448 [2009, 647]. Proposed by Wei-Dong Jiang, Weihai Vocational College, Weihai,
China. Let a, b, c be the side-lengths of a triangle, and let α, β, γ respectively denote
half the measures of the angles opposite those sides. Show that

a

b + c
tan2 β tan2 γ +

b

c + a
tan2 γ tan2 α +

c

a + b
tan2 α tan2 β ≤

1

6
.

Solution by Cosmin Pohata, “Tudor Vianu” National College, Bucharest, Rumania.
Let s be the semiperimeter of the triangle with side lengths a, b, c. Recall that tanα =
√
(s − b)(s − c)/s(s − a), with similar formulas for tanβ and tan γ . The required

inequality then becomes ∑
cyc

a

b + c
· (s − a)2 ≤

s2

6
.

Let s − a = x , s − b = y, and s − c = z. Note that x, y, z are positive reals, with
y + z = a, z + x = b, x + y = c. The inequality to be proved is now∑

cyc

x2(y + z)

2x + y + z
≤
(x + y + z)2

6
.

We show that this inequality holds for all positive real numbers x, y, z. This is equiv-
alent to A ≤ B, where A = 6

∑
cyc

[
x2(y+z)(2y + z + x)(2x + y + z)

]
and B =

(x + y + z)2 ·
∏

cyc(2x+y+z).
Simply expanding B − A yields

B − A = [5, 0, 0] + 5[4, 1, 0] + 6[3, 1, 1] − 5[2, 2, 1] − 7[3, 2, 0],

where [p, q, r ] is defined to be
∑

sym x p yq zr .
By Schur’s inequality, we have [5, 0, 0] + [3, 1, 1] ≥ 2[4, 1, 0]. Hence

B − A ≥ 7[4, 1, 0] + 5[3, 1, 1] − 5[2, 2, 1] − 7[3, 2, 0].

From Muirhead’s inequality, we have [4, 1, 0] ≥ [3, 2, 0] and [3, 1, 1] ≥ [2, 2, 1]. This
proves that B − A ≥ 0 and thus A ≤ B.

Editorial comment. Solvers Enkel Hysnelaj and Elton Bojaxiu point out that this prob-
lem by the same proposer appears at the RGMIA Problem Corner, at http://www.
staff.vu.edu.au/RGMIA/pc.asp, with a solution by Miwa Lin.

Also solved by A. Alt, R. Bagby, D. Beckwith, E. Braune (Austria), R. Chapman (U.K.), C. Curtis, Y. Dumont
(France), O. Faynshteyn (Germany), O. Geupel (Germany), J. Grivaux (France), E. Hysnelaj & E. Bojaxhiu
(Australia & Germany), B.-T. Iordache (Romania), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II,
P. Nüesch (Switzerland), J. Oelschlager, C. R. Pranesachar (India), R. Stong, R. Tauraso (Italy), M. Tetiva
(Romania), M. Vowe (Switzerland), S. Xiao (Canada), J. Zacharias, and GCHQ Problem Solving Group (U.K.).
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Vandermonde Strikes Again

11459 [2009, 747]. Proposed by Pál Péter Dályay, Deák Ferenc High School, Szeged,
Hungary. Find all pairs (s, z) of complex numbers such that

∞∑
n=0

n∑
k=0

1

k! (n − k)!

 k∏
j=1

(s j − z)

n−k−1∏
j=0

(s j + z)


converges.

Solution by Oliver Geupel, Brühl, NRW, Germany. We claim that (s, z) has the desired
property if and only if |s| < 1. Let

αn(s, z) =
n∑

k=0

1

k! (n − k)!

 k∏
j=1

(s j − z)

n−k−1∏
j=0

(s j + z)

 .
First consider s = 0. For n ≥ 1 we have αn(0, z) = (zn/n!)

∑n
k=0

(n
k

)
(−1)k = 0; hence∑

∞

n=0 αn(0, z) converges for each z. Now suppose s 6= 0. Applying Vandermonde’s
convolution formula

n∑
k=0

(
x

k

)(
y

n − k

)
=

(
x + y

n

)
,

we obtain

αn(s, z) =
n∑

k=0

 k∏
j=1

z/s − j

j

n−k−1∏
j=0

−z/s − j

j + 1

 (−s)n

= (−s)n
n∑

k=0

(
z/s − 1

k

)(
−z/s

n − k

)
= (−s)n

(
−1

n

)
= sn.

However,
∑
∞

n=0 sn converges if and only if |s| < 1. This completes the proof.

Also solved by M. S. Ashbaugh & F. Vial (U.S.A. & Chile), D. Beckwith, R. Chapman (U.K.), E. A. Herman,
M. E. H. Ismail, O. Kouba (Syria), M. E. Larsen (Denmark), O. P. Lossers (Netherlands), D. K. Nester, J.
Simons (U.K.), N. C. Singer, R. Stong, M. Tetiva (Romania), GCHQ Problem Solving Group (U.K.), and the
proposer.

Asymptotics for an Elliptic Integral

11462 [2009, 844]. Proposed by Nadezhda Alexandrova, Institute of Mining, Novosi-
birsk, Russia. Find

lim
α→0+

logα +
∫ π

x=0

dx√
sin2 x + iα

.

Solution by Richard Bagby, New Mexico State University, Las Cruces, NM. We show
that

lim
α→0+

(
logα +

∫ π

x=0

dx√
sin2 x + iα

)
= 4 log 2−

π

2
i

by splitting the integrand up into two parts, one having an elementary antiderivative
and the other remaining bounded as α→ 0+. In the calculation below, mutliple-valued
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functions should be interpreted as the versions which are analytic in the plane with the
negative real-axis removed and that are positive on (1,∞).

By symmetry, we may write∫ π

0

dx√
sin2 x + iα

= 2
∫ π/2

0

dx√
sin2 x + iα

= 2
∫ π/2

0

cos x dx√
sin2 x + iα

+ 2
∫ π/2

0

(1− cos x) dx√
sin2 x + iα

.

On [0, π/2] we have |1− cos x | ≤ sin2 x ≤ |
√

sin2 x + iα|, so by the dominated con-
vergence theorem

lim
α→0+

2
∫ π/2

0

(1− cos x) dx√
sin2 x + iα

= 2
∫ π/2

0

(1− cos x) dx

sin x
= 2

∫ π/2

0

sin x dx

1+ cos x

= −2 log(1+ cos x)|π/20 = 2 log 2.

Recognizing the elementary antiderivative, we have

2
∫ π/2

0

cos x dx√
sin2 x + iα

= 2 log
(

sin x +
√

sin2 x + iα
)∣∣∣π/2

0

= 2 log
(

1+
√

1+ iα
)
− log i − logα.

The stated result now follows immediately.

Editorial comment. Many solvers proceeded by recognizing the integral as 2
√

iα
K
(

i
α

)
and applying the known limiting behavior of the complete elliptic integrals.

Also solved by V. Adamchik, G. Apostolopoulos (Greece), K. N. Boyadzhiev, R. Chapman (U.K.), Y. Dumont
(France), O. Kouba (Syria), G. Lamb, K. McInturff, M. Omarjee (France), O. G. Ruehr, J. Simons (U.K.),
N. C. Singer, R. Stong, D. B. Tyler, Microsoft Research Problems Group, and the proposer.

A Generalization? Not!

11468 [2009, 940]. Proposed by Cosmin Pohoata, Tudor Vianu National College of
Informatics, Bucharest, Romania. Let A1 A2 A3 be a triangle, let H be a dilation map-
ping of the plane, and let R be a right angle rotation of the plane. Let P1, P2, and P3

be the images under H ◦R of A1, A2, and A3, respectively, and suppose that P1, P2,
and P3 lie inside or on the boundary of A1 A2 A3.

Let Hi for i ∈ {1, 2, 3} be the foot of the perpendicular from Pi to the side of
A1 A2 A3 opposite Ai . Generalize the Erdős–Mordell inequality: show that

P1 A1 + P2 A2 + P3 A3 ≥ P1 H2 + P1 H3 + P2 H3 + P2 H1 + P3 H1 + P3 H2,

with equality if and only if A1 A2 A3 is equilateral and each Pi is equal to the circum-
center of A1 A2 A3.

Solution by GCHQ Problem Solving Group, Cheltenham, U.K. The result does not hold
in general. Consider the isosceles right-angled triangle with A1 = (0, 0), A2 = (0, 4),
and A3 = (4, 0). Consider a dilation such that P1 = (0, 2), P2 = (2, 2), and P3 =

(0, 0). Now H1 = (1, 3), H2 = (2, 0), and H3 = (0, 0), so P1 A1 + P2 A2 + P3 A3 =

2 + 2
√

2 + 4 = 6 + 2
√

2, but P1 H2 + P1 H3 + P2 H3 + P2 H1 + P3 H1 + P3 H2 =

2
√

2+ 2+ 2
√

2+
√

2+
√

10+ 2 > 6+ 2
√

2. The claim is false in this case.

Also solved by R. Stong.
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A Series Estimate

11469 [2009, 940]. Proposed by Slavko Simic, Mathematics Institute SANU, Belgrade,
Serbia. Let 〈xi 〉 be a sequence of positive numbers, and let 〈pi 〉 be a sequence of
nonnegative numbers summing to 1. Let

A =
∞∑

i=1

pi xi , H =

(
∞∑

i=1

pi/xi

)−1

.

Show that if s and t are nonnegative numbers such that s ≤
√

xi ≤ s + t for all i ≥ 1,
then H ≤ A ≤ t2

+ H .

Solution by Allen Stenger, Alamogordo, NM. First note that it is enough to prove the
result in the finite case; that is, when pi = 0 for large i . Indeed: assume the finite case,
and in the general case set

Pn =

n∑
i=1

pi , An =

n∑
i=1

pi

Pi
xi , Hn =

(
n∑

i=1

pi

Pi

1

xi

)−1

.

By the finite case, Hn ≤ An ≤ Hn + t2, and taking the limit as n → ∞ yields the
desired result. Also note that the limit argument applies when

∑
(pi/xi ) diverges and

we take H = 0.
Now assume pi = 0 for i > n. Of course H ≤ A is well known; this is a comparison

of harmonic and arithmetic means. We must prove the other inequality. Write m =
mini≤n xi and M = maxi≤n xi , so m > 0, s ≤

√
m ≤
√

M ≤ s + t , and 0 ≤
√

M −
√

m ≤ t .
The function 1/x is convex for x > 0, so its graph lies below the secant line passing

through the points (1/M,M) and (1/m,m). The equation of this line is y = L(x),
where L(x) = M + m − Mmx , so x ≤ L(1/x) for m ≤ x ≤ M . Then

A =
∑

pi xi ≤

∑
pi L(x

−1
i ) = M + m − Mm

∑ pi

xi
= L

(∑ pi

xi

)
= L

(
1

H

)
.

From m ≤ xi ≤ M we have m ≤ H ≤ M , and therefore

A − H ≤ L

(
1

H

)
− H ≤ max

m≤x≤M

[
L

(
1

x

)
− x

]
.

This maximum occurs when x =
√

Mm, where the value is M + m − 2
√

Mm, which
equals (

√
M −
√

m )2 ≤ t2.

Also solved by P. P. Dályay (Hungary), J. Grivaux (France), S. J. Herschkorn, O. P. Lossers (Netherlands),
Á. Plaza (Spain), B. Schmuland (Canada), J. Simons (U.K.), N. C. Singer, R. Stong, GCHQ Problem Solving
Group (U.K.), and the proposer.

470 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 118

X
ia
ng
’s
T
ex
m
at
h



PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before October 31, 2011. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11579. Proposed by Hallard Croft, University of Cambridge, Cambridge, U. K., and
Sateesh Mane, Convergent Computing, Shoreham, NY. Let m and n be distinct integers,
with m, n ≥ 3. Let B be a fixed regular n-gon, and let A be the largest regular m-gon
that does not extend beyond B. Let d = gcd(m, n), and assume d > 1. Show that:
(a) A and B are concentric.
(b) If m | n, then A and B have m points of contact, consisting of all the vertices of A.
(c) If m - n and n - m, then A and B have 2d points of contact.
(d) A and B share exactly d common axes of symmetry.

11580. Proposed by David Alfaya Sánchez, Universidad Autónoma de Madrid,
Madrid, Spain, and José Luis Dı́az-Barrero, Universidad Politécnica de Cataluña,
Barcelona, Spain. For n ≥ 2, let a1, . . . , an be positive numbers that sum to 1, let
E = {1, . . . , n}, and let F = {(i, j) ∈ E × E : i < j}. Prove that∑

(i, j)∈F

(ai − a j )
2
+ 2ai a j (1− ai )(1− a j )

(1− ai )2(1− a j )2
+

∑
i∈E

(n + 1)a2
i + nai

(1− ai )2
≥

n2(n + 2)

(n − 1)2
.

11581. Proposed by Duong Viet Thong, National Economics University, Hanoi,
Vietnam. Let f be a continuous, nonconstant function from [0, 1] to R such that∫ 1

0 f (x) dx = 0. Also, let m = min0≤x≤1 f (x) and M = max0≤x≤1 f (x). Prove that∣∣∣∣∫ 1

0
x f (x) dx

∣∣∣∣ ≤ −mM

2(M − m)
.

11582. Proposed by Aleksandar Ilić, University of Niš, Serbia. Let n be a positive inte-
ger, and consider the set Sn of all numbers that can be written in the form

∑k
i=2 ai−1ai

with a1, . . . , ak being positive integers that sum to n. Find Sn .

doi:10.4169/amer.math.monthly.118.06.557
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11583. Proposed by David Beckwith, Sag Harbor, NY. The instructions for a magic
trick are as follows: Pick a positive integer n. Next, list all partitions of n as nonde-
creasing strings—for instance, with n = 3, the list is {111, 12, 3}. Count 1 point for
the string (n). For the string λ1 · · · λk with k > 1, count

∏k−1
j=1

(
λ j+1
λ j

)
points. Add up

your points, take the log base 2 of that, and add 1. Voilà! n. Explain.

11584. Proposed by Raymond Mortini and Jérôme Noël, Université Paul Verlaine,
Metz, France. Let 〈a j 〉 be a sequence of nonzero complex numbers inside the unit
circle such that

∏
∞

k=1 |ak | converges. Prove that∣∣∣∣∣∣
∞∑
j=1

1− |a j |
2

a j

∣∣∣∣∣∣ ≤ 1−
∏
∞

j=1 |a j |
2∏

∞

j=1 |a j |
.

11585. Proposed by Bruce Burdick, Roger Williams University, Bristol, RI. Show that

∞∑
k=3

1

k

(
k−2∑
m=1

ζ(k − m)ζ(m + 1)− k

)
= 3+ γ 2

+ 2γ1 −
π2

3
.

Here, ζ denotes the Riemann zeta function, γ is the Euler-Mascheroni constant, given
by γ = limn→∞

(∑n
k=1 1/k − log(n)

)
, and γ1 is the first Stieltjes constant, given by

γ1 = limn→∞

(∑n
k=1

log k
k −

1
2 (log n)2

)
.

SOLUTIONS

Extrema On the Edge

11449 [2009, 647]. Proposed by Michel Bataille, Rouen, France. (corrected) Find the
maximum and minimum values of

(a3
+ b3
+ c3)2

(b2 + c2)(c2 + a2)(a2 + b2)

given that a + b ≥ c > 0, b + c ≥ a > 0, and c + a ≥ b > 0.

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO. Let F be the
expression to be maximized. The maximum of F in the feasible region is 2, attained
when a = b = 1 and c = 2, as well as at permutations and scalings of this.

Let H = 2(b2
+ c2)(c2

+ a2)(a2
+ b2)− (a3

+ b3
+ c3)2. Since F ≤ 2 is equiva-

lent to H ≥ 0, we prove the latter. By symmetry, we may assume that a ≤ b ≤ c. By
homogeneity, we may take a = 1. Hence, we can write b = 1+ x and c = 1+ x + y
with x, y ≥ 0. Since a + b ≥ c, we have y ≤ 1. Expanding H as a polynomial in x
with coefficients that are polynomials in y gives the following expansion:

H = x4
[1+ 7(1+ y)(1− y)] + 2x3

[1+ (1− y)(7y2
+ 21y + 13)]

+ x2
[1+ (1+y)(1− y)(13y2

+ 42y + 39)]

+ 2x(1+y)(1−y)(3y + 7)(y2
+ 2y + 2)+(1+y)2(1−y)(y3

+ 5y2
+ 7y + 7),

which is evidently nonnegative. It is 0 if and only if x = 0 and y = 1. This corresponds
to (a, b, c) = (1, 1, 2).
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Also solved by R. Agnew, A. Alt, M. Ashbaugh, R. Bagby, D. Beckwith, H. Caerols & R. Pellicer (Chile),
R. Chapman (U. K.), H. Chen, C. Curtis,P. P. Dályay (Hungary), Y. Dumont (France), J. Fabrykowski and T.
Smotzer, S. Falcón and Á. Plaza (Spain), D. Fleischman, J.-P. Grivaux (France), E. A. Herman, F. Holland (Ire-
land), T. Konstantopoulos (U. K.), O. Kouba (Syria), A. Lenskold, J. H. Lindsey II, B. Mulansky (Germany),
P. Perfetti (Italy), C. R. Pranesachar (India), N. C. Singer, R. Stong, T. Tam, R. Tauraso (Italy), M. Tetiva (Ro-
mania), D. Tyler, E. I. Verriest, Z. Vörös (Hungary), S. Wagon, G. D. White, GCHQ Problem Solving Group
(U. K.), Microsoft Research Problems Group, and the proposer.

Editorial comment. Two versions of this problem appeared; the first was not what the
proposer intended. The treatment of the upper bound given in the March issue of this
column (p. 278) fails as a solution to the corrected version. The maximum of F in the
closure of the feasible region is attained not only at a corner, which is off-limits, but
also at the other boundary points noted. The solver list here includes those who had
supplied solutions under a new deadline. The editors regret the confusion.

Hexagon Inscribed in Circle

11470 [2009, 491]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Let ABCDEF be a hexagon inscribed in a circle. Let M ,
N , and P be the midpoints of the line segments BC, DE, and FA, respectively, and
similarly let Q, R, and S be the midpoints of AD, BE, and CF. Show that if both MNP
and QRS are equilateral, then the segments AB, CD, and EF have equal lengths.

Solution by Oliver Geupel, Brühl, NRW, Germany. Let the circle be the unit circle
in the complex plane, and let a, b, c, . . . be the complex numbers corresponding to
A, B,C, . . . . Thus 2m = b + c, 2n = d + e, 2p = f + a, 2q = a + d , 2r = b + e,
and 2s = c + f . Write ε = exp(2π i/3). It is well known (for example: T. Andreescu
and T. Andrica, Complex Numbers from A to Z, Birkhäuser, Boston, 2006, pp. 70ff.,
Proposition (3.4)1) that a triangle UVW is equilateral if and only if u + εv + ε2w = 0
or u + εw + ε2v = 0, depending on the orientation of 4UVW. Without loss of gener-
ality, we may assume that 4MNP is oriented so that m + εn + ε2 p = 0. Hence

(b + c)+ ε(d + e)+ ε2( f + a) = 0. (1)

We consider two cases, depending on the orientation of 4QRS.
Case 1: 4MNP and 4QRS have opposite orientation. In this case

(a + d)+ ε(c + f )+ ε2(b + e) = 0. (2)

Multiplying (1) by −1−ε+ε2

2(ε−1) , multiplying (2) by −1+ε+ε2

2(ε−1) , and adding, we obtain a +

εc + ε2e = 0. Multiplying (1) by −1+ε+ε2

2(ε−1) , multiplying (2) by −1−ε+ε2

2(ε−1) , and adding,
we obtain b + εd + ε2 f = 0. Thus 4ACE and 4BDF are equilateral, which implies
AB = CD = EF.

Case 2: 4QRS has the same orientation as 4MNP. Now

(b + e)+ ε(c + f )+ ε2(a + d) = 0. (3)

Multiplying (1) by 1
1−ε , multiplying (3) by− 1

1−ε , and adding, we obtain c− e = ε( f −

d). Therefore CE=DF, so CD= EF. Multiplying (1) by ε2

1−ε , multiplying (3) by− 1
1−ε ,

and adding, we obtain e − a = ε( f − b). Therefore EA = FB, so EF = AB.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), M. Garner, M. Goldenberg & M. Kaplan, J.-P.
Grivaux (France), S. W. Kim (Korea), O. Kouba (Syria), O. P. Lossers (Netherlands), M. A. Prasad (India), R.
Stong, S. Tonegawa & F. Vafa, and the proposer.
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Product of Derivatives

11472 [2009, 941]. Proposed by Mahdi Makhul, Shahrood University of Technology,
Shahrood, Iran. Let t be a nonnegative integer, and let f be a (4t + 3)-times continu-
ously differentiable function on R. Show that there is a number a such that at x = a,

4t+3∏
k=0

dk f (x)

dx k
≥ 0.

Solution by Robin Chapman, University of Bristol, Bristol, England, U. K. We first
claim that if g is a twice-differentiable function on R, then there exists b ∈ R such
that g(b)g′′(b) ≥ 0. To prove this, suppose that g(x)g′′(x) < 0 for all x ∈ R. Now
g(x) 6= 0 for all x ∈ R. Since g is continuous, g has constant sign. Hence, g′′ has the
opposite sign. Suppose that g is positive and g′′ is negative (otherwise consider −g in
place of g). Hence g′ is decreasing, and there exists c ∈ R with g′(c) 6= 0. By Taylor’s
theorem, for each x ∈ R,

g(x) = g(c)+ (x − c)g′(c)+
(x − c)2

2
g′′(ξ),

where ξ is between c and x . Since g′′ is negative,

g(x) ≤ g(c)+ (x − c)g′(c).

Depending on the sign of g′(c), this implies that g(x) < 0 for all large enough x or for
all small enough x . Either way we have a contradiction. Hence there exists b ∈ R with
g(b)g′′(b) ≥ 0.

Now let f be a (4t + 3)-times continuously differentiable function on R. Let
F(x) =

∏4t+3
j=0 f ( j)(x). If F is always negative, then F is always nonzero, so each f ( j)

with 0 ≤ j ≤ 4t + 3, since it is continuous, has constant sign. From the foregoing,
f ( j) and f ( j+2) must have the same sign for 0 ≤ j ≤ 4t + 1. Therefore

∏2t+1
j=0 f (2 j)

and
∏2t+1

j=0 f (2 j+1) are both positive, so F is positive, a contradiction.

Editorial comment. The special case t = 0 of this problem was problem A3 on the
1998 Putnam exam.

Also solved by G. Apostolopoulos (Greece), P. P. Dályay (Hungary), J.-P. Grivaux (France), O. Kouba (Syria),
O. P. Lossers (Netherlands), M. Omarjee (France), J. Simons (U. K.), R. Stong, R. Tauraso (Italy), M. Tetiva
(Romania), X. Wang, GCHQ Problem Solving Group (U. K.), and the proposer.

A Series Equation

11473 [2009, 941]. Proposed by Paolo Perfetti, Mathematics Dept., University “Tor
Vergata Roma,” Rome, Italy. Let α and β be real numbers such that −1 < α + β < 1
and such that, for all integers k ≥ 2,

−(2k) log(2k) 6= α, (2k + 1) log(2k + 1) 6= α,

1+ (2k + 1) log(2k + 1) 6= β, −1− (2k + 2) log(2k + 2) 6= β.

Let

T = lim
N→∞

N∑
n=2

n∏
k=2

α + (−1)k · k log(k)

β + (−1)k+1(1+ (k + 1) log(k + 1))
,

U = lim
N→∞

N∑
n=2

((n + 1) log(n + 1))
n∏

k=2

α + (−1)k · k log(k)

β + (−1)k+1(1+ (k + 1) log(k + 1))
.
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(a) Show that the limits defining T and U exist.
(b) Show that if, moreover, |α| < 1/2 and β = −α, then T = −2U .

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands.
(a) The series for T and U are eventually alternating in sign, so for convergence it
suffices to prove that the absolute value of the term decreases eventually and converges
to zero. Since (n + 1) log(n + 1) is an increasing function of n, it suffices to prove this
for U only. The negative of the quotient of two consecutive terms is

(n + 1) log(n + 1)

n log n
·

(−1)nα + n log n

1+ (−1)n+1β + (n + 1) log(n + 1)
.

With the abbreviation xn = n log n, this expression can be written as

1−
1− (−1)n(α + β)

xn
+

(
1

xn+1
−

1

xn

)
(−1)n(α + β)+ O(x−2

n ).

Since 1/xn+1 − 1/xn = O(n−1x−1
n ) and |α + β| < 1, this has the form 1− cn with 1 >

cn >
1
2 (1− |α + β|)/xn eventually. Therefore

∏n
k=1 |1− ck | is eventually decreasing.

Also, since
∑

x−1
n diverges, the product goes to zero. This proves that the limit for U ,

and hence also for T , exists.
(b) The equation T = −2U is incorrect. Let pk = (−1)kα + xk and qk =

(−1)k+1β + 1+ xk+1. If α + β = 0, then the partial sums for T + 2U can be written
as

N∑
n=2

(−1)n+1(qn + pn+1)

n∏
k=2

pk

qk
=

N∑
n=2

(−1)n+1

(∏n
k=2 pk∏n−1
k=2 qk

+

∏n+1
k=2 pk∏n
k=2 qk

)
.

This is a telescoping sum that simplifies to

−p2 + (−1)N+1 pN+1

N∏
k=2

pk

qk
.

From the convergence of T and U , it follows that the second term goes to zero as N
tends to infinity. Thus

T + 2U = −α − 2 log 2.

Also solved by O. Kouba (Syria), R. Stong, and the GCHQ Problem Solving Group (U. K.).

An Inequality for Triangles

11476 [2010, 86]. Proposed by Panagiote Ligouras, “Leonardo da Vinci” High
School, Noci, Italy. Let a, b, and c be the side-lengths of a triangle, and let r be
its inradius. Show

a2bc

(b + c)(b + c − a)
+

b2ca

(c + a)(c + a − b)
+

c2ab

(a + b)(a + b − c)
≥ 18r 2.

Solution by P. Nüesch, Lausanne, Switzerland. Write s for the semiperimeter of the
triangle. The left side of the inequality is (employing geometry’s cyclic summation
conventions) ∑ a2bc

(b + c)(b + c − a)
=

abc

2

∑ a

(2s − a)(s − a)
.
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The function f defined by

f (x) =
x

(2s − x)(s − x)

is convex for 0 < x < s. Setting x1 = a, x2 = b, x3 = c yields∑ a

(2s − a)(s − a)
=

∑
f (xi ) ≥ 3 f

(∑
xi

3

)
= 3 f

(
2s

3

)
=

9

2s
.

Together with abc = 4Rrs and Euler’s inequality R ≥ 2r , we obtain

abc

2

∑ a

(2s − a)(s − a)
≥

abc

2

9

2s
= 9Rr ≥ 18r 2.

Also solved by A. Alt, G. Apostolopoulos (Greece), R. Bagby, D. Beckwith, E. Bráune (Austria), R. Chapman
(U. K.), P. P. Dályay (Hungary), J. Fabrykowski & T. Smotzer, H. Y. Far, O. Faynshteyn (Germany), V. V.
Garcia (Spain), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, Á. Plaza & S. Falcón (Spain), C.
Pohoata (Romania), C. R. Pranesachar (India), R. Stong, E. Suppa (Italy), M. Tetiva (Romania), M. Vowe
(Switzerland), L. Wimmer (Germany), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

The Winding Density of a Non-Closing Poncelet Trajectory

11479 [2010, 87]. Proposed by Vitaly Stakhovsky, National Center for Biotechnologi-
cal Information, Bethesda, MD. Two circles are given. The larger circle C has center
O and radius R. The smaller circle c is contained in the interior of C and has center o
and radius r . Given an initial point P on C , we construct a sequence 〈Pk〉 (the Poncelet
trajectory for C and c starting at P) of points on C : Put P0 = P , and for j ≥ 1, let
Pj be the point on C to the right of o as seen from Pj−1 on a line through Pj−1 and
tangent to c. For j ≥ 1, let ω j be the radian measure of the angle counterclockwise
along C from Pj−1 to Pj . Let

�(C, c, P) = lim
k→∞

1

2πk

k∑
j=1

ω j .

(a) Show that �(C, c, P) exists for all allowed choices of C , c, and P , and that it is
independent of P .
(b) Find a formula for �(C, c, P) in terms of r , R, and the distance d from O to o.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
will show

�(C, c, P) =
F

(
1

2
arccos

r − d

R

∣∣∣m

)
K (m)

,where m =
4d R

(R + d)2 − r 2
,

which is independent of P . We have used the incomplete elliptic integral of the first
kind, defined by

F(θ |m) =
∫ θ

0

dt√
1− m sin2 t

=

∫ sin θ

0

dy√
1− y2

√
1− my2

,

and the corresponding complete integral K (m) = F(π/2|m).
Use coordinates with c centered at the origin and C centered on the nonneg-

ative x-axis. Parameterize c as T (θ) = (r cos θ, r sin θ) and C as P(φ) = (d +
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R cosφ, R sinφ). Then ‖T (θ)‖2
= ‖T ′(θ)‖2

= r 2 and 〈T ′(θ), T (θ)〉 = 0. The tan-
gent line to c at T (θ) is given by 〈X, T (θ)〉 = r 2 and a point X on the tangent can be
written as

X = T (θ)±

√
‖X‖2 − r 2

r
T ′(θ),

using the + sign if X is counterclockwise from T (θ) and the − sign if X is clockwise
from T (θ) as viewed from the origin.

For any two points P(φ1) and P(φ2) on C we have

P(φ1)− P(φ2) = 2 sin

(
φ1 − φ2

2

)(
−R sin

(
φ1 + φ2

2

)
, R cos

(
φ1 + φ2

2

))
,

P ′(φ1)+ P ′(φ2) = 2 cos

(
φ1 − φ2

2

)(
−R sin

(
φ1 + φ2

2

)
, R cos

(
φ1 + φ2

2

))
.

Hence these two vectors are parallel.
For a point T (θ) on the circle c, write P(φ−) and P(φ+) for the two points where

the tangent to c at T (θ) meet C with φ+ counterclockwise from T (θ) and φ− <
φ+ < φ− + 2π . Then 〈P(φ±), T (θ)〉 = r 2 so 〈P(φ+)− P(φ−), T (θ)〉 = 0 and hence
〈P ′(φ+)+ P ′(φ−), T (θ)〉 = 0. Now suppose we traverse the circle c so that

dθ

dt
= 〈P ′(φ−), T (θ)〉 = −〈P ′(φ+), T (θ)〉.

This makes dθ/dt > 0, so we traverse c in counterclockwise order. Then from

0 =
d

dt
〈P(φ±), T (θ)〉 = 〈P ′(φ±), T (θ)〉

dφ±
dt
+ 〈P(φ±), T ′(θ)〉

dθ

dt
we see

dφ±
dt
= ±〈P(φ±), T ′(θ)〉

= r
√
‖P(φ±)‖2 − r 2 = r

√
R2 + d2 − r 2 + 2d R cosφ±.

Thus the elliptic integral I given by

I =
∫ φ+

φ−

dφ√
R2 + d2 − r 2 + 2d R cosφ

satisfies
d I

dt
=

1√
R2 + d2 − r 2 + 2d R cosφ+

dφ+
dt

−
1√

R2 + d2 − r 2 + 2d R cosφ−

dφ−
dt

= r − r = 0

and is a constant. One possible chord is the vertical one through the point (r, 0) with
θ = 0, φ± = ± arccos((r − d)/R), so we obtain

I = 2
∫ arccos((r−d)/R)

0

dφ√
R2 + d2 − r 2 + 2d R cosφ

=
4√

(R + d)2 − r 2
F

(
1

2
arccos

r − d

R

∣∣∣ 4d R

(R + d)2 − r 2

)
.
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Let

J =
∫ 2π

0

dφ√
R2 + d2 − r 2 + 2d R cosφ

=
4√

(R + d)2 − r 2
K

(
4d R

(R + d)2 − r 2

)
.

Now suppose P0 = (d + R cosφ0, R sinφ0) and let φk = φ0 +
∑k

j=1 ω j . We have∫ φk

φ0

dφ√
R2 + d2 − r 2 + 2d R cosφ

= k I.

This integral is over an interval of at least b(φk − φ0)/(2π)c complete periods and
fewer than d(φk − φ0)/(2π)e complete periods. Hence⌊∑k

j=1 ω j

2π

⌋
J ≤ k I ≤

⌈∑k
j=1 ω j

2π

⌉
J.

Thus

I

J
−

1

k
≤

1

k

(⌈∑k
j=1 ω j

2π

⌉
− 1

)
≤

∑k
j=1 ω j

2πk
≤

1

k

(⌊∑k
j=1 ω j

2π

⌋
+ 1

)
≤

I

J
+

1

k

and

lim
k→∞

∑k
j=1 ω j

2πk
=

I

J
,

which is the quotient of elliptic integrals claimed.

Editorial comment.
In the classical case, when the trajectory closes—returns to its starting point af-

ter finitely many steps—this “winding density” is rational: the number of times the
closed trajectory goes around the circle divided by the number of intervals in the tra-
jectory. The use of elliptic integrals to compute it is known, and in many special cases it
can be computed without elliptic integrals: see http://mathworld.wolfram.com/
PonceletsPorism.html.

Also solved by J. A. Grzesik, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before December 31, 2011. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11586. Proposed by Takis Konstantopoulos, Uppsala University, Uppsala, Sweden.
Let A0, B0, and C0 be noncollinear points in the plane. Let p be a line that meets
lines B0C0, C0 A0, and A0 B0 at A∗, B∗, and C∗ respectively. For n ≥ 1, let An be the
intersection of B∗Bn−1 with C∗Cn−1, and define Bn , Cn similarly. Show that all three
sequences converge, and describe their respective limits.

11587. Proposed by Andrei Ciupan, Harvard University, Cambridge, MA, and Bozgan
Francisc, UCLA, Los Angeles, CA. For which pairs (a, b) of positive integers do there
exist infinitely many positive integers n such that n2 divides an

+ bn?

11588. Proposed by Taras Banakh, Ivan Franko National University of Lviv, Lviv,
Ukraine, and Igor Protasov, Taras Shevchenko National University of Kyiv, Kyiv,
Ukraine. Show that R− {0} can be partitioned into countably many subsets, each of
which is linearly independent over Q, if and only if the continuum hypothesis holds.

11589. Proposed by Catalin Barboianu, Infarom Publishing, Craiova, Romania. Let
P be a polynomial over R given by P(x) = x3

+ a2x2
+ a1x + a0, with a1 > 0. Show

that P has a least one zero between −a0/a1 and −a2.

11590. Proposed by Khodakhast Bibak, University of Waterloo, Waterloo, Ontario,
Canada. Let m balls numbered 1 to m each be painted with one of n colors, with
n ≥ 2 and at least two balls of each color. For each positive integer k, let P(k) be the
number of ways to put these balls into urns numbered 1 through k so that no urn is
empty and no urn gets two or more balls of the same color. Prove that

m∑
k=1

(−1)k

k
P(k) = 0.

http://dx.doi.org/10.4169/amer.math.monthly.118.07.653
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11591. Proposed by Dan White and Lenny Jones, Shippensburg University, Shippens-
burg, PA. Let In be the set of all idempotent elements of Z/nZ. That is, e ∈ In if and
only if e2

≡ e (mod n). Let I 1
n = In , and for k ≥ 2, let I k

n be the set of all sums of the
form u + v where u ∈ In , v ∈ I k−1

n , and the addition is done modulo n. Determine, in
terms of n, the least k such that I k

n = Z/nZ.

11592. Proposed by Mircea Ivan, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Find limn→∞

(
− log(n)+

∑n
k=1 arctan 1/k

)
.

SOLUTIONS

A Telescoping Sum of Floors

11444 [2009, 548]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Let k and s be positive integers with s ≤ k. Let f (n) =
n − s bn/kc. For j ≥ 0, let f j denote the j-fold composition of f , taking f 0 to be the
identity function. Show that

∞∑
j=0

⌊
f j (n)

k

⌋
= −

⌊
q − n

s

⌋
,

where q = min{k − 1, n}.

Solution by Robin Chapman, University of Exeter, Exeter, U.K. We prove that the for-
mula holds for nonnegative n. The formula as stated fails for negative n; we correct it.
For j ≥ 0, let n j = f j (n), a j =

⌊
n j/k

⌋
, and

S(n) =
∞∑
j=0

⌊
f j (n)

k

⌋
=

∞∑
j=0

⌊n j

k

⌋
=

∞∑
j=0

a j .

Consider first the case of nonnegative n. Clearly f (n) = n if 0 ≤ n ≤ k − 1 and
f (n) < n if n ≥ k. Also, f (n) = n − sbn/kc ≥ n − sn/k ≥ 0. Hence {n j } j≥0 is non-
increasing and reaches its integer limit. Since a j = (n j − n j+1)/s, the sum S(n) thus
has only finitely many nonzero terms. That is, there exists N such that

S(n) =
N∑

j=0

a j =
1

s

N∑
j=0

(
n j − n j+1

)
=

n0 − nN+1

s
.

If 0 ≤ n < k, then n j = n for all j and S(n) = 0. If n ≥ k, then f (n) ≥ (1− s/k)n ≥
(1− s/k)k ≥ k − s, and n j ≥ k − s for all j . Hence nN+1 is the unique integer m with
k − s ≤ m < k that is congruent to n modulo s. That is, m = n − s b(n − k + s)/sc.
Thus for n ≥ k,

S(n) = b(n − k + s)/sc = −b(k − 1− n)/sc = −b(q − n)/sc .

If 0 ≤ n < k, then q = n and again S(n) = 0 = −b(q − n)/sc.
We now prove that S(n) = bn/sc when n is a negative integer. In this case, n <

f (n) < n − s(n/k − 1) = n(1− s/k)+ s ≤ s. Thus {n j } j≥0 increases until it reaches
a value m between 0 and s − 1, after which it is stationary. Hence m = n − s bn/sc,
and S(n) = (n − m)/s = bn/sc.
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Also solved by D. Beckwith, P. P. Dályay (Hungary), D. Gove, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), J. Simons (U. K.), R. Stong, S. Xiao (Canada), GCHQ Problem Solving Group (U. K.), Mi-
crosoft Research Problems Group, and the proposer.

A Positive Sequence

11445 [2009, 548]. Proposed by H. A. ShahAli, Tehran, Iran. Given a, b, c > 0 with
b2 > 4ac, let 〈λn〉 be a sequence of real numbers, with λ0 > 0 and cλ1 > bλ0. Let
u0 = cλ0, u1 = cλ1 − bλ0, and for n ≥ 2 let un = aλn−2 − bλn−1 + cλn . Show that if
un > 0 for all n ≥ 0, then λn > 0 for all n ≥ 0.

Solution I by J. C. Linders, Eindhoven, The Netherlands. Since u0 > 0 and u1 > 0,
both λ0 and λ1 are positive. We show by induction on n that

cλn >
n + 1

2n
bλn−1 and λn > 0

for n ≥ 1. Since u1 > 0, this holds for n = 1. In general, un+1 > 0 and the induction
hypothesis imply for n ≥ 1 that

cλn+1 > bλn − aλn−1 > bλn − a
2n

n + 1
·

c

b
λn =

(
1−

2nac

b2(n + 1)

)
bλn

>

(
1−

n

2(n + 1)

)
bλn =

n + 2

2(n + 1)
bλn,

where the last inequality follows from b2 > 4ac and λn > 0. This proves the two
inequalities in the claim for n + 1.

Solution II by David Beckwith, Sag Harbor, NY. Define generating functions by let-
ting U (x) =

∑
∞

n=0 un xn and3(x) =
∑
∞

n=0 λn xn . The recursion yields U (x) = (ax2
−

bx + c)3(x). The conditions on a, b, and c imply ax2
− bx + c = a(x − ρ+)(x −

ρ−), where ρ+ and ρ− are the real and positive roots of ax2
− bx + c. Thus

3(x) =
1

ax2 − bx + c
U (x) =

1

c(1− x
ρ+
)(1− x

ρ−
)
U (x)

=
1

c

(
∞∑

n=0

1

ρn
+

xn

)(
∞∑

n=0

1

ρn
−

xn

)(
∞∑

n=0

un xn

)
.

Since the product of three power series with all positive coefficients is a power series
with all positive coefficients, it follows that λn > 0 for all n.

Editorial comment. From the proofs above, the claim also holds when b2
= 4ac. O. P.

Lossers showed also that the condition a > 0 is superfluous.

Also solved by R. Chapman (U. K.), W. J. Cowieson, P. P. Dályay (Hungary), Y. Dumont (France), P. J. Fitzsim-
mons, D. Fleischman, M. Goldenberg & M. Kaplan, E. A. Herman, E. Hysnelaj & E. Bojaxhiu (Australia
& Germany), T. Konstantopoulos (U. K.), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands),
R. C. Rhoades, C. R. & S. Selvaraj, J. Simons (U. K.), S. Song (Korea), R. Stong, M. Tetiva (Romania),
E. I. Verriest, Z. Vörös (Hungary), L. Zhou, Fisher Problem Solving Group, GCHQ Problem Solving Group
(U. K.), Microsoft Research Problems Group, and the proposer.

Matrices Whose Products Are All Different

11446 [2009, 647]. Proposed by Christopher Hillar, Mathematical Research Sciences
Institute, Berkeley, CA, and Lionel Levine, Massachusetts Institute of Technology,
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Cambridge, MA. Prove or disprove: there exist 2 × 2 symmetric integer matrices A
and B such that no element of the multiplicative semigroup generated by A and B can
be written in two different ways. (Thus, A, B, AA, AB, B A, B B, AAA, AAB, . . . are
all different.)

Solution by Reiner Martin, Bad Soden-Neuenhain, Germany. Let

A =

(
1 1
1 0

)
B =

(
0 1
1 1

)
.

No element of the multiplicative group generated by A and B can be written in two
ways: When v is a column vector with two entries, both positive, the first entry of Av is
larger than the second, and the first entry of Bv is smaller than the second. Therefore,
when two products in A and B are equal, the first factor in the two products is the
same. Since A and B are invertible, the products of the remaining factors must be the
same. The claim follows by induction on the number of factors in the product.

Also solved by V. D. Blondel, R. Chapman (U. K.), C. Curtis, C. Delorme (France), O. Geupel (Germany),
J. Grivaux (France), A. Ilić (Serbia), O. P. Lossers (Netherlands), V. S. Miller, R. Stong, J. V. Tejedor (Spain),
A. Wyn-jones (U. K.), BSI Problems Group (Germany), Microsoft Research Problems Group, and the pro-
posers.

A Sufficient Condition for a Division Ring

11451 [2009, 648]. Proposed by Greg Oman, Otterbein College, Westerville, OH. Let
k and n be positive integers, with k > 1. Let R be a ring, not assumed to have an
identity, with the following properties:

(i) There is an element of R that is not nilpotent.

(ii) If x1, . . . , xk are nonzero elements of R, then
∑k

j=1 xn
j = 0.

Show that R is a division ring, that is, the nonzero elements of R form a group under
multiplication.

Solution by the NSA Problems Group, Fort Meade, MD. Take a, x ∈ R with a non-
nilpotent and x nonzero. With all x j set to x in (ii), we obtain kxn

= 0. With xi = x for
i < k and xk = a, we obtain (k − 1)xn

+ an
= 0. Hence, xn

= an for every nonzero
x ∈ R. Let e = an; setting x = a2 yields e2

= e. Furthermore, xn
= e 6= 0 shows that

R has no nonzero nilpotent elements.
We claim that e is the identity in R. First, ex = an x = xn x = xxn

= xan
= xe.

Next, expand (x − ex)n by the binomial theorem, which applies since e commutes
with every element of R. We obtain

(x − ex)n =
n∑

j=0

(
n

j

)
x j (−ex)n− j

= xn
+

n−1∑
j=0

(
n

j

)
x j e(−x)n− j

= xn
+ e

n∑
j=0

(
n

j

)
x j (−x)n− j

− exn
= xn

+ e(x − x)n − exn
= 0.

Hence x − ex is nilpotent and must be 0, so x = ex and e must be the identity. Finally,
xn
= e implies xn−1

= x−1, and we conclude that R is a division ring.
Note that xn+1

= x for x ∈ R, so a well-known theorem of Jacobson implies that R
is commutative. Hence R is a field. Since xn

= 1 has at most n solutions in any field,
R has at most n elements; thus it is a finite field whose characteristic divides k.
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Editorial comment. Several other readers also showed that the conditions of the prob-
lem imply that R is a finite field. Jacobson’s “xn(x)

= x” theorem appears in N. Jacob-
son, Structure of Rings, AMS Colloq. Pub., vol. 37, AMS, 1956, p. 217, as well as in
Lam’s A First Course in Noncommutative Rings, 2nd ed., and other graduate algebra
texts.

Also solved by M. Angelelli (Italy), E. P. Armendariz, R. Bagby, A. J. Bevelacqua, W. D. Blair, P. Budney,
N. Caro (Colombia), R. Chapman (U. K.), S. Dalton, P. P. Dályay (Hungary), A. Farrugia (Malta), D. Grinberg,
J. Grivaux (France), T. Kezlan, D. Lenzi (Italy), O. P. Lossers (Netherlands), S. Markov & A. Alin, A. Nakhash,
V. Ponomarenko, D. Ray, D. Saracino, K. Schilling, J. Simons (U. K.), J. H. Smith, R. Stong, J. V. Tejedor
(Spain), M. Tetiva (Romania), G. P. Wene, S. Xiao (Canada), GCHQ Problem Solving Group (U. K.), Hofstra
University Problem Solvers, Microsoft Research Problems Group, and the proposer.

Permutation Flipping

11452 [2009, 648]. Proposed by Donald E. Knuth, Stanford University, Stanford, CA.
Say that the permutations a1 · · · akak+1 · · · an and ak · · · a1ak+1 · · · an are equivalent
when k = n or when ak+1 exceeds all of a1, . . . , ak . Also say that two permutations
are equivalent whenever they can be obtained from each other by a sequence of such
flips. For example, 321 ≡ 123 ≡ 213 ≡ 312 and 132 ≡ 231. Show that the number of
equivalence classes is equal to the Euler secant-and-tangent number for all n. (The nth
secant-and-tangent number counts the “up-down” permutations of length n, namely
the permutations like 25341 that alternately rise and fall beginning with a rise.)

Solution by Robin Chapman, University of Exeter, UK. We consider permutations of
any totally ordered n-set; let En be the number of equivalence classes. We shall estab-
lish a recurrence for 〈En〉n≥0. Set E0 = 1. For a word a, let a denote its reversal.

If a is a permutation of a totally ordered n-set A with largest letter α, then a = bαc,
where b and c are permutations of complementary subsets B and C of A − {α}. No
flip can change the unordered pair {B,C} (the sets can be exchanged and may be
empty). Thus all permutations equivalent to a have the form b′αc′ or c′αb′, where
b′ ≡ b and c′ ≡ c. Conversely, any such permutation is equivalent to a: the presence of
α allows transforming the part before α into anything in its equivalence class, and thus
bαc ≡ b′αc ≡ cαb′ ≡ cαb′ ≡ c′αb′ ≡ b′αc′ and bαc ≡ bαc ≡ cαb ≡ cαb ≡ c′αb′.
Thus the equivalence class of bαc is {b′αc′, c′αb′ : b′ ≡ b, c′ ≡ c}.

To count the equivalence classes of permutations of A, we choose a partition of
A − {α} into sets B and C of sizes k and n − k − 1 and populate the portions of the
permutation before and after α with equivalence classes on those sets. Summing over
k counts each equivalence class twice, since B and C can be switched. For n ≥ 2,

2En =

n−1∑
k=0

(
n − 1

k

)
Ek En−k−1.

It is well known that the number of up-down permutations satisfies the same recurrence
and initial condition; see, for example, the solution to Exercise 7.41 in Graham, Knuth,
and Patashnik’s Concrete Mathematics, Addison-Wesley, 1989. Thus, by induction,
the two sequences are the same.

Editorial comment. The origin of the name for the numbers in this sequence is that its
exponential generating function is sec x + tan x .

Also solved by D. Beckwith, P. P. Dályay (Hungary), A. Farrugia (Malta), D. Grinberg, Y. J. Ionin, P. Levande,
O. P. Lossers (Netherlands), K. McInturff, J. Simons (U. K.), GCHQ Problem Solving Group (U. K.).
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A Simplicial Complex Sum

11453 [2009, 746]. Proposed by Richard Stanley, Massachusetts Institute of Technol-
ogy, Cambridge, MA. Let1 be a finite collection of sets such that if F ∈ 1 and G ⊆ F ,
then G ∈ 1. Fix k ≥ 0. Suppose that every F in 1 (including F = ∅) with |F | ≤ k
satisfies ∑

G∈1,G⊇F

(−1)|G| = 0.

Show that |1| is divisible by 2k+1.

Solution I by Richard Bagby, New Mexico State University, Las Cruces, New Mexico.
First we show that

|1| =
∑

F,G∈1
F⊆G

2|F |(−1)|G|−|F |.

Indeed, ∑
F,G∈1
F⊆G

2|F |(−1)|G|−|F | =
∑
G∈1

(∑
F⊆G

2|F |(−1)|G|−|F |
)

=

∑
G∈1

|G|∑
j=0

(
|G|

j

)
2 j (−1)|G|− j

=

∑
G∈1

(2− 1)|G| = |1| .

Interchanging the order of summation yields

|1| =
∑
F∈1

(−2)|F |
∑

G∈1,G⊇F

(−1)|G|.

Now the contribution to the outer sum from each set F is either 0 (for |F | ≤ k) or
divisible by 2k+1 (for |F | > k).

Solution II by Richard Stong, Center for Communication Research, San Diego, CA. Let
P(x) =

∑
G∈1 x |G|; note that P is a polynomial with integer coefficients. For m ≤ k,

(−1)m

m!
P (m)(−1) =

∑
G∈1

(
|G|

m

)
(−1)|G| =

∑
F∈1
|F |=m

∑
G∈1
G⊇F

(−1)|G| = 0.

Hence −1 is a zero of P with multiplicity at least k + 1, and we can write P(x) =
(x + 1)k+1 Q(x) for some polynomial Q with integer coefficients. Setting x = 1 yields
|1| = P(1) = 2k+1 Q(1); hence |1| is a multiple of 2k+1.

Comment by the proposer. This result is the combinatorial analogue of a much deeper
topological result of G. Kalai in Computational Commutative Algebra and Combina-
torics, Adv. Stud. Pure Math., vol. 33, Math. Soc. Japan, 2002, 121–163 (Theorem
4.2), a special case of which can be stated as follows. Let1 be a finite simplicial com-
plex. Suppose that for any face F of dimension at most k − 1 (including the empty face
of dimension −1), the link of F (i.e., the set of all G ∈ 1 such that F ∩ G = ∅ and
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F ∪ G ∈ 1) is acyclic (that is, has vanishing reduced homology). Letting fi denote
the number of i-dimensional faces of 1, there exists a simplicial complex 0, with gi

faces having dimension i , such that∑
i≥−1

fi x
i
= (1+ x)k+1

∑
i≥−1

gi x
i .

The present problem does not follow from Kalai’s result, since the hypotheses here
concern only Euler characteristics, while Kalai’s result concerns homology groups.

Also solved by D. Beckwith, R. Chapman (U. K.), P. P. Dályay (Hungary), R. Ehrenborg, D. Grinberg,
Y. J. Ionin, O. Kouba (Syria), J. H. Lindsey II, R. Martin (Germany), J. M. Sanders, K. Schilling, B. Schmuland
(Canada), J. Simons (U. K.), M. Tetiva, and the proposer.

An Orientation Game

11454 [2009, 746]. Proposed by Azer Kerimov, Bilkent University, Ankara, Turkey.
Alice and Bob play a game based on a 2-connected graph G with n vertices, where
n > 2. Alice selects two vertices u and v. Bob then orients up to 2n − 3 of the edges.
Alice then orients the remaining edges and selects some edge e, which may have been
oriented by her or by Bob. If the oriented graph contains a path from u to v through
e, then Bob wins; otherwise, Alice wins. Prove that Bob has a winning strategy, while
if he is granted only 2n − 4 edges to orient, on some graphs he does not. (A graph is
2-connected if it has at least three vertices and each subgraph obtained by deleting one
vertex is connected.)

Solution by Michelle Delcourt (student), Georgia Institute of Technology, Atlanta, GA.
We show first that orienting 2n − 4 edges does not guarantee a win for Bob. Let G
consist of two vertices adjacent to each other and to the remaining n − 2 vertices; G
has 2n − 3 edges. Alice chooses the high-degree vertices as u and v. Since Bob only
orients 2n − 4 edges, some edge remains unoriented. Alice selects this edge as e and
orients it into u and/or away from v. No path from u to v passes through e.

Now allow Bob to orient 2n − 3 edges. Bob produces a special vertex ordering and
edge partition and uses them to orient at most 2n − 3 edges. Let u and v be the vertices
chosen by Alice. Whitney’s theorem for 2-connected graphs states that there are two
paths from u to v with no shared internal vertices. Thus u and v lie on a cycle; let C
be a shortest cycle containing them. Order its vertices by starting with u, then listing
the internal vertices of one path from u to v along C , then listing the internal vertices
of the other such path, then ending with v. Bob orients each edge of C from its earlier
endpoint to its later endpoint, producing two oriented paths from u to v.

Bob now iteratively decomposes the rest of G into paths P1, . . . , Pr . Let G0 = C .
Suppose that G i−1 has been defined, with a linear order on its vertices. If G i−1 6= G,
then there is a path joining distinct vertices of G i−1 whose edges and internal vertices
are not in G i−1 (again by Whitney’s theorem). Among all such paths, consider those
whose earlier endpoint is earliest in the ordering of V (G i−1); among these, consider
those whose later endpoint is latest in the ordering; among these, let Pi be a shortest
such path. Let G i = G i−1 ∪ Pi . Insert the internal vertices of Pi in the vertex ordering
between its endpoints, ordered so that each new vertex has a neighbor occurring earlier
and a neighbor occurring later in the ordering. Bob orients Pi if its length is at least
2, in that case orienting each edge from its earlier endpoint to its later endpoint. Bob
leaves Pi unoriented if it has only one edge.

The number of edges of Pi oriented by Bob is at most twice the number of vertices
added by Pi . The number of edges oriented in C is |V (C)|, and |V (C)| ≤ 2|V (C)| − 3
since cycles have at least three vertices. Hence Bob orients at most 2n − 3 edges. The
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orientation produced by Bob explicitly has a path from u to v through each oriented
edge (and a unique such path through each vertex outside {u, v}).

To prove that this partial orientation wins for Bob, it suffices to show that for any
edge xy added as a path of length 1 (hence not oriented by Bob), there are disjoint
paths oriented by Bob from u to x and from y to v. This is immediate when x precedes
y in the ordering, so we may assume that x is later than y.

It suffices prove that these two paths exist in the first G i that contains x and y, since
they remain (oriented) as the rest of the decomposition is added. The claim holds when
i = 0 since C was chosen to be a shortest cycle through u and v; thus x and y lie in
distinct u, v-paths on C (and do not equal u or v).

For i > 0, vertices x and y cannot both be added by Pi , since then there would be
a shorter path joining its endpoints that would be added instead. Let a and b be the
first and last vertices of Pi in the ordering. If x is added by Pi , then it suffices to show
that the u, x-path created then by Bob contains no vertex of the y, v-path in G i−1. If
it does, then y is earlier than a in the ordering, and the path that starts with yx and
continues along Pi to b would be chosen in preference to Pi . Similarly, if y is added
by Pi , then it suffices to show that the y, v-path created then by Bob contains no vertex
of the u, x-path in G i−1. If it does, then x is later than b in the ordering, and the path
that follows Pi from a to y and finishes with yx would be chosen in preference to Pi .

Editorial comment. The list C, P1, . . . , Pr is an example of an ear decomposition of
G. The vertex ordering is an example of an s, t-numbering with the source s being u
and the terminus t being v; the condition is that each vertex outside {s, t} has an earlier
neighbor and a later neighbor in the ordering.

Also solved by D. Beckwith, J. Simons (U. K.), R. Stong, S. Xiao (Canada), and the proposer.

Our Gamma Inequality Flops

11474 [2010, 86]. Proposed by Cezar Lupu, student, University of Bucharest, Bucha-
rest, Romania, and Valentin Vornicu, Aops-MathLinks forum, San Diego, CA. (Cor-
rected) Show that when x , y, and z are greater than 1,

0(x)x2
+2yz0(y)y2

+2zx0(z)z2
+2xy
≥ (0(x)0(y)0(z))xy+yz+zx .

Solution by Richard Stong, Center for Communications Research, San Diego, CA.
When x = y, the inequality becomes 0(z)(z−x)2

≥ 1, which fails if 1 < z < 2.
For x, y, z > 2, though, it follows from the fact that 0(x) is increasing on [2,∞)

and 0(2) = 1. Indeed: without loss we may assume 2 ≤ x ≤ y ≤ z. The desired in-
equality rearranges to

(y − x)(z − x) log0(x)− (y − x)(z − y) log0(y)+ (z − x)(z − y) log0(z) ≥ 0.

The first term is nonnegative and the third term is greater than or equal to the second;
hence this inequality holds.

Editorial comment. The corrected version of the problem, shown above, appeared in
the April, 2010, issue of the MONTHLY.

Also solved by P. P. Dályay (Hungary), O. Kouba (Syria), O. P. Lossers (Netherlands), M. Muldoon (Canada),
GCHQ Problem Solving Group (U. K.), and the Microsoft Research Problems Group.
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PROBLEMS

11593. Proposed by Peter McGrath, Brown University, Providence, RI. For positive
integers k and n, let T (n, k) be the n × n matrix with (i, j)-entry ((i − 1)n + j)k .
Prove that for n > k + 1, det(T (n, k)) = 0.

11594. Proposed by Harm Derksen and Jeffrey Lagarias, University of Michigan, Ann
Arbor, MI. Let

Gn =

n∏
k=1

k−1∏
j=1

j

k

 ,
and let Gn = 1/Gn .

(a) Show that if n is an integer greater than 1, then Gn is an integer.
(b) Show that for each prime p, there are infinitely many n greater than 1 such that

p does not divide Gn .

11595. Proposed by Victor K. Ohanyan, Yerevan, Armenia. Let P1, . . . , Pn be the ver-
tices of a convex n-gon in the plane. Let Q be a point in the interior of the n-gon, and
let v be a vector in the plane. Let ri denote the vector Q Pi , with length ri . Let Qi be
the (radian) measure of the angle between v and ri , and let Fi and Yi be respectively
the clockwise and counterclockwise angles into which the interior angle at Pi of the
polygon is divided by Q Pi . Show that

n∑
i=1

1

ri
sin(Qi )(cot Fi + cot Yi ) = 0.

http://dx.doi.org/10.4169/amer.math.monthly.118.08.747
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11596. Proposed by Mehmet Sahin (student) Ankara University, Ankara, Turkey. Let
a, b, c be the side lengths of a triangle, and let ra , rb, rc be the corresponding exradii.
Prove that

a2

r 2
a

+
b2

r 2
b

+
c2

r 2
c

= 8

(
ra + rb + rc

a + b + c

)2

− 2.

11597. Proposed by Michel Bataille, Rouen, France. Let f (x) = x/ log(1− x). Prove
that for 0 < x < 1,

∞∑
n=1

xn(1− x)n

n!
f (n)(x) = −

1

2
x f (x).

11598. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. Let S be an
additive semigroup of positive integers. Show that there is a finite subset T of S that
generates S and that is contained in every generating set of S.

11599. Proposed by Fred Galvin, University of Kansas, Lawrence, KS, and Péter
Komjáth, Eötvös Loránd University, Budapest, Hungary. Prove that the following
statement is equivalent to the axiom of choice: for any finite family A1, . . . , An of
sets, there is a finite set F such that |Ai ∩ F | < |A j ∩ F | whenever |Ai | < |A j |.

Here, equivalence is to be judged in the context of Zermelo-Fraenkel set theory,
not assuming the axiom of choice, and to say that |C | < |D| is to say that there is an
injection from C to D, but none from D to C .

SOLUTIONS

A Generic Lower Bound for a2
+ b2
+ c2 in a Triangle

11460 [2009, 844]. Proposed by Cosmin Pohoaţă, Tudor Vianu National College of
Informatics, Bucharest, Romania. Given a triangle of area S with sides of lengths a, b,
and c, and positive numbers x , y, and z, show that

a2
+ b2
+ c2
≥ 4
√

3S +
2

x + y + z

(
a2 x2

− yz

x
+ b2 y2

− zx

y
+ c2 z2

− xy

z

)
.

Solution by Marian Dinca, Romania. Since the proposed inequality is homogeneous in
x, y, z, we may assume without loss of generality that x + y + z = 1. The inequality
may be written as

ma2
+ nb2

+ pc2
≥ 4
√

3 S,

where m = 1− 2(x2
− yz)/x , n = 1− 2(y2

− zx)/y, and p = 1− 2(z2
− xy)/z. A

corollary of the Neuberg–Pedoe inequality (see comment below) tells us that

ma2
+ nb2

+ pc2
≥ 4S
√

mn + np + pm.

It now suffices to show that mn + np + pm = 3, which may be done as follows:
Let t = 2(xy + yz + zx), so that m = 1 − 2(1 − y − z) + 2yz/x = (2xy + 2yz +
2zx − x)/x = (t − x)/x , n = (t − y)/y, and p = (t − z)/z. Then mn = (t − x)(t −
y)/(xy) =

(
zt2
− (xz + yz)t + xyz

)
/(xyz), etc., so mn + np + pm =

(
(x + y +

z)t2
− t2
+ 3xyz

)
/(xyz) = 3.

Editorial comment. Several solvers made note of the connection between this inequal-
ity and others already in the literature:
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• The Weitzenbock inequality [8]: a2
+ b2
+ c2

≥ 4
√

3 S; in fact a2
+ b2
+ c2

≥

ab + bc + ca ≥ a
√

bc + b
√

ca + c
√

ab ≥ 3(a2b2c2)1/3 ≥ 4
√

3 S.
• The Hadwiger–Finsler inequality [4]: a2

+ b2
+ c2

≥ 4
√

3 S + (a − b)2 + (b −
c)2 + (c − a)2.

• The Neuberg–Pedoe inequality [5, 6]: for a second triangle of area T with sides of
length x, y, z, we have

a2(y2
+ z2
− x2)+ b2(z2

+ x2
− y2)+ c2(x2

+ y2
− z2) ≥ 16ST,

with equality if and only if the triangles are similar.
• The following corollary of the Neuberg–Pedoe inequality: Let m, n, p be any three

positive numbers. A triangle exists with side lengths x =
√

n + p, y =
√

p + m,
z =
√

m + n, since the triangle inequality holds for x, y, z. This triangle has area
T =

√
mn + np + pm /2. Then noting y2

+ z2
− x2

= 2m, etc., by Neuberg–
Pedoe we have ma2

+ nb2
+ pc2

≥ 4S
√

mn + np + pm.

The proposed inequality becomes the Hadwiger–Finsler inequality when x = a,
y = b, z = c. It becomes the Weitzenbock inequality when x = y = z.
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Also solved by G. Apostolopoulos (Greece), R. Chapman (U. K.), P. P. Dályay (Hungary), Á. Plaza & S. Falcón
(Spain), M. A. Prasad (India), R. Stong, M. Tetiva (Romania), GCHQ Problem Solving Group (U. K.), and the
proposer.

Eigenvalues, Trace, and Determinant

11463 [2009, 844]. Proposed by Xiang Qian Chang, Massachusetts College of Phar-
macy and Health Sciences, Boston, MA. Let A be a positive-definite n × n Hermitian
matrix with minimum eigenvalue λ and maximum eigenvalue 3. Show that(

n

tr((A + λI )−1)
− λ

)n

≤ det(A) ≤

(
n

tr((A +3I )−1)
−3

)n

.

Solution by BSI Problems Group, Bonn, Germany. An n-by-n positive-definite Hermi-
tian matrix A has only positive eigenvalues, and it has eigenvectors forming a basis.
Since tr((A + x I )−1) and det(A) are invariant under change of basis, we may assume
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that A is in diagonal form. We then must show, for positive p1, . . . , pn with minimum
λ and maximum 3, that(

1
1
n

∑n
i=1

1
pi+λ

− λ

)n

≤

n∏
i=1

pi ≤

(
1

1
n

∑n
i=1

1
pi+3

−3

)n

.

Dividing the first inequality by λn and the second by 3n , it suffices to show(
1

1
n

∑n
i=1

1
xi+1

− 1

)n

≤

n∏
i=1

xi and
n∏

i=1

zi ≤

(
1

1
n

∑n
i=1

1
zi+1

− 1

)n

,

where x1, . . . , xn ≥ 1 and z1, . . . , zn ∈ (0, 1].
The function that maps y to log(1/y − 1) is convex on (0, 1/2] and concave on

[1/2, 1). By Jensen’s inequality,

n log

(
1

1
n

∑n
i=1 yi

− 1

)
≤

n∑
i=1

log

(
1

yi
− 1

)
for y1, . . . , yn ∈ (0, 1/2],

and

n log

(
1

1
n

∑n
i=1 yi

− 1

)
≥

n∑
i=1

log

(
1

yi
− 1

)
for y1, . . . , yn ∈ [1/2, 1).

Exponentiating these inequalities and setting yi = 1/(1 + xi ) in the first and yi =

1/(1+ zi ) in the second yields the desired results.

Also solved by R. Chapman (U. K.), W. J. Cowieson, P. P. Dályay (Hungary), E. A. Herman, O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), N. C. Singer, R. Stong, M. Tetiva (Romania), L. Zhou, GCHQ
Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

More and More Balls in Urns

11464 [2009, 845]. Proposed by David Beckwith, Sag Harbor, NY. Let a(n) be the
number of ways to place n identical balls into a sequence of urns U1,U2, . . . in such a
way that U1 receives at least one ball, and while any balls remain, each successive urn
receives at least as many balls as in all the previous urns combined. Let b(n) denote
the number of partitions of n into powers of 2, with repeated powers allowed. (Thus,
a(6) = 6 because the placements are 114, 123, 15, 24, 33, and 6, while b(6) = 6
because the partitions are 111111, 11112, 1122, 114, 222, and 24.) Prove that a(n) =
b(n) for all n ∈ N.

Solution by Jerrold W. Grossman, Oakland University, Rochester, MI. Because a(1) =
b(1) = 1, it suffices to show that both sequences satisfy the same recurrence.

When n is odd, the final urn in an acceptable distribution contains more than half of
the balls, and removing one ball from it gives an acceptable distribution of n − 1 balls.
Thus a(2m + 1) = a(2m) for m ≥ 1. When n is even, then either the final urn contains
more than half the balls, and removing one from it gives an acceptable distribution of
n − 1 balls, or the final urn contains exactly half the balls, and the others contain an
acceptable distribution of n/2 balls. Thus a(2m) = a(2m − 1)+ a(m) for m ≥ 1.

When n is odd, a 2-power partition of n contains a 1, and the rest is a 2-power
partition of n − 1. Thus b(2m + 1) = b(2m) for m ≥ 1. When n is even, a 2-power
partition of n contains a 1 plus a 2-power partition of n − 1, or all the parts are even
and the partition is a doubling of a 2-power partition of n/2. Thus b(2m) = b(2m −
1)+ b(m) for m ≥ 1.
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Editorial comment. The sequence (1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, . . .) and its recur-
rence are well known. See Sequence A018819 in The On-Line Encyclopedia of In-
teger Sequences (http://www2.research.att.com/~njas/sequences/) and its
references.

Also solved by M. Andreoli, R. Bagby, C. K. Bailey & M. D. Meyerson, C. Bernardi (Italy), S. Binski,
E. H. M. Brietzke (Brazil), D. Brown, S. M. Bryan, R. Chapman (U. K.), E. Cheng, W. J. Cowieson,
P. P. Dályay (Hungary), C. Delorme (France), S. Eichhorn, D. Finley, J. P. Grivaux (France), J. Hook,
Y. J. Ionin, D. E. Knuth, M. Kochanski, J. Lee (Canada), P. Levande, J. H. Lindsey II, O. P. Lossers (Nether-
lands), J. McKenna, D. Mitchell, J. H. Nieto (Venezuela), Á. Plaza (Spain), B. Popp, S. Post, M. A. Prasad
(India), R. Pratt, B. Schmuland (Canada), J. Simons (U. K.), J. H. Smith, R. Staum, R. Stong, R. Tauraso
(Italy), M. Tetiva (Romania), Z. Vörös (Hungary), S. Xiao (Canada), L. Zhou, Armstrong Problem Solvers,
athenahealth Problem Solving Group, GCHQ Problem Solving Group (U. K.), Missouri State University
Problem Solving Group, and the proposer.

The Determinant of a Very Square Matrix

11467 [2009, 940]. Proposed by Xiang Qian Chang, Massachusetts College of Phar-
macy and Health Sciences, Boston, MA. Find in closed form the determinant of the
n × n matrix with entries ai, j given by

ai, j =

{∑i−1
k=0( j − k)2 if i ≤ j ;∑ j
k=1 k2

+
∑i− j−1

k=0 (n − k)2 if i > j .

Solution by Jaime Vinuesa Tejedor, University of Cantabria, Santander, Spain. The
answer is

(−1)n−1 nn−2(n + 1)(2n + 1)[(n + 2)n − nn
]

12
.

For i from n − 1 to 1, subtracting row i from row i + 1 does not change the deter-
minant but transforms the matrix to a cyclic matrix with constant diagonals 12, . . . , n2.
The determinant of a cyclic matrix with elements a1, . . . , an is

∏n−1
k=0

∑n
j=1 a jω

k( j−1),
where ω = e2π i/n (see, for example, A. C. Aitken, Determinants and Matrices,
U. M. T. Oliver and Boyd (1946)).

In our case, since a j = j2, the inner sum is n(n + 1)(2n + 1)/6 when k = 0. To
evaluate the other factors, it follows when ζ n

= 1 that

(1− ζ )2
n∑

j=1

j2ζ j−1
= n2(ζ − 1)− 2n

and hence
n∑

j=1

j2ωk( j−1)
=

n2(ωk
−

n+2
n )

(ωk − 1)2
. (1)

For x 6= 1, we have xn
−1

x−1 =
∏n−1

k=1(x − ω
k); setting x = n+2

n yields

n−1∏
k=1

(
n + 2

n
− ωk

)
=

n

2

[(
n + 2

n

)n

− 1

]
.

To multiply the denominators in (1), note that
∏n−1

k=1(x − ω
k) = xn

−1
x−1 =

∑n
k=1 x k−1.

Letting x = 1 in each polynomial yields
∏n−1

k=1(1− ω
k) = n.
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Now we can compute the determinant:

n−1∏
k=0

n∑
j=1

a jω
k( j−1)

=
n(n + 1)(2n + 1)

6

n−1∏
k=1

n∑
j=1

j2ωk( j−1)

=
n(n + 1)(2n + 1)

6

n−1∏
k=1

n2(ωk
−

n+2
n )

(ωk − 1)2

=
n(n + 1)(2n + 1)

12
(n2)n−1 (−1)n−1

n2

n

2

(n + 2)n − nn

nn
.

Editorial comment. Many of the solvers provided solution formulas not in closed form,
but we have listed them anyway.

Also solved by D. Beckwith, R. Chapman (U. K.), C. Curtis, P. P. Dályay (Hungary), M. Goldenberg & M.
Kaplan, E. A. Herman, Y. J. Ionin, O. Kouba (Syria), O. P. Lossers (Netherlands), K. McInturff, M. Omarjee
(France), Á. Plaza (Spain), J. Simons (U. K.), R. Stong, M. Tetiva (Romania), Z. Vörös (Hungary), P. Zwier,
GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, Missouri State University Prob-
lem Solving Group, and the proposer.

A Nonobtuse Altitude Inequality

11480 [2010, 87]. Proposed by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria. Let a, b, and c be the lengths of the sides opposite
vertices A, B, and C , respectively, in a nonobtuse triangle. Let ha , hb, and hc be the
corresponding lengths of the altitudes. Show that(

ha

a

)2

+

(
hb

b

)2

+

(
hc

c

)2

≥
9

4
,

and determine the cases of equality.

Solution by Richard Bagby, New Mexico State University, LasCruces, NM. By scale
invariance it suffices to restrict our attention to triangles of unit area. For such triangles
we have

H :=

(
ha

a

)2

+

(
hb

b

)2

+

(
hc

c

)2

=
4

a4
+

4

b4
+

4

c4
.

Let C be the largest angle, and consider varying a and b with C fixed.
Since the area is 1

2 ab sin C , this amounts to fixing ab. We first compare H to the
value H0 obtained for the triangle with sides lengths (

√
ab,
√

ab, c0), where

c2
0 = ab + ab − 2ab cos C = 2ab(1− cos C).

We observe that

c2
− c2

0 = (a
2
+ b2
− 2ab cos C)− 2ab(1− cos C) = (a − b)2

and

c2
+ c2

0 = (a + b)2 − 4ab cos C.
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Consequently, we compute

H − H0 =
4

a4
+

4

b4
+

4

c4
−

4

a2b2
−

4

a2b2
−

4

c4
0

=
4(a2
− b2)2

a4b4
+

4(c4
− c4

0)

c4c4
0

= 4(a − b)2
[
(a + b)2

a4b4
−
(a + b)2

c4c4
0

+
4ab cos C

c4c4
0

]
.

Now π/3 ≤ C ≤ π/2. Since

c4c4
0 ≥ c8

0 = 16a4b4(1− cos C)4 ≥ a4b4

for π/3 ≤ C ≤ π/2, we see that H − H0 ≥ 0 with equality if and only if a = b. Thus
it suffices to look at isosceles triangles.

In this case, unit area gives a2
= b2

= 2 csc C and c2
= c2

0 = 4(1− cos C) csc C so
we compute

H0 −
9

4
= 2 sin2 C +

sin2 C

4(1− cos C)2
−

9

4

= 2(1− cos2 C)+
1+ cos C

4(1− cos C)
−

9

4

=
2(2 cos C − 1)2 cos C

4(1− cos C)
≥ 0,

with equality if and only if C = π/3 or C = π/2. Thus we get equality for an equilat-
eral triangle or an isosceles right triangle.

Editorial comment. Many solvers noted that

ha

a
=

1

cot B + cot C

and substituted x = cot A, y = cot B, and z = cot C , to reduce the problem to

1

(x + y)2
+

1

(y + z)2
+

1

(z + x)2
≥

9

4

for xy + yz + zx = 1, which was a problem on the 1996 Iranian Mathematical
Olympiad. However the earliest reference submitted was to J. F. Rigby, Sextic in-
equalities for the sides of a triangle, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.
Fiz. no. 498–541 (1975) 51–58.

Also solved by A. Alt, G. Apostolopoulos (Greece), M. Bataille (France), M. Can, C. Curtis, P. P. Dályay
(Hungary), J. Fabrykowski & T. Smotzer, F. Holland (Ireland), J. H. Lindsey II, C. Pohoata (Romania), C. R.
Pranesachar (India), R. Stong, E. Suppa (Syria), M. Tetiva (Romania), Z. Vörös (Hungary), GCHQ Problem
Solving Group (U. K.), and the proposer.

Countable Dense Partition

11481 [2010, 182]. Proposed by Ron Rietz, Gustavus Adolphus College, St. Peter, MN.
Let X be a countable dense subset of a separable metric space M with no isolated
points. Show that there exists a countable partition (X1, X2, . . .) of X such that each
Xn is dense in M .
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Solution by Michael Barr, McGill University, Montréal, QC, Canada. We derive the
conclusion under the weaker condition that M is first countable and Hausdorff. (A
space M is first countable if for every x in M there is a sequence U1,U2, . . . of neigh-
borhoods of x such that for every neighborhood U of x , at least one of the Ui is a
subset of U . It is Hausdorff if distinct points have disjoint neighborhoods.)

We begin with a few observations. First, since M is Hausdorff and has no isolated
points, if N is a neighborhood of x , then N − {x} is open and nonempty. Second, M
is infinite. Third, any dense subset Y of M is infinite.

The plan now is to first show that we can split (partition into two components) any
countable dense subset Y of M into dense subsets U and V . If we can do that, the
problem is solved, because we can take Y = X , take X1 = U , split V in the same
fashion to get an X2, then split the other part of V to get X3, and so on. To split Y
in the desired manner, we begin by showing that for every y in Y there are disjoint
sequences of points in Y − {y} that converge to y. (A sequence (y j ) converges to y if
for every neighborhood N of y there is an index k such that for all j ≥ k, y j ∈ N .)

By hypothesis, there is a sequence (N1, N2, . . .) of neighborhoods of y such that
every neighborhood of y contains one of the N j . It will be convenient to require that
N j ⊆ Nk for j ≥ k, and this can be achieved by replacing Nk with ∩k

j=1 N j . Since M
has no isolated points, each N j contains a point other than y. Since Y is dense, for
each j , Y ∩ (N j − {y}) is nonempty.

We construct a sequence (s1, s2, . . .) by taking y j from Y ∩ (N j − {y}), j =
1, 2, . . .. Every neighborhood of y contains some N j as a subset, and hence all Nk with
k ≥ j since the N j are nested. Thus, (s j ) has the property that for every neighborhood
N of y, there is an index k such that for k ≥ j , sk ∈ N . That is, (s j ) converges to y
without hitting y.

By deleting duplicates and renumbering, we make (s j ) a sequence of distinct ele-
ments. The disjoint sequences (s2 j ) and (s2 j+1) then provide our sequences converging
to y from within Y .

Since Y is countable, there is a sequence (y1, y2, . . .) of distinct elements of Y that
exhaust Y . Using our construction above, for each k ≥ 1 we build a disjoint pair (u j,k)

and (v j,k) of sequences, free of repetion, drawn from Y − {yk} and converging to yk .
We put Uk = {u j,k : j ≥ 1} and Vk = {v j,k : j ≥ 1}. We put U ′1 = U1, V ′1 = V1, and
for k ≥ 2 we put U ′k = Uk − ∪ j<k(U j

⋃
V j ), V ′k = ∪ j<k(U j

⋃
V j ). Since sequences

converging to distinct limits share only finitely many entries, each U ′k and V ′k is infinite.
Seen as sequences, U ′k and V ′k converge within Y − {yk} to yk . Furthermore, any two
distinct sets from the collection of U ′k and V ′k are disjoint.

Now take U = ∪∞k=1U ′k , V = ∪∞k=1V ′k . Then Y ⊆ U and Y ⊆ V , so U = V = M .
By construction, U and V are disjoint. Adding any unused elements of Y to U , we
have our claimed partition of Y into disjoint subsets U and V , which completes the
proof.

Also solved by J. Bryant, P. Budney, B. S. Burdick, R. Chapman (U. K.), J. Cobb, W. J. Cowieson, N. Eldredge,
P. J. Fitzsimmons, J. Grivaux (France), J. W. Hagood, E. A. Herman, G. A. Heuer, O. P. Lossers (Netherlands),
M. D. Meyerson, V. Pambuccian, D. Rose, K. A. Ross, B. Schmuland (Canada), J. Simons (U. K.), R. Stong, B.
Tomper, J. Vinuesa (Spain), GCHQ Problem Solving Group (U. K.), Northwestern University Math Problem
Solving Group, NSA Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before March 31, 2012. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11600. Proposed by Michael D. Hirschhorn, University of New South Wales, Sydney,
Australia. Suppose a > 0, n ≥ 1, and 0 < r < a/n. For given θ , let

φk = arctan

(
kr sin θ

a − kr cos θ

)
, ρk =

√
a2 − 2kra cos θ + k2r 2.

Show that ∫
∞

0

cos(φ1 + · · · + φn)− θ sin(φ1 + · · · + φn)

ρ1 · · · ρn

dθ

1+ θ 2
=

π

2an
.

11601. Proposed by Harm Derksen and Jeffrey Lagarias, University of Michigan, Ann
Arbor, MI. The Farey series of order n is the set of reduced rational fractions j/k in
the unit interval with denominator at most n. Let Fn be the product of these fractions,
excluding 0/1. That is,

Fn =

n∏
k=1

k−1∏
j=1

( j,k)=1

j

k
.

Let Fn = 1/Fn . Show that Fn is an integer for only finitely many n.

11602. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy.
Let p be a prime. Let Fn denote the nth Fibonacci number. Show that∑

0<i< j<k<p

Fi

i jk
≡ 0 (mod p).

http://dx.doi.org/10.4169/amer.math.monthly.118.09.846
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(A rational number is deemed congruent to 0 mod p if, when put in reduced form, the
numerator is a multiple of p.)

11603. Proposed by Alfonso Villani, Università di Catania, Catania, Italy. Let I be the
interval [0,∞). Let p and r be positive, with r ≥ 1. Let f be a function on I that is
absolutely continuous in every compact interval [0, b] with b > 0. Assume that f is in
L p(I ) and that the (weak) derivative f ′ belongs to Lr (I ). (Weak derivatives are part
of the theory of distributions.) Prove that limx→∞ f (x) = 0.

11604. Proposed by Pál Péter Dályay, Szeged, Hungary. Given 0 ≤ a ≤ 2, let 〈an〉

be the sequence defined by a1 = a and an+1 = 2n
−
√

2n(2n − an) for n ≥ 1. Find∑
∞

n=1 a2
n .

11605. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania. Let s, R, and r be the semiperimeter, circumradius, and inradius of
a triangle with sides of length a, b, and c. Show that

R − 2r

2R
≥

∑ √
(s − a)(s − b)

c
− 2

∑ (s − c)
√
(s − a)(s − b)

ab
,

and determine when equality occurs. Sums are cyclic.

11606. Proposed by Kent Holing, Trondheim, Norway. Let a, b, c, d be integers, the
first two even and the other two odd. Let Q be the polynomial x4

+ ax3
+ bx2

+ cx +
d , and assume that the Galois group of Q has order less than 24.

(a) Show that the Lagrange resolvent

x3
+

(
2b −

3

4
a2

)
x2

+

(
b2
− 4d + ac − a2b +

3

16
a4

)
x −

1

64
(a3
− 4ab + 8c)2

of Q has exactly one integer root; call it m.
(b) Show that a2

+ 4(m − b) cannot be a nonzero square.
(c) Show that if a = 0, then the Galois group of Q is cyclic if and only if

(m − b)(m + b)2 − 4c2 is square.

SOLUTIONS

An Equal Distance Sum Point

11482 [2010, 182]. Proposed by Marius Cavachi, “Ovidius” University of Constanta,
Constanta, Romania. Let n be a positive integer, and let (a1, . . . , an), (b1, . . . , bn),
and (c1, . . . , cn) be n-tuples of points in R2 with noncollinear centroids. For u ∈ R2,
let ‖u‖ be the usual euclidean norm of u. Show that there is a point p ∈ R2 such that

n∑
k=1

‖p − ak‖ =

n∑
k=1

‖p − bk‖ =

n∑
k=1

‖p − ck‖.

Solution by Robin Chapman, University of Bristol (U.K.). Define maps fa, fb, fc from
R2 to R by

fa(p) =
n∑

k=1

‖p − ak‖, fb(p) =
n∑

k=1

‖p − bk‖, fc(p) =
n∑

k=1

‖p − ck‖.
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Define F : R2
→ R2 by F(p) =

(
fa(p)− fc(p), fb(p)− fc(p)

)
. The maps fa, fb, fc,

and F are continuous. We must show that F has a zero (a point p such that F(p) =
(0, 0).) Suppose instead that F(p) 6= (0, 0) for all p ∈ R2. We use the concept of
winding number. Let φ : [α, β] → R2 be a loop; that is, a continuous map with φ(α) =
φ(β). Since φ is a loop and F avoids (0, 0), F ◦ φ is a loop in R2

\ {(0, 0)}. As R2

is simply connected, φ can be deformed continuously into a path that is constant on
[α, β]; as it does, F ◦ φ deforms continuously inside R2

\ {(0, 0)} into another such
path. It follows that the winding number of F ◦ φ about (0, 0) is 0. We obtain a contra-
diction by proving that there is a loop φ such that F ◦ φ has nonzero winding number.
Define φ : [0, 2π ] → R2 by

φ(θ) = (R cos θ, R sin θ),

where R is a positive constant to be chosen later.
Let θ ∈ [0, 2π ], and write p = φ(θ). Note that ‖p‖ = R. We can take R as large

as we like; we like R > 2 maxk

(
‖ak‖, ‖bk‖, ‖ck‖

)
. Using the usual dot product in R2,

for 1 ≤ k ≤ n we have

‖p − ak‖ =
(
‖p‖2

− 2p · ak + ‖ak‖
2
)1/2
= R

(
1−

2p · ak

R2
+
‖ak‖

2

R2

)1/2

= R
(

1−
p · ak

R2
+ O(1/R2)

)
= R −

p · ak

R
+ O(1/R)

as R→∞, since |p · ak | = O(R). Thus

fa(p) = n R −
n

R
p · a + O(1/R) as R→∞

where a is the centroid of the ak . Similarly

fb(p) = n R −
n

R
p · b + O(1/R), fc(p) = n R −

n

R
p · c + O(1/R),

where b is the centroid of the bk and c is the centroid of the ck . Hence

F(p) =
n

R

(
(c − a) · p, (c − b) · p

)
+ O(1/R) as R→∞.

We have assumed that a, b, c are noncollinear, so c − a and c − b are linearly inde-
pendent. Thus

c − a = (s cosα, s sinα), c − b = (t cosβ, t sinβ)

where s > 0, t > 0, and α − β is not an integer multiple of π . (Note that s, t, α, β are
constants and do not depend on R or θ .) Therefore

F(p) = n
(
s cos(θ − α), t cos(θ − β)

)
+ O(1/R) as R→∞.

Define G : [0, 2π ] → R2 by

G(θ) := n
(
s cos(θ − α), t cos(θ − β)

)
.

We claim that G traces out an ellipse with center the origin exactly once, so that its
winding number about (0, 0) is ±1. To see this, let γ = α − β. Then

cos(θ − β) = cos(θ − α + γ ) = cos γ cos(θ − α)− sin γ sin(θ − α).

Now the nonsingular linear substitution (x, y) = (nsu, ntu cos γ − ntv sin γ ) con-
verts the unit circle in the (u, v)-plane into the path G. Thus G traces out an ellipse
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centered at the origin, exactly once as θ increases from 0 to 2π . Hence the wind-
ing number of G is ±1. Now G(θ)− F(φ(θ)) = O(1/R), so given ε > 0, for large
enough R we have ‖G(θ)− F(φ(θ))‖ < ε for all θ . Provided ε is less than the dis-
tance from the origin to the path G, the line segment from G(θ) to F(φ(θ)) will not
meet the origin. Therefore the paths G and F ◦ φ are homotopic in R2

\ {(0, 0)}, and
so have the same winding number. This is the required contradiction.

Also solved by M. A. Prasad (India), K. Schilling, J. Simons (U. K.), R. Stong, and the proposer.

Triangle Tangent Inequality

11486 [2010, 183]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania. Show that in an acute triangle with sides of lengths a1, a2, a3

and opposite angles of radian measure A1, A2, A3,

3∏
k=1

(1− cos Ak)

cos Ak
≥

8

9

∑3
k=1 a2

k

(
∑3

k=1 ak)2

(
∑3

k=1 tan Ak)
3∏3

k=1(tan Ak + tan Ak+1)
.

Solution by Pál Péter Dályay, Szeged, Hungary. Identifying A4 = A1, in an acute tri-
angle we have

∑3
k=1 tan Ak > 0 and

∏3
k=1(tan Ak + tan Ak+1) > 0, so the inequality

of the problem is equivalent to∏3
k=1(tan Ak + tan Ak+1)

(
∑3

k=1 tan Ak)3

(
∑3

k=1 ak)
2∑3

k=1 a2
k

3∏
k=1

(1− cos Ak)

cos Ak
≥

8

9
. (1)

Using trigonometric formulas and the relation
∑3

k=1 tan Ak =
∏3

k=1 tan Ak , we obtain∏3
k=1(tan Ak + tan Ak+1)

(
∑3

k=1 tan Ak)3
=

(
3∏

k=1

sin(Ak + Ak+1)

cos Ak cos Ak+1

)(
3∏

k=1

cos Ak

sin Ak

)3

=

∏3
k=1 cos Ak∏3
k=1 sin2 Ak

.

(2)
Now use the relations

∑3
k=1 sin Ak = 4

∏3
k=1 cos(Ak/2),

∑3
k=1 sin2 Ak =

1
2 (3 −∑3

k=1 cos(2Ak)) = 2(1+
∏3

k=1 cos Ak), and the sine law to obtain

(
∑3

k=1 ak)
2∑3

k=1 a2
k

=
(
∑3

k=1 sin Ak)
2∑3

k=1 sin2 Ak

=
16
∏3

k=1 cos2(Ak/2)

2(1+
∏3

k=1 cos Ak)
=

∏3
k=1(1+ cos Ak)

1+
∏3

k=1 cos Ak

. (3)

If L denotes the left-hand side of inequality (1), then using (2) and (3), we obtain

L =

(∏3
k=1 cos Ak∏3
k=1 sin2 Ak

)(∏3
k=1(1+ cos Ak)

1+
∏3

k=1 cos Ak

)
3∏

k=1

(1− cos Ak)

cos Ak
=

1

1+
∏3

k=1 cos Ak

.

Thus inequality (1) holds if and only if 1/(1+
∏3

k=1 cos Ak) ≥ 8/9, that is, if and
only if

∏3
k=1 cos Ak ≤ 1/8. This is a known inequality, but the proof is short: note that

the function f given by f (x) = log(cos x) is concave on (0, π/2) because f ′′(x) =
− cos−2 x < 0. Thus we have

3∑
k=1

log(cos Ak) ≤ 3 log

(
cos

(
1

3

3∑
k=1

Ak

))
= 3 log

(
1

2

)
= log

(
1

8

)
.

The required inequality follows. Equality holds when the triangle is equilateral.
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Also solved by A. Alt, G. Apostolopoulos (Greece), P. De (India), M. Dincǎ (Romania), J. Fabrykowski & T.
Smotzer, O. Faynshteyn (Germany), O. Kouba (Syria), O. P. Lossers (Netherlands), P. Nüesch (Switzerland),
J. Rooin (Iran), C. R. & S. Selvaraj, R. Stong, M. Tetiva (Romania), M. Vowe (Switzerland), GCHQ Problem
Solving Group (U.K.), and the proposer.

A Symmetric Inequality

11492 [2010, 278]. Proposed by Tuan Le, student, Freemont High School, Anaheim,
CA. Show that for positive a, b, and c,
√

a3 + b3

a2 + b2
+

√
b3 + c3

b2 + c2
+

√
c3 + a3

c2 + a2
≥

6(ab + bc + ca)

(a + b + c)
√
(a + b)(b + c)(c + a)

.

Solution by M. A. Prasad, India. First, note that (
√

a3 + b3)/(a2
+ b2) ≥ 1/

√
a + b.

Next, put

T1 =

(∑√
(b + c)(c + a)

)
(a + b + c), T2 = 6(ab + bc + ca),

where the sum is over all cyclic permutations of {a, b, c}. It suffices to show T1 ≥ T2.
Let x =

√
a + b, y =

√
b + c, z =

√
c + a. Note z2 < x2

+ y2. Also

ab + bc + ca =
(x2
+ y2
+ z2)2

4
−

x4
+ y4
+ z4

2
.

Let D = 4(T1 − T2). Then

D = 12(x4
+ y4
+ z4)+ 2(xy + yz + zx)(x2

+ y2
+ z2)− 6(x2

+ y2
+ z2)2

= 3
∑

(x2
− y2)2 + 2

∑
xy(x − y)2 −

∑
x2(y − z)2

=

∑
(x − y)2

(
3x2
+ 3y2

+ 8xy − z2
)
≥

∑
(x − y)2

(
2x2
+ 2y2

+ 8xy
)
≥ 0.

Editorial comment. This problem can also be found at http://www.math.ust.hk/
excalibur/v14_n2.pdf and http://ssmj.tamu.edu/problems/March-2010.
pdf with two solutions at http://www.math.ust.hk/excalibur/v14_n3.pdf.

Also solved by D. Beckwith, P. P. Dályay (Hungary), P. De (India), O. Faynshteyn (Germany), G. C. Greubel,
J. Grivaux (France), V. Krasniqi (Kosovo), J. H. Lindsey II, B. Mulansky (Germany), P. H. O. Pantoja (Brazil),
P. Perfetti (Italy), J. Simons (U. K.), R. Stong, L. Zhou, GCHQ Problem Solving Group (U. K.), Northwestern
University Math Problem Solving Group, and the proposer.

Glaisher–Kinkelin

11494 [2010, 279]. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Let A
be the Glaisher-Kinkelin constant, given by

A = lim
n→∞

n−n2/2−n/2−1/12en2/4
n∏

k=1

kk
= 1.2824 . . . .

Show that

∞∏
n=1

(
n!

√
2πn(n/e)n

)(−1)n−1

=
A3

27/12π 1/4
.
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Solution by Douglas B. Tyler, Raytheon, Torrance, CA. Let pn =
∏n

k=1 kk and note
that pn ∼ Ann2/2+n/2+1/12e−n2/4. Let an = n!/(

√
2πn(n/e)n). By Stirling’s formula,

an tends to 1, and thus it suffices to evaluate the limit of the even-numbered partial
products. Note that

2n∏
k=1

(ak)
(−1)k−1

=

n∏
k=1

a2k−1

a2k
=

n∏
k=1

(2k)2k

e
√

2k(2k − 1)(2k − 1)2k−1
.

Rearranging gives

1

en
√
(2n)!

n∏
k=1

(2k)4k

(2k − 1)2k−1(2k)2k
=

22n(n+1)

en
√
(2n)!

·
p4

n

p2n

∼
22n(n+1)

(2n)n 4
√

4πn
·

A4n2n2
+2n+1/3e−n2

A(2n)2n2+n+1/12e−n2 =
A3

π1/427/12

as claimed.

Also solved by P. Bracken, B. S. Burdick, R. Chapman (U. K.), P. P. Dályay (Hungary), O. Geupel (Germany),
J. Grivaux (France), E. A. Herman, O. Kouba (Syria), V. Krasniqi (Kosovo), O. P. Lossers (Netherlands), B.
Mulansky (Germany), M. Omarjee (France), P. Perfetti (Italy), M. A. Prasad (India), P. .F. Refolio (Spain), J.
Schlosberg, J. Simons (U. K.), S. D. Smith, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), GCHQ Problem
Solving Group (U. K.), and the proposer.

Inequalities: One out of Two Ain’t Bad

11497 [2010, 370]. Proposed by Mihály Bencze, Brasov, Romania. Given n real num-
bers x1, . . . , xn and a positive integer m, let xn+1 = x1, and put

A =
n∑

k=1

(
x2

k − xk xk+1 + x2
k+1

)m
, B = 3

n∑
k=1

x2m
k .

Show that A ≤ 3m B and A ≤ (3m B/n)n .

Solution by M. A. Prasad, India. We first prove that

(x2
1 − x1x2 + x2

2)
m
≤ 3m(x2m

1 + x2m
2 )/2. (1)

Now, −x1x2 ≤ (x2
1 + x2

2)/2, so (x2
1 − x1x2 + x2

2)
m
≤ 3m(x2

1 + x2
2)

m/2m . Next,
x2(m−r)

1 x2r
2 + x2r

1 x2(m−r)
2 ≤ x2m

1 + x2m
2 , because

x2m
1 + x2m

2 − x2(m−r)
1 x2r

2 − x2r
1 x2(m−r)

2 = (x2r
2 − x2r

1 )(x
2(m−r)
2 − x2(m−r)

1 ) ≥ 0.

Now,

2(x2
1 + x2

2)
m
=

m∑
r=0

(
m

r

)(
x2(m−r)

1 x2r
2 + x2r

1 x2(m−r)
2

)
≤

m∑
r=0

(
m

r

)(
x2m

1 + x2m
2

)
,

which by the binomial theorem simplifies to 2m
(
x2m

1 + x2m
2

)
, proving (1). Therefore,

A =
n∑

k=1

(
x2

k − xk xk+1 + x2
k+1

)m
≤

n∑
k=1

3m x2m
k + x2m

k+1

2
= 3m−1 B.

The second inequality, A ≤ (3m B/n)n , is incorrect: take n = 1012, m = 1, and x1 =

· · · = xn = 10−6. Now A = 1 and B = 3, so (3m B/n)n = (9/1012)1012
< A.
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Also solved by D. Beckwith, P. P. Dályay (Hungary), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Nether-
lands), M. A. Prasad (India), J. Simons (U. K.), R. Stong, Z. Vörös (Hungary), and GCHQ Problem Solving
Group (U. K.).

A Power Series with Nonnegative Coefficients

11501 [2010, 834]. Proposed by Finbarr Holland, University College Cork, Cork, Ire-
land. (Corrected) Let

g(z) = 1−
3

1
1−az +

1
1−i z +

1
1+i z

.

Show that the coefficients in the Taylor series expansion of g about 0 are all nonnega-
tive if and only if a ≥

√
3.

Solution by Richard Stong, Center for Communications Research, San Diego, CA.
Write

g(z) =
∞∑

n=1

unzn
=

az

3
+

2(a2
− 3)z2

+ 8az3

3(3− 2az + z2)
=

a

3
z +

2(a2
− 3)

9
z2
+ · · · .

Thus, if u1, u2 ≥ 0, then a ≥
√

3. If a =
√

3, then

g(z) =

√
3

3
z +

8(z/
√

3)3

(1− z/
√

3)2
,

so un = 8(n − 2)3−n/2
≥ 0 for n ≥ 2. Now suppose a >

√
3 and use partial fractions

to expand in a power series as follows:

z

3− 2az + z2
=

1

2
√

a2 − 3

 1

1− a+
√

a2−3
3 z

−
1

1− a−
√

a2−3
3 z


=

1

2
√

a2 − 3

∞∑
m=1

[(
a +
√

a2 − 3

3

)m

−

(
a −
√

a2 − 3

3

)m]
zm .

Hence all Taylor coefficients of z/(3− 2az + z2) are nonnegative. Thus

2(a2
− 3)z2

+ 8az3

3(3− 2az + z2)
=

2(a2
− 3)z + 8az2

3
·

z

3− 2az + z2

also has all Taylor coefficients nonnegative, and therefore g(z) does as well.

Also solved by M. Apagodu, G. Apostolopoulos (Greece), P. Bracken, N. Caro (Brazil), R. Chapman (U. K.),
D. Constales (Belgium), P. P. Dályay (Hungary), Y. Dumont (France), O. Geupel (Germany), E. A. Herman,
O. Kouba (Syria), K. McInturff, Á. Plaza & F. Perdomo (Spain), J. Simons (U. K.), M. Tetiva (Romania), M.
Vowe (Switzerland), GCHQ Problem Solving Group (U. K.), and the proposer.

A Twice Told Problem

11502, 11513 [2010, 458, 558]. Proposed by Pál Péter Dályay, Deák Ferenc High
School, Szeged, Hungary. For a triangle with area F , semiperimeter s, inradius r , cir-
cumradius R, and heights ha , hb, and hc, show that

5(ha + hb + hc) ≥
2Fs

Rr
+ 18r ≥

10r(5R − r)

R
.
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Solution by Vicente Vicario Garcı́a, Huelva, Spain. Let a, b, and c be the side lengths of
the triangle. We need the following result (Steinig’s inequality or the first Gerretsen in-
equality; see, for example, Bottema et. al., Geometric Inequalities, Wolters-Noordhoff,
Groningen, Netherlands, 1969, p. 50):

Lemma. In any triangle, s2
≥ 16Rr − 5r 2.

This can be proved by rewriting the desired result in terms of x , y, and z, where x =
s − a, y = s − b, and z = s − c, and noting that it rearranges to be Schur’s inequality;
it can also be proved by computing that (s2

− 16Rr + 5r 2)/9 is the squared distance
between the incenter and centroid.

Next, rewriting Heron’s formula as

r 2s2
= F2

= s(s − a)(s − b)(s − c)

= s3
− (a + b + c)s2

+ (ab + bc + ca)s − abc

= −s3
+ (ab + bc + ca)s − abc,

and using Euler’s formula abc = 4Rrs, we obtain the (well-known) fact that in any
triangle, ab + bc + ca = s2

+ 4Rr + r 2. From this we compute

5(ha + hb + hc)−
2Fs

Rr
− 18r = 10rs

(
1

a
+

1

b
+

1

c

)
−

2s2

R
− 18r

=
10rs(ab + bc + ca)

abc
−

2s2

R
− 18r

=
5(s2
+ 4Rr + r 2)

2R
−

2s2

R
− 18r

=
s2
− 16Rr + 5r 2

2R
≥ 0.

Also we have

2Fs

Rr
+ 18r −

10r(5R − r)

R
=

2s2

R
+ 18r −

10r(5R − r)

R

=
2(s2
− 16Rr + 5r 2)

R
≥ 0.

Thus both of the desired inequalities follow from Gerretsen’s inequality.

Editorial comment. The problem was accidentally republished as 11513.

Also solved by A. Alt, G. Apostolopoulos (Greece), M. Bataille (France), E. Braune (Austria), S. H. Brown,
B. S. Burdick, M. Can, R. Chapman (U. K.), R. Cheplyaka, V. Lucic & L. Pebody, C. Curtis, J. Fabrykowski &
T. Smotzer, O. Geupel (Germany), M. Goldenberg & M. Kaplan, B.-H. Gu (S. Korea), E. Hsynelaj (Australia)
& E. Bojaxhiu (Germany), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, B. Mulansky (Germany),
P. Nüesch (Switzerland), C. R. Pranesachar (India), R. Smith, R. Stong, M. Vowe (Switzerland), Ellington
Management Problem Solving Group, GCHQ Problem Solving Group (U. K.), Mathramz Problem Solving
Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before April 30, 2012. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11607. Proposed by Jeffrey C. Lagarias and Andrey Mischenko, University of Michi-
gan, Ann Arbor, MI. Let C0, C1, C2, C3, with subscripts taken modulo 4, be circles in
the Euclidean plane.

(a) Given for k ∈ Z4 that Ck and Ck+1 intersect with orthogonal tangents, and the
interiors of Ck and Ck+2 are disjoint, show that the four circles have a common
point.

(b)* Does the same conclusion hold in hyperbolic and spherical geometry?

11608. Proposed by D. Aharonov and U. Elias, Technion—Israel Institute of Technol-
ogy, Haifa, Israel. Let f and g be functions on R that are differentiable n + m times,
where n and m are integers with n ≥ 1 and m ≥ 0. Let A(x) be the (n +m)× (n +m)
matrix given by

A j,k(x) =

{
( f k−1(x))( j−1), if 1 ≤ j ≤ n;
(gk−1(x))( j−1−n), if n < j ≤ n + m,

Let P =
∏n−1

r=1 r !
∏m−1

q=1 q!. Prove that

det A(x) = P f (x)ng(x)m[g(x)− f (x)]mn f ′(x)n(n−1)/2g′(x)m(m−1)/2.

11609. Proposed by M. N. Deshpande, Nagpur, India. Let n be an integer greater
than 1, and let Sk(n) be the family of all subsets of {2, 3, . . . , n} with k elements.
Let H(k) =

∑k
j=1

1
j . Show that

n−1∑
k=0

(2n + 1− 2k)
∑

A∈Sk (n)

∏
j∈A

1

j
= (n + 1)((n + 2)− H(n + 1)).

http://dx.doi.org/10.4169/amer.math.monthly.118.10.936
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11610. Proposed by Richard P. Stanley, Massachussetts Institute of Technology, Cam-
bridge, MA. Let f (n) be the number of binary words a1 · · · an of length n that have the
same number of pairs ai ai+1 equal to 00 as equal to 01. Show that

∞∑
n=0

f (n)tn
=

1

2

(
1

1− t
+

1+ 2t√
(1− t)(1− 2t)(1+ t + 2t2)

)
.

11611. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca Cluj, Roma-
nia. Let f be a continuous function from [0, 1] into [0,∞). Find

lim
n→∞

n
∫ 1

x=0

(
∞∑

k=n

x k

k

)2

f (x) dx .

11612. Proposed by Paul Bracken, University of Texas, Edinburg, TX. Evaluate in
closed form

∞∏
n=1

(
n + z + 1

n + z

)n

e(2z−2n+1)/(2n).

11613. Proposed by Stephen Morris, Newbury, U. K., and Stan Wagon, Macalester
College, St. Paul, MN. You are organizing a racing event with 25 horses on a track that
can accommodate five horses per race. Each horse always runs the course in the same
time, the 25 times are distinct, and you cannot use a stopwatch.

(a) Show how to arrange 7 races so that after all races are run, you will have enough
information to determine which of the 25 horses present is fastest, which is next
fastest, and which is third fastest. You may use the results of earlier races to
schedule which horses compete in later races.

(b) Show that with just 6 races, it is not possible to be sure of knowing which are
the top two horses.

(c) Give a procedure that uses 6 races and, with probability at least 3/10, yields
information sufficient to determine the fastest horse and the runner up. You
have no a priori knowledge of the relative strengths of the 25 horses.

(d) Give a procedure that uses 6 races and, with probability at least 1/20, yields
information sufficient to determine which horse of the 25 is fastest, next fastest,
and third fastest.

SOLUTIONS

More than Meets the Eye

11294 [2007,451]. Proposed by John Zucker, King’s College, London, U. K. and Ross
McPhedran, University of Sydney, Sydney, Australia. Show that

∞∑
m=−∞

{
∞∑

n=−∞

(−1)m+n

(5m)2 + (5n + 1)2

}

=
π

25

(
log(11+ 5

√
5)−
√

5 log

(
√

5+ 1−

√
5+ 2

√
5

))
. (1)
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Solution by Robin Chapman, University of Exeter, Exeter, U. K. The solution was too
long to present in full detail; this is a condensed version. Let S be the value of the
required sum. The double series in (1) does not converge absolutely, so care is needed,
but the order of summation can be reversed. The Poisson summation formula is then
applied to the new inner sum to yield (after simplification)

S =
2π

5

∞∑
r=0

∑
k≥1

k≡±1

(−1)k−1 u(2r+1)k

k
,

where u = e−π/5 and the congruence in the inner sum is modulo 5. With ζ = e2π i/5,
this can be rewritten as

S =
π

25
log

∞∏
r=0

(
1+ u2r+1

)5

1+ u5(2r+1)
+
π
√

5

25
log

∞∏
r=0

(1+ ζu2r+1)(ζ−1u2r+1)

(1+ ζ 2u2r+1)(1+ ζ−2u2r+1)
.

We define A and P by rewriting this as S = π

25

(
log A +

√
5 log P

)
.

Now A can be related to the Dedekind eta function, defined for τ in the upper half-
plane by

η(τ) = exp(π iτ/12)
∞∏

n=1

(1− exp(2π inτ)).

The Weber function f is now defined by

f(z) = exp(−π i/24)η((z + 1)/2)/η(z)

= exp(−π i z/24)
∞∏

n=1

(1+ exp(π i(2n − 1)z)); (1)

it satisfies f(z + 2) = exp(−π i/12)f(z) and f(−1/z) = f(z). A straightforward com-
putation now shows that A = f(i/5)5/f(i). The identities η(−1/z) =

√
z/ iη(z) and

f (z)6 − f (z)5 f (5z)5 + 4 f (z) f (5z)+ f (5z)6 = 0 (see [5, Section 18.5] and [6, Sec-
tion 7.14]) now allow for the evaluations f(i) = 21/4 and f(i/5) = 21/4(1 +

√
5)/2.

For P , the Jacobi triple product identity ([6 Section 7.4], or http://wikipedia.
org/wiki/Triple_product_identity) yields

P =
∞∏

r=0

(1+ ζu2r+1)(ζ−1u2r+1)

(1+ ζ 2u2r+1)(1+ ζ−2u2r+1)

=

∞∏
r=0

(1+ ζu2r+1)(ζ−1u2r+1)(1− u−2r )

(1+ ζ 2u2r+1)(1+ ζ−2u2r+1)(1− u−2r )

=

∑
∞

m=−∞ ζ
mum2∑

∞

m=−∞ ζ
2mum2 =

θ1

θ2
,

where θ j =
∑
∞

m=−∞ ζ
jmum2

. Further calculations relate θ1 + θ2 and θ1θ2 to f(i/5), f(i),
and η(i/5). With this information in hand, θ1 and θ2 can be evaluated and the solution
completed.
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Editorial comment. Another full solution grew out of a partial solution provided by
George Lamb. Lamb determined A and reduced the determination of P to the task of
proving an intriguing identity. To state this identity, we introduce the standard notation

(a; q)∞ =
∞∏

n=0

(1− aqn), |q| < 1.

Lamb conjectured that if q = e−π , then

1

4
q1/6

{
q3/5(−q; q10)2

∞
(−q9
; q10)2

∞
+ q−3/5(−q3

; q10)2
∞
(−q7
; q10)2

∞

}
= 1. (3)

The editors then contacted Bruce Berndt. He and Mathew Rogers found that (3)
could be reformulated in terms of Ramanujan’s theta function

ϕ(q) =
∞∑

n=−∞

qn2
, |q| < 1,

and the Rogers-Ramanujan continued fraction

R(q) =
q1/5

1+
q

1+
q2

1+
. . .

.

With q = e−π , the claimed identity, (3), can be written in the equivalent form

R2(q4)

{
ϕ(q)

ϕ(q5)
+ 1

}2

+ R−2(q4)

{
ϕ(q)

ϕ(q5)
− 1

}2

= 16q5/6 (q
10
; q10)2

∞

ϕ2(q5)
. (4)

Ramanujan gave 128/(
√

5+ 1)4 for the right side of (4). As to the left side, Ramanu-
jan’s second notebook yields

ϕ
(
e−5π

)
=

ϕ(e−π )√
5
√

5− 10
,

while in Ramanujan’s first notebook one finds R(e−4π ) =
√

c2 + 1 − c, where 2c =
1+ (51/4

+ 1)
√

5/(51/4
− 1). Combining these gives (4); full details are available in

[4]. The paper includes further results in the same vein. One additional special case of
these is that

∞∑
n=−∞

∞∑
m=−∞

(−1)m+n

m2 + (3n + 1)2
=

2π

9
log

(
2(
√

3− 1)
)
.
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Also solved by the proposers. Partially solved George Lamb and by Albert Stadler (Switzerland).

Inequality via Equality

11504 and 11512 [2010, 458 and 558]. Proposed by Finbarr Holland, University Col-
lege Cork, Cork, Ireland. Let N be a nonnegative integer. For x ≥ 0, prove that

N∑
m=0

1

m!

(
N−m+1∑

k=1

x k

k

)m

≥ 1+ x + · · · + x N .

Solution by Nicholas C. Singer, Annandale, VA. The term corresponding to m = 0 is
1, so for N = 0 both sides are 1. Now assume N ≥ 1. For nonnegative integer k and
power series f (x), let [x k

] f (x) denote the coefficient of x k in f (x). All coefficients
on the left side are nonnegative, so it suffices to prove that for 1 ≤ s ≤ N ,

[x s
]

N∑
m=1

1

m!

(
N−m+1∑

k=1

x k

k

)m

= 1.

Let P be a polynomial of degree n, let Q be a polynomial or power series, and let m be
a nonnegative integer. If s < m, then [x s

](xn+2 Q(x)+ x P(x))m = 0 = [x s
](x P(x))m .

If m ≤ s ≤ n + m, then 0 ≤ s − m ≤ n and

[x s
](xn+2 Q(x)+ x P(x))m = [x s

](xm(xn+1 Q(x)+ P(x))m)

= [x s−m
](xn+1 Q(x)+ P(x))m

= [x s−m
](Pm(x)+ m Pm−1(x)xn+1 Q(x)+ · · · )

= [x s−m
]Pm(x)

= [x s
](x P(x))m .

We take n = N − m,

P(x) =
N−m+1∑

k=1

x k−1

k
, and Q(x) =

log 1
1−x − x P(x)

x N−m+2
.

Since log(1/(1− x)) =
∑
∞

k=1 x k/k,

[x s
]

(
log

1

1− x

)m

= [x s
]

(
N−m+1∑

k=1

x k

k

)m

, 0 ≤ s,m ≤ N .

Let
[ s

m

]
denote the coefficient of x s in

∏m−1
k=0 (x + k). (These coefficients are known as

unsigned Stirling numbers of the first kind.) Then
[n

0

]
= 0 for n > 0 and

[ s
m

]
= 0 for

m > s. By Graham, Knuth, and Patashnik, Concrete Mathematics (Addison-Wesley,
Boston, 1988), 7.50 and 6.9, we have

[x s
] logm 1

1− x
=

m!

s!

[
s

m

]
,

n∑
m=0

[
n

m

]
= n!.
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The required result now follows:

[x s
]

N∑
m=1

1

m!

(
N−m+1∑

k=1

x k

k

)m

=

N∑
m=1

1

m!
[x s
] logm 1

1− x
=

N∑
m=1

1

s!

[
s

m

]
= 1.

Editorial comment. The editors slipped up and posed the problem twice, having logged
it into the system twice and gotten positive reviews both times, from different review-
ers.

Also solved by G. Apostolopoulis (Greece), R. Bagby, D. Beckwith, R. Chapman (U. K.), R. Cheplyaka, V.
Lucic & L. Pebody, P. P. Dályay (Hungary), E. Ehrenborg, M. Goldenberg & M. Kaplan, O. Kouba (Syria), J. H.
Lindsey II, O. P. Lossers (Netherlands), J. McDonald, P. Perfetti & R. Tauraso (Italy), B. Schmuland (Canada),
J. Simons (U. K.), T. Starbird, A. Stenger, R. Stong, M. Tetiva (Romania), J. Vinuesa (Spain), H. Widmer
(Switzerland), S. Xiao (Canada), S.-J. Yoon (Korea), BSI Problems Group (Germany), Ellington Management
Problem Solving Group, GCHQ Problem Solving Group (U. K.), and the proposer.

Equality of Integrals

11506 [2010, 459]. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY.
Show that for positive integers m and n with m + n < mn, and for positive a and b,

sin
(π

n

) ∫ ∞
x=0

x1/n

x + a

b1/m
− x1/m

b − x
dx = sin

(π
m

) ∫ ∞
x=0

x1/m

x + b

a1/n
− x1/n

a − x
dx .

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. In fact, more generally, we will prove that

sin(απ)
∫
∞

0

xα

x + a

bβ − xβ

b − x
dx = sin(βπ)

∫
∞

0

xβ

x + b

aα − xα

a − x
dx

for every positive a, b, α, and β such that α + β < 1.
Define F by

F(a, α, b, β) =
π

sin(απ)

∫
∞

0

xβ

x + b

aα − xα

a − x
dx .

For positive a, b, α, β such that α + β < 1, the defining integral converges. It remains
to show that F(a, α, b, β) = F(b, β, a, α).

Let I (α) =
∫
∞

0 (tα−1 dt)/(1 + t). Putting t = ex gives I (α) =
∫
∞

−∞
(eαx dx)/(1 +

ex). To compute this integral, we put f (z) = eαz/(1− ez), integrate f counterclock-
wise around the rectangle with vertices ±R ± iπ , and then apply the residue theorem.
The only singularity of f (z) inside the rectangle is at the origin, where the residue is
−1. The integrals along the vertical sides of the rectangle tend to 0 as R→∞ and the
integrals along the horizontal sides sum to −2i sin(απ)

∫ R
−R(e

αx dx)/(1+ ex). Hence
sin(απ)

∫
∞

−∞
(eαx dx)/(1+ ex) = π , or I (α) = π/ sin(απ).

Substituting t/λ for t in this equation, when λ is positive we get

π

sin(απ)
λα =

∫
∞

0

λ

t (λ+ t)
tα dt.

It follows that, for a > 0 and x > 0,

π

sin(απ)
(aα − xα) =

∫
∞

0

(
a

t (a + t)
−

x

t (x + t)

)
tα dt =

∫
∞

0

a − x

(a + t)(x + t)
tα dt.
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That is,

π

sin(απ)

aα − xα

a − x
=

∫
∞

0

tα

(a + t)(x + t)
dt.

Using this in the definition of F , and noting that the integrands are positive, we con-
clude that

F(a, α, b, β) =
∫
∞

x=0

∫
∞

t=0

xβ

x + b
·

tα

a + t
·

1

x + t
dt dx .

Thus, F(a, α, b, β) = F(b, β, a, α).

Editorial comment. Kouba remarked that

F(a, α, b, β) =
π2

a + b

bα+β sin(βπ)+ aα+β sin(απ)− aαbβ sin((α + β)π)

sin(απ) sin(βπ) sin((α + β)π)
.

Also solved by D. Beckwith, K. N. Boyadzhiev, R. Chapman (U. K.), H. Chen, J. A. Grzesik, G. Lamb, V. H.
Moll, R. Stong, GCHQ Problem Solving Group (U. K.), and the proposer.

Apply AM–GM

11514 [2010, 559]. Proposed by Mihaly Bencze, Braşov, Romania. Let k be a positive
integer, and let a1, . . . , an be positive numbers such that

∑n
i=1 ak

i = 1. Show that

n∑
i=1

ai +
1∏n

i=1 ai
≥ n1−1/k

+ nn/k .

Solution by Pál Péter Dályay, Szeged, Hungary. By the AM–GM inequality, we have
1 =

∑n
i=1 ak

i ≥ n(
∏n

i=1 ai )
k/n , so

∏n
i=1 ai ≤ n−n/k . Using the AM–GM inequality

again,

n∑
i=1

ai +
1∏n

i=1 ai
≥ n

(
n∏

i=1

ai

)1/n

+
1∏n

i=1 ai
. (1)

The function f given by f (x) = nx1/n
+ x−1 is differentiable on R+, and f ′(x) =

x1/n−1
− x−2

= x−2(x1+1/n
− 1). Note that f ′(x) < 0 on (0, 1), so f is strictly de-

creasing on (0, 1]. Since 0 <
∏n

i=1 ai ≤ n−n/k
≤ 1, it follows that

n

(
n∏

i=1

ai

)1/n

+
1∏n

i=1 ai
≥ f

(
n−n/k

)
= n1−1/k

+ nn/k . (2)

The required inequality follows from (1) and (2).

Editorial comment. The stated result can be generalized. Five solvers observed that it
is not necessary to restrict k to integer values. The most general result, obtained by
Marian Tetiva (Romania), is that for k > 0,∑n

i=1 ai(∑n
i=1 ak

i

)1/k +

(∑n
i=1 ak

i

)n/k∏n
i=1 ai

≥ n1−1/k
+ nn/k .

Also solved by R. Bagby, P. Bracken, M. Can, R. Chapman (U. K.), R. Cheplyaka & V. Lucic & L. Pebody,
D. Fleischman, M. Goldenberg & M. Kaplan, S. Hazratpour (Iran), E. A. Herman, E. Hysnelaj (Australia) &
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E. Bojaxhiu (Germany), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), P. Perfetti (Italy),
K. Schilling, J. Simons (U. K.), S. Song (Korea), A. Stenger, R. Stong, M. Tetiva (Romania), E. I. Verriest,
H. Widmer (Switzerland), Y. Xu (China), BSI Problems Group (Germany), Ellington Management Problem
Solving Group, GCHQ Problem Solving Group (U. K.), Mathramz Problem Solving Group, and the proposer.

Hidden Telescope

11515 [2010, 559]. Proposed by Estelle L. Basor, American Institute of Mathemat-
ics, Palo Alto, CA, Steven N. Evans, University of California, Berkeley, CA, and Kent
E. Morrison, California Polytechnic State University, San Luis Obispo, CA. Find a
closed-form expression for

∞∑
n=1

4n sin4
(
2−nθ

)
.

Solution by Nicolás Caro, Colombia. Since sin4 x = sin2 x − 1
4 sin2(2x), we have

4n sin4(2−nθ) = 4n sin2(2−nθ) − 4n−1 sin2(2−(n−1)θ). So this is a telescoping series,
with sum equal to

∞∑
n=1

4n sin4(2−nθ) = lim
n→∞

4n sin2(2−nθ)− sin2 θ

= lim
n→∞

[
sin(2−nθ)

2−n

]2

− sin2 θ = θ 2
− sin2 θ.

Editorial comment. Several solvers noted that the finite version of this sum appears
as equation 1.362 in Gradshteyn and Ryzhik, Table of Integrals, Series and Products.
The earliest reference provided (by Giorgio Malisani) was to item 47 on p. 33 of C.-A.
Laisant, Essai sur les fonctions hyperboliques, Gauthier-Villars, 1874.

Also solved by U. Abel (Germany), T. Amdeberhan & V. H. Moll, R. Bagby, D. H. Bailey (U.S.A.) & J. M.
Borwein (Canada), M. Bataille (France), D. Beckwith, M. Benito & Ó. Ciaurri & E. Fernández & L. Roncal
(Spain), E. H. M. Brietzke (Brazil), M. A. Carlton, R. Chapman (U. K.), H. Chen, R. Cheplyaka & V. Lucic
& L. Pebody, P. P. Dályay (Hungary), P. Deiermann, C. Delorme (France), P. J. Fitzsimmons, C. Georghiou
(Greece), M. L. Glasser, M. Goldenberg & M. Kaplan, G. C. Greubel, J. M. Groah, J. W. Hagood, C. C.
Heckman, E. A. Herman, C. Hill, E. Hysnelaj (Australia) & E. Bojaxhiu (Germany), W. P. Johnson, O. Kouba
(Syria), G. Lamb, R. Lampe, W. C. Lang, O. P. Lossers (Netherlands), J. Magliano, G. Malisani (Italy), M.
McMullen, N. Mecholsky & Y.-N. Yoon, B. Mulansky (Germany), S. Mutameni, R. Nandan, M. Omarjee
(France), É. Pité (France), J. Posch, R. C. Rhoades, H. Riesel (Sweden), R. E. Rogers, O. G. Ruehr, B. Schmu-
land (Canada), C. R. & S. Selvaraj, J. Senadheera, B. Sim, R. A. Simón (Chile), J. Simons (U. K.), N. C.
Singer, S. Singh, S. Song (Korea), A. Stenger, I. Sterling, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania),
N. Thornber, D. B. Tyler, E. I. Verriest, J. Vinuesa (Spain), M. Vowe (Switzerland), H. Widmer (Switzerland),
J. B. Zacharias, S. M. Zemyan, BSI Problems Group (Germany), Ellington Management Problem Solving
Group, GCHQ Problem Solving Group (U. K.), Mathramz Problem Solving Group, NSA Problems Group,
and the proposers.

A Third-Derivative Integral Inequality

11517 [2010, 649]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanta, Romania.
Let f be a three-times differentiable real-valued function on [a, b] with f (a) = f (b).
Prove that∣∣∣∣∫ (a+b)/2

a
f (x) dx −

∫ b

(a+b)/2
f (x) dx

∣∣∣∣ ≤ (b − a)4

192
sup

x∈[a,b]
| f ′′′(x)|.

December 2011] PROBLEMS AND SOLUTIONS 943

X
ia
ng
’s
T
ex
m
at
h



Solution by John H. Smith, Boston College, Boston, MA. By simple changes of vari-
ables we may assume that a = −1, b = 1, and f (−1) = f (1) = 0. Since subtract-
ing a multiple of 1 − x2 from f (x) does not affect either side of the inequality,
we may also assume that f (0) = 0. This suggests a comparison with x3

− x , for
which the inequality is equality. Multiplying by a suitable constant, we may as-
sume that supx∈[−1,1] | f

′′′(x)| = 6 and
∫ 0
−1 f (x) dx −

∫ 1
0 f (x) dx > 0. Suppose that∫ 0

−1 f (x) dx −
∫ 1

0 f (x) dx > 1
2 ; we show that this leads to a contradiction by finding

a point h with −1 < h < 1 and f ′′′(h) > 6.
Let g(x) = f (x) − (x3

− x). Then
∫ 0
−1 g(x) dx −

∫ 1
0 g(x) dx > 0, so either there

exists c in (−1, 0) at which g is positive, or c in (0, 1) at which g is negative. We treat
the first case; the second case is quite similar. Note that g(−1) = g(0) = g(1) = 0.

We are given c with −1 < c < 0 and g(c) > 0. Thus, there exist d1, d2, d3 with
−1 < d1 < c < d2 < 0 < d3 < 1 such that g′ is positive at d1, negative at d2, and 0
at d3. Hence there are e1 and e2 with d1 < e1 < d2 < e2 < d3 such that g′′(e1) < 0
and g′′(e2) > 0. We conclude that there exists h such that e1 < h < e2 and g′′′(h) > 0.
Equivalently, f ′′′(h) > 6.

Also solved by O. J. L. Alfonso (Colombia), K. F. Andersen (Canada), G. Apostolopoulos (Greece), R. Bagby,
M. Benito & Ó. Ciaurri & E. Fernandéz & L. Roncal (Spain), P. Bracken, R. Chapman (U. K.), P. P. Dályay
(Hungary), N. Eldredge, M. Goldenberg & M. Kaplan, E. A. Herman, S. Hitotumatu (Japan), O. Kouba (Syria),
E. Kouris (France), J. H. Lindsey II, B. Mulansky (Germany), W. Nuij (Netherlands), M. Omarjee (France), P.
Perfetti (Italy), Á. Plaza (Spain), E. Poffald, K. Saha (India), J. Simons (U. K.), Z.-M. Song & L. Yin (China),
A. Stenger, R. Stong, R. Tauraso (Italy), T. Trif (Romania), Barclays Capital Quantitative Analytics Group,
GCHQ Problem Solving Group (U. K.), Matematicamente.It Forum Community (Italy), Mathramz Problem
Solving Group, and the proposers.

A Zeta Inequality

11518 [2010, 649]. Proposed by Mihaly Bencze, Brasov, Romania. Suppose n ≥ 2 and
let λ1, . . . , λn be positive numbers such that

∑n
k=1 1/λk = 1. Prove that

ζ(λ1)

λ1
+

n∑
k=2

1

λk

ζ(λk)−

k−1∑
j=1

j−λk

 ≥ 1

(n − 1)(n − 1)!
.

Solution by Barclays Capital Quantitative Analytics Group, London, U. K. Let L be
the expression on the left side of the inequality. Since λk > 1, the usual series for the
zeta function converges, so

L =
n∑

k=1

1

λk

∞∑
j=k

j−λk =

n∑
k=1

1

λk

∞∑
j=0

( j + k)−λk .

All of the terms are nonnegative, so we may rearrange them to obtain

L =
∞∑
j=0

n∑
k=1

( j + k)−λk

λk
.

The weighted arithmetic mean–geometric mean inequality gives

n∑
k=1

( j + k)−λk

λk
≥

n∏
k=1

(
( j + k)−λk

)1/λk
=

1∏n
k=1( j + k)

=
j !

( j + n)!
.
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Therefore

L ≥
∞∑
j=0

j !

( j + n)!
=

∞∑
j=0

1

n − 1

(
( j + n) j !

( j + n)!
−
( j + 1) j !

( j + n)!

)

=
1

n − 1

∞∑
j=0

(
j !

( j + n − 1)!
−
( j + 1)!

( j + n)!

)

=
1

n − 1
lim

N→∞

N∑
j=0

(
j !

( j + n − 1)!
−
( j + 1)!

( j + n)!

)

=
1

n − 1
lim

N→∞

(
1

(n − 1)!
−
(N + 1)!

(N + n)!

)
=

1

(n − 1)(n − 1)!
,

as required.

Editorial comment. The GCHQ Problem Solving Group (U. K.) reported empirical
evidence suggesting the stronger inequality

ζ(λ1)

λ1
+

n∑
k=2

1

λk

ζ(λk)−

k−1∑
j=1

j−λk

 >
1

(n − 1)(n − 1)!
+

1

(n + 1)!
.

Also solved by T. Amderberhan & V. De Angelis, R. Bagby, P. P. Dályay (Hungary), R. Stong, GCHQ Problem
Solving Group (U. K.), and the proposer.

Errata and End Notes for 2011.

Several readers noted a gap in the logic of the published solution (2010, 745) to
11384 (2008, 757). This solution relied on the alternating series test, which requires
that the terms’ absolute values eventually tend monotonically to zero. Some informa-
tion about the distribution of primes is therefore required for a solution, contrary to the
claim in the editorial comment.

Peter Nüesch wrote to inform us that problem 11552 (2011, 178) is a special case
of problem 1320 by V. Komecny in Mathematics Magazine (1989, 137).
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong, Walter
Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and Fuzhen
Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before May 31, 2012. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11614. Proposed by Moubinool Omarjee, Lycée Jean-Lurçat, Paris, France. Let α be
a real number with α > 1, and let {un}n∈N be a sequence of positive numbers such that
limn→∞ un = 0 and limn→∞(un − un+1)/uαn exists and is nonzero. Prove that

∑
∞

n=1 un

converges if and only if α < 2.

11615. Proposed by Constantin Mateescu, Zinca Golescu High School, Pitesti, Roma-
nia. Let A, B, and C be the vertices of a triangle, and let K be a point in the plane
distinct from these vertices and the lines connecting them. Let M , N , and P be the
midpoints of BC , C A, and AB, respectively. Let D, E , and F be the intersections of
the lines through M K and N P , N K and P M , and P K and M N , respectively. Prove
that the parallels from D, E , and F to AK , BK , and C K , respectively, are concurrent.

11616. Proposed by Stefano Siboni, University of Trento, Trento, Italy. Let x1, . . . , xn

be distinct points in R3, and let k1, . . . , kn be positive real numbers. A test object at x
is attracted to each of x1, . . . , xn with a force along the line from x to x j of magnitude
k j‖x − x j‖

2, where ‖u‖ denotes the usual euclidean norm of u. Show that when n ≥ 2
there is a unique point x∗ at which the net force on the test object is zero.

11617. Proposed by Greg Oman, University of Colorado at Colorado Springs, Col-
orado Springs, CO. Let C be the ring of continuous functions on R, equipped with
pointwise addition and pointwise multiplication. Let D be the ring of differentiable
functions on R, equipped with the same addition and multiplication. The ring identity
in both cases is the function f1 on R that sends every real number to 1. Is there a
subring E of D, containing f1, that is isomorphic to C? (The ring isomorphism must
carry f1 to f1.)

11618. Proposed by Pál Péter Dályay, Szeged, Hungary. Let a, b, c, and d be real
numbers such that a < c < d < b and b − a = 2(d − c). Let S be the set of twice-
differentiable functions from [a, b] to R with continuous second derivative such that

http://dx.doi.org/10.4169/amer.math.monthly.119.01.068
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f (c) = f (d) = 0 and
∫ b

x=a f (x) dx 6= 0. Let p be a real number with p > 1. Show
that the map φ from S to R given by

φ( f ) =

∫ b
a | f

′′(x)|p dx∣∣∣∫ b
a f (x) dx

∣∣∣p

attains a minimum on S, and find that minimum in terms of p, a, b, c, d .

11619. Proposed by Christopher Hillar, Mathematical Research Sciences Institute,
Berkeley, CA. Given an n × n complex matrix A, its field of values F(A) is given
by

F(A) = {x∗Ax : x∗x = 1} .

(Here, x∗ is the conjugate transpose of x .) Call a matrix A completely invertible if 0
is not an element of F(A). Prove that if A is completely invertible then A−1 is also
completely invertible.

11620. Proposed by Mathew Rogers, Université de Montréal, Montreal, Canada. Let
Hk be the kth Hermite polynomial, given by Hk(x) = (−1)kex2 dk

dxk e−x2
. Suppose

1
1
...

1

 =


1
ρ1+ρ1

1
ρ1+ρ2

· · ·
1

ρ1+ρM
1

ρ2+ρ1

1
ρ2+ρ2

· · ·
1

ρ2+ρM
...

...
. . .

...
1

ρM+ρ1

1
ρM+ρ2

· · ·
1

ρM+ρM




1
ρ1
1
ρ2
...
1
ρM

 ,
where ρ1, . . . , ρM are complex numbers for which

∑M
k=1 1/ρk > 0. Prove that each ρk

is a root of the equation

HM(i x)− i
√

2M HM−1(i x) = 0.

SOLUTIONS

Steiner–Lehmus Theorem

11511 [2010, 558]. Proposed by Retkes Zoltan, Szeged, Hungary. For a triangle ABC ,
let f A denote the distance from A to the intersection of the line bisecting angle B AC
with edge BC , and define fB and fC similarly. Prove that ABC is equilateral if and
only if f A = fB = fC .

Solution by H. T. Tang, Hayward, CA. The “only if” part is clear. The “if” part fol-
lows from the Steiner–Lehmus Theorem: If the bisectors of the base angles of a tri-
angle are equal, then the triangle is isosceles. This problem was proposed in 1840 by
D. C. Lehmus (1780–1863) to Jacob Steiner (1796–1863). For a proof of the Steiner–
Lehmus Theorem, see for example N. Altschiller-Court, College Geometry (Johnson
Pub. Co., Richmond, VA, 1925), p. 72–73; or L. S. Shiveley, An Introduction to Mod-
ern Geometry (Wiley & Sons, New York, 1884), p. 141.

Also solved by R. Bagby, M. Bataille (France), D. Beckwith, P. Budney, M. Can, R. Chapman (U. K.), R.
Cheplyaka & V. Lucic & L. Pebody, J. E. Cooper III, C. Curtis, P. P. Dályay (Hungary), P. De (India), M. J.
Englefield (Australia), D. Fleischman, V. V. Garcı́a (Spain), J. Grivaux (France), E. A. Herman, L. Herot,
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J. W. Kang (Korea), I. E. Leonard (Canada), J. H. Lindsey II, O. P. Lossers (Netherlands), R. E. Prather, J.
Schaer (Canada), J. Simons (U. K.), S. Song (Korea), R. Stong, M. Tetiva (Romania), M. Vowe (Switzerland),
S. V. Witt, Ellington Management Problem Solving Group, Szeged Problem Solving Group “Fejéntaláltuka”
(Hungary), GCHQ Problem Solving Group (U. K.), Mathramz Problem Solving Group, and the proposer.

Special Points on the Sphere

11521 [2010, 550]. Proposed by Marius Cavachi, “Ovidius” University of Constanta,
Constanta, Romania. Let n be a positive integer and let A1, . . . , An , B1, . . . , Bn ,
C1, . . . ,Cn be points on the unit two-dimensional sphere S2. Let d(X, Y ) denote the
geodesic distance on the sphere from X to Y , and let e(X, Y ) be the Euclidean distance
across the chord from X to Y . Show that
(a) There exists P ∈ S2 such that

∑n
i=1 d(P, Ai ) =

∑n
i=1 d(P, Bi ) =

∑n
i=1 d(P,Ci ).

(b) There exists Q ∈ S2 such that
∑n

i=1 e(Q, Ai ) =
∑n

i=1 e(Q, Bi ).
(c) There exist a positive integer n, and points A1, . . . , An ,B1, . . . , Bn , C1, . . . ,Cn on
S2, such that for all R ∈ S2,

∑n
i=1 e(R, Ai ),

∑n
i=1 e(R, Bi ), and

∑n
i=1 e(R,Ci ) are not

all equal. (That is, part (b) cannot be strengthened to read like part (a).)

Solution by Texas State Problem Solving Group, Texas State University, San Marcos,
TX.
(a) If P and Q are any pair of points on S2, then Q lies on a great circle connect-
ing P and its antipode −P , so d(P, Q)+ d(−P, Q) = d(P,−P) = π . Let f (P) =∑n

i=1 d(P, Ai ), g(P) =
∑n

i=1 d(P, Bi ), and h(P) =
∑n

i=1 d(P,Ci ). Note F(P) =
nπ − f (−P), and the analogous equations hold for g and h. Let r(P) = f (P)− g(P)
and s(P) = f (P)− h(P). Now

r(−P) = f (−P)−g(−P) = nπ− f (P)−(nπ−g(P)) = g(P)− f (P) = −r(P).

Similarly, s(P) = −s(P). Thus P → (r(P), s(P)) defines a continuous function
from the sphere S2 into the plane R2. The two-dimensional Borsuk-Ulam theorem says
that for any continuous map from S2 to R2, there exist antipodal points P and −P in
S2 that map to the same value. If (r(P), s(P)) = (r(−P), s(−P)) = −(r(P), s(P)),
then r(P) = s(P) = 0 and f (P) = g(P) = h(P) as required.
(b) For P ∈ S2 we can compute the average distance ēP =

∫
Q∈S2

e(Q, P) dσ
4π over the

sphere from P . The group of isometries of the sphere is transitive, so this average does
not depend on the point P , and we denote it by ē. Now let w(Q) =

∑n
i=1 e(Q, Ai )−∑n

i=1 e(Q, Bi ). Computing w̄ =
∫

Q∈S2
w(Q) dσ

4π term by term yields w̄ = nē − nē =
0. Pick any Q1 ∈ S2 with w(Q1) 6= 0. Without loss of generality, we may assume
w(Q1) > 0. Since w̄ = 0, there must exist some point Q2 ∈ S2 such that w(Q2) < 0.
Now by the Intermediate Value Theorem, any continuous arc joining Q1 and Q2 must
contain a point Q with w(Q) = 0 as required.
(c) Let A1 = A2 = A3 = (0, 0, 1). Let B1 = B2 = B3 = (0, 0,−1). Let C1, C2, C3 be
three points equally spaced on the great circle x3 = 0. If a point Q contradicts the claim
of (c), then

∑3
i=1 e(Q, Ai ) =

∑3
i=1 e(Q, Bi ). Note that Q must lie on the horizontal

great circle (x3 = 0) and we have
∑3

i=1 e(Q, Ai ) =
∑3

i=1 e(Q, Bi ) = 3
√

2. We may
assume without loss of generality that Q lies on the arc of length 2π/3 on the great
circle connecting C1 and C2. Now e(Q,C1) + e(Q,C2) < d(Q,C1) + d(Q,C2) =

2π/3. Also e(Q,C3) ≤ 2, so
∑3

i=1 e(Q,Ci ) < 2π/3+ 2. Since 2π/3+ 2 < 3
√

2, no
point Q exists such that e(Q, Ai ) =

∑3
i=1 e(Q, Bi ) =

∑3
i=1 e(Q,Ci ).

Editorial comment. The result can easily be generalized to collections of points on
Sm for m > 2. We may apply the general Borsuk-Ulam theorem for maps from Sm to
Rm and the method of part (a) to obtain that if Ai, j is a point on the sphere Sm for
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1 ≤ i ≤ n and 1 ≤ j ≤ m + 1, then there is some P ∈ Sm such that the m + 1 sums∑n
i=1 d(P, Ai, j ) are equal. Also, the method of part (b) shows that there exists a point

P ∈ Sm such that
∑n

i=1 e(P, Ai,1) =
∑n

i=1 e(P, Ai,2).
To see that in higher dimensions (b) cannot be strengthened to read like (a), let

Ai,1 = Em+1 and let Ai,2 = −Em+1 for 1 ≤ i ≤ 2m, where Ei is the vector with 1 in
position i and other entries 0. Let Ai,3 = Ei and Am+i,3 = −Ei for 1 ≤ i ≤ m. If P =
(x1, . . . , xn+1) is a point such that

∑n
i=1 e(P, Ai,1) =

∑n
i=1 e(P, Ai,2), then xn+1 = 0

and
∑n

i=1 e(P, Ai,1) = 2m
√

2. However, for each antipodal pair Ei and −Ei , there
exists a great circle of radius 1 containing P , Ei , and−Ei . Now e(P, Ei )+ e(P,−Ei )

has maximum value 2
√

2 on this circle, and this maximum is achieved at the two
points exactly π/2 radians from Ei and−Ei , where xi = 0. Hence,

∑n
i=1 e(P, Ai,3) ≤

2m
√

2, with equality if and only if x1 = x2 = · · · = xn = 0. Since xn+1 = 0 and P ∈
Sm+1, we have xi 6= 0 for some i , and

∑n
i=1 e(P, Ai,3) < 2m

√
2. Hence no point P

yields equal values of
∑n

i=1 e(P, Ai, j ) for 1 ≤ j ≤ 3.

Also solved by R. Chapman (U. K.), M. D. Meyerson, J. Simons (U. K.), R. Stong, Barclays Capital Quantita-
tive Analytics Group (U. K.), and the proposer.

A 4-Volume

11522 [2010, 650]. Proposed by Moubinool Omarjee, Lycée Jean Lurçat, Paris,
France. Let E be the set of all real 4-tuples (a, b, c, d) such that if x, y ∈ R, then
(ax + by)2 + (cx + dy)2 ≤ x2

+ y2. Find the volume of E in R4.

Solution by Richard Bagby, New Mexico State University, Las Cruces, NM. The re-
quired volume is 2π2/3.

The condition on (a, b, c, d) is equivalent to the requirement that the matrix formed
from the coefficients of the quadratic form q given by

q(x, y) = (1− a2
− c2)x2

− 2(ab + cd)xy + (1− b2
− d2)y2

be positive semidefinite. This is equivalent to

(ab + cd)2 ≤ (1− a2
− c2)(1− b2

− d2)

with both of the factors on the right nonnegative. Multiplying this out and simplifying,
we find that E is defined by the inequality,

a2
+ b2
+ c2
+ d2

≤ 1+ (ad − bc)2, (1)

along with the conditions a2
+ c2
≤ 1 and b2

+ d2
≤ 1. We may describe E in terms of

a pair of polar coordinate systems by introducing a = r cos θ , b = r sin θ , c = s cosφ,
d = s sinφ. Now E is parametrized by the conditions r, s ∈ [0, 1] and θ, φ ∈ [−π, π]
with

r 2
+ s2
≤ 1+ r 2s2 sin2(θ − φ),

which implies

0 ≤ r 2
≤

1− s2

1− s2 sin2(θ − φ)
.

Calling E ′ the set of all r, s, θ, φ that satisfy these conditions, the volume of E is given
by the integral
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|E | =
∫

E ′
rs drdsdθdφ =

1

2

∫ 1

0

∫ π

−π

∫ π

−π

1− s2

1− s2 sin2(θ − φ)
s dθdφds

= 4π
∫ 1

0

∫ π/2

0

1− s2

1− s2 sin2 θ
s dθds,

by periodicity and symmetry. Note that 0 < 1− s2
≤ 1− s2 sin2(θ − φ) in the interior

of E ′, so the integrand reflects the bound r ≤ 1. To perform the integration over θ ,
substitute u = s tan θ with s held constant, so that dθ = s du/(s2

+ u2) and sin2 θ =

u2/(s2
+ u2). For 0 < s < 1, this yields∫ π/2

0

1− s2

1− s2 sin2 θ
s dθ =

∫
∞

0

s2(1− s2) du

s2 + (1− s2)u2
=
πs

2

√
1− s2.

Therefore, the required volume is

|E | = 2π2

∫ 1

0
s
√

1− s2 ds =
2

3
π 2.

Also solved by N. Caro (Brazil), R. Chapman (U. K.), W. J. Cowieson, E. A. Herman, O. Kouba (Syria), J. H.
Lindsey II, W. Nuij (Netherlands), P. Perfetti (Italy), J. Simons (U. K.), W. Song, R. Stong, M. Wildon (U. K.),
L. Zhou, Barclays Capital Quantitative Analytics Group (U. K.), and the proposer.

The Short Vector Problem

11524 [2010, 741]. Proposed by H. A. ShahAli, Tehran, Iran. A vector v in Rn is short
if ‖v‖ ≤ 1.
(a) Given six short vectors in R2 that sum to zero, show that some three of them have
a short sum.
(b)∗ Let f (n) be the least M such that, for any finite set T of short vectors in Rn that
sum to 0, and any integer k with 1 ≤ k ≤ |T |, there is a k-element subset S of T such
that ‖

∑
v∈S v‖ ≤ M . The result of part (a) suggests f (2) = 1. Find f (n) for n ≥ 2.

Solution by the proposer. We need a preliminary result.
Lemma. Given a collection of two or more short vectors in R2 that sum to zero, some
two of them have a short sum.

Proof. If one of the vectors is zero, then together with any other we have a short sum
and are done. Now assume we have m vectors, all nonzero. We show that the angle θ
between some two of them is at least 2π/3, so the cosine of their angle is at most−1/2
and their sum is short. If the two vectors are u and w, with ‖u‖ ≤ ‖w‖, then

‖u + w‖2
= ‖u‖2

+ ‖w‖2
+ 2 cos θ‖u‖‖w‖ ≤ ‖u‖2

+ ‖w‖2
− ‖u‖‖w‖

= ‖w‖2
+ ‖u‖

(
‖u‖ − ‖w‖

)
≤ ‖w‖2

≤ 1.

Write v1, . . . , vm for the given vectors, with numbering to be determined. We may
rotate coordinates so that one of the vectors, v1, lies on the positive x-axis; let each
vector v j make angle θ j with the positive x-axis. Thus 0 ≤ θ j < 2π , with θ1 = 0. If
all vectors lie on the x-axis, then (since their sum is 0) one of them (say v2) lies on the
negative x-axis, so v1 + v2 is short, and we are done. Now assume not all the vectors
are on the x-axis. Because the sum is 0, at least one vector is in the upper half plane.
Among these, let v2 be one with the largest angle. Thus 0 < θ2 < π . If θ2 ≥ 2π/3,
then v1 + v2 is short and we are done, so we may assume 0 < θ2 < 2π/3.
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The sum of all the vectors is zero, and one of them, v1, is on one side of the line
through 0 and v2, so another of them, say v3, is on the other side of that line, hence
θ2 < θ3 < θ2 + π . Now θ2 < θ3 < π is ruled out by the maximal choice for θ2. If
2π/3 ≤ θ3 ≤ 4π/3, then v1 + v3 is short and we are done. Thus we have θ3 > 4π/3,
so θ3 − θ2 < π and θ3 − θ2 > 4π/3− 2π/3 = 2π/3, and so v2 + v3 is short.
(a). If one of the vectors is 0, then apply the Lemma to the remaining vectors to get
two with short sum; with the zero vector we then have three with short sum. Now as-
sume the given vectors are all nonzero. We write v1, . . . , v6 for the given vectors, with
numbering to be determined. Apply the Lemma to {v1, . . . , v6} to conclude that some
two have short sum, say v1 and v2. Now apply the Lemma to {v1 + v2, v3, v4, v5, v6}

to conclude that some two have short sum. If v1 + v2 + v j is short for some j with
3 ≤ j ≤ 6, we are done. Therefore, we may assume some two from {v3, . . . , v6} have
short sum, say v3 and v4. Now apply the Lemma to {v1 + v2, v3 + v4, v5, v6} to con-
clude that some two have short sum. If that choice of two is one of v1 + v2, v3 + v4

and one of v5, v6, then we are done. If v1 + v2 + v3 + v4 is short, then so is v5 + v6.
So we may assume v5 + v6 is short.

Now among the three short vectors u12, u34, and u56 given by u12 = v1 + v2, u34 =

v3 + v4, and u56 = v5 + v6, there are two such that the angle θ between them satisfies
θ ≤ 2π/3, since the entire circle has circumference 2π . We consider two cases: First
assume θ > π/3. We rotate again to put the u jk’s into the x-y plane, and, taking θ jk

to be the signed angle of u jk with the positive x-axis,where −π ≤ θ jk < π , we spin
them so that θ12 = −θ/2 and θ34 = θ/2. The sum is 0, and u12 and u34 are both in the
right half-plane, while u56 is in the left half-plane. Thus at least one of v5 and v6 is in
the left half-plane. Say v5 is in the left half-plane. If v5 is in the upper half-plane, then
the angle between u12 and v5 is greater than 2π − θ/2− π , which is more than 2π/3,
and hence u12 + v5 is short. Similarly, if v5 is in the lower half-plane, then u34 + v5 is
short.

The other case is θ ≤ π/3, so in particular θ < π/2 and the dot product u12 · u34 is
positive. Compute

‖v5 + u12‖
2
+ ‖v5 + u34‖

2
+ ‖v6 + u12‖

2
+ ‖v6 + u34‖

2

= 2
(
‖v5‖

2
+ ‖v6‖

2
+ ‖u12‖

2
+ ‖u34‖

2
+ (v5 + v6) · (u12 + u34)

)
= 2

(
‖v5‖

2
+ ‖v6‖

2
+ ‖u12‖

2
+ ‖u34‖

2
+ u56 · (u12 + u34)

)
= 2

(
‖v5‖

2
+ ‖v6‖

2
+ ‖u12‖

2
+ ‖u34‖

2
− (u12 + u34) · (u12 + u34)

)
= 2

(
‖v5‖

2
+ ‖v6‖

2
− 2 u12 · u34

)
≤ 4.

Therefore at least one vector in {v5 + u12, v5 + u34, v6 + u12, v6 + u34} is short.

Editorial comment. The other solution for (a) also involves taking cases. No solution

for (b) was received. The proposer conjectures that f (n) =
√

2− 2
max{2,n} , which is

achieved when k = 2 and the vectors are the vertices of the regular simplex centered
at the origin.

Part (a) also solved by Barclays Capital Quantitative Analytics Group (U. K.).

Plane Geometric Arrangements

11525 [2010, 741]. Proposed by Grigory Galperin, Eastern Illinois University,
Charleston, IL, and Yury Ionin, Central Michigan University, Mount Pleasant, MI.
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(a) Prove that for each n ≥ 3 there is a set of regular n-gons in the plane such that
every line contains a side of exactly one polygon from this set.
(b) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly one circle from the set?
(c) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly two circles from the set?
(d) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly three circles from the set?

Composite Solution by Jim Simons, Cheltenham, U. K., and Barclays Capital Quanti-
tative Analytics Group, London, U. K.
(a) For odd n, consider any regular n-gon W . Choose a direction d that is not paral-
lel to any side of W , and consider the set of all translations of W in the direction d .
Clearly, if a line l is parallel to a side of W , then it is a side of exactly one of these
n-gons.

Now take the n-gons described above and rotate each of them clockwise about the
origin by all possible angles in the range [0, 2π

n ). Every line l can be made parallel to
a side of W by rotating it counterclockwise around the origin by exactly one angle in
this range. Thus, every line is the side of exactly one of these n-gons.

For even n, the construction above does not quite work. Since opposite sides of
W are parallel, the construction above would produce a set of polygons with every
line containing a side of two of them. We modify the construction by choosing the
direction d more carefully and allowing only certain translates. Suppose the initial
polygon has width w between two parallel sides and the direction d makes an angle
α with these sides. The two polygons that differ by a translation in the d direction
through a distance w cscα have sides that lie on the same line. Suppose we choose a
set X ⊂ R of translation amounts such that for all x exactly one of {x, x +w cscα} is
in X . Every line parallel to this pair of sides will contain a side of exactly one translate,
as required.

Let m = n/2. The m pairs of parallel sides all have the same width w and make
angles of α + 2πk/n with d, where 0 ≤ k ≤ m − 1. Thus we need only show that
there is a subset X ⊂ R such that for every x and every k exactly one of {x, x +
w csc(α + 2πk/n)} lies in X . For 0 ≤ k ≤ m − 1, let Dk = w csc(α + 2πk/n). If
these Dk are linearly dependent over Q, then there are integers rk , not all zero, such
that

∑m−1
k=0 rk csc(α + 2πk/n) = 0. The left side of this equation written in terms of

complex exponentials is a rational function of eiα. If rk 6= 0, then this rational function
has a pole at eiα

= e−2π ik/n and hence is non-trivial. Hence the equation has only
finitely many solutions. Thus there are only countably many α for which the Dk are
linearly dependent over Q.

Choose the direction d so that the distances Dk are linearly independent over Q.
Choose a Hamel basis of R containing these distances, and for a ∈ R let pk(a) be the
coefficient of Dk in the expansion of a in this basis. Now one can take

X =

{
a :

m−1∑
k=0

bpk(a)c ≡ 0 (mod 2)

}
as the set of translations. This set has the required property.
(b) There is no such set of circles. If two circles are not nested, then there is a line
tangent to both. Therefore in any such set the circles would have to be nested, to-
tally ordered by radius. The intersection of the compact circular discs defined by these
circles would be a non-empty closed set F and any line intersecting F would not be
tangent to any of the circles.
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(c, d). Using the Axiom of Choice, we will show that for any k > 1, there is a set of
circles in the plane such that every line in the plane is tangent to exactly k circles from
the set.

Let c be the cardinality of the real numbers, and let ωc be the first ordinal of this
cardinality. There are c lines in the plane, so they can be indexed as {lα : α < ωc}.
Using transfinite induction, we construct the set C of circles and simultaneously the
set L of lines in the plane tangent to precisely k of the circles in C . Initially C and L
are empty. Throughout the induction we will have no line in the plane tangent to more
than k of the circles in C , and |C | < c. Note that for each pair of circles there are at
most 4 lines tangent to both of them, and therefore |L| ≤ 4

∣∣(C
2

)∣∣ < c.
For the inductive step, let α be the smallest ordinal for which lα /∈ L . At any given

point of lα there are c circles tangent to lα, but fewer than c of these are already in
C or are tangent to a line in L . Hence we can choose a circle, not already in C , that
is tangent to lα, and whose addition does not produce a line tangent to more than k
circles. Repeating this construction at most k times, we shall be adding lα to L . At the
point when we are up to step α in the induction, we have |C | ≤ k|α| < c as required
for the induction step. The construction ends when we reach ordinal ωc, and at this
point L is all lines in the plane.

Editorial comment. The proposers showed that (c) holds without requiring the Axiom
of Choice. Simply take the set to consist of all circles whose radius is an odd integer
and whose center is on the unit circle.

We did not count a single point as a degenerate polygon or circle.

Also solved by GCHQ Problem Solving Group (U. K.)(part b), and the proposers (parts a–c).

Expanders Increase Dimension

11526 [2010, 742]. Proposed by Marius Cavachi, “Ovidius” University of Constanta,
Constanta, Romania. Prove that there is no function f from R3 to R2 with the property
that ‖ f (x)− f (y)‖ ≥ ‖x − y‖ for all x, y ∈ R3.

Solution by Ralph Howard, University of South Carolina, Columbia, SC. When (X, d)
is a metric space and k ∈ (0,∞), write Hk

(X,d) for the k-dimensional Hausdorff outer
measure defined on the subsets of X . The Hausdorff dimension of (X, d) is

dimH(X, d) = inf{k ∈ (0,∞) : Hk
(X,d)(X) = 0}.

Recall that, with the usual metric, dimH(Rn) = n.
If (X, dX ) and (Y, dY ) are metric spaces, call a map f : X → Y an expanding map if

dY ( f (x1), f (x2)) ≥ dX (x1, x2) for all x1, x2 ∈ X . Such a map need not be continuous,
but it is clearly injective. It suffices to prove the following: if there is an expanding
map from (X, dX ) to (Y, dY ), then dimH(X, dX ) ≤ dimH(Y, dY ).

Let f : X → Y be an expanding map. The image f [X ] is a subset of Y , so
dimH( f [X ]) ≤ dimH(Y ). Without loss of generality, we may replace Y by f [X ]
and assume that f is surjective and thus bijective. Now f has an inverse g : Y → X .
As f is an expanding map, g is a contraction; that is, dX (g(y1), g(y2)) ≤ dY (y1, y2)

for all y1, y2 ∈ Y . For k > 0 and S ⊆ Y , it follows directly from the definition of the
Hausdorff outer measures that Hk

(X,dX )
(g[S]) ≤ Hk

(Y,dY )
(S). Thus, since g is surjective,

we have dimH(X, dX ) ≤ dimH(Y, dY ).

Also solved by N. Eldredge, O. Geupel (Germany), J. Grivaux (France), E. A. Herman, O. P. Lossers (Nether-
lands), K. Schilling, J. Simons (U. K.), R. Stong, Barclays Capital Quantitative Analytics Group (U. K.), and
the proposer.
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PROBLEMS

11621. Proposed by Z. K. Silagadze, Budker Institute of Nuclear Physics and Novosi-
birsk State University, Novosibirsk, Russia. Find∫

∞

s1=−∞

∫ s1

s2=−∞

∫ s2

s3=−∞

∫ s3

s4=−∞

cos(s2
1 − s2

2) cos(s2
3 − s2

4) ds4 ds3 ds2 ds1.

11622. Proposed by Oleh Faynshteyn, Leipzig, Germany. In triangle ABC , let A1,
B1, C1 be the points opposite A, B, C at which symmedians of the triangle meet the
opposite sides. Prove that

ma(c cosα1 − b cosα2)+ mb(a cosβ1 − c cosβ2)+ mc(b cos γ1 − a cos γ2) = 0,

ma(sinα1 − sinα2)+ mb(sinβ1 − sinβ2)+ mc(sin γ1 − sin γ2) = 0, and

ma(cosα1 + cosα2)+ mb(cosβ1 + cosβ2)+ mc(cos γ1 + cos γ2) = 3s,

where a, b, c are the lengths of the sides, ma , mb, mc are the lengths of the medians, s
is the semiperimeter, α1 = ∠C AA1, α2 = ∠A1 AB, and similarly with the β j and γ j .

11623. Proposed by Aruna Gabhe, Pendharkar’s College, Dombivali, India, and M.
N. Deshpande, Nagpur, India. A fair coin is tossed n times and the results recorded
as a bit string. A run is a maximal subsequence of (possibly just one) identical tosses.
Let the random variable Xn be the number of runs in the bit string not immediately
followed by a longer run. (For instance, with bit string 1001101110, there are six runs,
of lengths 1, 2, 2, 1, 3, and 1. Of these, the 2nd, 3rd, 5th, and 6th are not followed by
a longer run, so X10 = 4.) Find E(Xn).

11624. Proposed by David Callan, University of Wisconsin, Madison, WI, and Emeric
Deutsch, Polytechnic Institute of NYU, Brooklyn, NY. A Dyck n-path is a lattice path of

http://dx.doi.org/10.4169/amer.math.monthly.119.02.161
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n upsteps U (changing by (1, 1)) and n downsteps D (changing by (1,−1)) that starts
at the origin and never goes below the x-axis. A peak is an occurrence of U D and the
peak height is the y-coordinate of the vertex between its U and D.

The peak heights multiset of a Dyck path is the set of peak heights for that Dyck
path, with multiplicity. For instance, the peak heights multiset of the Dyck 3-path
UU DU DD is {2, 2}. In terms of n, how many different multisets occur as the peak
heights multiset of a Dyck n-path?

11625. Proposed by Lane Bloome, Peter Johnson, and Nathan Saritzky (students)
Auburn University Research Experience for Undergraduates in Algebra and Discrete
Mathematics 2011. Let V (G), E(G), and χ(G) denote respectively the vertex set,
edge set, and chromatic number of a simple graph G. For each positive integer n, let
g(n) and h(n) respectively denote the maximum and the minimum of χ(G)+ χ(H)−
χ(G ∪ H) over all pairs of simple graphs G and H with |V (G) ∪ V (H)| ≤ n and
E(G) ∩ E(H) = ∅. Find g(n) and limn→∞

h(n)
n .

11626. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. Let x1, x2,
and x3 be positive numbers such that x1 + x2 + x3 = x1x2x3. Treating indices modulo
3, prove that

3∑
1

1√
x2

k + 1
≤

3∑
1

1

x2
k + 1

+

3∑
1

1√
(x2

k + 1)(x2
k+1 + 1)

≤
3

2
.

11627. Proposed by Samuel Alexander, The Ohio State University, Columbus, Ohio.
Let N be the set of nonnegative integers. Let M be the set of all functions from N
to N. For a function f0 from an interval [0,m] in N to N, say that f extends f0 if
f (n) = f0(n) for 0 ≤ k ≤ m. Let F( f0) be the set of all extensions in M of f0, and
equip M with the topology in which the open sets of M are unions of sets of the form
F( f0). Thus, { f ∈ M : f (0) = 7 and f (1) = 11} is an open set.

Let S be a proper subset of M that can be expressed both as
⋃

i∈N
⋂

j∈N X i, j and as⋂
i∈N
⋃

j∈N Yi, j , where each set X i, j or Yi, j is a subset of M that is both closed and open
(clopen). Show that there is a family Z i, j of clopen sets such that S =

⋃
i∈N
⋂

j∈N Z i, j

and S =
⋂

i∈N
⋃

j∈N Z i, j .

SOLUTIONS

Eigenvalues of Sums and Differences of Idempotent Matrices

11466 [2009, 845]. Proposed by Tian Yongge, Central University of Finance and
Economics, Beijing, China. For a real symmetric n × n matrix A, let r(A), i+(A),
and i−(A) denote the rank, the number of positive eigenvalues, and the number of
negative eigenvalues of A, respectively. Let s(A) = i+(A) − i−(A). Show that if P
and Q are symmetric n × n matrices, P2

= P , and Q2
= Q, then i+(P − Q) =

r(P + Q)− r(Q), i−(P − Q) = r(P + Q)− r(P), and s(P − Q) = r(P)− r(Q).

Solution by Oskar Maria Baksalary, Adam Mickiewicz University, Poznań, Poland, and
Götz Trenkler, Dortmund University of Technology, Dortmund, Germany. We solve
the more general problem in which idempotent P and Q are Hermitian with complex
entries. We view them as n × n complex orthogonal projectors.

The solution is based on a joint decomposition of the projectors P and Q. Let P
have rank ρ, where 0 < ρ ≤ n. By the Spectral Theorem, there is an n × n unitary
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matrix U such that

P = U

(
Iρ 0
0 0

)
U ∗,

where Iρ is the identity matrix of order ρ and U ∗ denotes the conjugate transpose of
U . We use this expression for P to partition the projector Q. Using the same matrix
U , we write

Q = U

(
A B
B∗ D

)
U ∗,

where A and D are Hermitian matrices of orders ρ and n − ρ, respectively. Let Ā =
Iρ − A. Since Q2

= Q, we have Ā = Ā2
+ B B∗ = Ā Ā∗ + B B∗. Since Ā Ā∗ and B B∗

are both nonnegative definite, Ā is also nonnegative definite. With R(·) denoting the
column space of a matrix argument, we obtain

R( Ā) = R( Ā Ā∗ + B B∗) = R( Ā Ā∗ +R(B B∗) = R( Ā)+R(B),

and hence R(B) ⊆ R( Ā). Other relationships among A, B, and D are found in Lem-
mas 1–5 of [1]; we use two of these. The first expresses the orthogonal projector PD

onto the column space of D as PD = D + B∗ Ā B, where Ā is the Moore–Penrose
inverse of Ā. The second expresses the rank of Ā as r( Ā) = ρ − r(A) + r(B). Fur-
thermore, Theorem 1 of [1] gives r(Q) = r(A)− r(B)+ r(D), and Lemma 6 of [1]
gives r(P + Q) = ρ + r(D). Taking differences of these expressions yields r(P +
Q)− r(Q) = ρ − r(A)+ r(B) and r(P + Q)− r(P) = r(D). Since the third of the
desired equations is just the difference of the first two, it suffices to show that P − Q
has r( Ā) positive eigenvalues and r(D) negative eigenvalues.

Theorem 5 in [1] expresses P − Q as

P − Q = U

(
Ā −B
−B∗ −D

)
U ∗,

which can be rewritten as

P − Q = U

(
Iρ 0
−B∗ Ā In−ρ

)(
Ā 0
0 −PD

)(
Iρ − Ā B
0 In−ρ

)
U ∗.

The matrices before and after the central matrix in the product on the right are nonsin-
gular and are conjugate transposes of each other. By Sylvester’s Law of Inertia (see [2,
Section 1.3]), the numbers of positive and negative eigenvalues are unchanged by con-
jugation. Since Ā and PD are nonnegative definite (the eigenvalues of an idempotent
matrix lie in the interval [0, 1]), we conclude that P − Q has r( Ā) positive eigenvalues
and r(D) negative eigenvalues, as desired.

[1] O. M. Baksalary and G. Trenkler, Eigenvalues of functions of orthogonal projec-
tors, Linear Alg. Appl. 431 (2009) 2172–2186.

[2] R. A. Horn, F. Zhang, Basic properties of the Schur complement, in The Schur
Complement and its Applications, edited by F. Zhang, Springer Verlag, New York,
2005, 17–46.

Also solved by R. Chapman (U. K.), E. A. Herman, O. Kouba (Syria), J. H. Lindsey II, K. Schilling, J. Simons
(U. K.), R. Stong, Z. Vörös (Hungary), S. Xiao (Canada), GCHQ Problem Solving Group (U. K.), and the
proposer.
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A Hankel Determinant Limit

11471 [2009, 941]. Proposed by Finbarr Holland, University College Cork, Cork,
Ireland. Let A be an r × r matrix with distinct eigenvalues λ1, . . . , λr . For n ≥ 0,
let a(n) be the trace of An . Let H(n) be the r × r Hankel matrix with (i, j) entry
a(i + j + n − 2). Show that

lim
n→∞
|det H(n)|1/n

=

r∏
k=1

|λk |.

Solution by Jim Simons, Cheltenham, U. K. The eigenvalues of An are λn
1, . . . , λ

n
r ,

so a(n) =
∑r

k=1 λ
n
k . Therefore, H(n)i, j =

∑r
k=1 λ

n+i+ j−2
k . It is well known that the

Vandermonde matrix V , given by Vi, j = λ
j−1
i for i, j ∈ {1, . . . , n}, has determinant∏

j<i (λi − λ j ). Multiplying row i of V by λn
i yields a matrix V (n) in which V (n)i, j =

λ
n+ j−1
i , having determinant (

∏r
k=1 λk)

n
∏

j<i (λi − λ j ). With V ′ denoting the transpose
of V ,

(V ′V (n))i, j =

r∑
k=1

λi−1
k λ

n+ j−1
k =

r∑
k=1

λ
n+i+ j−2
k = H(n)i, j .

Therefore,

det H(n) = det(V ′V (n)) =
( r∏

k=1

λk

)n ∏
j<i

(λi − λ j )
2.

The second factor is constant, so its nth root tends to 1.

Editorial comment. Simons observed that the computation of det H(n) is valid over
any field.

Also solved by R. Chapman (U. K.), M. Goldenberg & M. Kaplan, J.-P. Grivaux (France), E. A. Herman,
O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Stong, E. I. Verriest, GCHQ Problem
Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

Pretty Boxes All in a Row

11477 [2010, 86]. Proposed by Antonio González, Universidad de Sevilla, Seville,
Spain, and José Heber Nieto, Univesidad del Zulia, Maracaibo, Venezuela. Several
boxes sit in a row, numbered from 0 on the left to n on the right. A frog hops from
box to box, starting at time 0 in box 0. If at time t , the frog is in box k, it hops one
box to the left with probability k/n and one box to the right with probability 1− k/n.
Let pt(k) be the probability that the frog launches its (t + 1)th hop from box k. Find
limi→∞ p2i (k) and limi→∞ p2i+1(k).

Solution by Robin Chapman, University of Exeter, Exeter, U. K. We show that
limi→∞ p2i (k) is

(n
k

)
/2n−1 when k is even and 0 when k is odd. Also, limi→∞ p2i+1 is(n

k

)
/2n−1 when k is odd and 0 when k is even.
In standard language, we have a Markov chain with states 0, . . . , n and transition

probabilities pk,k−1 = k/n and pk,k+1 = 1 − k/n (all others equal 0). This Markov
chain is periodic with period 2, since the state switches parity on each move. Thus
p j (k) = 0 when j and k have opposite parity.

Taking two hops at once converts the Markov chain into two others, one on the odd
states and one on the even states. Each is ergodic and thus has a unique stationary
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distribution. (For a chain to be ergodic it suffices that one can reach any state from any
other and that it is possible to remain in the current state at any step.) The stationary
distributions by definition are the limits to be computed, so the limits exist.

Let ak = limi→∞ p2i (k) for even k and ak = limi→∞ p2i−1(k) for odd k. In order for
these to form stationary distributions, we must have

∑n
k=0 ak = 2 and

ak =
n − k + 1

n
ak−1 +

k + 1

n
ak+1

for 0 ≤ k ≤ n (with a−1 = an+1 = 0). These linear equations determine the n + 1 val-
ues {ak}

n
k=0. Therefore, it suffices to check that setting ak =

(n
k

)
2n−1 for all k satisfies

the equations.

Editorial comment. Stephen J. Herschkorn wrote “The problem begs the question as to
why, from a probabilistic point of view, the binomial should be the stationary distribu-
tion for this simple random walk.” Herschkorn communicated the following intuition
from Sheldon Ross: Flip n fair coins; the number of heads has a binomial distribution.
Pick a random coin and turn it over. The new number of heads arises from the old by
the same transition probability as in the random-walk model, but the new number of
heads still has the binomial distribution, because each coin still has probability 1/2 of
being heads.

Daniel M. Rosenblum noted a similarity to Problem 11032 (2003, 637), in which
the frog’s probabilities of jumping to the right and left are reversed, yielding the same
Markov chain as the Ehrenfest urn model (see, for example, Sections 4 and 5 of M.
Kac, Random Walk and the Theory of Brownian Motion, Amer. Math. Monthly 54
(1947) 269–391.)

Some solvers used generating functions. It is also possible to avoid mentioning the
theorem on stationary distributions and instead prove that the limits exist by direct
methods particular to the problem.

Also solved by A. Agnew, M. Andreoli, D. Beckwith, K. David & P. Fricano, D. Fleischman, O. Geupel
(Germany), C. González-alcón & Á. Plaza (Spain), S. J. Herschkorn, O. Kouba (Syria), J. H. Lindsey II,
O. P. Lossers (Netherlands), D. M. Rosenblum, R. K. Schwartz, J. Simons (U. K.), N. C. Singer, R. Stong,
R. Tauraso (Italy), M. Tetiva (Romania), GCHQ Problem Solving Group (U. K.), NSA Problems Group, Skid-
more College Problem Group, and the proposer.

Separating the Degrees of Polynomials

11478 [2010, 87]. Proposed by Marius Cavachi, “Ovidius” University of Constanta,
Constanta, Romania. Let K be a field of characteristic 0, and let f and g be relatively
prime polynomials in K [x] with deg(g) < deg( f ). Suppose that for infinitely many λ
in K there is a sublist of the roots of f + λg (counting multiplicity) that sums to 0.
Show that deg(g) < deg( f )− 1 and that the sum of all the roots of f (again counting
multiplicity) is 0.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. For
a monic polynomial p of degree n with roots α1, . . . , αn (taken with multiplicity) the
product Qk defined by

Qk =

∏
1≤i1<i2<···<ik≤n

(αi1 + · · · + αik )

is a symmetric function in the roots of p. Hence Qk is given by a universal polynomial
in the coefficients of p. When p is a constant multiple of f + λg (choosing the constant
to make p monic), Qk is a polynomial in λ. By hypothesis, there are infinitely many
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values of λ such that
∏n

k=1 Qk vanishes. Hence one of these polynomials, say Q j , is
the 0 polynomial. Thus Q j vanishes for all λ, and the desired sublist exists for all λ.

The same conclusion holds even when we replace K by a larger field, specifically
the field K (t) of rational functions in a new indeterminate t . By Gauss’s Lemma,
if the polynomial f (x) + tg(x) is reducible over K (t), then it is reducible over the
polynomial ring K [t]. However, since it is linear in t , one of the factors would be in-
dependent of t and would give a common factor of f and g. Thus f (x)+ tg(x) is ir-
reducible over K (t). Hence its Galois group G acts transitively on the roots α1, . . . , αn

of f (x)+ tg(x). Suppose without loss of generality that α1 + · · · + αk = 0. Now

0 =
∑
φ∈G

φ(α1 + · · · + αk) =
|G|k

n
(α1 + · · · + αn).

Thus α1 + · · · + αn = 0, and hence the coefficient of xn−1 in f + tg vanishes. Now
deg(g) ≤ n − 2, and the sum of the roots of f vanishes as desired.

Also solved by R. Chapman (U. K.), O. P. Lossers (Netherlands), and the proposer.

Orthogonality of Matrices under Additivity of Traces of Powers

11483 [2010, 182]. Proposed by Éric Pité, Paris, France. Let A and B be real n × n
symmetric matrices such that tr (A + B)k = tr Ak

+ tr Bk for every nonzero integer k.
Show that AB = 0.

Composite solution by the editors. We prove the stronger statement that if A and B
are n × n Hermitian matrices such that tr (A + B)k = tr Ak

+ tr Bk for every integer k
such that 1 ≤ k ≤ 3n, then AB = 0.

We show first that if the sums of the kth powers of two lists of complex numbers,
of length l and m respectively, are equal for 1 ≤ k ≤ l + m, then the lists are the same
(up to order of the entries). To see this, let the first list have distinct entries α1, . . . , αr

with multiplicities a1, . . . , ar , and let the second list have distinct entries β1, . . . , βs

with multiplicities b1, . . . , bs . The hypothesis is now that
∑r

i=1 aiα
k
i −

∑s
j=1 b jβ

k
j = 0

for 1 ≤ k ≤
∑

ai +
∑

b j = l + m. Since the Vandermonde matrix is invertible, the
hypothesis requires the lists to have the same entries.

This immediately yields the following: If S1, S2, and S3 are three lists of complex
numbers, and the sum of the kth powers of the entries in S1 and S2 equals the sum of
the kth powers of the entries in S3 whenever k is at most the sum of the lengths of the
three lists, then the entries of the concatenation of S1 and S2 are the same as the entries
in S3.

Now let A and B be Hermitian matrices, and let C = A + B. Let the lists of
nonzero eigenvalues of these matrices be {αi }

r
i=1, {βi }

s
i=1, and {γi }

t
i=1, respectively.

The condition tr (A + B)k = tr Ak
+ tr Bk is the same as

∑t
i=1 γ

k
i =

∑r
i=1 α

k
i +∑s

i=1 β
k
i , imposed for 1 ≤ k ≤ 3n. Hence, the nonzero eigenvalues of C are ex-

actly the nonzero eigenvalues of A and B, including multiplicities. Consequently,
rank (C) = rank (A)+ rank (B). On the other hand, the images satisfy Im(A + B) ⊆
Im(A)+ Im(B). Thus, Im(A + B) = Im(A)+ Im(B). Let V = Im(A + B). Viewed
as a linear transformation on V , C is invertible.

Finally, we argue that AB = 0. By spectral factorization, since A and B are Her-
mitian, there are orthonormal vectors {ui }

r
i=1 for A and {vi }

s
i=1 for B such that A =∑r

i=1 αi ui u∗i and B =
∑s

j=1 β jv jv
∗

j . Moreover, the space V is spanned by {ui }
r
i=1 and

{vi }
s
i=1. Since r + s = dim V , it follows that {ui }

r
i=1 ∪ {vi }

s
i=1 is a linearly independent
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set and forms a basis for V . It follows that

(A + B)ui = αi ui +

s∑
j=1

β jv j (v
∗

j ui ) for 1 ≤ i ≤ r

and

(A + B)v j =

r∑
i=1

αi ui (u
∗

i v j )+ β jv j for 1 ≤ j ≤ s.

Under the basis {u1, . . . , ur , v1, . . . , vs}, the matrix representation of A + B is(
Dα DαE∗

DβE Dβ

)
=

(
Dα 0
0 Dβ

)(
I E

E∗ I

)
, (1)

where Dα = diag(α1, . . . , αr ), Dβ = diag(β1, . . . , βs), and Ei, j = u∗i v j .
Since the nonzero eigenvalues of A+ B are {αi }

r
i=1 and {βi }

s
i=1, the determinants of

both sides of (1) equal
∏r

i=1 αi
∏s

i=1 βi . This yields det
( I

E∗
E
I

)
= 1. Also,

( I
E∗

E
I

)
is just

the Gram matrix of u1, . . . , ur , v1, . . . , vs . By the Hadamard determinant inequality,
E = 0; that is, u∗i v j = 0 for all i and j . It follows that

AB =
( r∑

i=1

αi ui u
∗

i

)( s∑
j=1

β jv jv
∗

j

)
=

r∑
i=1

s∑
j=1

αiβ j ui (u
∗

i v j )v
∗

j = 0.

Editorial comment. It would be nice to extend the result to normal matrices. The prob-
lem is that C = A + B is not normal when A and B are normal. Thus the rank of C is
not necessarily the same as the number of nonzero eigenvalues of C . Other than this,
everything works for normal matrices.

One may wonder whether the condition “k ≤ 3n” be replaced with “k ≤ n”. This
fails at least when n = 1, since tr (A + B) = tr A + tr B for all numbers A and B, but
AB 6= 0.

Also solved by J. Simons (U. K.), R. Stong, and the proposer.

Friendly Paths

11484 [2010, 182]. Proposed by Giedrius Alkauskas, Vilnius University, Vilnius,
Lithuania. An uphill lattice path is the union of a (doubly infinite) sequence of di-
rected line segments in R2, each connecting an integer pair (a, b) to an adjacent pair,
either (a, b + 1) or (a + 1, b). A downhill lattice path is defined similarly, but with
b − 1 in place of b + 1, and a monotone lattice is an uphill or downhill lattice path.
Given a finite set P of points in Z2, a friendly path is a monotone lattice path for which
there are as many points in P on one side of the path as on the other. (Points that lie
on the path do not count.)
(a) Show that if N = a2

+ b2
+ a + b for some positive integer pair (a, b) satisfying

a ≤ b ≤ a +
√

2a, then for some set of N points there is no friendly path.
(b)* Is it true that for every odd-sized set of points there is a friendly path?

Solution to (a) by the proposer. Let P be the centrally symmetric configuration con-
sisting of triangles of points in four quadrants as in the figure (where a = 4 and
b = 7). The first and third quadrants contain triangles meeting a diagonals, compris-
ing a(a + 1)/2 points. The second and fourth quadrants contain triangles meeting b
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C D

diagonals, comprising b(b+ 1)/2 points. In total, |P| = N . Let A, B,C, D denote the
subsets in the four quadrants.

We prove that there is no friendly path for P . If the first and last points of P on
a monotone path Q lie in neighboring quadrants, then at least N/2 points lie on one
side, and Q is not friendly. If the first and last points are in C and A, then Q hits one
point in each of 2a + 1 diagonals. Since N is even, this leaves an odd number of points
of P outside Q, and they cannot be split equally.

It remains to consider a downhill lattice path Q whose first and last points are in
B and D. If Q hits a point of P at every step between these extremes, then Q hits
2b + 1 points of P , and again the remainder cannot be split equally. Hence, we may
assume that an odd number of lattice points along Q between its ends are not in P . By
symmetry, we may assume these points are in A. We claim that every such path has
more points of P below it than above it.

Consider the point x just above the leftmost column of the triangle in A. The down-
hill path Q containing x that has the most points of P above and to its right goes
directly rightward to x and then down. There are

(b−a−1
2

)
points of P above Q in B,(a

2

)
points of P to the right of Q in A, and

(b
2

)
points of P to the right of Q in D.

Meanwhile, on the other side of Q are
(a+1

2

)
+
(b+1

2

)
−
(b−a+1

2

)
points. An equal split

requires(
a

2

)
+

(
b

2

)
+

(
b − a − 1

2

)
≥

(
a + 1

2

)
+

(
b + 1

2

)
−

(
b − a + 2

2

)
,

which simplifies to a + b ≤ (b − a)2. The left side is at least 2a, and the right side is
at most 2a, so b = a is necessary, but then 2a ≤ 0.

As we move from x to any other point in the first quadrant outside A as a point of Q
outside P between points of Q in P , the number of points above Q decreases, while
the number of points below Q increases. Hence the two sides can never have equal size.

Editorial comment. We do not know the answer to part (b)*. Parity considerations
made part (a) easy using a centrally symmetric configuration. However, a centrally
symmetric configuration of odd size has a central point. Any symmetric path through
that point is a friendly path. This makes it difficult to construct a counterexample.

No other solutions were received.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before July 31, 2012. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11628. Proposed by Jeffrey C. Lagarias and Michael E. Zieve, University of Michigan,
Ann Arbor, MI. Define the Lenstra constant L(R) of a commutative ring R to be the
size of the largest subset A of R such that a − b is a unit (invertible element) in R
for any distinct elements a, b ∈ A. Show that for each positive integer N , the Lenstra
constant of the ring Z[1/N ] is the least prime that does not divide N .

11629. Proposed by Olivier Oloa, University of Versailles, Rambouillet, France. Let

f (σ ) =
∫ 1

0
xσ
(

1

log x
+

1

1− x

)2

dx .

(a) Show that f (0) = log(2π)− 3/2.
(b) Find a closed form expression for f (σ ) for σ > 0.

11630. Proposed by Constantin Mateescu, High School ‘Zinca Golescu’, Pitesti, Ro-
mania. For triangle ABC, let H be the orthocenter, I the incenter, O the circumcenter,
and R the circumradius. Let b and c be the lengths of the sides opposite B and C ,
respectively, and let l be the length of the line segment from A to BC along the angle
bisector at A. Let α be the radian measure of angle BAC. Prove that

bc

l
+max{b, c} ≤ 4R cos(α/4),

with equality if and only if rays AH, AI, and AO divide angle BAC into four equal angles.

11631. Proposed by Pál Péter Dályay, Szeged, Hungary. A quasigroup (Q, ∗) is a set
Q together with a binary operation ∗ such that for each a, b ∈ Q there exist unique x
and unique y (which may be equal) such that ax = b and ya = b. The Cayley table of
a finite quasigroup is its ‘times table’. A quasigroup has property P if each row of the
table is a rotation of the first row.
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Find all positive integers n for which there exists a quasigroup ({1, . . . , n}, ∗) with
property P in which all elements are idempotent. (For instance, the Cayley table below
defines a binary operation on {1, . . . , 5} with property P in which each element is
idempotent.)

* 1 2 3 4 5

1 1 5 4 3 2
2 3 2 1 5 4
3 5 4 3 2 1
4 2 1 5 4 3
5 4 3 2 1 5

11632. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA, and Dan
Schwarz, Bucharest, Romania. Let n be a positive integer, and write a vector x ∈ Rn

as (x1, . . . , xn). For x, y, a,b ∈ Rn let

[x, y]a,b =
∑

1≤i, j≤n

xi y j min(ai , b j ).

Show that for x, y, z, a, b, c in Rn with nonnegative entries,

[x, x]a,a · [y, z]2b,c + [y, y]b,b · [z, x]2c,a

≤ [x, x]1/2a,a · [y, y]1/2b,b · [z, z]c,c ·
(
[x, x]1/2a,a · [y, y]1/2b,b + [x, y]a,b

)
.

11633. Proposed by Anthony Sofo, Victoria University, Melbourne, Australia. For real
a, let H (a)

n =
∑n

j=1 j−a . Show that for integers a, b, and n with a ≥ 1, b ≥ 0, and
n ≥ 1,

n∑
k=1

k(H 2
k + H (2)

k )+ 2(k + b)a H (1)
k H (a)

k+b−1

k(k + b)a
= H (a)

n+b(H
2
n + H (2)

n ).

11634. Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade, Buzău, Roma-
nia. Let (x1, . . . xn) be an n-tuple of positive numbers, and let X =

∑n
k=1 xk . Let

a and m be nonnegative numbers, and let b, c, d be positive. Suppose p ≥ 1 and
cX p > d max1≤k≤n x p

k . Show that
n∑

k=1

aX + bxk

cX p − dx p
k

≥
(an + b)nmp

(cn p − d)m
X 1−mp.

SOLUTIONS

Another Hankel Determinant

11475 [2010, 86]. Proposed by Ömer Eğecioğlu, University of California Santa Bar-
bara, Santa Barbara, CA. Let hk =

∑k
j=1

1
j , and let Dn be the determinant of the

(n + 1) × (n + 1) Hankel matrix with (i, j) entry hi+ j+1 for 0 ≤ i, j ≤ n. (Thus,
D1 = −5/12 and D2 = 1/216.) Show that for n ≥ 1,
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Dn =

∏n
i=1 i !4∏2n+1
i=1 i !

·

n∑
j=0

(−1) j (n + j + 1)!(n + 1)h j+1

j !( j + 1)!(n − j)!
.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. The
desired value is the determinant of the matrix B that results from the given matrix by
subtracting row n − 1 from row n, row n − 2 from row n − 1, and so on to row 0 from
row 1. This produces b0, j = h j+1, and bi, j = 1/(i + j + 1) for i ≥ 1. In particular, the
bottom n rows of B agree with the bottom n rows of the (n + 1)× (n + 1) Hilbert ma-
trix H , where Hi, j = 1/(i + j + 1) for i, j ∈ {0, . . . , n}. In the 19th century, Hilbert
computed

det H =

∏n
i=1 i !4∏2n+1
i=1 i !

and

H−1
i, j = (−1)i+ j (i + j + 1)

(
n + i + 1

n − j

)(
n + j + 1

n − i

)(
i + j

i

)
.

Hence expanding det B along the top row yields

Dn = det B = (det H)
n∑

j=0

b0, j H−1
j,0

=

∏n
i=1 i !4∏2n+1
i=1 i !

·

n∑
j=0

(−1) j (n + j + 1)!(n + 1)h j+1

j !( j + 1)!(n − j)!
.

Also solved by R. Chapman (U. K.), O. Kouba (Syria), O. P. Lossers (Netherlands), K. McInturff GCHQ
Problem Solving Group, and the proposer.

Short Runs from an Urn

11485 [2011, 182]. Proposed by Neetu Badhoniya, K. S. Bhanu, and M. N. Deshpande,
Institute of Science, Nagpur, India. An urn contains a white balls and b black balls, and
a ≥ 2b + 3. Balls are drawn at random from the urn and placed in a row as they are
drawn. Drawing halts when three white balls are drawn in succession. Let X be the
number of isolated pairs of white balls in the lineup produced during play, and let Y
be the number of isolated white balls. Show that

E[X ] =
b

a + 1
, and E[Y ] =

b(a + b + 1)

(a + 1)(a + 2)
.

Solution by Bob Tomper, Mathematics Department, University of North Dakota. Let
E[Xa,b] and E[Ya,b] be the expected values of X and Y respectively when starting
with an urn containing a white balls and b black balls, where a ≥ 2b + 3.

For a ≥ 3, we have E[Xa,0] = E[Ya,0] = 0, which agrees with the given formulae.
We use induction on b, the number of black balls. Assume the formulae are correct up
to b − 1, where b ≥ 1 (and all appropriate a values), and consider the case of a white
balls and b black balls with a ≥ 2b + 3.

The lineup begins with B, WB, WWB, or WWW, where W and B indicate drawing
a white or a black ball, respectively. The last also ends the lineup; after each of the
others, the number of white balls remaining in the urn is at least three more than
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twice the number of black balls, so the conditions for the induction hypothesis apply.
Accounting for the isolated W in WB and the paired WW in WWB,

E[Xa,b] = Pr[B]E[Xa,b−1] + Pr[WB]E[Xa−1,b−1] + Pr[WWB]
(
1+ E[Xa−2,b−1]

)
which gives this expression for E[Xa,b]:

b

a + b

b − 1

a + 1
+

a

a + b

b

a + b − 1

b − 1

a
+

a

a + b

a − 1

a + b − 1

b

a + b − 2

(
1+

b − 1

a − 1

)
.

This simplifies to b
a+1 . Similarly,

E[Ya,b] = Pr[B]E[Ya,b−1] + Pr[WB]
(
1+ E[Ya−1,b−1]

)
+ Pr[WWB]E[Ya−2,b−1]

whereby

E[Ya,b] =
b

a + b

(b − 1)

(a + 1)

(a + b)

(a + 2)
+

a

a + b

b

a + b − 1

(
1+

(b − 1)(a + b − 1)

a(a + 1)

)
+

a

a + b

a − 1

a + b − 1

b

a + b − 2

(b − 1)(a + b − 2)

(a − 1)a
=

b(a + b + 1)

(a + 1)(a + 2)
.

Also solved by M. Andreoli, D. Beckwith, R. Chapman (U. K.), W. J. Cowieson, P. P. Dályay (Hungary),
C. González-Alcón & Á. Plaza (Spain), N. Grivaux (France), S. J. Herschkorn, O. Kouba (Syria), J. Lobo
(Costa Rica), O. P. Lossers (Netherlands), R. Martin (Germany), K. McInturff, M. A. Prasad (India), R. Pratt,
K. Schilling, D. Senft, J. Simons (U. K.), R. Stong, R. Tauraso (Italy), S. Xiao, CMC 328, GCHQ Problem
Solving Group (U. K.), and the proposers.

A Weighted Fermat Triangle Problem

11491 [2010, 278]. Proposed by Nicolae Anghel, University of North Texas, Denton,
TX. Let P be an interior point of a triangle having vertices A0, A1, and A2, opposite
sides of length a0, a1, and a2, respectively, and circumradius R. For j ∈ {0, 1, 2}, let
r j be the distance from P to A j . Show that

r0

a2
0

+
r1

a2
1

+
r2

a2
2

≥
1

R
.

Solution I by Marian Dinca, Romania . Let E = r0/a2
0 + r1/a2

1 + r2/a2
2 . Let Pj be the

projection of P to the side of length a j , and let d j = P Pj . Now P , P1, A0, and P2 lie
on the circle with diameter A0 P (of length r0), so ∠P1 P P2 = A1 + A2 and P1 P2 =

r0 sin A0. Thus, P1 P2
2 = d2

1 + d2
2 − 2d1d2 cos(A1 + A2) = (d1 sin A2 + d2 sin A1)

2
+

(d1 cos A2 − d2 cos A1)
2 and P1 P2 = r0 sin A0 ≥ d1 sin A2 + d2 sin A1. By the law of

sines, r0a0 ≥ d1a2 + d2a1. Similarly, r1a1 ≥ d0a2 + d2a0 and r2a2 ≥ d0a1 + d1a0. Thus

E ≥
d1a2 + d2a1

a3
0

+
d2a0 + d0a2

a3
1

+
d0a1 + d1a0

a3
2

=

(
a1

a3
2

+
a2

a3
1

)
d0 +

(
a2

a3
0

+
a0

a3
2

)
d1 +

(
a0

a3
1

+
a1

a3
0

)
d2

≥

(
2

a1a2

)
d0 +

(
2

a2a0

)
d1 +

(
2

a0a1

)
d2 =

2(a0d0 + a1d1 + a2d2)

a1a2a3
=

4K

4K R
,

where K is the area of 1A0 A1 A2.
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Solution II by Zoltán Vőrős, Tiszavasvári, Hungary . With ri and di as above, the
weighted Erdős–Mordell inequality states that r0x2

+ r1 y2
+ r2z2

≥ 2(d0 yz + d1zx +
d2xy) for real x, y, z. Letting x = 1/a0, y = 1/a1, and z = 1/a2, we get

r0

a2
0

+
r1

a2
1

+
r2

a2
2

≥ 2

(
d0

a1a2
+

d1

a2a0
+

d1

a0a1

)
,

from which the result follows as above.

Editorial comment. This problem was on the 2000 US Olympiad Team Selection Test.
It is a weighted Fermat triangle problem whose general solution is known (see Yu-
jin Shen & Juan Tolosa, “The weighted Fermat triangle problem,” Int. J. Math. Math.
Sci. (2008), 16 pp., http://dx.doi.org/10.1155/2008/283846). The weighted
Erdős–Mordell inequality can be found in Am. Math. Monthly 108 (2001) 165–168;
available at http://dx.doi.org/10.2307/2695531. The notation of R1 and r1 as
the distance from P to A and BC helps relate Erdős–Mordell’s R1 + R2 + R3 ≥

2(r1 + r2 + r3) to Euler’s R > 2r.

Also solved by R. Bagby, P. P. Dályay (Hungary), J. Fabrykowski & T. Smotzer, J. Hamilton & T. Smotzer, P.
Nüesch (Switzerland), M. Tetiva (Romania), L. Zhou, and the proposer.

A linear transformation and Hermite polynomials

11493 [2010, 279]. Proposed by Johann Cigler, Universität Wien, Vienna, Austria.
Consider the Hermite polynomials Hn , defined by

Hn(x, s) =
∑

0≤k≤n/2

(
n

2k

)
(2k − 1)!! (−s)k xn−2k,

where m!! =
∏

i<m/2(m − 2i) for positive m, with (−1)!! = 1. Let L be the lin-
ear transformation from Q[x, s] to Q[x] determined by L1 = 1, Lx ks j

= x k Ls j

for j, k ≥ 0, and L H2n(x, s) = 0 for n > 0. (Thus, for example, 0 = L H2(x, s) =
L(x2

− s) = x2
− Ls, so Ls = x2.) Define the tangent numbers T2n+1 by tan z =∑

n≥0 T2n+1z2n+1/(2n + 1)!, and the Euler numbers E2n by sec z =
∑

n≥0 E2n
z2n

(2n)! .

(a) Show that

LH2n+1(x, s) = (−1)nT2n+1x2n+1.

(b) Show that

Lsn
=

E2n

(2n − 1)!!
x2n.

Solution by BSI Problems Group, Bonn, Germany. We work in the ring of formal power
series in the indeterminate t with coefficients in the ring Q[x, s]. We extend L to this
ring coefficient-wise: if F(t) =

∑
i fi (x, s)t i , then L

(
F(t)

)
=
∑

i L
(

fi (x, s)
)
t i . It is

then easy to see that, for G(t) ∈ Q[x][[t]],

L
(
G(t)F(t)

)
= G(t)L

(
F(t)

)
.

Using (2k − 1)!! = (2k)!/2kk!, we find that

∞∑
n=0

Hn(x, s)
tn

n!
=

∑
k,n

(−s)k t2k

2kk!

(xt)n−2k

(n − 2k)!
= ext−st2/2.
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Extracting even and odd powers of t gives

∞∑
n=0

H2n(x, s)
t2n

(2n)!
= cosh(xt)e−st2/2 and (1)

∞∑
n=0

H2n+1(x, s)
t2n+1

(2n + 1)!
= sinh(xt)e−st2/2. (2)

Let [tn
]F(t) denote the coefficient of tn in F(t). Applying L to (1) gives

1 = cosh(xt)L
(

e−st2/2
)
, (3)

so

Lsn
= (−1)n2nn! [t2n

]L
(

e−st2/2
)
= (−1)n2nn! [t2n

] sech(xt) =
E2n

(2n − 1)!!
x2n,

which proves (b).
Applying L to (2), and using (3), we have

LH2n+1(x, s) = (2n + 1)! [t2n+1
] sinh(xt)L

(
e−st2/2

)
= (2n + 1)! [t2n+1

]
sinh(xt)

cosh(xt)
= (−1)nT2n+1x2n+1,

which proves (a).

Also solved by D. Beckwith, E. H. M. Brietzke (Brazil), R. Chapman (U. K.), P. P. Dályay (Hungary), G. C.
Greubel, O. P. Lossers (Netherlands), J. Matysiak and W. Matysiak (Poland), K. McInturff, R. Stong, S. Xiao,
L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

Zeros of Symmetric Functions

11495 [2010, 370]. Proposed by Marc Chamberland, Grinnell College, Grinnell IA.
Let a, b, and c be rational numbers such that exactly one of a2b + b2c + c2a, ab2

+

bc2
+ ca2, and a3

+ b3
+ c3
+ 6abc is zero. Show that a + b + c = 0.

Composite solution by Jim Simons, Cheltenham, U. K., and Richard Stong, Center for
Communications Research, San Diego, CA. We may assume that a, b, and c are not
all 0. Since multiplication by a constant does not affect the statements, we may also
assume that they are integers and have no common factor.

For each prime p, write pα‖X to mean pα | X and pα+1 - X . We use the fact that
if X + Y + Z = 0, pα‖X , pβ‖Y , and pγ ‖Z , then the smallest two of α, β, and γ are
equal.

Suppose that a2b + b2c + c2a = 0. Let p be a prime divisor of abc, with pα‖a,
pβ‖b, and pγ ‖c. Since gcd(a, b, c) = 1, at least one of α, β, and γ is 0. If α = 0,
then pβ‖a2b, p2β+γ

‖b2c, and p2γ
‖ca; it follows that β = 2γ . Similarly, β = 0 implies

γ = 2α, and γ = 0 implies α = 2β. Thus there are pairwise relatively prime numbers
X, Y, and Z such that a = XY 2, b = YZ 2, and c = ZX 2. In fact, X (respectively, Y and
Z ) is the product of all prime powers dividing gcd(c, a) (respectively, gcd(a, b) and
gcd(b, c)).

Substituting these values into a2b + b2c + c2a yields

0 = X 2Y 5 Z 2
+ Y 2 Z 5 X 2

+ Z 2 X 5Y 2
= (XYZ)2(X 3

+ Y 3
+ Z 3).
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If XYZ 6= 0, then X 3
+ Y 3

+ Z 3
= 0; this is the cubic case of Fermat’s Last Theorem,

which has no nontrivial solutions. Hence at least one of {X, Y, Z} is 0, so two of
{a, b, c} equal 0, and hence ab2

+ bc2
+ ca2

= 0. By symmetry, ab2
+ bc2

+ ca2
= 0

implies a2b + b2c + c2a = 0.
However, by hypothesis exactly one of the three given expressions equals 0, so it

must be the third expression. Letting ω = e2π i/3, we may write

0 = a3
+ b3
+ c3
+ 6abc = 3(a3

+ b3
+ c3
+ 6abc)

= (a + b + c)3 + (a + bω + cω2)3 + (a + bω2
+ cω)3.

This is a solution to Fermat’s equation in the ring Z[ω], but the usual proof of Fermat’s
Last Theorem in the cubic case shows that, in fact, there are no nontrivial solutions in
Z[ω]. Thus, one of the three terms must be zero. If a + bω + cω2

= 0, then all three
of a, b, c must be zero and so a + b + c = 0; the same is true if a + bω2

+ cω = 0.
What remains is that a + b + c = 0, as claimed.

Also solved by R. Chapman (U. K.), S. Chatadus (Poland), O. P. Lossers (Netherlands), C. R. Pranesachar
(India), R. Prasad (India), R. E. Prather, M. Tetiva (Romania), the GCHQ Problem Solving Group (U. K.), and
the proposer.

A Series with Harmonic Numbers

11499 [2010, 371]. Proposed by Omran Kouba, Higher Institute for Applied Science
and Technology, Damascus, Syria. Let Hn be the nth harmonic number, given by Hn =∑n

k=1 1/k. Let

Sk =

∞∑
n=1

(−1)n−1 (log k − (Hkn − Hn)) .

Prove that for k ≥ 2,

Sk =
k − 1

2k
log 2+

1

2
log k −

π

2k2

bk/2c∑
l=1

(k + 1− 2l) cot

(
(2l − 1)π

2k

)
.

Solution by Douglas B. Tyler, Raytheon, Torrance, CA . Fix k ≥ 2. Let an = log k −
(Hkn − Hn). Since Hn = log n + γ + o(1/n) as n →∞, we have an = o(1/n), so
an → 0. Thus

Sk =

∞∑
n=1

(−1)n−1an =

∞∑
n=1

(a2n−1 − a2n) =

∞∑
n=1

k∑
m=1

(
1

(2n − 1)k + m
−

1

2nk

)

=

∞∑
n=1

k∑
m=1

∫ 1

0
(x2nk−k+m−1

− x2nk−1) dx .

The integrands are nonnegative, so we may sum first:

∞∑
n=1

k∑
m=1

(x2nk−k+m−1
− x2nk−1) =

x k

1+ x k
·

1

1− x
+

kx2k−1

x2k − 1

=
kx2k−1

x2k − 1
+

1

2(x − 1)
−

x k
− 1

2(x − 1)(x k + 1)
.
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Let

Ik =

∫ 1

0

x k
− 1

(x − 1)(x k + 1)
dx .

Since ∫ 1

0

(
kx2k−1

x2k − 1
+

1

2(x − 1)

)
dx =

1

2
log(2k),

it remains to prove that

Ik =
1

k
log 2+

π

k2

[k/2]∑
l=1

(k + 1− 2l) cot
(2l − 1)π

2k
.

Expanding the integrand yields xk
−1

(x−1)(xk+1)
=

2
k

∑
ζ

ζ

ζ−1 ·
1

x−ζ , where we sum over
the kth roots of −1. Except for ζ = −1 when k is odd, the summands occur in
conjugate pairs ζ

ζ−1 ·
1

x−ζ +
ζ̄

ζ̄−1
·

1
x−ζ̄
=

x+1
(x−cos θ)2+sin2 θ

, where ζ = eiθ . With J =∫ 1
0

x+1
(x−cos θ)2+sin2 θ

dx , we have

J =

[
1

2
log(x2

− 2x cos θ + 1)+
1+ cos θ

sin θ
tan−1

(
x − cos θ

sin θ

)]1

0

=
1

2
log(2− 2 cos θ)+ cot

θ

2

(
tan−1

(
1− cos θ

sin θ

)
+ tan−1

(
cos θ

sin θ

))
= log

(
2 sin

θ

2

)
+ cot

θ

2

(
π − θ

2

)
.

Now if θ = (2l − 1)π/k, then

Ik =
2

k

bk/2c∑
l=1

(
log

(
2 sin

(2l − 1)π

2k

)
+
(k + 1− 2l)π

2k
cot

(2l − 1)π

2k

)

=
2

k

bk/2c∑
l=1

log

(
2 sin

(2l − 1)π

2k

)
+
π

k2

bk/2c∑
l=1

(k + 1− 2l) cot
(2l − 1)π

2k
.

If k is odd, then l = k+1
2 in the first sum corresponds to ζ = −1 and 2

k

∫ 1
0

1/2
x+1 dx =

1
k log(2 sin π

2 ). The first sum thus equals 1
k

∑k
l=1 log(2 sin (2l−1)π

2k ) = 1
k log 2, from the

identity
∏k

l=1 sin (2l−1)π
2k =

1
2k−1 . This completes the proof.

Editorial comment. Some solvers derived the equivalent Sk =
k−1
2k log 2 + 1

2 log k −
π

4k

∑k
j=1 cot jπ

2k by applying the digamma identity9(x) = 9(1− x)− π cotπx to the

sum Sk = −
1

2k

∑k−1
j=19(

1
2 +

j
2k )−

k−1
2k γ.

Also solved by P. Bracken, R. Chapman (U. K.), H. Chen, E. A. Herman, O. P. Lossers (Netherlands), A.
Stenger, R. Stong, M. Tetiva (Romania), GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before August 31, 2012. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11635. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu”,
Bârlad, Romania, and Nicuşor Minculete, “Dimitrie Cantemir” University, Braşov,
Romania.
(a) Let α and β be distinct nonzero real numbers. Let a, b, c, x, y, z be real, with
0 < a < b < c and a ≤ x < y < z ≤ c. Prove that if

xα + yα + zα = aα + bα + cα and xβ + yβ + zβ = aβ + bβ + cβ

then x = a, y = b, and z = c.
(b) Let α1, α2, α3 be distinct nonzero real numbers. Let a1, a2, a3, a4, x1, x2, x3, x4 be
real, with 0 < a1 < a2 < a3 < a4 and a1 ≤ x1 < x2 < x3 < x4 ≤ a4. If

4∑
k=1

x
α j
k =

4∑
k=1

a
α j
k

for 1 ≤ j ≤ 3, must ak then equal xk for 1 ≤ k ≤ 4?

11636. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. Let ABCD
be a convex quadrilateral, and suppose there is a point M on the diagonal BD with the
property that the perimeters of ABM and CBM are equal and the perimeters of ADM
and CDM are equal. Prove that |AB| = |CB| and |AD| = |CD|.

11637. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj, Roma-
nia. Let m ≥ 1 be a nonnegative integer. Let u = u − buc; the quantity u is called the
fractional part of u. Prove that∫ 1

0

{
1

x

}m

xm dx = 1−
1

m + 1

m∑
k=1

ζ(k + 1).

(Here ζ is denotes the Riemann zeta function.)

http://dx.doi.org/10.4169/amer.math.monthly.119.04.344
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11638. Proposed by George Apostolopoulos, Messolonghi, Greece. Let a, b, c be pos-
itive real numbers. Prove that

a3
+ b3
+ c3
+ 3 ≥ 3

(
(a2b + 1)(b2c + 1)(c2a + 1)

)1/3
.

11639. Proposed by Omran Kouba, Higher Institute for Applied Science and Technol-
ogy, Damascus, Syria. Evaluate

∫ π/2
0 (log(2 sin x))2 dx .

11640. Proposed by Karl David, Milwaukee School of Engineering, Milwaukee, WI.
For x > 0 and x 6= 1, let f (x) = x1/(x−1), and let f (1) = e. Show that f ′′(x) > 0 for
x > 0.

11641. Proposed by Nicolae Bourbăcuţ, Sarmizegetusa, Romania. Let f be a convex
function from R into R and suppose that f (x + y)+ f (x − y)− 2 f (x) ≤ y2 for all
real x and y.
(a) Show that f is differentiable.
(b) Show that for all real x and y,

| f ′(x)− f ′(y)| ≤ |x − y|.

SOLUTIONS

Adjacency Matrices of Acyclic Digraphs

11487 [2011, 183]. Proposed by Stephen Gagola Jr., Kent State University, Kent, OH.
Let A be a 0,1-matrix of order n with the property that tr(Ak) = 0 for every positive
integer k. Prove or disprove: A is similar by way of a permutation matrix to a strictly
upper-triangular 0,1-matrix.

Solution by Victor S. Miller, CCR, Princeton, NJ. The statement is true. It is equivalent
to the standard proposition in graph theory that every acyclic directed graph has a
ranking, which is a vertex ordering such that every edge is directed from an earlier
vertex to a later vertex. (In computer science, this ranking is called a ‘topological sort’
of the directed graph.)

A 0,1-matrix A is the adjacency matrix of a directed graph. Position (i, j) of Ak

counts the directed walks from the i th vertex to the j th. If the traces of all powers
equal 0, then the digraph has no closed walk and hence no cycle. Ordering the vertices
by their distance from a source yields a ranking. Adjacency matrices with respect to
reorderings of the vertices are obtained by conjugating by a permutation matrix. Some
such matrix renumbers the vertices according to the ranking. The adjacency matrix
with respect to this ordering is strictly upper triangular.

Also solved by G. Apostolopoulos (Greece), R. Chapman (U. K.), P. P. Dályay (Hungary), C. M. da Fon-
seca (Portugal), A. Gewirtz (France), O. Kouba (Syria), O. P. Lossers (Netherlands), R. Martin (Germany),
M. Omarjee (France), J. Simons (U. K.), R. Stong, J. Stuart, M. Tetiva (Romania), GCHQ Problem Solving
Group (U.K.), Missouri State University Problem Solving Group, NSA Problems Group, and the proposer.

Positive Semidefinite Combinations of Hermitian Matrices

11488 [2010, 278]. Proposed by Dennis I. Merino, Southeastern Louisiana Univer-
sity, Hammond, LA, and Fuzhen Zhang, Nova Southeastern University, Fort Laud-
erdale, FL.
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(a) Show that if k is a positive odd integer, and A and B are Hermitian matrices of the
same size such that Ak

+ Bk
= 2I , then 2I − A − B is positive semidefinite.

(b) Find the largest positive integer p such that for all Hermitian matrices A and B of
the same size, 2p−1 (Ap

+ B p)− (A + B)p is positive semidefinite.

Solution to Part (a) by Eugene A. Herman, Grinnell College, Grinnell, IA. More gen-
erally, let k be any positive integer such that Ak

+ Bk
= 2I .

First consider odd k. Let L be an eigenspace of A with eigenvalue λ. Since k is
odd and λ is real, L is also the eigenspace of Ak with eigenvalue λk . Hence L is the
eigenspace of Bk with eigenvalue 2− λk , and so L is also the eigenspace of B with
eigenvalue (2 − λk)1/k . Having common eigenspaces, A and B are simultaneously
unitarily diagonalizable. By applying this unitary similarity to both Ak

+ Bk
= 2I and

2I − A − B, we may assume that A and B are diagonal. With A = diag(α1, . . . , αn)

and B = diag(β1, . . . , βn), we must show that αk
i + β

k
i = 2 implies 2− αi − βi ≥ 0.

For this, it suffices to show that x k
+ yk

= 2 implies x + y ≤ 2.
Let z = (x + y)/2. If z > 1, then 2zk > 2 = x k

+ yk . Thus zk > (x k
+ yk)/2,

which contradicts the convexity of the kth-power function.
Next we show that if 2I − A2 j

− B2k is positive semidefinite (for j ∈ N), then
2I − A j

− B j is positive semidefinite. Since k is expressible as an odd number times
a power of 2, this completes the proof for general k.

Since every eigenvalue of A2 j
+ B2 j is real and at most 2, for x ∈ Cn we compute

‖Ak x‖2
+ ‖Bk x‖2

= 〈Ak x, Ak x〉 + 〈Bk x, Bk x〉

= 〈(A2k
+ B2k)x, x〉 ≤ 〈2x, x〉 = 2‖x‖2,

and hence (
‖Ak x‖ + ‖Bk x‖

)
≤ 2

(
‖Ak x‖2

+ ‖Bk x‖2
)
≤ 4‖x‖2.

Solution to Part (b) by Richard Stong, Center for Communications Research, San
Diego, CA. The largest such value of p is 2. For p = 2, we have 2(A2

+ B2)− (A +
B)2 = (A − B)2; hence the expression is always positive semidefinite. For larger odd
p, take A = −I and B = 0. Now 2p−1(Ap

+ B p)− (A + B)p
= −(2p−1

− 1)I , and
the expression is not positive semidefinite.

For larger even p, let x be a small positive number, and take A =
(1 0

0 0

)
and B =(0 x

x 0

)
. Note that Ap

= A and B p
= x p I . Let ap be the (2, 2)-entry of (A + B)p. Note

that a0 = 1, a1 = 0, and ap = ap−1 + x2ap−2 for p ≥ 2. Hence ap = x2
+ O(x4).

Thus the (2, 2)-entry of 2p−1(Ap
+ B p)− (A + B)p is −x2

+ O(x4), and the matrix
is not positive semidefinite.

Also solved by J. Grivaux (France), O. Kouba (Syria), J. H. Lindsey II, J. Simons (U. K.), and the proposers.

Twisted Semigroups

11490 [2010, 278]. Proposed by Gábor Mészáros, Kemence, Hungary. A semigroup S
agrees with an ordered pair (i, j) of positive integers if ab = b j ai whenever a and b
are distinct elements of S. Find all ordered pairs (i, j) of positive integers such that if
a semigroup S agrees with (i, j), then S has an idempotent element.

Solution by Nicolás Caro, Colombia. The required pairs are all pairs other than (1, 1).
Let (i, j) be a pair of positive integers, and let S be a semigroup agreeing with (i, j)
that has no idempotent elements. For k ≥ 0 and x ∈ S, we have xx2x k

= (x2) j x i x k
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(since x 6= x2). Hence x2 j+i+k
= x3+k . Since x3+k is not idempotent, x2 j+i+k

6= x6+2k ,
and so 2 j + i + k 6= 6+ 2k for k ≥ 0. This implies 3 ≤ 2 j + i ≤ 5. If 2 j + i = 4,
then x4

= x3 for all x implies x3
= x4

= x5
= x6 (contradicting x3

6= x6). If 2 j + i =
5, then x5

= x3 for all x implies x4
= x6

= x8 (contradicting x4
6= x8). It follows that

2 j + i = 3, so (i, j) = (1, 1).
Finally, the positive integers under addition form a semigroup agreeing with (1, 1)

that has no idempotent elements. This concludes the proof.

Also solved by M. Angelelli (Italy), K. Benningfield, P. Budney, R. Chapman (U. K.), C. Curtis, P. P. Dályay
(Hungary), J. Guerreiro (Portugal), Y. J. Ionin, S. C. Locke, J. Lockhart, B. Mulansky (Germany), V. Pambuc-
cian, M. A. Prasad (India), K. Schilling, J. Simons (U. K.), R. Stong, B. Tomper, A. Wyn-Jones (U. K.), GCHQ
Problem Solving Group (U. K.), Missouri State University University Problem Solving Group, NSA Problems
Group, and the proposer.

A Matrix-Sum Inequality

11496 [2010, 370]. Proposed by Benjamin Bogoşel (student), West University of
Timisoara, Timisoara, Romania, and Cezar Lupu (student), University of Bucharest,
Bucharest, Romania. For a matrix X with real entries, let s(X) be the sum of its
entries. Prove that if A and B are n × n real matrices, then

n
(
s(AAT )s(B BT )− s(ABT )s(B AT )

)
≥

s(AAT )(s(B))2 + s(B BT )(s(A))2 − s(A)s(B)
(
s(ABT )+ s(B AT )

)
.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. The
required inequality has been corrected above; there was an extra “+” within the first
term, and AT B was printed instead of B AT .

Let 1 be the column vector with each entry 1, so s(X) = 1T 1. For n × n matrices
A, B, and C , let

M =

1T A
1T B
1T C

 ;
note that M is a 3× n matrix. Also,

M MT
=

s(AAT ) s(ABT ) s(ACT )

s(B AT ) s(B BT ) s(BCT )

s(C AT ) s(C BT ) s(CCT )

 .
Since det(M MT ) ≥ 0, expanding the determinant gives

s(CCT )
(
s(AAT )s(B BT )− s(ABT )s(B AT )

)
≥

s(AAT )s(BCT )s(C BT )+ s(B BT )s(ACT )s(C AT )

− s(ACT )s(C BT )s(B AT )− s(BCT )s(C AT )s(ABT ).

Specializing to C = I yields the desired inequality.

Also solved by O. Kouba (Syria), O. P. Lossers (Netherlands), J. Simons (U. K.), GCHQ Problem Solving
Group (U. K.), and the proposer.

Areas in a Subdivided Quadrilateral

11498 [2010, 371]. Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbai-
jan. Let ABCD be a convex quadrilateral. A line through the intersection O of the
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diagonals AC and BD intersects the interior of edge BC at L and the interior of AD at
N . Another line through O likewise meets AB at K and CD at M . This dissects ABCD
into eight triangles AKO, KBO, BLO, and so on. Prove that the arithmetic mean of the
reciprocals of the areas of these triangles is greater than or equal to the sum of the
arithmetic and quadratic means of the reciprocals of the areas of triangles ABO, BCO,
CDO, and DAO. (The quadratic mean is also known as the root mean square; it is the
square root of the mean of the squares of the given numbers.)

Solution by Richard Stong, Center for Communications Research, San Diego, CA . The
problem is invariant under affine transformations—which preserve ratios of areas—so
we may assume O = (0, 0), A = (0, a), B = (b, 0),C = (−c, 0), and D = (0,−d).
Let MK have slope m, so

K =

(
ab

b + ma
,

mab

b + ma

)
and M = −

(
cd

d + mc
,

mcd

d + mc

)
.

The areas of AOK, KOB, COM, and MOD are ma2b/(2(b + ma)), a2b/(2(b + ma)),
mc2d/(2(d + mc)), and c2d/(2(d + mc)), respectively. The sum S of their recip-
rocals is given by S = 4/ab + 4/cd + 2m(b−2

+ d−2) + 2m−1(a−2
+ c−2). Thus

by the AM-GM inequality, S ≥ 4/ab + 4/cd + 4
√
(b−2 + d−2)(a−2 + c−2). Simi-

larly the sum of the reciprocals of the other four areas is at least 4/bc + 4/da +
4
√
(b−2 + d−2)(a−2 + c−2). Adding these and dividing by 8 gives a lower bound of

1

4

(
2

ab
+

2

bc
+

2

cd
+

2

da

)
+

√√√√1

4

((
2

ab

)2

+

(
2

bc

)2

+

(
2

cd

)2

+

(
2

da

)2
)
.

Now ab/2, bc/2, cd/2, da/2 are the areas of AOB,BOC,COD,DOA, so this is the
desired result.

Also solved by P. P. Dályay (Hungary), O. Kouba (Syria), J. H. Lindsey II, GCHQ Problem Solving Group
(U. K.), and the proposer.

Everything in Its Own Place, Almost

11500 [2010, 371]. Proposed by Bhavana Deshpande, Poona College, Camp Pune,
Maharashtra, India, and M. N. Deshpande, Institute of Science, Nagpur, India. We
have n balls, labeled 1 through n, and n urns, also labeled 1 through n. Ball 1 is put
into a randomly chosen urn. Thereafter, as j increments from 2 to n, ball j is put into
urn j if that urn is empty, otherwise, it is put into a randomly chosen empty urn. Let
the random variable X be the number of balls that end up in the urn bearing their own
number. Show that the expected value of X is n − Hn−1.

Solution I by Justin S. Dyer, Stanford University, Stanford, CA. Write X as Xn , and let
µn = E(Xn). If the first ball is in the first urn, which happens with probability 1/n,
then every ball is in its own urn, contributing 1 to µn . If the first ball is in the kth urn,
where k ≥ 2, then the k − 2 balls 2, . . . , k − 1 are in their own urns, and n − k + 1
urns are left when the next random placement occurs. They are labeled 1, k + 1, k +
2, . . . , n, and this is the same situation as before, except that if the next ball lands in
urn 1, then it does not contribute. Hence the result of the remaining random placements
is Xn−k+1 if the next ball is not in urn 1, and Xn−k+1 − 1 if it is, so its expectation is
µn−k+1 −

1
n−k+1 . Summing over all locations for the first ball, we have

µn = 1+
1

n

n∑
k=2

(
(k − 2)+ µn−k+1 −

1

n − k + 1

)
.
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We now compute

nµn − (n − 1)µn−1 = 1+ (n − 2)+ µn−1 −
1

n − 1
.

Rearranging yields µn = µn−1 + 1− 1
n−1 , and hence µn = n − Hn−1.

Solution II by Kenneth Schilling, University of Michigan-Flint, Flint, MI. Let S =
{2, 3, . . . , n}. We first prove that for T ⊆ S, there is exactly one placement of the
n balls such that the subset of S corresponding to balls in their own urns is precisely
S − T . Furthermore, the probability pT of this placement is 1

n

∏
k∈T

1
n−k+1 .

If T = ∅, then ball 1 is in urn 1. The rest fall into place, and p∅ = 1/n. Otherwise,
let T = {k1, . . . , kt}, indexed in increasing order. Having ball i in urn i for 2 ≤ i < k1

but ball k1 not in urn k1 requires having ball 1 in urn k1. Next, having ball i in urn i
for k1 < i < k2 and ball k2 not in urn k2 requires having ball k1 in urn k2. Continuing,
ball ki must be in urn ki+1 for 1 ≤ i ≤ t − 1, and finally ball kt must be in urn 1. For
the probability claim, there are n urns in which ball 1 may be placed, for k /∈ T ball k
is placed by rule, and the placement of ball ki is chosen from n − ki + 1 unfilled urns.

Now fix j ∈ S. We pair the subsets of S so that the sets T and T ′ in a pair differ
only in whether they contain j . By the claim above, if j ∈ T and j /∈ T ′, then (n −
j + 1)pT = pT ′ . Summing over all pairs yields P(ball j is not in urn j) = 1

n− j+2 and

and P(ball j is in urn j) = n− j+1
n− j+2 = 1− 1

n− j+2 .

Summing over j ∈ S and counting also 1/n for ball 1, we have E(X) = 1
n +∑n

j=2(1−
1

n− j+2 ) = n − Hn−1.

Editorial comment. Justin S. Dyer also showed that Xn/n tends to 1 almost surely as
n→∞.

Also solved by D. Beckwith, D. F. Behan, D. Brown & J. Zerger, N. Caro (Columbia), R. Chapman (U. K.),
K. David & P. Fricano, P. J. Fitzsimmons, J. Freeman, D. Glass, N. Grivaux (France), S. J. Herschkorn,
B.-T. Iordache (Romania), J. H. Lindsey II, O. P. Lossers (Netherlands), J. & W. Matysiak (Poland), K. McIn-
turff, M. D. Meyerson, Á. Plaza & C. González-Alcón (Spain), R. Prasad (India), R. Pratt, B. Schmuland
(Canada), J. Simons (U. K.), N. C. Singer, T. Starbird, J. H. Steelman, R. Stong, S. Xiao, CMC 328, GCHQ
Problem Solving Group (U. K.), Szeged Problem Group “Fejéntaláltuka” (Hungary), and the proposer.

Runs of Heads and Covariance

11503 [2010, 458]. Proposed by K. S. Bhanu, Institute of Science, Nagpur, India, and
M. N. Deshpande, Nagpur, India. We toss an unbiased coin to obtain a sequence of
heads and tails, continuing until r heads have occurred. In this sequence, there will be
some number R of runs (runs of heads or runs of tails) and some number X of isolated
heads. (Thus, with r = 4, the sequence HHTHTTH yields R = 5 and X = 2.) Find the
covariance of R and X in terms of r .

Solution by Jim Simons, Cheltenham, U. K. If r = 1, then X = 1 with probability 1,
and the covariance is 0. For r > 1, we show that the answer is r/2.

For 1 ≤ i ≤ r , let ti be the random variable having value 1 if the i th head is imme-
diately preceded by a tail and value 0 otherwise. Clearly ti = 1 with probability 1/2,
and t1, . . . , tr are independent.

The first head is isolated if and only if t2 = 1, and the last head is isolated if and
only if tr = 1. For 2 ≤ i ≤ r − 1, the i th head is isolated if and only if ti = ti+1 = 1.
Thus X = t2 + tr +

∑r−1
i=2 ti ti+1, and

E(X) = 1/2+ 1/2+ (r − 2)(1/4) = (r + 2)/4.
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If all ti equal zero, then R = 1. Changing t1 from 0 to 1 adds 1 to R. For 2 ≤ i ≤ r ,
switching ti to 1 adds 2 to R. Hence R = 1+ t1 + 2

∑r
j=2 t j , and

E(R) = 1+ 1/2+ 2(r − 1)(1/2) = (2r + 1)/2.

Since t2
i = ti , expanding the product XR yields

XR =

(
t2 + tr +

r−1∑
i=2

ti ti+1

)1+ t1 + 2
r∑

j=2

t j


= X (1+ t1)+ 2t2

1+
r∑

j=3

t j

+ 2tr

1+
r−1∑
j=2

t j


+ 2

r−1∑
i=2

ti ti+1

 i−1∑
j=2

t j + 2+
r∑

j=i+2

t j

 .
Since X is independent of t1, we obtain

E(XR) =
3

2

(
r + 2

4

)
+

2

2

(
1+

r − 2

2

)
+

2

2

(
1+

r − 2

2

)
+ 2

(
r − 2

4

)(
2+

r − 3

2

)
,

which simplifies to (2r 2
+ 9r + 2)/8. We can now compute the required covariance:

E(XR)− E(X)E(R) =
2r 2
+ 9r + 2

8
−

(
r + 2

4

)(
2r + 1

2

)
=

r

2
.

Also solved by D. Beckwith, N. Caro (Colombia), R. Chapman (U. K.), M. P. Cohen, P. J. Fitzsimmons,
J. Gaisser, S. J. Herschkorn, J. H. Lindsey II, K. McInturff, M. Nyenhuis (Canada), M. A. Prasad (India),
R. Pratt, K. Schilling, B. Schmuland (Canada), T. Starbird, R. Stong, and the proposers.

Computing Pi from Fibonacci Numbers

11505 [2010, 458]. Proposed by Bruce Burdick, Roger Williams University, Bristol, RI.
Define {an} to be the periodic sequence given by a1 = a3 = 1, a2 = 2, a4 = a6 = −1,
a5 = −2, and an = an−6 for n ≥ 7. Let {Fn} be the Fibonacci sequence with F1 =

F2 = 1. Show that
∞∑

k=1

ak Fk F2k−1

2k − 1

∞∑
n=0

(−1)kn

Fkn+2k−1 Fkn+3k−1
=
π

4
.

Composite solution by Roberto Tauraso, Università di Roma “Tor Vergata”, Roma,
Italy; Rituraj Nandan, St. Peters, MO; and the proposer . By d’Ocagne’s identity,
(see http://mathworld.wolfram.com/dOcagnesIdentity.html), FN FM+1 − FN+1 FM =

(−1)M FN−M . With M = kn + 2k − 1 and N = k(n + 1)+ 2k − 1, we have

(−1)kn

Fkn+2k−1 Fkn+3k−1
=
−Fk(n+1)+2k−1 Fkn+2k + Fk(n+1)+2k Fkn+2k−1

Fk Fkn+2k−1 Fk(n+1)+2k−1

=
1

Fk

(
Fk(n+1)+2k

Fk(n+1)+2k−1
−

Fkn+2k

Fkn+2k−1

)
.
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Hence we have the telescoping sum

∞∑
n=0

(−1)kn

Fkn+2k−1 Fkn+3k−1
=

1

Fk

∞∑
n=0

(
Fk(n+1)+2k

Fk(n+1)+2k−1
−

Fkn+2k

Fkn+2k−1

)

=
1

Fk

(
φ −

F2k

F2k−1

)
,

where φ = 1+
√

5
2 . Thus

∞∑
k=1

ak Fk F2k−1

2k − 1

∞∑
n=0

(−1)kn

Fkn+2k−1 Fkn+3k−1
=

∞∑
k=1

ak(φF2k−1 − F2k)

2k − 1

=

∞∑
k=1

ak

2k − 1

(
1

φ

)2k−1

,

since Fn+1 − φFn = −φ
−n . The sequence 1, 2, 1, −1, −2, −1, . . . is the sum of two

sequences whose cycles are 1, −1, 1, −1, 1, −1 and 0, 3, 0, 0, −3, 0. Continuing the
computation,

∞∑
k=1

ak

2k − 1

(
1

φ

)2k−1

=

∞∑
k=1

(−1)k+1

2k − 1

(
1

φ

)2k−1

+

∞∑
k=1

3(−1)k+1

6k − 3

(
1

φ

)6k−3

=

∞∑
k=1

(−1)k+1

2k − 1

(
1

φ

)2k−1

+

∞∑
k=1

(−1)k+1

2k − 1

(
1

φ3

)2k−1

= arctan

(
1

φ

)
+ arctan

(
1

φ3

)
.

Using the arctangent addition formula and φ2
= φ + 1, this becomes

arctan

(
1

φ

)
+ arctan

(
1

φ3

)
= arctan

( 1
φ
+

1
φ3

1− 1
φ
·

1
φ3

)
= arctan

(
φ3
+ φ

φ4 − 1

)

= arctan

(
φ3
+ φ

φ3 + φ2 − 1

)
= arctan

(
φ3
+ φ

φ3 + φ

)
= arctan(1) =

π

4
.

Editorial comment. Omran Kouba proved the general identity

arctan

(
2x cos θ

1− x2

)
=

∞∑
k=1

2(−1)k−1 cos((2k − 1)θ)

2k − 1
x2k−1

for θ ∈ R and |x | < 1, from which the second part of the proof above follows with
θ = 2π/3 and x = 1/φ.

Also solved by R. Chapman (U. K.), O. Kouba (Syria), K. D. Lathrop, M. A. Prasad (India), R. Stong,
S. Y. Xiao (Canada), and GCHQ Problem Solving Group (U. K.).
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and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before September 30, 2012. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11642. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let α, β, γ be positive real numbers, with γ > 1.
(a) Prove that

lim
x→1−

(1− x)β
∞∑

n=1

γ nαxγ
n
=

{
0 when β > α,

∞ when β < α.

(b) Does the limit exist if β = α?

11643. Proposed by Eugen J. Ionascu, Columbus State University, Columbus, GA. Let
r be a real number with 0 < r < 1, and define a discrete probability measure P on
N by P(k) = (1 − r)r k−1 for k ≥ 1. Show that there are uncountably many triples
(A1, A2, A3) of subsets of N that are mutually independent, that is, P(Ai

⋂
A j ) =

P(Ai )P(A j ) for i 6= j and P(A1
⋂

A2
⋂

A3) = P(A1)P(A2)P(A3).

11644. Proposed by Albert Stadler, Herrliberg, Switzerland. Let n be a nonnegative
integer, and let B j be the j th Bernoulli number, defined for j ≥ 0 by x/(ex

− 1) =∑
∞

k=0 Bk x k/k!. Let

In =

∫
∞

0

(
1

xn(ex − 1)
−

(
1

xn
+

n∑
k=0

Bk
x k−n−1

k!

)
e−x

)
dx .

Prove that I0 = γ − 1, that I1 = 1− (1/2) log(2π), and that for n ≥ 1,

I2n = (log(2π)+ γ )
B2n

(2n)!
+ (−1)n

2ζ ′(2n)

(2π)2n

+
1

2(2n − 1)!
H2n−1 −

n−1∑
k=0

B2k

(2k)!
·

H2n−2k

(2n − 2k)!
,

http://dx.doi.org/10.4169/amer.math.monthly.119.05.426
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and that for n ≥ 1,

I2n+1 = (−1)n
ζ(2n + 1)

2(2π)2n
−

1

2(2n)!
H2n +

n∑
k=0

B2k

(2k)!
·

H2n+1−2k

(2n + 1− 2k)!
.

Here, Hn denotes
∑n

k=1 1/k, ζ , the Riemann zeta function, and γ , Euler’s constant.

11645. Proposed by Christopher J. Hillar, University of California, Berkeley, CA, Li-
onel Levine, Cornell University, Ithaca, NY, and Darren Rhea, University of Califor-
nia San Francisco, San Francisco, CA. Determine all positive integers n such that the
polynomial g in two variables given by g(x, y) = 1+ y2

∑n
k=1 x2k

+ y4x2n+2 factors
in C[x, y].

11646. Proposed by Pál Péter Dályay, Szeged, Hungary. Let ABC be an acute tri-
angle, and let A1, B1, C1 be the intersection points of the angle bisectors from A, B,
C to the respective opposite sides. Let R and r be the circumradius and the inradius
of ABC , and let RA, RB , RC be the circumradii of the triangles AC1 B1, B A1C1, and
C A1 B1, respectively. Let H be the orthocenter of ABC , and let da , db, dc be the dis-
tances from H to sides BC , C A, and AB, respectively. Show that

2r(RA + RB + RC) ≥ R(da + db + dc).

11647. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA and Tudorel
Lupu, Decebal High School, Constanta, Romania. For continuous 9 on [0, 1], let V9
be the function on [0, 1] given by V9(t) =

∫ t
0 9(x) dx . For φ a differentiable function

from [0, 1] to R satisfying φ′(x) 6= 0 for 0 < x < 1, let Vφ9(t) =
∫ t

0 φ(x)9(x) dx .
Show that if f and g are continuous real-valued functions on [0, 1] then there exists
x0 ∈ (0, 1) such that

(Vφ f )(x0)

∫ 1

0
g(x) dx − (Vφg)(x0)

∫ 1

0
f (x) dx

= φ(0)

(
V f (x0)

∫ 1

0
g(x) dx − V g(x0)

∫ 1

0
f (x) dx

)
.

11648. Proposed by Moubinool Omarjee, Paris, France. Let E be the set of all contin-
uous, differentiable functions from (0, 1] into R such that

∫ 1
0 t1/2 f 2(t) dt converges.

Let F be the set of all f in E such that
∫ 1

0 t−3/2 f 2(t) dt and
∫ 1

0 t1/2 f ′(t)2 dt converge.
Equip E with the distance

d( f, g) =

(∫ 1

0
t1/2( f − g)2(t) dt

)1/2

to make it a metric space. Is F a closed subset of E?

SOLUTIONS

Piercing Many Segments

11507 [2010, 459]. Proposed by Marius Cavachi, “Ovidius” University of Constanta,
Constanta, Romania. Let n be a positive integer and let R be a plane region of perime-
ter 1. Inside R there are a finite number of line segments, the sum of whose lengths
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is greater than n. Prove that there exists a line that intersects at least 2n + 1 of the
segments.

Solution by Jim Simons, Cheltenham, U. K. We may assume that R is convex, for
otherwise we can take its convex hull, which will have perimeter less than 1, and then
dilate about a point in its interior to create a convex region with perimeter 1 that still
includes all the line segments. For a bounded convex set C , we define Wθ (C), the
width of C in direction θ , to be the minimum width of a strip in the plane that includes
C and that is bounded by two parallel lines making angle θ with the x-axis.

Represent a point z on the boundary of R as the pair (t, γ ), where t is the arc length
along the boundary from a fixed starting point and γ is the angle between the x-axis
and the tangent to the boundary of R at z. It follows that

Wθ (R) =
1

2

∮ ∣∣sin(θ − γ )
∣∣ dt.

We compute the average value of Wθ (R) over all angles θ :

1

π

∫ π

0
Wθ (R) dθ =

1

2π

∫ π

0

∮ ∣∣sin(θ − γ )
∣∣ dt dθ

=
1

2π

∮ ∫ π

0

∣∣sin(θ − γ )
∣∣ dθ dt =

1

π

∮
dt =

1

π
.

Similarly, if S is the given set of line segments, and if s ∈ S has length |s| and makes
an angle γ (s) with the x-axis, then∑

s∈S

Wθ (s) =
∑
s∈S

|s|
∣∣sin

(
θ − γ (s)

)∣∣.
Averaging this quantity over all angles, we obtain

1

π

∫ π

0

∑
s∈S

Wθ (s) dθ =
1

π

∫ π

0

∑
s∈S

|s|
∣∣sin

(
θ − γ (s)

)∣∣ dθ

=
1

π

∑
s∈S

|s|
∫ π

0

∣∣sin
(
θ − γ (s)

)∣∣ dθ =
2σ

π
,

where σ =
∑

s∈S |s| > n. It follows that there is some angle θ for which
∑

s∈S Wθ (s) ≥
2σWθ (R). Now consider the lines that make angle θ with the x-axis and that intersect
R. They lie in the strip we have defined, and we can index them by the distance u from
one edge of the strip. Let n(u) be the number of segments from S that intersect such a
line. Now ∑

s∈S

Wθ (s) =
∫ Wθ (R)

0
n(u) du.

We have n(u) ≥ 2σ for some u, and hence n(u) ≥ 2n + 1.

Also solved by R. Chapman (U. K.), O. P. Lossers (Netherlands), T. Starbird, R. Stong, GCHQ Problems Group
(U. K.), and the proposer.

Perfect Squares with Specified Differences

11508 [2010, 459]. Proposed by Mih’aly Bencze, Brasov, Romania. Prove that for all
positive integers k there are infinitely many positive integers n such that kn + 1 and
(k + 1)n + 1 are both perfect squares.
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Solution by Yury J. Ionin, Champaign, IL. We prove a more general result: If a and b
are positive integers such that ab is not a perfect square, then for all integers c and d
there are infinitely many positive integers n such that an + c2 and bn + d2 are both
perfect squares.

Letting an + c2
= x2 and bn + d2

= y2, we have

bx2
− ay2

= bc2
− ad2. (1)

Conversely, if (x, y) is a solution to (1) and x2
≡ c2 (mod a), then, for n = (x2

−

c2)/a, we have an + c2
= x2 and bn + d2

= y2.
Let (u, v) be a solution to the Pell equation

u2
− abv2

= 1, (2)

and let x = cu + adv and y = du + bcv. Now (x, y) is a solution to (1) and x2
≡

c2u2
≡ c2 (mod a). To complete the proof, note that since ab is positive and is not a

perfect square, the equation (2) has infinitely many solutions.

Also solved by G. Apostolopoulos (Greece), B. D. Beasley, D. Beckwith, R. Chapman (U. K.), and H. M. Choe
& E. Jee & S. Kim (S. Korea).

A Combinatorial Identity

11509 [2010, 558]. Proposed by William Stanford, University of Illinois-Chicago,
Chicago, IL. Let m be a positive integer. Prove that

m2
−m+1∑

k=m

(m2
−2m+1
k−m

)
k
(m2

k

) =
1

m
(2m−1

m

) .
Solution I by Kim McInturff, Santa Barbara, CA. Among the

( m2

2m−1

)
subsets of size

2m − 1 in {1, . . . ,m2
}, exactly

( k−1
m−1

)(m2
−k

m−1

)
have k as the median element. Therefore

m2
−m+1∑

k=m

(m2
−2m+1
k−m

)
k
(m2

k

) =
(m2
− 2m + 1)!

(m2)!

m2
−m+1∑

k=m

(k − 1)!

(k − m)!
·

(m2
− k)!

(m2 − m + 1− k)!

=
(m2
− 2m + 1)!

(m2)!
((m − 1)!)2

m2
−m+1∑

k=m

(
k − 1

k − m

)
·

(
m2
− k

m − 1

)

=
(m2
− 2m + 1)!

(m2)!
((m − 1)!)2

(
m2

2m − 1

)
=
((m − 1)!)2

(2m − 1)!
=

1

m
(2m−1

m

) .
Solution II by Takis Konstantopoulos, Uppsala University, Uppsala, Sweden. Let A,
B, a, and b be integers such that A ≥ 1, B ≥ 1, a ≥ b, and B − A ≥ a − b. We prove
the more general identity

A+a∑
k=a

( A
k−a

)( B
k−b

) = B + 1

(a − b + 1)
(B−A+1

a−b+1

) . (∗)

The desired result follows by setting A = (m − 1)2, B = m2
− 1, a = m, and b = 1

and dividing by m2. To prove (∗), recall the beta integral∫ 1

0
t p(1− t)q dt =

p! q!

(p + q + 1)!

May 2012] PROBLEMS AND SOLUTIONS 429

X
ia
ng
’s
T
ex
m
at
h



for nonnegative integers p and q . Using this, we write

1( B
k−b

) = (B + 1)
∫ 1

0
t k−b(1− t)B+b−k dt

when b ≤ k ≤ B + b and in particular when a ≤ k ≤ A + a. The sum in (∗) then
becomes

A+a∑
k=a

( A
k−a

)( B
k−b

) = (B + 1)
∫ 1

0
t−b(1− t)B+b

∑
k

(
A

k − a

)(
t

1− t

)k

dt

= (B + 1)
∫ 1

0
t−b(1− t)B+b

(
t

1− t

)a (
1+

t

1− t

)A

dt

= (B + 1)
∫ 1

0
ta−b(1− t)B−A+b−a dt =

B + 1

(a − b + 1)
(B−A+1

a−b+1

) .
Solution III by Stanley Xiao, University of Waterloo, Waterloo, Ontario, Canada. We
generalize the problem: given positive integers R, B, and b with b ≤ B, we show

R∑
r=0

b
(B

b

)(R
r

)
(b + r)

(B+R
b+r

) = 1. (∗∗)

The desired result follows by setting B = 2m − 1, R = (m − 1)2, and b = m.
To prove (∗∗), consider a deck of B blue cards and R red cards. A game is played

where the player pulls cards without replacement from a shuffled deck and wins as
soon as he obtains b blue cards. The probability of winning is 1, since b ≤ B. We
compute the probability that the player wins after drawing exactly r red cards, with 0 ≤
r ≤ R. The probability that exactly b of the first b + r cards are blue is

(B
b

)(R
r

)/(B+R
b+r

)
.

The probability that the last card is blue given that exactly b of the first b+ r cards are
blue is b/(b + r). Hence the probability of the player winning after drawing exactly r
red cards is

b
(B

b

)(R
r

)
(b + r)

(B+R
b+r

)
.

Summing over r gives (∗∗).

Also solved by M. Anton & E. Niehaus & E. Shirley, M. Bataille (France), D. Beckwith, R. Chapman (U. K.),
R. Cheplyaka & V. Lucic & L. Pebody, P. De (India), M. N. Deshpande (India), M. Goldenberg & M. Kaplan,
O. Kouba (Syria) M. E. Larsen (Denmark), J.-Y. Lee (Korea), O. P. Lossers (Netherlands), Á. Plaza (Spain),
O. G. Ruehr, J. Schlosberg, J. Simons (U. K.), N. C. Singer, S. Song (Korea), R. Stong, R. Tauraso (Italy),
J. Vinuesa (Spain), M. Vowe (Switzerland), F. Vrabec (Austria), H. Widmer (Switzerland), BSI Problems
Group (Germany), Ellington Management Problem Solving Group, GCHQ Problem Solving Group (U. K.),
Mathramz Problem Solving Group, and the proposer.

The Inf of the Circumcenter-Centroid-Incenter Angle is π/2

11516 [2010, 649]. Proposed by Elton Bojaxhiu, Albania, and Enkel Hysnelaj, Aus-
tralia. Let T be the set of all nonequilateral triangles. For T in T , let O be the circum-
center, Q the incenter, and G the centroid. Show that infT∈T ∠OG Q = π/2.

Editorial comment. As pointed out by O. Geupel (Germany) and B. Mulansky (Ger-
many), the solution to this problem was actually contained in: Andrew P. Guinand,
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“Euler Lines, Tri-tangent Centers, and Their Triangles” in Amer. Math. Monthly 91
(1984) 290–300. In that article, Guinand defines the “critical circle” of a triangle as
that for which the segment between the centroid and the orthocenter is a diameter.
(This is also known as the “Circle of Bellot-Rosada”.)

Guinand’s Theorem 1 (p. 291) states: “The incenter of a non-equilateral triangle lies
inside the critical circle, and all the excenters lie outside it.” Thus we have immediately
that the inf desired in this problem cannot be less than π/2.

Guinand’s Theorem 4 (p. 296) states, in part, that: “Every point inside the critical
circle except the nine-point center is the incenter of some triangle.” (He assumes G and
O are fixed, hence so is the critical circle.) The nine-point center must be exempted
because, in some sense, it corresponds to the equilateral triangle. This clause of Theo-
rem 4 guarantees that ∠OG Q can be made arbitrarily close to π/2 by making Q close
to G and even closer to the boundary of the critical circle.

Two readers, J.-P. Grivaux (France) and J. Schlosberg, pointed out that the claim
that ∠OG Q is always obtuse follows from Problem 10955, Amer. Math. Monthly 111
(2004) 67–69.

Solved by R. Bagby, C. Curtis, P. P. Dályay (Hungary), O. Geupel (Germany), J.-P. Grivaux (France), E. A.
Herman, L. R. King, O. Kouba (Syria), K. McInturff, B. Mulansky (Germany), C. R. Pranesachar (India), J.
Schlosberg, R. Stong, M. Tetiva (Romania), Z. Vörös (Hungary), J. B. Zacharias, Barclays Capital Quantitative
Analytics Group (U. K.), and the proposers.

A Harmonious Sum

11519 [2010, 649]. Proposed by Ovidiu Furdui, Câmpia Turzii, Cluj, Romania. Find

∞∑
n=1

∞∑
m=1

(−1)n+m Hn+m

n + m
,

where Hn denotes the nth harmonic number.

Solution I by Wim Nuij, Eindhoven, The Netherlands. We show that the value is
π2

12 −
log 2

2 −
log22

2 . Since the sum is not absolutely convergent, instead we consider∑
∞

n=1

∑
∞

m=1(−x)n+m Hn+m/(n + m). This series is absolutely convergent for |x | < 1,
so combining the terms where n + m = k + 1 yields

∞∑
k=0

(−1)k+1x k+1 Hk+1
k

k + 1
, (1)

which can be split into

∞∑
k=0

(−1)k+1x k+1 Hk+1 +

∞∑
k=1

(−1)k
x k+1

k + 1
Hk +

∞∑
k=0

(−1)k
x k+1

(k + 1)2
.

The power series of log(1+ x) is
∑
∞

k=0(−1)k x k+1/(k + 1), so

log(1+ x)

1+ x
=

∞∑
k=0

(−1)k x k+1
k∑

i=0

1

i + 1
=

∞∑
k=0

(−1)k x k+1 Hk+1.

Integration leads to

log2(1+ x)

2
=

∞∑
k=1

(−1)k−1 Hk
x k+1

k + 1
,
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so (1) equals

−
log(1+ x)

1+ x
−

log2(1+ x)

2
+

∞∑
k=0

(−1)k
x k+1

(k + 1)2
.

For x → 1− this tends to − log 2
2 −

log22
2 +

π2

12 , but we need to justify that this limit is
the sum of the original series.

Let Tn(x) =
∑
∞

m=1(−1)m−1xn+m Hn+m/(n + m). Since Hp/p is strictly decreasing
and limp→∞ Hp/p = 0, the alternating series Tn(x) converges uniformly on [0, 1], so
it is continuous on this interval. For 0 < x ≤ 1 we have

Hp−1

p − 1
− x

Hp

p
> x

Hp

p
− x2 Hp+1

p + 1
> 0 for all p > 1,

where the first inequality follows from the discriminant(
Hp

p

)2

−
Hp −

1
p

p − 1
·

Hp +
1
p

p + 1
< 0,

and the second inequality follows from Hp/p being strictly decreasing. Hence Tn(x) >
Tn+1(x) > 0 for 0 < x ≤ 1, implying that Tn(x)→ 0 uniformly. Thus the alternating
series

∑
∞

n=1(−1)n−1Tn(x) converges uniformly on [0, 1]. Its sum is continuous at x =
1, justifying taking the limit.

Solution II by Richard Stong, San Diego, CA. Let S denote the desired sum. Since the
inner series is alternating with terms decreasing in magnitude, we have∣∣∣∣∣

∞∑
m=1

(−1)m+n Hn+m

n + m

∣∣∣∣∣ ≤ Hn+1

n + 1
→ 0

as n →∞. Thus the terms in the outer sum tend to 0. Hence it suffices to show that
even-indexed partial sums of S converge, and we may add pairs of consecutive terms
(say the (2r − 1)-st and (2r)-th). Doing the same for the inner sum as well gives

S =
∞∑

r=1

∞∑
m=1

(
(−1)m+1 H2r+m−1

2r + m − 1
+ (−1)m

H2r+m

2r + m

)

=

∞∑
r=1

∞∑
s=1

(
H2r+2s−2

2r + 2s − 2
−

2H2r+2s−1

2r + 2s − 1
+

H2r+2s

2r + 2s

)

=

∞∑
r=1

∞∑
s=1

2H2r+2s − 3

(2r + 2s − 2)(2r + 2s − 1)(2r + 2s)
.

This sum now converges absolutely. Rearrange it by letting t = r + s and noting that
each value of t occurs for t − 1 pairs (r, s) (and include the vanishing term where
t = 1) to get S =

∑
∞

t=1(2H2t − 3)/(4t (2t − 1)). Applying the same regularization
procedure to the well-known identities

∞∑
t=1

(−1)n−1 Hn

n
=

∫ 1

0

− log(1− x)

1+ x
dx =

π2

12
−

log2 2

2
,

∞∑
t=1

(−1)n−1 1

n
= log 2

432 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 119

X
ia
ng
’s
T
ex
m
at
h



gives

∞∑
t=1

H2t − 1

2t (2t − 1)
=
π2

12
−

log2 2

2
,

∞∑
t=1

1

2t (2t − 1)
= log 2.

Comparing these formulas yields S = π2

12 −
log 2

2 −
log22

2 .

Editorial comment. A number of incomplete solutions were received. Most found
limx→1−

∑
∞

n=1

∑
∞

m=1(−x)n+m Hn+m/(n + m) (as in Solution I) and tried to invoke
Abel’s theorem to argue that it is the sum of the series. However, this requires
the rearrangement of the terms of the double series into a single series, so the
use of the limit needs to be justified. For example, the series

∑
∞

n=1

∑
∞

m=1 an,m

with an,1 = 1, an,2 = −1, and an,m = 0 for n ≥ 1 and m ≥ 3 has sum 0, but
limx→1−

∑
∞

n=1

∑
∞

m=1 an,m xn+m
= 1.

Mark Wildon showed that if 〈an〉 is a decreasing sequence of positive numbers
with limit 0 as n →∞ such that (an − an+1) and an/an+1 are also decreasing, then∑
∞

n=1

∑
∞

m=1(−1)n+man+m = limx→1−
∑
∞

n=1

∑
∞

m=1(−x)n+man+m . Summing the origi-
nal series over the diagonal k = m + n yields a divergent series.

The solution of two similar problems appeared recently in Mathematics Magazine:
Problem 1838, 84 (2011), 65–67, and Problem 1849, 84 (2011), 234–235.

Also solved by R. Bagby, D. Beckwith, B. S. Burdick, M. Chamberland & E. A. Herman, H. Chen, J. Grivaux
(France), O. Kouba (Syria), G. Lamb, D. O’Brien & C. Rousseau, P. Perfetti (Italy), N. C. Singer, A. Stenger,
R. Tauraso (Italy), D. B. Tyler, M. Wildon (U. K.), S. Zhao (China), Barclays Capital Quantitative Analytics
Group (U. K.), Ellington Management Problem Solving Group, GCHQ Problem Solving Group (U. K.), and
the proposer.

A Short Proof that a Factor Ring of a PID Is Armendariz

A commutative ring R is said to be Armendariz if, f =
∑m

i=0 ai X i , g =∑n
j=0 b j X j

∈ R[X ] with f g = 0 implies ai b j = 0 for all i, j .
The Gauss lemma shows A/I is Armendariz for a PID A and an ideal I .
Indeed, recall over a PID A, the ideal c( f ) generated by the coefficients of

a polynomial f ∈ A[X ] is called the content ideal and, Gauss’s lemma says
that c( f g) = c( f )c(g). Now, if f =

∑m
i=0 ai X i , g =

∑n
j=0 b j X j

∈ A[X ] with
f g ∈ I [X ], then writing l,m for the GCD of the ai ’s and the b j ’s, respectively,
we have the content ideals c( f ) = (l), c(g) = (m). So, for each i, j ,

ai b j ∈ (l)(m) = c( f )c(g) = c( f g) ⊆ I.

—Submitted by Satyaki Mukherjee
B. Math. (Hons.) IInd year, Indian Statistical Institute,

8th Mile Mysore Road, Bangalore 560059, India
email: paglasatyaki@gmail.com
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with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before October 31, 2012. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11649. Proposed by Grahame Bennett, Indiana University, Bloomington, IN. Let p be
real with p > 1. Let (x0, x1, . . .) be a sequence of nonnegative real numbers. Prove
that

∞∑
j=0

(
∞∑

k=0

xk

j + k + 1

)p

<∞ ⇒

∞∑
j=0

(
1

j + 1

j∑
k=0

xk

)p

<∞.

11650. Proposed by Michael Becker, University of South Carolina at Sumter, Sumter,
SC. Evaluate ∫

∞

x=0

∫
∞

y=x
e−(x−y)2 sin2(x2

+ y2)
x2
− y2

(x2 + y2)2
dy dx .

11651. Proposed by Marcel Celaya and Frank Ruskey, University of Victoria, Victoria,
BC, Canada. Show that the equation

⌊
n + 1

φ

⌋
= n −

⌊
n

φ

⌋
+

⌊
bn/φc

φ

⌋
−

⌊
b
bn/φc
φ
c

φ

⌋
+


⌊
b
bn/φc
φ
c

φ

⌋
φ

− · · ·
holds for every nonnegative integer n if and only if φ = (1+

√
5)/2.

11652. Proposed by Ajai Choudhry, Foreign Service Institute, New Delhi, India. For
a, b, c, d ∈ R, and for nonnegative integers i , j , and n, let

ti, j =

i∑
s=0

(
n − i

j − s

)(
i

s

)
an−i− j+sb j−sci−sds .

http://dx.doi.org/10.4169/amer.math.monthly.119.06.522
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Let T (a, b, c, d, n) be the (n + 1)-by-(n + 1)matrix with (i, j)-entry given by ti, j , for
i, j ∈ {0, . . . , n}. Show that det T (a, b, c, d, n) = (ad − bc)n(n+1)/2.

11653. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let n
be a positive integer. Determine all entire functions f that satisfy, for all complex s
and t , the functional equation

f (s + t) =
n−1∑
k=0

f (n−1−k)(s) f (k)(t).

Here, f (m) denotes the mth derivative of f .

11654. Proposed by David Borwein, University of Western Ontario, Canada, and
Jonathan M. Borwein and James Wan, CARMA, University of Newcastle, Australia.
Let Cl denote the Clausen function, given by Cl(θ) =

∑
∞

n=1 sin(nθ)/n2. Let ζ denote
the Riemann zeta function.
(a) Show that∫ 2π

y=0

∫ 2π

x=0
log(3+ 2 cos x + 2 cos y + 2 cos(x − y)) dx dy = 8πCl(π/3).

(b) Show that∫ π

y=0

∫ π

x=0
log(3+ 2 cos x + 2 cos y + 2 cos(x − y)) dx dy =

28

3
ζ(3).

11655. Proposed by Pál Péter Dályay, Szeged, Hungary. Let ABCD be a convex
quadrilateral, and let α, β, γ , and δ be the radian measures of angles DAB, ABC, BCD,
and CDA, respectively. Suppose α + β > π and α + δ > π , and let η = α + β − π
and φ = α + δ − π . Let a, b, c, d, e, f be real numbers with ac = bd = e f . Show
that if abe > 0, then

a cosα + b cosβ + c cos γ + d cos δ + e cos η + f cosφ ≤
be

2a
+

c f

2b
+

de

2c
+

a f

2d
,

while for abe < 0 the inequality is reversed.

SOLUTIONS

A Triangle Inequality

11527 [2010, 742]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania. Prove that in an acute triangle with sides of length a, b, c,
inradius r , and circumradius R,

a2

b2 + c2 − a2
+

b2

c2 + a2 − b2
+

c2

a2 + b2 − c2
≥

3

2
·

R

r
.

Solution by Thomas Smotzer, Youngstown State University, Youngstown, OH. Let
4ABC be acute, with side lengths a, b, c, area K , and semiperimeter p. Let S =
S(a, b, c) be the sum on the left in the required inequality. Note that K = 1

2 bc sin A,
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and by the law of cosines b2
+ c2
− a2

= 2bc cos A, and similar formulas hold for
angles B and C . So

S =
a2

2bc cos A
+

b2

2ca cos B
+

c2

2ab cos C

=
a2 tan A

4K
+

b2 tan B

4K
+

c2 tan C

4K
.

It is enough to show a2 tan A + b2 tan B + c2 tan C ≥ 6K R/r = 6pR, since K = r p.
By the law of sines a = 2R sin A, etc., so we must show that

a 2R sin A tan A + b 2R sin B tan B + c 2R sin C tan C ≥ 3(a + b + c)R.

Equivalently, we must show that a sin A tan A+ b sin B tan B + c sin C tan C ≥ 3
2 (a +

b + c) . Note that since the triangle is acute, sin A tan A, sin B tan B, and sin C tan C
occur in the same order after sorting as do the corresponding quantities a, b, and c.

Using Chebyshev’s inequality, it suffices to show that 1
3 (a + b + c)(sin A tan A +

sin B tan B + sin C tan C) ≥ 3
2 . This simplifies to

sin A tan A + sin B tan B + sin C tan C ≥ 9
2 .

Since sin x tan x is a convex function of x on [0, π/2), by Jensen’s inequality we have
sin A tan A+ sin B tan B + sin C tan C ≥ 3 sin 1

3 (A+ B + C) tan 1
3 (A+ B + C). The

right side of this simplifies to 3 sin(π/6) tan(π/6) = 9/2.

Also solved by A. Alt, G. Apostolopoulos (Greece), R. Bagby, M. Bataille (France), D. Beckwith, M. Can,
M. Caragiu, C. Curtis, P. P. Dályay (Hungary), H. Y. Far, O. Faynshteyn (Germany), M. Goldenberg & M.
Kaplan, J. G. Heuver (Canada), E. Hysnelaj & E. Bojaxhiu (Australia, Germany), E. Jee & S. Kim (S. Korea),
W.-D. Jiang (China), O. Kouba (Syria), K.-W. Lau (China), J. H. Lee (Korea), K. McInturff, N. Minculete
(Romania), P. Nüesch (Switzerland), Á. Plaza (Spain), C. R. Pranesachar (India), E. A. Smith, R. Stong, M.
Tetiva (Romania), Z. Vörös (Hungary), M. Vowe (Switzerland), S. Wagon, H. Wang & J. Wojydylo, J. B.
Zacharias, Barclays Capital Problems Solving Group (U. K.), Con Amore Problem Group (Denmark), GCHQ
Problem Solving Group (U. K.), and the proposer.

An Inequality for Three Circumradii

11531 [2010, 834]. Proposed by Nicuşor Minculete, “Dimitrie Cantemir” University,
Brasov, Romania. Let M be a point in the interior of triangle ABC and let λ1, λ2, λ3 be
positive real numbers. Let Ra , Rb, and Rc be the circumradii of triangles MBC, MCA,
and MAB, respectively. Show that

λ2
1 Ra + λ

2
2 Rb + λ

2
3 Rc ≥ λ1λ2λ3

(
|MA|

λ1
+
|MB|

λ2
+
|MC|

λ3

)
.

(Here, for V ∈ {A, B,C}, |MV| denotes the length of the line segment MV. )

Solution by George Apostolopoulis, Massolonghi, Greece. With points named as in
the figure, we have that B ′C ′ is perpendicular to MA, C ′A′ is perpendicular to MB, and
A′B ′ is perpendicular to MC. Using Pappus’s Theorem, we have the inequality

|B ′C ′||M A′| ≥ |C ′A′||MC| + |A′B ′||MB|. (1)
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A
B

C

A′

B ′

C ′

M

2Ra

2Rb

2Rc

However, |MA′| is the diameter of the circumcircle for 4BAC, that is, |MA′| = 2Ra .
Therefore, using this in (1) gives

2Ra ≥
|C ′A′|

|B ′C ′|
|MC| +

|A′B ′|

|B ′C ′|
|MB|. (2)

Similarly,

2Rb ≥
|A′B ′|

|C ′A′|
|MA| +

|B ′C ′|

|C ′A′|
|MC|, (3)

2Rc ≥
|B ′C ′|

|A′B ′|
|MB| +

|C ′A′|

|A′B ′|
|MA|. (4)

Multiplying (2) by λ2
1, (3) by λ2

2, and (4) by λ2
3, then adding, we obtain

2λ2
1 Ra + 2λ2

2 Rb + 2λ2
3 Rc ≥

(
λ2

2|A
′B ′|

|C ′A′|
+
λ2

3|C
′A′|

|A′B ′|

)
|MA|

+

(
λ2

1|A
′B ′|

|B ′C ′|
+
λ2

3|B
′C ′|

|A′B ′|

)
|MB| +

(
λ2

1|C
′A′|

|B ′C ′|
+
λ2

2|B
′C ′|

|C ′A′|

)
|MC|. (5)

For any real x and y, x2
+ y2

≥ 2xy. Applying this to the coefficient of |MA| on the
right of (5), we get

λ2
2|A
′B ′|2 + λ2

3|C
′A′|2

|A′B ′||C ′A′|
≥ 2λ2λ3.

Similar inequalities follow for the other two terms in (5), and so (5) implies

2λ2
1 Ra + 2λ2

2 Rb + 2λ2
3 Rc ≥ 2λ2λ3|MA| + 2λ1λ3|MB| + 2λ1λ2|MC|.

This is the required inequality, namely

λ2
1 Ra + λ

2
2 Rb + λ

2
3 Rc ≥ λ1λ2λ3

(
|MA|

λ1
+
|MB|

λ2
+
|MC|

λ3

)
.

Equality holds when 4ABC is equilateral, M is the circumcenter, and λ1 = λ2 = λ3.

Also solved by M. Bataille (France), P. P. Dályay (Hungary), O. Faynshteyn (Germany), O. Geupel (Germany),
O. Kouba (Syria), J. H. Smith, T. Smotzer, R. Stong, M. Tetiva (Romania), Z. Vörös (Hungary), J. B. Zacharias
& K. T. Greeson, and the proposer.
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Zero–Nonzero Matrices

11534 [2010, 835]. Proposed by Christopher Hillar, Mathematical Sciences Research
Institute, Berkeley, CA. Let k and n be positive integers with k < n. Characterize the
n × n real matrices M with the property that for all v ∈ Rn with at most k nonzero
entries, Mv also has at most k nonzero entries.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
show that either M has at most k nonzero rows or M has at most 1 nonzero entry in
every column. Such a matrix has the desired property: in the first case Mv has at most
k nonzero entries for any v, and in the second case Mv has at most as many nonzero
entries as v.

Now suppose that some matrix M with the desired property is not of the form
stated. Thus M has at least k + 1 rows with nonzero entries and at least one column
with at least two nonzero entries. Build a list of columns of M as follows: say a list
of columns represents a row if and only if at least one of the columns in the set has
a nonzero entry in that row. Start with a column w1 with at least two nonzero entries.
If w1, . . . , wr have been chosen, and together they represent fewer than k + 1 rows,
then choose wr+1 to be any column that represents a new row and append it to the list.
Stop when w1, . . . , wr represent at least k + 1 rows. Now we started with a column
representing two rows, and each time we added a new column we got at least one new
row. Hence r ≤ k. Thus any linear combination

∑r
j=1 a jw j is of the form Mv, where

v has at most k nonzero entries. Fix k + 1 rows represented by the w j . For the i th such
row, let Vi be the set of all r -tuples (a1, . . . , ar ) such that

∑r
j=1 a jw j has a nonzero

entry in that i th row. Since w1, . . . , wr do represent this row, Vi is the nullspace of a
nontrivial linear equation on r -tuples and therefore is a codimension-1 subspace of Rr .
However, the required property of M says that for any r -tuple (a1, . . . , ar ), the linear
combination

∑r
j=1 a jv j has at most k nonzero entries; thus (a1, . . . , ar ) must lie in

one of these k + 1 subspaces. But of course Rr cannot be covered by finitely many
codimension-1 subspaces. This contradiction shows that such an M cannot exist.

Editorial comment. Several solvers noted that the same result holds for any field of
characteristic 0. John Smith (Needham, MA) noted that the result holds for rectangular
matrices.

Also solved by P. Budney, N. Caro (Brazil), P. P. Dályay (Hungary), E. A. Herman, Y. J. Ionin, J. H. Lindsey II,
O. P. Lossers (Netherlands), R. E. Prather, J. Simons (U. K.), J. H. Smith, M. Tetiva (Romania), E. I. Verriest,
Barclays Capital Problems Solving Group (U. K.), NSA Problems Group, and the proposer.

How Closely Does This Sum Approximate the Integral?

11535 [2010, 835]. Proposed by Marian Tetiva, Bı̂rlad, Romania. Let f be a contin-
uously differentiable function on [0, 1]. Let A = f (1) and let B =

∫ 1
0 x−1/2 f (x) dx .

Evaluate

lim
n→∞

n

(∫ 1

0
f (x) dx −

n∑
k=1

(
k2

n2
−
(k − 1)2

n2

)
f

(
(k − 1)2

n2

))
in terms of A and B.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA. Answer: A − B/2.
Proposition. If h is continuously differentiable on [0, 1], then

lim
n→∞

n

(∫ 1

0
h(x) dx −

1

n

n∑
k=1

h

(
k − 1

n

))
=

h(1)− h(0)

2
.
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Proof. Let H denote an antiderivative of h. By Taylor’s theorem,∫ 1

0
h(y) dy −

1

n

n∑
k=1

h

(
k − 1

n

)
=

n∑
k=1

(∫ k/n

(k−1)/n
h(y) dy −

1

n
h

(
k − 1

n

))

=

n∑
k=1

(
H

(
k

n

)
− H

(
k − 1

n

)
−

1

n
H ′
(

k − 1

n

))
=

1

2n2

n∑
k=1

H ′′(yk),

for some list (y1, . . . , yn) with yk ∈ ((k − 1)/n, k/n) for 1 ≤ k ≤ n. Therefore,

lim
n→∞

n

(∫ 1

0
h(y) dy −

n∑
k=1

h

(
k − 1

n

)
1

n

)
=

1

2
lim

n→∞

1

n

n∑
k=1

H ′′(yk)

=
1

2

∫ 1

0
h′(y) dy =

h(1)− h(0)

2
.

For this problem, let h(y) = 2y f (y2). Now (h(1)− h(0))/2 = (2 f (1))/2 = A. Using
the substitution y =

√
x , we have∫ 1

0
f (x) dx =

∫ 1

0
h(y)dy, B =

∫ 1

0
x−1/2 f (x) dx = 2

∫ 1

0
f (y2) dy.

Therefore, by the proposition,

lim
n→∞

n

(∫ 1

0
f (x) dx −

n∑
k=1

(
k2

n2
−
(k − 1)2

n2

)
f

(
(k − 1)2

n2

))

= lim
n→∞

n

(∫ 1

0
h(y) dy −

n∑
k=1

(
2(k − 1)

n2
+

1

n2

)
f

(
(k − 1)2

n2

))

= lim
n→∞

[
n

(∫ 1

0
h(y) dy −

1

n

n∑
k=1

h

(
k − 1

n

))
−

1

n

n∑
k=1

f

(
(k − 1)2

n2

)]

=
h(1)− h(0)

2
−

∫ 1

0
f (y2) dy = A −

B

2
.

Also solved by P. Bracken, N. Caro (Brazil), H. Chen, D. Constales (Belgium), P. P. Dályay (Hungary), Y. Du-
mont (France), P. J. Fitzsimmons, D. Fleischman, J.-P. Grivaux (France), F. Holland (Ireland), S. Kaczkowski,
P. Khalili, O. Kouba (Syria), W. C. Lang, J. H. Lindsey II, R. Nandan, M. Omarjee (France), K. Schilling, J.
Schlosberg, J. Simons (U. K.), N. C. Singer, Z. Song & L. Yin (China), A. Stenger, R. Stong, T. Tam, J. A. Van
Casteren (Belgium), E. I. Verriest, P. Xi (China), J. B. Zacharias & K. T. Greeson, Barclays Capital Problems
Solving Group (U. K.), GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer.

Use Hayashi’s Inequality

11536 [2010, 835]. Proposed by Mihaly Bencze, Brasov, Romania. Let K , L , and M
denote the respective midpoints of sides AB, BC, and CA in triangle ABC, and let P be
a point in the plane of ABC other than K , L , or M . Show that

|AB|

|PK|
+
|BC|

|PL|
+
|CA|

|PM|
≥
|AB| · |BC| · |CA|

4|PK| · |PL| · |PM|
,

where |UV| denotes the length of segment UV.
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Solution by D. Marinescu, Colegiul Naţional “Iancu de Hunedoara”, Hunedoara, Ro-
mania, and M. Monea, Colegiul Naţional“Decebral”, Deva, Romania. In 1913, T.
Hayashi proved Hayashi’s Inequality: For any triangle ABC with opposite sides of
lengths a, b, c respectively, and for and an arbitrary point M in its plane,

a|MB| · |MC| + b|MC| · |MA| + c|MA| · |MB| ≥ abc.

See D. M. Mitronović, J. E. Peĉarić, V. Volenec, Recent Advances in Geometric In-
equalities, (Kluwer, 1989), p. 297. We now apply Hayashi’s Inequality with triangle
KLM and point P to get

|KL| · |PK| · |PL| + |KM| · |PK| · |PM| + |ML| · |PM| · |PL| ≥ |KL| · |ML| · |MK|.

Since |KL| = |AC|/2, |KM| = |BC|/2, and|ML| = |AC|/2,

|CA| · |PK| · |PL| + |BC| · |PK| · |PM| + |AB| · |PM| · |PL| ≥
1

4
|CA| · |BC| · |AB|,

which is equivalent to the inequality to be proved.

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), D. Beckwith, M. Caragiu, P. P. Dályay (Hun-
gary), O. Geupel (Germany), O. Kouba (Syria), N. Minculete (Romania), B. Mulansky (Germany), C. R. Prane-
sachar (India), J. Schlosberg, T. Smotzer, M. Vowe (Switzerland), GCHQ Problem Solving Group (U. K.),
Northwestern University Math Problem Solving Group, and the proposer.

A Circumradius Inequality

11541 [2010, 929]. Proposed by Nicuşor Minculete, “Dimitrie Cantemir” University,
Brasov, Romania. Let M be a point in the interior of triangle ABC. Let Ra , Rb, and Rc

be the circumradii of triangles MBC, MCA, and MAB, respectively. Let |MA|, |MB|,
and |MC| be the distances from M to A, B, and C . Show that

|MA|

Rb + Rc
+
|MB|

Ra + Rc
+
|MC|

Ra + Rb
≤

3

2
.

Solution by Oleh Faynshteyn, Leipzig, Germany. Let ϕ1 = ∠CAM, ϕ2 = ∠MAB, ϕ3 =

∠ABM, ϕ4 = ∠MBC, ϕ5 = ∠BCM, and ϕ6 = ∠BCM. Observe that
∑6

i=1 ϕi = π .
From triangles AMC and ABM, it follows that

|MA| = 2Rb sinϕ6 = 2Rc sinϕ3,

hence

|MA|

Rb + Rc
=

2

cscϕ3 + cscϕ6
≤

1

2
(sinϕ3 + sinϕ6) ,

where the inequality is a consequence of the arithmetic-harmonic mean inequality.
Similarly we get

|MB|

Rc + Ra
≤

1

2
(sinϕ2 + sinϕ5) ,

|MC|

Ra + Rb
≤

1

2
(sinϕ1 + sinϕ4) .

Adding these three inequalities, we obtain

|MA|

Rb + Rc
+
|MB|

Ra + Rc
+
|MC|

Ra + Rb
≤

1

2

6∑
i=1

sinϕi .
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Since the sine function is concave down on (0, π), Jensen’s inequality gives

|MA|

Rb + Rc
+
|MB|

Ra + Rc
+
|MC|

Ra + Rb
≤ 3 sin

π

6
=

3

2
.

Equality holds if and only if all the ϕi are π/6, that is, if and only if ABC is equilateral
and M is its center.

Editorial comment. Pál Péter Dályay and Marian Dincă (independently) remarked that
the problem and solution generalize as follows. Let M be a point in the interior of
the convex n-gonA1 · · · An (with all indices interpreted mod n). With Rk denoting the
circumradius of triangle M Ak Ak+1, we have

n∑
k=1

|MAk |

Rk−1 + Rk
≤ n cos

π

n
,

with equality if and only if the n-gon is regular and M is its center.

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), M. Can, R. Chapman (U. K.), P. P. Dályay
(Hungary), M. Dincă (Romania), W. Jiang (China), O. Kouba (Syria), C. R. Pranesachar (India), J. Schlosberg,
R. A. Simon (Chile), J. Simons (U. K.), R. Smith, T. Smotzer, R. Stong, M. Tetiva (Romania), Z. Vörös
(Hungary), J. B. Zacharias & K. T. Greeson, GCHQ Problem Solving Group (U. K.), and the proposer.

Gamma and Beta Inequalities

11542 [2010, 929]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania, and Vicenţiu Rădulescu, Institute of Mathematics “Simion
Stoilow” of the Romanian Academy, Bucharest, Romania. Show that for x, y, z > 1,
and for positive α, β, γ ,

(2x2
+ yz)0(x)+ (2y2

+ zx)0(y)+ (2z2
+ xy)0(z)

≥ (x + y + z)(x0(x)+ y0(y)+ z0(z)),

and

B(x, α)x2
+2yz B(y, β)y2

+2zx B(z, γ )z2
+2xy

≥ (B(x, α)B(y, β)B(z, γ ))xy+yz+zx .

Here, B(x, α) is Euler’s beta function, defined by B(x, α) =
∫ 1

0 t x−1(1− t)α−1dt .

Solution by M. A. Prasad, India. The first inequality is equivalent to

(x − y)(x − z)0(x)+ (y − z)(y − x)0(x)+ (z − x)(z − y)0(z) ≥ 0.

It is symmetric in x, y, z, so we may assume x ≥ y ≥ z. The first and third terms are
nonnegative, and the middle term is nonpositive. Note also that 0(x) is a convex func-
tion for x > 0, since (d2/dx2)0(x) = (log x)2

∫
∞

0 e−t t x−1 dx ≥ 0. Therefore, 0(y) ≤
max{0(x), 0(z)}. Since |(y − z)(y − x)| ≤ min{(x − y)(x − z), (z − x)(z − y)}, one
of the nonnegative terms is at least as large as the nonpositive term in absolute value.
This completes the proof for the first inequality. The second inequality is incorrect. For
a counterexample, consider x > y > z, and α, γ very large, and β = 1. The inequality
is equivalent to

B(x, α)(x−y)(x−z)B(y, β)(y−z)(y−x)B(z, γ )(z−x)(z−y)
≥ 1.

Now as α, γ →∞, we have B(x, α), B(z, γ )→ 0, so the left side is less than 1.

Also solved by G. Apostopoulos (Greece), R. Bagby, R. Chapman (U. K.), P. P. Dályay (Hungary), R. Stong,
J. V. Tejedor (Spain), and GCHQ Problem Solving Group (U. K.)
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West

with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before December 31, 2012. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11656. Proposed by Valerio De Angelis, Xavier University of Louisiana, New Orleans,
LA. The sign chart of a polynomial f with real coefficients is the list of successive
pairs (ε, σ ) of signs of ( f ′, f ) on the intervals separating real zeros of f f ′, together
with the signs at the zeros of f f ′ themselves, read from left to right. Thus, for f =
x3
− 3x2, the sign chart is ((1,−1), (0, 0), (−1,−1), (0,−1), (1,−1), (1, 0), (1, 1)).

As a function of n, how many distinct sign charts occur for polynomials of degree n?

11657. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL,
and Yury Ionin, Central Michigan University, Mount Pleasant, MI. Given a set V of n
points in R2, no three of them collinear, let E be the set of

(n
2

)
line segments joining

distinct elements of V .
(a) Prove that if n 6≡ 2 (mod 3), then E can be partitioned into triples in which the
length of each segment is greater than the sum of the other two.
(b) Prove that if n ≡ 2 (mod 3) and e is an element of E , then E\{e} can be so parti-
tioned.

11658. Proposed by Greg Oman, University of Colorado at Colorado Springs, Col-
orado Springs, CO. Let V be the vector space over R of all (countably infinite) se-
quences (x1, x2, . . .) of real numbers, equipped with the usual addition and scalar
multiplication. For v ∈ V , say that v is binary if vk ∈ {0, 1} for k ≥ 1, and let B be the
set of all binary members of V . Prove that there exists a subset I of B with cardinality
2ℵ0 that is linearly independent over R. (An infinite subset of a vector space is linearly
independent if all of its finite subsets are linearly independent.)

11659. Proposed by Albert Stadler, Herrliberg, Switzerland. Let x be real with 0 <
x < 1, and consider the sequence 〈an〉 given by a0 = 0, a1 = 1, and, for n > 1,

an =
a2

n−1

xan−2 + (1− x)an−1
.

http://dx.doi.org/10.4169/amer.math.monthly.119.07.608
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Show that

lim
n→∞

1

an
=

∞∑
k=−∞

(−1)k x k(3k−1)/2.

11660. Proposed by Stefano Siboni, University of Trento, Trento, Italy. Consider the
following differential equation: s ′′(t) = −s(t)− s(t)2sgn(s ′(t)), where sgn(u) denotes
the sign of u. Show that if s(0) = a and s ′(0) = b with ab 6= 0, then (s, s ′) tends to
(0, 0) with

√
s2 + s ′2 ≤ C/t as t →∞, for some C > 0.

11661. Proposed by Giedrius Alkauskas, Vilnius University, Vlinius, Lithuania. Find
every function f on R+ that satisfies the functional equation

(1− z) f (x) = f

(
1− z

z
f (xz)

)
for x > 0 and 0 < z < 1.

11662. Proposed by H. Stephen Morse, Fairfax, Va. Let ABCD be the vertices of a
square, in that order. Insert P and Q on AB (in the order APQB) so that each of P
and Q divides AB ‘in extreme and mean ratio’ (that is, |AB|/|BQ| = |BQ|/|QA| and
|AB|/|AP | = |AP |/|PB|.) Likewise, place R and S on CD so that CRSD is divided in
the same proportions as APQB. The four intersection points of AR, BS, CP , and DQ
are called the harmonious quartet of the square on its base pair (AB, CD). They form
a rhombus whose long diagonal has length (

√
5 + 1)/2 times the length of its short

diagonal.
Given a cube, create the harmonious quartet for each of its six faces, using each

edge as part of a base pair exactly once, according to this scheme: label the vertices
on one face of the cube ABCD and the corresponding vertices of the opposite face
A′B ′C ′D′. Pair AB with CD, AA′ with BB ′, and BC with B ′C ′. The rest of the pairings
are then forced: A′B ′ with C ′D′, AD with A′D′, and CC ′ with DD′. This generates 24
points.
(a) Show that these 24 points are a subset of the 32 vertices of a rhombic triaconta-
hedron (a convex polyhedron bounded by 30 congruent rhombic faces, meeting three
each across their obtuse angles at 20 vertices, and five each across their acute angles
at 12 vertices), and find a construction for the remaining eight vertices.
(b) Show, moreover, that the 12 end points of the longer diagonals of the six con-
structed rhombi are the vertices of an icosahedron I , and these diagonals are edges of
the icosahedron.
(c) Show that the 12 end points of the shorter diagonals of the constructed rhombi,
together with the eight additional vertices of the triacontahedron, are the vertices of a
dodecahedron. Show also that these shorter diagonals are edges of that dodecahedron.

SOLUTIONS

An Inequality in Three Variables

11543 [2010, 390]. Proposed by Richard Stong, Center for Communications Research,
San Diego, CA. Let x, y, z be positive numbers with xyz = 1. Show that (x5

+ y5
+

z5)2 ≥ 3(x7
+ y7
+ z7).
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Solution by Erik I. Verriest, Georgia Institute of Technology, Atlanta, GA. The problem
is equivalent to showing that the minimum of(

x5
+ y5
+ z5

)2

x7 + y7 + z7
,

subject to the constraints xyz = 1 and x, y, z > 0, is at least 3. Since the ratio equals
3 when x = y = z = 1, the bound can be achieved.

First suppose that x → 0. In this case or y, z tends to∞, and(
x5
+ y5
+ z5

)2

x7 + y7 + z7
≥

(
max{x, y, z}

)10

3 max{x, y, z}7
→∞.

Similar reasoning holds for y → 0 and z → 0. Therefore the minimum value is
achieved at an interior point where x, y, z > 0.

We apply the method of Lagrange multipliers, letting

L =

(
x5
+ y5
+ z5

)2

x7 + y7 + z7
+ λ(xyz − 1).

Necessary conditions for a stationary point are

∂

L
λ =

∂L

∂x
=
∂L

∂y
=
∂L

∂z
= 0.

Thus, at any stationary point, xyz = 1. Setting U = x5
+ y5
+ z5 and V = x7

+ y7
+

z7 and computing the other partials derivatives gives

10x5U V − 7x7U 2
+ λV 2

= 0,

10y5U V − 7y7U 2
+ λV 2

= 0, (1)

10z5U V − 7z7U 2
+ λV 2

= 0.

Adding and simplifying gives U 2V + λV 2
= 0, and since V 6= 0, λ = −U 2/V . Sub-

stituting this into (1) and dividing (as we may) by U V 2 gives

7

V
x7
−

10

U
x5
+ 1 = 0. (2)

and counterparts with y and z in place of x .
Consider now for a > 0 the function f defined by f (a) = pa7

− qa5
+ 1, where

both p and q are positive. Note f (0) = 1. This function is minimal at that a (call it
a∗) such that 7pa6

− 5qa4
= 0. Since a∗ > 0, it follows that a∗ =

√
5q/
√

7p. The
minimum is

f (a∗) =

((
5

7

)7/2

−

(
5

7

)5/2
)

q7/2

p5/2
+ 1 = 1−

2

7

(
5

7

)5/2 q7/2

p5/2
< 1.

Thus f has two positive zeros, one (double) positive zero, or no positive zeros, when
f (a∗) is less than, equal to, or larger than 0, respectively. Now return to (2) by writing
p = 7/V and q = 10/U , which we can do because U and V are positive. If f has no
positive zero, then (2) has no solution. If f has one positive zero, then the solution to
(2) is x = y = z, and since xyz = 1 this is the first case x = y = z = 1. If f has two
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positive zeros, then in the solution to (2), two of x, y, z are equal, say x = y, and the
other is z = 1/x2. This leads to the minimization of

(2x15
+ 1)2

x6(2x21 + 1)

over x > 0. The stationary value is given by

2(x3)12
+ 8(x3)5 − 9(x3)7 − 1 = 0,

which has a unique positive solution for X = x3
= 1 and corresponds to a minimum.

This again yields the first solution x = y = z = 1.

Editorial comment. Oliver Geupel and the proposer independently proved the inequal-
ity using the method found in V. Cı̂rtoaje, The equal variable method, Journal of In-
equalities in Pure and Applied Mathematics 8 (2007) issue 1, article 15, corollary 1.7
(page 3), available at http://www.emis.de/journals/JIPAM/images/059_06_
JIPAM/059_06.pdf.

Also solved by R. Bagby, P. Bracken, D. Constales (Belgium), A. Cooper, P. P. Dályay (Hungary), D. Fleis-
chman, O. Geupel (Germany), J.-P. Grivaux (France), K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers
(Netherlands), K. McInturff, D. J. Moore, P. Perfetti (Italy), C. R. Pranesachar (India), A. Stenger, C. Y.
Yildirim (Turkey), Y. Yu, S. M. Zemyan, GCHQ Problem Solving Group (U. K.), Texas State University
Problem Solvers Group, and the proposer.

A Rhombus From a Triangle

11547 [2011, 84]. Proposed by Francisco Javier Garcı́a Capitán, I.E.S Álvarez
Cubero, Priego de Córdoba, Spain, and Juan Bosco Romero Márquez, Univer-
sity of Valladolid, Spain. Let the altitude AD of triangle ABC be produced to
meet the circumcircle again at E . Let K , L , M , and N be the projections of D
onto the lines BA, AC , CE , and EB, and let P , Q, R, and S be the intersec-
tions of the diagonals of DKAL, DLCM, DMEN , and DNBK , respectively. Let
|XY | denote the distance from X to Y , and let α, β, γ be the radian measure
of angles BAC , CBA, ACB, respectively. Show that PQRS is a rhombus and that
|QS|2/|PR|2 = 1+ cos(2β) cos(2γ )/sin2 α.

Solution by Robin Chapman, University of Exeter, Exeter, England. We have a cyclic
quadrilateral BACE whose diagonals are perpendicular and meet at D. Let a = |DA|,
b = |DB|, c = |DC|, and e = |DE|. (Note that a, b and c are not the side-lengths of
triangle ABC .) We use Cartesian coordinates with origin D. By aligning the coordinate
axes appropriately, we get A = (0, a), B = (b, 0), C = (−c, 0), and E = (0,−e). By
a standard property of intersecting chords of a circle, ae = bc.

The point K is the unique point on AB for which DK and AB are perpendicular. A

routine calculation gives the ordered pair K =
(

a2b
a2+b2 ,

ab2

a2+b2

)
, and, similarly, the pairs

L =
(
−

a2c
a2+c2 ,

ac2

a2+c2

)
, M =

(
−

ce2

c2+e2 ,−
c2e

c2+e2

)
, and N =

(
be2

b2+e2 ,−
b2e

b2+e2

)
.

The point P is the intersection of the line KL with the y-axis DA. Let X =
(x, y) and U = (u, v) with x 6= u. The intersection of the line XU and the y-axis
is
(
0, (xv − yu)/(x − u)

)
. Performing the calculation gives

P =

(
0,

abc

a2 + bc

)
=

(
0,

ae

a + e

)
,
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since ae = bc. Similarly,

Q =

(
−

bc

b + c
, 0

)
, R =

(
0,−

ae

a + e

)
, S =

(
bc

b + c
, 0

)
.

Thus PQRS is a parallelogram, with centre D and with perpendicular diagonals. Hence
PQRS is a rhombus.

Since e = bc/a, we have that

|QS|2

|PR|2
=
(a + e)2

(b + c)2
=
(a2
+ bc)2

a2(b + c)2
.

Considering the right-angled triangle BDA yields tanβ = a
b .

Therefore,

cos(2β) =
1− tan2 β

1+ tan2 β
=

b2
− a2

a2 + b2
.

Similarly,

cos(2γ ) =
c2
− a2

a2 + c2
.

Computing twice the area of triangle ABC one way yields

|AD| |BC| = a(b + c),

and another yields

|AB| |AC| sinα =
√
(a2 + b2)(a2 + c2) sinα.

Equating the right sides gives

sin2 α =
a2(b + c)2

(a2 + b2)(a2 + c2)
.

Therefore,

1+
cos(2β) cos(2γ )

sin2 α
= 1+

(a2
− b2)(a2

− c2)

a2(b + c)2

=
a4
+ 2a2bc + b2c2

a2(b + c)2
=
(a2
+ bc)

a2(b + c)2
=
|QS|2

|PR|2
.

Also solved by M. Bataille (France), P. P. Dályay (Hungary), A. Ercan (Turkey), M. Goldenberg & M. Ka-
plan, D. Gove, J.-P. Grivaux (France), J. G Heuver (Canada), O. Kouba (Syria), P. Nüesch (Switzerland), C. R.
Pranesachar (India), J. Schlosberg, R. Stong, M. Tetiva (Romania), Z. Vörös (Hungary), M. Vowe (Switzer-
land), GCHQ Problem Solving Group (U. K.), and the proposers.

Derivative Cauchy–Schwarz

11548 [2011, 85]. Proposed by Cezar Lupu (student), University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanta, Romania.
Let f be a twice-differentiable real-valued function with continuous second derivative,
and suppose that f (0) = 0. Show that∫ 1

−1
( f ′′(x))2 dx ≥ 10

(∫ 1

−1
f (x) dx

)2

.
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Solution by Kee-Wai Lau, Hong Kong, China. Let g(x) = f (x) + f (−x) so that
g(0) = g′(0) and g is twice continuously differentiable. Integrate by parts twice:∫ 1

0
g(x) dx = −

∫ 1

0
(x − 1)g′(x) dx =

1

2

∫ 1

0
(x − 1)2g′′(x) dx .

By Cauchy–Schwarz, and abbreviating g(x) dx to g and so on, we have(∫ 1

0
g

)2

≤
1

4

∫ 1

0
(x − 1)4

∫ 1

0

(
g′′
)2
=

1

20

∫ 1

0

(
g′′
)2
. (1)

Since (g′′(x))2 = ( f ′′(x)+ f ′′(−x))2 ≤ 2
(
( f ′′(x))2 + ( f ′′(−x))2

)
, we have∫ 1

0

(
g′′
)2
≤ 2

∫ 1

0

(
( f ′′(x))2 + ( f ′′(−x))2

)
= 2

∫ 1

−1

(
f ′′
)2
. (2)

Finally, from (1) and (2) we have∫ 1

−1

(
f ′′
)
≥ 10

(∫ 1

0
g

)2

= 10

(∫ 1

0

(
f (x)+ f (−x)

))2

= 10

(∫ 1

−1
f

)2

.

Also solved by K. F. Andersen (Canada), R. Bagby, M. Bello-Hernández & M. Benito (Spain), G. E. Bilodeau,
M. W. Botsko & L. Mismas, C. Burnette, R. Chapman (U. K.), H. Chen, D. Constales (Belgium), P. P. Dályay
(Hungary), P. J. Fitzsimmons, P. Gallegos (Chile), J.-P. Grivaux (France), L. Han (U.S.A.) & L. Yu (China),
E. A. Herman, E. J. Ionascu, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Mortini & J.
Noël (France), M. Omarjee (France), P. Perfetti (Italy), Á. Plaza (Spain), K. Schilling, J. Simons (U. K.), A.
Stenger, R. Stong, R. Tauraso (Italy), T. Trif (Romania), E. I. Verriest, M. Vowe (Switzerland), H. Wang & Y.
Xia, Y. Wang, T. Wiandt, L. Zhou, Barclays Capital Problems Solving Group, NSA Problems Group, and the
proposer.

A Triple Functional Equation

11549 [2011, 85]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu”, Bı̂rlad, Romania. Determine all continuous functions f on R such that
for all x ,

f ( f ( f (x)))− 3 f (x)+ 2x = 0.

Solution by Barclays Capital Problems Solving Group, London (U. K.). We show that
all such functions f have the form f (x) = x + c or f (x) = c− 2x , for a real constant
c. These are readily verified to be solutions, so we need only show that there are no
others.

Fix a solution f . First note that f is injective. Indeed, if f (x) = f (y), then 2x =
3 f (x) − f ( f ( f (x))) = 3 f (y) − f ( f ( f (y))) = 2y, so x = y. It follows that f is
strictly monotone, and hence f (x) has a limit (finite or infinite) as x →∞. If f tends
to a finite limit a as x →∞, then 2x = 3 f (x) − f ( f ( f (x)))→ 3a − f ( f (a)), a
contradiction. Similarly, we see that f (x) tends to an infinite limit as x →−∞. Thus
f is surjective.

Now write f i for the i th iterate of f , which makes sense for all integers (posi-
tive, negative, and zero). For a given real number x , we have f i+3(x) − 3 f i+1(x) +
2 f i (x) = 0 for all i . Solving this linear homogeneous recurrence yields real numbers
Ax , Bx ,Cx such that f i (x) = Ax + Bx i + Cx(−2)i for all i .
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Now we consider two cases: f increasing and f decreasing. First, suppose that f
is increasing. For a given x , examine f i (x) = Ax + Bx i + Cx(−2)i . If Cx > 0, then
f i (x) is large and positive when i is large and even, and large and negative when i is
large and odd.

Thus there are arbitrarily large positive X such that f (X) is large and negative,
which contradicts f (x)→∞ as x →∞. A similar contradiction arises if Cx < 0.
Thus Cx = 0, so f i (x) = Ax + Bx i for all i . Substituting i = 0, we have f i (x) =
x + Bx i for all i .

If f (x) = x for all x , then we are done. Suppose there is some x with f (x) 6= x .
Now Bx 6= 0. Since f is increasing, for any integer n and real number y we have
x + Bx n ≤ y if and only if x + Bx(n + 1) ≤ f (y). Iterating yields x + Bx n ≤ y if
and only if x + Bx(n + k) ≤ f k(y) = y + Byk. Varying k thus does not affect whether
x + Bx(n + k) ≤ y + Byk. Sending k to∞ and to −∞, we conclude that Bx = By .
Thus f (x) = x + c for some c.

Second, suppose that f is decreasing. For a given x , examine f i (x) = Ax + Bx i +
Cx(−2)i . If Bx > 0, then for i large and negative, f i (x) and f i+1(x) are both large
and negative. Thus there are arbitrarily large negative X such that f (X) is large and
negative, which contradicts f (x)→∞ as x → −∞. Again, a similar contradiction
arises if Bx < 0. Thus Bx = 0, and hence f i (x) = Ax + Cx(−2)i for all i . Note that
f i (x)→ Ax as i → −∞, so f (Ax) = Ax . A decreasing function can have at most
one fixed point, so Ax = Ay for all y.

Since f (x) = Ax − 2Cx = 3Ax − 2(Ax + Cx) = 3Ax − 2x , it follows that f (x) =
c − 2x for some c.

Also solved by M. Bataille (France), C. Burnette, R. Chapman (U. K.), P. P. Dályay (Hungary), C. Delorme
(France), N. Grivaux (France), E. A. Herman, M. Huibregtse, O. P. Lossers (Netherlands), J. Simons (U. K.),
R. Stong, T. Trif (Romania), E. I. Verriest, GCHQ Problem Solving Group (U. K.), and the proposer.

Angles at an Inside Point of a Triangle

11550 [2011, 85]. Proposed by Stefano Siboni, University of Trento, Trento, Italy. Let
G be a point inside triangle ABC . Let α, β, γ be the radian measures of angles BGC ,
CGA, AGB, respectively. Let O , R, S be the triangle’s circumcenter, circumradius, and
area, respectively. Let |XY | be the distance from X to Y . Prove that

|GA| · |GB| · |GC|(|GA| sinα + |GB| sinβ + |GC| sin γ ) = 2S(R2
− |GO|2).

Solution by Michael Vowe, Therwil, Switzerland. Writing [ABC] for the area of tri-
angle ABC , we have 2[BGC] = |GB| · |GC| sinα, 2[CGA] = |GC| · |GA| sinβ, and
2[AGB] = |GA| · |GB| sin γ . Let (g1, g2, g3) be the normalized barycentric coordi-
nates of G, and for points P and Q, let

−→
PQ denote the vector from P to Q. Then

g1 =
[BGC]

[ABC]
, g2 =

[CGA]

[ABC]
, g3 =

[AGB]

[ABC]
, g1 + g2 + g3 = 1,

and

g1
−→
GA + g2

−→
GB + g3

−→
GC = 0.

The desired equality is equivalent to

R2
= |GO|2 + g1|GA|2 + g2|GB|2 + g3|GC|2.
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Finally, we obtain

R2
= g1 R2

+ g2 R2
+ g3 R2

= g1|OA|2 + g2|OB|2 + g3|OC|2

= g1(
−→
OG +

−→
GA) · (

−→
OG +

−→
GA)+ g2(

−→
OG +

−→
GB) · (

−→
OG +

−→
GB)

+ g3(
−→
OG +

−→
GC) · (

−→
OG +

−→
GC)

= |OG|2 + g1|GA|2 + g2|GB|2 + g3|GC|2 + 2
−→
OG · (g1

−→
GA + g2

−→
GB + g3

−→
GC)

= |OG|2 + g1|GA|2 + g2|GB|2 + g3|GC|2.

Also solved by M. Alexander & T. Smotzer, M. Bataille (France), R. Chapman (U. K.), P. P. Dályay (Hungary),
P. De (India), A. Ercan (Turkey), O. Geupel (Germany), M. Goldenberg & M. Kaplan, S. Hitotumatu (Japan),
O. Kouba (Syria), J. H. Lindsey II, C. R. Pranesachar (India), J. Schlosberg, R. Stong, M. Tetiva (Romania), Z.
Vörös (Hungary), J. B. Zacharias & K. T. Greeson, Barclays Capital Problems Solving Group, GCHQ Problem
Solving Group (U. K.), and the proposer.

Points in Figures

11551 [2011, 178]. Proposed by Gregory Galperin, Eastern Illinois University,
Charleston, IL, and Yury Ionin, Central Michigan University, Mount Pleasant, MI.
Given a finite set S of closed bounded convex sets in Rn having positive volume, prove
that there exists a finite set X of points in Rn such that each A ∈ S contains at least
one element of X and any A, B ∈ S with the same volume contain the same number
of elements of X .

Solution by Jim Simons, Cheltenham, U. K. Let the sets of S be {Ai }
s
i=1, and consider

the 2s
− 1 sets created by taking the intersection, as i ranges from 1 to s, of either Ai

or its complement Ac
i , but excluding Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

s . These sets are not necessar-
ily convex or even connected (indeed, they may have infinitely many components of
positive volume), but they are measurable. Discard any that are empty or have zero
measure, leaving {B j }

t
j=1. Each Ai is a finite disjoint union of some of the B j , together

with a set of measure zero.
Consider giving real “weights” w j to the B j and adding these weights to define

weights vi for the Ai , so that vi =
∑
w j , where the sum is over all j with B j ⊆ Ai .

Let Vi be the volume (measure) of Ai . The requirement that Vi = Vi ′ imply vi = vi ′

takes the form of a set L of linear equations in thew j with rational coefficients (indeed,
with coefficients −1, 0, 1 only).

Now (since the rank may be computed by evaluating certain determinants) a matrix
with rational entries has the same rank over the reals as it has over the rationals. So
the rational solution space for L has the same dimension as the real solution space,
and therefore is dense in it. There is a positive real solution (namely, each w j is the
measure of B j ). So there is a nearby rational solution (we only need it near enough that
all w j are positive). Then we can multiply by a common denominator to get a solution
in positive integers. For the set X , choose w j points in each set B j .

Note that this solution provides more information than requested. We can insure
that Vi < Vi ′ implies vi < vi ′ , Vi = Vi ′ implies vi = vi ′ , and Vi > Vi ′ implies vi > vi ′ .

Also solved by O. P. Lossers (Netherlands), R. Stong, and the proposers.
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with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before February 28, 2013. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11663. Proposed by Eugen J. Ionascu, Columbus State University, Columbus, GA. The
unit interval is broken at two randomly chosen points along its length. Show that the
probability that the lengths of the resulting three intervals are the heights of a triangle
is equal to

12
√

5 log((3+
√

5)/2)

25
−

4

5
.

11664. Proposed by Cosmin Pohoata, Princeton University, Princeton, NJ, and Darij
Grinberg, Massachusetts Institute of Technology, Cambridge, MA. Let a, b, and c be
the side lengths of a triangle. Let s denote the semiperimeter, r the inradius, and R the
circumradius of that triangle. Let a′ = s − a, b′ = s − b, and c′ = s − c.
(a) Prove that ar

R ≤
√

b′c′.
(b) Prove that

r(a + b + c)

R

(
1+

R − 2r

4R + r

)
≤ 2

(
b′c′

a
+

c′a′

b
+

a′b′

c

)
.

11665. Proposed by Raitis Ozols, student, University of Latvia, Riga, Latvia. Let a =
(a1, . . . , an), where n ≥ 2 and each a j is a positive real number. Let S(a) = aa2

1 +

· · · + aan
n−1 + aa1

n .
(a) Prove that S(a) > 1.
(b) Prove that for all ε > 0 and n ≥ 2 there exists a of length n with S(a) < 1+ ε.

11666. Proposed by Dmitry G. Fon-Der-Flaass (1962–2010), Institute of Mathematics,
Novosibirsk, Russia, and Max. A. Alekseyev, University of South Carolina, Columbia,

http://dx.doi.org/10.4169/amer.math.monthly.119.08.699
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SC. Let m be a positive integer, and let A and B be nonempty subsets of {0, 1}m . Let
n be the greatest integer such that |A| + |B| > 2n . Prove that |A + B| ≥ 2n . (Here,
|X | denotes the number of elements in X , and A + B denotes {a + b : a ∈ A, b ∈ B},
where addition of vectors is componentwise modulo 2.)

11667. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA, and Dan
Schwarz, Softwin Co., Bucharest, Romania. Let f , g, and h be elements of an inner
product space over R, with 〈 f, g〉 = 0.
(a) Show that

〈 f, f 〉〈g, g〉〈h, h〉2 ≥ 4〈g, h〉2〈h, f 〉2.

(b) Show that

(〈 f, f 〉〈h, h〉)〈h, f 〉2 + (〈g, g〉〈h, h〉)〈g, h〉2 ≥ 4〈g, h〉2〈h, f 〉2.

11668. Proposed by Dimitris Stathopoulos, Marousi, Greece. For positive integer n
and i ∈ {0, 1}, let Di (n) be the number of derangements on n elements whose number
of cycles has the same parity as i . Prove that D1(n)− D0(n) = n − 1.

11669. Proposed by Herman Roelants, Catholic University of Leuven, Louvain, Bel-
gium. Prove that for all n ≥ 4 there exist integers x1, . . . , xn such that

x2
n−1 + 1

x2
n

n−2∏
k=1

x2
k + 1

x2
k

= 1

satisfying the following conditions: x1 = 1, xk−1 < xk < 3xk−1 for 2 ≤ k ≤ n − 2,
xn−2 < xn−1 < 2xn−2, and xn−1 < xn < 2xn−1.

SOLUTIONS

An Equation Satisfied only by the Identity Matrix

11510 [2010, 558]. Proposed by Vlad Matei (student), University of Bucharest,
Bucharest, Romania. Prove that if I is the n-by-n identity matrix, A is an n-by-n
matrix with rational entries, A 6= I , p is prime with p ≡ 3 (mod 4), and p > n + 1,
then Ap

+ A 6= 2I .

Solution by C. T. Stretch, University of Ulster at Coleraine, Coleraine, Londonderry,
Northern Ireland. The primality and congruence conditions on p are not needed; we
require only p > n + 1. We prove more generally that Ap

+ (q − 1)A = q I cannot
hold for any prime q .

If Ap
+ (q − 1)− q I = 0, then the minimal polynomial m(x) of A divides φ(x),

where φ(x) = x p
+ (q − 1)x − q . Note that φ(x) = (x − 1)ψ(x), where

ψ(x) = x p−1
+ x p−2

+ · · · + x2
+ x + q.

Since A 6= I , we have m(x) 6= x − 1. Thus m(x), which has degree at most n, is a fac-
tor of ψ(x), which has degree greater than n. We obtain a contradiction and complete
the proof by showing that ψ(x) is irreducible over the rationals.

Since ψ(1) 6= 0 and ψ(0) = q , it suffices to show that ψ(x) is irreducible over the
integers. If α is a (complex root) of φ(x), then α p

= q − (q − 1)α. If |α| ≤ 1, then
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|q − (q − 1)α| = |α|p ≤ 1. Since |q − (q − 1)α| ≥ q − (q − 1)|α| ≥ 1, we obtain
|q − (q − 1)α| = 1, which occurs if and only if α = 1. Thus every root α of ψ(x)
satisfies |α| > 1.

Suppose that ψ(x) = f (x)g(x), where both f (x) and g(x) have positive degree
and integer coefficients. Consider the factorization f (x) =

∏k
i=1(x − αi ) over the

complex numbers. As shown above, |αi | > 1 for all i . Since f (0) = (−1)k
∏k

i=1 αi ,
also | f (0)| > 1; similarly, |g(0)| > 1. Since f (0) dividesψ(0) and q is prime, we have
| f (0)| = q; similarly, |g(0)| = q . But then q = ψ(0) = f (0)g(0) = ±q2, a contra-
diction. We conclude that ψ(x) is irreducible.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), J. Simons (U. K.), N. C. Singer, R. Stong,
M. Tetiva (Romania), Ellington Management Problem Solving Group, GCHQ Problem Solving Group, and
the proposer.

An Expression for the kth Smallest Element of a Set

11520 [2010, 649]. Proposed by Peter Ash, Cambridge Math Learning, Bedford,
MA. Let n and k be integers with 1 ≤ k ≤ n, and let A be a set of n real numbers.
For i with 1 ≤ i ≤ n, let Si be the set of all subsets of A with i elements, and let
σi =

∑
s∈Si

max(s). Express the kth smallest element of A as a linear combination of
σ0, . . . , σn .

Solution by Mark Wildon, Royal Holloway, University of London, Egham, United
Kingdom. Let A = {a1, . . . , an} with a1 < · · · < an . There are exactly

(m−1
k−1

)
k-subsets

of A in which am is largest, so σk =
∑n

m=1

(m−1
k−1

)
am for 1 ≤ k ≤ n. The following com-

putation expresses ak as a linear combination of σk, . . . , σn , where the final step uses
that

∑n
r=1(−1)r

(m−k
r−k

)
= 0 except when m = k:

n∑
r=1

(−1)k+r

(
r − 1

k − 1

)
σr = (−1)k

n∑
m=1

am

n∑
r=1

(−1)r
(

m − 1

r − 1

)(
r − 1

k − 1

)

= (−1)k
n∑

m=1

am

n∑
r=1

(−1)r
(

m − 1

k − 1

)(
m − k

r − k

)

= (−1)k
n∑

m=1

am

(
m − 1

k − 1

) n∑
r=1

(−1)r
(

m − k

r − k

)
= ak .

Editorial comment. The main step here can be viewed as inverting a matrix of bino-
mial coefficients. Jayantha Senadheera cited Cramer’s Rule. Li Zhou cited the book
of Polya and Szegö, where the verification is a solved problem. Oliver Geupel cited
a general binomial coefficient identity of which the verification is a special case (see
R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: a Foundation for
Computer Science, (Addison–Wesley, 1989), page 70).

Also solved by T. Amdeberhan & V. De Angelis, R. Bagby, D. Beckwith, M. Benedicty, N. Caro (Brazil),
R. Chapman (U. K.), W. J. Cowieson, P. P. Dályay (Hungary), D. Fleischman, O. Geupel (Germany), J.-
P. Grivaux (France), E. A. Herman, S. J. Herschkorn, Y. J. Ionin, J.-W. Kang (Korea), O. Kouba (Syria),
J. H. Lindsey II, J. H. Nieto (Venezuela), W. Nuij (Netherlands), É. Pité (France), Á. Plaza & S. Falcón
(Spain), R. Pratt, J. Schlosberg, J. Senadheera, J. Simons (U. K.), J. H. Smith, R. Stong, R. Tauraso (Italy),
M. Tetiva (Romania), S. Xiao (Canada), L. Zhou, Barclays Capital Quantitative Analytics Group, GCHQ
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Problem Solving Group (U. K.), Missouri State University Problem Solving Group, NSA Problems Group,
Texas State University Problem Solving Group, and the proposer.

A Geometric Inequality

11552 [2011, 178]. Proposed by Weidong Jiang, Weihai Vocational College, Weihai,
China. In triangle ABC, let A1, B1, C1 be the points opposite A, B, C at which the angle
bisectors of the triangle meet the opposite sides. Let R and r be the circumradius and
inradius of ABC. Let a, b, c be the lengths of the sides opposite A, B, C , and let a1,
b1, c1 be the lengths of the line segments B1C1, C1 A1, A1 B1. Prove that

a1

a
+

b1

b
+

c1

c
≥ 1+

r

R
.

Solution by Prithwijit De, HBCSE, Mumbai, India. If X and Y are the feet of
the perpendiculars on BC from C1 and B1, respectively, then a1 = |B1C1| ≥ |XY|.
However,

|XY| = a − (|BC1| cos B + |B1C | cos C) = 1−

(
ac cos B

a + b
+

ab cos C

a + c

)
.

Therefore,

a1

a
≥ 1−

(
c

a + b
cos C +

b

a + c
cos C

)
. (1)

Similarly,

b1

b
≥ 1−

(
a

b + c
cos C +

c

b + a
cos A

)
, (2)

c1

c
≥ 1−

(
b

c + a
cos A +

a

b + c
cos B

)
. (3)

Adding, we get

a1

a
+

b1

b
+

c1

c
≥ (4)

3−

(
a

b + c
(cos B + cos C)+

b

c + a
(cos C + cos A)+

c

a + b
(cos A + cos B)

)
.

Now,

a(cos B + cos C)

b + c
=

sin A(cos B + cos C)

sin B + sin C

=
2 sin(A/2) cos(A/2) · 2 cos((B + C)/2) cos((B − C)/2)

2 sin((B + C)/2) cos((B − C)/2)

=
4 sin(A/2) cos(A/2) sin(A/2) cos((B − C)/2)

2 cos(A/2) cos((B − C)/2)

= 2 sin2 A

2
= 1− cos A.
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Similarly,

b

c + a
(cos C + cos A) = 1− cos B,

c

a + b
(cos A + cos B) = 1− cos C.

Putting these into (4), we have

a1

a
+

b1

b
+

c1

c
≥ cos A + cos B + cos C = 1+

r

R
.

Editorial comment. Peter Nüesch (Switzerland) notes that this problem may be viewed
as a special case of Problem 1320 in Mathematics Magazine, proposedby V. Kovner
in vol. 62 (1989), p. 137, solved by J. Heuver and Richard E. Pfiefer in vol. 63(1990)
pp. 130–131.

Also solved by P. P. Dályay (Hungary), P. Nüesch (Switzerland), J. Posch, R. Stong, and the proposer.

Triangle Center X (79)

11554 [2011, 178]. Proposed by Zhang Yun, Xi’an Jiao Tong University Sunshine High
School, Xi’an, China. In triangle ABC, let I be the incenter, and let A′, B ′, C ′ be the
reflections of I through sides BC, CA, AB, respectively. Prove that the lines AA′, BB′,
and CC′ are concurrent.

Solution by Alin Bostan, INRIA, Rocquencourt, France. First we identify this problem
as a particular case of two different classical theorems in Euclidean geometry: Jacobi’s
Theorem and Kariya’s Theorem (which is itself a particular case of an older theorem
of Lemoine’s, see below). We then give two proofs of Problem 11554.

Jacobi’s Theorem (sometimes called “the Isogonal Theorem”): If ABC is a tri-
angle, and A′, B ′, and C ′ are points in its plane such that ∠B ′AC = ∠BAC′, ∠C ′BA =
∠CBA′, and ∠A′CB = ∠ACB′, then the lines AA′, BB′, and CC′ are concurrent. This
is a generalization of the famous “Napoleon’s Theorem”, available at http://en.
wikipedia.org/wiki/Napoleon’s_theorem. It was seemingly discovered by Carl
Friedrich Andreas Jacobi [not to be confused with Carl Gustav Jacob Jacobi], and pub-
lished in 1825 in Latin: C. F. A. Jacobi, De triangulorum rectilineorum proprietatibus
quibusdam nondum satis cognitis, Naumburg (1825).

Kariya’s Theorem: Let I be the incenter of a triangle ABC, and let X, Y, Z be
the points where the incircle of 4ABC touches the sides BC,CA,AB, respectively.
If A′, B ′,C ′ are three points on the half-lines IX, IY, IZ, respectively, such that IA′ =
IB′ = IC′, then the lines AA′, BB′, and CC′ are concurrent. This theorem has a long his-
tory. It was discovered independently by Auguste Boutin and by V. Retali: A. Boutain,
“Sur un groupe de quatre coniques remarquables,”Journal de mathématiques spéciales
ser. 3, 4 (1890) 104–107, 124–127; A. Boutin, “Problèmes sur le triangle,”Journal de
mathématiques spéciales ser. 3, 4 (1890) 265–269; V. Retali, Periodico di Matematica
(Rome) 11 (1896) 71.

The result only became well known with Kariya’s paper (which inspired many re-
sults appearing in l’Enseignement over the following years): J. Kariya, “Un probléme
sur le triangle,”L’Enseignement mathématique 6 (1904) 130–132, 236, 406. Actually,
a generalization of this result was obtained before Kariya by Emile Lemoine in Sec-
tion 4 of: E. Lemoine, “Contributions à la géométrie du triangle,”Congrès de l’AFAS,
Paris, 1889, p. 197–222.
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Lemoine explicitly states and proves on page 202 the following: Let ABC be a
triangle, M a point in its plane, and X, Y, Z the projections of M on BC,CA,AB,
respectively. If A′, B ′,C ′ are points on the half-lines MX, MY, and MZ, respectively,
such that MX ·MA′ = MY ·MB′ = MZ ·MC′, then AA′,BB′,CC′ are concurrent.
Auric gave in 1915 another generalization of Kariya’s Theorem: A. Auric, “Général-
isation du théorème de Kariya,”Nouvelles annales de mathématiques 4e série15 (1915)
222–225. The statement is the same as Lemoine’s Theorem except that the assumption
MX ·MA′ = MY ·MB′ = MZ ·MC′ is replaced by MX/MA′ = MY/MB′ = MZ/MC′.

Now we give the two solutions to Problem 11554, both based on Ceva’s Theorem.
(1) This solution is possibly new (less elegant than the second one, but a bit shorter).

Let P be the intersection of AA′ and BC, and let Q be the intersection of AI and BC. Ap-
plying Menelaus’ Theorem twice (once for4APQ and transversal IA′, once for4AIA′

and transversal BC), we find that BP/PC = (a2
+ c2
− b2
+ ca)/(b2

+ a2
− c2
+ ab).

Since the numerator is obtained from the denominator by the cyclic permutation a→
b→ c→ a, the conclusion follows from Ceva’s Theorem.

(2) The second solution is much more elegant, and is possibly due to the Roma-
nian geometer Gheorghe Titeica (it appears as Problem 1138 in his book Problems of
Geometry (in Romanian)). Let the parallel to BC passing through A′ intersect AB and
AC in A1 and A2, respectively. Construct similarly the points B1, B2, C1, and C2. By
symmetry, A′A1 = C ′C2, A′A2 = B ′B1, and B ′B2 = C ′C1. Let P be the intersection
of AA′ and BC, let Q be the intersection of BB′ and AC, and let R be the intersection of
CC′ and AB. Thales’ Theorem implies BP/PC = A1 A′/A′A2, CQ/QA = B1 B ′/B ′B2,
and AR/RB = C1C ′/C ′C2. It follows that

BP

PC

CQ

QA

AR

RB
=

A1 A′

A′A2

B1 B ′

B ′B2

C1C ′

C ′C2
= 1,

and the conclusion follows from Ceva’s Theorem.
Final notes: (i) Nowadays the point J of concurrence in Problem 11554 is some-

times called “Gray’s point” after Steve Gray who noted a seemingly new property,
namely that the line IJ is parallel to the Euler line OH of 4ABC.

(ii) The point J is called X (79) in Kimberling’s Encyclopedia of Triangle Centers,
available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.

Also solved by Y. An (China), G. Apostolopoulos (Greece), M. Bataille (France), R. B. Campos (Spain),
C. Curtis, P. P. Dályay (Hungary), P. De (India), C. Delorme (France), A. Ercan (Turkey), O. Faynshteyn
(Germany), R. Frank & H. Riede (Germany), O. Geupel (Germany), J.-P. Grivaux (France), E. A. Herman, S.
Hitotumatu (Japan), Y. J. Ionin, M. E. Kidwell & M. D. Meyerson, O. Kouba (Syria), R. Mabry, R. Murgatroyd,
C. R. Pranesachar (India), J. Schlosberg, T. Smith, R. Stong, M. Tetiva (Romania), R. S. Tiberio, Z. Vörös
(Hungary), Z. Xintao (China), P. Yff, J. B. Zacharias, D. Zeilberger, GCHQ Problem Solving Group (U. K.),
and the proposer.

Value Defined by an Integral

11555 [2011, 178]. Proposed by Duong Viet Thong, National Economics Univer-
sity, Hanoi, Vietnam. Let f be a continuous real-valued function on [0, 1] such that∫ 1

0 f (x) dx = 0. Prove that there exists c in the interval (0, 1) such that c2 f (c) =∫ c
0 (x + x2) f (x) dx .

Solution I by Michael W. Botsko, Saint Vincent College, PA. First, let F(x) =
x
∫ x

0 f (t) dt −
∫ x

0 t f (t) dt on [0, 1]. By its construction, F ′(x) =
∫ x

0 f (t) dt and
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F ′(0) = 0. Since
∫ 1

0 f (x) dx = 0, also F ′(1) = 0. Now by Flett’s Mean Value The-
orem (T. M. Flett, “A mean value theorem”, Math. Gazette, 42(1958), 38-39), there
exists a ∈ (0, 1) such that

F(a)− F(0)

a − 0
= F ′(a).

Therefore, ∫ a

0
x f (x) dx = 0, a ∈ (0, 1). (1)

Next, let G(x) = e−x
∫ x

0 t f (t) dt . From (1), G(0) = G(a) = 0. By Rolle’s Theorem,
there exists b ∈ (0, a) such that

0 = G ′(b) = −e−b

∫ b

0
x f (x) dx + e−bb f (b).

Therefore, ∫ b

0
x f (x) dx = b f (b), b ∈ (0, a). (2)

Finally, let H(x) = x
∫ x

0 t f (t) dt −
∫ x

0 (t + t2) f (t) dt . Then

H ′(x) =
∫ x

0
t f (t) dt − x f (x).

Using (2), we have that H ′(0) = H ′(b) = 0. Once again using Flett’s Mean Value
Theorem, there exists c ∈ (0, b) such that

H(c)− H(0)

c − 0
= H ′(c).

Therefore,

c
∫ c

0
x f (x) dx −

∫ c

0
(x + x2) f (x) dx = c

∫ c

0
x f (x) dx − c2 f (c).

This implies
∫ c

0 (x + x2) f (x) dx = c2 f (c).

Solution II by Hongwei Chen, Christopher Newport University, Newport News, VA. If
f is identically zero, there is nothing to prove, so assume that f (x) is not identically
zero. Since

∫ 1
0 f (x) dx = 0, there exist a and b ∈ [0, 1] such that a 6= b and

f (a) = max
x∈[0,1]

f (x) > 0, f (b) = min
x∈[0,1]

f (x) < 0.

Define F(x) = x2 f (x)−
∫ x

0 (t + t2) f (t) dt . Note that F(x) is continuous on [0, 1].
Since (t + t2) f (a) ≥ (t + t2) f (t) for all t ∈ [0, 1],

F(a) ≥ a2 f (a)−
∫ a

0
(t + t2) f (a) dt = a2

(
1

2
−

a

3

)
f (a) > 0.

Similarly, (t + t2) f (b) ≤ (t + t2) f (t) for all t ∈ [0, 1], so

F(b) ≤ b2 f (b)−
∫ b

0
(t + t2) f (b) dt = b2

(
1

2
−

b

3

)
f (b) < 0.
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The Intermediate Value Theorem implies that there exists a number c ∈ (a, b) ⊂ (0, 1)
such that F(c) = 0, so that c2 f (c) =

∫ c
0 (x + x2) f (x) dx .

Also solved by K. F. Andersen (Canada), M. W. Botsko, P. Bracken, H. Chen, D. Constales (Belgium), P. P.
Dályay (Hungary), N. Grivaux (France), L. Han, E. Ionascu, K.-W. Lau (China), J. H. Lindsey II, M. Omarjee
(France), S. Pauley, N. Weir & A. Welter, P. Perfetti (Italy), Á. Plaza (Spain), A. Stenger, R. Stong, R. Tauraso
(Italy), M. Tetiva (Romania), H. Wang & Y. Xia, GCHQ Problem Solving Group (U. K.), and the proposer.

A Four-Number Summetric Inequality

11556 [2011, 179]. Proposed by Pál Péter Dályay, Deák Ferenc High School, Szeged,
Hungary. For positive real numbers a, b, c, d , show that

9

a(b + c + d)
+

9

b(c + d + a)
+

9

c(d + a + b)
+

9

d(a + b + c)

≥
16

(a + b)(c + d)
+

16

(a + c)(b + d)
+

16

(a + d)(b + c)
.

Solution by Marian Dincă, Bucharest, Romania. Suppose f is a convex function on
the interval I ⊂ R. Given numbers x, y, z, let x ′ = (y + z)/2, y′ = (z + x)/2, and
z′ = (x + y)/2. Combining Popoviciu’s Inequality

f (x)+ f (y)+ f (z)+ 3 f

(
x + y + z

3

)
≥ 2

[
f (z′)+ f (y′)+ f (x ′)

]
and Jensen’s Inequality in the form

f (x)+ f (y)+ f (z) =
f (x)+ f (y)

2
+

f (x)+ f (z)

2
+

f (y)+ f (z)

2

≥ f (z′)+ f (y′)+ f (x ′)

(specifically adding the first to twice the second) gives

3 f (x)+ 3 f (y)+ 3 f (z)+ 3 f

(
x + y + z

3

)
≥ 4

[
f (z′)+ f (y′)+ f (x ′)

]
.

Applying this to the convex function f (t) = 1
t , t > 0, for x, y, z > 0 we have

3

x
+

3

y
+

3

z
+

9

x + y + z
≥

8

x + y
+

8

x + z
+

8

y + z
.

Summing the four inequalities we get by taking x, y, z to be any three of a, b, c, d we
obtain

9

a
+

9

b
+

9

c
+

9

d
+

9

a + b + c
+

9

a + b + d
+

9

a + c + d
+

9

b + c + d

≥
16

a + b
+

16

a + c
+

16

a + d
+

16

b + c
+

16

b + d
+

16

c + d
.

Noting that

1

a
+

1

b + c + d
=

a + b + c + d

a(b + c + d)
and

1

a + b
+

1

c + d
=

a + b + c + d

(a + b)(c + d)
,

and symmetrically, we see that this is exactly the desired inequality multiplied by
a + b + c + d .

Also solved by S. Hitotumatu (Japan), E. Hysnelaj & E. Bojaxhiu (Australia & Germany), O. Kouba (Syria),
J. H. Lindsey II, P. H. O. Pantoja (Brazil), P. Perfetti (Italy), C. R. Pranesacher (India), A. Stenger, R. Stong,
M. Tetiva (Romania), L. Zhou, Zhou X. (China), GCHQ Problem Solving Group (U. K.), and the proposer.

706 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 119

This content downloaded  on Mon, 18 Mar 2013 09:36:17 AM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before March 31, 2013. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11670. Proposed by Miranda Bakke, Benson Wu, and Bogdan Suceavă, California
State University, Fullerton, CA. Prove that if n ≥ 3 and a1, . . . , an > 0, then

(n − 1)

4

n∑
k=1

ak ≥

∑
1≤ j<k≤n

a j ak

a j + ak
,

with equality if and only if all a j are equal.

11671. Proposed by Sam Northshield, SUNY-Plattsburgh, Plattsburgh, NY. Show that
if relatively prime integers a, b, c, d satisfy

a2
+ b2
+ c2
+ d2

= (a + b + c + d)2,

then |a + b + c| can be written as m2
− mn + n2 for some integers m and n.

11672. Proposed by José Luis Palacios, Universidad Simón Bolı́var, Caracas, Vene-
zuela. A random walk starts at the origin and moves up-right or down-right with equal
probability. What is the expected value of the first time that the walk is k steps below its
then-current all time high? (Thus, for instance, with the walk UDDUUUUDDUDD· · · ,
the walk is three steps below its maximum-so-far on step 12.)

11673. Proposed by Kent Holing, Statoil, Trondheim, Norway. Let Q and g be monic
polynomials in Z[x], with Q an irreducible quartic. Let f = Q ◦ g. Suppose that f
is irreducible over Q and that the order of the Galois group of f is a power of 2.
Which groups are possible as the Galois group of Q? If, moreover, Q has negative
discriminant, determine the Galois group of Q.

11674. Proposed by Pál Péter Dályay, Szeged, Hungary. Let a and b be real numbers
with a < 0 < b. Let S be the set of continuous functions f from [0, 1] to [a, b] with

http://dx.doi.org/10.4169/amer.math.monthly.119.09.800
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∫ 1
0 f (x) dx = 0. Let g be a strictly increasing function from [0, 1] to R. Define φ from

S to R by φ( f ) =
∫ 1

0 f (x)g(x) dx .
(a) Find sup f ∈S φ( f ) in terms of a, b, and g.
(b) Prove that this supremum is not attained.

11675. Proposed by Mircea Merca, Constantin Istrati Technical College, Campina,
Romania. Let p be the Euler partition function, i.e., p(n) is the number of nondecreas-
ing lists of positive integers that sum to n. Let p(0) = 1, and let p(n) = 0 for n < 0.
Prove that for n ≥ 0 with n 6= 3,

p(n)− 4p(n − 3)+ 4p(n − 5)− p(n − 8) > 0.

11676. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” Secondary School,
Buzau, Romania. For real t , find

lim
x→∞

x sin2 t
(
0(x + 2)(cos2 t)/(x+1)

− 0(x + 1)cos2 t/x
)
.

Here, 0 is the Euler gamma function.

SOLUTIONS

Fair Permutations and Random k-sets

11523 [2010, 741]. Proposed by Timothy Chow, Princeton, NJ. Given boxes 1 through
n, put balls in k randomly chosen boxes. The score of a permutation π of {1, . . . , n} is
the least i such that box π(i) has a ball. Thus, if π = (3, 4, 1, 5, 2)with (n, k) = (5, 2),
and boxes 1 and 4 have balls, then π has score 2.
(a) A permutation π is fair if, regardless of the value of k, the probability that π scores
lower than the identity permutation equals the probability that it scores higher. Show
that π is fair if and only if for each i in [1, n], either π(i) > i and π−1(i) > i , or
π(i) ≤ i and π−1(i) ≤ i .
(b) Let f (n) be the number of fair permutations of {1, . . . , n}, with the convention that
f (0) = 1. Show that

∑
∞

n=0 f (n)xn/n! = ex sec(x).
(c) Assume now that n = m3 with m ≥ 2, and the boxes are arranged in m rows of
length m2. Alice scans the top row left to right, then the row below it, and so on, until
she finds a box with a ball in it. Bob scans the leftmost column top to bottom, then the
next column, and so on. They start simultaneously and both check one box per second.
For which k are Alice and Bob equally likely to be the first to discover a ball?

Solution by Jim Simons, Cheltenham, U. K. Let [n] = {1, . . . , n}. Define a back-and-
forth permutation of [n] to be a permutation whose nontrivial cycles alternate moving
up and down. Thus every cycle in such a permutation is a fixed point or has even length.
Since π(i) = i if and only if π−1(i) = i , and a nontrivial cycle has π−1(i), i, π(i) in
succession, a permutation satisfies the condition specified in (a) if and only if it is a
back-and-forth permutation.

(a) Fix n and π . For A ⊆ [n], let sA and s ′A denote the score of the identity and π on A,
respectively, when A is the set of boxes with balls. Let S j = {A ⊆ [n] : min{sA, s ′A} =
j}, and let Sk

j be the family of k-sets in S j . Let π([l]) be the image under π of [l]. Let
R j = [ j − 1] ∪ π([ j − 1]). Note in particular that S j consists of the subsets of [n] that
contain j or π( j) but are disjoint from R j .
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Let π be a back-and-forth permutation. To prove sufficiency of the condition, it
suffices to show for all k and j that lk

j = gk
j , where lk

j = |{A ∈ Sk
j : π( j) ∈ A}| and

gk
j = |{A ∈ Sk

j : j ∈ A}|, since s ′A ≤ sA for sets counted by lk
j and s ′A ≥ sA for sets

counted by gk
j , and s ′A = sA precisely for the sets counted by both. Note that lk

1 = gk
1

for all k; each equals
(n−1

k−1

)
.

For j ≥ 2, the back-and-forth condition yields π( j) ∈ [ j − 1] if and only if j ∈
π([ j − 1]). Consider A ∈ Sk

j . Since sA ≥ j , [ j − 1] ∩ A is empty. Since s ′A ≥ j ,
π([ j − 1] ∩ A is also empty. The back-and-forth condition implies that neither or both
of { j, π( j)} are excluded from A. Therefore, there are the same number of k-subsets
of the unexcluded elements that contain j (and are counted by gk

j ) as contain π( j) (and
are counted by lk

j ).
If π is not a back-and-forth permutation, then let j be the least index such that

exactly one of π( j) ∈ [ j − 1] and j ∈ π([ j − 1]) holds. Thus exactly one of j and
π( j) lies in R j . Let k = n − |R j |. Now the only set in Sk

j is the complement of R j ,
and it contains exactly one of j and π( j), so lk

j 6= gk
j . On the other hand, lk

i = gk
i

for i > j , while the reasoning of the previous paragraph yields lk
i = gk

i for i < j .
Summing over i , we find that the probabilities of π scoring higher or lower than the
identity are different.

(b) As noted at the beginning, the back-and-forth permutations consist of fixed points
and up/down alternating even cycles. Say that a back-and-forth permutation is strict if
it has no fixed points. Let g(n) be the number of strict back-and-forth permutations of
[n]. Partitioning back-and-forth permutations by the number of fixed points, we have
f (n) =

∑n
i=0

(n
i

)
g(n − i), so

∞∑
n=0

f (n)xn/n! = ex
∞∑

n=0

g(n)xn/n!.

A permutation π is alternating if π(1) < π(2) > π(3) < · · · . It is well known that
sec(x) =

∑
∞

n=0 h(n)xn/n!, where h(n) is the number of alternating permutations when
n is even and is 0 when n is odd. It therefore suffices to show that, for even n, the
number of strict back-and-forth permutations equals the number of alternating permu-
tations.

We use the well-known bijection that maps a permutation π in word form to the
permutation whose canonical cycle representation is that same word. That is, left-to-
right minima in π begin cycles in π ′. Writing the cycles of π ′ with least element first, in
decreasing order of least elements, and erasing the parentheses yields π . For example,
[46281537] corresponds to the permutation with cycle representation (46)(28)(1537).
In an alternating permutation, left-to-right minima occur at odd positions, so each cycle
in the image has even length and alternates.

(c) We show that the values of k where the probability is equal are k = 1 and k ≥
m3
− 2m + 2.
Label the boxes 0, 1, . . . ,m3

− 1 in the order in which Alice scans them, and write
these labels as 3-digit numbers in base m. Define a permutation π of these 3-digit
numbers by π(abc) = cab. The i th box that Bob scans is the one labelled π(i). The
question becomes “For which k is it equally likely that π scores lower or higher than
the identity? Since π has m fixed points and (m3

−m)/3 cycles of length 3, by part (a)
equality does not hold for all k. Call a value of k where the probability is equal fair.

We have seen that the condition π( j) ≥ j if and only if π−1( j) ≥ j implies lk
j = gk

j .
We consider the relationship between lk

j and gk
j for all j . If j is a fixed point of π , or
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if j is the smallest member or the largest member of its 3-cycle, then π( j) ≥ j if and
only if π−1( j) ≥ j , so so lk

j = gk
j for all k.

Hence it remains only to consider the case where j is the middle member of its
3-cycle, and precisely one of π( j) ≥ j and π−1( j) ≥ j is true. To analyze this case,
we consider sets of 3-digit numbers in base m defined by

[ab(c : d)] = {xyz : x = a, y = b, c ≤ z ≤ d},

and with a similar definition for [a(b : c)d] or even [a(b : c)(d : e)]. For j ∈ [0(1 :
m − 1)0], we have π( j) < j < π−1( j), so with R′j = R j ∪ {0, π(0)},

gk
j =

(
n − 1− |R′j |

k − 1

)
and lk

j = 0.

Similarly, for j ∈ [10(1 : m − 1)], we have π( j) > j > π−1( j), so

lk
j =

(
n − 1− |R′j |

k − 1

)
and gk

j = 0.

For a given k, define the unfairness of k to be
∑m3

−1
j=0

(
gk

j − lk
j

)
. Since the two blocks

of numbers specified above have the same size, and since all the binomial coefficients
that appear in the first block are at least as large as any in the second block, the total
contribution to the unfairness from these two blocks is nonnegative.

All the other cases divide similarly into pairs of blocks of the same size that between
them make a nonnegative contribution to the unfairness. These pairs of blocks are
indexed by the first digit d of j , with 1 ≤ d ≤ m − 2, as follows:

if j ∈ [d(d + 1 : m − 1)(0 : d)], then π( j) < j < π−1( j);
if j ∈ [(d + 1)(0 : d)(d : m − 1)], then π( j) > j > π−1( j).

If k = 1, then all these binomial coefficients equal 1, and the unfairness is 0. If k ≥
m3
− 2m + 2, then all the binomial coefficients are 0, and again these values of k

are fair. For 1 < k < m3
− 2m + 2, the first coefficient is strictly positive and strictly

greater than the second, and so these values of k are unfair.

Also solved by R. Hutchinson, J. H. Lindsey II, Barclay’s Capital Problem Solving Group (U.K.), and the
proposer.

Convergence of an Averaging Expression

11528 [2010, 742]. Proposed by Alina Sı̂ntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania. Let p, a, and b be positive integers with a < b. Con-
sider a sequence 〈xn〉 defined by the recurrence nxn+1 = (n + 1/p)xn and an initial
condition x1 6= 0. Evaluate

lim
n→∞

xan + xan+1 + · · · + xbn

nxan
.

Solution by Omran Kouba, H.I.A.S.T., Damascus, Syria. The answer is b1+c
−a1+c

(1+c)ac , where
c = 1/p. Indeed, the solution is valid for any nonnegative real number c in place of
1/p, not just reciprocals of integers.

Let yn =
n−1
1+c xn . Since

yn+1 − yn =
nxn+1 − (n − 1)xn

1+ c
=
(n + c)xn − (n − 1)xn

1+ c
= xn,
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we obtain

bn∑
k=an

xk =

bn∑
k=an

(yk+1 − yk) = ybn+1 − yan =
bnxbn+1 − (an − 1)xan

1+ c
.

Consequently,

1

nxan

bn∑
k=an

xk =
b

1+ c
·

xbn+1

xan
−

an − 1

n(1+ c)
. (1)

Hence the problem reduces to finding lim zn , where zn = xbn+1/xan . Writing

zn =

bn∏
k=an

xk+1

xk
=

bn∏
k=an

(
1+

c

k

)
,

we have

zn

(
an − 1

bn

)c

= zn

bn∏
k=an

(
k − 1

k

)c

=

bn∏
k=an

(
1+

c

k

)(
1−

1

k

)c

.

Since (1+ c
k )(1−

1
k )

c
= 1+ O(k−2), the infinite product

∏
∞

k=1(1+
c
k )(1−

1
k )

c con-
verges. Thus

lim
n→∞

zn

(
an − 1

bn

)c

= lim
n→∞

bn∏
k=an

(
1+

c

k

)(
1−

1

k

)c

= 1.

Therefore, limn→∞ zn = (b/a)c. Finally, (1) yields

lim
n→∞

1

nxan

bn∑
k=an

xk =
b

1+ c
lim

n→∞
zn −

a

1+ c
=

b1+c
− a1+c

(1+ c) ac
.

Editorial comment. David Beckwith gave the solution of the recurrence as

xn = x1

n−1∏
k=1

k + 1/p

k
=

x1

0(1+ 1/p)

0(n + 1/p)

0(n)
.

He then expressed the desired quantity asymptotically as a Riemann sum and evaluated
the integral to obtain the answer.

Also solved by D. Beckwith, P. Bracken, P. P. Dályay (Hungary), S. J. De Luxán & Á. Plaza (Spain), O. Furdui
(Romania), M. Goldenberg & M. Kaplan, E. A. Herman, R. Hutchinson, J. H. Lindsey II, O. P. Lossers (Nether-
lands), M. Omarjee (France), P. Perfetti (Italy), Á. Plaza (Spain), K. Schilling, J. Simons (U. K.), Z. Song &
Y. Lin (China), A. Stenger, R. Stong, Barclays Capital Problems Solving Group (U.K.), FAU Problem Solving
Group, GCHQ Problem Solving Group (U. K.), and the proposer.

A Greatest Integer Sum

11529 [2010, 742]. Proposed by Walter Blumberg, Coral Springs, FL. For n ≥ 1, let

An =

(
3
∑n

k=1

⌊
k2

n

⌋)
− n2. Let p and q be distinct primes with p ≡ q (mod 4). Show

that Apq = Ap + Aq − 2.
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Solution by Robert Tauraso, Università di Roma “Tor Vergata”, Rome, Italy. Let rn(m)
be the remainder of m on division by n. Since m = n bm/nc + rn(m),

An =
3

n

n∑
k=1

[
k2
− rn(k

2)
]
− n2

=
3n + 1

2
−

3

n

n−1∑
k=0

rn(k
2).

Since p is an odd prime, the number of square roots of j modulo p is
( j

p

)
+ 1, where( j

p

)
is the Legendre symbol, which equals 1 when j is a nonzero square modulo p, −1

with j is a nonsquare modulo p, and 0 when j is divisible by p. Thus

p−1∑
k=0

rp(k
2) =

p−1∑
j=0

((
j

p

)
+ 1

)
j.

Using the Chinese Remainder Theorem,

pq−1∑
k=0

rpq(k
2) =

pq−1∑
j=0

((
j

p

)
+ 1

)((
j

q

)
+ 1

)
j.

Thus

Ap =
3p + 1

2
−

3

p

p−1∑
j=0

((
j

p

)
+ 1

)
j = 2−

3

p

p−1∑
j=0

(
j

p

)
j.

Similarly,

Aq = 2−
3

q

q−1∑
j=0

(
j

q

)
j

and

Apq = 2−
3

pq

pq−1∑
j=0

(
j

p

)(
j

q

)
j −

3

pq

pq−1∑
j=0

(
j

p

)
j −

3

pq

pq−1∑
j=0

(
j

q

)
j.

Since
∑p−1

j=0

( j
p

)
= 0,

pq−1∑
j=0

(
j

p

)
j =

q−1∑
a=0

p−1∑
r=0

(
ap + r

p

)
(ap + r)

= p
q−1∑
a=0

a
p−1∑
r=0

(
r

p

)
+ q

p−1∑
r=0

(
r

p

)
r = q

p−1∑
r=0

(
r

p

)
r,

and similarly with p and q switched. Thus

Apq − Ap − Aq + 2 =
pq−1∑
j=0

(
j

p

)(
j

q

)
j,

and it suffices to prove that the value of this sum is 0 when p ≡ q (mod 4). We have
p ≡ q ≡ 1 or p ≡ q ≡ −1 (mod 4). In either case,(

−1

p

)(
−1

q

)
= (−1)(p−1)/2+(q−1)/2

= 1.
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Thus
pq−1∑
j=0

(
j

p

)(
j

q

)
j =

pq−1∑
j=0

(
pq − j

p

)(
pq − j

q

)
(pq − j)

=

pq−1∑
j=0

(
− j

p

)(
− j

q

)
(pq − j) =

pq−1∑
j=0

(
j

p

)(
j

q

)
(pq − j),

so

2
pq−1∑
j=0

(
j

p

)(
j

q

)
j = pq

pq−1∑
j=0

(
j

p

)(
j

q

)
.

Now
pq−1∑
j=0

(
j

p

)(
j

q

)
=

q−1∑
a=0

p−1∑
r=0

(
ap + r

p

)(
ap + r

q

)
=

p−1∑
r=0

(
r

p

) q−1∑
a=0

(
ap + r

q

)

=

p−1∑
r=0

(
r

p

) q−1∑
k=0

(
k

q

)
= 0,

since for each r , the set {ap + r : 0 ≤ a ≤ q − 1} is a complete system of residues
modulo q .

Also solved by O. P. Lossers (Netherlands), R. E. Prather, Barclays Capital Problems Solving Group (U.K.),
and the proposer.

A Prime Multiple of the Identity Matrix

11532 [2010, 834]. Proposed by Cezar Lupu (student), University of Bucharest,
Bucharest, Romania, and Vicentiu Rădulescu, Institute of Mathematics “Simon Stoilow”
of the Romanian Academy, Bucharest, Romania. Find all prime numbers p such that
there exists a 2× 2 matrix A with integer entries, other than the identity matrix I , for
which Ap

+ Ap−1
+ · · · + A = pI .

Solution by Stephen Pierce, San Diego State University, San Diego, CA. The only
primes that qualify are 2 and 3. Let f (x) = −px0

+
∑p

i=1 x i .
For p = 2, let A =

( 1 0
0 −2

)
. For p = 3, note that f (x) = (x − 1)(x2

+ 2x + 3). Let

A be the “companion matrix” of x2
+ 2x + 3, that is, A =

(0 −3
1 −2

)
. We obtain A2

+

2A + 3I =
(0 0

0 0

)
.

For p ≥ 5, we make some elementary observations about f .
(a) From the triangle inequality, f (x) = 0 for x in the closed unit disk only when
x = 1.
(b) The root 1 is a simple root (by differentiation).
(c) If f (A) = 0, then the minimal polynomial of A divides f .

Given a matrix A with f (A) = 0, let λ and µ be the eigenvalues of A. If A is a
multiple of the identity, then λ is an integer dividing p, and f (λ) has the same sign as
λ. The only such solution is A = I .

If A is not a multiple of the identity, then λµ is an integer dividing p, by (c). Since
p is prime, |λµ| ∈ {1, p}. If |λµ| = 1, then λ = µ = 1 from (a), but this contradicts
(b). If |λµ| = p, then then the product of the other roots of f is ±1. Now the rest of
the roots must all be 1, which contradicts (b) when p > 3.
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Also solved by A. Bostan (France), P. P. Dályay (Hungary), E. A. Herman, Y. J. Ionin, O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), R. Nandan, M. Omarjee (France), É. Pité (France), J. Simons
(U. K.), N. C. Singer, A. Stenger, R. Stong, M. Tetiva (Romania), Z. Vörös (Hungary), M. Wildon (U. K.),
Barclay Capital Problems Solving Group (U.K.), NSA Problems Group, Skidmore College Problem Group,
and the proposers.

Squares From Totients

11544 [2011, 84]. Proposed by Max A. Alekseyev, University of South Carolina,
Columbia, SC, and Frank Ruskey, University of Victoria, Victoria, BC, Canada. Prove
that if m is a positive integer, then

m−1∑
k=0

ϕ(2k + 1)

⌊
m + k

2k + 1

⌋
= m2.

Here ϕ denotes the Euler totient function.

Solution by Charles Burnette, Philadelphia, PA. From the well-known identity∑
d|(2k+1)

ϕ(d) = 2k + 1,

we obtain
∑m−1

k=0

∑
d|(2k+1) ϕ(d) = m2.

We interchange the order of summation. Let nd be the number of occurrences of
ϕ(d) in the sum. Such terms occur when d is positive, odd, and at most 2m − 1, so

m−1∑
k=0

∑
d|(2k+1)

ϕ(d) =
∑

1≤d≤2m−1
d is odd

ϕ(d) · nd .

Since ϕ(d) appears once for each odd multiple of d not exceeding 2m − 1, we have
(2nd − 1)d ≤ 2m − 1, and hence nd =

⌊
2m+d−1

2d

⌋
. Since d is odd, we can rewrite the

expression as

m2
=

∑
1≤d≤2m−1

d is odd

ϕ(d)

⌊
2m + d − 1

2d

⌋

=

m−1∑
k=0

ϕ(2k + 1)

⌊
2m + 2k + 1− 1

2(2k + 1)

⌋
=

m−1∑
k=0

ϕ(2k + 1)

⌊
m + k

2k + 1

⌋
.

Editorial comment. Most solvers used induction. J. Vondra mentioned other identities
that can be proved similarly:

∑2m
k=1 ϕ(k)

⌊
2m+k

2k

⌋
=

m(3m+1)
2 (also conjectured by R.

Daileda),
∑m

k=1 ϕ(k)
⌊

m
k

⌋
=

m(m+1)
2 (also noted by L. Zhou), and

∑m
k=1 ϕ(2k)

⌊
m+k

2k

⌋
=

m(m+1)
2 .

Also solved by L. Bush (student) & R. Mabry, R. Chapman (U. K.), J. Christopher, F. Çiçek (Turkey),
C. Curtis, R. C. Daileda, P. P. Dályay (Hungary), D. Fleischman, S. M. Gagola Jr., D. Gove, S. Graham,
Y. J. Ionin, O. Kouba (Syria), O. P. Lossers (Netherlands), V. S. Miller, U. Milutinović (Slovenia), K. Schilling,
J. Schlosberg, J. Simons (U. K.), N. C. Singer, J. H. Smith, J. H. Steelman, A. Stenger, R. Stong, P. Straffin,
H. T. Tang, R. Tauraso (Italy), M. Tetiva (Romania), A. Velozo (Chile), J. Vondra (Australia), Z. Vörös (Hun-
gary), M. Vowe (Switzerland), F. Vrabec (Austria), L. Zhou, Barclays Capital Problems Solving Group (U.K.),
Con Amore Problem Group (Denmark), GCHQ Problem Solving Group (U. K.), NSA Problems Group, and
the proposers.
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Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before April 30, 2013. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11677. Proposed by Albert Stadler, Herrliberg, Switzerland. Evaluate

∞∏
n=1

(
1+ 2e−m

√
3 cosh(mn/

√
3)
)
.

11678. Proposed by Farrukh Ataev Rakhimjanovich, Westminster International Uni-
versity in Tashkent, Tashkent, Uzbekistan. Let Fk be the kth Fibonacci number, where
F0 = 0 and F1 = 1. For n ≥ 1 let An be an (n + 1)× (n + 1) matrix with entries a j,k

given by a0,k = ak,0 = Fk for 0 ≤ k ≤ n and by a j,k = a j−1,k + a j,k−1 for j, k ≥ 1.
Compute the determinant of An .

11679. Proposed by Tim Keller, Orangeville, CT. Let n be an integer greater than 2,
and let a2, . . . , an be positive real numbers with product 1. Prove that

n∏
k=2

(1+ ak)
k >

2

e

(n

2

)2n−1
.

11680. Proposed by Benjamin Bogoşel, University of Savoie, Savoie, France, and
Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. Let x1, . . . , xn be nonnegative
real numbers. Show that(

n∑
i=1

xi

i

)4

≤ 2π 2
n∑

i, j=1

xi x j

i + j

n∑
k,l=1

xk xl

(k + l)3
.

11681. Proposed by Des MacHale, University College Cork, Cork, Ireland. For any
group G, let AutG denote the group of automorphisms of G.

http://dx.doi.org/10.4169/amer.math.monthly.119.10.880
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(a) Show that there is no finite group G with |AutG| = |G| + 1.
(b) Show that there are infinitely many finite groups G with |AutG| = |G|.
(c) Find all finite groups G with |AutG| = |G| − 1.

11682. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Compute

∞∑
n=0

(−1)n
(
∞∑

k=1

(−1)k−1

n + k

)2

.

11683. Proposed by Raimond Struble, Santa Monica, CA. Given a triangle ABC , let
FC be the foot of the altitude from the incenter to AB. Define FB and FC similarly.
Let CA be the circle with center A that passes through FB and FC , and define CB and
CC similarly. The Gergonne point of a triangle is the point at which segments AFA,
B FB , and C FC meet. Determine, up to similarity, all isosceles triangles such that the
Gergonne point of the triangle lies on one of the circles CA, CB , or CC .

SOLUTIONS

Matrices Whose Powers Have Bounded Entries

11530 [2010, 834]. Proposed by Pál Peter Dályay, Szeged, Hungary Let A be an
m × m matrix with nonnegative entries ai, j and with the property that there exists
a permutation σ of {1, . . . ,m} for which

∏m
i=1 ai,σ (i) ≥ 1. Show that the union over

n ≥ 1 of the set of entries of An is bounded if and only if some positive power of A is
the identity matrix.

Solution by John H. Smith, Needham, MA. If some positive power of A is the identity,
then the powers An run over a finite set and hence have bounded entries. We prove the
converse.

Define A′ to agree with A in the positions (i, σ (i)) and be 0 elsewhere. Let A′′ =
A − A′; note that A′′ has nonnegative entries. Let k be the least common multiple
of the lengths of the cycles in σ , so k is the order of σ . Let B = Ak

− A′k ; since
A = A′ + A′′, the entries of B are nonnegative.

The matrix A′k is diagonal. Let b j be the product of the entries (i, σ (i)) in A corre-
sponding to the j th cycle in σ , and let l j be its length. The entries on the diagonal of

A′k corresponding to this cycle are b
k/ l j
j .

If b j > 1, then the entries of A′kn are unbounded as n grows. Since Akn
− A′kn has

nonnegative entries, the entries of Akn would also be unbounded. Hence b j ≤ 1 for
each j ; since the product over all cycles is at least 1, we have b j = 1 for each j .

Hence Ak
= I + C , where C has nonnegative entries. If C 6= 0, then I + nC has

unbounded entries (over all n). The same also holds for Akn , which equals I + nC +
Dn , where Dn has nonnegative entries. Hence boundedness of the entries of An over
all n implies Ak

= I .

Also solved by P. Budney, R. Chapman (U. K.), D. Constales (Belgium), D. Fleischman, E. A. Herman,
R. A. Horn & J. L. Stuart, J. H. Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany), S. Pierce,
É. Pité (France), R. E. Prather, A. R. Schep, J. Simons (U. K.), R. Stong, M. Tetiva (Romania), Z. Vörös
(Hungary), Barclay Capital Problems Solving Group, Con Amore Problem Group (Denmark), NSA Problems
Group, and the proposer.
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A Sufficient Condition for a Boolean Ring

11533 [2010, 835]. Proposed by Erwin Just (emeritus), Bronx Community College of
the City College of New York, Bronx, NY. Let t be a positive integer and let R be a ring,
not necessarily having an identity element, such that x + x2t+1

= x2t
+ x10t+1 for each

x in R. Prove that R is a Boolean ring, that is, x = x2 for all x ∈ R.

Solution by Richard Stong, CCR, San Diego CA. Summing the given identity for x and
−x yields 2x2t

= 0. The identity for 2x yields

2x = 2x2t
[
22t−1

− 22t x + 210t x8t+1
]
= 0.

Thus, R has characteristic 2. Now fix x and define a linear map Z2[X ] → R by
p(X) 7→ xp(x). The kernel of this map is an ideal I in Z2[X ]. Since Z2 is a field, I is
a principal ideal; let q(X) be a generator of I . Note that X 10t

− X 2t
+ X 2t−1

− 1 ∈ I ,
so X - q(X).

Suppose that h(X) is an irreducible factor of q(X) having degree m, and let α ∈ F2m

be a root of h. For each nonzero β ∈ F2m , there is a polynomial g(X) with αg(α) = β.
Since the given identity applies to xg(x),

X 10t+1g(X)10t+1
− X 2t+1g(X)2t+1

+ X 2t g(X)2t
− Xg(X)

is in I and hence is a multiple of the irreducible polynomial h(X). Setting X = α,
we have β10t+1

− β2t+1
+ β2t

− β = 0. Hence every nonzero element of F2m is a root
of X 10t+1

− X 2t+1
+ X 2t

− X . This means that X 2m
−1
− 1 divides X 10t+1

− X 2t+1
+

X 2t
− X . When we reduce X 10t+1

− X 2t+1
+ X 2t

− X modulo X 2m
−1
− 1, we replace

every exponent by its residue mod 2m
− 1. Hence, since R has characteristic 2, the four

exponents 10t + 1, 2t + 1, 2t and 1 must pair up when reduced mod 2m
− 1. If they

pair up as (10t + 1, 2t + 1) and (2t, 1), then 2m
− 1 divides both 10t + 1− (2t + 1)

and 2t − 1, which implies m = 1 since gcd(8t, 2t − 1) = 1. Similarly, the other two
pairings also lead to m = 1. Hence, h(X) = X − 1.

Now let k(X) = X 10t+1
− X 2t+1

+ X 2t
− X . Since k ′(1) = 1, we cannot have 1 as

a double root of k(X). Thus q(X)|(X − 1), and X − 1 ∈ I . In terms of x this yields
x2
= x = 0 or x = x2, as desired.

Also solved by A. J. Bevelacqua, D. Constales (Belgium), P. P. Dályay (Hungary), O. P. Lossers (Netherlands),
J. M. Sanders, R. Tauraso (Italy), and the proposer.

An Application of Fermat’s Little Theorem

11537 [2010, 929]. Proposed by Lang Withers, Jr., MITRE, McClean, VA. Let p be a
prime and a be a positive integer. Let X be a random variable having a Poisson distri-
bution with mean a, and let M be the pth moment of X . Prove that M ≡ 2a mod p.

Solution by Alin Bostan and Bruno Salvy, INRIA, France. For n ≥ 0, the nth moment
Mn(a) of a random variable having a Poisson distribution with mean a is given by

Mn(a) = e−a
∑
k≥0

knak

k!
.

We compute its exponential generating function
∑

n≥0 Mn(a)tn/n! as follows:

∑
n≥0

Mn(a)

n!
tn
= e−a

∑
k≥0

ak

k!

∑
n≥0

(tk)n

n!
= e−a

∑
k≥0

ak

k!
etk
= ea(et

−1).
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By coefficient extraction, it follows that Mn(a) is a monic polynomial of degree n in
a (it is known as the Touchard polynomial). Its coefficient

[
ak
]

Mn(a) on ak , denoted{n
k

}
, is the Stirling number of the second kind, given by{

n

k

}
=

[
tn

n!

]
(et
− 1)k

k!
=

[
tn

n!

] k∑
j=0

(−1)k− j

k!

(
k

j

)
et j
=

1

k!

k∑
j=0

(−1)k− j

(
k

j

)
jn.

By Fermat’s Little Theorem, if p is a prime number and 2 ≤ k ≤ p − 1, then mod p,

k!

{
p

k

}
≡

k∑
j=1

(−1)k− j

(
k

j

)
j = k

k∑
j=1

(−1)k− j

(
k − 1

j − 1

)
= k(1− 1)k−1

= 0.

Therefore, p divides
{p

k

}
when 2 ≤ k ≤ p − 1, yielding

Mp ≡ a p
+ a ≡ 2a (mod p).

Also solved by O. J. L. Alfonso (Colombia), T. Becker (Germany), L. Bogdan (Canada), J. R. Buchanan,
M. Caragiu, M. A. Carlton, N. Caro (Brazil), R. Chapman (U. K.), D. Constales (Belgium), W. J. Cowieson,
N. Grivaux (France), K. Kim, O. Kouba (Syria), J. Lobo (Costa Rica), O. P. Lossers (Netherlands), R. D. Nel-
son (U.K.), M. A. Prasad (India), D. Promislaw (Canada), C. M. Russell, J. Simons (U. K.), N. C. Singer,
A. Stenger, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), Z. Vörös (Romania), M. Vowe (Switzerland),
D. M. Warme, GCHQ Problem Solving Group (U. K.), Texas State University Problem Solvers Group, and the
proposer.

A Condition for Multiplicative Identities in Commutative Rings

11538 [2010, 929]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu”, Bı̂rlad, Romania. Prove that a finite commutative ring in which every
element can be written as a product of two (not necessarily distinct) elements has a
multiplicative identity.

Solution by John H. Smith, Needham, MA. Let R be such a ring. For x ∈ R, let x R =
{xz : z ∈ R}. We call x R maximal if it is not properly contained in y R for any y. By
the hypothesis, every element of R is in some such set. Since R is finite, each y R is
contained in a maximal such set.

When x R is maximal, we show that (i) x ∈ x R, (ii) x R contains an element ex that
acts as a multiplicative identity on x R, (iii) if y R is also maximal, then x R = y R, and
(iv) x R = R. Together, (ii) and (iv) yield the desired multiplicative identity on R.

(i): We are given x = yz, which yields x R ⊆ y R. If x /∈ x R, then the containment
is proper, contradicting the maximality of x R.

(ii): Since x ∈ x R, we have x = xex = ex x (by commutativity) for some ex ∈ R.
Hence x R ⊆ ex R, and these sets are equal by the maximality of x R. Thus also ex R is
maximal, and by (i) we have ex ∈ ex R = x R. Since ex x = x , it follows for xy ∈ x R
that ex xy = xy, and hence ex is a multipicative identity on x R.

(iii): Suppose that x R and y R are both maximal; let ex and ey be the corresponding
identity elements, and let f = ex + ey − ex ey . We compute

f x = ex x + ey x − (ex)ey x = x + ey x − ey x = x .

Similarly, f y = y, so f R contains both x R and y R. By maximality, f R equals both
x R and y R, and hence they equal each other.

(iv): Every element of R lies in some maximal set y R and hence in x R. Thus R =
x R.
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Also solved by G. Apostolopoulos (Greece), H. E. Bell (Canada), J. Bergen, A. J. Bevelacqua, W. D. Burgess,
J. Cade, N. Caro, R. A. Caruthers, R. Chapman (U. K.), J. E. Cooper III, A. Habil (Syria), A. Hays, C. Lanski,
O. P. Lossers (Netherlands), A. Nakhash, D. Opitz, D. Promislow (Canada), J. Simons (U. K.), T. Smith,
R. Stong, R. Tauraso (Italy), X. Wang, J. W. Ward, the Microsoft Research Problems Group, the NSA Problems
Group, the Texas State University Problem Solvers Group, and the proposer.

Quadratic form plus a cube

11539 [2010, 929]. Proposed by William C. Jagy, MSRI, Berkeley, CA. Let E be
the set of all positive integers not divisible by 2 or 3 or by any prime q repre-
sented by the quadratic form 4u2

+ 2uv + 7v2. (Thus, the first few members of E
are 1, 5, 11, 17, 23, and 25.) Show that 4x2

+ 2xy + 7y2
+ z3 is not an element of

{2n3,−2n3, 32n3,−32n3
} for n ∈ E and x, y, z ∈ Z.

Solution by Robin Chapman, Exeter, UK. Let Q1(x, y) = x2
+ 27y2 and Q2(x, y) =

4x2
+ 2xy + 7y2. Both Q1 and Q2 are primitive positive definite integral quadratic

forms with discriminant−108. By special cases of quadratic and cubic reciprocity, we
have the following (Theorems 2.13 and 4.15 of [1]):

(i) a prime p is represented by one of these forms if and only if p ≡ 1 (mod 3);
(ii) p is represented by the quadratic form Q1 if and only if p ≡ 1 (mod 3) and 2

is a cubic residue modulo p.
Therefore, if p is represented by Q2, then 2 is not a cubic residue modulo p.

Now suppose that 4x2
+ 2xy + 7y2

+ z3
= kn3 with k ∈ {±2,±32}, for x, y, z ∈ Z

and n ∈ E . We have Q2(x, y) = kn3
− z3, but we cannot have x = y = 0, since k is

not the cube of a rational. Now Q2(x, y) = 1
4 ((4x + y)2 + 27y2) ≥ 27

4 > 6 if y 6= 0,
and 4x2

+ 2xy + 7y2
= 4x2

≥ 4 if y = 0.
Consider the possible values of Q2(x, y). If Q2(x, y) is even, then y is even; let

y = 2y′. Now Q2(x, y) = 4(x2
+ xy′ + 7(y′)2). For x2

+ xy′ + 7(y′)2 to be even,
both x and y′ must be even. Repeating this argument, we see that the 2-adic val-
uation v2(Q2(x, y)) must be even. (Here v2(m) is defined as the highest power of
2 that divides m.) Since n ∈ E , n is odd, and therefore v2(kn3) is 1 or 5. Since
z3
= kn3

− Q2(x, y), we have v2(z3) = min(v2(kn3), v2(Q2(x, y))) ∈ {0, 1, 2, 4, 5}.
However, v2(z3) is a multiple of 3, so v2(z3) = 0, and hence Q2(x, y) is odd.

Now Q2(x, y) ≡ x2
+ 2xy + y2

= (x + y)2 (mod 3). If 3 | Q2(x, y), then x ≡
−y (mod 3), so we can write x = 3t − y, where t ∈ Z. Now Q2(x, y) = 36t2

−

18t + 9y2 so it is a multiple of 9, so z3
≡ kn3 (mod 9). However, n ∈ E yields

3 - n, so n ≡ ±1 (mod 3). Therefore, n3
≡ ±1 (mod 9), leading to z3

≡ ±2 or ±5
(mod 9), which is impossible. We conclude that Q2(x, y) is coprime to 6.

With m = gcd(x, y) we get Q2(x, y) = m2 Q2(x ′, y′), where x = mx ′, y = my′,
and gcd(x ′, y′) = 1. Now Q2(x ′, y′) ≥ 4, and we claim that Q2(x ′, y′) has a prime
factor p represented by Q2. Let p be any prime factor of Q2(x ′, y′). We have
4Q2(x ′, y′) ≡ (4x ′ + y′)2 + 27(y′)2 (mod p), and hence p ≡ 1 (mod 3) by (i). Now
p is represented by Q1 or Q2; let us suppose by Q1 so that p = u2

+ 27v2.
Define a = ux ′ − vx ′ − 7vy′ and b = uy′ + 4vx ′ + vy′ to get

4a2
+ 2ab + 7b2

= (u2
+ 27v2)

(
4(x ′)2 + 2x ′y′ + 7(y′)2

)
= pQ2(x

′, y′).

Since u2
≡ −27v2 (mod p), we can write u ≡ ξv (mod p), where ξ 2

≡ −27
(mod p) (ξ exists, since −3 is a quadratic residue modulo p). Since (4x ′ + y′)2 ≡
27(y′)2 (mod p), we also have 4x ′ + y′ ≡ ±ξ y′ (mod p). Replacing u by −u and
ξ by −ξ , if necessary, we may assume that u ≡ ξv and 4x ′ ≡ −(1+ ξ)y′ (mod p).
Now

4a ≡
(
−ξ(1+ ξ)+ (1+ ξ)− 28

)
vy′ = −(ξ 2

+ 27)vy′ ≡ 0 (mod p)
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and b ≡
(
ξ − (1+ ξ)+ 1

)
vy′ ≡ 0 (mod p). Thus p | a and p | b, so

Q2(x ′, y′)

p
=

Q2(a, b)

p2
= Q2

(
a

p
,

b

p

)
and hence Q2(x ′, y′)/p is represented by Q2. Iterating this argument must eventually
find a prime factor of Q2(x ′, y′) represented by Q2.

Let the prime p divide Q2(x ′, y′) and be represented by Q2, so 2 is not a cubic
residue modulo p. We have kn3

≡ z3 (mod p). Since also k = ±2 or k = ±25, we
conclude that k is not a cubic residue modulo p. Hence p | n, contradicting n ∈ E .
This shows that Q2(x, y)+ z3

6∈ {±2n3,±32n3
: n ∈ E}.

References
[1] David A. Cox, Primes of the form x2

+ ny2, John Wiley & Sons, 1989.

Also solved by the proposer.

A Stirling sum

11545 [2011, 84]. Proposed by Manuel Kauers, Research Institute for Symbolic Com-
putation, Linz, Austria, and Sheng-Lan Ko, National Taiwan University, Taipei, Tai-
wan. Find a closed-form expression for

n∑
k=0

(−1)k
(

2n

n + k

)
s(n + k, k),

where s refers to the (signed) Stirling numbers of the first kind.

Solution I by Jim Simons, Cheltenham, U. K. The answer is
∏n

i=1(2i − 1). Let c(n, k)
denote the unsigned Stirling number of the first kind, the number of permutations of
[n] with k cycles. By definition, s(n, k) = (−1)n−kc(n, k). Subsituting this definition
into the sum and then setting k = n − i transforms the sum to

n∑
i=0

(−1)i
(

2n

i

)
c(2n − i, n − i).

Now
(2n

i

)
c(2n − i, n − i) is the number of ways to construct a permutation of [2n]

with n cycles by choosing i fixed points and constructing a permutation with n −
i cycles on the remaining 2n − i elements. By inclusion-exclusion, the sum is the
number of permutations of [2n] having n cycles and no fixed points. Each cycle in
such a permutation must be a 2-cycle. It is well known that the number of pairings of
2n elements is

∏n
i=1(2i − 1).

Solution II by Kim McInturff, Santa Barbara, CA. We obtain the answer in the form
(2n)!/2nn!. It is well known that∑

n≥k

s(n, k)
tn

n!
uk
= (1+ t)u,

Now

e−ut(1+ t)u =
∞∑

i=0

(−1)i
(ut)i

i !

∑
j,k

s( j + k, k)
t j+k

( j + k)!
uk

=

∑
i, j,k

(−1)i
(

i + j + k

j + k

)
s( j + k, k)

t i+ j+k

(i + j + k)!
ui+k .
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The coefficient of t2nun/n! in this sum is obtained by taking the terms in which j = n
and i = n − k, yielding

n∑
k=0

(−1)n−k

(
2n

n + k

)
s(n + k, k)

which is (−1)n times the desired sum. Computing the coefficient another way yields

e−ut(1+ t)u = e−ut+u log(1+t)
= exp

(
u(−t2/2+ t3/3− · · · )

)
so the coefficient of unt2n/(2n)! is (−1)n(2n)!/2nn!.

Also solved by D. Beckwith, C. Burnette, D. Callan, R. Chapman (U. K.), D. Constales, K. David, C. Fuerst
(Austria), J.-P. Grivaux (France), O. Kouba (Syria), O. P. Lossers (Netherlands), Á. Plaza (Spain), J. Quain-
tance, N. C. Singer, R. Stong, R. Tauraso (Italy), M. Wildon, Barclays Capital Problems Solving Group (U.K.),
CMC 328, GCHQ Problem Solving Group (U. K.), and the proposer.

2-adic Valuation of Bernoulli-style Sums

11546 [2011, 84]. Proposed by Kieren MacMillan, Toronto, Canada, and Jonathan
Sondow, New York, NY. Let d , k, and q be positive integers, with k odd. Find the

highest power of 2 that divides
∑2d k

n=1 nq .

Solution by Barclays Capital Problems Solving Group, London, (U.K.). If q is even or
equals 1, then the answer is 2d−1. Otherwise, the answer is 22(d−1).

In the case q = 1, the sum equals 2d−1(k(2dk − 1)), which clearly is divisible by
2d−1 and not by 2d . Now restrict to q > 1.

If d = 1, then the sum contains exactly k odd terms and hence is odd, so the answer
is 20. We proceed by induction on d; consider d > 1. We pair high and low terms from
the sum, using

2d k∑
n=1

nq
= (2dk)q − (2d−1k)q +

2d−1k∑
n=1

(
nq
+ (2dk − n)q

)
.

For even q , we take residues modulo 2d . Since q(d − 1) ≥ d , both (2dk)q and
(2d−1k)q are divisible by 2d . Also, (2dk − n)q ≡ nq mod 2d (since q is even). Thus

2d k∑
n=1

nq
≡ 2

2d−1k∑
n=1

nq (mod 2d).

By the induction hypothesis,
∑2d−1k

n=1 nq is divisible by 2d−2 but not 2d−1. Hence the
sum on the left is divisible by 2d−1 but not 2d .

For odd q , we instead work modulo 22d−1. Since q(d − 1) ≥ 2d − 1 (using q ≥ 3)
both (2dk)q and (2d−1k)q are divisible by 22d−1. Since q is odd, expanding the binomial
yields (2dk − n)q = −nq

+ 2dkqnq−1
− 22dk2

(q
2

)
nq−2
+ · · · ; all terms after the second

are divisible by 22d−1. Thus nq
+ (2dk − n)q ≡ 2dqknq−1 mod 22d−1, so

2d k∑
n=1

nq
≡ 2dqk

2d−1k∑
n=1

nq−1 (mod 22d−1).

By the induction hypothesis,
∑2d−1k

n=1 nq−1 is divisible by 2d−2 but not 2d−1. Hence the
sum on the left is divisible by 22d−2 but not 22d−1.
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Also solved by R. Chapman (U. K.), J. Christopher, P. P. Dályay (Hungary), Y. J. Ionin, O. P. Lossers (Nether-
lands), Á. Plaza (Spain), R. Stong, R. Tauraso (Italy), J. Vondra (Australia), Z. Vörös (Hungary), CMC 328,
GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposers.

Largest odd divisors

11553 [2011, 178]. Proposed by Mihály Bencze, Brasov, Romania. For a positive in-
teger k, let α(k) be the largest odd divisor of k. Prove that for each positive integer
n,

n(n + 1)

3
≤

n∑
k=1

n − k + 1

k
α(k) ≤

n(n + 3)

3
.

Solution by O. P. Lossers, Eindhoven, The Netherlands. Let T (k) =
∑k

j=1
α( j)

j . Since
α(2 j) = α( j) and α(2 j − 1) = 2 j − 1,

T (k) =
dk/2e∑
j=1

α(2 j − 1)

2 j − 1
+

bk/2c∑
j=1

α(2 j)

2 j
=

⌈
k

2

⌉
+

T (bk/2c)

2
, (1)

We prove by induction on k (with trivial basis k = 1) that

2k

3
< T (k) <

2(k + 1)

3
. (2)

For k > 1, using (1) and the induction hypothesis yields

2k

3
<

⌈
k

2

⌉
+
bk/2c

3
< T (k) <

⌈
k

2

⌉
+
bk/2c + 1

3
≤

2(k + 1)

3
.

Since
∑n

k=1 T (k) counts each instance of α( j)/j exactly n − j + 1 times, summing
(2) over 1 ≤ k ≤ n yields

n(n + 1)

3
<

n∑
j=1

n − j + 1

j
α( j) <

n(n + 3)

3
.

Editorial comment. R. A. MacLeod (On the Largest Odd Divisor of n, Amer. Math.
Monthly 75 (1968) 647–648) proved that 2k

3 +
1

3k ≤ T (k) ≤ 2(k+1)
3 −

2
3(k+1) , with

equality for k = 2m in the first and for k = 2m
− 1 in the second inequality. Many

solvers also showed that n(n+7/4)
3 ≤

∑n
k=1

n−k+1
k α(k) ≤ n(n+2)

3 and that equality is
achieved in the second inequality whenever n = 2m

− 1. O. Kouba (On Certain
Sums Related to the Largest Odd Divisor, arXiv:1103.2295v1 [math.NT], Mar 2011,
arxiv.org) gave a sharp lower bound for

∑n
k=1

n−k+1
k α(k) and described when equality

holds.

Also solved by M. Bataille (France), D. Beckwith, C. Burnette, P. P. Dályay (Hungary), D. Fleischman, O. Ge-
upel (Germany), N. Grivaux (France), A. Habil (Syria), M. E. Kidwell & M. D. Meyerson, O. Kouba (Syria),
J. H. Lindsey II, D. Nacin, Á. Plaza (Spain), C. R. Pranesachar (India), R. E. Prather, J. Simons (U. K.),
N. C. Singer, A. Stenger, R. Stong, R. Tauraso (Italy), D. B. Tyler, J. Vinuesa (Spain), Z. Xintao (China),
C. Y. Yıldırım (Turkey), GCHQ Problem Solving Group (U. K.), and the proposer.

Errata and End Notes for 2012. In the credits for problem 10912 [2003,745],
P. T. Krasopoulos’ name was misspelled.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before May 31, 2013. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11684. Proposed by Raymond Mortini, Université Paul Verlaine, Metz, France, and
Rudolf Rupp, Georg-Simon-Ohm Hochschule Nürnberg, Nuremberg, Germany. For
complex a and z, let φa(z) = (a − z)/(1− az) and ρ(a, z) = |a − z|/|1− az|.
(a) Show that whenever −1 < a, b < 1,

max
|z|≤1
|φa(z)− φb(z)| = 2ρ(a, b), and

max
|z|≤1
|φa(z)+ φb(z)| = 2.

(b) For complex α, β with |α| = |β| = 1, let

m(z) = ma,b,α,β(z) = |αφa(z)− βφb(z)|.

Determine the maximum and minimum, taken over z with |z| = 1, of m(z).

11685. Proposed by Donald Knuth, Stanford University, Stanford, CA. Prove that

∞∏
k=0

(
1+

1

22k
− 1

)
=

1

2
+

∞∑
k=0

1∏k−1
j=0

(
22 j
− 1

) .
In other words, prove that

(1+ 1)
(
1+ 1

3

) (
1+ 1

15

) (
1+ 1

255

)
· · · =

1
2 + 1+ 1+ 1

3 +
1

3·15 +
1

3·15·255 + · · · .

11686. Proposed by Michel Bataille, Rouen, France. Let x, y, z be positive real num-
bers such that x + y + z = π/2. Prove that

cot x + cot y + cot z

tan x + tan y + tan z
≥ 4(sin2 x + sin2 y + sin2 z).

http://dx.doi.org/10.4169/amer.math.monthly.120.01.076
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11687. Proposed by Steven Finch, Harvard University, Cambridge, MA. Let T be a
solid torus in R3 with center at the origin, tube radius 1 and spine radius r with r ≥ 1
(so that T has volume π · 2πr ). Let P be a ‘random’ nearby plane. Find the conditional
probability, given that P meets T , that the intersection is simply connected. For what
value of r is this probability maximal? (The plane is chosen by first picking a distance
from the origin uniformly between 0 and 1 + r , and then picking a normal vector
independently and uniformly on the unit sphere.)

11688. Proposed by Samuel Alexander, The Ohio State University, Columbus, OH.
Consider f : N3

→ N such that lima→∞ infb,c,d∈N,b<a f (a, c, d) − f (b, c, d) = ∞.
Show that for B ∈ N, there exists k ∈ N such that

f (a, c, d) = k ⇒ max{c, d} > B.

11689. Proposed by Yagub N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan. Two
circles w1 and w2 intersect at distinct points B and C and are internally tangent to a
third circle w at M and N , respectively. Line BC intersects w at A and D, with A
nearer B than C . Let r1 and r2 be the radii of w1 and w2, respectively, with r1 ≤ r2. Let
u =
√
|AC | · |B D| and v =

√
|AB| · |C D|. Prove that

u − v

u + v
<

√
r1

r2
.

11690. Proposed by Pál Péter Dályay, Szeged, Hungary. Let M be a point in the in-
terior of a convex polygon with vertices A1, . . . , An in order. For 1 ≤ i ≤ n, let ri

be the distance from M to Ai , and let Ri be the radius of the circumcircle of triangle
M Ai Ai+1, where An+1 = A1. Show that

n∑
i=1

Ri

ri + ri+1
≥

n

4 cos(π/n)
.

SOLUTIONS

A Special Ratio of Cosines

11540 [2010, 929]. Proposed by Marius Cavachi, “Ovidius” University of Constanta,
Constanta, Romania. Let n be an integer greater than 1, other than 4. Let p and q be
positive integers less than n and relatively prime to n. Let a = cos(2πp/n)

cos(2πq/n) . Show that if
ak is rational for some positive integer k, then ak is either 1 or −1.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. Let α be the primitive root e2π i/n of zn

− 1 = 0. We compute

(αq
+ α−q)kak

= (α p
+ α−p)k .

All φ(n) primitive roots of zn
− 1 are conjugates of α and hence satisfy the same

equation. If β runs through the set P of primitive roots, then so do β p and βq . Thus∏
β∈P

(β + β−1)kakφ(n)
=

∏
β∈P

(β + β−1)k,

so akφ(n)
= 1 and ak

∈ {1,−1}.
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Also solved by R. Chapman (U. K.), Y. J. Ionin, A. Nakhash, A. Stenger, R. Stong, M. Tetiva (Romania), and
the proposer.

A Rectangle With Vertices On Prescribed Circles

11558 [2011, 275]. Proposed by Andrew McFarland, Płock, Poland. Given four con-
centric circles, find a necessary and sufficient condition that there be a rectangle with
one corner on each circle.

Solution by J. C. Linders, Eindhoven, The Netherlands. Suppose there is a rectangle
with one corner on each circle. Choose a rectangular coordinate system with origin at
the common center of the circles and axes parallel to the sides of the rectangle. There
are real numbers a, b, c, d such that the vertices of the rectangle, starting at the lower
left corner and proceeding clockwise, are (a, b), (c, b), (c, d), (a, d).

Let the circles on which they lie have radii r1, r2, r3, r4, respectively. We have

a2
+ b2
= r 2

1 , c2
+ b2
= r 2

2 , c2
+ d2

= r 2
3 , a2

+ d2
= r 2

4 .

Thus r 2
1 + r 2

3 = a2
+ b2
+ c2
+ d2

= r 2
2 + r 2

4 . By rotating the picture, if necessary, we
may assume that r1 is the least radius and therefore r3 is the greatest.

Conversely, suppose that 0 < r1 < r2 < r4 < r3 satisfy r 2
1 + r 2

3 = r 2
2 + r 2

4 . We

may take a = r1, b = 0, c = r2, and d =
√

r 2
3 − r 2

2 =

√
r 2

4 − r 2
1 . The points

(a, b), (c, b), (c, d), (a, d) lie on the circles, and they form a rectangle.

Editorial comment. Solvers found this problem in: C. Blattner & G. Wanner, “Note
on rectangles with vertices on prescribed circles.” Elem. Math. 62 (2007) 127–129; E.
J. Ionascu & P. Stanica, “Extreme values for the area of rectangles with vertices on
concentrical circles.”Elem. Math. 62 (2007) 30–39.

Also solved by Y. N. Aliyev (Azerbaijan), Y. An (China), D. Beckwith, C. Burnette, N. Caro (Brazil), D. Chak-
erian, R. Chapman (U. K.), J. Christopher, P. P. Dályay (Hungary), C. Delorme (France), A. Ercan (Turkey),
O. Geupel (Germany), J.-P. Grivaux (France), S. Habil, C. C. Heckman, E. A. Herman, E. J. Ionascu, Y. J.
Ionin, J. E. Kettner, O. Kouba (Syria),L. Lipták, M. D. Meyerson, J. Minkus, H. W. Park (Korea), Á. Plaza
& J. Sánchez-Reyes (Spain), R. E. Prather, J. Schlosberg, J. Simons (U. K.), J. H. Steelman, D. Stone & J.
Hawkins, R. Stong, M. Tetiva (Romania), E. I. Verriest, M. Vowe (Switzerland), J. B. Zacharias, Armstrong
Problem Solvers, Barclays Capital Problems Solving Group (U. K.), Ellington Management Problem Solving
Group, FAU Problem Solving Group, GCHQ Problem Solving Group (U. K.), and the proposer.

A Rational Recurrence

11559 [2011, 275]. Proposed by Michel Bataille, Rouen, France. For positive p and
x ∈ (0, 1), define the sequence 〈xn〉 by x0 = 1, x1 = x , and, for n ≥ 1,

xn+1 =
pxn−1xn + (1− p)x2

n

(1+ p)xn−1 − pxn
.

Find positive real numbers α, β such that limn→∞ nαxn = β.

Solution by Douglas B. Tyler, Raytheon, Torrance, CA. We claim that the values are
α = 1/p and β = 0(u)/0(ux), where u = 1/(p(1− x)). The statement to be proved
implies xn+1/xn → 1, and the recursion is first order in this ratio. This suggests setting
yn = 1 − xn+1/xn . Now 1/yn − 1/yn−1 = p, which is linear in 1/yn . Thus 1/yn =

np + 1/(1− x) = (n + u)p, and

xn =

n−1∏
k=0

xk+1

xk
=

n−1∏
k=0

kp + up − 1

(k + u)p
=

n−1∏
k=0

kp + uxp

(k + u)p
=
0(n + ux)

0(n + u)
·
0(u)

0(ux)
.
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By Stirling’s formula, 0(x + 1) ∼ (x/e)x
√

2πx , so 0(n + u)/0(n + ux) ∼ nux−u

= n−1/p, completing the proof.

Also solved by R. Agnew, R. Bagby, M. Benito, Ó. Ciaurri, E. Fernández & L. Roncal (Spain), N. Bouzar, P.
Bracken, C. Burnette, R. Chapman (U. K.), P. P. Dályay (Hungary), S. de Luxán (Spain), D. Fleischman, O.
Geupel (Germany), M. Goldenberg & M. Kaplan, J. Grivaux (France), A. Habil (Syria), E. A. Herman, B. D.
Hughes (Australia), O. Kouba (Syria), J. C. Linders (Netherlands), J. H. Lindsey II, L. Lipták, M. Omarjee
(France), E. Omey (Belgium), N. C. Singer, A. Stenger, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania),
E. I. Verriest, Barclays Capital Problems Solving Group (U. K.), Ellington Management Problem Solving
Group, FAU Problem Solving Group, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the
proposer.

Rational-Area Triangles

11560 [2011, 275]. Proposed by Gregory Galperin, Eastern Illinois University,
Charleston, IL, and Yury Ionin, Central Michigan University, Mount Pleasant, MI.
(a) The diagonals of a convex pentagon P0 P1 P2 P3 P4 divide it into 11 regions, of which
10 are triangular. Of these 10, five have two vertices on the diagonalP0 P2. Prove that if
each of these has rational area, then the other five triangles and the original pentagon
all have rational areas.
(b) Let P0, P1, . . . , Pn−1 with n ≥ 5 be points in the plane. Suppose that no three are
collinear, and, interpreting indices on Pk as periodic modulo n, suppose that for all
k, Pk−1 Pk+1 is not parallel to Pk Pk+2. Let Qk be the intersection of Pk−1 Pk+1 with
Pk Pk+2. Let αk be the area of triangle Pk Qk Pk+1, and let βk be the area of triangle
Pk+1 Qk Qk+1. For 0 ≤ j ≤ 2n − 1, let

γ j =

{
α j/2, if j is even,
β( j−1)/2, if j is odd.

Interpreting indices on γ j as periodic modulo 2n, find the least m such that if m con-
secutive γ j are rational, then all are rational.

Solution by Richard Stong, Center for Communications Research,San Diego, CA. Call
a point in the Cartesian plane rational if both its coordinates are rational. Call a line
rational if it can be defined by an equation with rational coefficients. Note that: (i)
Two rational points determine a rational line; (ii) The intersection of two rational lines
is a rational point; (iii) A polygon all of whose vertices are rational points has rational
area; and (iv) If A and B are rational points, then the locus of all C such that 4ABC
has a given rational area is two rational lines parallel to AB.

For part (b), we claim that the least m is 2n − 4 .We will begin by showing that
rationality of any 2n − 4 consecutive values of γ j implies that affine coordinates may
be chosen so that all Pi and Q j are rational points. Let X i = Pi/2 for i even and
X(i−1)/2 for i odd. Now γ j is the area of 4X j X j+1 X j+2 and γ j + γ j+1 is the area of
4X j X j+2 X j+3. Note that no three consecutive X j can be collinear, since either case
would imply that four consecutive Pj are collinear, contradicting the hypotheses.

Suppose γ j , γ j+1, . . . , γ j+2n−5 are all rational. By an affine transformation, we may
arrange that X j , X j+1, and X j+2 are all rational. Before and after this transformation,
4X j X j+1 X j+2 has rational area, so the determinant of the associated matrix must be
rational, and therefore this map sends rational areas to rational areas.

Now 4X j+1 X j+2 X j+3 and 4X j X j+2 X j+3 both have rational area (γ j+1 and γ j +

γ j+1,respectively), so from (iv) we may conclude that X j+3 lies on a certain rational
line parallel to X j+1 X j+2 and on another rational line parallel to X j X j+2. These two
lines are not parallel, so (ii) implies that X j+3 is a rational point. Iterating this argu-
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ment, we conclude that X j , . . . , X j+2n−3 are all rational points. Thus, at most two of
the X j are irrational points.

On the other hand, each Xk lies at the intersection of two lines through four of the
X j (including Xk itself). If all but two of the X j are rational, then by (i) these two
lines must be rational and hence Xk itself is rational. Thus all the X j are rational, and
by (iii) all areas of polygons with vertices among the X j are rational. Note that in the
particular case n = 5, this implies part (a).

For the converse, fix rational points P0, P1, . . . , Pn−2, P ′n−1, and then choose Pn−1 to
be an irrational point on the line P1 P ′n−1. In this case all the Pi are rational except Pn−1,
and all the Q j are rational except possibly Qn−2 and Qn−3. Thus all the areas except
possibly αn−3 = γ2n−6, βn−3 = γ2n−5, αn−2 = γ2n−4, βn−2 = γ2n−3, and αn−1 = γ2n−2

are rational.
Thus there are 2n − 5 consecutive rational γ j . There cannot be more than this since

Pn−1 is irrational. If either γ2n−6 or γ2n−2 were rational, then the argument above would
imply Pn−1 is rational, a contradiction.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), Ellington Management Problem Solving Group,
and the proposers; case (a) also solved by J.-P. Grivaux (France), M. Tetiva (Romania), and GCHQ Problem
Solving Group (U. K.).

Three Inequalities for Orthogonal Functions

11561 [2011, 276]. Proposed by Cezar Lupu (student), University of Bucharest,
Bucharest, Romania. Let f1, . . . , fn be continuous real valued functions on [0, 1],
none identically zero, such that

∫ 1
0 fi (x) f j (x) dx = 0 if i 6= j . Prove that

n∏
k=1

∫ 1

0
f 2
k (x) dx ≥ nn

(
n∏

k=1

∫ 1

0
fk(x) dx

)2

,

n∑
k=1

∫ 1

0
f 2
k (x) dx ≥

(
n∑

k=1

∫ 1

0
fk(x) dx

)2

, and

n∑
k=1

∫ 1
0 f 2

k (x) dx(∫ 1
0 fk(x) dx

)2 ≥ n2.

Solution by Allen Stenger, Alamogordo, NM. For the second inequality, we may apply
the Cauchy–Schwarz inequality:(

n∑
k=1

∫ 1

0
fk(x) dx

)2

=

(∫ 1

0

(
n∑

k=1

fk(x)

)
· 1 dx

)2

≤

∫ 1

0

(
n∑

k=1

fk(x)

)2

dx · 1

=

n∑
k=1

n∑
m=1

∫ 1

0
fk(x) fm(x) dx =

n∑
k=1

∫ 1

0
f 2
k (x) dx,

where we have used orthogonality in the last step.In the first and third inequalities, we
may assume that

∫ 1
0 fk(x) dx 6= 0 for all k.These two inequalities are homogeneous in

each fk , so without loss of generality we may assume
∫ 1

0 f 2
k (x) dx = 1 for all k.

Furthermore, possibly replacing fk by − fk ,we may assume
∫ 1

0 fk(x) dx > 0. For
the first inequality, we apply the arithmetic mean–geometric mean inequality and use
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our second inequality already proved. We find that(
n∏

k=1

∫ 1

0
fk(x) dx

)1/n

≤
1

n

n∑
k=1

∫ 1

0
fk(x) dx ≤

1

n

(
n∑

k=1

∫ 1

0
f 2
k (x) dx

)1/2

=
1

n

(
n∑

k=1

1

)1/2

= n−1/2
= n−1/2

(
n∏

k=1

∫ 1

0
f 2
k (x) dx

)1/(2n)

.

Raising the extremes here to the power 2n and rearranging yields the first inequality.
For the third inequality, we apply the arithmetic mean–geometric mean inequality and
our first inequality to obtain (abbreviating

∫ 1
0 fk(x) dx to

∫ 1
0 fk)

n∑n
k=1

( ∫ 1
0 fk

)−2 ≤

(
n∏

k=1

(∫ 1

0
fk

)2
)1/n

≤
1

n

(
n∏

k=1

∫ 1

0
f 2
k

)1/n

=
1

n
.

Using n = n
∫ 1

0 f 2
k in the numerator on the left, we see that the resulting inequality is

equivalent to our third inequality.

Also solved by K. F. Andersen (Canada), P. P. Dályay (Hungary), P. J. Fitzsimmons, D. Fleischman, O. Geupel
(Germany), J. Grivaux (France), E. A. Herman, O. Kouba (Syria), J. H. Lindsey II, M. Omarjee (France), I.
Pinelis, Á. Plaza & K. Sadarangani (Spain), K. Schilling, R. Stong, E. I. Verriest, J. Vinuesa (Spain), Ellington
Management Problem Solving Group, FAU Problem Solving Group, GCHQ Problem Solving Group (U. K.),
and the proposer. Partial solutions by M. W. Botsko, P. Bracken, N. Caro (Brazil), E. Hysnelaj & E. Bojaxhiu
(Australia & Germany), and NSA Problems Group.

A Definite Integral

11564 [2011, 371]. Proposed by Albert Stadler, Herrliberg, Switzerland. Prove that∫
∞

0

e−x(1− e−6x)

x(1+ e−2x + e−4x + e−6x + e−8x)
dx = log

(
3+
√

5

2

)
.

Solution by K. D. Lathrop, Ridgway, CO. The desired integral is I (1), where

I (a) =
∫
∞

0

e−ax(1− e−6x) dx

x(1+ e−2x ++e−4x + e−6x + e−8x)
.

Now
∑4

n=0 e−2nx
= (1− e−10x)/(1− e−2x), so

d I

da
= −

∫
∞

0
e−ax(1− e−6x)(1− e−2x)

∞∑
n=0

e−10nx dx .

Summation and integration may be interchanged and the integration over x performed
to yield

d I

da
= −

∞∑
n=0

(
1

a + 10n
−

1

a + 2+ 10n
−

1

a + 6+ 10n
+

1

a + 8+ 10n

)
.

Let ψ(z) = d
(

log0(z)
)
/dz. Note that ψ satisfies the identity

ψ(α)− ψ(β) = −

∞∑
n=0

(
1

n + α
−

1

n + β

)
.
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Therefore we have (first in general, and then specializing to a = 1)

I (a) = log
0( a

10 )0(
a+8
10 )

0( a+2
10 )0(

a+6
10 )

, I (1) = log
0( 1

10 )0(
9
10 )

0( 3
10 )0(

3
10 )
.

Exactly this combination of 0-functions was mentioned in the solution of Problem
11426 (this MONTHLY 117 (2010) 842); it can for example be evaluated using the
identity 0(z)0(1− z) = π csc(π z). Thus I (1) = log sin(3π/10)

sin(π/10) = log 3+
√

5
2 .

Editorial comment. Several solvers found substitutions that convert this integral into
ones found in integral tables. Integrals of this type were considered by Euler.

Also solved by T. Amdeberhan & V. H. Moll, R. Bagby, M. Bataille (France), D. Beckwith, A. Bostan (France),
P. Bracken, R. Chapman (U. K.), H. Chen, S. de Luxán (Spain), A. Ercan (Turkey), L. Gérard (France), O.
Geupel (Germany), M. L. Glasser, J. Grivaux (France), J. A. Grzesik, F. Holland (Ireland), O. Kouba (Syria),
G. Lamb, K.-W. Lau (China), O. P. Lossers (Netherlands), M. Omarjee (France), J. Rosenberg, R. Stong, R.
Tauraso (Italy), T. Trif (Romania), M. Vowe (Switzerland), H. Wang, H. Widmer (Switzerland), C. Y. Yıldırım
(Turkey), Barclays Capital Problems Solving Group (U. K.), GCHQ Problem Solving Group (U. K.), and the
proposer.

Square-Roots and Products of Uniform Random Variables

11565 [2011, 371]. Proposed by Shai Covo, Kiryat-Ono, Israel. Let U1,U2, . . . be
independent random variables, each uniformly distributed on [0, 1].
(a) For 0 < x ≤ 1, let Nx be the least n such that

∑n
k=1

√
Uk > x . Find the expected

value of Nx .
(b) For 0 < x ≤ 1, let Mx be the least n such that

∏n
k=1 Uk < x . Find the expected

value of Mx .

Solution by N. Bouzar, University of Indianapolis, Indianapolis, IN. In part (a) the
random variables

√
U1,
√

U2, . . . are independent with common probability density
function f given by f (s) = 2s for 0 < s < 1 (and 0 otherwise.) Let Sn =

∑n
k=1

√
Uk

for n ≥ 1. By the definition of Nx and the fact that the summands of Sn are nonnegative,
we have

[Nx > n ] = [ S1 ≤ x, . . . , Sn ≤ x ] = [ Sn ≤ x ], n ≥ 1.

Noting that Nx ≥ 1, we now have

E(Nx) = 1+
∞∑

n=1

P(Nx > n) = 1+
∞∑

n=1

P(Sn ≤ x).

From independence, we have

P(Sn+1 ≤ x) =
∫ x

0
P(Sn ≤ x − s)2s ds, n ≥ 1

(W. Feller, Introduction to Probability Theory and its Applications, Vol. II, 2nd ed.,
John Wiley and Sons, p. 6).

By induction we see that P(Sn ≤ x) = (x
√

2)2n/(2n)!. Therefore, E(Nx) =

cosh(x
√

2).
(b) Let Yk = − ln Uk , k ≥ 1, so that Y1, Y2, . . . are independent and exponentially

distributed with mean 1. Also note that Mx is the least n such that
∑n

k=1 Yk > − ln x .
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Now let Sn =
∑n

k=1 Yk . Proceeding as in (a), we obtain

E(Mx) = 1+
∞∑

n=1

P(Sn ≤ − ln x).

Now Sn has a gamma distribution with probability density function gn given by gn(t) =
1

(n−1)! t
n−1e−t (W. Feller, Vol. II, 2nd ed., p. 11). Thus

E(Mx) = 1+
∞∑

n=1

∫
− ln x

0
gn(t) dt = 1+

∫
− ln x

0
e−t

∞∑
n=1

tn−1

(n − 1)!
dt = 1− ln x .

Also solved by R. A. Agnew, R. Bagby, D. Beckwith, L. Bogdan (Canada), M. A. Carlton, N. Caro (Brazil),
R. Chapman (U. K.), O. Geupel (Germany), D. Gove, N. Grivaux (France), J. A. Grzesik, S. J. Herschkorn,
T. Le & S. Singh, J. H. Lindsey II, E. Omey & S. Van Gulck (Belgium), K. Schilling, J. Simons (U. K.),
N. C. Singer, R. Stong, D. B. Tyler, Barclays Capital Problems Solving Group (U. K.), BSI Problems Group
(Germany), GCHQ Problem Solving Group (U. K.), and the proposer.

An Integral Kernel Inequality

11571 [2011, 372]. Proposed by Finbarr Holland, University College Cork, Cork, Ire-
land. Let f be a nonnegative Lebesgue-measurable function on [0, 1], with

∫ 1
0 f (x) dx

= 1. Let K (x, y) = (x − y)2 f (x) f (y), F(t) =
∫
[0,t]×[0,t] K (x, y) dy dx , and G(t) =∫

[t,1]×[t,1] K (x, y) dy dx . For 0 ≤ t ≤ 1, prove that√
F(t)+

√
G(t) ≤

√
F(1).

Solution by Kenneth Schilling, Mathematics Department, Universityof Michigan-Flint,
Flint, MI. Let X be a random variable on [0, 1] with density function f , and let A =
{X ≤ t}, A′ = {X > t}, and p = P(A). Now

F(t) = 2
∫ t

0
x2 f (x)dx ·

∫ t

0
f (x)dx − 2

(∫ t

0
x f (x)dx

)2

= 2Var(X |A) · p2
= 2σ 2

X |A p2.

Similarly, G(t) = 2σ 2
X |A′(1− p)2. Now

1
√

2

(√
F(t)+

√
G(t)

)
= pσX |A + (1− p)σX |A′ ≤

√
pσ 2

X |A + (1− p)σ 2
X |A′,

because the arithmetic mean is always at most the corresponding root-mean-square.
Also, for any square-integrable random variable Y , the quantity E((Y − a)2) achieves
its minimum value of σ 2

Y at a = µY . Hence

pσ 2
X |A + (1− p)σ 2

X |A′ = p · E((X − µX |A)
2
|A)+ (1− p) · E((X − µX |A′)

2
|A′)

≤ p · E((X − µX )
2
|A)+ (1− p) · E((X − µX )

2
|A′)

= E((X − µX )
2) = σ 2

X =
1

2
F(1).

Combining this with the previous bound gives the desired result.

Also solved by R. Bagby, P. P. Dályay (Hungary), E. A. Herman, O. Kouba (Syria), J. H. Lindsey II, M.
Omarjee (France), I. Pinelis, A. Sen (Canada), J. L. Shomberg, J. Simons (U. K.), R. Stong, Barclays Capital
Problems Solving Group (U. K.), GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before June 30, 2013. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11691. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY. Show that the
2nth moment

∫
∞

0 x2n f (x) dx of the function f given by

f (x) =
d

dx
arctan

(
sinh x

cos x

)
is zero when n is an odd positive integer.

11692. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA, and Ştefan
Spătaru, International Computer High School of Bucharest, Bucharest, Romania. Let
a1, a2, a3, a4 be real numbers in (0, 1), with a4 = a1. Show that

3

1− a1a2a3
+

3∑
k=1

1

1− a3
k

≥

3∑
k=1

1

1− a2
k ak+1

+
1

1− aka2
k+1

.

11693. Proposed by Eugen Ionascu, Columbus State University, Columbus, GA, and
Richard Stong, CCR, San Diego CA. Let T be an equilateral triangle inscribed in the
d-dimensional unit cube [0, 1]d , with d ≥ 2. As a function of d , what is the maximum
possible side length of T ?

11694. Proposed by Kent Holing, Trondheim, Norway. Let g(x) = x4
+ ax3

+ bx2
+

ax + 1, where a and b are rational. Suppose g is irreducible over Q. Let G be the
Galois group of g. Let Z4 denote the additive group of the integers mod 4, and let D4

be the dihedral group of order 8. Let α = (b + 2)2 − 4a2 and β = a2
− 4b + 8.

(a) Show that G is isomorphic to one of Z4 or D4 if and only if neither α nor β is the
square of a rational number, and G is cyclic exactly when αβ is the square of a rational
number.

http://dx.doi.org/10.4169/amer.math.monthly.120.02.174
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(b) Suppose neither α nor β is square, but αβ is. Let r be one of the roots of g.
(Trivially, 1/r is also a root.) Let s =

√
αβ, and let

t = ((s + (b − 6)a)r 3
+ (as + (b − 8)a2

+ 4(b + 2))r 2
+

((b − 1)s + (b2
− b + 2)a − 2a3)r + 2(b + 2)b − 6a2)/(2s).

Show that t ∈ Q[r ] is one of the other two roots of g. Comment on the special case
a = b = 1.

11695. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. The Stirling numbers of the first kind, denoted s(n, k), can be
defined by their generating function: z(z − 1) · · · (z − n + 1) =

∑n
k=0 s(n, k)zk . Let

m and p be nonnegative integers with m > p − 4. Prove that∫ 1

0

∫ 1

0

log x · logm(xy) · log y

(1− xy)p
dx dy

=

{
(−1)m 1

6 (m + 3)!ζ(m + 4), if p = 1;
(−1)m+p−1 (m+3)!

6(p−1)!

∑p−1
k=1 (−1)ks(p − 1, k)ζ(m + 4− k) if p > 1.

11696. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia, and
Elton Bojaxhiu, Kriftel, Germany. Let T be a triangle with sides of length a, b, c,
inradius r , circumradius R, and semiperimeter p. Show that

1

2(r 2 + 4Rr)
+

1

9

∑
cyc

1

c(p − c)
≥

4

9

∑
cyc

(
1

9Rr − c(p − c)

)
.

11697. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let n and q
be integers, with 2n > q ≥ 1. Let

f (t) =
∫
Rq

e−t (x2n
1 +·+x2n

q )

1+ x2n
1 + · · · x

2n
q

dx1 · · · dxq .

Prove that limt→∞ tq/2n f (t) = n−q(0(1/2n))q .

SOLUTIONS

Some Inequalities for Triangles

11569 [2011, 372]. Proposed by M. H. Mehrabi, Nahavand, Iran. Let a, b, and c be
the lengths of the sides of a triangle, and let s, r , and R be the semi-perimeter, inradius,
and circumradius, respectively, of that triangle. Show that

2 < log

(
(a + b)(b + c)(c + a)

abc

)
< (a + b + c)

(
1

a
+

1

b
+

1

c

)
− 6

and

8

(
r

p

)
< log

(
b + c

a

)
log

(
c + a

b

)
log

(
a + b

c

)
<

2r

R
.
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Solution by Oliver Geupel, Brühl, NRW, Germany. In fact, the first two inequalities
hold for any three positive numbers, even if they are not the sides of a triangle. The
first inequality can be sharpened: for positive a, b, c we have

8 ≤
(a + b)(b + c)(c + a)

abc
. (1)

Indeed, by the Arithmetic Mean-Geometric Mean Inequality,

8 =
2
√

ab · 2
√

bc · 2
√

ca

abc
≤
(a + b)(b + c)(c + a)

abc
.

The second inequality can also be sharpened: for positive a, b, c we have

log

[
(a + b)(b + c)(c + a)

abc

]
< (a + b + c)

(
1

a
+

1

b
+

1

c

)
+ log 8− 9.

In fact, let u = (a + b)(b + c)(c + a)/(abc) = (a + b + c)(1/a + 1/b + 1/c) − 1.
By (1),

8− log 8 ≤ u − log u = (a + b + c)

(
1

a
+

1

b
+

1

c

)
− 1− log u.

For the second pair of inequalities, we will use three different formulas for the area
F of the triangle: Heron’s formula F2

= s(s − a)(s − b)(s − c), F = rs, andF =
abc/(4R). Note that for 0 < x < 1 we have 2x < log((1+ x)/(1− x)).

Write x = (s − a)/s to get 2(s − a)/s < log((b + c)/a). Let a′ = b + c, b′ = c +
a, c′ = a + b. Now

8
(r

s

)2
=

8F2

s4
=

8(s − a)(s − b)(s − c)

s3
< log

(
a′

a

)
log

(
b′

b

)
log

(
c′

c

)
.

Finally, for positive real x we have log(1+ x) < x .
Write x = 2(s − a)/a to get 2(s − a)/a > log((b + c)/a). Hence,

log

(
a′

a

)
log

(
b′

b

)
log

(
c′

c

)
<

8(s − a)(s − b)(s − c)

abc
=

2F

s
·

4F

abc
=

2r

R
.

Also solved by M. Bataille (France), P. P. Dályay (Hungary), D. Fleischman, E. Hysnelaj & E. Bojaxhiu
(Australia & Germany), O. Kouba (Syria), J. Minkus, R. Stong, Z. Vörös (Hungary), M. Vowe (Switzerland),
J. B. Zacharias, GCHQ Problem Solving Group (U.K.), and the proposer.

Euclidean Construction

11572 [2011, 463]. Proposed by Sam Sakmar, University of South Florida, Tampa, FL.
Given a circle C and two points A and B outside C , give a Euclidean construction to
find a point P on C such that if Q and S are the second intersections with C of AP and
BP respectively, then QS is perpendicular to AB. (Special configurations, including the
case that A, B, and the center of C are collinear, are excluded.)

Solution by Robert A. Russel, New York, NY. Construct the circle C ′ through A and B
orthogonal to C . Let P1 and P2 be the two intersections of C and C ′. We claim that P1

and P2 each satisfy the conditions of the problem. The circle C ′ is the circumcircle of
4ABA′, where A′ is the inverse of A with respect to C . On the other hand, from the
Inscribed Angle Theorem and the fact that an angle formed by a chord and a tangent
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is equal to the inscribed angle, we deduce that the circumcircle C ′ intersects C at the
same angle as the angle between the lines AB and QS.

Editorial comment. Several solvers noted that A and B need not be outside C .

Also solved by R. Bagby, M. Bataille (France), C. T. R. Conley, P. P. Dályay (Hungary), O. Geupel (Hungary),
M. Goldenberg & M. Kaplan, O. Kouba (Syria), J. H. Lindsey II, J. McHugh, R. Murgatroyd, R. Stong, and
the proposer.

A Three-Variable Inequality

11575 [2011, 463]. Proposed by Tuan Le (student), Worcester Polytechnic Institute,
Worcester, MA. Prove that if a, b, and c are positive, then

16

27

(
a

b + c
+

b

c + a
+

c

a + b

)3

+

(
abc

(a + b)(b + c)(c + a)

)1/3

≥
5

2
.

Solution by Michel Bataille, Rouen, France. The required inequality has the form
16
27 A3
+ B1/3

≥
5
2 . Note that (a + b)(b+ c)(c+ a) ≥ 2

√
ab · 2

√
bc · 2
√

ca = 8abc >
0. Thus, 0 < B1/3

≤ 1/2. Also,

A =
a3
+ b3
+ c3

(a + b)(b + c)(c + a)
+ 1+ B ≥ 2(1− 2B),

where we have used a3
+ b3
+ c3

≥ (a + b)(b + c)(c + a) − 5abc, a rewriting of
Schur’s inequality a(a − b)(a − c) + b(b − c)(b − a) + c(c − a)(c − b) ≥ 0. As a
result, it suffices to prove that φ(x) ≥ 5/2 for any x ∈ (0, 1/2], where φ is given by
φ(x) = 128

27 (1− 2x3)3 + x . Compute

φ′(x) = 1−
256x2

3
(1− 2x3)2, φ′′(x) = −

512x

3
(1− 2x3)(1− 8x3).

Since φ′′(x) < 0 for x ∈ (0, 1/2), the function φ′ decreases from φ′(0) = 1 to
φ′(1/2) < 0. Thus there exists α ∈ (0, 1/2) such that φ is increasing on [0, α] and
decreasing on [α, 1/2]. Therefore min{φ(x) : x ∈ [0, 1/2]} = min

(
φ(0), φ(1/2)

)
=

5/2, as required.

Also solved by G. Apostolopoulos (Greece), D. Beckwith, E. Braune (Austria), P. P. Dályay (Hungary), D.
Fleischman, O. Geupel (Germany), E. A. Herman, F. Holland (Ireland), E. Hysnelaj & E. Bojaxhiu (Australia
& Germany), S. Kaczkowski, K.-W. Lau (China), J. H. Lee (Korea), J. H. Lindsey II, J. Loverde, P. Perfetti
(Italy), E. A. Smith, R. Stong, E. I. Verriest, M. Vowe (Switzerland), H. Wang & J. Wojdylo, T. R. Wilkerson,
J. Zacharias, GCHQ Problem Solving Group (U. K.), Mathramz Problem Solving Group, and the proposer.

An unusual functional equation

11578 [2011, 464]. Proposed by Roger Cuculière, Clichy la Garenne, France. Let E
be a real normed vector space of dimension at least 2. Let f be a mapping from E to
E , bounded on the unit sphere {x ∈ E : ‖x‖ = 1}, such that whenever x and y are in
E , f (x + f (y)) = f (x)+ y. Prove that f is a continuous, linear involution on E .

Solution by Nicholás Caro, Universidade Federal dePernambuco, Recife, Brazil. We
have f ( f (z)) = f (0) + z for all z, so f (z) = 0 implies z = 0. Taking z = − f (0),
we obtain f ( f (z)) = 0, and hence z = 0. Thus f (0) = 0 and f ( f (z)) = z for all z.
Hence for all x and z we have f (x + z) = f (x + f ( f (z))) = f (x)+ f (z). Therefore
f is additive and hence is a Q-linear involution on E .
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Let M > 0 be such that f (z) ≤ M for all z ∈ E with‖z‖ = 1. By Q-linearity, for
any x 6= 0 in E with ‖x‖ ∈ Q, we have ‖ f (x)‖ ≤ M‖x‖. For each x 6= 0in E , let
z ∈ E be a vector with x and z being R-linearly independent. For every rational r with
0 < r < ‖x‖, consider the map Pr : R2

\{(0, 0)} → R given by

Pr (a, b) =

∥∥∥∥x + r
ax + bz

‖ax + bz‖

∥∥∥∥ .
Since Pr is continuous, Im(Pr ) is an interval in R containing the points ‖x‖ ± r (cor-
responding to b = 0 and a = ±1). Hence there exists yr = x + r(ar x + br z)/‖ar x +
br z‖ ∈ E such that ‖x‖ − r < ‖yr‖ < ‖x‖ + r and ‖yr‖ is rational.

Since we also have ‖x − yr‖ = r rational, it follows that ‖ f (x)‖ ≤ ‖ f (yr )‖ +

‖ f (x − yr )‖ ≤ M(‖yr‖ + r) ≤ M(‖x‖ + 2r). Letting r tend to zero, we have
‖ f (x)‖ ≤ M‖x‖ for all x ∈ E .

Thus f is Lipschitz continuous, which implies R-linearity. Indeed, if rn → r with
rn rational, then f (rn x) = rn f (x)→ f (r x), so f (r x) = r f (x).

Also solved by R. Bagby, J. Boersema, C. Burnette, T. Castro & M. Velasquez (Colombia), R. Chapman
(U. K.), W. J. Cowieson, P. P. Dályay (Hungary), P. J. Fitzsimmons, R. Ger (Poland), N. Grivaux (France),
E. A. Herman, J. C. Kieffer, O. Kouba (Syria), O. P. Lossers (Netherlands), R. Mortini (France), M. Omarjee
(France), K. Schilling, J. Simons (U. K.), R. Stong, M. Tetiva (Romania), and the proposer.

Optimally Nested Regular Polygons

11579 [2011, 557]. Proposed by Hallard Croft, University of Cambridge, Cambridge,
U. K., and Sateesh Mane, Convergent Computing, Shoreham, NY. Let m and n be
integers, with m, n ≥ 3. Let B be a fixed regular n-gon, and let A be the largest regular
m-gon that does not extend beyond B. Let d = gcd(m, n), and assume d > 1. Show
the following:
(a) A and B are concentric;
(b) If m | n, then A and B have m points of contact, these being the vertices of A;
(c) If m - n and n - m, then A and B have 2d points of contact;
(d) A and B share exactly d common axes of symmetry.

Editorial comment. The proofs can be found in the paper: S. J. Dilworth & S. R. Mane,
“On a problem of Croft on optimally nested regular polygons.” Journal of Geometry
99 (2010) 43–66. Claim (a) is Proposition 4.2 in the paper; statements (b) and (c)
follow from Corollary 4.7; part (d) is Corollary 4.6.

Also solved by O. Geupel (Germany), R. Simon (Chile), J. Simons (U. K.), R. Stong, Ellington Management
Problem Solving Group, and the proposers.

That’s Sum Minimum!

11580 [2011, 557]. Proposed by David Alfaya Sánchez, Universidad Autónoma de
Madrid, Madrid, Spain, and José Luis Dı́az-Barrero, Universidad Politécnica de
Cataluña, Barcelona, Spain. For n ≥ 2, let a1, . . . , an be positive numbers that sum to
1, let E = {1, . . . , n}, and let F = {(i, j) ∈ E × E : i < j}. Prove that∑

(i, j)∈F

(ai − a j )
2
+ 2ai a j (1− ai )(1− a j )

(1− ai )2(1− a j )2
+

∑
i∈E

(n + 1)a2
i + nai

(1− ai )2
≥

n2(n + 2)

(n − 1)2
.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. A reshuffling of the terms on the left side leads to∑
i< j

(ai − a j )
2

(1− ai )2(1− a j )2
+ 2

∑
i< j

ai a j

(1− ai )(1− a j )
+

∑ a2
i

(1− ai )2
+ n

∑ a2
i + ai

(1− ai )2
.
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The first sum is nonnegative; we leave it out completely. The rest can be simplified to(∑ ai

1− ai

)2

+ n
∑ ai + a2

i

(1− ai )2
.

The functions x/(1 − x) and (x + x2)/(1 − x)2 are products of positive, increasing,
convex functions, so they are convex. Under the assumption that

∑
ai = 1, these sums

attain their minimum for ai all equal, that is ai = 1/n. It follows that the minimum is
n2

(n−1)2
+ n2 n+1

(n−1)2
.

Also solved by M. Bataille (France), M. A. Carlton, M. Cipu (Romania), P. P. Dályay (Hungary), D. Fleis-
chman, M. Goldenberg & M. Kaplan, E. Hysnelaj & E. Bojaxhiu (Australia & Germany), D.-H. Kim (Korea),
O. Kouba (Syria), J. C. Linders (Netherlands), R. Stong, Z. Vörös (Hungary), Ellington Management Problem
Solving Group, GCHQ Problem Solving Group (U. K.), and the proposer.

Inequality for an Integral

11581 [2011, 557]. Proposed by Duong Viet Thong, National Economics University,
Hanoi, Vietnam. Let f be a continuous, nonconstant function from [0, 1] to R such that∫ 1

0 f (x) dx = 0. Also, let m = min0≤x≤1 f (x) and M = max0≤x≤1 f (x). Prove that∣∣∣∣∫ 1

0
x f (x) dx

∣∣∣∣ ≤ −mM

2(M − m)
.

Solution by Katie Elliott (student), Westmont College, Santa Barbara, CA. Since f is
nonconstant and integrates to zero, m < 0 < M . Multiplying f by a scalar, we may
assume M − m = 1 and

∫ 1
0 x f (x) dx > 0. Consider the function F defined by

F(x) =

{
m 0 ≤ x ≤ M
M M < x ≤ 1

and note that
∫ 1

0 F(x) dx = 0. Using −m = 1− M , we get∫ 1

0
x F(x) dx =

∫ M

0
mx dx +

∫ 1

M
Mx dx =

−mM

2(M − m)
.

Now we show that
∫ 1

0 x F(x) dx is an upper bound for
∫ 1

0 x f (x) dx ; equivalently,

that
∫ 1

0 x( f (x)− F(x))dx ≤ 0. Since f (x) ≥ F(x) on [0,M] and F(x) ≥ f (x) on
(M, 1], it follows that∫ 1

0
x( f (x)− F(x))dx =

∫ M

0
x( f (x)− F(x))dx +

∫ 1

M
x( f (x)− F(x))dx

≤ M
∫ M

0
( f (x)− F(x))dx + M

∫ 1

M
( f (x)− F(x))dx

= M
∫ 1

0
( f (x)− F(x))dx = 0.

Therefore ∣∣∣∣∫ 1

0
x f (x) dx

∣∣∣∣ ≤ ∫ 1

0
x F(x) dx =

−mM

2(M − m)
.
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Also solved by U. Abel (Germany), R. Bagby, R. Chapman (U. K.), D. Constales (Belgium), W. J. Cowieson,
P. P. Dályay (Hungary), N. Eldredge, P. J. Fitzsimmons, O. Geupel (Germany), W. R. Green, E. A. Herman,
J. C. Kieffer, O. Kouba (Syria), K.-W. Lau (China), J. C. Linders (Netherlands), J. H. Lindsey II, O. P. Lossers
(Netherlands), P. R. Mercer, J. Noël (France), J. M. Pacheco, Á. Plaza & K. Sadarangani (Spain), P. Perfetti
(Italy), I. Pinelis, P. Rodrı́guez-Chavez (Mexico), K. Schilling, J. Simons (U. K.), A. Stenger, R. Stong, M.
Tetiva (Romania), M. Wildon (U. K.), W. C. Yuan (Singapore), Ellington Management Problem Solving Group,
GCHQ Problem Solving Group (U. K.), and the proposer.

A Line and a Triangle Generate Three Convergent Point Sequences

11586 [2011, 653]. Proposed by Takis Konstantopoulos, Uppsala University, Uppsala,
Sweden. Let A0, B0, and C0 be noncollinear points in the plane. Let p be a line that
meets lines B0C0, C0 A0, and A0 B0 at A∗, B∗, and C∗ respectively. For n ≥ 1, let An

be the intersection of B∗Bn−1 with C∗Cn−1, and define Bn and Cn similarly. Show that
all three sequences converge, and describe their respective limits.

Editorial comment. As pointed out by several readers, we must assume that p does not
pass through any of the three initial points. Also, this must be viewed in the projec-
tive plane, since it may happen that a point in one of the sequences is defined by the
intersection of two parallel lines.

Solution I by George Apostopoulos, Messolonghi, Greece. Let φ be a projective trans-
formation taking line p to the line at infinity. Since points A0, B0, and C0 are non-
collinear, so are their images under φ. Since A∗, B0,C0 are collinear, so are their im-
ages, which is to say that line φ(B0)φ(C0) is parallel to the direction of φ(A∗), a point
at infinity. Similarly for the other two cases. The image of line A∗A0 is the line through
φ(A0) parallel to the direction of φ(A∗), that is, parallel to φ(B0)φ(C0), and similarly
for the other two cases. Therefore, triangle φ(A0)φ(B0)φ(C0) is the median triangle
of triangle φ(A1)φ(B1)φ(C1). By induction, for every n, triangle φ(An)φ(Bn)φ(Cn)

is the median triangle of triangle φ(An+1)φ(Bn+1)φ(Cn+1).
Thus all φ(An) are collinear, and—since the triangles increase regularly in size—

limn→∞ φ(An) is the infinite point of line φ(A0)φ(A1), which is the intersection of line
φ(A0)φ(A1) and the line at infinity φ(A∗)φ(B∗)φ(C∗). Removing the transformation
φ, we see that limn→∞ An is the intersection of line A0 A1 and line A∗B∗C∗ = p.
Similarly for limn→∞ Bn and limn→∞ Cn .

Solution II by Á. Montesdeoca, Univ. de la Luna, Spain, and Á. Plaza, Univ. de Las Pal-
mas de Gran Canaria, Spain. Corresponding sides of triangles A0 B0C0 and A1 B1C1

meet at points on line p, so by Desargues’s Theorem the two triangles are perspective
from a point, say P . By induction, all subsequent triangles An BnCn are also mutually
perspective from this same point P . Thus all the points An are collinear, all Bn are
collinear, and all Cn are collinear. We claim that the limits of the respective sequences
are the intersection points with p of the lines through the sequences. We show this for
sequence {An}.

We use homogeneous coordinates (x : y : z) with A0 B0C0 as reference triangle,
so that A0 = (1 : 0 : 0), B0 = (0 : 1 : 0), and C0 = (0 : 0 : 1). We write U V for the
line through U and V . Let the equation of p be qx + r y + sz = 0 for some choice of
coefficients q, r, s. Then p intersects B0C0 (x = 0) at A∗ = (0 : −s : r). It intersects
C0 A0 (y = 0) at B∗ = (s : 0 : −q). It intersects A0 B0 (z = 0) at C∗ = (−r : q : 0).
Since point P is the intersection of A0 A1 (r y = sz) and C0C1 (qx = r y), we have
P = (1/q : 1/r : 1/s). Therefore A1 = (1/q : −1/r : −1/s) = (rs : −sq : −qr),
B1 = (−rs : sq : −qr), and C1 = (−rs : −sq : qr).

Since A2 is the intersection of B∗B1 (qx + 2r y + sz = 0) with C∗C1 (qx + r y +
2sz = 0), it follows that A2 = (3rs : −sq : −qr), and similarly for B2 and C2. The
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next points are A3 = (5rs : −3sq : −3qr), A4 = (11rs : −5sq : −5qr), and in gen-
eral An = (anrs : −an−1sq : −an−1qr) = ((an/an−1)rs : −sq : −qr), where {an} is
defined recursively by a0 = 1, an = 2an−1 + (−1)n , the Jacobsthal sequence. Take the
limit as n → ∞ to find (since an/an−1 → 2) that An → A∗ = (2rs : −sq : −qr),
so A∗ is the intersection of p with the line A0 P (r y = sz, same as A0 A1), since its
coordinates satisfy both equations.

Also solved by R. Chapman (U. K.), M. Goldenberg & M. Kaplan, J.-P. Grivaux (France), A. Habil (Syria),
M. E. Kidwell & M. D. Meyerson, L. R. King, O. Kouba (Syria), J. C. Linders (Netherlands), O. P. Lossers
(Netherlands), J. Minkus, R. Stong, GCHQ Problem Solving Group (U. K.), University of Louisiana at
Lafayette Math Club, and the proposer.

Where Are the Zeros?

11589 [2011, 653]. Proposed by Catalin Barboianu, Infarom Publishing, Craiova, Ro-
mania. Let P be a polynomial over R given by P(x) = x3

+ a2x2
+ a1x + a0, with

a1 > 0. Show that P has a least one zero between −a0/a1 and −a2.

Solution by William J. Cowieson, Fullerton College, Fullerton, CA. Note that
P(−a0/a1) = (a2

0/a
3
1)(a1a2 − a0) and P(−a2) = a0 − a1a0, so that

P(−a0/a1) = −(a
2
0/a

3
1)P(−a2). (1)

There are three cases.
(1) If a0 − a1a2 = 0, then the interval reduces to a single point, and that point is a

zero of P .
(2) If a0 = 0, then P(x) = x(x2

+ a2x + a0) has zeros at 0 and at (−a2 ±√
a2

2 − 4a1 )/2. If a2
2 − 4a1 < 0, then 0 is the only real zero of P . Otherwise,

(−a2 ±

√
a2

2 − 4a1 )/2 are both strictly between −a0/a1 = 0 and −a2, since a1 > 0.
(3) Both a0 − a1a2 6= 0 and a0 6= 0. In this case, from (1) we see that P(−a0/a1)

and P(−a2) are nonzero and of opposite sign when a1 > 0. Hence the Intermediate
Value Theorem implies that there is a zero between −a0/a1 and −a2.

Also solved by B. K. Agarwal (India), G. Apostolopoulos (Greece), S. J. Baek & D.-H. Kim (Korea), B. D.
Beasley, M. W. Botsko, D. Brown & J. Zerger, V. Bucaj, P. Budney, H. Caerols (Chile), E. M. Campbell &
D. T. Bailey, M. Can, M. A. Carlton, T. Castro, J. Montero & A. Murcia (Colombia), R. Chapman (U. K.),
H. Chen, W. ChengYuan (Singapore), J. Christopher, D. Constales (Belgium), W. J. Cowieson, C. Curtis, P. P.
Dályay (Hungary), C. Degenkolb, C. R. Diminnie, K. Farwell, J. Ferdinands, D. Fleischman, V. V. Garcı́a
(Spain), O. Geupel (Germany), W. R. Green & T. D. Lesaulnier, J.-P. Grivaux (France), M. Hajja (Jordan),
E. A. Herman, G. A. Heuer, S. Kaczkowski, B. Kalantari, B. Karaivanov, T. Keller, L. Kennedy, J. C. Kieffer,
O. Kouba (Syria), P. T. Krasopoulos (Greece), R. Lampe, K.-W. Lau (China), J. C. Linders (Netherlands), J. H.
Lindsey II, O. López (Colombia), O.P. Lossers (Netherlands), J. Loverde, Y.-H. McDowell & F. Mawyer, F. B.
Miles, S. Mosiman, K. Muthuvel, M. Omarjee (France), Á. Plaza & K. Sadarangani (Spain), P. Pongsriiam &
T. Pongsriiam (U. S. A. & Thailand), V. Ponomarenko, C. R. Pranesachar (India), R. E. Prather, R. Pratt, D.
Ritter, A. J. Rosenthal, U. Schneider (Switzerland), C. R. Selvaraj & S. Selvaraj, A. K. Shafie & S. Gholami
(Iran), J. Simons (U. K.), N. C. Singer, E. A. Smith, N. Stanciu & T. Zvonaru (Romania), J. H. Steelman, A.
Stenger, R. Stong, M. Tetiva (Romania), N. Thornber, V. Tuck & A. Stancu, D. B. Tyler, D. Vacaru (Roma-
nia), E. I. Verriest, J. Vinuesa (Spain), T. Viteam (Germany), Z. Vörös (Hungary), M. Vowe (Switzerland), T.
Wiandt, H. Widmer (Switzerland), R. Wieler, S. V. Witt, N. Youngberg, J. Zacharias, Z. Zhang, Fejéntaláltuka
Szeged Problem Solving Group (Hungary), GCHQ Problem Solving Group (U. K.), University of Louisiana
at Lafayette Math Club, Missouri State University Problem Solving Group, NSA Problems Group, and the
proposer.

February 2013] PROBLEMS AND SOLUTIONS 181

This content downloaded  on Mon, 21 Jan 2013 06:10:40 AM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h
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Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before September 30, 2013. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11712. Proposed by Daniel W. Cranston, Virginia Commonwealth University, Rich-
mond, Va, and Douglas B. West, Zhejiang Normal University, Jinhua, China, and Uni-
versity of Illinois, Urbana, IL. In the game of Bulgarian solitaire, n identical coins
are distributed into two piles, and a move takes one coin from each existing pile to
form a new pile. Beginning with a single pile of size n, how many moves are needed
to reach a position on a cycle (a position that will eventually repeat)? For example,
5→ 41→ 32→ 221→ 311→ 32, so the answer is 2 when n = 5.

11713. Proposed by Mihaly Bencze, Brasov, Romania. Let x1, . . . , xn be nonnegative
real numbers. Let S =

∑n
k=1 xk . Prove that

n∏
k=1

(1+ xk) ≤ 1+
n∑

k=1

(
1−

k

2n

)k−1 Sk

k!
.

11714. Proposed by Nicuşor Minculete, “Dimitrie Cantenemir” University, Braşov,
Romania, and Cătălin Barbu, “Vasile Alecsandri” National College, Bacău, Romania.
Let ABC D be a cyclic quadrilateral (the four vertices lie on a circle). Let e = |AC |
and f = |B D|. Let ra be the inradius of BC D, and define rb, rc, and rd similarly.
Prove that erarc = f rbrd .

11715. Proposed by Marián Štofka, Slovak University of Technology, Bratislava, Slo-
vakia. Prove that

∞∑
k=0

1

(6k + 1)5
=

1

2

(
25
− 1

25
·

35
− 1

35
ζ(5)+

11

8

(π
3

)5
·

1
√

3

)
.

http://dx.doi.org/10.4169/amer.math.monthly.120.06.569
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11716. Proposed by Oliver Knill, Harvard University, Cambridge, MA. Let α =
(
√

5 − 1)/2. Let pn and qn be the numerator and denominator of the nth continued
fraction convergent to α. (Thus, pn is the nth Fibonacci number and qn = pn+1).
Show that

√
5

(
α −

pn

qn

)
=

∞∑
k=0

(−1)(n+1)(k+1)Ck

q2k+2
n 5k

,

where Ck denotes the kth Catalan number, given by Ck =
(2k)!

(k!(k+1)!) .

11717. Proposed by Nguyen Thanh Binh, Hanoi, Vietnam. Given a circle c and line
segment AB tangent to c at a point E that lies strictly between A and B, provide a
compass and straightedge construction of the circle through A and B to which c is
internally tangent.

11718. Proposed by Arkady Alt, San Jose, CA. Given positive real numbers a1, . . . , an

with n ≥ 2, minimize
∑n

i=1 xi subject to the conditions that x1, . . . , xn are positive and
that

∏n
i=1 xi =

∑n
i=1 ai xi .

SOLUTIONS

A Polygon Equation

11595 [2011, 747]. Proposed by Victor K. Ohanyan, Yerevan, Armenia. Let P1, . . . , Pn

be the vertices of a convex n-gon in the plane. Let Q be a point in the interior of the
n-gon, and let v be a vector in the plane. Let ri denote the vector Q Pi , with length ri .
Let Qi be the (radian) measure of the angle between v and ri , and let Fi and Yi be,
respectively, the clockwise and counterclockwise angles into which the interior angle
at Pi of the polygon is divided by Q Pi . Show that

n∑
i=1

1

ri
sin(Qi )(cot Fi + cot Yi ) = 0.

Solution by O. P. Lossers, The Netherlands. We assume without loss of generality that
v is a unit vector. Let k be a unit vector in three-space orthogonal to the plane of the
polygon. Note that sin(Qi )k = 1

ri
(ri × v). We have

cot Fi =
ri · (ri+1 − ri )

‖ri × (ri+1 − ri )‖
and cot Yi =

ri · (ri−1 − ri )

‖ri × (ri−1 − ri )‖

(subscripts are taken modulo n). Since v is arbitrary and ri × ri = 0, we must prove
that

n∑
i=1

(
ri · (ri+1 − ri )

‖ri × ri+1‖
+

ri · (ri−1 − ri )

‖ri × ri−1‖

)
ri

r 2
i

= 0.

For geometric reasons, the vector si defined by

si =
ri+1 − ri

‖ri × ri+1‖
+

ri−1 − ri

‖ri × ri−1‖
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is a multiple of ri ; this may also be seen by computing si × ri = k− k = 0. It follows
that (ri · si )ri/r 2

i = si , so our sum simplifies and telescopes to 0:∑
i

si =

∑
i

(
ri+1 − ri

‖ri+1 × ri‖
−

ri − ri−1

‖ri × ri−1‖

)
= 0.

Also solved by E. A. Herman, B. Karaivanov, Á. Plaza & J. Sánchez-Reyes (Spain), R. Stong, J. Zacharias,
GCHQ Problem Solving Group (U. K.), and the proposer.

An Isosceles Condition

11605 [2011, 847]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Let s, R, and r be the semiperimeter, circumradius, and
inradius of a triangle with sides of length a, b, and c. Show that

R − 2r

2R
≥

∑ √
(s − a)(s − b)

c
− 2

∑ (s − c)
√
(s − a)(s − b)

ab
,

and determine when equality occurs. The sums are cyclic.

Solution by Borislav Karaivanov, University of South Carolina, Columbia, SC. Using
formulas

r =

√
(s − a)(s − b)(s − c)

s
, R =

abc

4
√

s(s − a)(s − b)(s − c)
,

we get

2r

R
=

2
√
(s − a)(s − b)(s − c)

√
s

·
4
√

s(s − a)(s − b)(s − c)

abc

=
2
√
(s − a)(s − b)

c
·

2
√
(s − b)(s − c)

a
·

2
√
(s − c)(s − a)

b
.

Hence,

2

(
R − 2r

2R
−

∑ √
(s − a)(s − b)

c
+ 2

∑ (s − c)
√
(s − a)(s − b)

ab

)
= 1−

2
√
(s − a)(s − b)

c
·

2
√
(s − b)(s − c)

a
·

2
√
(s − c)(s − a)

b

−

∑ 2
√
(s − a)(s − b)

c
+

∑ 2
√
(s − c)(s − a)

b
·

2
√
(s − b)(s − c)

a

= 1− ABC − (A + B + C)+ (AB + BC + C A) = (1− A)(1− B)(1− C),

where

A =
2
√
(s − b)(s − c)

a
, B =

2
√
(s − c)(s − a)

b
, C =

2
√
(s − a)(s − b)

c
.

We compute

A = 2

√
(a − (b − c))(a + (b − c))

4a2
=

√
1−

(
b − c

a

)2

≤ 1. (1)
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Similarly, B ≤ 1 and C ≤ 1. Therefore (1− A)(1− B)(1− C) ≥ 0, which proves the
required inequality.

We claim that equality holds if and only if the triangle is isosceles. Of course, (1−
A)(1− B)(1− C) = 0 if and only if one of the three factors is zero. By (1) we have
1− A = 0 if and only if b = c. The other two cases are the same.

Also solved by G. Apostolopoulos (Greece), E. Braune (Austria), R. Chapman (U. K.), P. P. Dályay (Hungary),
O. Faynshteyn (Germany), D. Fleischman, V. V. Garcı́a (Spain), O. Geupel (Germany), M. Goldenberg & M.
Kaplan, J. G. Heuver (Canada), I. J. Hwang (Korea), K.-W. Lau (China), J. Loverde, P. Nüesch (Switzerland),
C. R. Pranesachar (India), R. Stong, Z. Vörös (Hungary), C. Y. Wu (Singapore), Z. Zhang, T. Zvonaru & N.
Stanciu (Romania), Ellington Management Problem Solving Group, GCHQ Problem Solving Group (U. K.),
and the proposer..

Must Four Circles Really Meet That Way?

11607 [2011, 936]. Proposed by Jeffrey C. Lagarias and Andrey Mischenko, University
of Michigan, Ann Arbor, MI. Let C0, C1, C2, C3, with subscripts taken modulo 4, be
circles in the Euclidean plane.
(a) Given for k ∈ Z4 that Ck and Ck+1 intersect with orthogonal tangents, and the
interiors of Ck and Ck+2 are disjoint, show that the four circles have a common point.
(b)∗ Does the same conclusion hold in hyperbolic and spherical geometry?

Composite solution by the editors. In plane geometry, the power of a point P with
respect to a circle with center O and radius r is defined as O P2

− r 2. If T is a
point on the circle, and the tangent there passes through P , then—by the Pythagorean
Theorem—the power of P reduces to PT 2. The radical axis of circles C1 and C2 with
non-intersecting interiors is the set of points P in the plane for which the powers of
P with respect to the two circles are equal, i.e., for which all four tangent segments
are congruent. This set is a line, and it is perpendicular to the line through the centers
of C1 and C2. A circle is orthogonal to both C1 and C2 if and only if its center lies on
the radical axis of C1 and C2. If C1 and C2 are also disjoint, then all such mutually
orthogonal circles intersect the segment joining C1 and C2 and do so at the same two
distinct points. (For proofs see: H. W. Guggenheimer, Plane Geometry and Its Groups;
D. Pedoe, Circles: A Mathematical View; H. S. M. Coxeter & S. L. Greitzer, Geometry
Revisited; or R. A. Johnson, Advanced Euclidean Geometry.)

(a) We cannot have C1 and C3 disjoint, because then C0 and C2 would intersect
twice, and so their interiors would intersect. But by hypothesis they do not.

If C1 and C3 touch at point P on the segment joining their centers, then the radical
axis of C1 and C3 passes through the point P , as well as through the centers of C0 and
C2. By an analogous argument, C0 and C2 must touch at the same point P , which lies
therefore at the intersection of the segment joining the centers of C0 and C2 with that
joining the centers of C1 and C3. This point P is common to all four circles.

(b) On the sphere, there is ambiguity with respect to the “interior” of a great circle.
First, suppose that great circles are considered to be “circles” in the statement of the
problem. If one is permitted to define either hemisphere defined by a great circle as its
“interior”, then the theorem of concern here is false. As a counterexample, let C0 and
C2 be the Arctic and Antarctic Circles; let C1 and C3 be the great circle that defines
0◦ longitude, with the interior of C1 the Eastern Hemisphere and the interior of C3 the
Western. Then there is no point in common to all four circles, but the conditions on
meeting orthogonally and disjoint interiors are met.

Now suppose that great circles are not considered to be “circles” in spherical geom-
etry, which may be reasonable as they are the “straight lines”. If “circle” is taken to be
a non-great circle, with its interior being the smaller of the two possibilities, then the

572 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 120

This content downloaded from 128.197.27.9 on Mon, 13 May 2013 05:57:00 AM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



theorem is true. This may be proved by performing a stereographic projection onto the
Euclidean plane from any point Q not on or interior to any of the four circles. Such a
projection takes circles to circles and is isogonal, so the spherical version of the theo-
rem follows from the Euclidean version. (Why is there such a point Q? Since C1 and
C3 are small circles with disjoint interiors, there is a great circle C with C1 strictly on
one side and C3 strictly on the other. Interiors of each of C0 and C2 cover less than half
of C . Hence there are points Q on C not on or interior to any of the four circles Ck .)

The theorem is also true in hyperbolic geometry. This is shown by considering the
Poincaré disk model.

Also solved by R. Chapman (U. K.), C. Delorme (France), D. Gove, E. J. Ionascu, B. Karaivanov, M. E.
Kidwell & M. D. Meyerson & D. Ruth & M. Wakefield, J. Minkus, J. Schaer (Canada), R. Stong, and D. B.
Tyler; part (a) only by J-P. Grivaux (France), H. W. Guggenheimer, J. H. Lindsey II, H. S. Morse, H. Widmer,
GCHQ Problem Solving Group (U. K.), and the proposers.

A Determinant of Derivatives and Powers

11608 [2011, 936]. Proposed by D. Aharonov and U. Elias, Technion-Israel Institute
of Technology, Haifa, Israel. Let f and g be functions on R that are differentiable
n + m times, where n and m are integers with n ≥ 1 and m ≥ 0. Let A(x) be the
(n + m)× (n + m) matrix given by

A j,k(x) =

{
( f k−1(x))( j−1), if 1 ≤ j ≤ n;
(gk−1(x))( j−1−n), if n < j ≤ n + m.

Let P =
∏n−1

r=1 r !
∏m−1

q=1 q!. Prove that

det A(x) = P f (x)ng(x)m[g(x)− f (x)]mn f ′(x)n(n−1)/2g′(x)m(m−1)/2.

Solution by Robin Chapman, University of Exeter, Exeter, U. K. There is a minor error
in the statement of the problem. Either the factor f (x)ng(x)m should be removed from
the formula for det A(x), or f k−1(x) and gk−1(x) should be f k(x) and gk(x) in the
definition of A(x). Here the original definition of A(x) is taken, and the corrected
formula for det A(x) is proved.

Define a matrix V (x, t) by

V j,k(x, t) =

{
f (x + ( j − 1)t)k−1 if 1 ≤ j ≤ n,
g(x + ( j − n − 1)t)k−1 if n < j ≤ n + m.

Since V (x, t) is a Vandermonde matrix,

det V (x, t) =
∏

0≤ j<k<n

( f (x + kt)− f (x + j t))

·

∏
0≤ j<k<m

(g(x + kt)− g(x + j t)) ·
n−1∏
j=0

m−1∏
k=0

(g(x + kt)− f (x + j t)).

For each positive integer r , define an r × r matrix T (r) by

T (r)
j,k =

{
(−1)k− j

( j−1
k−1

)
, if j ≥ k

0, if j < k.
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Now T (r) is lower triangular and det T (r)
= 1. Let T be the diagonal sum of Tn and Tm .

Note that det V (x, t) = det B(x, t), where B(x, t) is given by

B j,k(x, t) =

{∑ j−1
i=0 (−1) j−i−1

( j−1
i

)
f (x + i t)k−1 if 1 ≤ j ≤ n,∑ j−n−1

i=0 (−1) j−n−1−i
( j−n−1

i

)
g(x + i t)k−1 if n < j ≤ n + m.

If the function h is differentiable s times, then

lim
t→0

t−s
s∑

i=0

(−1)s−i

(
s

i

)
h(x + i t) = f (s)(x)

so

lim
t→0

t−u B(x, t) = A(x),

where u =
∑n−1

s=0 s +
∑m−1

s=0 s = n(n − 1)/2+ m(m − 1)/2. Therefore,

det A(x) = lim
t→0

t−u det B(x, t) = lim
t→0

t−u det V (x, t)

=

∏
0≤ j<k<n

lim
t→0

f (x + kt)− f (x + j t)

t

·

∏
0≤ j<k<n

lim
t→0

g(x + kt)− g(x + j t)

t
· (g(x)− f (x))mn

=

∏
0≤ j<k<n

(k − j) f ′(x) ·
∏

0≤ j<k<m

(k − j)g′(x) · (g(x)− f (x))mn

= P f ′(x)n(n−1)/2g′(x)m(m−1)/2(g(x)− f (x))mn.

Editorial comment. All solvers noted the inaccuracy in the statement.

Also solved by P. P. Dályay (Hungary), J. Grivaux (France), B. Karaivanov, J. H. Smith, R. Stong, GCHQ
Problem Solving Group (U. K.), and the proposers.

An Infinite Product

11612 [2011, 937]. Proposed by Paul Bracken, University of Texas, Edinburg, TX.
Evaluate in closed form

∞∏
n=1

(
n + z + 1

n + z

)n

e(2z−2n+1)/(2n).

Solution I by Charles Martin. The answer is z0(z)eγ z+z+1
√

eγ /(2π), where γ is Eu-
ler’s constant. Let z be a complex number other than a negative integer. Let

pn =

n∏
k=1

(
k + z + 1

k + z

)n

e(2z−2k+1)/(2k).

Now

pn =

[(
2+ z

1+ z

)(
3+ z

2+ z

)2 (4+ z

3+ z

)3

· · ·

(
n + z + 1

n + z

)n
]

exp

[
n∑

k=1

2z − 2k + 1

2k

]

=

[
(n + z + 1)n

(1+ z)(2+ z)(3+ z) · · · (n + z)

]
exp

[(
z +

1

2

)
Hn − n

]
,
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where Hn is the nth harmonic number,
∑n

k=1 1/k. On the other hand, we also have
Hn = log n + γ + εn with εn → 0, so

pn =

n∏
k=1

n + z + 1

k + z
· exp

[
log(nz√n)+ γ z +

γ

2
− n +

(
z +

1

2

)
εn

]

= nz
n∏

k=1

k

k + z
·

[
nn
√

2πn

n!en

]
·

(
1+

z + 1

n

)n eγ (z+1/2)

√
2π

eεn(z+1/2).

As n →∞ in the last line here, the product approches z0(z) (this is Euler’s original
definition of the Gamma function); the bracketed expression approaches 1 by Stir-
ling’s approximation of n!, the factor (1+ (z + 1)/n)n approaches ez+1, and the final
exponential approaches 1. The claimed result follows.

Solution II by M. L. Glasser, Clarkson University, Potsdam, NY. We evaluate a variant
of this product: if 0 < b < a, then let

Q =
∞∏

n=1

(
n + a

n + b

)n

exp

{
(a − b)

2

(a − n)+ (b − n)

n

}

=
0(1+ a)a

0(1+ b)b
eγ (a

2
−b2)/2 exp

[
−

∫ 1+a

1+b
log0(t) dt

]
, (1)

where γ is Euler’s constant. Setting a = z + 1 and b = z yields the original problem.
The integral is (2.2.3(2)) in A. P. Prudnikov et. al., Tables of Integrals and Series,
Vol. 2; ∫ z+2

z+1
log0(t) dt = (z + 1) log(z + 1)− (z + 1)+ log

√
2π.

Thus Q = 0(z + 1)e(z+1/2)γ+z+1/
√

2π . When a and b are integers, the integral is ibid.
(2.2.3(3)) , hence∫ a+1

b+1
log0(t) dt =

a∑
k=b+1

k log k +
a − b

2
log(2π)−

a(a + 1)− b(b + 1)

2
,

and

Q =
0(1+ a)q0(1+ b)−b√
(2π)a−b

∏a
k=b+1 kk

exp

{
1

2
[(γ + 1)(a2

− b2)+ (a − b)]

}
.

Now we prove (1). Write

log Q = lim
η→1+

∞∑
n=1

{
nη
[

log
(

1+
a

nη

)
− log

(
1+

b

nη

)]
−

a − b

nη−1
+

a2
− b2

2nη

}
.

Replace the logarithms by their Taylor series, and note that the first two terms cancel
the last two terms in the curly brackets, at which point the limit can be taken. Therefore,

Q =
∞∑

n=1

∞∑
l=3

(−1)l+1

l nl−1
(al
− bl) =

∞∑
k=2

(−1)k

k + 1
ζ(k)(ak+1

− bk+1).
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Here, the sum over n has been expressed as a Riemann zeta function and l has been
replaced by k + 1.

Now we apply the generating function ibid. (5.3.1(4))

∞∑
k=2

ζ(k)t k
= −t

[
γ + ψ(1− t)

]
,

where ψ is the logarithmic derivative of the Gamma function. Finally, integrate and
put z = −t :

∞∑
k=2

(−1)k zk+1

k + 1
ζ(k) =

1

2
γ z2
+ z log0(1+ z)−

∫ 1+z

0
log0(t) dt.

The value (1) follows.

Also solved by R. Bagby, B. S. Burdick, R. Chapman (U. K.), H. Chen, D. Constales (Belgium), D. Fleischman,
O. Geupel (Germany), J. Grivaux (France), O. Kouba (Syria), O. P. Lossers (Netherlands), J. Magliano, M.
Omarjee (France), P. Perfetti (Italy), M. A. Prasad (India), P. F. Refolio (Spain), N. C. Singer, A. Stenger, R.
Stong, R. Tauraso (Italy), M. Tetiva (Romania), T. Trif (Romania), D. B. Tyler, J. Vinuesa (Spain), Z. Vörös
(Hungary), M. Vowe (Switzerland), GCHQ Problem Solving Group (U. K.), and the proposer.

Convergence of a Series

11614 [2012, 68]. Proposed by Moubinool Omarjee, Lycée Jean-Lurçat, Paris, France.
Let α be a real number with α > 1, and let {un}n∈N be a sequence of positive numbers
such that limn→∞ un = 0 and limn→∞(un − un+1)/uαn exists and is nonzero. Prove that∑
∞

n=1 un converges if and only if α < 2.

Solution by Nicole Grivaux, Lycée Lavoisier, Paris, France. Let l = limn→∞(un −

un+1)/uαn . Since l 6= 0, for n large enough (say, for n ≥ N ) the sequence {un} is strictly
monotone. However, un is positive and limn→∞ un = 0, so {un}n≥N strictly decreases.
For n ≥ N , if un+1 ≤ t ≤ un , then uα−1

n+1 ≤ tα−1
≤ uα−1

n , since α > 1. Thus

un − un+1

uα−1
n

≤

∫ un

un+1

dt

tα−1
≤

un − un+1

uα−1
n+1

. (1)

If α < 2, then the function 1/tα−1 is integrable on ]0, 1], so by (1) the series∑
(un − un+1)/uα−1

n converges. Since lun ∼ (un − un+1)/uα−1
n , the series

∑
un also

converges.
On the other hand, if α ≥ 2, then the function 1/tα−1 is not integrable on ]0, 1],

so by (1) the series
∑
(un − un+1)/u

α−1
n+1 diverges. The hypothesis (un − un+1)/un ∼

luα−1
n implies limn→∞(1 − un/un+1) = 0. Hence un ∼ un+1 and un ∼ (un − un+1)/

uα−1
n+1 , so

∑
un diverges.

Also solved by R. Bagby, M. Bataille (France), P. Bracken, R. Chapman (U. K.), P. P. Dályay (Hungary),
P. J. Fitzsimmons, A. Habil (Syria), E. J. Ionascu, S. James (Canada), O. Kouba (Syria), J. H. Lindsey II, O. P.
Lossers (Netherlands), Á. Plaza & K. Sadarangani (Spain), K. Schilling, B. Schmuland (Canada), N. C. Singer,
A. Stenger R. Stong, D. B. Tyler, J. Vinuesa (Spain), GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, László Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard
Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before November 30, 2013. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11719. Proposed by Nicolae Anghel, University of North Texas, Denton, TX. Let f be
a twice-differentiable function from [0,∞) into (0,∞) such that

lim
x→∞

f ′′(x)

f (x)(1+ f ′(x)2)2
= ∞.

Show that

lim
x→∞

∫ x

t=0

√
1+ f ′(t)2

f (t)
dt
∫
∞

t=x

√
1+ f ′(t)2 f (t) dt = 0.

11720. Proposed by Ira Gessel, Brandeis University, Waltham, MA. Let En(t) be the
Eulerian polynomial defined by

∞∑
k=0

(k + 1)nt k
=

En(t)

(1− t)n+1
,

and let Bn be the nth Bernoulli number. Show that (En+1(t)− (1− t)n)Bn is a poly-
nomial with integer coefficients.

11721. Proposed by Roberto Tauraso, Universitá di Roma “Tor Vergata”, Rome, Italy.
Let p be a prime greater than 3, and let q be a complex number other than 1 such that
q p
= 1. Evaluate

p−1∑
k=1

(1− qk)5

(1− q2k)3(1− q3k)2
.

http://dx.doi.org/10.4169/amer.math.monthly.120.07.660
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11722. Proposed by Nguyen Thanh Binh, Hanoi, Vietnam. Let ABC be an acute triangle
in the plane, and let M be a point inside ABC. Let O1, O2, and O3 be the circumcenters
of BCM, CAM, and ABM, respectively. Let c be the circumcircle of ABC. Let D, E ,
and F be the points opposite A, B, and C , respectively, at which AM, BM, and CM
meet c. Prove that O1 D, O2 E , and O3 F are concurrent at a point P that lies on c.

11723. Proposed by L. R. King, Davidson, NC. Let A, B, and C be three points in the
plane, and let D, E , and F be points lying on BC, CA, and AB, respectively. Show that
there exists a conic tangent to BC, CA, and AB at D, E , and F , respectively, if and
only if AD, BE, and CF are concurrent.

11724. Proposed by Andrew Cusumano, Great Neck, NY. Let f (n) =
∑n

k=1 kk and let
g(n) =

∑n
k=1 f (k). Find

lim
n→∞

g(n + 2)

g(n + 1)
−

g(n + 1)

g(n)
.

11725. Proposed by Mher Safaryan, Yerevan State University, Yerevan, Armenia. Let
m be a positive integer. Show that, as n→∞,∣∣∣∣∣log 2−

n∑
k=1

(−1)k−1

k

∣∣∣∣∣ = C1

n
+

C2

n2
+ · · · +

Cm

nm
+ o

(
1

nm

)
,

where

Ck = (−1)k
k∑

i=1

1

2i

i∑
j=1

(−1) j

(
i − 1

j − 1

)
j k−1

for 1 ≤ k ≤ m.

SOLUTIONS

A Sum and Product Inequality

11584 [2011, 558]. Proposed by Raymond Mortini and Jérôme Noël, Université Paul
Verlaine, Metz, France. Let 〈a j 〉 be a sequence of nonzero complex numbers inside the
unit circle, such that

∏
∞

k=1 |ak | converges. Prove that∣∣∣∣∣∣
∞∑
j=1

1− |a j |
2

a j

∣∣∣∣∣∣ ≤ 1−
∏
∞

j=1 |a j |
2∏

∞

j=1 |a j |
.

Solution I by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. Assume that

∏
∞

j=1 |a j | converges to a positive number P , and let
f (x) = 1

x − x . For a, b ∈ (0, 1), we have

f (ab)− f (a)− f (b) =
1

ab
(1− a)(1− b)(1− ab) > 0,

so that f (a) + f (b) < f (ab). By induction,
∑n

j=1 f (|a j |) < f (|a1a2 · · · an|). Tak-
ing the limit as n →∞, we obtain

∑
∞

j=1 f (|a j |) ≤ f (P). Thus,
∑
∞

j=1
1

a j
(1− |a j |

2)

converges absolutely, and the desired result follows.
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Solution II by Douglas B. Tyler, Raytheon, Torrence, California. Assume as in the
first solution that

∏
∞

j=1 |a j | converges to P , and let |a j | = e−x j . Thus, x j > 0 and∑
∞

j=1 x j = − log P . For x, y > 0, sinh(x + y) = sinh x cosh y + sinh y cosh x ≥
sinh x + sinh y. We have∣∣∣∣∣∣

∞∑
j=1

1− |a j |
2

|a j |

∣∣∣∣∣∣ ≤
∞∑
j=1

1

|a j |
− |a j | = 2

∞∑
j=1

sinh x j ≤ 2 sinh

 ∞∑
j=1

x j

 = 1

P
− P.

Editorial comment. The proposers’ solution used the Schwartz–Pick inequality:

| f ′(z)| ≤ 1−| f (z)|2

1−|z|2
for any analytic automorphism of the unit disk. Taking f (z) to

be
∏
∞

j=1
a j

|a j |

a j−z

1−a j z leads to the required conclusion.
We of course follow the usual convention: To say that an infinite product with

nonzero factors “converges”, means that the sequence of partial products converges
to a nonzero value.

Also solved by R. Chapman (U. K.), D. Constales (Belgium), W. J. Cowieson, P. P. Dályay (Hungary), O.
Geupel (Germany), M. Goldenberg & M. Kaplan, E. A. Herman, K.-W. Lau (China), J. H. Lindsey II, O. P.
Lossers (Netherlands), J. Simons (U. K.), N. C. Singer, A. Stenger, R. Stong, M. Tetiva (Romania), E. I.
Verriest, J. Vinuesa (Spain), H. Widmer (Switzerland), Ellington Management Problem Solving Group, and
GCHQ Problem Solving Group (U. K.).

An Equivalent of CH

11588 [2011, 653]. Proposed by Taras Banakh, Ivan Franko National University of
Lviv, Lviv, Ukraine, and Igor Protasov, Taras Shevchenko National University of Kyiv,
Kyiv, Ukraine. Show that R− {0} can be partitioned into countably many subsets, each
of which is linearly independent over Q, if and only if the continuum hypothesis holds.

Editorial comment. Most solvers noted that the result is a theorem of Paul Erdős and
Shizuo Kakutani, which can be found in “On Non-denumerable Graphs,” Bull. Amer.
Math. Soc. 49 (1943) 457–461. O. Guepel and R. Mabry observed that the proposers
published the result with proof in their article “Partitions of groups and matroids into
independent subsets,” Algebra Discrete Math. 10 (2010) 1–7, also available at http:
//arxiv.org/abs/1010.1359.

Solved by N. Caro (Brazil), C. Degenkolb, O. Geupel (Germany), R. Mabry, K. Muthuvel, V. Pambuccian, S.
Scheinberg, R. Stong, and the proposers.

Arggh! Eye Factorial . . . Arg(i!)

11592 [2011, 654]. Proposed by Mircea Ivan, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania. Find limn→∞

(
− log(n)+

∑n
k=1 arctan 1

k

)
.

Solution I by Nora Thornber, Raritan Valley Community College, Somerville, New Jer-
sey. Let L be the desired limit. Since limn→∞(− log n +

∑n
k=1

1
k ) = γ , Euler’s con-

stant, we have

L = γ − lim
n→∞

n∑
k=1

(
1

k
− arctan

1

k

)
. (1)

Note that Im log(1+ i/k) = Arg(1+ i/k) = arctan(1/k). Since

0(z) =
e−γ z

z

∞∏
k=1

(
1+

z

k

)−1
ez/k, (2)
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we have

Im log0(i) = −γ −
π

2
+

∞∑
k=1

1

k
− arctan

(
1

k

)
,

and thus L = −π/2−Arg0(i) = −Arg0(1+ i). Since both sides are between 0 and
2π , the branch of the logarithm was appropriate.

Solution II by Omran Kouba, Higher Institute for Applied Sciences and Technol-
ogy, Damascus, Syria. As before, the limit is given by (1). Since ei arctan(1/k)

=

(k + i)/
√

1+ k2, we have

ei L
= eiγ

∞∏
k=1

ei arctan(1/k)−i/k
=

(
∞∏

k=1

(
1+

1

k2

))−1/2

· eiγ
∞∏

k=1

(
1+

i

k

)
e−i/k .

Thus, i L = −(1/2) log C − log0(1+ i), where C =
∏
∞

k=1(1+ 1/k2). Note that C is
real. Taking imaginary parts and using (2), we have L = −Arg0(1+ i).

Solution III by Denis Constales, Ghent University, Ghent, Belgium. Consider the
digamma function, defined by

ψ(x) =
0′(x)

0(x)
.

Since ψ(x + 1) = ψ(x)+ 1/x and ψ(n) = log(n)+ O(1/n) as n→∞, we have

n∑
k=1

k

x2 + k2
=

1

2

n∑
k=1

(
1

k + i x
+

1

k − i x

)

=
1

2
(ψ(n + 1+ i x)− ψ(1+ i x)+ ψ(n + 1− i x)− ψ(1− i x))

= −
1

2
(ψ(1+ i x)+ ψ(1− i x))+ log(n)+ O(1/n).

Hence,∫ 1

0

n∑
k=1

k

x2 + k2
dx =

n∑
k=1

arctan
1

k

=
i

2

[
log0(1+ i x)− log0(1− i x)

]1

x=0
+ log(n)+ O(1/n).

Thus, the desired limit is

lim
n→∞

(
− log(n)+

n∑
k=1

arctan
1

k

)
=

i

2
log

0(1+ i)

0(1+ i)
= −Arg0(1+ i).

Editorial comment. Many partial solutions were submitted, for example γ − ζ(3)/3+
ζ(5)/5− ζ(7)/7+ · · · . D. Beckwith and others noted formula 6.1.27 in Abramowitz
and Stegun’s Handbook of Mathematical Functions, which states Arg0(x + iy) =
yψ(x) +

∑
∞

k=0(
y

x+k − arctan y
x+k ), where ψ(z) = 0′(z)

0(z) . The result follows by taking
x = 1 and y = −1, sinceψ(1) = −γ . D. Bailey, D. Borwein, and J. Borwein observed
that limn→∞(− log n +

∑n
k=2 arctanh(1/k)) is an easier problem, in which the limit is

− log
√

2.
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Also solved by T. Amdeberhan & V. H. Moll, D. H. Bailey & D. Borwein & J. M. Borwein (Canada &
Canada & Australia), D. Beckwith, R. Chapman (U. K.), P. J. Fitzsimmons, O. Furdui (Romania), O. Geupel
(Germany), M. Goldenberg & M. Kaplan, J. Grivaux (France), E. A. Herman, K.-W. Lau (China), O. P. Lossers
(Netherlands), N. C. Singer, A. Stenger, I. Sterling, R. Stong, M. Vowe (Switzerland), S. Wagon & M. Trott,
T. Wiandt, M. Wildon (U. K.), GCHQ Problem Solving Group (U. K.), and the proposer.

A Limit of an Integral

11611 [2011, 937]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca
Cluj, Romania. Let f be a continuous function from [0, 1] into [0,∞). Find

lim
n→∞

n
∫ 1

x=0

(
∞∑

k=n

x k

k

)2

f (x) dx .

Solution by Byron Schmuland, University of Alberta, Edmonton, AB, Canada. Be-
gin by noting that f may be replaced by a constant function. Indeed, let gn(x) =
(
∑
∞

k=n x k/k)2. Suppose that n
∫ 1

0 gn(x) dx converges to a finite value c. For any con-
tinuous f and positive ε, let ρ be less than 1 but near enough to 1 that supρ≤x≤1 | f (x)−
f (1)| < ε. For 0 ≤ x ≤ ρ, we have the crude bound

gn(x) ≤

(
∞∑

k=n

ρk

)2

=
ρ2n

(1− ρ)2
.

Thus∣∣∣∣n ∫ 1

0
gn f (x) dx − n

∫ 1

0
gn f (1) dx

∣∣∣∣ ≤ 2‖ f ‖∞ · n
∫ ρ

0
gn(x) dx + εn

∫ 1

ρ

gn(x) dx

≤ 2‖ f ‖∞
nρ2n

(1− ρ)2
+ εn

∫ 1

0
gn(x) dx .

Take lim sup in n and then let ε→ 0 to conclude

lim
n→∞

n
∫ 1

0
gn(x) f (x) dx = lim

n→∞
n
∫ 1

0
gn(x) f (1) dx = c f (1),

as claimed.
Now we must compute c. For m ≥ 1, let Am = [m,∞)× [m,∞) and write∫ 1

0
gn(x) dx =

∫ 1

0

∞∑
j=n

∞∑
k=0

x j+k

jk
dx =

∞∑
j=n

∞∑
k=n

1

jk( j + k + 1)
.

Now let n > 1 and take j, k ≥ n. On the square (x, y) ∈ [ j, j + 1] × [k, k + 1],(
j + k

j + k + 1

)
1

xy(x + y)
≤

1

jk( j + k + 1)
≤

1

(x − 1)(y − 1)(x + y − 2)
.

Summing over all these squares yields(
2n

2n + 1

)∫
An

dx dy

xy(x + y)
≤

∞∑
j=n

∞∑
k=n

1

jk( j + k + 1)
≤

∫
An−1

dx dy

xy(x + y)
.
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However, ∫
∞

n

dx

xy(x + y)
=

[
1

y2
log

x

x + y

]∞
n

=
1

y2
log

n + y

y
,

so ∫
An

dx dy

xy(x + y)
=

[
1

n
log

y

n + y
+

1

y
log

n

n + y

]∞
n

=
2 log 2

n
,

and we conclude that c = 2 log 2.

Editorial comment. Several solvers noted that f need not have nonnegative values; in
fact, the result holds for all bounded integrable f that are continuous at x = 1.

Also solved by N. Caro (Brazil), R. Chapman (U. K.), D. Constales (Belgium), P. J. Fitzsimmons, J. Grivaux
(France), E. J. Ionascu, B. Karaivanov, J. C. Kieffer, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Nether-
lands), U. Milutinović (Slovenia), M. Omarjee (France), P. Perfetti (Italy), M. A. Prasad (India), N. C. Singer,
A. Stenger, R. Stong, D. B. Tyler, J. Vinuesa (Spain), T. Viteam (Uruguay), BSI Problems Group (Germany),
GCHQ Problem Solving Group (U. K.), and the proposer.

Concurrent Lines Defined by a Triangle

11615 [2012, 68]. Proposed by Constantin Mateescu, Zinca Golescu High School,
Pitesti, Romania. Let A, B, and C be the vertices of a triangle, and let K be a point in
the plane distinct from these vertices and the lines connecting them. Let M , N , and P
be the midpoints of BC, CA, and AB, respectively. Let D, E , and F be the intersections
of the lines through MK and NP, NK and PM, and PK and MN, respectively. Prove that
the parallels from D, E , and F to AK, BK, and CK, respectively, are concurrent.

Solution by C. R. Pranesechar, Indian Institute of Science, Bangalore, India. We use
vectors. Let K be the origin, and use the same letters A, B,C,M, N , P, D, E, F for
the position vectors of the corresponding points. We describe lines by a point, a direc-
tion, and a parameter ‘t’, so that the line through, say, Q and R is given by the set of all
points of the form Q + t (R − Q), or, for short, by the equation r = Q + t (R − Q).

Since K is not on any of the lines BC, CA, AB, we see that any two of the vectors
A, B,C are linearly independent. Write 0 = l A + m B + nC where l, m, and n are all
nonzero real numbers. Thus A = −(m/ l)B − (n/ l)C . The equation of line N P is

r = P + t1(P − N ) =
1

2
(A + B)+

t1

2
(B − C),

and the equation of line MK is

r = t2 D =
t2

2
(B + C).

Next we find the point D, the intersection of these two lines. Proceeding from these
two equations, we write A in terms of B and C , equate the coefficients of B and C ,
solve for t1 and t2 in terms of l,m, n, and substitute back for t1 to get

D =
l − m − n

4l
(B + C).

Similarly,

E =
m − n − l

4m
(C + A).
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The line L1 through D and parallel to AK has equation

r = D + t3 A =
l − m − n

4l
(B + C)+ t3 A.

The line L2 through E and parallel to BK is

r = E + t4 B =
m − n − l

4m
(C + A)+ t4 B.

Let T be the point of intersection of L1 and L2. As before, substitute for A in terms
of B and C , equate coefficients of B and C in the two equations, solve for t2 and t4 in
terms of l,m, n, and substitute back for t3. This yields

T =
(m − l)(m − n + l)

4nl
B +

(n − l)(n − m + l)

4lm
C.

This may be rearranged as

A + B + C

4
+

l3 A + m3 B + n3C

4lmn
,

so it is symmetric with respect to the pairs (A, l), (B,m), (C, n). Thus T also lies on
the line L3 through F and parallel to C K . This proves the concurrency of the lines
L1, L2, L3, as desired.

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), R. Chapman (U. K.), C. Delorme (France),
O. Geupel (Germany), J.-P. Grivaux (France), O. Kouba (Syria), J. H. Lindsey II, R. Stong, D. Stout, T. Viteam
(Germany), Z. Zhang, GCHQ Problem Solving Group (U. K.), and the proposer.

A Point of Zero Net Force

11616 [2012, 68]. Proposed by Stefano Siboni, University of Trento, Trento, Italy. Let
x1, . . . , xn be distinct points in R3, and let k1, . . . , kn be positive real numbers. A test
object at x is attracted to each of x1, . . . , xn with a force along the line from x to x j of
magnitude k j‖x − x j‖

2, where ‖u‖ denotes the usual Euclidean norm of u. Show that
when n ≥ 2, there is a unique point x∗ at which the net force on the test object is zero.

Solution by Jeff Boersema, Seattle University, Seattle, WA. We will prove a stronger
statement: Let x1, . . . , xn be distinct points in Rm , with n ≥ 2 and m ≥ 2. Let
g1, . . . , gn be continuous strictly increasing functions from [0,∞) to [0,∞) with
g j (0) = 0. If a test object at x is attracted to each of x1, . . . , xn with a force along the
line from x to x j of magnitude g j (‖x − x j‖), then there is a unique point at which the
net force is zero.

Let F(x) be the vector field on Rm defined by

F(x) =
n∑

j=1

g j

(
‖x j − x‖

) x j − x

‖x j − x‖
,

where the j th term is zero if x = x j . We must show that there is a unique point x∗ such
that F(x∗) = 0. To prove existence, let K be the convex hull of the points x1, . . . , xn .
For each x ∈ K , there is a positive number ε such that the segment from x to x +
εF(x) is contained in K . Indeed, at a point on the boundary of K , the direction of
F(x) is toward the interior of K . Since F is continuous and K is compact, there is a
positive number ε∗ such that x + ε∗F(x) ∈ K for all x ∈ K . Now K is homeomorphic
to a simplex (of some dimension less than or equal to m), so by the Brouwer Fixed
Point Theorem, the function x + ε∗F(x) has a fixed point x∗. Thus F(x∗) = 0.
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For uniqueness, suppose that F has distinct zeros u and v. This leads to a contradic-
tion as follows: Write z = v − u. Define G : R→ R by G(t) = F(u + t z) · z, where
‘·’ denotes the dot product. Note that G is the sum of the n strictly decreasing functions
of t given by

g j

(
‖x j − u − t z‖

) x j − u − t z

‖x j − u − t z‖
· z.

However, F has distinct zeros u and v, so G(0) = G(1) = 0, a contradiction.

Also solved by R. Chapman (U. K.), D. Constales (Belgium), P. J. Fitzsimmons, E. J. Ionascu, J. H. Lindsey
II, O. P. Lossers (Netherlands), Á. Plaza & J. Sánchez-Reyes (Spain), C. R. Pranesachar (India), M. B. Y.
Ranorovelonalohotsy (South Africa), J. G. Simmonds, N. C. Singer, R. Stong, R. Tauraso (Italy), E. I. Verriest,
and the proposer.

A Quadruple Integral

11621 [2012, 161]. Proposed by Z. K. Silagadze, Budker Institute of Nuclear Physics
and Novosibirsk State University, Novosibirsk, Russia. Find∫

∞

s1=−∞

∫ s1

s2=−∞

∫ s2

s3=−∞

∫ s3

s4=−∞

cos(s2
1 − s2

2) cos(s2
3 − s2

4) ds4 ds3 ds2 ds1.

Solution by Richard Stong, Center for Communications Research, San Diego, CA . Let
I denote this value. We will show that I = π2/16.

Let Fc(x) =
∫ x
−∞

cos(t2) dt and Fs(x) =
∫ x
−∞

sin(t2) dt . These are essentially the
Fresnel integrals; in particular

lim
x→∞

Fc(x) = lim
x→∞

Fs(x) =

√
π

2
.

Integrating by parts, we see that in fact

Fs(x) =

√
π

2
−

cos(x2)

2x
+ O

(
1

x3

)
as x →+∞,

and

Fc(x) =

√
π

2
+

sin(x2)

2x
+ O

(
1

x3

)
, as x →+∞.

Noting that Fc(x)+ Fc(−x) =
√
π/2 and Fs(x)+ Fs(−x) =

√
π/2, we have

Fc(x) = O

(
1

x

)
as x →−∞,

and

Fs(x) = O

(
1

x

)
as x →−∞.

Now apply the formula for the cosine of a difference to compute∫ s2

−∞

∫ s3

−∞

cos(s2
3 − s2

4) ds4 ds3 =

∫ s2

−∞

(
cos(s2

3)Fc(s3)+ sin(s2
3)Fs(s3)

)
ds3

=
Fc(s2)

2
+ Fs(s2)

2

2
.
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Now use integration by parts. (Here we write F2(u) for (F(u))2.)

I =
1

2
lim

R→∞

∫ R

−∞

∫ s1

−∞

(
cos(s2

1) cos(s2
2)+ sin(s2

1) sin(s2
2)
) (

F2
c (s2)+ F2

s (s2)
)

ds2 ds1

=
1

2
lim

R→∞

[
Fc(R)

∫ R

−∞

cos(x2)
(
F2

c (x)+ F2
s (x)

)
dx

+ Fs(R)
∫ R

−∞

sin(x2))
(
F2

c (x)+ F2
s (x)

)
dx

−

∫ R

−∞

(
cos(x2)Fc(R)+ sin(x2)Fs(x)

)(
F2

c (x)+ F2
s (x)

)
dx

]

=

√
π

8

∫
∞

−∞

(
cos(x2)+ sin(x2)

)(
F2

c (x)+ F2
s (x)

)
dx −

1

8

(
F2

c (x)+ F2
s (x)

)2
∣∣∣∣∞
−∞

=

√
π

8

∫
∞

−∞

(
cos(x2)+ sin(x2)

)(
F2

c (x)+ F2
s (x)

)
dx −

π2

8
.

Here, in going from the second line to the third, we have used the asymptotics above
to conclude that

cos(x2)
(
F2

c (x)+ F2
s (x)

)
= π cos(x2)+

√
π

2

sin(2x2)− 1− cos(2x2)

2x
+ O

(
1

x3

)
as x →+∞. The oscillatory terms in this sum and the error term are integrable; hence
from this formula and the analogous one for the sine, we get∫ R

−∞

cos(x2)
(
F2

c (x)+ F2
s (x)

)
dx = −

√
π

2
√

2
log R + O(1)

and ∫ R

−∞

sin(x2)
(
F2

c (x)+ F2
s (x)

)
dx =

√
π

2
√

2
log R + O(1)

as R → +∞. All other terms converge, and these log R terms cancel in the limit, so
in particular the integral in the third line exists.

To evaluate this integral, note that∫
∞

−∞

(
cos(x2)+ sin(x2)

)(
F2

c (x)+ F2
s (x)

)
dx

= Re

[
(1+ i)

∫
∞

−∞

e−i x2(
F2

c (x)+ F2
s (x)

)
dx

]
= lim

a→i
Re

[
√

2a
∫
∞

−∞

e−ax2(
F2

c (x)+ F2
s (x)

)
dx

]
,

where the final limit is taken over a with Re(a) > 0. To justify exchanging the integral
and the limit, note that by explicit computation

lim
a→i

∫
∞

0
e−ax2

dx =
∫
∞

0
e−i x2

dx;

lim
a→i

∫
∞

1

e−ax2
+ibx2

x
dx =

∫
∞

1

e−i x2
+ibx2

x
dx
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for b = 0, −2, or 2. (For the first limit, this is the standard argument for evaluating
Fc(∞) = Fs(∞) =

√
π/2. The second is similar.)

These limits correspond to the leading terms of the asymptotics of the integrand.
The error terms tend to zero fast enough (like x−3 at +∞ and x−2 at −∞) that the
Dominated Convergence Theorem applies. Thus we can exchange the limit and the
integral. Noting that

F2
c (x)+ F2

s (x) =
∫
∞

0
ei(x−s)2ds

∫
∞

0
e−i(x−t)2dt,

we see that the required integral is a standard sort of Gaussian integral and

√
2a
∫
∞

−∞

e−ax2(
Fc(x)

2
+ Fs(x)

2
)

dx

=
√

2a
∫
∞

−∞

∫
∞

0

∫
∞

0
e−ax2

+i(x−s)2−i(x−t)2ds dt dx

=

√
2π

4

[
π − i log

(
ai − 1

ai + 1

)]
.

As Re(a) tends to zero, the argument of ai−1
ai+1 tends to π/2 (though the magnitude

grows without bound). Hence the real part of the expression tends to∫
∞

−∞

(
cos(x2)+ sin(x2)

)(
F2

c (x)+ F2
s (x)

)
dx =

3π 3/2

4
√

2
,

and we get

I =
1

2

√
π

2
·

3π3/2

4
√

2
−
π 2

8
=
π2

16
.

Editorial comment. The (relatively long) solution published here avoids the hand-
waving arguments found in some of the other solutions. The proposer notes that this in-
tegral is connected to the quantum-mechanical Landau–Zener problem. He conjectures
that if we do this with 2n nested integrals rather than 4, we get the value 2(π/4)n/n!.

The proposer’s solution to this problem unfortunately appeared on the web in an
essay http://arxiv.org/abs/1201.1975, in time for would-be solvers to have
read it.

Also solved by T. Amdeberhan & A. Straub, M. L. Glasser, J. A. Grzesik, M. Omarjee (France), J. G. Sim-
monds, and the proposer.

Limits and Derivatives (Correction)

11603 [2011, 847]. Proposed by Alfonso Villani, Università di Catania, Catania, Italy.
In the May 2013 issue solution by Iosif Pinelis, on p. 476 line 2, one step of the solution
we published was a garbled version of what we received. It should have read

| f (x)| ≥ | f (xk)| −

∣∣∣∣∫ x

xk

f ′(u) du

∣∣∣∣ > 2ε − ε = ε.
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eralizations and references, is welcome. The problem number and the solver’s
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ber of a problem or a part of a problem indicates that no solution is currently
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PROBLEMS

11775. Proposed by Isaac Sofair, Fredericksburg, VA. Let A1, . . . , Ak be finite sets.

For J ⊆ {1, . . . , k}, let NJ =

∣∣∣⋃ j∈J A j

∣∣∣, and let Sm =
∑

J : |J |=m NJ .

(a) Express in terms of S1, . . . , Sk the number of elements that belong to exactly m of
the sets A1, . . . , Ak .
(b) Same question as in (a), except that we now require the number of elements be-
longing to at least m of the sets A1, . . . , Ak .

11776. Proposed by David Beckwith, Sag Harbor, NY. Given urns U1, . . . ,Un in a line,
and plenty of identical blue and identical red balls, let an be the number of ways to put
balls into the urns subject to the conditions that
(i) each urn contains at most one ball,
(ii) any urn containing a red ball is next to exactly one urn containing a blue ball, and
(iii) no two urns containing a blue ball are adjacent.
(a) Show that

∞∑
n=0

antn
=

1+ t + 2t2

1− t − t2 − 3t3
.

(b) Show that

an =

∑
j≥0

∑
m≥0

4 j

[(
n − 2m

j

)(
m

j

)
+

(
n − 2m − 1

j

)(
m

j

)
+ 2

(
n − 2m

j

)(
m − 1

j

)]
.

Here,
(k

l

)
= 0 if k < l.

http://dx.doi.org/10.4169/amer.math.monthly.121.05.455
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11777. Proposed by Marian Dincă, Bucharest, Romania. Let x1, . . . , xn be real num-
bers such that

∏n
k=1 xk = 1. Prove that

n∑
k=1

x2
k

x2
k − 2xk cos(2π/n)+ 1

≥ 1.

11778. Proposed by Li Zhou, Polk State College, Winter Haven, FL. Let x, y, z be pos-
itive real numbers such that x + y + z = π/2. Let f (x, y, z) = 1/(tan2 x + 4 tan2 y +
9 tan2 z). Prove that

f (x, y, z)+ f (y, z, x)+ f (z, x, y) ≤
9

14

(
tan2 x + tan2 y + tan2 z

)
.

11779. Proposed by Michel Bataille, Rouen, France.

M

A

B

C

D

E

F
U

V

O

K

L

P

Q

Let M , A, B, C , and D be distinct
points (in any order) on a circle 0 with
center O . Let the medians through M
of triangles MAB and MCD cross lines
AB and CD at P and Q, respectively,
and meet 0 again at E and F , respec-
tively. Let K be the intersection of AF
with DE, and let L be the intersection
of BF with CE. Let U and V be the or-
thogonal projections of C onto MA and
D onto MB, respectively, and assume
U 6= A and V 6= B. Prove that A, B,
U , and V are concyclic if and only if
O , K , and L are collinear.

11780. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA, and Tudorel
Lupu, Decebal High School, Constanţa, Romania. Let f be a positive-valued, concave
function on [0, 1]. Prove that

3

4

(∫ 1

0
f (x) dx

)2

≤
1

8
+

∫ 1

0
f 3(x) dx .

11781. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata”, Rome, Italy.
For n ≥ 2, call a positive integer n-smooth if none of its prime factors is larger than
n. Let Sn be the set of all n-smooth positive integers. Let C be a finite, nonempty
set of nonnegative integers, and let a and d be positive integers. Let M be the set
of all positive integers of the form m =

∑d
k=1 cksk , where ck ∈ C and sk ∈ Sn for

k = 1, . . . , d . Prove that there are infinitely many primes p such that pa /∈ M .

SOLUTIONS

Integrals with Bernoulli Numbers

11644 [2012, 426]. Proposed by Albert Stadler, Herrliberg, Switzerland. Let n be a
nonnegative integer, and let B j be the j th Bernoulli number, defined for j ≥ 0 by
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x/(ex
− 1) =

∑
∞

k=0 Bk x k/k!. Let

In =

∫
∞

0

(
1

xn(ex − 1)
−

(
1

xn
+

n∑
k=0

Bk
x k−n−1

k!

)
e−x

)
dx .

Prove that I0 = γ − 1, that I1 = 1− (1/2) log(2π), and that for n ≥ 1,

I2n = (log(2π)+ γ )
B2n

(2n)!
+ (−1)n

2ζ ′(2n)

(2π)2n

+
1

2(2n − 1)!
H2n−1 −

n−1∑
k=0

B2k

(2k)!
·

H2n−2k

(2n − 2k)!
,

and that for n ≥ 1,

I2n+1 = (−1)n
ζ(2n + 1)

2(2π)2n
−

1

2(2n)!
H2n +

n∑
k=0

B2k

(2k)!
·

H2n+1−2k

(2n + 1− 2k)!
.

Here, Hn denotes
∑n

k=1 1/k, ζ denotes the Riemann zeta function, and γ is Euler’s
constant.

Solution by the proposer. Note that

ex

xn(ex − 1)
=

1

xn
+

n∑
k=0

Bk
x k−n−1

k!
+ O(1)

in a neighborhood of x = 0. Define

fn(s) =
∫
∞

0
x s−1

(
1

xn(ex − 1)
−

(
1

xn
+

n∑
k=0

Bk
x k−n−1

k!

)
e−x

)
dx .

The integral converges absolutely for Re s > 0 and uniformly in every compact subset
contained in Re s ≥ ε > 0. Therefore, fn(s) is analytic in Re s > 0. Thus In = fn(1),
and we compute fn(1).

If Re s > n, then

fn(s) = 0(s − n)ζ(s − n)− 0(s − n)−
n∑

k=0

Bk

k!
0(s + k − n − 1). (1)

Note that (1) represents the analytic continuation of fn(s) as a meromorphic function
in the whole complex plane. Also, the residues of fn at s ∈ {1, . . . , n} all vanish.

We now take note of some well-known facts about the gamma and zeta functions.
If m is a nonnegative integer, then in a neighborhood of s = 1 we have

0(s − m) =
0(s)

(s − 1)(s − 2) · · · (s − m)

=
(−1)m−1

(m − 1)!

(
1

s − 1
− γ + Hm−1 + O(s − 1)

)
. (2)

By considering the residue of fn at 1, we have

0 =
(−1)n−1

(n − 1)!
ζ(1− n)−

(−1)n−1

(n − 1)!
−

n∑
k=0

Bk

k!
·
(−1)n−k

(n − k)!
.
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For the last equality we used

xe−x
=

(
∞∑

k=0

Bk
x k

k!

) (
1− e−x

)
=

(
∞∑

k=0

Bk
x k

k!

)(
∞∑

k=1

(−1)k+1x k

k!

)

and compared coefficients of xn . Therefore,

ζ(1− n) = (−1)n−1 Bn

n
. (3)

Using the functional equation

ζ(1− s) = 2(2π)−s cos
πs

2
0(s)ζ(s), (4)

we get

21−nπ−n cos
πn

2
0(n)ζ(n) = (−1)n−1 Bn

n

and

ζ(2n) = (−1)n−1 B2n

2(2n)!
(2π)2n.

Now

I0 = f0(1)= lim
s→1

(
0(s)ζ(s)−0(s)−0(s−1)

)
=−1+lim

s→1

0(s)(s−1)ζ(s)−0(s)

s−1

= −1+lim
s→1

1

s−1

([
1−γ (s−1)+O

(
(s−1)2

)] [
1+γ (s−1)+O

(
(s−1)2

)]
−
[
1−γ (s−1)+O

(
(s−1)2

)])
=γ − 1.

For n ≥ 1,

In =

∫
∞

0

(
1

xn(ex − 1)
−

(
1

xn
+

n∑
k=0

Bk
x k−n−1

k!

)
e−x

)
dx = fn(1)

= lim
s→1

(
0(s − n)ζ(s − n)− 0(s − n)−

n∑
k=0

Bk

k!
0(s + k − n − 1)

)

=
(−1)n−1

(n − 1)!
(−γ + Hn−1) ζ(1− n)+

(−1)n−1

(n − 1)!
ζ ′(1− n)

−
(−1)n−1

(n − 1)!
(−γ + Hn−1)−

n∑
k=0

Bk

k!
·
(−1)n−k

(n − k)!
(−γ + Hn−k)

=
(−1)n−1

(n − 1)!
(ζ(1− n)− 1)+

(−1)n−1

(n − 1)!
ζ ′(1− n)−

n−1∑
k=0

Bk

k!
·
(−1)n−k

(n − k)!
Hn−k

=
Bn

n!
Hn−1 −

(−1)n−1

(n − 1)!
Hn−1 +

(−1)n−1

(n − 1)!
ζ ′(1− n)−

n−1∑
k=0

Bk

k!
·
(−1)n−k

(n − k)!
,
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where we have used (2) and the fact that the residue at 1 of fn is zero. To get from here
to the required formulas, we will need to relate the values of ζ ′ at negative integers to
values of ζ and ζ ′ at positive integers.

We have ζ(0) = −1/2. From (4) we deduce

−
ζ ′(1− s)

ζ(1− s)
= − log(2π)−

π

2
tan

πs

2
+
0′(s)

0(s)
+
ζ ′(s)

ζ(s)
.

In a neighborhood of s = 1,

π

2
tan

πs

2
=
−1

s − 1
+ O(s − 1),

0′(s)

0(s)
= −γ + O(s − 1),

and

ζ ′(s)

ζ(s)
=
−1

s − 1
+ γ + O(s − 1),

so

−
ζ ′(0)

ζ(0)
= − log(2π), ζ ′(0) = −

1

2
log(2π).

We have

0′(s + n)

0(s + n)
=

1

s + n − 1
+

1

s + n − 2
+ · · · +

1

s + 1
+
0′(s + 1)

0(s + 1)
.

Thus,

0′(n)

0(n)
= Hn−1 − γ, 0′(n) = (n − 1)! (Hn−1 − γ ) .

From (4), we deduce

−ζ ′(1− s) = −2 log(2π)(2π)−s cos
πs

2
0(s)ζ(s)− 2(2π)−s π

2
sin

πs

2
0(s)ζ(s)

+ 2(2π)−s cos
πs

2
0′(s)ζ(s)+ 2(2π)−s cos

π2

2
0(s)ζ ′(s).

For n ≥ 1, let Zn = ζ
′(1− n)(2π)n/2(n − 1)!. We then have

Zn = log(2π) cos
πn

2
ζ(n)+

π

2
sin

πn

2
ζ(n)

− cos
πn

2
(Hn−1 − γ ) ζ(n)− cos

πn

2
ζ ′(n).

Thus for odd n, Zn =
π

2 (−1)(n−1)/2ζ(n) , while for even n,

Zn = (−1)n/2
[
(log(2π)− Hn−1 + γ ) ζ(n)− ζ

′(n)
]

= (− log(2π)+ Hn−1 − γ )
Bn(2π)n

2(n!)
− (−1)n/2ζ ′(n).

We thus conclude:

I0 = γ − 1, I1 = f1(1) = ζ
′(0)+ B0 H1 = 1−

1

2
log(2π),
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and for n ≥ 1, using the fact that B1 = −1/2 while B2k+1 = 0 for k > 0,

I2n =
1

2(2n − 1)!
H2n−1 + (log(2π)+ γ )

B2n

(2n)!
+ (−1)n

2ζ ′(2n)

(2π)2n

−

n−1∑
k=0

B2k

(2k)!
·

H2n−2k

(2n − 2k)!
,

I2n+1 = −
1

2(2n)!
H2n + (−1)n

ζ(2n + 1)

2(2π)2n
+

n∑
k=0

B2k

(2k)!
·

H2n+1−2k

(2n + 1− 2k)!
.

Also solved by B. Burdick.

An l p Inequality

11649 [2012, 522]. Proposed by Grahame Bennett, Indiana University, Bloomington,
IN. Let p be real with p > 1. Let (x0, x1, . . .) be a sequence of nonnegative real num-
bers. Prove that

∞∑
j=0

(
∞∑

k=0

xk

j + k + 1

)p

<∞ ⇒

∞∑
j=0

(
1

j + 1

j∑
k=0

xk

)p

<∞.

Solution by Oliver Geupel, Brühl, NRW, Germany. For every nonnegative integer j ,
since x j > 0, we have

1

j + 1

j∑
k=0

xk ≤
2 j + 1

j + 1

j∑
k=0

xk

j + k + 1
≤ 2

∞∑
k=0

xk

j + k + 1
.

If p > 0, then x p strictly increases with x on the interval [0,∞). Thus, raising both
sides of this inequality to the pth power and summing both sides over j yields

∞∑
j=0

(
1

j + 1

j∑
k=0

xk

)p

≤ 2p
∞∑
j=0

(
∞∑

k=0

xk

j + k + 1

)p

.

The proof also shows that the restriction on p can be relaxed to p > 0.

Editorial comment. Kenneth F. Anderson remarked that, conversely, since (a + b)p
≤

2p(a p
+ bp) for a, b ≥ 0, it follows that

∞∑
j=0

(
∞∑

k=0

xk

j + k + 1

)p

≤ 2p

 ∞∑
j=0

(
1

j + 1

j∑
k=0

xk

)p

+

∞∑
j=0

 ∞∑
k= j

xk

k + 1

p .
The convergence of the two series on the right-hand side implies convergence of∑
∞

j=0

(∑
∞

k=0 xk/( j + k + 1)
)p

. See Hardy’s discussion of Hilbert’s Double Series
Theorem (Hardy–Littlewood–Pólya, Inequalities, Cambridge University Press, 1967,
Ch. 9).

Also solved by K. F. Andersen (Canada), R. Bagby, P. P. Dályay (Hungary), E. A. Herman, F. Holland (Ireland),
B. Karaivanov, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), M. Omarjee (France), P. Perfetti
(Italy), M. A. Prasad (India), A. Stenger, R. Stong, R. Tauraso (Italy), T. Viteam (Chile), and the proposer.
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A Double Integral

11650 [2012, 522]. Proposed by Michael Becker, University of South Carolina at
Sumter, Sumter, SC. Evaluate∫

∞

x=0

∫
∞

y=x
e−(x−y)2 sin2(x2

+ y2)
x2
− y2

(x2 + y2)2
dy dx .

Solution by Jan A. Van Casteren, University of Antwerp, Antwerp, Belgium. As prepa-
ration, we evaluate the following integral for σ > 0:∫
∞

0
e−2σρ sin2 ρ

ρ
dρ =

∫
∞

0
e−σρ

sin2(ρ/2)

ρ
dρ =

1

2

∫
∞

0

∫
∞

σ

e−τρ dτ(1− cos ρ)dρ

=
1

2

∫
∞

σ

∫
∞

0
e−τρ(1− cos ρ)dρ dτ =

1

2

∫
∞

σ

(
1

τ
−

τ

1+ τ 2

)
dτ

=
1

2
log

(1+ σ 2)1/2

σ
.

Now for the integral J of the problem: passing first to polar coordinates via x =
r cosϕ, y = r sinϕ, we compute

J =
∫
∞

0

∫
∞

x
e−(x−y)2 sin2(x2

+ y2)
x2
− y2

(x2 + y2)2
dy dx

=

∫
∞

0

∫ π/2

π/4
e−r2

+2r2 sinϕ cosϕ sin2(r 2)
cos2 ϕ − sin2 ϕ

r
dϕ dr

=

∫
∞

0

∫ π/2

π/4
e−r2

+r2 sin 2ϕ cos 2ϕ dϕ
sin2(r 2)

r
dr

= −
1

2

∫
∞

0

1− e−r2

r 2

sin2(r 2)

r
dr (substitute ρ = r 2)

= −
1

4

∫
∞

0

1− e−ρ

ρ

sin2 ρ

ρ
dρ = −

1

2

∫ 1/2

0

∫
∞

0
e−2σρ sin2 ρ

ρ
dρ dσ

= −
1

4

∫ 1/2

0
log

(1+ σ 2)1/2

σ
dσ (integrate by parts)

= −
1

4

(
1

2
log

(1+ (1/2)2)1/2

1/2
+ arctan

1

2

)
= −

1

16
log 5−

1

4
arctan

1

2
.

Also solved by K. F. Andersen (Canada), D. Anderson (Ireland), R. Bagby, D. H. Bailey (U.S.) & J. M. Borwein
(Australia), M. Benito, Ó. Ciaurri, E. Fernández & L. Roncal (Spain), K. N. Boyadzhiev, M. A. Carlton, R.
Chapman (U. K.), H. Chen, B. E. Davis, S. de Luxán (Spain), E. S. Eyeson, C. Georghiou (Greece), O. Geupel
(Germany), M. L. Glasser, J. A. Grzesik, A. Guetter & I. Roussos, E. A. Herman, F. Holland (Ireland), B.
Karaivanov, O. Kouba (Syria), K. D. Lathrop, K.-W. Lau (China), O. P. Lossers (Netherlands), J. Magliano,
T. L. McCoy, M. Omarjee (France), P. Perfetti (Italy), M. A. Prasad (India), I. Rusodimos, R. Stong, R. Tauraso
(Italy), T. Trif (Romania), D. B. Tyler, E. I. Verriest, J. Vinuesa (Spain), M. Vowe (Switzerland), J. Wan
(Australia), H. Wang & J. Wojdylo, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the
proposer.
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A Binomial Determinant

11652 [2012, 522–523]. Proposed by Ajai Choudhry, Foreign Service Institute, New
Delhi, India. For a, b, c, d ∈ R, and for nonnegative integers i , j , and n, let

ti, j =

i∑
s=0

(
n − i

j − s

)(
i

s

)
an−i− j+sb j−sci−sds .

Let T (a, b, c, d, n) be the (n + 1)-by-(n + 1)matrix with (i, j)-entry given by ti, j , for
i, j ∈ {0, . . . , n}. Show that det T (a, b, c, d, n) = (ad − bc)n(n+1)/2.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. Let E denote the vector space Rn[x] of real polynomials with de-
gree at most n, and let B denote the canonical basis {1, x, x2, . . . } of E . Consider the
linear transformations V and Tλ,µ from E to E defined by V (P(x)) = xn P(1/x) and
Tλ,µ(P(x)) = P(λx + µ), where (λ, µ) ∈ R2.

For a linear transformation T from E to E , let det(T ) denote the determinant of the
matrix of T with respect to B. Since the matrices of V and Tλ,µ with respect to B are

0 · · · · · · 0 1
0 · · · 0 1 0
...

...
...

...
...

0 1 0 · · · 0
1 0 · · · · · · 0

 and


1 µ ∗ · · · ∗

0 λ ∗ · · · ∗

0 0 λ2
· · · ∗

...
. . .

. . .
. . .

...

0 · · · · · · 0 λn

 ,
we obtain det(V ) = (−1)n(n+1)/2 and det(Tλ,µ) = λn(n+1)/2.

Now consider (a, b, c, d) ∈ R4 with b 6= 0, and let U be the linear transformation
defined by U = Tb,a ◦ V ◦ Tc−ad/b,d/b. We have

det(U ) = det(Tb,a) det(V ) det(Tc−ad/b,d/b) = (ad − bc)n(n+1)/2. (∗)

On the other hand, for 0 ≤ i ≤ n,

U (x i ) = (a + bx)n−i (c + dx)i

=

n∑
j=0

(∑
s≥0

(
n − i

j − s

)(
i

s

)
an−i− j+sb j−sci−sds

)
x j
=

n∑
j=0

ti, j x
j .

Thus, the matrix of U with respect to B is the transpose of the matrix T (a, b, c, d, n).
Using (∗), we obtain

det(T (a, b, c, d, n)) = det(U ) = (ad − bc)n(n+1)/2.

The case b = 0 follows by continuity.

Also solved by D. Beckwith, R. Chapman (U. K.), P. P. Dályay (Hungary), B. Karaivanov, P. Lima-Filho,
M. Omarjee (France), M. A. Prasad (India), J. H. Smith, J. H. Steelman, R. Stong, M. Wildon (U. K.), GCHQ
Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before October 31, 2014. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11782. Proposed by Ira Gessel, Brandeis University, Waltham, MA. A signed binary
representation of an integer m is a finite list a0, a1, . . . of elements of {−1, 0, 1} such
that

∑
ai 2i
= m. A signed binary representation is sparse if no two consecutive entries

in the list are nonzero.
(a) Prove that every integer has a unique sparse representation.
(b) Prove that for all m ∈ Z, every non-sparse signed binary representation of m has
at least as many nonzero terms as the sparse representation.

11783. Proposed by Zhang Yun, Xi’an City, Shaanxi, China. Given a tetrahedron, let
r denote the radius of its inscribed sphere. For 1 ≤ k ≤ 4, let hk denote the distance
from the kth vertex to the plane of the opposite face. Prove that

4∑
k=1

hk − r

hk + r
≥

12

5
.

11784. Proposed by Abdurrahim Yilmaz, Middle East Technical University, Ankara,
Turkey. Let ABC be an equilateral triangle with center O and circumradius r . Given
R > r , let ρ be a circle about O of radius R. All points named ‘P’ are on ρ.
(a) Prove that |PA|2 + |PB|2 + |PC|2 = 3(R2

+ r 2).
(b) Prove that minP∈ρ |PA| |PB| |PC| = R3

− r 3 and that maxP∈ρ |PA| |PB| |PC| =
R3
+ r 3.

(c) Prove that the area of a triangle with sides of length |PA|, |PB|, and |PC| is
√

3
4 (R

2
− r 2).

(d) Prove that if H , K , and L are the respective projections of P onto AB, AC, and
BC, then the area of triangle HKL is 3

√
3

116 (R
2
− r 2).

(e) With the same notation, prove that |HK|2 + |KL|2 + |HL|2 = 9
4 (R

2
+ r 2).

http://dx.doi.org/10.4169/amer.math.monthly.121.06.549
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11785. Proposed by Bhaskar Bagchi, India Statistics Institute, Bangalore, India. Let
[n] = {1, . . . , n}. For a subset A of [n], a run of A is a maximal subset of A con-
sisting of consecutive integers. Let O(A) denote the number of runs of A with an
odd number of elements, and let µ(A) = 1

2 (|A| + O(A)). (For instance, if n = 9 and
A = {1, 3, 4, 5, 8, 9}, then A has three runs, O(A) = 2, and µ(A) = 4.)
(a) Show that if 0 ≤ k ≤ n and k/2 ≤ i ≤ k, then the number Ni,k of subsets A of [n]
such that µ(A) = i and |A| = k is given by

Ni,k =

(
n − i

k − i

)(
n − k + 1

2i − k

)
.

(b)∗ Prove or disprove that if m is a positive integer and m + 1 ≤ k ≤ 2m, then the
number of subsets A of [3m + 1] such that |A| = k and µ(A) ≤ m is equal to the
number of subsets B of [3m + 1] such that |B| = 3m + 1− k and µ(B) > m.

11786. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Let x1, x2, . . . be a sequence of positive numbers such that limn→∞ xn = 0 and
limn→∞

log xn
x1+···+xn

is a negative number. Prove that limn→∞
log xn
log n = −1.

11787. Proposed by Mircea Merca, University of Craiova, Craiova, Romania. Prove
that

∞∑
k=1

(−1)k−1kpk

(
n −

1

2
k(k + 1)

)
=

∞∑
k=−∞

(−1)kτ

(
n −

1

2
k(3k − 1)

)
.

Here, pk(n) denotes the number of partitions of n in which the greatest part is less
than or equal to k (with pk(0) = 1 and pk(n) = 0 for n < 0), and τ(n) is the number
of divisors of n (with τ(n) = 0 for n ≤ 0).

11788. Proposed by Spiros Andriopoulos, Third High School of Amaliada, Eleia,
Greece. Let n be a positive integer, and suppose that 0 < yi ≤ xi < 1 for 1 ≤ i ≤ n.
Prove that

log x1 + · · · + log xn

log y1 + · · · + log yn
≤

√
1− x1

1− y1
+ · · · +

1− xn

1− yn
.

SOLUTIONS

Another Property of Only the Golden Ratio

11651 [522]. Proposed by Marcel Celaya and Frank Ruskey, University of Victoria,
Victoria, BC, Canada. Show that the equation

⌊
n + 1

φ

⌋
= n −

⌊
n

φ

⌋
+

⌊
bn/φc

φ

⌋
−


⌊
bn/φc
φ

⌋
φ

+

⌊ ⌊
bn/φc
φ

⌋
φ

⌋
φ

− · · ·
holds for every nonnegative integer n if and only if φ = (1+

√
5)/2.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. Requiring equality for n = 0 restricts our attention to positive φ, and
thus for each n there are only finitely many nonzero terms in the sum.
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Replacing n with bn/φc and adding to the given equation yields⌊
n + 1

φ

⌋
+

⌊
bn/φc + 1

φ

⌋
= n. (1)

Conversely, if (1) holds for each nonnegative integer n, then so does the given equation.
Hence, it is sufficient to show that (1) holds for each nonnegative integer n if and only
if φ = (1+

√
5)/2.

First, suppose that (1) holds for all nonnegative integers. Dividing both sides by n
and taking the limit as n→∞ gives 1/φ + 1/φ2

= 1, which yields φ = (1+
√

5)/2
since φ > 0.

Conversely, suppose that φ = (1 +
√

5)/2. We show first that (1) will follow by
proving the following for all n ≥ 0:⌊

bn/φc + 1

φ

⌋
=

⌊
n + 1

φ2

⌋
. (2)

Given (2), we have⌊
n + 1

φ

⌋
+

⌊
bn/φc + 1

φ

⌋
=

⌊
n + 1

φ

⌋
+

⌊
n + 1

φ2

⌋
=

⌊
n + 1

φ

⌋
+

⌊(
1−

1

φ

)
(n + 1)

⌋
= (n + 1)+

⌊
n + 1

φ

⌋
+

⌊
−

n + 1

φ

⌋
= n,

since bzc + b−zc = −1 when z is not an integer.
Finally, we prove (2). Letting n/φ = bn/φc + ε, we have

n + 1

φ2
= n −

n

φ
+

1

φ2
= n −

⌊
n

φ

⌋
− ε +

1

φ2
(3)

and

bn/φc + 1

φ
=

n

φ2
+

1− ε

φ
= n

(
1−

1

φ

)
+

1− ε

φ
= n −

⌊
n

φ

⌋
− ε +

1− ε

φ
. (4)

The floors of (7) and (8) will be equal if −ε + 1/φ2 and −ε + (1 − ε)/φ are either
both nonnegative or both negative. Since

−ε +
1− ε

φ
= −ε

(
1+

1

φ

)
+

1

φ
= −εφ +

1

φ
=

(
−ε +

1

φ2

)
φ,

the result follows.

Editorial comment. The proposers note that the formula b(n) + b(b(n − 1)) = n,
where b(n) = b(n + 1)/φc, is proved in V. Granville and J. P. Rasson, A strange re-
cursive relation, J. Number Theory 30 (1988) 238–241.

L. Carlitz (Fibonacci representations, Fibonacci Quarterly 6 (1968) 193–220) stud-
ied the function e defined by e(Fk1 + · · · + Fkr ) = Fk1−1 + · · · + Fkr−1, where k1 >

· · · > kr ≥ 2. He proved formulas closely related to (1), which in his notation becomes
e(n)+ e(e(n − 1)) = n. For example, if kr > 2, then e(n)+ e(e(n)) = n.

Also solved by R. Bagby, N. Caro (Brazil), R. Chapman (U. K.), P. P. Dályay (Hungary), E. A. Herman,
O. Kouba (Syria), J. H. Lindsey II, K. Schilling, A. Stenger, R. Stong, T. Viteam (Chile), GCHQ Problem
Solving Group (U. K.), TCDmath Problem Group (Ireland), and the proposers.
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An Addition Formula

11653 [2012, 523]. Proposed by Finbarr Holland, University College Cork, Cork, Ire-
land. Let n be a positive integer. Determine all entire functions f that satisfy, for all
complex s and t , the functional equation

f (s + t) =
n−1∑
k=0

f (n−1−k)(s) f (k)(t).

Here, f (m) denotes the mth derivative of f .

Solution by Denis Constales, Ghent University, Ghent, Belgium. We first note that for
such f ,

0 =
∂ f (s + t)

∂s
−
∂ f (s + t)

∂t
=

n−1∑
k=0

f (n−k)(s) f (k)(t)−
n∑

k=1

f (n−k)(s) f (k)(t)

= f (n)(s) f (t)− f (s) f (n)(t).

The identically zero function clearly is a solution of the stated functional equation,
so henceforth we assume that f is not identically zero. Defining λ = f (n)(t)/ f (t) for
some t with f (t) 6= 0 shows that f must satisfy the ordinary differential equation
f (n)(z)− λ f (z) = 0.

Case 1: λ = 0 (and thus, f must be a polynomial of degree at most n − 1). Let m be
the degree of f and C its leading coefficient. The coefficient of sm on the right side of
the functional equation is f (n−1)(t)C , which is nonzero only if m = n − 1. The poly-
nomials f (k)(t) for 0 ≤ k ≤ n − 1 thus form a basis for the vector space of all poly-
nomials of degree at most n − 1 in t . Comparison of the Taylor expansion f (s + t) =∑n−1

k=0( f (k)(t)/k!)sk with the functional equation shows that we have a solution if and
only if f (n−1−k)(s) = sk/k! for 0 ≤ k ≤ n − 1. Hence, f (z) = zn−1/(n − 1)! is the
only nonzero polynomial solution.

Case 2: λ 6= 0. Write ω = exp(2π i/n) for the nth root of unity and µ for any
nth root of λ. The general solution to the ordinary differential equation is f (z) =∑n−1

k=0 ak exp(µωk z). The right side (call it R) of the functional equation is given by

R =
n−1∑
k=0

n−1∑
p=0

apµ
n−1−kωp(n−1−k) exp(µωps)

n−1∑
q=0

aqµ
kωqk exp(µωq t)

=

n−1∑
p=0

n−1∑
q=0

apaqµ
n−1ωp(n−1) exp(µωps + µωq t)

n−1∑
k=0

ωk(q−p).

The inner sum vanishes unless p = q (in which case it is n), so

R =
n−1∑
p=0

na2
pµ

n−1ω−p exp(µωp(s + t)).

Matching this with the left side, we obtain a solution if and only if each ap indepen-
dently equals either zero or ωp/(nµn−1).

Also solved by K. F. Andersen (Canada), R. Bagby, D. Beckwith, R. Chapman (U. K.), P. P. Dályay (Hungary),
E. Herman, R. Howard, O. Kouba (Syria), O. P. Lossers (Netherlands), T. L. McCoy, J. Stewart, R. Stong, E. I.
Verriest, TCDmath Problem Group (Ireland), and the proposer.
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Integrals Arising from a Plane Random Walk

11654 [2012, 523]. Proposed by David Borwein, University of Western Ontario,
Canada, and Jonathan M. Borwein and James Wan, CARMA, University of Newcas-
tle, Australia. Let Cl denote the Clausen function, given by Cl(θ) =

∑
∞

n=1 sin(nθ)/n2.
Let ζ denote the Riemann zeta function.
(a) Show that∫ 2π

y=0

∫ 2π

x=0
log(3+ 2 cos x + 2 cos y + 2 cos(x − y)) dx dy = 8πCl(π/3).

(b) Show that∫ π

y=0

∫ π

x=0
log(3+ 2 cos x + 2 cos y + 2 cos(x − y)) dx dy =

28

3
ζ(3).

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Note
that

2 log
∣∣1+ ei x

+ eiy
∣∣ = log

(
3+ 2 cos x + 2 cos y + 2 cos(x − y)

)
and recall that ∫ 2π

0
log

∣∣a + ei x
∣∣ dx =

{
2π log |a|, if |a| > 1
0, if |a| ≤ 1

.

Also recall that the Clausen function satisfies

Cl(θ) =
∞∑

n=0

1

2n

∫ θ

−θ

einx dx = −
1

2

∫ θ

−θ

log (1− ex) dx .

We will use some polylogarithms. These are given by Lia(z) =
∑
∞

n=1
zn

na for |z| < 1
and elsewhere by analytic continuation. With this notation, for a = 2 we have the
dilogarithm and for a = 3 the trilogarithm (see L. Lewin, Polylogarithms and Associ-
ated Functions, North Holland, 1981).

For part (a), the desired integral is

I = 2
∫ 2π

0

∫ 2π

0
log

∣∣1+ ei x
+ eiy

∣∣ dx dy.

The inner integral in x vanishes for 2π/3 ≤ y ≤ 4π/3, since in this range |1+ eiy
| ≤

1. Outside this range, the inner integral is 2π log |1 + eiy
|. The integral in y of this

over all of [0, 2π ] would evaluate to 0, so we obtain (substituting y = z + π ):

I = −4π
∫ 4π/3

2π/3
log

∣∣1+ eiy
∣∣ dy = −4π

∫ π/3

−π/3
log

∣∣1− ei z
∣∣ dz = 8πCl(π/3).

For part (b), we integrate by parts in the variable x , then switch the order of inte-
gration to do the integral in y and substitute z = ei x to obtain expressions equal to the
original integral J :
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2
∫ π

0

∫ π

0
log

∣∣1+ ei x
+ eiy

∣∣ dx dy

= 2
∫ π

0

[
x log |1+ ei x

+ eiy
|

∣∣∣x=π
x=0
−

∫ π

0
x Re

(
iei x

1+ ei x + eiy

)
dx

]
dy

= −2 Re
∫ π

0

∫ π

0

i xei x

1+ ei x + eiy
dy dx

= 2 Re
∫ π

0

xei x

1+ ei x

(
−iy + log(1+ ei x

+ eiy)
) ∣∣∣y=π

y=0
dx

= 2 Re
∫ π

0

xei x
(
i x − iπ − log(2+ ei x)

)
1+ ei x

dx

= 2 Re
∫ 1

−1

log z (log z − iπ − log(2+ z))

1+ z
dz

= 2
∫ 1

0

log z (log z − log(2+ z))

1+ z
dz + 2

∫ 1

0

log z (log z − log(2− z))

1− z
dz

= 4
∫ 1

0

(log z)2

1− z2
dz − 2

∫ 1

0

log z log(2− z)

1− z
dz − 2

∫ 1

0

log z log(2+ z)

1+ z
dz.

Here in the penultimate step, we have shifted the contour from a semicircular arc onto
the real axis and replaced z with −z for the part along the negative real axis.

Now we evaluate the three integrals. The first integral is standard:∫ 1

0

(log z)2

1− z2
dz =

∞∑
n=0

∫ 1

0
z2n(log z)2dz = 2

∞∑
n=0

1

(2n + 1)3
=

7

4
ζ(3).

The second integral reduces to an alternating Euler sum,∫ 1

0

log z log(2− z)

1− z
dz =

∫ 1

0

log(1− z) log(1+ z)

z
dz

=

∞∑
n=1

(−1)n−1

n

∫ 1

0
zn−1 log(1− z) dz =

∞∑
n=1

(−1)n

n2
Hn = −

5

8
ζ(3).

The third integral can be evaluated in terms of polylogarithms (as could the first two
integrals). Using integral tables or computer algebra systems, we get∫ 1

0

log z log(2+ z)

1+ z
dz = −

13

24
ζ(3)

+ (iπ + log 3)

[
Li2

(
−1

3

)
− 2 Li2

(
1

3

)
+
π2

6
−
(log 3)2

2

]
+

[
Li3

(
−1

3

)
− 2 Li3

(
1

3

)
+

13

6
ζ(3)−

π 2 log 3

6
+
(log 3)3

6

]
= −

13

24
ζ(3).

We see that the first square-bracket expression vanishes either by noting that the inte-
gral is real or by combining the dilogarithm identities

Li2(x)+ Li2(−x) =
1

2
Li2(x

2) and Li2

(
1

3

)
−

1

6
Li2

(
1

9

)
=
π2

18
−
(log 3)2

6
.
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The second square-bracket expression vanishes, using the trilogarithm identity

Li3

(
1− z

1+ z

)
− Li3

(
z − 1

z + 1

)
= 2 Li3(1− z)+ 2 Li3

(
1

z + 1

)
−

1

2
Li3(1− z2)

−
7

4
ζ(3)−

1

3
(log(1+ z))3 +

π2

6
log(1+ z)

at z = 2, and the identity

Li3(z) = Li3

(
1

z

)
−

1

6
(log(−z))3 −

π 2

6
log(−z)

at z = −3 (this last identity holds for z /∈ (0, 1)).
Plugging in the values for the three integrals gives

J = 4 ·
7

4
ζ(3)+ 2 ·

5

8
ζ(3)+ 2 ·

13

24
ζ(3) =

28

3
ζ(3).

Editorial comment. Kouba and Stong solved (b) from scratch using polylogarithm
identities. Van Casteren evaluated (b) in terms of a double series; together with the
solution given here, it establishes

7

3
ζ(3) = 4

∞∑
m=0

∞∑
k=2m+1

1

k2k(2m + 1)2
= 2

∫ 1

0

(
log

1

s

)
log(1+ 2s)

s(1+ s)
ds.

Glasser and the proposers derived (b) from integrals evaluated elsewhere, but which
are themselves very interesting. Glasser cited∫ π

−π

∫ π

−π

∫ π

−π

log
∣∣1+ ei x

+ eiy
+ ei z

∣∣ dx dy dz = 28πζ(3),

found in D. W. Boyd, Speculations concerning the range of the Mahler measure,
Canad. Math. Bull. 24 (1981) 453–469. The proposers cited

W3(s) =
1

22s+1
tan

πs

2

(
s

s−1
2

)2

3 F2

(
1
2 ,

1
2 ,

1
2

s+3
2 ,

s+3
2

∣∣∣∣ 1

4

)
+

(
s
s
2

)
3 F2

(
−

s
2 ,−

s
2 ,−

s
2

1,− s−1
2

∣∣∣∣ 1

4

)
,

W4(s) =
1

22s
tan

πs

2

(
s

s−1
2

)2

4 F3

(
1
2 ,

1
2 ,

1
2 ,

s
2+ 1

s+3
2 ,

s+3
2 ,

s+3
2

∣∣∣∣ 1

)
+

(
s
s
2

)
4 F3

(
1
2 ,−

s
2 ,−

s
2 ,−

s
2

1, 1,− s−1
2

∣∣∣∣ 1

)
,

under certain restrictions on s, where

Wn(s) =
∫
[0,1]n−1

∣∣∣∣∣1+
n−1∑
k=1

e2π i xk

∣∣∣∣∣
s

dx,

which expresses the sth moment of the distance to the origin after n steps for a random
walk in the plane where each step is a unit step taken in a random direction. The two
integrals in this problem are essentially W ′3(0) and W ′4(0). The proposers challenge our
readers to similarly evaluate W ′5(0) = 5

∫
∞

0

(
log 2

t − γ
)

J 4
0 (t)J1(t) dt ≈ 0.54441256.

Here J is the Bessel function and γ is Euler’s constant.

Also solved by M. L. Glasser, O. Kouba (Syria), and the proposers; part (a) only K. F. Andersen (Canada), O.
Geupel (Germany), J. Van Casteren (Belgium), and GCHQ Problem Solving Group (U. K.).
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A Functional Equation

11661 [2012, 609]. Proposed by Giedrius Alkauskas, Vilnius University, Vilnius,
Lithuania. Find every function f on R+ that satisfies the functional equation

(1− z) f (x) = f

(
1− z

z
f (xz)

)
for x > 0 and 0 < z < 1.

Solution by Michel Bataille, Rouen, France. We show that the solutions to the given
functional equation are the functions fa : R+ → R+ defined by fa(x) =

x
1+ax , where

a is a nonnegative real number.
Direct computation shows that fa is a solution when a ≥ 0. Conversely, let f be a

solution. Since f + is defined only on R+, in order for the functional equation to make
sense, the image of f must be contained in R+.

Replacing x with x + y and z with x/(x + y) in the functional equation gives
y f (x+y)

x+y = f (y f (x)/x). Defining g by g(x) = f (x)/x gives

g(x + y) = g(x)g
(
yg(x)

)
(5)

for x, y > 0.
Next we show that g(x) ≤ 1 for x > 0. If g(z) > 1 for some positive z, then taking

x = z and y = z/
(
g(z)− 1

)
in (5) gives g

(
yg(z)

)
= g(z)g

(
yg(z)

)
. Since g(yg(z)) >

0, this implies g(z) = 1, a contradiction.
It follows that g(x + y) ≤ g(x) for all x, y > 0, so g is nonincreasing.
First suppose g(t) = 1 for some positive t . Setting x = t in (5) gives g(t + y) =

g(y), so g(nt + y) = g(y) for every nonnegative integer n. For x > 0, there exists n
such that nt > x , so 1 = g(nt) ≤ g(x). Thus g(x) = 1 for all x > 0, and f = f0.

Hence we may assume g(x) < 1 for x > 0. In this case (5) implies that g is strictly
decreasing and hence injective. Let u = g(1). From (5), we obtain

g(y + 1) = ug(uy). (6)

Setting y = xg(x) in (6) and applying (5) gives

g
(
xg(x)+ 1) = ug

(
uxg(x)

)
= u

g(x + ux)

g(x)
. (7)

On the other hand, applying (5) and then (6) gives

g
(
(x/u + 1)g(x)

)
=

g(x/u + 1+ x)

g(x)
= u

g(x + ux)

g(x)
. (8)

Now (7) and (8) yield g
(
xg(x) + 1

)
= g

(
(x/u + 1)g(x)

)
. Since g is injective,

xg(x) + 1 = (x/u + 1)g(x). Thus g(x) = 1/(1 + ax), where a = (1 − u)/u) > 0.
We conclude that f = fa .

Also solved by Y.Q. Chen, P. P. Dályay (Hungary), M. Kim (Korea), O. P. Lossers (Netherlands), M. A. Prasad
(India), N. C. Singer, GCHQ Problem Solving Group (U. K.), and the proposer. Three other submissions solved
the problem under the assumption that solutions are differentiable.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before December 31, 2014. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11789. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL,
and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Let a and k be
positive integers. Prove that for every positive integer d there exists a positive integer
n such that d divides kan

+ n.

11790. Proposed by Arkady Alt, San Jose, CA and Konstantin Knop, St. Petersburg,
Russia. Given a triangle with semiperimeter s, inradius r , and medians of length ma ,
mb, and mc, prove that ma + mb + mc ≤ 2s − 3(2

√
3− 3)r .

11791. Proposed by Marián S̆tofka, Slovak University of Technology, Bratislava, Slo-
vakia. Show that for r ≥ 1,

r∑
s=1

(
6r + 1

6s − 2

)
B6s−2 = −

6r + 1

6
,

where Bn denotes the nth Bernoulli number.

11792. Proposed by Stephen Scheinberg, Corona del Mar, CA. Show that every infinite
dimensional Banach space contains a closed subspace of infinite dimension and infinite
codimension.

11793. Proposed by István Mező, Nanjing University of Information Science and Tech-
nology, Nanjing, China. Prove that

∞∑
n=1

log(n + 1)

n2
= −ζ ′(2)+

∞∑
n=3

(−1)n+1 ζ(n)

n − 2
,

where ζ denotes the Riemann zeta function and ζ ′ denotes its derivative.

http://dx.doi.org/10.4169/amer.math.monthly.121.07.648
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11794. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Find every twice differentiable function f on R such that for all nonzero x and y,
x f ( f (y)/x) = y f ( f (x)/y).

11795. Proposed by Mircea Merca, University of Craiova, Craiova, Romania. Let p
be the partition counting function on the set Z+ of positive integers, and let g be the
function on Z+ given by g(n) = 1

2dn/2e d(3n + 1)/2e. Let A(n) be the set of positive
integer triples (i, j, k) such that g(i)+ j + k = n. Prove for n ≥ 1 that

p(n) =
1

n

∑
(i, j,k)∈A(n)

(−1)di/2e−1g(i)p( j)p(k).

SOLUTIONS

Inequality for a Convex Quadrilateral

11655 [2012, 523]. Proposed by Pál Péter Dályay, Szeged, Hungary. Let ABC D be
a convex quadrilateral, and let α, β, γ , and δ be the radian measures of angles D AB,
ABC , BC D, and C D A, respectively. Suppose α + β > π and α + δ > π , and let
η = α + β − π and φ = α + δ − π . Let a, b, c, d, e, f be real numbers with ac =
bd = e f . Show that if abe > 0, then

a cosα + b cosβ + c cos γ + d cos δ + e cos η + f cosφ ≤
be

2a
+

c f

2b
+

de

2c
+

a f

2d
,

while for abe < 0 the inequality is reversed.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. It
suffices to consider the case abe > 0; the other case follows by negating a, b, c, d, e, f .
Write νAB , νBC , νC D , and νD A for outward unit normal vectors to the sides AB, BC ,
C D, and D A, respectively. We have

νD A · νAB = − cosα, νAB · νBC = − cosβ, νBC · νC D = − cos γ,

νC D · νD A = − cos δ, νAB · νC D = − cosφ, νBC · νD A = − cos η.

Let

r =

√
2abe

2e
, s =

√
2abe

2a
, t =

ac
√

2abe
, u =

√
2abe

2b
.

We compute

a = 2ru, b = 2rs, c = 2st, d = 2tu, e = 2su, f = 2r t,

r 2
+ s2
+ t2
+ u2

=
ab

2e
+

be

2a
+

ac2

2be
+

ae

2b
=

a f

2d
+

be

2a
+

c f

2b
+

de

2c
.

Thus the right side of the desired inequality is r 2
+ t2
+ s2
+ u2, and the left side is

the negation of

2ru νD A · νAB + 2rs νAB · νBC + 2st νBC · νC D

+ 2tu νC D · νD A + 2su νBC · νD A + 2r t νAB · νC D.
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Thus the desired inequality is equivalent to
∥∥r νAB + s νBC + t νC D + u νD A

∥∥2
≥ 0,

which holds trivially.

Also solved by GCHQ Problem Solving Group (U. K.), and the proposer.

How Many Polynomial Shapes Are There?

11656 [2012, 608]. Proposed by Valerio De Angelis, Xavier University of Louisiana,
New Orleans, LA. The sign chart of a polynomial f with real coefficients is the list of
successive pairs (ε, σ ) of signs of ( f ′, f ) on the intervals separating real zeros of f f ′,
together with the signs at the zeros of f f ′ themselves, read from left to right. Thus, for
x3
− 3x2, the sign chart is ((1,−1), (0, 0), (−1,−1), (0,−1), (1,−1), (1, 0), (1, 1)).

As a function of n, how many distinct sign charts occur for polynomials of degree n?

Solution by Ronald E. Prather, Oakland CA. We count the sign charts, but do not prove
that they can all be achieved by polynomials of the required degree.

Let n ≥ 1. The polynomials f of degree n satisfying limx→−∞ f (x) = +∞ pro-
duce half of the sign charts, so it suffices to count the sign charts for them.

Instead of sign charts, we first consider a related enumeration of a set D(n) of
shapes of polynomials f of degree n. A shape will be a finite sequence chosen from
a set of twelve symbols. We write m when, scanning from the left, we encounter a
local minimum of f (that is, f ′ has a zero of odd order, f ′ < 0 to the left, and f ′ > 0
to the right). We write M on meeting a local maximum (that is, a point at which f ′

has a zero of odd order, f ′ > 0 to the left, and f ′ < 0 to the right). We write I for
a decreasing stationary point (that is, f ′ has a zero of even order and f ′ < 0 on both
sides). We write J for an increasing stationary point (that is, f ′ has a zero of even
order and f ′ > 0 on both sides). Each of these symbols will have subscript+, 0, or−,
according as f > 0, f = 0, or f < 0 at the point. This yields twelve symbols: three
ways to subscript each of m, M , I , and J .

The shape of a polynomial f is the sequence, from left to right, of the symbols cor-
responding to the zeros of f ′. With the restriction that f is positive and f ′ is negative
far to the left, we will be able to recover the sign chart from the shape of a polynomial
and vice versa. In particular, from the data in the shape, we can discover the intervals
where there is a point with f = 0 but f ′ 6= 0.

The polynomial −x3
+ 3x2, the negative of the example in the problem statement,

has shape m0 M+. Setting f (x) = −x3
+ 2x2, let us recover the corresponding sign

chart. Left of the point with symbol m0 (or just ‘m0’) f is positive and decreasing.
Between m0 and M+, f is positive and increasing. Just right of M+, f is positive and
decreasing. Since f →−∞ at the far right, there is a zero of f where it changes sign.
This yields

(
(−1,+1), (0, 0), (+1,+1), (0,+1), (−1,+1), (−1, 0), (−1,−1)

)
.

Next we define weight. The weight of a subscripted m or M is 1, the weight of
a subscripted I or J is 2, and the weight of a shape is the sum of the weights of
its components. The case of weight 0 with no components is allowed. The weight of
the shape of a polynomial f is equal to the degree of f ′, possibly reduced by an even
number, so the weight is the degree of f minus an odd positive number. Write S(w) for
the set of all shapes of polynomials f with weightw for which limx→−∞ f (x) = +∞.
We have |D(n)| = |S(n − 1)| + |S(n − 3)| + |S(n − 5)| + . . . ,where we end at |S(0)|
or |S(1)|.

We must now compute |S(w)|. The difficulty is that not every sequence of the
twelve symbols can occur. For example, following a zero of f ′ of type m+ the func-
tion is positive and increasing, so the next symbol must be either M+ or J+. Another
example: m− can only be followed by M+,M0,M−, J+, J0, or J−.
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We next provide a code for our shapes, symbol by symbol, according to the con-
vention

m+ a m0 b m− c M+ c M0 a M− b

I+ bb I0 ba I− aa J+ aa J0 ba J bb.

The coding of a shape of weight w is a string of w symbols from the alphabet {a,b, c}
such that the substring ab never appears. All such w-strings occur as encodings.

Given a string (with no ab), here is the method to obtain the corresponding shape.
A string of w letters (a’s, b’s, and c’s) arising in this fashion from a polynomial is
the concatenation of some k batches of strings buavc, with the final c perhaps absent:
bu1av1cbu2av2c . . . buk avk cε where k ≥ 0, the u j and v j are nonnegative integers, and
ε ∈ {0, 1}.

Suppose we are turning a string into a shape, moving left to right, and we come
to a batch aubvc of letters knowing that any corresponding underlying function f is
positive and decreasing. (The case of negative and increasing will be similar. These
are the only two possibilities following a c, and we have enough information about the
shape to know the local sign of any f that might underlie the shape we are building.)
There are four cases for the upcoming batch, depending on the parities of the upcoming
u and v.

If the batch has the form b2i+1a2 j+1c, then the corresponding next part of the shape
is I i
+

I0 I−
j m−. If it has the form b2i+1a2 j c, then the next part is I+

i m0 J+
j M+. If it has

the form b2i a2 j c, then the next part is I+
i I−

j m−. If it has the form b2i a2 j+1c, then the
next part is I+

i m+ J+
j M+. If there is no final c (which can only happen if the current

batch is the last), then drop the final shape item (an m or M). Note that i = 0 and
j = 0 are allowed in all cases.

Let s(w) = |S(w)|. Because the coding is a bijection, s(w) is the number of strings
of length w with no ab. It can be computed recursively: s(0) = 1, s(1) = 3, s(w) =
3s(w − 1)− s(w − 2). The solution is

s(w) =
φ2w+2

− φ−2w−2

√
5

= F2w+2,

where φ = (1+
√

5 )/2 is the golden ratio and Fn is the nth Fibonacci number.
Finally, the solution to the problem itself is

2
(
s(n − 1)+ s(n − 3)+ s(n − 5)+ . . .

)
=

2
(
φ2n+2

+ φ−2n−2
)
+ (−1)n+1

− 5

5

=
2L2n+2 + (−1)n+1

− 5

5
,

in terms of Lucas numbers Ln .

Editorial comment. As noted, this solution does not show that every shape of weight w
can be realized by a polynomial of degree w + 1, another of degree w + 3, and so on.
The proposer also omits this consideration, but to be fair the determination by degree
was added by the editors. Stong found that all of the sign charts enumerated can be
achieved by polynomials of the required degree, but his proof would have been too
long to present with all details filled in.

Also (partially) solved by R. Stong and the proposer.
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Partitioning Segments Into Triples

11657 [2012, 608]. Proposed by Gregory Galperin, Eastern Illinois University,
Charleston, IL, and Yury Ionin, Central Michigan University, Mount Pleasant, MI.
Given a set V of n points in R2, no three of them collinear, let E be the set of

(n
2

)
line

segments joining distinct elements of V .
(a) Prove that if n 6≡ 2 (mod 3), then E can be partitioned into triples in which the
length of each segment is smaller than the sum of the other two.
(b) Prove that if n ≡ 2 (mod 3) and e is an element of E , then E \ {e} can be so
partitioned.

Solution by the proposers. Part (a) is immediate for n = 3; we prove (a) for n = 4 and
(b) for n = 5 and proceed by induction on n. For x, y ∈ V , let |xy| denote the length
of the segment xy. Since E is the edge set of the complete graph with vertex set V , for
x, y, z, w ∈ V we evoke terminology from graph theory by letting wxyz denote the
graph with vertex set {w, x, y, z} and edge set {wx, wy, wz} (a claw), letting txyzw
denote the graph with vertex set {x, y, z, w} and edge set {xy, yz, zw} (a path), and
letting 4xyz denote the graph with vertex set {x, y, z} and edge set {xy, xz, yz} (a
triangle).

When three segments satisfy the condition that the length of each is smaller than
the sum of the other two, we say that the triple is triangular; this holds for any triangle
4 xyz and also for other triples of edges, including some paths and claws.

For n = 4, let V = {x, y, z, w}. Without loss of generality, let xy be a shortest
segment in E , and label z and w so that |xz| + |yz| ≤ |xw| + |yw|. Using this in-
equality and the triangles containing zw, we have 2(|xw| + |yw|) ≥ (|xw| + |yw|)+
(|xz| + |yz|) = (|xw| + |xz|)+ (|yw| + |yz|) > 2|zw|, so |xw| + |yw| > |zw|. Also,
|xw| + |zw| ≥ |xw| + |xy| > |yw| and |yw| + |zw| ≥ |yw| + |xy| > |xw|. Hence
the triangular triples 4 xyz and wxyz suffice.

For n = 5, let V = {x1, x2, y1, y2, y3} and E ′ = E \ {x1x2}. We partition E ′ into
three triangular triples. If t x1 yi y j x2 is triangular, where {i, j, k} = {1, 2, 3}, then we
use {t x1 yi y j x2,4 x1 y j yk,4 x2 yi yk}. If xi y1 y2 y3 is triangular, where {i, j} = {1, 2},
then we apply the case n = 4 to partition the segments formed by {x j , y1, y2, y3} into
two triangular triples and use xi y1 y2 y3 as the third.

In the remaining case for n = 5, no path of the form t x1 yi y j x2 and no claw of the
form xi y1 y2 y3 is triangular. If yi y j is a longest segment in E ′, then |yi y j | ≥ |x1 yi | +

|x2 y j | and |yi y j | ≥ |x1 y j | + |x2 yi |; otherwise, t x1 yi y j x2 or t x1 y j yi x2 is triangular.
This yields the contradiction

2|yi y j | ≥ (|x1 yi | + |x1 y j |)+ (|x2 y j | + |x2 yi |) > 2|yi y j |.

Therefore, any longest segment in E ′ has the form xi y j . Index the points so x1 y1

is a longest segment and |x1 y1| ≥ |x1 y2| ≥ |x1 y3|. Now |x1 y1| ≥ |x1 y2| + |x1 y3| (oth-
erwise x1 y1 y2 y3 is triangular), and |x1 y3| + |y3 y1| > |x1 y1| (since 4 x1 y1 y3 is tri-
angular), so |y1 y3| > |x1 y2|. Since t x1 y1 y3x2 is not triangular and x1 y1 is a longest
segment, |x1 y1| ≥ |y1 y3| + |y3x2|. If y1 y3 is a longest segment in t x1 y3 y1x2, then
|y1 y3| ≥ |x1 y3| + |y1x2|, yielding the contradiction |x1 y1| ≥ |x1 y3| + |y3x2| + |x2 y1|

(combining two triangles). Since |y1 y3| > |x1 y2| ≥ |x1 y3|, we conclude that x2 y1 is
longest in t x1 y3 y1x2. Since t x1 y3 y1x2 is not triangular, we obtain the contradiction
|x2 y1| ≥ |y1 y3| + |y3x1| > |x1 y1|, finishing the case n = 5.

Now consider n ≥ 6. In the case n 6≡ 2 (mod 3), let xy be a shortest segment in
E , and let z be a point in V such that |xy| + |yz| = minw/∈{x,y}{|xw| + |yw|}. The
proof given for n = 4 shows that wxyz is triangular for all w /∈ {x, y, z}. Hence
4 xyz and the claws wxyz for w /∈ {x, y, z} can be combined with a partition of the
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pairs in V \ {x, y, z} (obtained by the induction hypothesis) to complete the desired
partition.

Finally, in the case n 6≡ 2 (mod 3), let e = uv. Let xy be a shortest segment de-
termined by the points in V \ {u, v}, and let z be a point in V \ {x, y, u, v} such
that |xy| + |yz| is the minimum of |xw + yw| over all w /∈ {x, y, u, v} such that
xw, yw ∈ E . Again, every claw wxyz is triangular when w /∈ {x, y, z, u, v}. Ap-
ply the case n = 5 for the pairs in {x, y, z, u, v}, and apply the induction hypothesis to
the n − 3 points in V \ {x, y, z}, in both cases choosing e = uv as the deleted line seg-
ment. Combine the resulting partitions with the claws wxyz for w /∈ {x, y, z, u, v}.

Editorial comment. The result applies to any metric space, since the proof given needs
only the property that every actual triangle is triangular. The problem was printed with
an unfortunate typo in the rewording of the triangle inequality, with the word “greater”
appearing instead of “smaller.”

Also solved by R. Stong.

Pentagonal Series as Limit

11659 [2012, 608]. Proposed by Albert Stadler, Herrliberg, Switzerland. Let x be real
with 0 < x < 1, and consider the sequence 〈an〉 given by a0 = 0, a1 = 1, and, for
n > 1,

an =
a2

n−1

xan−2 + (1− x)an−1
.

Show that

lim
n→∞

1

an
=

∞∑
k=−∞

(−1)k x k(3k−1)/2.

Solution by Greg Martin, University of British Columbia, Vancouver, BC, Canada.
Take the reciprocal of the recurrence relation and multiply both sides by an−1 to get

an−1

an
= x

an−2

an−1
+ (1− x), (n ≥ 2).

Let rn = an/an+1. We now have r0 = 0 and the recurrence rn = xrn + 1− x for n ≥ 1.
The solution to this is rn = 1− xn . Therefore

lim
n→∞

1

an
= lim

n→∞

n−1∏
k=1

ak

ak+1
= lim

n→∞

n−1∏
k=1

rk = lim
n→∞

n−1∏
k=1

(1− x k) =

∞∏
k=1

(1− x k).

By Euler’s pentagonal number theorem, for |x | < 1 this infinite product is equal to∑
∞

k=−∞(−1)k x k(3k−1)/2.

Also solved by M. Bataille (France), D. Beckwith, P. Bracken, B. Bradie, N. Caro (Brazil), R. Chapman (U. K.),
H. Chen, J. E. Cooper III, P. P. Dályay (Hungary), E. S. Eyeson, S. M. Gagola Jr., C. Georghiou (Greece), O.
Geupel (Germany), A. Habil (Syria), E. A. Herman, R. Howard, M. Kim (Korea), O. Kouba (Syria), W. C.
Lang, J. Li, J. C. Linders (Netherlands), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany),
T. L. McCoy, R. Nandan, M. Omarjee (France), P. Perfetti (Italy), C. R. Pranesachar (India), M. A. Prasad
(India), D. N. Sanyasi (India), R. K. Schwartz, C. R. Selvaraj & S. Selvaraj, N. C. Singer, A. Stenger, R. Stong,
R. Tauraso (Italy), D. B. Tyler, E. I. Verriest, J. Vinuesa (Spain), T. Viteam (Chile), M. Vowe (Switzerland), M.
Wildon (U. K.), GCHQ Problem Solving Group (U. K.), TCDmath Problem Group (Ireland), and the proposer.
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An Unusual Differential Equation

11660 [2012, 609]. Proposed by Stefano Siboni, University of Trento, Trento, Italy.
Consider the following differential equation: s ′′(t) = −s(t)− s(t)2 sgn(s ′(t)), where
sgn(u) denotes the sign of u. Show that if s(0) = a and s ′(0) = b with ab 6= 0, then
(s, s ′) tends to (0, 0) with

√
s2 + s ′2 ≤ C/t as t →∞, for some C > 0.

Solution by GCHQ Problem Solving Group, Cheltenham, UK. The claim does not
always hold. Suppose that s(t) is the position of a particle at time t , and denote s ′(t)
by v(t). If we let s1(t) denote s when s(0) = a and s ′(0) = b and s2(t) denote s when
s(0) = −a and s ′(0) = −b, then s2(t) = −s1(t) for all t and the claim holds for s1 if
and only if it holds for s2. Without loss of generality, we may assume a ≥ 0. Whenever
v > 0, the equation is v dv

ds = −s − s2. Hence integration yields

1

2
(v2
− V 2) =

1

2
(S2
− s2)+

1

3
(S3
− s3),

where (s, v) = (S, V ) at some point of the motion. Whenever v < 0, the equation is
v dv

ds = −s + s2, so

1

2
(v2
−U 2) =

1

2
(R2
− s2)+

1

3
(s3
− R3),

where (s, v) = (R,U ) at some point of the motion. Thus, if a, b > 0 such that 3a2
+

3b2
+ 2a3

≥ 5, then v2
= a2
+ b2
− s2
+

2
3 (a

3
− s3), so the particle moves to the right

until v = 0 or s2
+

2
3 s3
= a2

+ b2
+

2
3 a3
≥

5
3 .

Letting α denote the smallest solution, we have α ≥ 1 and α2 > α. When s reaches
α, the particle stops instantaneously and reverses its direction. As the particle attempts
to go left, sgn(s ′(t)) flips; since α2

≥ α, the net acceleration then acts to the right and
motion is instantaneously reversed again. Therefore (s, v) = (α, 0) for all future time.

It is not true that s2
+ s ′2 ≤ C/t as t →∞, but it is trivially true that (s − α)2 +

s ′2 ≤ C/t . Note also s ′′(t) 6→ 0 as t →∞, even when α = 1. Similarly, if a > 0 and
b < 0 with 3a2

+ 3b2
− 2a3

≥ 0, then v2
= a2

+ b2
− s2
+

2
3 (s

3
− a3). The particle

moves to the left until s2
−

2
3 s3
= a2

+ b2
−

2
3 a3
≥

5
3 . Letting β denote the largest

negative solution, we have β ≤ −1. Therefore, once s reaches β, we have (s, v) =
(β, 0) for all future time.

Now we show that the claim holds for the opposite inequality, and that C = 10
will suffice. Consider the case in which a ≥ 0, b > 0, and 3a2

+ 2a3
+ 3b2 < 5. The

particle moves to the right until s = α, where α2
+

2
3α

3
= a2
+ b2
+

2
3 a3. Since α < 1,

the particle then accelerates left with motion governed by v2
= α2

− s2
+

2
3 (s

3
− α3),

stopping instantaneously when 0 = 3(α2
− s2) + 2(s3

− α3) = (α − s)(3(α + s) −
2(α2
+ αs + s2)) = (α − s) f (s), say. With f (s) defined this way, we have f (0) =

α(3 − 2α) > 0 and f (α) = 6α(1 − α) > 0, so f (s) has one negative root and one
root larger than α. The particle will stop when s is the smaller of these roots, which
we denote by β, where

β =
1

4

[
3− 2α −

√
(3− 2α)(3+ 6α)

]
= −

1

4

√
3− 2α

[√
3+ 6α −

√
3− 2α

]
.

(1)
Since f (−α) = −2α2 < 0, we have β > −α or |β| < |α|. The particle now accel-
erates to the right, obeying v2

= β2
− s2
+

2
3 (β

3
− s3), and stops when 0 = 3(β2

−

s2) + 2(β3
− s3) = (β − s)(3(β + s) + 2(β2

+ βs + s2)) = (β − s)g(s), say. With
g(s) defined this way, we have g(β) = 6β(1 + β) < 0 and g(0) = β(3 + 2β) < 0.
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Thus g(s) has one positive root and one root smaller than β. The particle will stop
when s is the larger of these roots, which we denote γ . We have

γ =
1

4

[
− (3+ 2β)+

√
(3+ 2β)(3− 6β)

]
=

1

4

√
3+ 2β

[√
3− 6β −

√
3+ 2β

]
.

Since g(−s) = 2β2 > 0, we know that s++ < −β or |s++| < |β|. The sequence of
distances from the origin to the stationary points is decreasing and bounded below by
0 and must converge. If it converges to a positive limit P , then by (1) it would have
to satisfy −4P = 3− 2P −

√
(3− 2P)(3+ 6P), which yields P = 0. Hence s → 0

and also v → 0. Define T0 to be the time that the particle comes to rest following
its first rightward motion. Define T1, T2, T3, . . . to be the times for subsequent rests,
with odd (even) indices following leftward (rightward) motion. Let s = S j at time T j

and let U j = |S j |. Consider the motion of the particle during the cycle from s = S2 j

through s = S2 j+1 to s = S2 j+2. We have the following bounds: v < 0 implies v2
=

S2
2 j − s2

+
2
3 (s

3
− S3

2 j ), which implies
√

s2 + s ′2 ≤ U2 j ; if v > 0 then v2
= S2

2 j+1 −

s2
+

2
3 (S

3
2 j+1 − s3), which implies

√
s2 + s ′2 ≤ U2 j+1.

We now show that
√

s2 + s ′2 ≤ C/t in four steps (a)–(d).
(a) Tn < T0 + nπ . If v < 0, then s ≥ S2 j+1. Hence v2

= S2
2 j −

2
3 S3

2 j − s2
+

2
3 s3
≥

S2
2 j −

2
3 S3

2 j − s2(1 − 2
3 S2 j+1) so the velocity is larger and travel time less than when

travelling under ds
dt =

√
S2

2 j −
2
3 S3

2 j − s2(1− 2
3 S2 j+1). This implies

t=
∫

ds√
S2

2 j −
2
3 S3

2 j − s2(1− 2
3 S2 j+1)

=
1√

1− 2
3 S2 j+1

arcsin

s

√√√√1− 2
3 S2 j+1

S2
2 j −

2
3 S3

2 j

 .
Therefore,

T2 j+1 − T2 j ≤
1√

1− 2
3 S2 j+1

(π
2
−

(
−
π

2

))
=

π√
1+ 2

3U2 j+1

< π.

When v > 0, we have s ≤ S2 j+2, so v2
= S2

2 j+1 +
2
3 S2

2 j+1 − s2
−

2
3 s3
≥ S2

2 j+1 +

2
3 S3

2 j+1 − s2(1+ 2
3 S2 j+1), which yields T2 j+2 − T2 j+1 < π .

(b) U j+1 < U j −
1
3U 2

j . From above, we have 0 < U j ≤ 3/2 and
U j+1 =

1
4

√
3− 2U j (

√
3+ 6U j −

√
3− 2U j ). Now 0 < 9 − 6U j + 2U 2

j , so 0 <
8u2

j −
16
3 U 3

j +
16
9 U 4

j . Together with our range for U j , this implies 0 < 9 + 12U j −

12U 2
j < (3+ 2U j −

4
3U 2

j )
2. Taking the square root now yields

√
(3+ 6U j )(3− 2U j )

< 3+ 2U j −
4
3U 2

j = (3− 2U j )+ (4U j −
4
3U 2

j ). This implies (b).
(c) If n ≥ 0, then 1/Un ≥ 1/U0 +

n
3 . Clearly this holds for n = 0, so assume it

holds up to some n = N . By factoring, we have(
N +

3

U0

)2

− 1 <

(
N +

3

U0

)2

=⇒
N + 3/U0 − 1

(N + 3/U0)2
<

1

N + 3/U0 + 1
.

The expression x − 1
3 x2 is increasing on the range of interest, so

UN+1 < UN −
1

3
U 2

N <
3

N + 3/U0
−

3

(N + 3/U0)2

=
3(N + 3/U0 − 1)

(N + 3/U0)2
<

1

N + 3/U0 + 1
.
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The result holds for n = N + 1 and the induction is complete. Equality holds only
when n = 0.

(d)
√

s2 + s ′2 ≤ C/t . For Tn ≤ t ≤ Tn+1, we have

1
√

s2 + s ′2
≥

1

Un
≥

1

U0
+

n

3
>

1

U0
+

Tn − T0

3π
≥

1

U0
+
(t − π)− T0

3π
>

t

C

for C = 10 and for sufficiently large t . Any choice of C with C > 3π will work.
If a ≥ 0 and b ≤ 0, then we obtain the same asymptotic result, and C = 10 again

suffices.

Also solved by E. A. Herman, O. P. Lossers (Netherlands), R. Stong, D. B. Tyler, E. I. Verriest, TCDmath
Problem Group (Ireland), and the proposer.

More Triangle Inequalities

11664 [2012, 699]. Proposed by Cosmin Pohoata, Princeton University, Princeton, NJ,
and Darij Grinberg, Massachusetts Institute of Technology, Cambridge, MA. Let a, b,
and c be the side lengths of a triangle. Let s denote the semiperimeter, r the inradius,
and R the circumradius of that triangle. Let a′ = s − a, b′ = s − b, and c′ = s − c.
(a) Prove that ar

R ≤
√

b′c′.
(b) Prove that

r(a + b + c)

R

(
1+

R − 2r

4R + r

)
≤ 2

(
b′c′

a
+

c′a′

b
+

a′b′

c

)
.

Solution for (a) by Alper Ercan, Istanbul, Turkey. Recall these formulas, involving the
area 1 of the triangle:

1 = rs =
abc

4R
, 12

= sa′b′c′.

The inequality to be proved becomes 4a′
√

b′c′ ≤ (a′ + b′)(a′ + c′), because bc =
(a′ + b′)(a′ + c′). By the AM–GM inequality, 2

√
a′b′ ≤ a′ + b′ and 2

√
a′c′ ≤ a′ + c′.

The desired inequality follows.

Solution for (b) by Paolo Perfetti, Università degli Studi di Roma “Tor Vergata”, Rome,
Italy. Recall

R =
abc

√
(a + b + c)(a + b − c)(b + c − a)(c + a − b)

,

r =
abc

4Rs
=

√
(a + b + c)(a + b − c)(b + c − a)(c + a − b)

s
.

For convenience, write x = a′, y = b′, z = c′, and D = (x + y)(y + z)(z + x). The
inequality to be proved becomes

8(x + y + z)xyz

D

5D − 4xyz

4D + 4xyz
≤ 2

[
xy

x + y
+

yz

y + z
+

zx

z + x

]
.

Clearing denominators, we see that this is equivalent to

(xy)3 + (yz)3 + (zx)3 + 3(xyz)2 ≥ x3 y2z + y3z2x + z3x2 y,

which, with α = xy, β = yz, and γ = zx , becomes Schur’s third-degree inequality
α3
+ β3

+ γ 3
+ 3αβγ ≥ α2β + β2γ + γ 2α.
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Editorial comment. Some solvers noted that part (a) is related to Problem 11306, this
Monthly 116 (2009) 88–89. Part (b) was also solved using various other geometric
inequalities, such as Kooi’s inequality.

Also solved by R. Boukharfane (Canada), M. Can, R. Chapman (U. K.), P. P. Dályay (Hungary), J. Fabrykowski
& T. Smotzer, O. Geupel (Germany), M. Goldenberg & M. Kaplan, W. Janous (Austria), O. Kouba (Syria),
K.-W. Lau (China), P. Nüesch (Switzerland), V. Pambuccian, N. Stanciu & Z. Zvonaru (Romania), R. Stong,
M. Vowe (Switzerland), J. Zacharias, GCHQ Problem Solving Group (U. K.), and the proposer.

Inequalities for Inner Product Space

11667 [2012, 700]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA,
and Dan Schwarz, Softwin Co., Bucharest, Romania. Let f , g, and h be elements of
an inner product space over R, with 〈 f, g〉 = 0.
(a) Show that

〈 f, f 〉〈g, g〉〈h, h〉2 ≥ 4〈g, h〉2〈h, f 〉2.

(b) Show that

(〈 f, f 〉〈h, h〉)〈h, f 〉2 + (〈g, g〉〈h, h〉)〈g, h〉2 ≥ 4〈g, h〉2〈h, f 〉2.

Solution I by Pál Péter Dályay, Szeged, Hungary. If f , g, or h is zero, then the inequal-
ities clearly hold. Since 〈 f, g〉 = 0, note that

e =
〈h, f 〉

〈 f, f 〉
f +
〈h, g〉

〈g, g〉
g

is the orthogonal projection of h onto the space spanned by { f, g}, and therefore
‖h‖2

= ‖e‖2
+ ‖h − e‖2. Thus, ‖h‖2

≥ ‖e‖2
= 〈h, f 〉2/‖ f ‖2

+ 〈h, g〉2/‖g‖2
≥

2〈h, f 〉〈h, g〉/(‖ f ‖ · ‖g‖). Squaring both sides gives (a). By the AM–GM inequality,

〈 f, f 〉〈h,h〉〈h, f 〉2+〈g,g〉〈h,h〉〈g,h〉2 ≥ 2
√
〈 f, f 〉〈g,g〉(〈h,h〉)2(〈h, f 〉)2(〈g,h〉)2

= 2 ·
[√
〈 f, f 〉〈g,g〉〈h,h〉

]
· 〈h, f 〉〈g,h〉.

By (a), the bracketed term is at least 2|〈g, h〉〈h, f 〉|, so (b) follows.

Solution II by Paolo Perfetti, Dipartimento di Matematica, Università Degli Studi di
Roma, Rome, Italy. If f , g, or h is zero, then the result clearly holds, so we may define
F = f/‖ f ‖, G = g/‖g‖, and H = h/‖h‖. Now (a) reads 〈h, h〉2 ≥ 4〈G, h〉2〈F, h〉2.
By Bessel’s inequality, ‖h‖2

≥ 〈G, h〉2 + 〈F, h〉2 ≥ 2〈G, h〉〈F, h〉, and (a) follows
by squaring this result. Similarly, part (b) reads ‖ f ‖2

〈H, f 〉2 + ‖g‖2
〈H, g〉2 ≥

4〈H, f 〉2〈H, g〉2. Again by AM–GM, ‖ f ‖2
〈H, f 〉2+‖g‖2

〈H, g〉2 ≥ 2‖ f ‖ · ‖g‖ ·
|〈H, f 〉〈H, g〉|, and it remains to show ‖ f ‖ · ‖g‖ ≥ 2|〈H, f 〉〈H, g〉|. When we mul-
tiply both sides by ‖h‖

‖ f ‖·‖g‖ , this becomes ‖h‖ ≥ 2|〈h, F〉〈h,G〉|, which is essentially
(a).

Also solved by K. Andersen (Canada), G. Apostolopoulos (Greece), R. Boukharfane (Canada), P. Bracken, R.
Chapman (U. K.), A. Ercan (Turkey), D. Fleischman, C. Georghiou (Greece), O. Geupel (Germany), K. Hanes,
E. A. Herman, F. Holland, B. Karaivanov, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), M.
Omarjee (France), M. A. Prasad (India), N. C. Singer, R. Stong, R. Tauraso (Italy), T. Trif (Romania), D. B.
Tyler, E. I. Verriest, J. Vinuesa (Spain), R. Wyant & T. Smotzer, GCHQ Problem Solving Group (U. K.), and
the proposers.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before February 28, 2015. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11796. Proposed by Gleb Glebov, Simon Fraser University, Burnaby, Canada. Find∫ ∞

0

sin((2n + 1)x)

sin x
e−αx xm−1 dx

in terms of α, m, and n, when α > 0, m ≥ 1, and n is a nonnegative integer.

11797. Proposed by Zhang Yun, Xi’an, Shaanxi Province, China. Let A1, A2, A3, and
A4 be the vertices of a tetrahedron. Let hk be the length of the altitude from Ak to the
plane of the opposite face, and let r be the radius of the inscribed sphere. Prove that

4∑
k=1

hk − r

hk + r
≥ 12

5
.

11798. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. For
positive integers n, let fn be the polynomial given by

fn(x) =
n∑

r=0

(
n

r

)
x �r/2�.

(a) Prove that if n + 1 is prime, then fn is irreducible over Q.
(b) Prove that for all n (whether n + 1 is prime or not),

fn(1 + x) =
�n/2�∑
k=0

(
n − k

k

)
2n−2k xk .

http://dx.doi.org/10.4169/amer.math.monthly.121.08.738
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11799. Proposed by Vicenţiu Rădulescu, King Abdulaziz University, Jeddah, Saudi
Arabia. Let a, b, and c be positive.
(a) Prove that there is a unique continuously differentiable function f from [0, ∞)

into R such that f (0) = 0 and, for all x ≥ 0,

f ′(x)
(
1 + a| f (x)|b)c = 1.

(b) Find, in terms of a, b, and c, the largest θ such that f (x) = O(x θ ) as x → ∞.

11800. Proposed by Oleksiy Klurman, University of Montreal, Montreal, Canada. Let
f be a continuous function from [0, 1] into R+. Prove that∫ 1

0
f (x) dx − exp

[∫ 1

0
log f (x) dx

]
≤ max

0≤x,y≤1

(√
f (x) −

√
f (y)

)2
.

11801. Proposed by David Carter, Nahant, MA. Let f be a polynomial in one variable
with rational coefficients that has no nonnegative real root. Show that there is a nonzero
polynomial g with rational coefficients such that the coefficients of f g are positive.

11802. Proposed by István Mező, Nanjing University of Information Science and Tech-
nology, Nanjing, China. Let Hn,2 = ∑n

k=1 k−2, and let Dn = n!
∑n

k=0(−1)k/k!. (This
is the derangement number of n, that is, the number of permutations of {1, . . . , n} that
fix no element.) Prove that

∞∑
n=1

Hn,2
(−1)n

n!
= π2

6e
−

∞∑
n=0

Dn

n!(n + 1)2
.

SOLUTIONS

An Uncountable Linearly Independent Set of Binary Sequences

11658 [2012, 608]. Proposed by Greg Oman, University of Colorado at Colorado
Springs, Colorado Springs, CO. Let V be the vector space over R of all (countably
infinite) sequences (x1, x2, . . . ) of real numbers, equipped with the usual addition and
scalar multiplication. For v ∈ V , say that v is binary if vk ∈ {0, 1} for k ≥ 1, and let
B be the set of all binary members of V . Prove that there exists a subset I of B with
cardinality 2ℵ0 that is linearly independent over R. (An infinite subset of a vector space
is linearly independent if all of its finite subsets are linearly independent.)

Solution by Bruce S. Burdick, Roger Williams University, Bristol, RI. Given a bijection
φ : N → Q, for each r ∈ R, define v(r) ∈ B by

v(r)k =
{

1 if φ(k) ≤ r,
0 if φ(k) > r.

Let I = {v(r) : r ∈ R}. We claim first that v is injective. Given r, r ′ ∈ R with r <

r ′, let q be a rational number between r and r ′. Let k = φ−1(q). Since v(r)k = 0 and
v(r ′)k = 1, we have v(r) �= v(r ′). Thus I , R, and B have the same cardinality, 2ℵ0 .

We show also that I is a linearly independent subset of B. Given
∑n

i=1 aiv(ri ) = 
0
for distinct real numbers r1, . . . , rn , we may assign indices so that r1 < · · · < rn . Let
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q be a rational number between rn−1 and rn . Let k = φ−1(q). We have v(rn)k = 1,
but v(ri)k = 0 for i < n. Thus an must be 0. Dropping the nth term from the sum and
repeating the argument eventually shows that all coefficients equal 0. Thus I is linearly
independent.

Also solved by O. Antolin-Camarena, P. Budney, C. Burnette, N. Caro (Brazil), R. Chapman (U. K.),
S. M. Gagola Jr., K. P. Hart (Netherlands), E. A. Herman, S. J. Herschkorn, R. Howard, Y. J. Ionin, O. P. Lossers
(Netherlands), J. H. Nieto (Venezuela), E. Ordman, V. Pambuccian, S. K. Patel & A. K. Desai (India), P. Per-
fetti (Italy), M. Rajeswari (India), C. P. Rupert, S. Scheinberg, R. Stong, M. Wildon (U. K.), GCHQ Problem
Solving Group (U. K.), TCDmath Problem Group (Ireland), and the proposer.

The Harmonious Quartets of the Faces of a Cube

11662 [2012, 609]. Proposed by H. Stephen Morse, Fairfax, Va. Let ABCD be the
vertices of a square, in that order. Insert P and Q on AB (in the order AQPB) so
that each of P and Q divides AB ‘in extreme and mean ratio’ (that is, |AB|/|BQ| =
|BQ|/|QA| and |AB|/|AP| = |AP|/|PB|.) The four intersection points of AP, BR, CQ,
and DP are called the harmonious quartet of the square on its base pair (AB,CD).
They form a rhombus whose long diagonal has length (

√
5 + 1)/2 times the length of

its short diagonal.
Given a cube, create the harmonious quartet for each of its six faces, using each

edge as part of a base pair exactly once, according to this scheme: label the vertices on
one face of the cube ABCD and the corresponding vertices of the bottom face A′B ′C ′D′.
Pair AB with CD, AA′ with BB′, and BC with B ′C ′. The rest of the pairings are then
forced: A′B ′ with C ′D′, AD with A′D′, and CC ′ with DD′. This generates 24 points.
(a) Show that these 24 points are a subset of the 32 vertices of a rhombic triaconta-
hedron (a convex polyhedron bounded by 30 congruent rhombic faces, meeting three
each across their obtuse angles at 20 vertices, and five each across their acute angles
at 12 vertices), and find a construction for the remaining eight vertices.
(b) Show, moreover, that the 12 end points of the longer diagonals of the six con-
structed rhombi are the vertices of an icosahedron I , and that these diagonals are edges
of the icosahedron.
(c) Show that the 12 end points of the shorter diagonals of the constructed rhombi,
together with the eight additional vertices of the triacontahedron, are the vertices of a
dodecahedron. Show also that these shorter diagonals are edges of that dodecahedron.

Solution by Robin Chapman, University of Exeter, Exeter, England, U.K. There is an
error in the statement of the question: the roles of P and Q in the definition of extreme
and mean ratio need to be reversed, yielding |AB|/|BP| = |BP|/|PA| and |AB|/|AQ| =
|AQ|/|QB|.

Start with just a line segment AB on the number line, A and B being the points
−1 and 1, respectively. If P is at point x , then 2

1−x = 1−x
1+x . This gives a quadratic

equation x2 − 4x − 1 = 0 with solutions x = 2 ± √
5. Since −1 < x < 1, we have

x = 2 − √
5. By symmetry Q = −2 + √

5. (Hence APQB occur in this order; the
original statement would have given the order AQPB.)

Consider the square ABCD in the Cartesian plane, with A, B, C, D at (−1, 1),
(1, 1), (1, −1), and (−1, −1), respectively. Now P , Q, R, and S are at (2 − √

5, 1),
(
√

5 − 2, 1), (
√

5 − 2, −1), and (2 − √
5, −1), respectively. Letting τ = (1 + √

5)/2,
we compute that lines AR and DQ meet at the point (−τ−2, 0), lines BS and CP meet
at (τ−2, 0), lines AR and BS meet at (0, −τ−1), and lines CP and DQ meet at (0, τ−1).
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Consider the cube ABCDA′ B ′C ′ D′ in R3 with A, B, C , D, A′, B ′, C ′, and
D′ at points (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), (−1, 1, −1), (1, 1, −1),
(1, −1, −1), and (−1, −1, −1), respectively. In this coordinate system, the set of base
pairs is invariant under the rotation (x, y, z) �→ (y, z, x), so the 24 points of the six
harmonious quartets are (±τ−2, 0, ±1), (0, ±τ−1, ±1) and their images under cyclic
permutations of the coordinates. Let L be the 12-element set of cyclic permutations
of (0, ±τ−1, ±1) (the vertices of the longer diagonals of the six harmonious quartets)
and let S be the 12-element set of cyclic permutations of (±τ−2, 0, ±1) (the vertices
of the shorter diagonals of the six harmonious quartets).

Now let E be the 8-element set with elements (±τ−1, ±τ−1, ±τ−1). We will show
that L ∪ S ∪ E , L, and S ∪ E are the vertex sets of the required rhombic triacontahe-
dron, regular icosahedron, and regular dodecahedron, respectively. The points of E can
be geometrically constructed in various ways. One way is to divide the line segments
from the centre of the original cube to its vertices in golden section.

We describe the faces of the rhombic triacontahedron in some detail. The six harmo-
nious quartets account for six of the faces. Consider the four points W = (0, τ−1, 1),
X = (τ−2, 0, 1), Y = (1, 0, τ−1) and Z = (τ−1, τ−1, τ−1) of L ∪ S ∪ E . The mid-
points of WY and of XZ are both (1/2, τ−1/2, τ/2). Therefore W , X , Y , and Z are
coplanar and the vertices of a rhombus. Points W and Y lie in L and are 2τ−1 apart;
points X and Z lie in S ∪ E and are at distance 2τ−2 apart. Thus the rhombus WXYZ
is congruent to each harmonious quartet. Taking images of WXYZ under combina-
tions of cyclic permutations of coordinates and under reflections perpendicular to the
coordinate axes give 24 rhombi. These account for the remaining faces of the rhom-
bic triacontahedron. To see how these fit together, we look at the faces meeting each
vertex. By symmetry it suffices to consider one vertex from each of the sets L, S ,
and E .

The vertex (0, τ−1, 1) ∈ L is adjacent to the vertices (τ−2, 0, 1), (τ−1, τ−1, τ−1),
(0, 1, τ−2), (−τ−1, τ−1, τ−1), and (−τ−2, 0, 1) in cyclic order. The five vertices
(1, 0, τ−1), (τ−1, 1, 0), (−τ−1, 1, 0), (−1, 0, τ−1), and (0, −τ−1, 1) in L complete
the five rhombi surrounding (0, τ−1, 1).

The vertex (τ−2, 0, 1) ∈ S is adjacent to the vertices (0, τ−1, 1), (1, 0, τ−1), and
(0, −τ−1, 1). The three vertices (τ−1, τ−1, τ−1), (τ−1, −τ−1, τ−1), and (−τ−2, 0, 1)

in S ∪ E complete the three rhombi surrounding (τ−2, 0, 1).
The vertex (τ−1, τ−1, τ−1) ∈ E is adjacent to the vertices (1, 0, τ−1), (0, τ−1, 1),

and (τ−1, 1, 0). The three vertices (τ−2, 0, 1), (0, 1, τ−2), and (1, τ−2, 0) in S com-
plete the three rhombi surrounding (τ−1, τ−1, τ−1).

It is a well-known property of the rhombic triacontahedron that the long diagonals
of the faces are the edges of a regular icosahedron. The endpoints of these diagonals
form the set L and these diagonals include the long diagonals of the six harmonious
quartets of the vertices of the cube. Likewise the short diagonals of the rhombic tria-
contahedron are the edges of a regular dodecahedron. The endpoints of these diagonals
include the short diagonals of the six harmonious quartets of the vertices of the cube.

Also solved by O. Geupel (Germany), O. P. Lossers (Netherlands), J. H. Nieto (Venezuela), R. A. Simon
(Chile), R. Stong, GCHQ Problem Solving Group (U. K.), and the proposer.

Are Random Breaks the Altitudes of a Triangle?

11663 [2012, 699]. Proposed by Eugen J. Ionascu, Columbus State University, Colum-
bus, GA. The unit interval is broken at two randomly chosen points along its length.
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Show that the probability that the lengths of the resulting three intervals are the heights
of a triangle is equal to

12
√

5 log((3 + √
5)/2)

25
− 4

5
.

Solution by David Farnsworth and James Marento, Rochester Institute of Technology,
Rochester, NY. Consider �ABC with side lengths a, b, c, vertex angles α, β, γ , and
heights x, y, z as in Figure 1. We have

z

b
= sin α = y

c
(1)

z

a
= sin β = x

c
(2)

y

a
= sin γ = x

b
. (3)

If �ABC is not acute, then these relations still hold, even though two of the altitudes
lie outside the triangle.

C

A Bc

a

a b

g

b

x z
y

Figure 1. Figure 2.

From (2) and (3) we deduce

c < a + b ⇐⇒ c

a
< 1 + b

a
⇐⇒ x

z
< 1 + x

y
⇐⇒ 1

z
<

1

x
+ 1

y
. (1′)

Similarly

b < a + c ⇐⇒ 1

y
<

1

x
+ 1

z
(2′)

a < b + c ⇐⇒ 1

x
<

1

y
+ 1

z
. (3′)

Therefore, by the triangle inequality, the three positive numbers x, y, z are the heights
of a triangle if and only if the statements on the right of (1′), (2′), and (3′) all hold.

Now let x, y, z be the (random) lengths of the three intervals that are obtained by
dividing the interval (0, 1) with two points that are independently chosen according to
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a uniform distribution on this interval. Since z = 1 − (x + y), the inequalities on the
right of (1′), (2′), and (3′) boil down to

x2 + 3xy + y2 − x − y < 0 (1′′)

−x2 + y2 − xy + x − y < 0 (2′′)

x2 − y2 − xy − x + y < 0. (3′′)

If “<” is replaced by “=” in these three inequalities, they become the equations of
the three hyperbolas shown in Figure 2. Now (x, y) is uniformly distributed on the
triangular region with vertices at (0, 0), (1, 0), and (0, 1). The probability that x, y, z
are the heights of a triangle is therefore twice the shaded area in Figure 2. If Ek denotes
the event that inequality (k ′′) holds for k ∈ {1, 2, 3}, then the probability of the shaded
region is 1 − P(E1 ∪ E2 ∪ E3).

Observe that if p, q, and r are any positive numbers, then at most one of the three
inequalities r < p + q, q < p + r , p < q + r is false. (If p, q, and r are the sides of
a triangle, then of course none of the three inequalities is false.) So the three events
E1, E2, and E3 are pairwise disjoint. By symmetry, these three events have the same
probability. The desired probability P is therefore given by

P = 1 − 3P(E1) = 1 − 6
∫ 1

0
1 − x − 1 − 3x +

√
(3x − 1)2 − 4(x2 − x)

2
dx

= −7

2
+ 3

√
5
∫ 1

0

√(
x − 1

5

)2

+ 4

25
dx = −7

2
+ 12

√
5

25

∫ 2

−1/2

√
u2 + 1 du

= −7

2
+ 12

√
5

25

[
u
√

u2 + 1 + log
(
u + √

u2 + 1
)

2

]u=2

u=−1/2

= 12
√

5

25
log

(
3 + √

5

2

)
− 4

5
= 24

√
5

25
log φ − 4

5
,

where φ is the golden ratio.

Also solved by G. Apostolopoulos (Greece), E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), R. Boukharfane
(Canada), M. A. Carlton, R. Chapman (U. K.), C. Curtis, P. P. Dályay (Hungary), P. De (India), A. Ercan
(Turkey), E. A. Herman, S. J. Herschkorn, B. Karaivanov, O. Kouba (Syria), J. Li, J. H. Lindsey II, O. P. Lossers
(Netherlands), M. D. Meyerson, M. Omarjee (France), O. Pavlyk, C. R. Pranesachar (India), M. A. Prasad
(India), J. G. Simmonds, T. Smotzer, R. Stong, R. Tauraso (Italy), T. Trif (Romania), T. Viteam (Chile), M.
Vowe (Switzerland), T. Wiandt, J. Zacharias, L. Zhang, Armstrong Problem Solvers, GCHQ Problem Solving
Group (U. K.), and the proposer.

A Parity Problem for Derangements

11668 [2012, 700]. Proposed by Dimitris Stathopoulos, Marousi, Greece. For positive
integer n and i ∈ {0, 1}, let Di (n) be the number of derangements on n elements whose
number of cycles has the same parity as i . Prove that D1(n) − D0(n) = n − 1.

Solution I by Ronald E. Prather, Oakland, CA. We use induction on n. The traditional
recurrence D(n) = (n − 1)[D(n − 1) + D(n − 2)] is proved by considering whether
element n lies in a cycle of length more than 2 (following some element in a de-
rangement of [n − 1]) or in a cycle with just one other element (the rest forming a
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derangement of n − 2 elements). In the first case the smaller permutation has the same
number of cycles; in the second it has one less cycle. Thus

D1(n) = (n − 1)[D1(n − 1) + D0(n − 2)]

D0(n) = (n − 1)[D0(n − 1) + D1(n − 2)].

Since D0(0) = 1 and D1(0) = D1(1) = D0(1) = 0 validate the claim for n ≤ 1, for
n ≥ 2 we use the induction hypothesis to compute

D1(n) − D0(n) = (n − 1)[(D1(n − 1) − D0(n − 1)) − (D1(n − 2) − D0(n − 2))]

= (n − 1)[(n − 2) − (n − 3)] = n − 1.

Solution II by Richard Ehrenborg, University of Kentucky, Lexington, KY. Let ck be
the number of permutations of [k] that are cycles, so ck = (k − 1)!. The exponen-
tial generating function for nontrivial cycles, indexed by length, is given by C(x) =∑

k≥2 ck xk/k! = − ln(1 − x) − x . By the Exponential Formula, the EGF for derange-
ments is eC(x), obtained as

∑
m≥0(C(x))m/m!; the term for m enumerates derange-

ments with m cycles.
To incorporate parity of the number of cycles, let E(x) = ∑

m≥0(−C(x))m/m!.
The coefficient of xn in E(x) is the number of derangements having an even number
of cycles minus the number having an odd number of cycles. Hence the desired value
is the coefficient of xn in −E(x). We compute that −E(x) is equal to

−e−C(x) = −(1 − x)ex = xex − ex =
∑
n≥0

xn+1

n!
−
∑
n≥0

xn

n!
=
∑
n≥0

(n − 1)
xn

n!
.

Editorial comment. Robin Chapman observed that this problem is a trivial variation
of Problem E907 (this Monthly 57 (1950), 184). That problem requested the numbers
of even and odd derangements of n; the parity of a permutation of [n] with k cycles
is the parity of n − k. In addition to the approaches printed above, proofs are known
using the determinant of the complement of the identity matrix and using signed invo-
lutions (see R. Chapman, An involution on derangements, Discrete Math. 231 (2001),
121–122).

Also solved by M. Andreoli, D. Beckwith, R. Boukharfane (Canada), R. Chapman (U.K.), C. Curtis,
P. P. Dályay (Hungary), R. Ehrenborg, S. M. Gagola Jr., F. Galvin, O. Geupel (Germany), Y. J. Ionin,
B. Karaivanov, J. H. Lindsey II, J. H. Nieto (Venezuela), C. R. Pranesachar (India), M. A. Prasad (India),
R. E. Prather, R. Pratt, J. H. Steelman, R. Stong, R. Tauraso (Italy), T. Viteam (Chile), M. Wildon (U.K.),
GCHQ Problem Solving Group (U.K.), NSA Problems Group, and the proposer.

A Surprise Visit from Fibonacci

11669 [2012, ]. Proposed by Herman Roelants, Catholic University of Leuven, Lou-
vain, Belgium. Prove that for n ≥ 4 there exist integers x1, . . . , xn such that

x2
n−1 + 1

x2
n

n−2∏
k=1

x2
k + 1

x2
k

= 1

satisfying the following conditions: x1 = 1, xk−1 < xk < 3xk−1 for 2 ≤ k ≤ n − 2,
xn−2 < xn−1 < 2n−2, and xn−1 < xn < 2xn−1.

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO. Let {Fn}
be the Fibonacci numbers; that is, F0 = 0, F1 = 1, and Fk+2 = Fk + Fk+1 for k ≥ 0.
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Let xn = F2n−3, let xn−1 = F2n−4, and let xk = F2k−1 for 1 ≤ k ≤ n − 2. We use the
identities

F2i−1 F2i+3 = F2
2i+1 + 1 and F2i−1 F2i+1 = F2

2i + 1,

which are instances of Catalan’s identity F2
k − Fk+r Fn−r = (−1)k−r F2

r , first with k =
2i + 1 and r = 2, and then with k = 2i and r = 1. We have

x2
n−1 + 1

x2
n

n−2∏
k=1

x2
k + 1

x2
k

= F2
2n−4 + 1

F2
2n−3

· F2
1 + 1

F2
1

· F2
3 + 1

F2
3

n−2∏
k=3

F2
2k−1 + 1

F2
2k−1

= 5

2
· F2n−5 F2n−3

F2
2n−3

n−2∏
k=3

F2k−3 F2k+1

F2
2k−1

= 5

2
· F2n−5 F2n−3

F2
2n−3

∏n−3
k=2 F2k−1∏n−2
k=3 F2k−1

∏n−1
k=4 F2k−1∏n−2
k=3 F2k−1

= 5

2
· F2n−5 F2n−3

F2
2n−3

· F3

F2n−5
· F2n−3

F5
= 1.

For 2 ≤ k ≤ n − 2, the condition xk−1 < xk < 3xk−1 is equivalent to F2k−3 <

F2k−1 = F2k−3 + F2k−2 < 3F2k−3, or 0 < F2k−2 < 2F2k−3. The condition xn−2 <

xn−1 < 2xn−2 becomes F2n−5 < F2n−4 < 2F2n−5, which is true for n ≥ 4. Finally,
xn−1 < xn < 2xn−1 becomes F2n−4 < F2n−3 < 2F2n−4, which holds similarly.

Also solved by D. Beckwith, R. Chapman (U. K.), P. P. Dályay (Hungary), D. Fleischman, S. M. Gagola Jr.,
O. Geupel (Germany), Y. J. Ionin, S. Jo (Korea), B. Karaivanov, O. Kouba (Syria), O. P. Lossers (Netherlands),
C. R. Pranesachar (India), M. A. Prasad (India), E. Schmeichel, N. C. Singer, T. Smotzer, R. Stong, D. B. Tyler,
J. Van Hamme (Belgium), M. Vowe (Switzerland), GCHQ Problem Solving Group (U. K.), and the proposer.

An Inequality

11670 [2012, 800]. Proposed by Miranda Bakke, Benson Wu, and Bogdan Suceavă,
California State University, Fullerton, CA. Prove that if n ≥ 3 and a1, . . . , an > 0,
then

(n − 1)

4

n∑
k=1

ak ≥
∑

1≤ j<k≤n

a j ak

a j + ak
,

with equality if and only if all a j are equal.

Solution by Robert A. Agnew, Buffalo Grove, IL. By the Arithmetic–Harmonic Mean
Inequality, we have

a j +ak

2 ≥ 2a j ak

a j +ak
with equality if and only if a j = ak . Thus

1

4

∑
1≤ j<k≤n

(
a j + ak

) ≥
∑

1≤ j<k≤n

a j ak

a j + ak

with equality if and only if all a j are equal. Since each a j occurs n − 1 times in the
first sum, the original inequality holds for n ≥ 2.

Editorial comment. Charles Delorme (France) notes generalizations such as:

(n − 1)(n − 2)

54

n∑
k=1

ak ≥
∑

1≤i< j<k≤n

ai a j ak

(ai + a j + ak)2
.

Also solved by 75 others, including the proposers.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal. Submitted solutions
should arrive before April 30, 2015. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11803. Proposed by Sam Speed, Germantown, PA. Let a1(k, n) = (9k(24n + 5) −
5)/8, a2(k, n) = (9k(24n + 13) − 5)/8, a3(k, n) = (3 · 9k(24n + 7) − 5)/8, and
a4(k, n) = (3 · 9k(24n + 23) − 5)/8. Show that for each nonnegative integer m
there is a unique integer triple ( j, k, n) with j ∈ {1, 2, 3, 4} and k, n ≥ 0 such that
m = a j (k, n).

11804. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Prove that 10|x3 + y3 + z3 − 1| ≤ 9|x5 + y5 + z5 − 1| for real numbers x , y, and z
with x + y + z = 1. When does equality hold?

11805. Proposed by Gleb Glebov, Simon Fraser University, Burnaby, Canada.
(a) Show that

∞∑
k=0

(−1)k

(3k + 1)3
+

∞∑
k=0

(−1)k

(3k + 2)3
= 5π3

√
3

243

and

∞∑
k=0

(−1)k

(3k + 1)3
−

∞∑
k=0

(−1)k

(3k + 2)3
= 13

18
ζ(3).

(b) Prove that

ζ(3) = 9

13

∫ 1

0

(log x)2

x3 + 1
dx − 18

13

∞∑
k=0

(−1)k

(3k + 2)3
.

Here, ζ denotes the Riemann zeta function.

http://dx.doi.org/10.4169/amer.math.monthly.121.10.946
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11806. Proposed by István Mező, Nanjing University of Information Science and Tech-
nology, Nanjing, China. Prove that∫ 2π

0
log �

( x

2π

)
ecos x sin(x + sin x) dx = (e − 1)(log(2π) + γ ) +

∞∑
n=2

log n

n!
.

Here � denotes the gamma function and γ denotes the Euler–Mascheroni constant.

11807. Proposed by Robin Oakapple, Albany, OR. Given a quadrilateral ABCD in-
scribed in a circle K , and a point Z inside K , the rays AZ, BZ, CZ, and DZ meet K
again at points E , F , G, and H , respectively, to yield another quadrilateral also in-
scribed in K . Develop a construction that takes as input A, B, C , and D and returns
a point Z such that this second quadrilateral has (at least) three of its sides of equal
length.

11808. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania. Let � be the gamma function. Compute

lim
n→∞

n2

∫ (n!)−1/n

((n+1)!)−1/(n+1)

�(nx) dx .

11809. Proposed by Omran Kouba, Higher Institute for Applied Science and Technol-
ogy, Damascus, Syria. Let 〈an〉 be a sequence of real numbers.
(a) Suppose that 〈an〉 consists of nonnegative numbers and is nonincreasing, and∑∞

n=1 an/
√

n converges. Prove that
∑∞

n=1(−1)�√n�an converges.
(b) Find a nonincreasing sequence 〈an〉 of positive numbers such that
limn→∞

√
nan = 0 and

∑∞
n=1(−1)�√n�an diverges.

11795. Proposed by Mircea Merca, University of Craiova, Craiova, Romania. Let p be
the partition counting function on the set Z+ of positive integers, and let g be the func-
tion on N given by g(n) = 1

2
n/2� , 
(3n + 1)/2�. Let A(n) be the set of nonnegative
integer triples (i, j, k) such that g(i) + j + k = n. Prove for n ≥ 1 that

p(n) = 1

n

∑
(i, j,k)∈A(n)

(−1)
i/2�−1g(i)p( j)p(k).

SOLUTIONS

Large Sum of Sizes Implies Large Size of Sum

11666 [2012, 699–700]. Proposed by Dmitry G. Fon-Der-Flaass (1962–2010), Insti-
tute of Mathematics, Novosibirsk, Russia, and Max A. Alekseyev, University of South
Carolina, Columbia, SC. Let m be a positive integer, and let A and B be nonempty
subsets of {0, 1}m . Let n be the greatest integer such that |A| + |B| > 2n . Prove that
|A + B| ≥ 2n . (Here, |X | denotes the number of elements in X , and A + B denotes
{a + b : a ∈ A, b ∈ B}, where addition of vectors is componentwise modulo 2.)

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove by induction on n that |A| + |B| > 2n implies |A + B| ≥ 2n (for any n). The
case n = 0 is trivial, since the sum of sets that are not both empty is nonempty.
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Consider n ≥ 1. If |B| = 1, then |A + B| = |A| > 2n − 1, which suffices. By sym-
metry, we may therefore assume |A|, |B| ≥ 2. Choose w, x ∈ A and y, z ∈ B. Given
nonzero elements u and v in {0, 1}m as an additive group, there is a homomorphism
φ : {0, 1}m → {0, 1} such that φ(u) = φ(v) = 1. With u = x − w and v = z − y, we
obtain φ(x) �= φ(w) and φ(y) �= φ(z). For i ∈ {0, 1}, let Ai = {v ∈ A : φ(v) = i},
and similarly for Bi . By construction, the four sets are nonempty, and A + B is the
disjoint union of (A0 + B0) ∪ (A1 + B1) (mapping to 0) and (A0 + B1) ∪ (A1 + B0)

(mapping to 1).
Since |A0| + |A1| + |B0| + |B1| > 2n , at least one of |A0| + |B0| and |A1| + |B1|

exceeds 2n−1, and similarly at least one of |A0| + |B1| and |A1| + |B0| exceeds 2n−1.
By the induction hypothesis, both sets in our decomposition of A + B have size at
least 2n−1, so |A + B| ≥ 2n .

Editorial comment. Most solvers used induction. Traian Viteam and Robin Chap-
man used the combinatorial nullstellensatz. O.P. Lossers and Pál Peter Dályáy used
Kneser’s theorem.

Also solved by G. Apostolopoulos (Greece), R. Chapman (U. K.), P. P. Dályáy (Hungary), A. Habil (Syria),
Y. J. Ionin, O. P. Lossers (Netherlands), R. Tauraso (Italy), T. Viteam (Chile), and the proposers.

The Gambler’s Ruin in Disguise

11672 [2012, 800]. Proposed by José Luis Palacios, Universidad Simón Bolı́var,
Caracas, Venezuela. A random walk starts at the origin and moves up-right or down-
right with equal probability. What is the expected value of the first time that the
walk is k steps below its then-current all-time high? (Thus, for instance, with the
walk UDDUUUUDDUDD · · · , the walk is three steps below its maximum-so-far on
step 12.)

Solution I by Padraig Condon, Trinity College, Dublin, Ireland. The answer, which we
denote by pk , is k(k + 1). Since p1 is the expected time of the first D, we have p1 = 2.
Let qk be the expected number of steps to reach k steps below the all-time high given
a starting point k − 1 steps below the all-time high. Note that q1 = p1 = 2. To reach k
steps below the all-time high, we must first reach k − 1 steps below the all-time high.
Hence, pk = pk−1 + qk for k ≥ 2.

From a point k − 1 steps below the all-time high, after the next step with equal
probability we are k or k − 2 steps below the all-time high. In the first case, we have
arrived, while in the second case we must first return to k − 1 steps below the all-
time high. Thus, the expected number of steps in the second case is qk−1 + qk . Hence,
qk = 1 + 1

2 (qk−1 + qk), which simplifies to qk = 2 + qk−1. With q1 = 2, we obtain
qk = 2k. Thus, pk = pk−1 + 2k, and p1 = 2 yields pk = ∑k

i=1 2i = k(k + 1).

Solution II by Richard Stong, San Diego, CA. We prove that the answer is k(k + 1)

by expressing the problem in terms of the stopping time of the classical Gambler’s
Ruin problem in which one gambler starts with $k dollars and the other with $(k + 1),
and each step transfers $1 from one gambler to the other, each direction having equal
probability. Interpret upward and downward moves as wins and losses by the gambler
currently having less money, respectively. (The total amount of money is odd so there
can never be a tie.) At every step, each outcome has probability 1/2.

At each time, the gambler with less money has k − m dollars exactly when we are
m steps below the current all-time high. This is true at the start and is easily checked
to be preserved by each move. The only interesting case is when we move to a new
all-time high. Before the move, the money is split k + 1 to k. The gambler with less
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money wins, the path reaches a new high and the money is again split k + 1 to k, but
the two gamblers interchange roles.

In the classical problem starting with $a and $b, it is well known that the expected
number of steps until one gambler is ruined is ab, in this case k(k + 1). We have
shown that this also is the expected number of steps until the path is first k steps below
its all-time high.

Also solved by M. Andreoli, W. Barta, R. Chapman (U. K.), C. Delorme (France), S. J. Herschkorn, G. Lau
(U. K.), O. P. Lossers (Netherlands), H. M. Mahmoud, R. Martin (Germany), I. Pinelis, M. A. Prasad (India),
R. Pratt, R. Tauraso (Italy), M. Wildon (U. K.), and the proposer.

Polynomials with Galois Groups of 2-power Order

11673 [2012, 800]. Proposed by Kent Holing, Statoil, Trondheim, Norway. Let Q and
g be monic polynomials in Z[x], with Q an irreducible quartic, and let f = Q ◦ g.
Suppose that f is irreducible over Q and that the order of the Galois group of F is a
power of 2. Which groups are possible as the Galois group of Q? If, moreover, Q has
negative discriminant, determine the Galois group of A.

Solution by Robin Chapman, University of Exeter, Exeter, England, UK. The possible
Galois groups of Q are the eight-element dihedral group D4, the cyclic group Z4, and
the Klein four-group V4. If the discriminant of Q is negative, then the group is D4.

Let K and L be the splitting fields of Q and f , respectively, over Q. The zeroes of
f are the solutions β of g(β) = α such that α is a root of Q. Hence, K ⊆ L . Thus, if
the Galois group of f has order a power of 2, then the index [L : Q] is a power of 2.
Since [K : Q] is a factor of [L : Q], it follows that [K : Q] is also a power of 2. Since
Q is an irreducible quartic, its Galois group is a transitive subgroup of S4, and the only
such subgroups whose order is a power of 2 are Z4, V4, and D4.

Each of these groups can occur as the Galois groups of an irreducible quartic Q,
such as when Q is x4 − 4x2 + 2, x4 + 1, or x4 − 2, respectively. In each case, one can
take g(x) = x or, less trivially, g(x) = x2k

for any positive integer k.
If Q has negative discriminant, then it has two real and two nonreal zeroes. Com-

plex conjugation thus induces an element with order 2 in the Galois group that
fixes one of the zeroes of Q, that is, a transposition. Of the three possibilities pre-
viously mentioned, only D4 has such an element. This possibility does occur when
Q is x4 − 2.

Also solved by P. P. Dályay (Hungary), J. H. Lindsey II, R. Stong, M. Wildon (U. K.), and the proposer.

Norm of a Linear Functional

11674 [2012, 800]. Proposed by Pál Péter Dályay, Szeged, Hungary. Let a and b be
real numbers with a < 0 < b. Let S be the set of continuous functions f from [0, 1]
to [a, b] with

∫ 1
0 f (x) dx = 0. Let g be a strictly increasing function from [0, 1] to R.

Define φ from S to R by φ( f ) = ∫ 1
0 f (x)g(x) dx .

(a) Find sup f ∈S φ( f ) in terms of a, b, and g.
(b) Prove that this supremum is not attained.

Solution by Earl R. Barnes, Morgan State University, Baltimore, MD. Let ξ = b
b−a .

Since a < 0 < b, we have 0 < ξ < 1. Note that
∫ ξ

0 a dx + ∫ 1
ξ

b dx = 0. Let λ = g(ξ).

For any f satisfying the conditions of the problem, we have
∫ 1

0 f (x) dx = 0 and
a ≤ f (x) ≤ b, so
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φ( f ) =
∫ 1

0
(g(x)−λ) f (x) dx =

∫ ξ

0
(g(x)−λ) f (x) dx +

∫ 1

ξ

(g(x)−λ) f (x) dx

≤
∫ ξ

0
(g(x)−λ)a dx +

∫ 1

ξ

(g(x)−λ)b dx = a
∫ ξ

0
g(x) dx + b

∫ 1

ξ

g(x) dx .

Equality can hold if and only if f (x) = a a.e. on [0, ξ ] and f (x) = b a.e. on [ξ, 1].
This can happen only if f is discontinuous at ξ , so the inequality is strict for all f ∈
S. On the other hand, this upper bound can be approached as closely as we like by
choosing ε small and positive and taking f (x) = a for 0 ≤ x ≤ ξ − ε, f (x) = b for
[ξ + ε, 1], and f linear on the interval [ξ − ε, ξ + ε].

Also solved by. K. F. Andersen (Canada), R. Bagby, P. Bracken, R. Chapman (U. K.), S. J. Herschkorn, B.
Karaivanov, O. Kouba (Syria), J. C. Linders (Netherlands), J. H. Lindsey II, O. P. Lossers (Netherlands), I.
Pinelis, Á. Plaza (Spain), A. Stenger, R. Stong, E. I. Verriest, S. V. Witt, GCHQ Problem Solving Group
(U. K.), TCDmath Problem Group (Ireland), and the proposer.

An Inequality for the Partition Function

11675 [2012, 801]. Proposed by Mircea Merca, Constantin Istrati Technical College,
Campina, Romania. Let p be the Euler partition function, i.e., p(n) is the number of
nondecreasing lists of positive integers that sum to n. Let p(0) = 1, and let p(n) = 0
for n < 0. Prove that for n ≥ 0 with n �= 3,

p(n) − 4p(n − 3) + 4p(n − 5) − p(n − 8) > 0.

Solution by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. Let P(x)

be the generating function for integer partitions,

P(x) =
∞∑

n=0

p(n)xn =
∞∏

n=1

1

1 − xn
.

We have to prove that for n �= 3, the coefficient of xn in (1 − 4x3 + 4x5 − x8)P(x) is
positive. Since

1−4x3+4x5−x8 = (x2−x3)(1−x)(1−x2)+(1+x+x2)(1−x)(1−x2)(1−x3),

we must prove positivity of the coefficient of xn for n �= 3 in

(x2 − x3)

∞∏
n=3

1

1 − xn
+ (1 + x + x2)

∞∏
n=4

1

1 − xn
.

It is clear that the coefficient of xn in the second term is positive for n �= 3, so it is
sufficient to show that the coefficient of xn in the first term is nonnegative for n �= 3.
It suffices to show that for n ≥ 4, among partitions with all parts at least 3, there are at
least as many with sum n − 2 as with sum n − 3. This follows from the injection that
adds 1 to the largest part.

Also solved by G. Apostolopoulos (Greece), D. Beckwith, R. Chapman (U. K.), P. P. Dályay (Hungary), C. De-
lorme (France), I. Gessel, J.-P. Grivaux (France), Y. J. Ionin, O. P. Lossers (Netherlands), M. A. Prasad (India),
R. Stong, R. Tauraso (Italy), M. Wildon (U. K.), GCHQ Problem Solving Group (U. K.), and the proposer.
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A Powered Gamma Limit

11676 [2012, 801]. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National
College, Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” Secondary
School, Buzau, Romania. For real t , find

lim
x→∞

x sin2 t
(
�(x + 2)(cos2 t)/(x+1) − �(x + 1)cos2 t/x

)
.

Here, � is the gamma function.

Solution by Santiago de Luxán, Fraunhofer Heinrich-Hertz-Institute, Berlin. We will
prove a generalization: with f (t) = cos2 te− cos2 t , and for a, b ∈ R,

L(a, b) = lim
x→∞

x sin2 t
[
�(x + a)cos2 t/(x+a−1)−�(x + b)cos2 t/(x+b−1)

]
=(a−b) f (t).

Assume that the limit exists (applying L’Hopital’s rule at the end of the calculation
verifies that it does). Apply Stirling’s formula to both �(x + a) and �(x + b) to obtain

L(a, b) = lim
x→∞

x sin2 t

((
x + a − 1

e

)cos2 t

−
(

x + b − 1

e

)cos2 t
)

= lim
x→∞

e− cos2 t x1−cos2 t
(
(x + a − 1)cos2 t − (x + b − 1)cos2 t

)

= e− cos2 t lim
x→∞

(
x + a − 1

e

)cos2 t

−
(

x + b − 1

e

)cos2 t

1/x
.

This is an indeterminate limit that can be evaluated using l’Hopital’s rule:

L(a, b) = f (t) lim
x→∞

(
(a − 1)

(
1 + a − 1

x

)− sin2 t

− (b − 1)

(
1 + b − 1

x

)− sin2 t
)

= f (t)
(
(a − 1) − (b − 1)

) = (a − b) cos2 t e− cos2 t .

For the case in the problem as stated, a = 2 and b = 1 so L = e− cos2 t cos2 t .

Also solved by K. F. Andersen (Canada), R. Boukharfane (Canada), P. Bracken, R. Chapman (U. K.), H. Chen,
P. P. Dályay (Hungary), A. Ercan (Turkey), D. Fleischman, C. Georghiou (Greece), O. Geupel (Germany),
M. L. Glasser, J.-P. Grivaux (France), O. Kouba (Syria), K.-W. Lau (China), J. Li, O. P. Lossers (Netherlands),
H. M. Mahmoud, G. Martin (Canada)R. Nandan, M. Omarjee (France), P. Perfetti (Italy), I. Pinelis, R. Stong,
D. B. Tyler, GCHQ Problem Solving Group (U. K.), and the proposers.

Dedekind η Function Disguised

11677 [2012, 880]. Proposed by Albert Stadler, Herrliberg, Switzerland. Evaluate

∞∏
n=1

(
1 + 2e−nπ

√
3 cosh(nπ/

√
3)
)

.

Solution by Radouan Boukharfane, Polytechnique Montréal, Montreal, Canada. The
answer is eπ

√
3/18/

4
√

3. We use the Dedekind η function defined for a complex number
t with positive imaginary part by

η(t) = e
π i t
12

∞∏
n=1

(
1 − e2π int

)
.
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It is well known that this function satisfies the functional equation η(−1/t) =√−i t η(t). Put t = i/
√

3, and use −1/t = 3t to derive

∞∏
n=1

(
1 + 2e−nπ

√
3 cosh(nπ/

√
3)
)

=
∞∏

n=1

(
1 + e−nπ

√
3
(

e
nπ√

3 + e
− nπ√

3

))

=
∞∏

n=1

(
1 + e2π int + e4π int

) =
∏∞

n=1

(
1 − e6π int

)
∏∞

n=1

(
1 − e2π int

) = e− π i t
4 η(3t)

e− π i t
12 η(t)

= e− π i t
6

η(−1/t)

η(t)
= e

π

6
√

3
√−i t = e

π
√

3
18

4
√

3
.

Editorial comment. Unfortunately the problem appeared with typos, making the prod-
uct divergent. Solutions showing divergence were also accepted.

Also solved by G. Apostolopoulos (Greece), R. Chapman (U. K.), D. Fleischman, O. Geupel (Germany),
M. Omarjee (France), R. Stong, R. Tauraso (Italy), and the proposer.

The Determinant of the Fibonacci Matrix

11678 [2012, 880]. Proposed by Farrukh Ataev Rakhimjanovich, Westminster Inter-
national University in Tashkent, Tashkent, Uzbekistan. Let Fk be the kth Fibonacci
number, where F0 = 0 and F1 = 1. For n ≥ 1, let An be an (n + 1) × (n + 1) matrix
with entries a j,k given by a0,k = ak,0 = Fk for a ≤ k ≤ n and by a j,k = a j−1,k + a j,k−1

for j, k ≥ 1. Compute the determinant of An .

Solution by Yuri Ionin, Central Michigan University, Mount Pleasant, MI. We show
that the determinant is −2n−1.

Let us call an m-by-m matrix an NW-matrix if each entry not in the the first row or
column equals the sum of its northern and western neighbors; furthermore, it is a unit
NW-matrix if all entries in the first column equal 1. Index the rows and columns from
1 to m. We claim that every unit NW-matrix has determinant 1. We use induction on
m; the claim is immediate for m = 1.

For m ≥ 2, let X be a unit NW-matrix of order m. Obtain Y from X by subtracting
each row from the row immediately below it, leaving row 1 unchanged. Column 1 of Y
is all 0 except for 1 in the first row. For i ≥ 2, we have yi,2 = xi,2 − xi−1,2 = xi,1 = 1.
Also, for i ≥ 3 and j ≥ 2,

yi, j = xi. j − xi−1, j = (xi−1. j + xi, j−1) − (xi−2, j + xi−1, j−1) = yi−1, j + yi, j−1,

so Y is an NW-matrix. The matrix Z obtained from Y by deleting the first row and
column is a unit NW-matrix; by the induction hypothesis, det Z = 1. Expanding the
determinant of Y along the first column yields det(X) = det(Y ) = det(Z) = 1.

Clearly det A1 = −1, so choose n ≥ 2. Obtain B from An by leaving the first two
rows unchanged and subtracting from each subsequent row the two rows immediately
above it; note that det B = det An . For i ≥ 3 and j ≥ 1,

bi, j − bi, j−1 = (ai, j − ai−1, j − ai−2, j ) − (ai, j−1 − ai−1, j−1 − ai−2, j−1)

= ai−1, j − ai−2, j − ai−3, j = bi−1, j .
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The matrix B takes the form ⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · ·
1 2 3 · · ·
0 0 2 · · ·
0 0 2 · · ·
...

...
...

. . .

0 0 2 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Expanding det B along the first two columns yields det B = − det(2W ), where W is a
unit NW-matrix of order n − 1. By the claim, det An = −2n−1 det(W ) = −2n−1.

Editorial comment. Sergio Falcón and Ángel Plaza observed that the problem and its
solution appear as an example in A. R. Moghaddamfar, S. M. H. Pooya, General-
ized Pascal triangles and Toeplitz matrices, Electron. J. Lin. Alg. 18 (2009), 564–588.
Ionin’s matrix W , with i, j-entry

(i+ j
i

)
, is shown to have determinant 1 via four proofs

in A. Edelman and G. Strang, Pascal Matrices, this MONTHLY 111 (2004), 189–197;
an earlier such proof appears in C. A. Rupp, Problem 3468, this MONTHLY 37 (1930),
552 (solution by H.T.R. Aude, 38 (1931), 355).

Also solved by D. Beckwith, R. Chapman (U. K.), P. P. Dályay (Hungary), C. Delorme (France), S. Falcón
& Á. Plaza (Spain), O. Geupel (Germany), J. P. Grivaux (France), E. A. Herman, B. Karaivanov, O. Kouba
(Syria), O. P. Lossers (Netherlands), M. Omarjee (France), R. E. Prather, C. P. Rupert, R. Stong, R. Tauraso
(Italy), J. van Hamme (Belgium), Armstrong Problem Solvers, GCHQ Problem Solving Group (U. K.), and
the proposer.

Lower Bound on a Product

11679 [2012, 000]. Proposed by Tim Keller, Orangeville, CT. Let n be an integer
greater than 2, and let a2, . . . , an be positive real numbers with product 1. Prove that

n∏
k=2

(1 + ak)
k >

2

e

(n

2

)2n−1
.

Solution by Traian Viteam, Punta Arenas, Chile. For n = 2 the inequality reduces to
4 > 2/e, which is trivial. For 2 < k ≤ n, the AM–GM inequality implies that

(1 + ak)
k =

(
1

k − 2
+ · · · + 1

k − 2
+ ak

2
+ ak

2

)k

≥ kk

(k − 2)k−2

a2
k

4
.

Multiplying (1 + a2)
2 > a2

2 together with these inequalities for k ∈ {3, ..., n} yields
n∏

k=2

(1 + ak)
k >

(n − 1)n−1nn

22

a2
2 · · · a2

n

4n−2
= 2

(
1 − 1

n

)n−1 (n

2

)2n−1
,

since
∏n

i=2 ai = 1 is assumed. Using ex ≥ 1 + x with x = 1
n−1 , it follows that

e ≥
(

1 + 1

n − 1

)n−1

=
(

1 − 1

n

)−(n−1)

and hence (1 − 1
n )n−1 ≥ e−1. Substituting this inequality into the product inequality

above yields the stated result.

Also solved by G. Apostolopoulos (Greece), R. Boukharfane (Canada), E. Eyeson, D. Fleischman, N. Grivaux
(France), S. Kaczkowski, O. Kouba (Syria), O. P. Lossers (Netherlands), R. E. Prather, D. B. Tyler, GCHQ
Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal, nor posted by the
proposer to the internet before the due date for solutions. Submitted solutions
should arrive before May 31, 2015. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11810. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let Hn = ∑n

k=1 1/k, and let ζ be the Riemann zeta function.
Find

∞∑
n=1

Hn

(
ζ(3) −

n∑
k=1

1

k3

)
.

11811. Proposed by Vazgen Mikayelyan, Yerevan State University, Yerevan, Armenia.
Let 〈a〉 and 〈b〉 be infinite sequences of positive numbers. Let 〈x〉 be the infinite se-
quence given for n ≥ 1 by

xn = ab1
1 · · · abn

n(
a1b1 + · · · + anbn

b1 + · · · + bn

)b1+···+bn
.

(a) Prove that limn→∞ xn exists.
(b) Find the set of all c that can occur as that limit, for suitably chosen 〈a〉 and 〈b〉.
11812. Proposed by Cristian Chiser, Craiova, Romania. Let f be a twice continuously
differentiable function from [0, 1] into R. Let p be an integer greater than 1. Given that∑p−1

k=1 f (k/p) = − 1
2 ( f (0) + f (1)), prove that

(∫ 1

0
f (x) dx

)2

≤ 1

5!p4

∫ 1

0
( f ′′(x))2 dx.

http://dx.doi.org/10.4169/amer.math.monthly.122.01.75
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11813. Proposed by Greg Oman, University of Colorado-Colorado Springs, Colorado
Springs, CO. Let X be a set, and let ∗ be a binary operation on X (that is, a function
from X × X to X ). Prove or disprove: there exists an uncountable set X and a binary
operation ∗ on X such that for any subsets Y and Z of X that are closed under ∗, either
Y ⊆ Z or Z ⊆ Y .

11814. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. Let φ be a
continuously differentiable function from [0, 1] into R, with φ(0) = 0 and φ(1) = 1,
and suppose that φ′(x) �= 0 for 0 ≤ x ≤ 1. Let f be a continuous function from [0, 1]
into R such that

∫ 1
0 f (x) dx = ∫ 1

0 φ(x) f (x) dx. Show that there exists t with 0 < t < 1
such that

∫ t
0 φ(x) f (x) dx = 0.

11815. Proposed by George Apostolopoulos, Messolonghi, Greece. Let x , y, and z be
positive numbers such that x + y + z = 3. Prove that

x4 + x2 + 1

x2 + x + 1
+ y4 + y2 + 1

y2 + y + 1
+ z4 + z2 + 1

z2 + z + 1
≥ 3xyz.

11816. Proposed by Sabin Tabirca, University College Cork, Cork, Ireland. Let ABC
be an acute triangle, and let B1 and C1 be the points where the altitudes from B and
C intersect the circumcircle. Let X be a point on arc BC, and let B2 and C2 denote the
intersections of X B1 with AC and XC1 with AB, respectively. Prove that the line B2C2

contains the orthocenter of ABC.

SOLUTIONS

If the Sum of the Squares is the Square of the Sum, . . .

11671 [2012, 800]. Proposed by Sam Northshield, SUNY-Plattsburgh, Plattsburgh, NY.
Show that if relatively prime integers a, b, c, d satisfy

a2 + b2 + c2 + d2 = (a + b + c + d)2,

then |a + b + c| can be written as m2 − mn + n2 for some integers m and n.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Let
ω = e2π i/3 be a primitive cube root of unity. Note that m2 − mn + n2 is the norm of
m + nω in the number ring Z[ω]. This ring is a unique factorization domain. The
primes that split in this number ring are 3 and all primes congruent to 1 modulo 3.
Thus a positive integer can be written in the form m2 − mn + n2 if and only if every
prime congruent to 2 modulo 3 divides it an even number of times.

Let g = gcd(a + b + c, a + b + d, a + c + d, b + c + d). Now (a + b + d) + (a +
c + d) + (b + c + d) − 2(a + b + c) = 3d and symmetrically, and since gcd(a, b, c, d)

= 1, g is a divisor of 3.
Thus for any prime p congruent to 2 modulo 3 that divides a + b + c, we can choose

one of a + b + d, a + c + d, and b + c + d that is not divisible by p. Rewriting the
given equality as

(a + b + d)(a + b + c) = a2 − a(−b) + (−b)2,

we see that p divides the right side with even multiplicity and hence divides a + b + c
with even multiplicity. By the remarks above, a + b + c can be written in the form
m2 − mn + n2 for some integers m and n.
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Also solved by G. Apostolopoulos (Greece), R. Chapman (U. K.), P. P. Dályay (Hungary), Y. J. Ionin, O. P.
Lossers (Netherlands), C. R. Pranesachar (India), M. A. Prasad (India), J. P. Robertson, T. Viteam (Chile),
GCHQ Problem Solving Group (U. K.), and the proposer.

Carlson’s Inequality

11680 [2012, 880]. Proposed by Benjamin Bogoşel, University of Savoie, Savoie,
France, and Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. Let x1, . . . , xn be
nonnegative real numbers. Show that(

n∑
i=1

xi

i

)4

≤ 2π2
n∑

i, j=1

xi x j

i + j

n∑
k,l=1

xk xl

(k + l)3
.

Solution by Boukharfane Radouan, Quebec, Canada. This inequality is a direct appli-
cation of the integral version of Carlson’s inequality. Recall that this equality states
that if f is a nonnegative function defined on [0, ∞) such that f (t) and tf (t) are
square-integrable, then(∫ ∞

0
f (t) dt

)4

≤ π2

(∫ ∞

0
( f (t))2 dt

)(∫ ∞

0
t2( f (t))2 dt

)
.

For the current problem we apply Carlson’s inequality to the function f (t)
= ∑n

k=1 xke−kt. Then we compute∫ ∞

0
f (t) dt =

n∑
k=1

xk

∫ ∞

0
e−kt dt =

n∑
k=1

xk

k
,

∫ ∞

0
( f (t))2 dt =

n∑
k, j=1

xk x j

∫ ∞

0
e−(k+ j)t dt =

n∑
k, j=1

xk x j

k + j
,

and
∫ ∞

0
t2( f (t))2 dt =

n∑
k, j=1

xk x j

∫ ∞

0
t2e−(k+ j)t dt = 2

n∑
k, j=1

xk x j

(k + j)3
.

Putting these pieces together gives the desired inequality.

Editorial comment. Reference: F. Carlson, Une inégalité, Ark. Mat. Astron. Fys. 25B
(1934) 1–5. Some solvers provided Hardy’s proof for Carlson’s inequality.

Also solved by G. Apostolopoulos (Greece), P. Bracken, R. Chapman (U. K.), P. P. Dályay (Hungary), M.
Omarjee (France), R. Stong, R. Tauraso (Italy), and the proposer.

Automorphisms Cannot One-Up their Group

11681 [2012, 880–881]. Proposed by Des MacHale, University College Cork, Cork
Ireland. For any group G, let Aut(G) denote the group of automorphisms of G.
(a) Show that there is no finite group G with |Aut(G)| = |G| + 1.
(b) Show that there are infinitely many finite groups G with |Aut(G)| = |G|.
(c) Find all finite groups G with |Aut(G)| = |G| − 1.

Solution by the Missouri State University Problem Solving Group, Missouri State Uni-
versity, Springfield, MO. For (b), it is well known that Aut(Sn) ∼= Sn when n /∈ {2, 6},
so {Sn : n /∈ {2, 6}} is such an infinite family.

Now consider (a) and (c). Let Inn(G) denote the group of inner automorphisms
of G, that is, the group of mappings τb defined by τb(x) = bxb−1. Let Z(G) be the

January 2015] PROBLEMS AND SOLUTIONS 77

This content downloaded from 130.56.64.29 on Mon, 16 Mar 2015 16:25:13 PM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



center of G. An elementary group-theoretic argument shows that Inn(G) ∼= G/Z(G),
so |Inn(G)| divides |G|. Since Inn(G) is a (normal) subgroup of Aut(G), the size of
Inn(G) divides |Aut(G)|. In (a) and (c), |Inn(G)| divides two relatively prime integers,
so |Inn(G)| = 1. Hence G is Abelian.

We claim that also G is cyclic. If not, then G ∼= Zpα ⊕ Zpβ ⊕ H with p a prime
and 1 ≤ α ≤ β. Define f : G → G by f (x, y, z) = (x + y, y, z). This is an auto-
morphism of order pα , so pα divides both |G| and |Aut(G)|. From the contradiction
pα � 1, we conclude that G is cyclic.

Since G is cyclic, |Aut(G)| = ϕ(G) < |G|, so (a) cannot occur.
We claim that case (c) can occur if and only if G is cyclic of prime order. If G ∼= Zp

with p a prime, then |Aut(G)| = ϕ(p) = p − 1 = |G| − 1, as claimed. Otherwise,
|G| = n = pk with p a prime and k > 1. Now both p and 2p do not exceed n and are
not relatively prime to n; hence |Aut(G)| = ϕ(|G|) < |G| − 1. Thus if G is not cyclic
of prime order, then |Aut(G)| < |G| − 1.

Editorial comment. Bruce Burdick used similar ideas to prove that |Aut(G)| = |G| + 2
if and only if G ∼= Z2 ⊕ Z2, and |Aut(G)| = |G| − 2 if and only if G ∼= Z4.

Also solved by A. J. Bevelacqua, R. Black & A. Lizzi & N. Monson, P. Budney, B. Burdick, R. Chapman
(U. K.), P. P. Dályay (Hungary), D. Fleischman, S. M. Gagola Jr., O. Geupel (Germany) (part (b) only), N. Gri-
vaux (France), Y. J. Ionin, J Konieczny, C. Lanski, C. Leuridan (France), J. H. Lindsey II, O. P. Lossers
(Netherlands), C. P. Rupert, J. H. Smith, R. Stong, D. Tyler, the GCHQ Problem Solving Group (U. K.),
TCDmath Problem Group (Ireland), NSA Problems Group, and the proposer.

An Alternating Sum of Squares of Alternating Sums

11682 [2012, 881]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania. Compute

∞∑
n=0

(−1)n

( ∞∑
k=1

(−1)k−1

n + k

)2

.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA. The
sum equals π2/24.

Since ∫ 1

0

xn

1 + x
dx =

∫ 1

0
xn

( ∞∑
k=1

(−1)k−1xk−1

)
dx =

∞∑
k=1

(−1)k−1

n + k
,

we have

∞∑
n=0

(−1)n

( ∞∑
k=1

(−1)k−1

n + k

)2

=
∞∑

n=0

(−1)n

(∫ 1

0

xn

1 + x
dx

)2

=
∞∑

n=0

(−1)n

∫ 1

0

xn

1 + x
dx
∫ 1

0

yn

1 + y
dy =

∞∑
n=0

(−1)n

∫ 1

0

∫ 1

0

xn yn

(1 + x)(1 + y)
dy dx

=
∫ 1

0

∫ 1

0

1

(1 + x)(1 + y)(1 + xy)
dy dx.

Now ∫ 1

0

1

(1 + y)(1 + xy)
dy = ln(1 + y) − ln(1 + xy)

1 − x

∣∣∣∣
y=1

y=0

= − ln((1 + x)/2)

1 − x
,
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so ∫ 1

0

∫ 1

0

1

(1 + x)(1 + y)(1 + xy)
dy dx = −

∫ 1

0

ln((1 + x)/2)

(1 − x)(1 + x)
dx

= −1

2

∫ 1

0

ln((1 + x)/2)

1 + x
dx − 1

2

∫ 1

0

ln((1 + x)/2)

1 − x
dx. (∗)

For the first term in (∗), we compute

−1

2

∫ 1

0

ln((1 + x)/2)

1 + x
dx = −1

4
ln2

(
1 + x

2

) ∣∣∣∣
1

0

= 1

4
ln2 2.

For the second term in (∗), the substitution u = (1 − x)/2 yields

−1

2

∫ 1

0

ln((1 + x)/2)

1 − x
dx = 1

2

∫ 0

1/2

ln(1 − u)

u
du = 1

2

(
π2

12
− ln2 2

2

)
.

(For the last step, if h is the integrand, think about the integral of h over (0, 1) and
(1/2, 1), and use integration by parts.) Therefore

∞∑
n=0

(−1)n

( ∞∑
k=1

(−1)k−1

n + k

)2

= 1

4
ln2 2 + 1

2

(
π2

12
− 1

2
ln2 2

)
= π2

24
.

Also solved by U. Abel (Germany), D. Beckwith, M. Benito & Ó. Ciaurri & E. Fernández & L. Roncal
(Spain), R. Boukharfane (Canada), K. N. Boyadzhiev, B. Burdick, R. Chapman (U. K.), H. Chen, P. P. Dályay
(Hungary), O. Geupel (Germany), M. L. Glasser, J. P. Grivaux (France), O. Kouba (Syria), O. P. Lossers
(Netherlands), O. Oloa (France), M. Omarjee (France), P. Perfetti (Italy), A. Stenger, R. Stong, R. Tauraso
(Italy), D. B. Tyler, J. Van Hamme (Belgium), M. Vowe (Switzerland), GWstat Problem Solving Group, and
the proposer.

Special Gergonne Points

11683 [2012, 881]. Proposed by Raimond Struble, Santa Monica, CA. Given a triangle
ABC , let FC be the foot of the altitude from the incenter to AB. Define FB and FC

similarly. Let CA be the circle with center A that passes through FB and FC , and define
CB and CC similarly. The Gergonne point of a triangle is the point at which segments
AFA, B FB , and C FC meet. Determine, up to similarity, all isosceles triangles such that
the Gergonne point of the triangle lies on one of the circles CA, CB , or CC .

Solution by Bruce S. Burdick, Roger Williams University, Bristol, RI. The triangle is
isosceles. Assume that ∠B and ∠C are congruent. Then AFA is a line of symmetry of
the triangle, so it is perpendicular to BC, and it is a common tangent to CB and CC .
Thus the Gergonne point, call it G, can lie on either CB or CC only if it coincides with
FA, but that implies that ABC is a degenerate triangle. Thus G is on CA.

Let the lengths of the sides opposite A, B, C be a, b, c, respectively. Let s = 1
2 (a +

b + c). The distance from A to FB is s − a, so the radius of CA is s − a, and the
distance from A to G is s − a. Also, AFA is the bisector of ∠A. The observation
that

Area(AB FB) = Area(ABG) + Area(AG FB)
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allows us to write

1

2
c(s − a) sin A = 1

2
c(s − a) sin

A

2
+ 1

2
(s − a)2 sin

A

2
,

c sin
A

2
cos

A

2
= 1

2
(s − a + c) sin

A

2
,

c cos
A

2
= 1

4
(b + c − a + 2c).

Since �ABFA is a right triangle and b = c, we have√
c2 − 1

4
a2 = c − 1

4
a, c2 − 1

4
a2 = c2 − 1

2
ac + 1

16
a2,

0 = 5

16
a2 − 1

2
ac, a = 8

5
c.

It follows that if the Gergonne point of an isosceles triangle lies on one of the circles
CA, CB, CC , then the three sides, in some order, are in the ratio 5 : 5 : 8.

Also solved by R. Boukharfane (Canada), P. P. Dályay (Hungary), C. Delorme (France), A. Ercan (Turkey), O.
Geupel (Germany), M. Goldenberg & M. Kaplan, J.-P. Grivaux (France), K. Hanes, A. Johnston, N. Komanda,
J. H. Lindsey II, O. P. Lossers (Netherlands), J. Minkus, C. P. Pranesachar (India), R. Stong, M. Vowe (Switzer-
land), H. Widmer (Switzerland), J. Zacharias, GCHQ Problem Solving Group (U. K.), and the proposer.

Möbius Estimates

11684 [2013, 76]. Proposed by Raymond Mortini, Université Paul Verlaine, Metz,
France, and Rudolf Rupp, Georg-Simon-Ohm Hochschule Nürnberg, Nuremberg,
Germany. For complex a and z, let

φa(z) = a − z

1 − az
, ρ(a, z) = |a − z|

|1 − az| .

(a) Show that whenever −1 < a, b < 1,

max
|z|≤1

|φa(z) − φb(z)| = 2ρ(a, b)

max
|z|≤1

|φa(z) + φb(z)| = 2.

(b) For complex α, β with |α| = |β| = 1, let

m(z) = ma,b,α,β(z) = |αφa(z) − βφb(z)|.
Determine the maximum and minimum, taken over z with |z| = 1, of m(z).

Solution by the proposers.
(b) Observe that φa is its own inverse. Let c = (b − a)/(1 − ab) and let

λ = −1 − ab

1 − ab
.

Since φb is a bijection of the unit circle onto itself,

max
|z|=1

∣∣αφa(z) − βφb(z)
∣∣ = max

|z|=1

∣∣αβφa

(
φb(z)

)− z
∣∣ = max

|z|=1

∣∣αβλφc(z) − z
∣∣.
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The same identities hold when the maximum is replaced by the minimum. Put
γ = αβλ, and let −π < arg γ ≤ π . For |z| = 1, let H(z) = |γφc(z) − z|. We have

H(z) =
∣∣∣∣γ z(cz − 1)

1 − cz
− z

∣∣∣∣ =
∣∣∣∣γ 1 − cz

1 − cz
− 1

∣∣∣∣ =
∣∣∣γ w

w
+ 1

∣∣∣ ,
where w = 1 − cz = 1 − c/z. As z moves around the unit circle, w moves around the
circle |w − 1| = |c|. Write w = |w|eiθ . Note that θ varies on the interval [−θm, θm],
where |θm | < π/2 and sin θm = |c| = ρ(a, b). Now

H(z) = ∣∣γ e2iθ + 1
∣∣ = 2

∣∣∣cos
(arg γ

2
+ θ

)∣∣∣ .
Hence

max
|z|=1

H(z) = 2 max
{∣∣∣cos

(arg γ

2
+ θ

)∣∣∣ : |θ | ≤ arcsin ρ(a, b)
}

(∗)

and

min
|z|=1

H(z) = 2 min
{∣∣∣cos

(arg γ

2
+ θ

)∣∣∣ : |θ | ≤ arcsin ρ(a, b)
}

.

(a) Specialize (∗) by taking a, b ∈ (−1, 1) and α = β = 1, so that γ = −1. By the
maximum principle, the maximum on the disk is achieved on the boundary, so

max
|z|≤1

|φa(z) − φb(z)| = 2 max
{| sin θ | : |θ | ≤ arcsin ρ(a, b)

} = 2ρ(a, b).

For the other part of (a), instead specialize (∗) by taking a, b ∈ (−1, 1) and α = 1,
β = −1, so that γ = 1. This gives

max
|z|≤1

|φa(z) + φb(z)| = 2 max
{| cos θ | : |θ | ≤ arcsin ρ(a, b)

} = 2.

Also solved by P. P. Dályay (Hungary) and R. Stong. Part (a) only by A. Alt, D. Beckwith, D. Fleischman,
O. P. Lossers (Netherlands), and T. Smotzer.

The Reciprocal of the Thue-Morse Constant

11685 [2013, 76]. Proposed by Donald Knuth, Stanford University, Stanford, CA.
Prove that

∞∏
n=0

(
1 + 1

22k − 1

)
= 1

2
+

∞∑
k=0

1∏k−1
j=0

(
22 j − 1

) .
In other words, prove that

(1 + 1)
(
1 + 1

3

) (
1 + 1

15

) (
1 + 1

255

) · · · = 1
2 + 1 + 1 + 1

3 + 1
3·15 + 1

3·15·255 + · · · .

Solution by Traian Viteam, Punta Arenas, Chile. For n ≥ 0,

n∏
k=0

(
1 + 1

22k − 1

)
−

n−1∏
k=0

(
1 + 1

22k − 1

)
=

n−1∏
k=0

22k
/(

n∏
k=0

22k − 1

)

= 22n−1

/(
n∏

k=0

22k − 1

)
= 1

2

(
1∏n−1

j=0(2
2 j − 1)

+ 1∏n
j=0(2

2 j − 1)
.

)
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Summing from n = 0 to n = N yields

N∏
k=0

(
1 + 1

22k − 1

)
− 1 = 1

2
+

N∑
k=1

1∏k−1
j=0(2

2 j − 1)
+ 1

2

1∏N
j=0(2

2 j − 1)

for all N . Letting N tend to infinity yields the desired result.

Editorial comment. The proposer noted that this is the special case x = 1/2 of

1∏∞
k=0

(
1 − x2k

) = 1 − x + 2
∞∑

k=0

x2k∏k−1
j=0

(
1 − x2 j

) .
The left side is the reciprocal of the generating function μ(x) of the Thue-Morse se-
quence, and μ(1/2) is the Thue-Morse constant, which is the subject of Section 6.8
in Mathematical Constants by Steven R. Finch, Cambridge University Press (2003),
pp. 436–441.

Also solved by R. Barnes, D. Beckwith, R. Boukharfane (Canada), B. Burdick, R. Chapman (U. K.), J. Fab-
rykowski & T. Smotzer, O. Geupel (Germany) C. Georghiou (Greece), Y. J. Ionin, O. Kouba (Syria), K. Kyun
(Korea), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany), J. Martinez (Spain), M. Omarjee
(France), H. Roelants (Belgium), R. Sachdev (India), J. Schlosberg, R. Tauraso (Italy), M. Wildon (U. K.), BSI
Problems Group (Germany), GCHQ Problem Solving Group (U. K.), TCDmath Problem Group (Ireland), and
the proposer.

A Fast-Growing Function

11688 [2013, 77]. Proposed by Samuel Alexander, The Ohio State University, Colum-
bus, OH. Consider f : N → N such that lima→∞ infb,c,d∈N,b<a f (a, c, d) − f (b, c, d)

= ∞. Show that for B ∈ N, there exists k ∈ N such that

f (a, c, d) = k ⇒ max{c, d} > B.

Solution by Iosif Pinelis, Michigan Technological University, Houghton, MI. We say
that a subset S of N has density zero if

lim
n→∞

1

n
|S ∩ [n]| = 0,

where [n] = {1, . . . , n}.
First we show that if h : N → N is a function satisfying lima→∞ h(a) − h(a − 1)

= ∞, then h(N) has density zero. For a positive integer m, there exists am ∈ N such
that h(a) − h(a − 1) ≥ m for a > am . Hence for all n ∈ N,

|h(N) ∩ [n]| ≤ |h([am])| + n

m
+ 1,

and thus lim supn→∞
1
n |h(N) ∩ [n]| ≤ 1/m. Since this holds for all m, it follows that

h(N) has density zero.
Now the given hypothesis implies for fixed c, d ∈ N that lima→∞ f (a, c, d) −

f (a − 1, c, d) = ∞, and thus the set Sc,d = { f (a, c, d) : a ∈ N} has density 0. Since
the union of finitely many sets of density zero has density zero, for any B ∈ N the set⋃

c,d≤B Sc,d has density zero. Therefore some k ∈ N is not in this set, so f (a, c, d) = k
implies max{c, d} > B.

Also solved by R. Chapman (U. K.), O. Geupel (Germany), B. Karaivanov, O. P. Lossers (Netherlands), R. Mar-
tin (Germany), R. Stong, H. Takeda (Japan), GCHQ Problem Solving Group (U. K.), TCDmath Problem Group
(Ireland), and the proposer.
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Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal, nor posted to the in-
ternet before the due date for solutions. Submitted solutions should arrive before
July 31, 2015. Additional information, such as generalizations and references, is
welcome. The problem number and the solver’s name and address should appear
on each solution. An asterisk (*) after the number of a problem or a part of a
problem indicates that no solution is currently available.

PROBLEMS

11817. Proposed by Mohammad Jahaveri, Siena College, Loudonville, NY. A cycle
double cover of a graph is a collection of cycles that, counting multiplicity, includes
every edge exactly twice. Let X be an infinite set and let K X be the complete graph on
X . Construct a cycle double cover for X .

11818. Proposed by Oleh Faynshteyn, Leipzig, Germany. Let ABC be a triangle and
let A1, B1, and C1 be the points on sides opposite A, B, and C , respectively, at which
the ecircles of the triangle are tangent to those sides. Let R and r be the circumradius
and inradius of the triangle. Let the name of a vertex of ABC or of A1 B1C1 also stand
for the radian measure of the corresponding angle. Prove that

cot A1 + cot(A/2)

cot A
+ cot B1 + cot(B/2)

cot B
+ cot C1 + cot(C/2)

cot C
= 6R

r

wherever the expression is defined.

11819. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. Let f be a
continuous, nonnegative function on [0, 1]. Show that

∫ 1

0
f 3(x) dx ≥ 4

(∫ 1

0
x2 f (x) dx

)(∫ 1

0
x f 2(x) dx

)
.

11820. Proposed by Alborz Azarang, Shahid Chamran University of Ahvaz, Ahvaz,
Iran. Let K be a field and let R be a subring of K [X ] that contains K . Prove that R is
noetherian, that is, that every ascending chain of ideals in R terminates.

http://dx.doi.org/10.4169/amer.math.monthly.122.02.175
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11821. Proposed by Finbarr Holland and Claus Koester, University College Cork,
Cork, Ireland. Let p be a positive integer. Prove that

lim
n→∞

1

2nn p

n∑
k=0

(n − 2k)2p

(
n

k

)
=

p∏
j=1

(2 j − 1).

11822. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Call a polynomial real if all its coefficients are real. Let P and Q be polynomials with
complex coefficients such that the composition P ◦ Q is real. Show that if the leading
coefficient of Q and its constant term are both real, then P and Q are real.

11823. Proposed by Sabin Tabirca, University College Cork, Cork, Ireland. Let P be
a point inside a circle C .

(a) Prove that there exists a point P ′ outside C such that, for all chords XY of C through
P , (|XP′| + |YP′|)/|XY| is the same. (Here, |UV| denotes the distance from U to V .)
(b) Is P ′ unique?

SOLUTIONS

A Consequence of Blundon’s Inequality

11686 [2013, 76]. Proposed by Michel Bataille, Rouen, France. Let x, y, z be positive
real numbers such that x + y + z = π/2. Prove that

cot x + cot y + cot z

tan x + tan y + tan z
≥ 4(sin2 x + sin2 y + sin2 z).

Solution by John Zacharias, Arlington, VA. Let A = 2x , B = 2y, and C = 2z, and
note that A, B, and C are the angles of a triangle. Let R, r , and s be the circumradius,
inradius, and semiperimeter of this triangle, respectively. Then we have the standard
identities

cot(A/2) + cot(B/2) + cot(C/2) = s

r
,

tan(A/2) + tan(B/2) + tan(C/2) = r + 4R

s
,

and

4(sin2(A/2) + sin2(B/2) + sin2(C/2)) = 2(3 − cos A − cos B − cos C)

= 2(2R − r)

R
.

Thus, the desired inequality rearranges to

s2 ≥ 2r(r + 4R)(2R − r)

R
.

This can be proved from Blundon’s inequality (W. J. Blundon, “Inequalities Associated
with the Triangle,” Canadian Mathematics Bulletin, 1965, 615–626), which (is sharp
and) states that

s2 ≥ 2R2 + 10Rr − r 2 − 2(R − 2r)
√

R(R − 2r).
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Indeed, for x ≥ 2,(
2x2 − 6x + 3 + 2

x

)2

= 4x(x − 2)3 + (x − 2)2(4x + 1)

x2
≥ 4x(x − 2)3.

Therefore, after taking a square root,

2x2 − 6x + 3 + 2

x
≥ 2(x − 2)

√
x2 − 2x .

We apply this with x = R/r . By Euler’s inequality, (R ≥ 2r when R is the circumra-
dius of a circle and r the inradius), x ≥ 2. Rearranging gives

s2 ≥ 2R2 + 10Rr − r 2 − 2(R − 2r)
√

R(R − 2r) ≥ 2r(r + 4R)(2R − r)

R
,

as required.

Editorial comment. Mitrinovic, Pecaric, and Volenec, Recent Advances in Geometric
Inequalities, (Kluwer Academic Publishers Group, Dordrecht, 1989), pp. 56–60, note
that the inequality that bears Blundon’s name has, in fact, been known since at least
1851.

Slicing a Torus

11687 [2013, 77]. Proposed by Steven Finch, Harvard University, Cambridge, MA.
Let T be a solid torus in R3 with center at the origin, tube radius 1, and spine radius r
with r ≥ 1 (so that T has volume π · 2πr .) Let P be a ‘random’ nearby plane. Find the
conditional probability, given that P meets T , that the intersection is simply connected.
For what value of r is this probability maximal? (The plane is chosen by first picking
a distance from the origin uniformly between 0 and 1 + r and then picking a normal
vector independently and uniformly on the unit sphere.)

Solution by Radouan Boukharfane, Polytechnique de Montreal, Montreal, Canada. We
may assume that the axis of the torus T is the z-axis, and the center is the origin. Then
T has equation

x2 + y2 =
(

r ±
√

1 − z2
)2

.

We may assume the normal to the plane P is in the first quadrant of the xz-plane. Then
P has equation

x cos(α) + z sin(α) = m,

where 0 ≤ α ≤ π/2 and m is the distance from the origin. If 0 < m ≤ 1, then P meets
T for all α; if 1 < m ≤ 1 + d, then P meets T for α ≤ arccos((m − 1)/r). So we may
compute the denominator of our conditional probability as

D =
∫ 1

0

π

2
dm +

∫ 1+r

1
arccos

(
m − 1

r

)
dm = π

2
+ r.

Now we compute the numerator. Let C+ be the circle (r + cos t, 0, sin t) and C− be the
circle (−r + cos t, 0, sin t). If T ∩ P 
= ∅, then (aside from probability zero events)
there are three possibilities: (a) P meets C+ but not C−, so T ∩ P is homeomorphic
to a disk; (b) P meets both C+ and C−, so T ∩ P is homeomorphic to an annulus; and
(c) P meets neither circle (it passes between them), so T ∩ P is homeomorphic to a
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disjoint union of two disks. We consider (a) simply connected, and the other two not
simply connected.

Consider the case r ≥ 2. Then the numerator is N1 = I1 + J1 + K1, where

I1 =
∫ 1

0

[
arccos

(
1 − m

r

)
− arccos

(
1 + m

r

)]
dm,

J1 =
∫ r−1

1

[
arccos

(
m − 1

r

)
− arccos

(
m + 1

r

)]
dm,

K1 =
∫ r+1

r−1
arccos

(
m − 1

r

)
dm.

Now consider the case 1 < r ≤ 2. Then the numerator is N2 = I2 + J2 + K2, where

I2 =
∫ r−1

0

[
arccos

(
1 − m

r

)
− arccos

(
1 + m

r

)]
dm,

J2 =
∫ 1

r−1
arccos

(
1 − m

r

)
dm,

K2 =
∫ r+1

1
arccos

(
m − 1

r

)
dm.

Computation yields N = N1 = N2, and in both cases, the conditional probability is

P(r) = N

D
= 2r + 2 arccos(1/r) − 2

√
r 2 − 1

π

2 + r
.

Numerically, we find that the maximal value for P(r) is ≈ 0.810777, reached at r ≈
1.24376, a solution of the equation

sin

(
π

2

√
1 −

(r

2

)2
)

= 1

r
.

Editorial comment. In order to be “simply connected,” must a space in particular be
connected? Some solvers made one choice; some made the other.

Also solved by C. Curtis, J. H. Lindsey II, R. Stong, GCHQ Problem Solving Group (U. K.), and the proposer.

Inscribe an Equilateral Triangle in a Hypercube

11693 [2013, 174]. Proposed by Eugen Ionascu, Columbus State University, Colum-
bus, GA, and Richard Stong, CCR, San Diego CA. Let T be an equilateral triangle
inscribed in the d-dimensional unit cube [0, 1]d , with d ≥ 2. As a function of d, what
is the maximum possible side length of T ?

Solution by Yury J. Ionin, Champaign, IL. We will show that the maximum side length
of T is q(d), where

q(d)2 =

⎧⎪⎨
⎪⎩

2d
3 , if d ≡ 0 (mod 3);

2d+16
3 − 4

√
2, if d ≡ 1 (mod 3);

2d+20
3 − 4

√
3, if d ≡ 2 (mod 3).

(1)

Since [0, 1]d is a compact set, there exists an equilateral triangle of the maximum side
length contained in [0, 1]d . We will call such a triangle maximal. Write md for the side
length of a maximal triangle.
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We begin with examples of triangles exhibiting the claimed side lengths q(d).
In these examples, X, Y, Z ∈ [0, 1]d , X is the origin, Y = (y1, . . . , yd), and Z =
(z1, . . . , zd).

If d ≡ 0 (mod 3), let yi = 1 for 1 ≤ i ≤ 2d/3, yi = 0 otherwise, zi = 0 for 1 ≤
i ≤ d/3, and zi = 1 otherwise.

If d ≡ 1 (mod 3), let y1 = z2 = 1, y2 = z1 = 2 − √
2, y1 = 1 for 3 ≤ i ≤ (2d +

1)/3, y1 = 0 otherwise, zi = 0 for 3 ≤ i ≤ (d + 5)/3, and zi = 1 otherwise.
If d ≡ 2 (mod 3), let y1 = z2 = 1, y2 = z1 = 2 − √

3, yi = 1 for 3 ≤ i ≤ (2d +
2)/3, yi = 0 otherwise, zi = 0 for 3 ≤ i ≤ (d + 4)/3, and zi = 1 otherwise.

These examples show md ≥ q(d). It remains to show that md ≤ q(d). Let X, Y, Z ∈
[0, 1]d , X = (x1, . . . xd), Y = (y1, . . . , yd), Z = (z1, . . . , zd). With these points, we
associate a 3 × d matrix

A =
⎡
⎣x1 · · · xd

y1 · · · yd

z1 · · · zd

⎤
⎦ .

Note that

|XY|2 + |XZ|2 + |YZ|2 =
d∑

i=1

(
(xi − yi )

2 + (xi − zi )
2 + (yi − zi)

2
)
.

For a fixed i , the three numbers xi , yi , zi have some order, say xi ≥ yi ≥ zi ; let ui =
xi − yi and vi = xi − zi . Then 0 ≤ ui ≤ vi ≤ 1, and

(xi − yi )
2 + (xi − zi)

2 + (y1 − zi)
2 = 2

(
v2

i − ui(vi − ui )
) ≤ 2v2

i ≤ 2.

We have equality (xi − yi )
2 + (xi − zi)

2 + (y1 − zi)
2 = 2 if and only if the three num-

bers xi , yi , zi consist of two 0s and a 1 or two 1s and a 0. Adding, we get

|XY |2 + |X Z |2 + |Y Z |2 ≤ 2d, (2)

with equality if and only if each column of A consists of two 0s and a 1 or two 1s and a
0. We now have q(d) ≤ md ≤ √

2d/3. If d ≡ 0 (mod 3), then q(d) = md = √
2d/3.

For 0 ≤ k ≤ d, a k-face of the cube is a k-dimensional face. Thus, 0-faces are
vertices, 1-faces are edges of the cube, and the d-face is the entire cube. If P ∈ [0, 1]d

is not a vertex of the cube, then there exists a unique k = k(P) such that P lies in the
interior of a k-face of the cube.

Claim 1. If an equilateral �XY Z is maximal, then its vertices lie on the boundary
of the cube. Suppose, for example, that Z is in the interior of the cube. Since m2

d < d,
there exists j such that |x j − y j | < 1. We replace points X and Y by X ′ = (x ′

1, . . . , x ′
d)

and Y ′ = (y′
1, . . . , y′

d) with x ′
i = xi and y′

i = yi for i 
= j so that X ′ and Y ′ are in the
cube and |x ′

j − y′
j | > |x j − y j |. Moreover, we choose X ′ and Y ′ so close to X and

Y , respectively, that a third vertex Z ′ of an equilateral �X ′Y ′ Z ′ then can be chosen
sufficiently close to Z and therefore in the interior of the cube. Since the side length of
this triangle is greater than md , we have a contradiction.

For d = 2, this claim implies that one of the vertices of a maximal equilateral
�XY Z is a vertex of the square [0, 1]2; otherwise, we would have had two vertices
of the triangle inside parallel sides of the square and we could have shifted the tri-
angle along these sides to obtain a maximal equilateral triangle with the third ver-
tex inside the square. So we may assume X = (0, 0), Y = (y, 1), and Z = (1, z),
with y2 + 1 = 1 + z2 = (1 − y)2 + (1 − z)2, and so y = z = 2 − √

3. This shows
m2 = |XY | = q(2).
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We proceed by induction on d. Suppose d ≥ 3 and md−1 = q(d − 1). Of course, we
may also assume d 
≡ 0 (mod 3). Observe that md ≥ q(d) > q(d − 1), and therefore,
a maximal equilateral triangle inscribed in [0, 1]d is not contained in a (d − 1)-face
of [0, 1]d . In other words, if an equilateral �XY Z is maximal, then no column of A
consists of three 0s or of three 1s.

Claim 2. If an equilateral �XY Z is maximal, then its vertices lie on edges of the
cube. Suppose there is a maximal equilateral �XY Z with k(Z) ≥ 2; choose such a
�XY Z such that k = k(Z) is as large as possible. Let F be the k-face of [0, 1]d

containing Z in its interior. By Claim 1, k ≤ d − 1. Let M be the midpoint of segment
XY , and let hyperplane π through M be perpendicular to that segment. If M ∈ F , then
M is on the boundary of the cube, so the entire segment XY is contained in F and thus
�XY Z lies on a k-face of the cube, a contradiction. Therefore, M /∈ F , so F ∩ π is
a convex polyhedron η in the k-flat containing F (that is, the intersection of finitely
many half-(k − 1)-flats). (Note that k ≥ 2.) Each vertex of η lies on the boundary of
F , and at least one of them, say W , is further from M than Z . Then segment MW
contains a point Z ′ such that |M Z ′| = |M Z |. Since Z ′ ∈ π , the perpendicular bisector
of XY , and Z ′ /∈ F , we obtain a maximal equilateral �XY Z ′ with k(Z ′) > k(Z). This
contradicts the choice of Z and proves the claim.

From Claim 2 we see: If an equilateral �XY Z is maximal, then each row of A
contains at most one entry that equals neither 0 nor 1 (that is, at most one entry that
is not an integer). We split A into a 3 × d1 submatrix A1 with a noninteger entry in
every column and a 3 × d2 submatrix A2 with no noninteger entries, so d1 + d2 = d
and 0 ≤ d1 ≤ 3. These submatrices correspond to triangles X1Y1 Z1 in [0, 1]d1 and
X2Y2 Z2 in [0, 1]d2 . The triangles �X1Y1 Z1 and �X2Y2 Z2 lie in orthogonal subspaces,
so m2

d = |XY |2 = |X1Y1|2 + |X2Y2|2 and similarly for the other edges. The differences∣∣|X2Y2|2 − |X2 Z2|2
∣∣, ∣∣|X2Y2|2 − |Y2 Z2|2

∣∣, ∣∣|X2 Z2|2 − |Y2 Z2|2
∣∣

are three nonnegative integers, of which the largest is equal to the sum of the other
two. Thus, the three differences∣∣|X1Y1|2 − |X1 Z1|2

∣∣, ∣∣|X1Y1|2 − |Y1 Z1|2
∣∣, ∣∣|X1 Z1|2 − |Y1 Z1|2

∣∣
are also three nonnegative integers, of which the largest is equal to the sum of the other
two. But these differences are strictly less than d1, the maximum square of the distance
between two points of [0, 1]d1 . This rules out d1 = 1 and yields the following possible
values for these differences: (a) 0, 0, 0 and (b) 0, 1, 1 for d1 = 2 and 3, and (c) 1, 1, 2
and (d) 0, 2, 2 for d1 = 3 only. The differences are the same for �X2Y2 Z2. We will say
that matrix A is of type (a), (b), (c), or (d). Note that if d1 ≥ 2, then each column of
A1 has an entry equal to 0 and an entry equal to 1. Indeed, if A1 has a column with no
entry equal 0 (equal 1), then we subtract (add) the same small positive number from
(to) each entry of the column to obtain a maximal equilateral triangle having a vertex
with two noninteger coordinates. But then for d3 = 3, we have 1 < |X1Y1|2 < 3, and
similarly for the other sides, so 0 ≤ ∣∣|X1Y1|2 − |X1 Z1|2

∣∣ < 2, and similarly for the
other differences. Thus, types (c) and (d) are impossible.

Without loss of generality, assume that all entries in the third row of A2 are 0s. The
entries of the first and second row of A2 form, say, α pairs (1, 0), β pairs (0, 1), and
γ pairs (1, 1), so α + β + γ = d2. If A is of type (a), then α + β = α + γ = β + γ ,
and then d2 ≡ 0 mod 3 and α = β = γ = d2/3. If A is of type (b), then (up to a per-
mutation of α, β, γ ), there are two possibilities: (b1) α + β = α + γ = β + γ + 1
and (b2) α + β = α + γ = β + γ − 1. In case (b1), we obtain d2 ≡ 1 (mod 3),
α = (d2 + 2)/3, β = γ = (d2 − 1)/3; in case (b2), d2 ≡ 2 (mod 3), α = (d2 − 2)/3,
β = γ = (d1 + 1)/3.
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If d1 = 0, then �X2Y2 Z2 is equilateral. Then A is of type (a), and we have d =
d2 ≡ 0 (mod 3), so this case is finished.

As noted above, d1 = 1 is impossible.
Let d1 = 2. Then A is of type (a) or (b), and we assume without loss of general-

ity that the vertices of �X1Y1 Z1 have coordinates (0, 0), (a, 1), and (1, b). If d ≡ 1
(mod 3), then d2 ≡ 2 (mod 3), and therefore, A is of type (b2). If (0, 0) is the apex
of �X1Y1 Z1, we obtain that 1 + a2 = 1 + b2 = (1 − a)2 + (1 − b)2 + 1. Then a =
b = 2 − √

2, and the side length of �XY Z is q(d). If (1, b) is the apex of �X1Y1 Z1,
then a2 + 1 = b2 > 1, so this case is impossible. On the other hand, if d ≡ 2 (mod 3),
then d2 ≡ 0 (mod 3), and then A is of type (a). Therefore, �X1Y1 Z1 is equilateral. We
have 1 + a2 = 1 + b2 = (1 − a)2 + (1 − b)2, and then a = b = 2 − √

3, and again the
side length of �XY Z is q(d).

Let d1 = 3. Since every column of A1 has entries 0 and 1, each side of �X1Y1 Z1

is greater than 1 and less than
√

3. Since d2 ≡ d 
≡ 0 (mod 3), A is of type (b). Let
t = |X1Y1|2 = |X1 Z1|2 = |Y1 Z1|2 ± 1. Let θ = ∠X1Y1 Z1. If |Y1 Z1|2 = t − 1, then
t > 2 and cos2 θ = (t − 1)/(2t) > 1/4. Therefore, θ < 60◦, ∠Y1 X1 Z1 > 60◦, and
then

√
t = |X1 Z1| < |Y1 Z1| = √

t − 1, a contradiction. Thus, the case d1 = 3 is im-
possible.

This completes the proof. Note that one and only one vertex of any maximal equi-
lateral triangle is a vertex of the cube.

Also solved by C. Blatter (Switzerland), M. A. Prasad (India), and the proposers.

A Complex Three-Number Problem

11700 [2013, 365]. Proposed by Evan O’Dorney (student), Harvard University, Cam-
bridge, MA . Let n be an integer greater than 1. Let a, b, and c be complex numbers
with a + b + c = an + bn + cn = 0. Prove that the absolute values of a, b, and c can-
not be distinct.

Solution by Allen Stenger, Alamogordo, NM. If a = 0, then |b| = |c|, and we are done.
If a 
= 0, set z = b/a. Then an + bn + cn = 0 becomes p(z) = 0, where p(z) = 1 +
zn + (−1 − z)n . We must show that all zeros z of p(z) satisfy at least one of: |z| = 1,
|z + 1| = 1, or |z| = |z + 1|. The first two are unit circles, and the last is the line
Re z = −1/2. These curves intersect only in the two nonreal cube roots of unity, ω =
e2π i/3 and ω2 = ω. We will establish lower bounds for the number of zeros (counted
with multiplicity) on these curves and show that the total lower bound is the degree of
the polynomial, so there can be no zeros off the curves. If n is even, the degree of p is
n, but if n is odd, the high-order terms cancel and the degree is n − 1.

There are six cases, according to the value of n mod 6, the three classes of zeros:
real, cube root of unity, and “other.” We will prove the lower bounds listed in this table:

n real zeros ω, ω2 other zeros total zeros degree of p
6m 0 0 6m 6m 6m

6m + 1 2 4 6(m − 1) 6m 6m
6m + 2 0 2 6m 6m + 2 6m + 2
6m + 3 2 0 6m 6m + 2 6m + 2
6m + 4 0 4 6m 6m + 4 6m + 4
6m + 5 2 2 6m 6m + 4 6m + 4.

If n is even, there are no real zeros because p(z) > 0 for real arguments. If n is odd,
there are real zeros at z = 0 and z = −1, so a lower bound is 2.

Because p(ω) = 1 + ωn + ω2n , we have p(ω) = 0 if n is not a multiple of
3 and p(ω) = 3 if n is a multiple of 3. Also, p′(ω) = n(ωn−1 − ω2(n−1)) = 0 if

February 2015] PROBLEMS AND SOLUTIONS 181

This content downloaded from 128.187.103.98 on Mon, 16 Mar 2015 16:33:54 PM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



n ≡ 1 (mod 3), so there is (at least) a double zero at ω if n = 6m + 1 or n = 6m + 4.
Calculation for ω2 is the same. So we have at least 0, 4, 2 zeros (counting multiplicity)
according as n mod 3 is 0, 1, 2, respectively.

Now we consider the zeros on the arc 	 of the unit circle given parametrically
by z = e2π i t where 1/3 < t < 1/2. None of these zeros has been counted yet. First
we will show the number of uncounted zeros is at least 6 times the number in 	. This
comes from complex conjugation and from the fractional linear transformation w(z) =
−1/(z + 1). This transformation sends the unit circle |z| = 1 to the line Re z = −1/2,
sends that line to the circle |z + 1| = 1, and sends that circle back to the first circle.
Also, it sends zeros of p to zeros of p (except for the zero z = −1 that we have already
counted) because p(w(z)) = p(z)/(−z − 1)n . Further, w maps the real line to itself,
and the cube roots ω, ω2 to themselves, so all the other zeros produced by complex
conjugation and by w from those on the arc 	 are distinct and have not been counted
yet. Therefore, the “other” category contains at least six times the number of roots in
the arc 	.

To count the zeros in 	 we look at zero-crossings. Define

g(t) := e−π int p(e2π i t) = e−π int
(
1 + e2π int + (−1)n(e2π i t + 1)n

)
= (eπ int + e−π int) + (−1)n(eπ i t + e−π i t)n

= 2 cos πnt + (−1)n(2 cos π t)n.

Thus, g(t) is real-valued and has the same zeros as p(e2π i t). Consider the val-
ues t = k/n where k is an integer and 1/3 ≤ k/n ≤ 1/2. For these t , we have
2 cos πnt = 2(−1)k . Because the cosine function is decreasing on this interval, we
have |(2 cos π t)n| ≤ |(2 cos(π/3))n| = 1. Therefore, the sign of g(k/n) is (−1)k .
So there is a zero in each interval between consecutive values k/n. The number of
such intervals is �n/2� − �n/3�. Considering the six possible congruence classes
n = 6m + r , we see that this number is m except for n = 6m + 1, and in that case it
is m − 1. This completes the table and the proof.

Also solved by R. Boukharfane (Canada), R. Chapman (U. K.), E. A. Herman, O. Kouba (Syria), O. P. Lossers
(Netherlands), J. Martı́nez (Spain), M. Omarjee (France), J. Ritter, R. Stong, R. Tauraso (Italy), E. I. Verriest,
and GCHQ Problem Solving Group (U. K.).
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal nor posted to the In-
ternet before the due date for solutions. Submitted solutions should arrive before
July 31, 2015. Additional information, such as generalizations and references, is
welcome. The problem number and the solver’s name and address should appear
on each solution. An asterisk (*) after the number of a problem or a part of a
problem indicates that no solution is currently available.

PROBLEMS

11824. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI and
Yusheng Luo, Harvard University, Cambridge, MA. A set X of points in the plane is
said to be in circular general position if it has the property that every circle or straight
line in the plane misses at least two points of X . (Such sets must have at least five
elements, and most five-element sets qualify.)
(a) Show that if X is a set in circular general position and contains at least seven points,
then it has a five-element subset that is in circular general position.
(b) Show that there exist sets X in circular general position containing exactly six
points for which there is no five-element subset in circular general position.

11825. Proposed by Marian Dincǎ, Vahalia University of Târgoviste, Bucharest,
Romania, and Sorin Radulescu, Institute of Mathematical Statistic and Applied Math-
ematics, Bucharest, Romania. Let E be a normed linear space. Given x1, . . . , xn ∈ E
(with n ≥ 2) such that ‖xk‖ = 1 for 1 ≤ k ≤ n and the origin of E is in the convex
hull of {x1, . . . , xn}, prove that ‖x1 + · · · + xn‖ ≤ n − 2.

11826. Proposed by Michel Bataille, Rouen, France. Let m and n be positive integers
with m ≤ n. Prove that

n∑
k=m

4n+1−k

(
m + k − 1

m − 1

)2

≥
n∑

k=m

(
m + n

k

)2

.

11827. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Show that there are infinitely many rational triples (a, b, c) such that a + b +
c = abc = 6.

http://dx.doi.org/10.4169/amer.math.monthly.122.03.284
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11828. Proposed by Roberto Tauraso, Universita di Roma “Tor Vergata,” Rome, Italy.
Let n be a positive integer, and let z be a complex number that is not a kth root of unity
for any k with 1 ≤ k ≤ n. Let S be the set of all lists (a1, . . . , an) of n nonnegative
integers such that

∑n
k=1 kak = n. Prove that

∑
a∈S

n∏
k=1

1

ak!kak (1 − zk)ak
=

n∏
k=1

1

1 − zk
.

11829. Proposed by Paul Bracken, University of Texas-Pan American, Edinburg, TX.
Let 〈a〉 be a monotone decreasing sequence of real numbers that converges to 0. Prove
that

∞∑
n=1

an < ∞

if and only if an = O(1/ log n) and
∑∞

n=1(an − an+1) log n < ∞.

11830. Proposed by Leo Giugiuc, Drobeta-Turnu Severin, Romania, and Oai Thanh
Dao, Quang Trung village, Kien Xuong district, Thai Binh Province, Vietnam. Let
A, B, C be the vertices of a triangle. Let P be a parabola tangent to the line BC at A1,
to C A at B1, and to AB at C1. Let A2, B2, and C2 be the circumcenters of triangles
AB1C1, BC1 A1, and C A1 B1, respectively.
(a) Show that there is a circle through A2, B2, C2, and the focus of P .
(b) Show that the triangles ABC and A2 B2C2 are similar.

SOLUTIONS

A Tale of Three Circles

11689 [2013, 77]. Proposed by Yagub N. Aliyev, Qafqaz University, Khyrdalan,
Azerbaijan. Two circles w1 and w2 intersect at distinct points B and C and are in-
ternally tangent to a third circle w at M and N , respectively. Line BC intersects w at A
and D, with A nearer B than C . Let r1 and r2 be the radii of w1 and w2, respectively,
with r1 ≤ r2. Let u = √|AC| · |BD| and v = √|AB| · |CD|. Prove that

u − v

u + v
<

√
r1

r2
.

Solution by Richard Stong, Center for Communication Research, San Diego, CA. Lay
down coordinates with A = (0, 0) and D = (2, 0). Define s, t > 0 by

C =
(

2s

1 + s
, 0

)
, B =

(
2st

1 + st
, 0

)
,

so that

|AB| · |CD|
|AC| · |BD| = v2

u2
= t < 1.

Define θ with 0 ≤ θ < π/2 by requiring that w have center (1, tan θ), and hence,
radius r = sec θ . For i = 1, 2, let the center of wi be(

s(1 + t + 2st)

(1 + s)(1 + st)
, yi

)
.
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The fact that wi passes through B and C yields

r 2
i = y2

i + s2(1 − t)2

(1 + s)2(1 + st)2
, (1)

and the fact that wi is tangent to w yields

(sec θ − ri )
2 = (tan θ − yi )

2 + (1 − s2t)2

(1 + s)2(1 + st)2
.

Subtracting these, we obtain

yi = ri csc θ − s(1 + t) cot θ

(1 + s)(1 + st)
,

and plugging this back into (1) gives

r 2
i − 2s(1 + t) sec θ

(1 + s)(1 + st)
ri + s2 sec2 θ

(
1 + 2t cos(2θ) + t2

)
(1 + s)2(1 + st)2

= 0. (2)

Hence,

ri = s sec θ

(1 + s)(1 + st)
(1 ± 2

√
t sin θ + t)

are the two roots of the quadratic equation (2). Therefore, the ratio

r1

r2
= 1 − 2

√
t sin θ + t

1 + 2
√

t sin θ + t
= 2(1 + t)

1 + 2
√

t sin θ + t
− 1

is a decreasing function of θ for 0 ≤ θ < π/2, and hence,

r1

r2
>

(
1 − √

t

1 + √
t

)2

=
(

u − v

u + v

)2

,

as desired.

Editorial comment. Two readers—L. R. King and C. R. Pranesachar—solved a slightly
different problem, with “w1 and w2 internally tangent to w” replaced by “w internally
tangent to w1 and w2.” King proved that the ratio of v to u (whose square is the so-
called cross-ratio [B, C, A, D]) is independent of the locations of A and D (for B and
C fixed). Thus, it suffices to prove the claim for the case that the center of w is on
the segment between the centers of w1 and w2 and the configuration has an axis of
symmetry.

Also solved by R. Boukharfane (Canada), J. Chun (Korea), P. P. Dályay (Hungary), L. R. King, O. Kouba
(Syria), and C. R. Pranesachar (India).

A Polygon Inequality

11690 [2013, 77]. Proposed by Pál Péter Dályay, Szeged, Hungary. Let M be a point
in the interior of a convex polygon with vertices A1, . . . , An in order. For 1 ≤ i ≤ n,
let ri be the distance from M to Ai , and let Ri be the radius of the circumcircle of
triangle M Ai Ai+1, where An+1 = A1. Show that

n∑
i=1

Ri

ri + ri+1
≥ n

4 cos(π/n)
.

286 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 122

This content downloaded from 192.231.202.250 on Mon, 6 Apr 2015 05:16:14 AM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



Solution by Borislav Karaivanov, University of South Carolina, Columbia, SC.
For 1 ≤ i ≤ n, let αi denote the internal angle of the polygon at vertex Ai , and let

α′
i = ∠M Ai Ai+1 and α′′

i = ∠M Ai Ai−1 be the two angles into which M Ai splits αi .
By means of the sine rule in each triangle M Ai Ai+1, we have sin α′′

i+1/ri = sin α′
i/ri+1

= 1/2Ri . Using α′′
n+1 = α′

1, we can write

n∑
i=1

ri + ri+1

Ri
=

n∑
i=1

(2 sin α′
i + 2 sin α′′

i+1) = 2
n∑

i=1

(sin α′
i + sin α′′

i )

≤ 4
n∑

i=1

sin

(
α′

i + α′′
i

2

)
= 4

n∑
i=1

sin
αi

2
. (1)

The inequality is justified by concavity of the sine function on [0, π] and convexity
of the polygon. Convexity of the polygon guarantees α′

i , α
′′
i ∈ [0, π] for 1 ≤ i ≤ n.

Applying the Jensen inequality to the last sum in (1) yields

1

n

n∑
i=1

sin
αi

2
≤ sin

(∑n
i=1 αi

2n

)
= sin

(
π(n − 2)

2n

)
= sin

(π

2
− π

n

)
= cos

π

n
. (2)

Combining (1) and (2), we obtain

1

n

n∑
i=1

ri + ri+1

Ri
≤ 4 cos

π

n
.

By the harmonic-arithmetic mean inequality, we have

n
n∑

i=1

Ri

ri + ri+1

≤ 1

n

n∑
i=1

ri + ri+1

Ri
.

These last two inequalities imply

n
n∑

i=1

Ri

ri + ri+1

≤ 4 cos
π

n
.

Inverting this inequality yields the required result. Equality holds if and only if the
polygon is regular and point M is its center.

Also solved by A. Alt, G. Apostolopoulos (Greece), M. Bataille (France), D. Beckwith, R. Boukharfane & R.
Tauraso (Canada & Italy), M. Can, R. Chapman (U.K.), P. De (India), M. Dincă (Romania), O. Geupel (Ger-
many), K. Hanes, O. Kouba (Syria), P. T. Krasopoulos (Greece), O. P. Lossers (Netherlands), C. R. Pranesachar
(India), S. Y. Ri (Korea), T. Smotzer, R. Stong, M. Vowe (Switzerland), J. Zacharias, L. Zhou, GCHQ Problem
Solving Group (U.K.), and the proposer.

Some Moments That Vanish

11691 [2013, 174]. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY.
Show that the 2nth moment

∫∞
0 x2n f (x) dx of the function f given by

f (x) = d

dx
arctan

(
sinh x

cos x

)

is zero when n is an odd positive integer.
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Solution by J. G. Simmonds, Charlottesville, VA. Because

f (x) = cos x cosh x + sin x sinh x

cos2 x + sinh2 x
= 1 + i

2 cosh(1 + i)x
+ 1 − i

2 cosh(1 − i)x
,

the given integral may be expressed as In + Jn , where

In = 1 + i

2

∫ ∞

0

x2n dx

cosh(1 + i)x
, Jn = 1 − i

2

∫ ∞

0

x2n dx

cosh(1 − i)x
.

Consider a sector S+ of radius R and angle π/4 in the upper complex plane with one
ray along the positive x-axis. The integrand of Jn has no poles inside this sector, and
the integral along the one-eighth circle goes to 0 as R → ∞, so Jn may be computed
by integration along the diagonal ray instead of the positive real axis. Set x = (1 + i)r
for r > 0 to obtain Jn = 2ni n

∫∞
0 r 2n sech 2r dr .

Similarly, consider a sector S− of radius R and angle π/2 in the lower complex
plane with one ray along the positive x-axis. As before, In may be computed by in-
tegration along the diagonal ray instead of the positive real axis. Set x = (1 − i)r to
obtain In = (−1)n2ni n

∫∞
0 r 2n sech 2r dr . Hence, since n is an odd positive integer,

In + Jn = [
(−1)n + 1

]
Jn = 0, as required.

Also solved by K. Andersen (Canada), D. Beckwith, R. Chapman (U.K.), F. Holland (Ireland), O. Kouba
(Syria), K. D. Lathrop, R. Stong, GCHQ Problem Solving Group (U.K.), and the proposer.

An Inequality, Schurly

11692 [2013, 174]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh,
PA, and Ştefan Spătaru, International Computer High School of Bucharest, Bucharest,
Romania. Let a1, a2, a3, a4 be real numbers in (0, 1), with a4 = a1. Show that

3

1 − a1a2a3
+

3∑
k=1

1

1 − a3
k

≥
3∑

k=1

1

1 − a2
k ak+1

+ 1

1 − aka2
k+1

.

Solution by Traian Viteam, Punta Arenas, Chile. We use Schur’s inequality 3xyz
+ x3 + y3 + z3 ≥ x2 y + y2z + z2x + xy2 + yz2 + zx2, (valid for x, y, z ≥ 0), and
1/(1 − x) = ∑∞

k=0 xk for −1 < x < 1. Thus,

3

1 − a1a2a3
+

3∑
k=1

1

1 − a3
k

= 3
∑
j≥0

(a1a2a3)
j +

3∑
k=1

∑
j≥0

(a3
k )

j

=
∑
j≥0

(3a j
1 a j

2 a j
3 + (a j

1 )
3 + (a j

2 )
3 + (a j

3 )
3)

≥
∑
j≥0

(
3∑

k=1

(a j
k )

2a j
k+1 +

3∑
k=1

a j
k (a

j
k+1)

2

)

=
3∑

k=1

∑
j≥0

(a2
k ak+1)

j +
3∑

k=1

∑
j≥0

(aka2
k+1)

j

=
3∑

k=1

1

1 − a2
k ak+1

+
3∑

k=1

1

1 − aka2
k+1
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as claimed. Reference: Cristinel Mortici, “A power series approach to some inequali-
ties,” this Monthly 119 (2012), 147–151.

Also solved by G. Apostolopoulos (Greece), R. Boukharfane (Canada), P. Bracken, R. Chapman (U.K.),
P. P. Dályay (Hungary), M. Dincă (Romania), O. Geupel (Germany), N. Grivaux (France), E. A. Herman,
B. Karaivanov, H. Katsuura & E. Schmeichel, S. J. Kim (Korea), Y. Kim & S. Yi (Korea), O. Kouba (Syria), T.
Koupelis, J. H. Lindsey II, O. P. Lossers (Netherlands), P. Perfetti (Italy), Á. Plaza (Spain), C. R. Pranesachar
(India), M. A. Prasad (India), R. Stong, R. Tauraso (Italy), D. B. Tyler, H. Widmer (Switzerland), L. Zhou,
CMC 328, GCHQ Problem Solving Group (U.K.), TCDmath Problem Group (Ireland), and the proposers.

A Rational Polynomial

11694 [2013, 174–175]. Proposed by Proposed by Kent Holing, Trondheim, Norway.
Let g(x) = x4 + ax3 + bx2 + ax + 1, where a and b are rational. Suppose g is irre-
ducible over Q. Let G be the Galois group of g. Let Z4 denote the additive group of the
integers mod 4, and let D4 be the dihedral group of order 8. Let α = (b + 2)2 − 4a2

and β = a2 − 4b + 8.

(a) Show that G is isomorphic to Z4 or D4 if and only if neither α nor β is the square
of a rational number, and that G is cyclic exactly when αβ is the square of a rational
number.
(b) Suppose neither α nor β is a square, but αβ is. Let r be one of the roots of g.
(Trivially, 1/r is also a root.) Let s = √

αβ, and let

t = 1

2s

(
(s + (b − 6)a)r 3 + (as + (b − 8)a2 + 4(b + 2))r 2

+ ((b − 1)s + (b2 − b + 2)a − 2a3)r + 2(b + 2)b − 6a2
)
.

Show that t ∈ Q[r ] is one of the other two roots of g. Comment on the special case
a = b = 1.

Solution by Richard Stong, Center for Communications Research, San Diego CA.
(a) Though it is not stated in this way, the hypothesis that g is irreducible implies
that β is not a square. Indeed, write

g(x)

x2
=
(

x + 1

x

)2

+ a

(
x + 1

x

)
+ b − 2.

Recognizing this as a quadratic in x + 1/x with roots (−a ± √
β)/2, we obtain

g(x) =
(

x2 + a − √
β

2
x + 1

)(
x2 + a + √

β

2
x + 1

)
.

The splitting field of g is built from Q[
√

β] by adjoining roots of two quadratics.
Hence, G is a 2-group and is one of Z2 × Z2, Z4, and the eight-element dihedral group
D4. The discriminants of these quadratics are �± = (a2 − 2b − 4 ∓ a

√
β)/2. Since

these expressions are conjugate in Q[
√

β], if either is a square, then both are squares,
and then |G| = 2, a contradiction. Therefore, neither is a square in Q[

√
β]; it follows

that G has order 8 (and is D4) unless these discriminants generate the same quadratic
extension of Q[

√
β]. This requires that α is a square in Q[

√
β], with

�+�− = (a2 − 2b − 4)2 − a2β

4
= α.

Writing α as (p + q
√

β)2 for rational p and q and looking at the coefficient of
√

β,
we have q = 0 or p = 0. If q = 0, then α is a rational square. Since the discriminant
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� of g is αβ2, this implies that the Galois group G is in A4, and hence, G = Z2 × Z2.
If p = 0, then αβ is a rational square (qβ)2, and the Galois group is not in A4. In this
case, G = Z4.

(b) From the factorization above, we have four roots:{
r,

1

r

}
= −a + √

β ± 2
√

�+
4

and

{
t,

1

t

}
= −a − √

β ± 2
√

�−
4

.

Hence, (r − 1/r)(t − 1/t) = √
�+�− = √

α, and so

t − 1

t
= r

√
α

r 2 − 1
and t + 1

t
= −α − √

β

2
= −a − r − 1

r
.

With the notation just introduced, the root that matches the problem statement is
actually 1/t , not t . Subtracting the first from the second, multiplying by s, and using
s
√

α = α
√

β = α(2r + 2/r + a), we have

2s

t
= −α(2r 2 + ar + 2)

r 2 − 1
− as − sr − s

r
.

Since g(r) = 0, we compute the above using the Euclidean algorithm and find

1

r
= −r 3 − ar 2 − br − a,

α

r 2 − 1
= 2ar 3 + (2a2 − b − 2)r 2 + abr + 4a2 − b2 − 3b − 2,

α(2r 2 + ar + 2)

r 2 − 1
= (b − 6)ar 3 + ((b − 8)a2 + 4(b + 2)r 2

+ ((b2 − b − 2)a − 2a3)r + 2(b + 2)b − 6a2.

Substituting these in and collecting terms gives the desired formula

2s

t
= (s + (b − 6)a)r 3 + (as + (b − 8)a2 + 4(b + 2))r 2

+ ((b − 1)s + (b2 − b + 2)a − 2a3)r + 2(b + 2)b − 6a2.

If a = b = 1, then α = β = s = 5, and this formula simplifies to 1/t = r 2; since
the roots of g are the fifth roots of unity in this special case, 1/t = r 2 is a reasonable
answer.

Also solved by R. Chapman (UK), C. P. Rupert, the TCDmath Problem Group (Ireland), and the proposer.

A Stirling Integral

11695 [2013, 175]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania. The Stirling numbers of the first kind, denoted s(n, k), can be
defined by their generating function: z(z − 1) · · · (z − n + 1) = ∑n

k=0 s(n, k)zk . Let
m and p be nonnegative integers with m > p − 4. Prove that∫ 1

0

∫ 1

0

log x · logm(xy) · log y

(1 − xy)p
dx dy

=
{

(−1)m 1
6 (m + 3)!ζ(m + 4), if p = 1;

(−1)m+p−1 (m+3)!
6(p−1)!

∑p−1
k=1 (−1)ks(p − 1, k)ζ(m + 4 − k) if p > 1.
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Solution by David Beckwith, Sag Harbor, NY. Let I denote the given integral. Making
the changes of variables x = e−u and y = e−v and then u + v = α and u − v = β,
we have

I = (−1)m

∫ ∞

0

∫ ∞

0

(u + v)me−(u+v)

(1 − e−(u+v))p
uv du dv

= (−1)m

8

∫ ∞

α=0

∫ α

β=−α

αme−α

(1 − e−α)p
(α2 − β2)dβ dα

= (−1)m

6

∫ ∞

0

αm+3e−α

(1 − e−α)p
dα.

Setting t = e−α in the Taylor series expansion

1

(1 − t)p
=

∞∑
j=0

(
p − 1 + j

p − 1

)
t j (|t | < 1),

and integrating term-by-term (justified by positivity of all terms), we have

I = (−1)m

6

∞∑
j=0

(
p − 1 + j

p − 1

)∫ ∞

0
αm+3e−( j+1)α dα

= (−1)m(m + 3)!

6

∞∑
j=0

(
p − 1 + j

p − 1

)
j−m−4.

Taking n = p − 1 and z = − j in the generating function for the Stirling numbers of
the first kind and using the convention that s(n, 0) = δn,0, for p ≥ 1 we have(

p − 1 + j

p − 1

)
= (−1)p−1

(p − 1)!
j ( j + 1) · · · ( j + p − 2)

= (−1)p−1

(p − 1)!

p−1∑
k=0

(−1)ks(p − 1, k) j k .

Substituting this in the previous expression and reversing the order of summation, we
have

I = (−1)m+p−1 (m + 3)!

6(p − 1)!

p−1∑
k=0

(−1)ks(p − 1, k)ζ(m + 4 − k)

for m > p − 4, which (because of the convention for s(p − 1, 0)) agrees with the
requested formula for p ≥ 1.

Also solved by K. Andersen (Canada), R. Boukharfane (Canada), P. Bracken, R. Chapman (U.K.), P. P. Dályay
(Hungary), D. Fleischman, O. Kouba (Syria), O. P. Lossers (Netherlands), M. A. Prasad (India), R. Stong,
GCHQ Problem Solving Group (U.K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal, nor posted to the in-
ternet before the due date for solutions. Submitted solutions should arrive before
August 31, 2015. Additional information, such as generalizations and references,
is welcome. The problem number and the solver’s name and address should ap-
pear on each solution. An asterisk (*) after the number of a problem or a part of
a problem indicates that no solution is currently available.

PROBLEMS

11831. Proposed by Raitis Ozols, University of Latvia, Riga, Latvia. Prove that for
ε > 0 there exists an integer n such that the greatest prime divisor of n2 + 1 is less
than εn.

11832. Proposed by Donald Knuth, Stanford University, Stanford, CA. Let C(z)
= ∑∞

n=0

(2n
n

)
zn

n+1 (thus C(z) is the generating function of the Catalan numbers). Prove
that

log(C(z))2 =
∞∑

n=1

(
2n

n

)
(H2n−1 − Hn)

zn

n
.

Here, Hk = ∑k
j=1 1/j ; that is, Hk is the kth harmonic number.

11833. Proposed by Mher Safaryan, Yerevan State University, Yerevan, Armenia, and
Vahagn Aslanyan, University of Oxford, Oxford, U. K. Let f be a real-valued function
on an open interval (a, b) such that the one-sided limits limt→x− f (t) and limt→x+ f (t)
exist and are finite for all x in (a, b). Can the set of discontinuities of f be uncount-
able?

11834. Proposed by Arkady Alt, San Jose, CA. For nonnegative real numbers u, v, w,
let �(u, v, w) = 2(uv + vw + wu)− (u2 + v2 + w2). Say that two lists (a, b, c) and
(x, y, z) agree in order if (a − b)(x − y) ≥ 0, (b − c)(y − z) ≥ 0, and (c − a)(z − x)
≥ 0. Prove that if (x, y, z) and (a, b, c) agree in order, then �(a, b, c)�(x, y, z)
≥ 3�(ax, by, cz).

11835. Proposed by George Stoica, University of New Brunswick, St John, Canada.
Find all functions f from [0,∞) to [0,∞) such that whenever x, y ≥ 0,

√
3 f (2x)+ 5 f (2y) ≤ 2 f (

√
3x + 5y).

http://dx.doi.org/10.4169/amer.math.monthly.122.04.390
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11836. Proposed by Traian Viteam, Montevideo, Uruguay. Let ABC be a triangle
with sides of lengths a, b, and c, circumradius R, and inradius r . For p, q, r > 0,
let f (p, q, r) = pqr/(p + q)(r 2 − (p − q)2). Prove that

R

2r
≥ 2

3
( f (a, b, c)+ f (b, c, a)+ f (c, a, b)) .

11837. Proposed by Iosif Pinelis, Michigan Technological University, Houghton, MI.
Let a0 = 1, and for n ≥ 0 let an+1 = an + e−an . Let bn = an − log n. For n ≥ 0, show
that 0 < bn+1 < bn; also show that limn→∞ bn = 0. (The proposer notes that the con-
tent of Problem B4 of the 73rd William Lowell Putnam Mathematical Competition—
see, e.g., this Monthly, Volume 120, no. 8, pages 682–686—was the question of
whether bn has a finite limit as n → ∞.)

SOLUTIONS

A Triangle Inequality

11696 [2013, 175]. Proposed by Enkel Hysnelaj, University of Technology, Sydney,
Australia, and Elton Bojaxhiu, Kriftel, Germany. Let T be a triangle with sides of
length a, b, c, inradius r , circumradius R, and semiperimeter p. Show that

1

2(r 2 + 4Rr)
+ 1

9

∑
cyc

1

c(p − c)
≥ 4

9

∑
cyc

(
1

9Rr − c(p − c)

)
.

Solution by Theo Koupelis, Edison State College, Fort Myers, FL. Let A, B,C de-
note the angles opposite sides a, b, c, respectively. Now p − c = r cot(C/2) and
c = 2R sin C , so c(p − c) = 2rR(1 + cos C), and thus 9rR − c(p − c)
= rR(7 − 2 cos C). Therefore,

4

9

∑
cyc

(
1

9Rr − c(p − c)

)
− 1

9

∑
cyc

1

c(p − c)
= 1

18rR

∑
cyc

1 + 10 cos A

(1 + cos A)(7 − 2 cos A)
.

Using r = R(cos A + cos B + cos C − 1), we get 2(r 2 + 4rR) = 2rR(cos A
+ cos B + cos C + 3). Thus the given inequality is equivalent to

9

cos A + cos B + cos C + 3
≥
∑
cyc

1 + 10 cos A

(1 + cos A)(7 − 2 cos A)
.

On the other hand,

1 + 10 cos A

(1 + cos A)(7 − 2 cos A)
≤ 8 cos A + 2

9
,

because this inequality is equivalent to
(
cos A − 1

2

)2
(16 cos A − 20) ≤ 0. Therefore,

∑
cyc

1 + 10 cos A

(1 + cos A)(7 − 2 cos A)
≤ 8(cos A + cos B + cos C)+ 6

9
,

with equality when the triangle is equilateral.
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Now cos A + cos B + cos C ≤ 3
2 , with equality holding when A = B = C = π/3.

Thus,

9

cos A + cos B + cos C + 3
≥ 2 while

8(cos A + cos B + cos C)+ 6

9
≤ 2.

Therefore the given inequality is true, with equality for an equilateral triangle.

Also solved by R. Boukharfane (Canada), R. Chapman (U. K.), P. P. Dályay (Hungary), B. Karaivanov, O.
Kouba (Syria), K.-W. Lau (China), P. Nüesch (Switzerland), P. Perfetti (Italy), C. R. Pranesachar (India), R.
Stong, R. Tauraso (Italy), GCHQ Problem Solving Group (U. K.), and the proposers.

A Limit with Gamma

11697 [2013, 175]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France.
Let n and q be integers, with 2n > q ≥ 1. Let

f (t) =
∫

Rq

e−t (x2n
1 +···+x2n

q )

1 + x2n
1 + · · · x2n

q

dx1 · · · dxq .

Prove that limt→∞ tq/2n f (t) = n−q(�(1/2n))q .

Solution by Roberto Tauraso, Università di Roma, “Tor Vergata,” Roma, Italy. Let
x2n

i = ui for i = 1, . . . , q so that dxi = 1
2n (ui)

1/(2n)−1 dui and

f (t) = 2q

∫
[0,∞)q

e−t (x2n
1 +···+x2n

q )

1 + x2n
1 + · · · + x2n

q

dx1 · · · dxq

= n−q

∫
[0,∞)q

∏q
i=1 u1/(2n)−1

i e−tui

1 + u1 + · · · + uq
du1 · · · duq

= n−q

∫
[0,∞)q

q∏
i=1

u1/(2n)−1
i e−tui

(∫ ∞

0
e−s(1+u1+···+uq ) ds

)
du1 · · · duq

= n−q

∫ ∞

0
e−s

(∫
[0,∞)q

q∏
i=1

u1/(2n)−1
i e−(s+t)ui du1 · · · duq

)
ds

= n−q

∫ ∞

0
e−s

(∫ ∞

0
u1/(2n)−1e−(s+t)u du

)q

ds

= n−q

∫ ∞

0
e−s

(
1

(s + t)1/(2n)

∫ ∞

0
r 1/(2n)−1e−r dr

)q

ds

= n−q�

(
1

2n

)q ∫ ∞

0

e−s

(s + t)q/(2n)
ds.

The integral form of the Gamma function has been used in completing the last line.
Now the required limit can be evaluated as follows:

lim
t→∞

tq/2n f (t) = n−q�

(
1

2n

)q

lim
t→∞

∫ ∞

0

(
t

s + t

)q/2n

e−sds = n−q�

(
1

2n

)q

.

The computation first uses 0 ≤ (
t

s+t

)q/2n ≤ 1 and limt→∞
(

t
s+t

)q/2n = 1, and then the
limit of the remaining integral over s is equal to �(1) = 1. The condition 2n > q has
not been used and seems to be unnecessary.
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Also solved by K. Andersen (Canada), D. Beckwith, M. Benito, Ó. Ciaurri, E. Fernández & L. Roncal (Spain),
R. Boukharfane (Canada), P. Bracken, R. Chapman (U. K.), O. Furdui (Romania), J.-P. Grivaux (France), J. A.
Grzesik, E. A. Herman, B. D. Hughes (Australia), O. Kouba (Syria), O. P. Lossers (Netherlands), P. Perfetti
(Italy), M. A. Prasad (India), C. M. Russell, R. Stong, N. Thornber, BSI Problems Group (Germany), NSA
PRoblems Group, GCHQ Problem Solving Group (U. K.), and the proposer.

A Rational Function that Simplifies at a Special Point

11698 [2013, 365]. Proposed by Timothy Hall, Cambridge, MA. Provide an algorithm
that takes as input a positive integer n and a nonzero constant k and returns polynomials
F and G in variables u and v such that when xn is substituted for u, and x + k/x is
substituted for v, F(u, v)/G(u, v) simplifies (disregarding removable singularities) to
x . (For example, when k = 1 and n = 3, F = u + v and G = v2 − 1 will do.)

Solution by David Beckwith, Sag Harbor, NY. Powers of v expand as(
x + k

x

)n

= xn + · · · +
(

n

j

)
xn− j k j

x j
+ · · · + kn

xn
.

Combining the first and last terms, the second and next-to-last, and so on yields(
x + k

x

)n

=
(

xn + kn

xn

)
+
(

n

1

)
k

(
xn−2 + kn−2

xn−2

)
+ · · ·

+
(

n

2

)
k2

(
xn−4 + kn−4

xn−4

)
+ · · · +

⎧⎨
⎩
( n
�n/2	

)
k�n/2	(x + k

x ) for n odd,( n
n/2

)
kn/2 for n even.

(1)

With v = x + k/x , we claim for n ≥ 1 that xn + kn/xn can be written as φn(v) with
φn being a polynomial of degree n. The proof is by induction on n. Note that φ1(v) = v

and φ2(v) = v2 − 2k. For n ≥ 3, (1) gives

xn + kn

xn
= vn −

(
n

1

)
kφn−2(v)−

(
n

2

)
k2φn−4(v)−

(
n

3

)
k3φn−6(v)− · · · ,

proving the claim.
The formulas for the desired polynomials depend on n, so we write them as

Fn(u, v) and Gn(u, v). When n = 1, we have u = x , so we may let F1(u, v) = u and

G1(u, v) = 1. When n = 2, we have uv
u+k = x2(x+2/x)

x2+2
= x , so we set F2(u, v) = uv

and G2(u, v) = u + k.
For n ≥ 3 with n odd, note that

φ(n−1)/2(v)

φ(n+1)/2(v)
=
(

x (n−1)/2 + k(n−1)/2

x(n−1)/2

)
x (n+1)/2(

x (n+1)/2 + k(n+1)/2

x(n+1)/2

)
x (n+1)/2

= u + k(n−1)/2x

ux + k(n+1)/2
.

Solving for x gives

x = uφ(n+1)/2(v)− k(n+1)/2φ(n−1)/2(v)

uφ(n−1)/2(v)− k(n−1)/2φ(n+1)/2(v)
.

Hence we may set Fn(u, v) = uφ(n+1)/2(v) − k(n+1)/2φ(n−1)/2(v) and Gn(u, v)
= uφ(n−1)/2(v)− k(n−1)/2φ(n+1)/2(v).
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Finally, for n ≥ 4 with n even, note that x2 = vx − k. Now

φ(n−2)/2(v)

φn/2(v)
=

x (n+2)/2
(

x (n−2)/2 + k(n−2)/2

x(n−2)/2

)
x (n+2)/2

(
xn/2 + kn/2

xn/2

) = u − kn/2 + k(n−2)/2vx

(u + kn/2)x
.

Solving for x gives

x = (u − kn/2)φn/2(v)

(u + kn/2)φ(n−2)/2(v)− k(n−2)/2vφn/2(v)
.

Hence in this case we may set Fn(u, v) = (u − kn/2)φn/2(v) and Gn(u, v)
= (u + kn/2)φ(n−2)/2(v)− k(n−2)/2vφn/2(v).

Also solved by B. Radouan (Canada), R. Chapman (U. K.), E. A. Herman, O. P. Lossers (Netherlands),
C. R. Pranesachar (India), R. E. Prather, C. P. Rupert, B. Schmuland (Canada), N. C. Singer, J. H. Steelman,
R. Stong, GCHQ Problem Solving Group (U. K.), TCD Problem Group (Ireland), and the proposer.

A New Divisor Every Time?

11699 [2013, 635]. Proposed by Bakir Farhi, University of Bejaia, Bejaia, Algeria.
Let 〈ak〉 be a strictly increasing sequence of positive integers such that

∑∞
k=2

1
ak log ak

diverges. Prove that lcm(a1, . . . , ak) = lcm(a1, . . . , ak+1) for infinitely many k in N.

Solution by TCDmath Problems Group, Trinity College, Dublin, Ireland. Suppose to
the contrary that lcm(a1, . . . , ak) < lcm(a1, . . . , ak+1) for k ≥ N . For k > N , there
must then be a prime power q which divides ak but does not divide a j for any j < k.
Let us choose one such prime power qk for each k > N . By construction the prime
powers qk are distinct. Hence

∞∑
k=N+1

1

ak log ak
≤

∞∑
k=N+1

1

qk log qk
≤
∑

q

1

q log q
,

where the last sum is taken over all prime powers q. However,

∑
q

1

q log q
=
∑

p

1

p log p

∞∑
j=0

1

( j + 1)p j
≤
∑

p

1

p log p

∞∑
j=0

1

p j
≤

∞∑
j=0

2

p log p
.

By the prime number theorem, pn ∼ n log n (where pn is the nth prime). Hence
pn log pn ∼ n log2 n. Since the sum

∑∞
n=2

1
n log2 n

is easily seen to converge by compar-

ison with
∫

dx
x log2 x

, it follows that
∑ 1

ak log ak
converges, contrary to the hypothesis.

Also solved by R. Boukharfane (Canada), R. Chapman (U. K.), O. P. Lossers (Netherlands), R. Martin (Ger-
many), H. C. Morris, P. Pongsriiam (Thailand), M. A. Prasad (India), R. Stong, R. Tauraso (Italy), L. Zhou,
GCHQ Problem Solving Group (U. K.), and the proposer.

Harmonic Sum Asymptotics

11701 [2013, 000]. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National
College, Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” Secondary
School, Buzău, Romania.
(a) Let 〈xn〉 be the sequence defined by

∑mn
k=1 1/k = γ + log(mn + xn), where γ is

the Euler–Mascheroni constant. Find limn→∞ xn .
(b) Let 〈yn〉 be the sequence defined by

∑mn
k=1 1/k = γ + log(m(n + yn)). Find

limn→∞ yn .
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Solution by Paul Bracken, University of Texas, Edinburg, TX. (a) Define a sequence by
γn = − log(n)+∑n

k=1 1/k. Note that

γn − γ =
n∑

k=1

1

k
− log(n)− γ = 1

2n
− 1

12n2
+ O

(
1

n4

)
. (1)

The equation that defines the sequence {xn} can be put in the form

− log(mn + xn)+ log(mn)− log(mn)+
∑mn

k=1
1/k = γ.

Hence, log
(
1 + xn

mn

) = γmn − γ . Solving this equation for xn yields

xn = mn(eγmn−γ − 1) =
(

eγmn−γ − 1

γmn − γ

)
· mn(γmn − γ ).

The limit of the ratio on the right side exists since γmn → γ when n → ∞ so

lim
n→∞

eγmn−γ − 1

γmn − γ
= lim

u→0

eu − 1

u
= 1. (2)

The required limit is

lim
n→∞

xn = lim
n→∞

mn(γmn − γ ) = lim
M→∞

M · (γM − γ ) = 1

2
.

(b) The equation that determines the sequence yn is equivalent to

− log(m(n + yn))+ log(mn)− log(mn)+
∑mn

k=1
1/k = γ.

Thus log
(
1 + yn

n

) = γmn − γ , and

yn = (eγmn−γ − 1) · n = eγmn−γ − 1

γmn − γ
· n(γmn − γ ).

Using (1) and (2) again,

lim
n→∞

yn = 1

m
lim

n→∞
mn (γmn − γ ) = 1

m
lim

M→∞
M · (γM − γ ) = 1

2m
.

This is the required limit for (b).

Also solved by R. Boukharfane (Canada), R. Chapman (U. K.), M. W. Coffey, D. Fleischman, O. Furdui
(Romania), O. Geupel (Germany), J.-P. Grivaux (France), E. A. Herman, O. Kouba (Syria), O. P. Lossers
(Netherlands), J. Martı́nez (Spain), M. R. Modak (U. K.), M. Omarjee (France), P. Perfetti (Italy), P. Pongsriiam
(Thailand), C. P. Rupert, J. Schlosberg, N. C. Singer, A. Stenger, R. Stong, D. B. Tyler, E. I. Verriest, M. Vowe
(Switzerland), S. Wagon, L. Zhou, GHCQ Problem Solving Group (U. K.), GWstat Problem Solving Group,
Missouri State University Problem Solving Group, and the proposers.

One Ring Rings True

11702 [2013]. Proposed by Greg Oman, University of Colorado at Colorado Springs,
Colorado Springs, CO. Find all nonzero rings R (not assumed to be commutative or
to contain a multiplicative identity) with these properties:

(a) There exists x ∈ R that is neither a left nor a right zero divisor, and
(b) Every map ϕ from R to R that satisfies ϕ(x + y) = ϕ(x)+ ϕ(y) also satisfies

ϕ(xy) = ϕ(x)ϕ(y). (Every additive homomorphism on R is a ring homomorphism.)
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Solution by Bill Abrams. The only such ring is Z2, which clearly satisfies both prop-
erties. Conversely, let R be a ring satisfying (a) and (b), and let x ∈ R be an element
establishing (a). If ϕ is the additive homomorphism on R given by left multiplication
by x , then for all a, b ∈ R we use (b) to compute xab = ϕ(ab) = ϕ(a)ϕ(b) = xaxb.
Since x is not a zero divisor, canceling x yields ab = axb. Putting x = a yields
xb = xxb, so b = xb; putting x = b yields ax = axx , so a = ax . Thus, x is a two-
sided multiplicative identity; call it 1.

Now let ψ be the ring homomorphism defined by ψ(a) = a + a. Since ψ(a)
= ψ(a)ψ(1) for all a ∈ R, it follows that a + a = a + a + a + a, so a + a = 0.
Identify the subring {0, 1} of R with Z2, so R is in fact a Z2-algebra. Let B be a basis
for R over Z2 that contains 1, and choose c ∈ B with c �= 1. The mapping f that
switches c and 1 and sends the rest of B to 0 is linear, so

1 = f (c) = f (1 · c) = f (1) f (c) = c · 1 = c,

which is a contradiction. Hence B = {1} and R = Z2.

Editorial comment. Several solvers showed that R is a boolean ring.

Also solved by P. Budney, R. Chapman (U. K.), S. M. Gagola Jr., C. Lanski, O. P. Lossers (Netherlands),
P. S. Peck, F. Perdomo & A. Francisco (Spain), C. P. Rupert, R. Stong, R. Trachtman, D. Tyler, the Missouri
State University Problem Solving Group, the NSA Problems Group, the TCDmath Problem Group (Ireland),
and the proposer.

A Focus of an Ellipse in a Cone

11703 [2013, 366]. Proposed by Richard Bagby, New Mexico State University, Las
Cruces, NM. For λ > 0, let �(λ) = {(x, y, z) ∈ R3 : z ≥ λ

√
x2 + y2}, and let C(λ) be

the (half-cone) boundary of �(λ). Prove that every point in the interior of �(λ) is the
focus of at least one ellipse in C(λ), and find the largest μ such that every ellipse in
C(λ) has at least one focus in �(μ).

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. We may assume without loss of generality that a prescribed focus is
given in the xz plane. At this focus, the plane of the ellipse is tangent to a sphere (the
Dandelin sphere) that has its center on the axis of the cone and touches the cone. This
center has equal distances to the focus and the intersection of the sphere with C(λ);
so, to find this center, intersect the axis with a parabola whose focus is the given focus
and whose directrix is z = ±λx . There are two solutions: a larger sphere and a smaller
sphere. The intersection of the tangent plane with C(λ) is an ellipse only if the angle
the plane makes with the axis is larger than the vertex angle of the cone. For the larger
sphere, this is no problem, so there is at least one ellipse with the given point as focus.
For the smaller sphere, however, the limiting case is a plane parallel to a half-line in
C(λ). (The intersection is then a parabola.) At the point of the sphere opposite the
focus the sphere touches C(λ). Suppose this point has coordinates (−a, 0, λa). The
center of the sphere is then (0, 0, λ+ 1/λ), and the focus is (a, 0, (λ+ 2/λ)a). The
largest μ is λ+ 2/λ, since if (a, 0, b) is a point with b > |a|(λ+ 2/λ), then it is the
focus of an ellipse in C(λ).

Also solved by R. Boukharfane (Canada), R. Chapman (U. K.), J.-P. Grivaux (France), M. E. Kidwell & M. D.
Meyerson & D. Ruth & M. Wakefield, J. Martı́nez (Spain), P. Perfetti (Italy), K. A. Roper, R. Stong, E. I.
Verriest, L. Zhou, GCHQ Problem Solving Group (U. K.), Missouri State University Problem Solving Group,
TCDmath Problem Group (Ireland), and the proposer.
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Cycles in Products of Involutions

11704 [2013, 366]. Proposed by Olivier Bernardi, Brandeis University, Waltham, MA,
Thaynara Arielly de Lima, Universidade de Brasilia, Brasilia, Brazil, and Richard
Stanley, Massachusetts Institute of Technology, Cambridge, MA. Let S2n denote the
symmetric group of all permutations of {1, . . . , 2n} and let T2n denote the set of all
fixed-point-free involutions in S2n . Choose u and v from T2n at random (any element
of T2n being as likely as any other) and independently. What is the probability that
1 and 2 are in the same cycle of the permutation uv? (For example, when n = 2,
T2n = {2143, 3412, 4321}, (u, v) can be (3412, 4321) or (4321, 3412), and the re-
quired probability is 2/9.)

Solution by Reiner Martin, Bad Soden-Neuenhain, Germany. We will show by induc-
tion on n that the probability is 2n−2

6n−3 . Let [m] = {1, . . . ,m}. For n = 1, the probability
is 0, since u and v must both transpose 1 and 2.

Now consider n > 1. Begin with 1 and apply uv repeatedly to obtain the distinct
elements in the cycle of uv containing 1. The transpositions in v can be viewed as a red
matching on [2n], and similarly u can be viewed as a blue matching on [2n]. Following
the cycle of uv containing 1 is following red and blue alternately, completing an even
cycle of elements. Because each element is in only one edge of each color, elements
reached after an odd number of steps cannot also be reached after an even number of
steps. Therefore, if v(1) = 2, then 1 and 2 cannot be in the same cycle under uv.

Assume now that v(1) �= 2, which occurs with probability 2n−2
2n−1 . If uv(1) = 2, which

occurs with probability 2n−2
(2n−1)2

, then 1 and 2 are in the same cycle of uv.

The remaining case is v(1) �= 2 and uv(1) �= 2, with probability (2n−2)(2n−3)
(2n−1)2

.
Now we construct fixed-point-free involutions u′ and v′ on [2n] − {v(1), uv(1)}.
Obtain u′ by restricting u to [2n] − {v(1), uv(1)}. Let v′ agree with v on [2n]
− {1, v(1), uv(1), vuv(1)}, but let v′(vuv(1)) = 1 and v′(v(1)) = uv(1).

Note that 1 and 2 are in the same cycle of uv if and only if 1 and 2 are in the
same cycle of u′v′. For each fixed choice of the distinct elements v(1) and uv(1),
neither equal to 2, the involution u′ is a random fixed-point-free involution on 2n − 2
elements. Also, once the distinct elements v(1) and uv(1) are specified (neither in
{1, 2}), the choice of vuv(1) is random among the remaining elements other than 1
(it cannot equal 1 since v(1) �= uv(1)). Therefore, v′ is also a random fixed-point-free
involution on the same 2n − 2 elements as u′.

By the induction hypothesis, 1 and 2 are in the same cycle of u′v′ with probability
2n−4
6n−9 . To obtain the probability that 1 and 2 are in the same cycle of uv, we compute

2n − 2

(2n − 1)2
+ (2n − 2)(2n − 3)

(2n − 1)2
· 2n − 4

6n − 9
= 2n − 2

6n − 3
.

Editorial comment. The proposers noted that the probability approaches 1/3 as n →
∞, while 1 and 2 are in the same cycle of a random permutation of Sn with probability
exactly 1/2 for n ≥ 2. The proposers showed that the probability that 1, . . . , k are all
in the same cycle of uv is (k−1)!

(2k−1)!! · 2k
(n−1

k

)
/
(2n−1

k

)
.

Also solved by R. Boukharfane (Canada), R. Chapman (U. K.), C. Delorme (France), O. Geupel (Germany),
D. Gove, Y. J. Ionin, D. Knuth, J. H. Lindsey II, O. P. Lossers (Netherlands), M. A. Prasad (India), R. E. Prather,
C. P. Rupert, B. Schmuland (Canada), R. Tauraso (Italy), GCHQ Problem Solving Group (U. K.), Missouri
State University Problem Solving Group, and the proposers.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal, nor posted to the
internet before the due date for solutions. Submitted solutions should arrive be-
fore September 30, 2015. Additional information, such as generalizations and
references, is welcome. The problem number and the solver’s name and address
should appear on each solution. An asterisk (*) after the number of a problem
or a part of a problem indicates that no solution is currently available.

PROBLEMS

11838. Proposed by Richard Stanley, Massachusetts Institute of Technology, Cam-
bridge, MA. Let n be a positive integer. Find the least integer f (n) with the following
property: if M is an n × n matrix of nonnegative integers with every row and column
sum equal to f (n), then M contains n entries, all greater than 1, with no two of these
n entries in the same row or column.

11839. Proposed by Pál Péter Dályay, Szeged, Hungary. Let R be the circumradius, r
the inradius, and s the semiperimeter of a triangle. Prove that

16R3 + 20R2r + 15Rr 2 + 5r 3 ≥ s2(4R + r),

with equality if and only if the triangle is equilateral.

11840. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Let z1, . . . , zn be complex numbers. Prove that(

n∑
k=1

|zk |
)2

−
∣∣∣∣∣

n∑
k=1

zk

∣∣∣∣∣
2

≥
(

n∑
k=1

|Rezk | −
∣∣∣∣∣

n∑
k=1

Rezk

∣∣∣∣∣
)2

.

(Here Re z denotes the real part of z.)

11841. Proposed by Leonard Giugiuc, Drobeta-Turnu Severin, Romania. Let ABCD
be a convex quadrilateral. Let E be the midpoint of AC, and let F be the midpoint of
BD. Show that

|AB| + |BC| + |CD| + |DA| ≥ |AC| + |BD| + 2|EF|.
(Here |XY| denotes the distance from X to Y .)

http://dx.doi.org/10.4169/amer.math.monthly.122.5.500
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11842. Proposed by István Mező, Nanjing University of Information Science and Tech-
nology, Nanjing, China. Let ψ be the Digamma function, that is, ψ(x) = (log�(x))′.
Let φ = (1 + √

5)/2. Prove that

∞∑
n=1

ψ(n + φ)− ψ(n − 1/φ)

n2 + n − 1
= π2

2
√

5
+ π2 tan2(

√
5π/2)√

5
+ 4

5
π tan(

√
5π/2).

11843. Proposed by Mihali Bencze, Bucharest, Romania. Let n and k be positive inte-
gers, and let x j ≥ 1 for 1 ≤ j ≤ n. Let y = ∏n

j=1 x j . Show that

n∑
i=1

1

1 + xi
≥

n∑
j=1

1

1 + (xk−1
j y)1/(n+k−1)

.

11844. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso, Univer-
sità di Roma “Tor Vergata,” Rome, Italy. For nonnegative integers m and n, prove

n∑
k=0

(m − 2k)

(
m

k

)3

= (m − n)

(
m

n

) m−1∑
j=0

(
j

n

)(
j

m − n − 1

)
.

(Here
(u
v

)
is zero if u < v, and a sum is zero if its range of summation is empty.)

SOLUTIONS

Expressions as a Sum of Primes

11705 [2013, 469]. Proposed by John Loase, Concordia College, Westchester County,
NY. Let C(n) be the number of distinct multisets of two or more primes that sum
to n. Prove that C(n + 1) ≥ C(n) for all n. (For instance, C(4) = 1, C(5) = 1, and
C(6) = 2.)

Solution by Victor Pambuccian, Arizona State University - West Campus, Glendale,
AZ. For n ≥ 2, let Sn denote the set of multisets of primes summing to n. Define
ϕ : Sn → Sn+1 by letting ϕ(A) be the multiset obtained from A by (a) replacing one
2 with 3 if 2 ∈ A, (b) replacing the smallest odd prime p in A with (p + 1)/2 copies
of 2 if 2, 3 /∈ A, or (c) replacing all k copies of 3 in A with (3k + 1)/p copies of the
smallest prime p dividing 3k + 1 if 2 /∈ A and 3 ∈ A.

Consider a resulting multiset A′. If A′ arises in case (a), then 3 ∈ A′, but in case (b)
or (c) 3 /∈ A′. If A′ arises in case (b) or (c), then 2 ∈ A′; let q be the sum of the copies
of 2. In case (c), q − 1 is divisible by 3, but in case (b) q − 1 is a prime greater than 3.
Hence A′ cannot arise from both case (b) and case (c).

We conclude that ϕ is injective, so C(n + 1) > C(n).

Editorial comment. Several solvers showed that C(n + 1) > C(n) for n ≥ 11. Traian
Viteam points out that this problem is related to (but not the same as) the partitions
into primes in an article by P. T. Bateman and P. Erdős, Publ. Math. Debrecen 4 (1956)
198–200.

Also solved by R. Boukharfane (Canada), P. P. Dályay (Hungary), C. Hurlburt, Y. J. Ionin, O. P. Lossers
(Netherlands), R. Martin (Germany), R. E. Prather, J. P. Robertson, C. P. Rupert, J. M. Sanders, R. Tauraso
(Italy), and T. Viteam (Chile).
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Strongly Uncorrelated Sequences of Projections

11708 [2013, 469]. Proposed by James W. Moeller, University of Illinois at Chicago,
Chicago, IL. Let 〈En〉 and 〈Pn〉 be two sequences of distinct orthogonal projections
on an infinite-dimensional Hilbert space H whose ranges are finite-dimensional and
satisfy the intersection property

RanEn ∩ (RanPn)
⊥ = {0} = RanPn ∩ (RanEn)

⊥.

Such sequences are strongly uncorrelated if 〈En〉 converges strongly to 0 while 〈Pn〉
converges strongly to I . (A sequence 〈Ln〉 of bounded linear operators on a Hilbert
space H converges strongly to L if Ln x → Lx for all x ∈ H .)

Show that the set of strongly uncorrelated sequences of projections is nonempty.

Solution by Richard Bagby, New Mexico State University, Las Cruces, NM. Let H
be the Hilbert space (real or complex) spanned by the orthonormal basis {ek}∞

k=1 and
let Hn denote the n-dimensional subspace of H spanned by {ek}n

k=1. The orthogonal
projection Pn of H onto Hn is given by

Pn x =
n∑

k=1

(x · ek) ek,

where x · y is the inner product of x, y ∈ H . Since x = ∑∞
k=1(x · ek) ek with |x |2 =∑∞

k=1 |x · ek |2,

|x − Pn x |2 =
∣∣∣∣∣

∞∑
k=n+1

(x · ek)ek

∣∣∣∣∣
2

=
∞∑

k=n+1

|x · ek |2 → 0, n → ∞.

Consequently, Pn converges strongly to the identity operator I in H .
For each positive integer n, let

an = sin
π

2n
, bn = cos

π

2n
.

Note that |an|2 + |bn|2 = 1, so { fk : 1 ≤ k ≤ n} with fk = anek + bnen+k is an or-
thonormal set in H2n . As such, it spans an n-dimensional subspace Gn of H , and the
orthogonal projection En of H onto Gn is given by

En x =
n∑

k=1

(x · fk) fk .

By orthonormality,

|En x |2 =
n∑

k=1

|x · fk |2 =
n∑

k=1

|an x · ek + bn x · en+k |2

= |an|2
n∑

k=1

|x · ek |2 + 2 Re

(
anbn

n∑
k=1

(x · ek)(x · en+k)

)
+ |bn|2

n∑
k=1

|x · en+k |2

≤ 2|an|2
n∑

k=1

|x · ek |2 + 2|bn|2
n∑

k=1

|x · en+k |2,

where the last step uses Schwartz’s inequality. Thus

| En x |2≤ 2a2
n |x |2 + 2b2

n | x − Pn x |2 .
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Since an → 0 and |bn| ≤ 1 while |x − Pn x | → 0, we have Enx → 0 strongly in H .
Finally, we have Hn ∩ G⊥

n = Gn ∩ H⊥
n = {0}. Indeed, G⊥

n consists of all elements
x ∈ H with x · fk = 0 for 1 ≤ k ≤ n, while for x ∈ Hn we have

x · fk = an x · ek + bn x · en+k = an x · ek .

Thus x = Pn x for all x ∈ Hn and Pn x = 0 for all x ∈ Hn ∩ G⊥
n , which together imply

x = 0. On the other hand, H⊥
n consists of all elements x ∈ H with x · e j = 0 for

1 ≤ j ≤ n, while x = Enx for all x ∈ Gn . However, it follows that

(Enx) · e j =
(

n∑
k=1

(x · fk)(anek + bnen+k)

)
· e j = an(x · f j ), 1 ≤ j ≤ n.

Thus, for all x ∈ H⊥
n , En x = 0.

Also solved by J. Boersema, K. P. Hart (Netherlands), O. P. Lossers (Netherlands), J. Martı́nez (Spain), and
the proposer.

Fubini and Riemann–Lebesgue

11709 [2013, 470]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France.
Find ∫ ∞

x=0

1

x

∫ x

y=0

cos(x − y)− cos(x)

y
dy dx.

Solution by Kenneth F. Andersen, Edmonton, Alberta, Canada. The value of the inte-
gral is π2/6. Let f (x, y) = 1

y (cos(x − y)− cos(x)). For x > 0, we have

∫ x

0
f (x, y)dy =

∫ 1

0

cos(1 − t)x − cos x

t
dt = x

∫ 1

0

1

t

∫ 1

1−t
sin ux du dt

and thus, for R > 0,∫ R

0

1

x

∫ x

0
f (x, y)dy dx =

∫ R

0

∫ 1

0

1

t

∫ 1

1−t
sin ux du dt dx.

Since | sin ux| ≤ 1, the triple integral is absolutely convergent. Therefore Fubini’s
theorem justifies an interchange in the order of integration to yield∫ R

0

1

x

∫ x

0
f (x, y)dy dx =

∫ 1

0

∫ 1

1−t

1

t

∫ R

0
sin ux dx du dt

=
∫ 1

0

1 − cos Ru

u

∫ 1

1−u

1

t
dt du

= −
∫ 1

0

log(1 − u)

u
du +

∫ 1

0

log(1 − u)

u
cos Ru du.

Since | log(1 − u)/u| ∈ L1([0, 1]), the Riemann–Lebesgue lemma shows that

lim
R→∞

∫ 1

0

log(1 − u)

u
cos Ru du = 0.
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Thus we have

lim
R→∞

∫ R

0

1

x

∫ x

0
f (x, y)dy dx = −

∫ 1

0

log(1 − u)

u
du

=
∫ 1

0

∞∑
n=1

tn−1

n
dt =

∞∑
n=1

1

n2
= π2

6
.

Editorial comment. O. Furdui also noted that this integral appeared as an open prob-
lem (Problem 12-002) proposed by Z. K. Silagadze in SIAM Problems and Solutions
(http://www.siam.org/journals/categories/12-002.php).

Also solved by R. Bagby, R. Chapman (U. K.), O. Furdui (Romania), A. Heinis (Netherlands), F. Holland
(Ireland), O. Kouba (Syria), K. D. Lathrop, and S. Wagon.

A Pesky Fractional Identity

11711 [2013, 470]. Proposed by J. A. Grzesik, Allwave Corporation, Torrance, CA.
Show, for integers n and k with n ≥ 2 and 1 ≤ k ≤ n, that

(−1)n−k

(
n

k

)
k

∑
j∈[n]−{k}

1

k − j
= −

∑
j∈[n]−{k}

(−1)n− j

(
n

j

)
j

k − j
.

Solution by Traian Viteam, Punta Arenas, Chile. We prove a more general identity
from which the claim follows.

For distinct numbers a1, . . . , an , consider the partial fraction expansion

1∏n
j=1(x − a j )

=
n∑

j=1

A j

x − a j
. (1)

The “Heaviside method” computes the coefficients by multiplying (1) by
∏n

i=1(x −
ai) and then setting x = a j . This yields

A j =
∏
i∈S j

1

a j − ai
, (2)

where Sj = [n] − { j}.
We need a different expression for the particular coefficient Ak . Subtracting

Ak/(x − ak) from both sides of (1) yields

1 − Ak
∏

j∈Sk
(x − a j )∏n

j=1(x − a j )
=
∑
j∈Sk

A j

x − a j
. (3)

With L(x) denoting the left side, let x tend to ak in (3). From (1), the numerator of
L(x) tends to 0. Hence we can evaluate limx→ak L(x) by l’Hospital’s rule. Letting
Sj,k = [n] − { j, k}, we obtain

lim
x→ak

L(x) = lim
x→ak

−Ak
∑

j∈Sk

∏
i∈S j,k

(x − ai )∑
j∈[n]

∏
i∈S j

(x − ai )
=

−Ak
∑

j∈Sk

∏
i∈S j,k

(ak − ai)∑
j∈[n]

∏
i∈S j

(ak − ai)

=
−Ak

∑
j∈Sk

∏
i∈S j,k

(ak − ai )∏
i∈Sk

(ak − ai)
= − Ak

∑
j∈Sk

1

ak − a j
.
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Thus as x → ak , (3) becomes the general identity

− Ak

∑
j∈Sk

1

ak − a j
=
∑
j∈Sk

A j

ak − a j
. (4)

Specializing (2) to a j = j for 1 ≤ j ≤ n yields

A j =
∏
i∈S j

1

j − i
= 1

(n − 1)!
(−1)n− j

(
n − 1

j − 1

)
= 1

n!
(−1)n− j

(
n

j

)
j. (5)

Substituting (5) into the specialization of (4) on both sides yields the desired identity.

Editorial comment. Several solvers used the partial fraction approach with less direct
expansion formulas. Others treated the problem as an identity of functions in two in-
teger variables and used properties of binomial coefficients, harmonic numbers, and
weighted sums to give essentially inductive proofs.

Also solved by U. Abel (Germany), D. Beckwith, R. Boukharfane (Canada), K. N. Boyadzhiev, P. Bracken,
R. Chapman (U. K.), C. T. R. Conley, P. P. Dályay (Hungary), I. Gessel, O. Geupel (Germany), F. Henderson,
B. Karaivanov, O. Kouba (Syria), O. P. Lossers (Netherlands), J. Martı́nez (Spain), M. Omarjee (France),
C. R. Pranesachar (India), R. Tauraso (Italy), D. B. Tyler, J. van Hamme (Belgium), GCHQ Problem Solving
Group (U. K.), and the proposer.

Bulgarian Solitaire from One Pile

11712 [2013, 569]. Proposed by Daniel W. Cranston, Virginia Commonwealth Univer-
sity, Richmond, VA, and Douglas B. West, Zhejiang Normal University, Jinhua, China,
and University of Illinois, Urbana, IL. In the game of Bulgarian solitaire, n identical
coins are distributed into piles, and a move takes one coin from each existing pile to
form a new pile. Beginning with a single pile of size n, how many moves are needed
to reach a position on a cycle (a position that will eventually repeat)? For example,
5 → 41 → 32 → 221 → 311 → 32, so that answer is 2 when n = 5.

Solution by Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Fixing
n, the answer is n − t , where t = min{k ∈ N : k(k+1)

2 ≥ n} = �
√

8n+1−1
2 �. This is easily

checked for n ≤ 4, so consider n ≥ 5.
Positions in the game correspond to partitions of the integer n. Hence for a position

π we let π1 denote the largest pile size, π2 the largest size among the others (if any),
and |π | the number of piles. Let π ′ denote the position obtained from π by one move.
If no two piles in π have the same size, then |π | ≤ π1. Say that π is stretched if no
two piles have the same size and |π | ≥ π2.

If π has no two piles of equal size, then at most one pile has size 1, and hence
|π | ≤ |π ′| ≤ |π | + 1. Therefore, if π is stretched and π1 ≥ |π | + 2, then π ′ is also
stretched and π ′

1 = π1 − 1. The first move yields the stretched position π = (n − 1, 1)
with π1 ≥ |π | + 2, and after some such positions we reach for the first time a stretched
position ρ with |ρ| ≤ ρ1 ≤ |ρ| + 1. We show that ρ1 = t , that ρ is in a cycle, and that
no preceding position is in the cycle. Since each move during this process reduces the
size of the largest pile by 1, the number of moves to reach ρ is n − t .

If |ρ| = ρ1, then n = 1 + 2 + · · · + |ρ| and ρ1 = |ρ| = t . Since ρ ′ = ρ, the position
ρ forms a cycle of length 1. No preceding position belongs to this cycle.

If |ρ| + 1 = ρ1, then ρ consists of piles with sizes 1 through ρ1 except for one
missing size s, where 1 ≤ s < ρ1. Thus n = ρ1(ρ1 + 1)/2 − s, and ρ1 = t . Let Ti, j

be the position consisting of piles with distinct sizes 1 through t − 1 except for one
missing pile of size i and one extra pile of size j (here j = t is allowed). Let T̂i, j consist
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of Ti, j plus one pile of size t . Set i = 0 to mean that there is no missing size and j = 0
to mean that there is no repeated size. Note that ρ = T̂s,0 = Ts,t and ρ ′ = Ts−1,t−1. In
general, T ′

i, j = Ti−1, j−1 and T̂ ′
i, j = T̂i−1, j−1 for i, j ≥ 1, while T ′

0, j = Tt−1, j−1. Thus
the game continues from ρ as

ρ, Ts−1,t−1, . . . , T0,t−s, T̂t−1,t−s−1, . . . , T̂s,0.

The last listed position is ρ, the same as the first. No position in this cycle has a pile
bigger than t , while every position preceding ρ in the process has such a pile. Thus no
position preceding ρ is in the cycle.

Editorial comment. Several solvers noted that, starting with a single pile of size n,
the first repetition of a position occurs after exactly n moves. This follows from the
argument above and the fact that the cycle has t distinct positions.

Previous articles about Bulgarian solitaire include J. Brandt, Cycles of partitions,
Proc. AMS 85, no. 3 (1982) 483–486; M. Gardner, Bulgarian solitaire and other seem-
ingly endless tasks, Sci. Amer. 249 (1983) 12–21; E. Akin and M. Davis, Bulgarian
solitaire, Amer. Math. Monthly 92 no. 4 (1985) 237–250; I. Kiyoshi, Solution of the
Bulgarian solitaire conjecture, Math. Mag. 58, no. 5 (1985) 259–271; and B. Hopkins
and M. A. Jones, Shift-induced dynamical systems on partitions and compositions,
Electr. J. Comb. 13 (2006) 1.

Also solved by R. Boukharfane (Canada), R. Chapman (U. K.), P. P. Dályay (Hungary), K. David, O. Geupel
(Germany), D. Gove, B. Karaivanov, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Martin
(Germany), J. Olson, H. K. Pillai (India), R. E. Prather, C. P. Rupert, M. Safaryan (Armenia) I. Sterling,
R. Stong, R. Tauraso (Italy), Armstrong Problem Solvers, DIMACS REU 2013 Bridge Workshop, GCHQ
Problem Solving Group (U. K.), TCDmath Problem Group (Ireland), and the proposers.

A Limit with Integrals

11719 [2013, 600]. Proposed by Nicolae Anghel, University of North Texas, Denton,
TX. Let f be a twice-differentiable function from [0,∞) into (0,∞) such that

lim
x→∞

f ′′(x)
f (x)(1 + f ′(x)2)2

= ∞.

Show that

lim
x→∞

∫ x

t=0

√
1 + f ′(t)2

f (t)
dt
∫ ∞

t=x

√
1 + f ′(t)2 f (t) dt = 0.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. We will prove:

(a) The function f is integrable, i.e.,
∫∞

0 f (x) dx < +∞.

(b) There is a real a > 0 such that f ′(x) < 0 for x ≥ a and limx→∞ f ′(x) = 0.

(c) The function f is strictly decreasing on [a,+∞) and limx→∞ f (x) = 0.

(d) limx→∞ f ′(x)/ f (x) = −∞.

Indeed, there exists a real number a > 0 such that

f ′′(x)
f (x)(1 + f ′(x)2)2

≥ 1

2
for x ≥ a, (1)
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or equivalently

f (x) ≤ 2 f ′′(x)
(1 + f ′(x)2)2

=
(

arctan
(

f ′(x)
)+ f ′(x)

1 + f ′(x)2

)′
.

Thus, for x ≥ a we have∫ x

0
f (t) dt ≤ arctan

(
f ′(x)

)+ f ′(x)
1 + f ′(x)2

+ c ≤ π

2
+ 1

2
+ c,

where c = ∫ a
0 f (t) dt − arctan( f ′(a))− f ′(a)/(1 + f ′(a)2). This proves (a).

From (1) we know that f ′′(x) > 0 for x ≥ a, so f ′ is strictly increasing on [a,+∞).
Suppose there exists some x0 ∈ [a,+∞) such that f ′(x0) > 0 for x > x0. This would
imply that f is increasing on [x0,+∞) and would contradict (a). Thus, f ′(x) < 0 for
x ∈ [a,+∞), and consequently limx→∞ f ′(x) = k ≤ 0. If k < 0, then there would
exist x1 such that f (x) < k/2 for x ≥ x1. This would imply that 0 < f (x) ≤ (k/2)x +
b for x ≥ x1, which leads to a contradiction when x → ∞. This shows that k = 0 and
completes the proof of (b).

From (b) we conclude that f is decreasing on [a,+∞), so limx→∞ f (x) exists. By
(a) this limit must be zero. This proves (c).

Now limx→∞(1 + f ′(x)2)2 = 1, so we have limx→∞ f ′′(x)/ f (x) = +∞. Us-
ing l’Hospital’s rule, we conclude that limx→∞ f ′(x)2/ f (x)2 = +∞. However,
f ′(x)/ f (x) < 0 for x ≥ a, so limx→∞ f ′(x)/ f (x) = −∞, which is (d).

Now define g on [a,+∞) by the formula

g(x) = − sup
t≥x

f ′(t)
f (t)

,

so that − f ′(t) ≥ g(x) f (t) for t ≥ x . According to (d), limx→∞ g(x) = +∞.
For x ≥ a we have∫ ∞

x

√
1 + f ′(t)2 f (t) dt ≤

√
1 + f ′(a)2

∫ ∞

x
f (t) dt

≤
√

1 + f ′(a)2
∫ ∞

x

− f ′(t)
g(x)

dt ≤
√

1 + f ′(a)2 · f (x)

g(x)
.

Also, for x ≥ a we have∫ x

a

√
1 + f ′(t)2

f (t)
dt ≤

√
1 + f ′(a)2

∫ x

a

1

f (t)
dt ≤

√
1 + f ′(a)2

∫ x

a

− f ′(t)
f (t)2g(x)

dt

≤
√

1 + f ′(a)2 · 1

g(x)

(
1

f (x)
− 1

f (a)

)
≤
√

1 + f ′(a)2

g(x) f (x)
.

Combining these, we obtain for x ≥ a that∫ x

0

√
1 + f ′(t)2

f (t)
dt
∫ ∞

x

√
1 + f ′(t)2 dt ≤

√
1 + f ′(a)2

(∫ a

0

√
1 + f ′(t)2

f (t)
dt

)
f (a)

g(x)
+ 1 + f ′(a)2

g(x)2
.

Finally, since limx→∞ g(x) = +∞, we obtain the desired conclusion by letting x tend
to infinity.

Also solved by R. Bagby, P. Bracken, M. Omarjee (France), R. Stong, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never
be under submission concurrently to more than one journal nor posted to the
Internet before the due date for solutions. Submitted solutions should arrive be-
fore October 31, 2015. Additional information, such as generalizations and ref-
erences, is welcome. The problem number and the solver’s name and address
should appear on each solution. An asterisk (*) after the number of a problem
or a part of a problem indicates that no solution is currently available.

PROBLEMS

11845. Proposed by Gregory Galperin, Eastern Illinois University, and Yury Ionin,
Central Michigan University.
(a) Let P be a convex polyhedron inside a sphere S, and let e1, . . . , en be the edges
of P . Let ci be the chord of S containing edge ei . Note that ci\ei is the union of two
disjoint segments; we term these ai and bi .

Prove that if all the edges of P have the same length, then the 2n-element set con-
sisting of the ai and the bi can be partitioned into two subsets such that the sum of the
lengths of the elements in each part is the same.
(b) Let A0, A1, . . . , An−1 be a regular n-gon inscribed in a circle γ . Let γ ′ be a circle
containing γ , and let the tangent line to γ at Ai meet γ ′ at points Xi and Yi . Prove that
the 2n-element set consisting of the segments Ai Xi and Ai Yi can be partitioned into
two subsets such that the sum of the lengths of the elements in each part is the same.

11846. Proposed by Kent Holing, Trondheim, Norway. Let f = ∑n
j=0 a j x j be an irre-

ducible monic polynomial of odd degree with integer coefficients. Writing the terms
a j x j of f in order of increasing j , assume that either there is at least one term of
f missing between two (nonmissing) terms of the same sign or there is more than
one term missing between two (nonmissing) terms of opposite sign. (A term a j x j is
missing if a j = 0. The sign of the term a j x j is the sign of a j .) Prove that the Galois
group G of f is not abelian. Also, prove that G is not a dihedral group if, in addition,
f (x) = 0 has at least two real roots.

11847. Proposed by Mihaly Bencze, Brasov, Romania. Prove that for n ≥ 1,

n(n + 1)(n + 2)

3
<

n∑
k=1

1

log2(1 + 1/k)
<

n

4
+ n(n + 1)(n + 2)

3
.

http://dx.doi.org/10.4169/amer.math.monthly.122.6.604
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11848. Proposed by István Mező, Nanjing University of Information Science and Tech-
nology, Nanjing, China. Prove that

1

2π
Li2

(
e−2π

) = log(2π)− 1 − 5π

12
−

∞∑
m=1

(−1)mζ(2m)

m(2m + 1)
.

Here, ζ is the Riemann zeta function, and Li2(x) = ∑∞
n=1 xn/n2.

11849. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Define numbers a0, a1, . . . by

exp

( ∞∑
k=0

x2k

)
=

∞∑
n=0

an xn.

Prove that lim infn→∞
log an
log n ≤ 1

log 2 − 1 ≤ lim supn→∞
log an
log n .

11850. Proposed by Zafar Ahmed, Bhabha Atomic Research Centre, Mumbai, India.
Let An be the polynomial given by

An(x) =
√

2

π

1

n!
(1 + x2)n/2

dn

dxn

(
1

1 + x2

)
.

Prove that
∫∞

−∞ Am(x)An(x) dx = δ(m, n) for nonnegative integers m and n. Here,
δ(m, n) = 1 if m = n, and otherwise δ(m, n) = 0.

11851. Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade Secondary School,
Buzău, Romania. For real a and b and integer n ≥ 1, let γn(a, b) = − log(n + a) +∑n

k=1 1/(k + b).
(a) Prove that γ (a, b) = limn→∞ γn(a, b) exists and is finite.
(b) Find

lim
n→∞

(
log

(
e

n + a

)
+

n∑
k=1

1

k + b
− γ (a, b)

)n

.

11829. Proposed by Paul Bracken, University of Texas-Pan American, Edinburg,
TX. (Correction.) Let 〈a〉 be a monotone decreasing sequence of real numbers that
converges to 0. Prove that

∑∞
n=1 an/n < ∞ if and only if an = O(1/ log n) and∑∞

n=1(an − an+1) log n < ∞.

SOLUTIONS

Will a Mutation Take Over the Population?

11710 [2013, 470]. Proposed by B. Voorhees, Athabasca University, Athabasca, Al-
berta, Canada. Let n, k, and r be positive numbers such that n ≥ k + 1 and r ≥ 1.
Show that

rn+k − 1 ≥ (kr + n)(nr + k)

(n − k)2

(
1 −

(
kr + n

nr + k

)n−k
)
.
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Solution by Josep Martı́nez, Universitat de València, Valencia, Spain. Letting r → ∞
shows that the inequality is false when n + k < 2. We will prove the inequality for
n + k ≥ 2. We first claim

rn+k − 1

r − 1
≥ kr + n, r > 1, n ≥ k + 1, n + k ≥ 2. (1)

This follows from the fact that rn+k − 1 − (kr + n)(r − 1) is a strictly increasing
function of r for r > 1 and vanishes at r = 1. Next we claim

(n − k)

(
1 − kr + n

nr + k

)
≥ 1 −

(
kr + n

nr + k

)n−k

. (2)

This follows from 1 − sa ≤ a(1 − s) for 0 < s < 1 and a > 1, which in turn follows
from the mean value theorem applied to ψ(x) = xa on the interval [s, 1].

Now apply (1) and (2) to get

(kr + n)(nr + k)

(n − k)2

(
1 −

(
kr + n

nr + k

)n−k
)

≤ (kr + n)(nr + k)

(n − k)

(
1 − kr + n

nr + k

)

= (kr + n)(r − 1) ≤ rn+k − 1.

Editorial comment. Solvers provided alternate hypotheses under which to prove the
inequality: k > 1/2 or n ≥ 2 or n, k positive integers.

The proposer provided a context for the problem: In evolutionary graph theory,
certain simple birth-and-death processes within a fixed population of size N can be
represented by a weighted graph G with N vertices, each with weight 1 or r , where
r > 1. Competition occurs randomly along edges, and when an r and a 1 compete, the
r wins with probability r/(r + 1). The winner resets the other vertex to its own weight.
When the graph is the complete graph on N vertices, the probability that a lone vertex
with weight r will sweep the graph is known to be r N−1/

∑N−1
0 rk . For a complete

bipartite graph, there is another formula, and the claim of the problem can be seen as
saying that mutations stand a better chance of sweeping in such graphs.

Also solved by P. P. Dályay (Hungary), D. Fleischman, D. Fritze (Germany), O. Geupel (Germany), O. P.
Lossers (Netherlands), P. Perfetti (Italy), and GCHQ Problem Solving Group (U. K.).

A Product Inequality

11713 [2013, 569]. Proposed by Mihaly Bencze, Brasov, Romania. Let x1, . . . , xn be
nonnegative real numbers. Let S = ∑n

k=1 xk . Prove that

n∏
k=1

(1 + xk) ≤ 1 +
n∑

k=1

(
1 − k

2n

)k−1 Sk

k!
.

Solution by Robert A Agnew, Buffalo Grove, IL. Equality holds if n = 1. Assume now
n ≥ 2. From the AM–GM inequality, we have

n∏
k=1

(1 + xk) ≤
(

1

n

n∑
k=1

(1 + xk)

)n

=
(

1 + S

n

)n

=
n∑

k=0

(
n

k

)(
S

n

)k

= 1 +
n∑

k=1

(
n!

(n − k)!nk

)(
Sk

k!

)
.
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For k = 1,

n!

(n − 1)!n1
= 1 =

(
1 − 1

2n

)0

.

For k ≥ 2,

n!

(n − k)!
= n

k−1∏
i=1

(n − i),

and from the AM–GM inequality(
k−1∏
k=1

(n − i)

)1/(k−1)

≤ 1

k − 1

k−1∑
k=1

(n − i) = n(k − 1)− k(k − 1)/2

k − 1
= n − k

2
,

so that

n!

(n − k)!nk
≤ n

nk

(
n − k

2

)k−1

=
(

1 − k

2n

)k−1

.

The assertion follows.

Also solved by D. Anderson (Ireland), M. Bataille (France), D. Beckwith, R. Boukharfane (Canada), M. A.
Carlton, R. Chapman (U. K.), P. P. Dályay (Hungary), D. Fleischman, G. Funchess, O. Geupel (Germany),
E. A. Herman, B. Karaivanov, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), J. Martı́nez
(Spain), H. F. Mattson Jr., M. Omarjee (France), P. Perfetti (Italy), M. Safaryan (Armenia), B. Schmuland
(Canada), A. Stenger, R. Stong, R. Tauraso (Italy), Z. Vörös (Hungary), J. Zacharias, GCHQ Problem Solving
Group (U. K.), NSA Problems Group, and the proposer.

Inradii and Diagonals

11714 [2013, 569]. Proposed by Nicuşor Minculete, “Dimitrie Cantenemir” Uni-
versity, Braşov, Romania, and Cătălin Barbu, “Vasile Alecsandri” National College,
Bacău, Romania. Let ABC D be a cyclic quadrilateral (the four vertices lie on a circle).
Let e = |AC | and f = |B D|. Let ra be the inradius of BC D, and define rb, rc, and rd

similarly. Prove that erarc = f rbrd .

Solution by Donald Jay Moore, Wichita, KS. Let a = |AB|, b = |BC |, c = |C D|, and
d = |D A|. Triangles BC D, C D A, D AB, and ABC all have the same circumradius
R, hence

R = bc f

4rasa
= cde

4rbsb
= ad f

4rcsc
= abe

4rdsd
,

where sa = (b + c + f )/2, sb = (c + d + e)/2, sc = (a + d + f )/2, and sd = (a +
b + e)/2. Thus, we have

R2 = abcde2

16rbrdsbsd
= abcd f 2

16rarcsasc

or e2rarcsasc = f 2rbrdsbsd . Thus, it suffices to show esasc = f sbsd . Expanding this
equation, we get

abe + ace + bde + cde − ac f − bc f − ad f − bd f + ( f − e)e f = 0.

Substituting for e f using Ptolemy’s theorem (e f = ac + bd) and cancelling, the re-
quired equation becomes abe + cde = bc f + ad f . Since abe, cde, bc f , and ad f

June–July 2015] PROBLEMS AND SOLUTIONS 607

This content downloaded from 138.38.0.53 on Mon, 6 Jul 2015 13:37:47 PM
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



are 4R times the areas of triangles ABC , BC D, C D A, and D AB, respectively, both
abe + cde and bc f + ad f are equal to 4R times the area of quadrilateral ABC D.

Also solved by G. Apostolopoulos (Greece), M. Bataille (France), R. Boukharfane (Canada), R. B. Campos
(Spain), P. P. Dályay (Hungary), P. De (India), C. Delorme (France), O. Geupel (Germany), J. G. Heuver
(Canada), S. Ibragimov (Uzbekistan), S. Jo (Korea), B. Karaivanov, O. Kouba (Syria), K.-W. Lau (China),
O. P. Lossers (Netherlands), J. Minkus, C. R. Pranesachar (India), J. Schlosberg, J. Song (Korea), R. Stong, T.
Viteam (Chile), Z. Vörös (Hungary), M. Vowe (Switzerland), GCHQ Problem Solving Group (U. K.), and the
proposers.

An Infinite Sum Introduces a Zeta

11715 [2013, 569]. Proposed by Marián Štofka, Slovak University of Technology,
Bratislava, Slovakia. Prove that

∞∑
k=0

1

(6k + 1)5
= 1

2

(
25 − 1

25
· 35 − 1

35
ζ(5)+ 11

8

(π
3

)5
· 1√

3

)
.

Solution by Michael Hoffman, U.S. Naval Academy, Annapolis, MD. It is an elementary
exercise in the use of Euler products to show that

∞∑
k=0

1

(6k + 1)n+1
+

∞∑
k=0

1

(6k + 5)n+1
= (3n+1 − 1)(2n+1 − 1)

6n+1
ζ(n + 1).

The result will follow from a (somewhat less elementary) identity for the difference of
the sums on the left. For positive even n, define Pn by

dn

dxn
tan x = Pn(tan x).

We shall show that
∞∑

k=0

1

(6k + 1)n+1
−

∞∑
k=0

1

(6k + 5)n+1
= πn+1

6n+1n!
Pn(

√
3).

Adding this difference to the above sum yields a general result on reciprocal (n + 1)th
powers. Since P4(

√
3) = 352

√
3, setting n = 4 solves the given problem.

We use Theorem 4.4 of Michael E. Hoffman, derivative polynomials for tangents
and secants, this MONTHLY 102 (1995), 23–30. Let ψ be the function of period 6 with
ψ(1) = 1, ψ(−1) = −1 and ψ(0) = ψ(2) = ψ(3) = ψ(4) = 0.

For even n, this gives

∞∑
j=1

ψ( j)

j n+1
= πn+1

2 · 6n+1n!

5∑
p=1

ψ(p)Pn

(
cot

pπ

6

)

which for positive even n is the desired formula (note that Pn is an odd function when
n is even).

Editorial comment. Richard Stong showed that the identity is an easy consequence of
formula (23.1.18) of Abramowitz and Stegun. Stan Wagon typed the sum on the left
into Mathematica, applied the command Simplify to the right side, and obtained the
same expression. M. Ram Murty and Akshaa Vatwani observed that the crux of the
matter is that the Dirichlet L-function L(s, χ) can be computed explicitly when s and
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χ have the same parity (χ(−1) = 1 and χ(−1) = −1 correspond to even and odd, re-
spectively). In this case s = 5, and χ and ψ are equal and odd. Related considerations
allowed them to express the Hurwitz zeta function ζ(2k + 1, a/q) in terms of π and
ψ(2k + 1) for q ∈ {3, 4, 6}.
Also solved by K. F. Andersen (Canada), R. Bagby, M. Bataille (France), R. Boukharfane (Canada), P. Bracken,
B. S. Burdick, M. A. Carlton, R. Chapman (U. K.), H. Chen, M. W. Coffey, M. L. Glasser, G. C. Greubel, J.-
P. Grivaux (France), E. A Herman, B. Karaivanov, O. Kouba (Syria), O. P. Lossers (Netherlands) G. Malisani
(Italy), J. Martı́nez (Spain), M. R. Murty & A. Vatwani (Canada), M. Omarjee (France), H. Riesel (Sweden),
A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), J. Vinuesa (Spain), M. Vowe (Switzerland),
S. Wagon, J. Zacharias, J. Zucker (U. K.), GCHQ Problem Solving Group (U. K.), NSA Problems Group,
TCDmath Problem Group (Ireland), and the proposer.

Catalan and Fibonacci Continued

11716 [2013, 570]. Proposed by Oliver Knill, Harvard University, Cambridge, MA.
Let α = (

√
5 − 1)/2. Let pn and qn be the numerator and denominator of the nth

continued fraction convergent to α. (Thus, pn is the nth Fibonacci number and qn =
pn+1.) Show that

√
5

(
α − pn

qn

)
=

∞∑
k=0

(−1)(n+1)(k+1)Ck

qn
2k+25k

,

where Ck denotes the kth Catalan number, given by Ck = (2k)!
k!(k+1)! .

Solution by Borislav Karaivanov, University of South Carolina, Columbia, SC. We
prove the desired identity assuming pn = Fn−1 and qn = pn+1 = Fn , where the Fi-
bonacci numbers are defined by Fn+1 = Fn + Fn−1 with F0 = 0 and F1 = 1.

We use the usual form of the generating function for the Catalan numbers:

∞∑
k=0

Ck xk = 1 − √
1 − 4x

2x
.

The power series has radius of convergence 1/4, as is easily verified with the ratio test.
Setting x = (−1)n+1/(5F2

n ) in the generating function yields

∞∑
k=0

(−1)(n+1)kCk

5k F2k
n

=
√

5Fn

(−1)n+1
·
√

5Fn −
√

5Fn
2 − 4(−1)n+1

2
.

Hence
∞∑

k=0

(−1)(n+1)(k+1)Ck

5kq2k+2
n

= (−1)n+1

F2
n

∞∑
k=0

(−1)(n+1)kCk

5k F2k
n

=
√

5

Fn
·
√

5Fn −√
5F2

n + 4(−1)n

2
.

Using Cassini’s identity F2
n + (−1)n = Fn+1 Fn−1, we rewrite the terms under the root

via

5F2
n + 4(−1)n = F2

n + 4(F2
n + (−1)n) = (Fn+1 − Fn−1)

2 + 4Fn+1 Fn−1

= (Fn+1 + Fn−1)
2 = (Fn + 2Fn−1)

2,
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and obtain

∞∑
k=0

(−1)(n+1)(k+1)Ck

5kq2k+2
n

=
√

5

Fn
·
√

5Fn − (Fn + 2Fn−1)

2
=

√
5

(√
5 − 1

2
− Fn−1

Fn

)
.

Editorial comment. Many solvers proved a slightly different formula based on a dif-
ferent interpretation of “the nth Fibonacci number.”

Also solved by D. Beckwith, R. Boukharfane (Canada), B. S. Burdick, R. Chapman (U. K.), M. W. Coffey,
O. Geupel (Germany), O. Kouba (Syria), O. P. Lossers (Netherlands), J. Martı́nez (Spain), A. Meyer, M. Omar-
jee (France), M. Somos, R. Stong, R. Tauraso (Italy), C. Vignat (France) & V. H. Moll, GCHQ Problem Solving
Group (U. K.), TCDmath Problem Group (Ireland), and the proposer.

A Special (Degenerate) Case of the Problem of Apollonius

11717 [2013, 570]. Proposed by Nguyen Thanh Binh, Hanoi, Vietnam. Given a circle
c and line segment AB tangent to c at a point E that lies strictly between A and B,
provide a compass and straightedge construction of the circle through A and B to
which c is internally tangent.

Solution by Michel Bataille, Rouen, France. Consider the inversion I in the circle with
center A and radius |AE |; note that I(c) = c. If γ is any circle passing through A and
B and tangent to c, then I(γ ) = t is a line tangent to c passing through I(B). But I(B)
is on line AB, so there is only one such line and γ = I(t). The constructions of I(B)
and t are classical. Let t touch c at T , so AT intersects c again at T ′, and γ is the
circumcircle of �ABT ′.

Editorial comment. Solver J. Schaer (University of Calgary, Canada) notes that this is
a special case of the Problem of Apollonius: To contruct all circles tangent to three
given circles. Here, two of the given circles, points A and B, have zero radius.

Also solved by R. Bagby, R. Bouharfane (Canada), J. Cade, P. P. Dályay (Hungary), C. Delorme (France),
K. Farwell, O. Geupel (Germany), M. Goldenberg & M. Kaplan, J.-P. Grivaux (France), A. Habil (Syria), B.
Karaivanov, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), A. Nicholson, C. R. Pranesachar
(India), R. A. Russell, J. Schaer (Canada), R. Stong, V. Tran, E. I. Verriest, T. Viteam (Chile), A. L. Yandl &
C. Swenson, J. Zacharias, L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

An Integral Sum

11721 [2013, 660]. Proposed by Roberto Tauraso, Universitá di Roma “Tor Vergata”,
Rome, Italy. Let p be a prime greater than 3, and let q be a complex number other than
1 such that q p = 1. Evaluate

p−1∑
k=1

(1 − qk)5

(1 − q2k)3(1 − q3k)2
.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. The
value is −(11p − 1)(5p − 1)/72 when p ≡ 5 (mod 6) and −(55p − 1)(p − 1)/72
when p ≡ 1 (mod 6).

Let ω = qk . As k varies from 1 to p − 1, the value of ω varies over all primitive
pth roots of unity, and ωp = 1. For p = 6m − 1, rewrite the summand (Sω, say) as
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Sω = (1 − ω)5

(1 − ω2)3(1 − ω3)2
= (1 − ω)2(1 − ω6m)3

(1 − ω2)3(1 − ω3)2

= (1 − ω)2(1 − ω6)3

(1 − ω2)3(1 − ω3)2

(1 − ω6m)3

(1 − ω6)3
= (1 − ω)2(1 − ω3)3(1 + ω3)3

(1 − ω2)3(1 − ω3)2

(1 − ω6m)3

(1 − ω6)3

= (1 − ω)3(1 + ω + ω2)(1 + ω)3(1 − ω + ω2)3

(1 − ω2)3

(1 − ω6m)3

(1 − ω6)3

= (1 + ω + ω2)(1 − ω + ω2)3
(

1 − ω6m

1 − ω6

)3

= 1 − 2ω + 4ω2 − 4ω3 + 5ω4 − 4ω5 + 4ω6 − 2ω7 + ω8)×
⎛
⎝m−1∑

j=0

ω6 j

⎞
⎠

3

.

Let Pm(ω) denote the final expression. Note that Pm is a polynomial of degree
18m − 10 with Pm(1) = 3m3. Thus, the desired sum is −3m3 +∑

ωp=1 Pm(ω). The
only monomials in Pm whose contribution does not cancel in this sum are those whose
exponent is a multiple of p; hence, they are ω0, ω6m−1, and ω12m−2.

The coefficient of ω0 is 1. The coefficient of ω6m−1 is −4 times the coefficient of
ω6m−6 in (1 + ω6 + ω12 + · · · + ω6m−6)3. This coefficient is the same as the coefficient
of xm−1 in the Taylor series of (1 + x + x2 + · · · )3 = 1

(1−x)3
, namely

(m+1
2

)
. The coef-

ficient of ω12m−2 is 5 times the coefficient of ω12m−6 in(1 + ω6 + ω12 + · · · + ω6m−6)3.
By symmetry, this is the same as the coefficient of ω6m−12, which by the above is

(m
2

)
.

Hence, for the sum we compute

−3m3 + (6m − 1)

(
1 − 4

(
m + 1

2

)
+ 5

(
m

2

))
= − (11m − 2)(5m − 1)

2

= − (11p − 1)(5p − 1)

72
.

The calculation is similar for p = 6m + 1. Using ωp = 1 we obtain

(1 − ω)5

(1 − ω2)3(1 − ω3)2
= (1 − ω)2(ω6m+1 − ω)3

(1 − ω2)3(1 − ω3)2
= −ω3 Pm(ω),

and the desired sum is 3m3 −∑
ωp=1 ω

3 Pm(ω). In this case, the coefficient of ω0 is 0,
and the coefficients of ω6m+1 and ω12m+2 in ω3 Pm(ω) are 5

(m+1
2

)
and −4

(m
2

)
, respec-

tively. Hence, for the sum we compute

3m3 − (6m + 1)

(
5

(
m + 1

2

)
− 4

(
m

2

))
= −m(55m + 9)

2

= − (55p − 1)(p − 1)

72
.

Editorial comment. Most solvers used either partial fraction decomposition of the sum-
mand and Laurent series of the terms or complex integrals and the residue theorem
applied to the summand multiplied by either p/(z(z p − 1)) or pz p−1/(z p − 1), where
z = qk . Several solvers noted that the result is always an integer and that it holds for
every p that is coprime to 6 as long as q is a primitive pth root of unity.
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Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), I. M. Isaacs, B. Karaivanov, O. Kouba (Syria),
O. P. Lossers (Netherlands), J. Martı́nez (Spain), N. C. Singer, A. Stadler (Switzerland), A. Stenger, J. Van
Hamme (Belgium), GCHQ Problem Solving Group (U. K.), and the proposer.

A Concurrence on a Circumcircle

11722 [2013, 661]. Proposed by Nguyen Thanh Binh, Hanoi, Vietnam. Let ABC be an
acute triangle in the plane, and let M be a point inside ABC . Let O1, O2, and O3 be
the circumcenters of BC M , C AM , and AB M , respectively. Let c be the circumcircle
of ABC . Let D, E , and F be the points opposite A, B, and C , respectively, at which
AM , B M , and C M meet c. Prove that O1 D, O2 E , and O3 F are concurrent at a point
P that lies on c.

Solution by Michel Bataille, Rouen, France. Use the complex plane as coordinates so
that the origin lies at the circumcenter of ABC and the circumradius is 1. Thus, c is the
unit circle. We will write the lower-case letter for the complex number corresponding
to a point designated by the corresponding upper-case letter. To avoid confusion, we
will write 
 for the unit circle.

Let r be a complex number on the unit circle, and let s be any other complex
number. The second intersection of 
 and the line through R and S has coordinate
(r − s)/(rs − 1). From this result, we have in particular that d = (a − m)/(am − 1).
On the other hand, since O1 is on the perpendicular bisectors of BC , C M , and M B,
we have |o1 − m|2 = |o1 − b|2 = |o1 − c|2 so that o1(b − c) + o1(b − c) = 0 and
o1(b − m)+ o1(b − m) = 1 − mm. Now, b = 1/b and c = 1/c, so we deduce that

o1 = (b − c)(mm − 1)

(m − b)(b − c)− (m − b)(b − c)
= bc(mm − 1)

m − b − c + bcm
,

o1 = mm − 1

m − b − c + bcm
.

Now, let β = (am − 1)(m − b − c + bcm). We compute

d − o1 = m(a + b + c)− (ab + bc + ca)+ abcm(2 − mm)− m2

β
,

do1 − 1 = (ab + bc + ca)m − (a + b + c)+ m(2 − mm)− abcm2

β
.

From this, we see that (d − o1)/(do1 − 1) is symmetric in a, b, c. This implies that
the second point of intersection of O1 D with
 is also the second point of intersection
of O2 E and O3 F with 
. Thus, lines DO1, E O2, and F O3 are concurrent at a point
that lies on 
.

Editorial comment. Several readers pointed out that there is no need for the triangle to
be acute or that M lie inside ABC . Of course, the construction will make sense only
if M is neither on the circumcircle nor on the lines containing the sides of the triangle.
This same problem (by the same proposer) appeared in Crux Mathematicorum vol. 37,
no. 8 as Problem 3692.

Also solved by J.-P. Grivaux (France), O. Kouba (Syria), D. Lee (Korea), C. R. Pranesachar (India) R. Stong,
and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard Pfiefer,
Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard Stong,
Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never be
under submission concurrently to more than one journal, nor posted to the internet
before the due date for solutions. Submitted solutions should arrive
before December 31, 2015. Additional information, such as generalizations and
references, is welcome. The problem number and the solver’s name and address
should appear on each solution. An asterisk (*) after the number of a problem or a
part of a problem indicates that no solution is currently available.

PROBLEMS

11852. Proposed by Sam Northshield, SUNY Plattsburgh, Plattsburgh, NY. For n ∈
Z+, let νn = k if 3k divides n but 3k+1 does not. Let X1 = 2, and for n ≥ 2 let

Xn = 4νn + 2 − 2

Xn−1
,

so that 〈Xn〉 begins with 2, 1, 4, 3
2 ,

2
3 , 3, . . .. Show that every positive rational number

appears exactly once in the list (X1, X2, . . .).

11853. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Find

∞∑
n=1

1

sinh 2n
.

11854. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy.
In the Euclidean plane, given distinct points P1, . . . , Pn and distinct lines l1, . . . , lm ,
prove that there is a half-line h such that for any point Q on h, any k ∈ {1, . . . , m},
and any j ∈ {1, . . . , n}, Q is nearer than Pj to lk .

11855. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. For a
continuous and nonnegative function f on [0, 1], let μn = ∫ 1

0 xn f (x) dx . Show that
μn+1μ0 ≥ μnμ1 for n ∈ N.

11856. Proposed by Keith Kearnes, University of Colorado, Boulder, CO. Let G be a
finite group. Show that the number of Sylow subgroups of G is at most 2

3 |G|.
11857. Proposed by Mehmet Şahin, Ankara University, Ankara, Turkey. Let ABC be a
triangle with corresponding sides of lengths a, b, and c, inradius r , and corresponding

http://dx.doi.org/10.4169/amer.math.monthly.122.7.700

700 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 122

This content downloaded from 139.184.14.159 on Wed, 19 Aug 2015 12:00:50 UTC
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



exradii ra , rb, and rc. Let A′ B ′C ′ be another triangle with sides of lengths
√

a,
√

b, and√
c. Show that A′ B ′C ′ has area given by

1

2

√
r(ra + rb + rc).

SOLUTIONS

When One Triangle Circumscribes Another

11706 [2013, 469]. Proposed by Nguyen Thanh Binh, Hanoi, Vietnam. Let ABC and
DEF be triangles in a plane.
(a) Provide a compass and straightedge construction, which may use ABC and DEF,
of a triangle A′ B ′C ′ that is similar to ABC and circumscribes DEF.
(b) Among all triangles A′ B ′C ′ of the sort described in part (a), determine which one
has the greatest area and which one has the greatest perimeter.

Editorial comment. Partial solution by the editors (using material submitted by the
solvers). No complete solutions were received to either (a) or (b) that dealt with all
possible shapes that the triangles ABC and DEF might have. Part (b) turns out to be
quite complex. The largest circumscribing triangle cannot be identified until all pos-
sible circumscribing triangles can be surveyed, including different ways of matching
up angles of ABC with sides/angles of DEF, plus possibly several anomalous cases.
Fortunately, since all triangles under consideration are similar, area and perimeter will
both increase and decrease with the length of any side, so we need concern ourselves
only with maximizing the length of any one side.

There are several possible definitions of what it means to say “triangle PQR cir-
cumscribes triangle STU.” We take the following definition: PQR circumscribes STU
when each closed side of PQR contains at least one of the vertices of STU. There
are stricter and looser definitions, but this one guarantees that the desired maximum
circumscribing triangle actually exists.

When in fact PQR circumscribes STU and each open side of PQR contains at least
one of the vertices of STU, we will say that PQR strictly circumscribes STU. Otherwise
we will say that PQR marginally circumscribes STU.

We will show that when the angles of ABC are paired up in any of the six possible
ways with the sides/angles of DEF, there exists A′ B ′C ′ that strictly circumscribes DEF
so that each angle of A′ B ′C ′ faces the side of DE F (equivalently, is opposite the angle)
with which it is paired. Such a triangle A′ B ′C ′ can be turned clockwise through a con-
tinuum of circumscribing triangles until a case of marginal circumscription occurs.
Similarly, it can be turned counterclockwise until a case of marginal circumscription
occurs. In Figure 1, ∠A is associated with side EF (opposite ∠D), ∠B with ED (oppo-
site ∠F), and ∠C with DF (opposite ∠E). Note that DE is a chord of a circle whose
center is at OB and such that ∠DOB E = 2∠B. By the vantage-point theorem, also
known as the inscribed-angle theorem, all angles (from now on, when we speak of an
“angle,” we mean also its measure) intercepted by chord DE from any point on the
outer arc of this circle are equal to ∠B.

Point OB may be constructed by first creating the perpendicular bisector of DE and
a perpendicular to DE from endpoint D. Then ∠B is laid off from the outward perpen-
dicular ray at D in the direction of the angle bisector. Center OB is the intersection of
the angle bisector with the last-constructed ray.

The remainder of Figure 1 is constructed similarly. Two positions are shown. The
thinly dashed one is a marginal circumscription—it is “at its clockwise limit.” The
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C

C

F

D

ObOc

Oa

E

*

A*

B*

Figure 1. General and marginal positions

thickly dashed one is in the continuum of “general position” of its kind, and is optimal.
All possible strict and marginal circumscribing triangles are obtained in this manner
except for possibly a few anomalous cases of marginal circumscription (0, 2, 4, or 6,
depending on the relationship of the angles of the two triangles). These anomalous
cases involve a side of DEF lying along but interior to an edge of A′ B ′C ′ with the
opposite vertices of both triangles coinciding.

Next we will examine what all marginal circumscriptions look like. One vertex
of DEF and one of A′ B ′C ′ must coincide; let us say for definiteness that D and A′

coincide. Now D counts as a vertex of DEF lying on both A′ B ′ and A′C ′. One or both
of E and F must lie on B ′C ′. One possibility is that E lies at B ′ and F at C ′ (or vice
versa), in which case the triangles are similar. We call this case Shape A.

Another possibility is that E lies at B ′ but F is in the interior of B ′C ′ (or A′C ′).
This we call Shape B. The next case is that E lies in the interior of A′ B ′ and F in the
interior of B ′C ′; this we call Shape C. Finally, E and F may both lie in the interior of
B ′C ′. We refer to this as Shape D.

Figure 2 illustrates these four cases. Note that Shape A is a special case of Shape B
(when lower right angles are equal), and Shape B is a special case of Shape C (when
lower left angles are also equal). Shape D is anomalous.

B’=E B’=E F C’ B’ B’F FE

A’=DA’=DA’=DA’=D

C’ C’C’=F

Figure 2. Shapes A–D

The Shape D configurations cannot be achieved by the process of turning through
a continuum of strict configurations. If either of the ends of the side of A′ B ′C ′ that
wholly contains a side of DEF in its interior (B ′C ′ in Figure 2 Shape D) is moved,
then some vertex of DEF is in the interior or the exterior of A′ B ′C ′ and DEF is no
longer circumscribed at all.

Assume that both ABC and DEF are nondegenerate. Let the angles of DEF be
denoted X1, X2, X3 and those of ABC be denoted Y1, Y2, Y3, both listings from least to
greatest. Much depends on the ordering of these six angles. We consider the following
five cases based on which angles are largest and smallest.

(1) The two triangles are similar, so X1 = Y1, X2 = Y2, and X3 = Y3. This case is
subsumed by each of the following, so it need not be dealt with explicitly.

(2) X1 ≤ · · · ≤ X3, so the largest and smallest angles of the six are in DEF. The
order of the other four angles is only a matter of where X2 fits among Y1, Y2,
and Y3.
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(3) Y1 ≤ · · · ≤ Y3, so the largest and smallest angles of the six are in ABC. Again,
the order of the remaining four angles is only a matter of how Y2 fits among X1,
X2, and X3.

(4) X1 ≤ · · · ≤ Y3. In this case, the other angles must satisfy X1 ≤ Y1 ≤ Y2 <

X2 ≤ X3 ≤ Y3, as any other choice (except similarity) will contradict the fact
that the angles of any triangle sum to the same value. If X2 < Y2, then the sum
of the X angles is less than the sum of the Y angles, a contradiction. If X2 = Y2,
then the triangles are similar.

(5) Y1 ≤ · · · ≤ X3. In this case, the remaining angles must satisfy Y1 ≤ X1 ≤ X2 ≤
Y2 ≤ Y3 ≤ X3, by similar reasoning.

Let us analyze the possible Shape D configurations, based on the observation that
at the apex the Y angle must exceed the X angle, while at the bases each X angle must
exceed the neighboring Y angle.

In ordering (2), X1 must be at the apex. If Y1 > X2, then shape D is impossible.
Otherwise, we can construct a shape D circumscription. Among however many
such configurations exist, one that is optimal has Y1 = ∠A′ B ′C ′, Y2 = ∠B ′C ′ A′,
Y3 = ∠C ′ A′ B ′, and X1 = ∠FDE. For other orderings, again if shape D is possible, an
optimal circumscription exists in which Y3 = ∠B ′ A′C ′. This somewhat narrows the
list of cases that must be constructed.

Some trimming of cases can be conducted for the orderings (3), (4), and (5). These
are left to the reader. In every case the largest triangle (if any) has X1 and Y3 at the
apex.

Given the ordering (of angles X j and Y j ), there is a shape C construction. For
instance, in orderings of type (2), we may use the scheme illustrated on the left in
Figure 3, while orderings of type (3) allow for the scheme illustrated on the right side
of Figure 3.

E

Yj

Xj
Yi

B’

X2

Y3

Y2
C’FB’C’F

Y1

E Xk

Yk

X3

X1 Xi

A’=D A’=D

Figure 3. Orderings 2 and 3

Orderings (4) and (5) are slightly messier. Details are left to the reader.
From an initial marginal circumscription, we can twist A′ B ′C ′ in one direction only,

through a continuum of allowable strict circumscriptions, until another marginal cir-
cumscription is reached. During this process the size of the resulting triangle does
one of the following: (i) decreases continuously, (ii) increases continuously, or (iii) in-
creases to a maximum and then decreases.

In scenario (iii) we will show that the maximum occurs when the sides of A′ B ′C ′

are respectively parallel to the line segments joining the three circumcenters OA, OB ,
and OC . In (i) and (ii) it is impossible to reach a position where parallels occur. In (i)
we move away from such a position; in (ii) we move toward such a position but are
blocked from reaching it. Figure 1 illustrates (iii); note that the middle triangle is the
desired maximal case, since its sides are parallel to the respective sides of the triangle
of circumcenters. (Note that OA OB OC is similar to ABC.)
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A
M

O

I
N

P
B

Figure 4. An inequality

When ABC is a 20-60-100 triangle and DEF is a 15-150-15 triangle, (iii) does not
occur in any pairing because the parallel condition cannot be achieved.

In Figure 4 we show two circles, centered at O and P . In this figure, A is a point
on circle (O), B is a point on circle (P), I is one of the intersections of the circles,
and ∠AIB is straight. Segments OM and PN are perpendicular to AIB. Since AI is a
chord of circle (O), OM lies along its perpendicular bisector, so AM = IM. Likewise
BN = IN. Thus MN is half as long as AB. Since MN is a projection of OP onto AIB,
it is no longer than OP, and they have equal length only when AIB is parallel to OP.
Thus among all choices of line AIB, the longest has length 2 · OP and occurs when
AIB is parallel to OP.

A “Program,” then, for determining the largest circumscribing A′ B ′C ′ is as follows.
For each of the six pairings of angles of ABC with those of DEF, create a case of
marginal circumscription, and turn it through the continuum of strict circumscriptions
to the marginal circumscription at the “other end.” The largest of these circumscribing
triangles occurs when the sides are parallel to the sides of the triangle of circumcen-
ters, if that is possible. If this is not possible, then it occurs at the marginal case at the
beginning or the end, whichever involves sides closer to the desired parallel directions.
Select the largest of the six maximal cases. Then turn to the anomalous cases, if any,
and determine the largest of these. The larger of the maximal cases for nonanomalous
cases and the maximum of the anomalous cases is the largest circumscribing triangle.

We have not developed an algorithm for conducting the above program in the gen-
eral case.

Partially solved by M. Bataille (France), R. Boukharfane (Canada), O. Geupel (Germany), L. R. King,
C. R. Pranesachar (India), and the proposer.

A Minimization with Sum and Product

11718 [2013, 570]. Proposed by Arkady Alt, San Jose, CA. Given positive real numbers
a1, . . . , an with n ≥ 2, minimize

∑n
i=1 xi subject to the conditions that x1, . . . , xn are

positive and that
∏n

i=1 xi = ∑n
i=1 ai xi .

Solution by Ronald E. Prather, Oakland, CA. Let

S =
{

(x1, . . . , xn) : xi > 0,

n∏
i=1

xi =
n∑

i=1

ai xi

}
.

First consider what happens when a point approaches the boundary of S. Writing the
constraint as

1 =
n∑

i=1

ai∏
j �=i x j

,
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we see that each product
∏

j �=i xi is bounded away from zero. If any xk tends to zero,
another one (in fact at least two) must tend to infinity, and then

∑n
i=1 xi tends to infinity.

Therefore,
∑n

i=1 xi achieves a minimum value in the interior of S. We will find it using
Lagrange multipliers.

Writing μ for the reciprocal of the usual Lagrange multiplier, we get n + 1
equations

∏
j �=i

x j = ai + μ for 1 ≤ i ≤ n, and
n∏

i=1

xn =
n∑

i=1

ai xi

in the n + 1 unknowns x1, . . . , xn and μ. Substituting the first n equations in the last
yields an nth degree polynomial equation for μ, namely f (μ) = 0, where

f (x) =
n∑

i=1

ai

ai + x
.

Now f is continuous and monotonically decreasing, with f (0) = n > 1 and f (∞)

= 0 < 1, so there is a unique positive solution μ to the equation f (μ) = 1. Multiplying
the i th equation by xi and summing over i , we get n

∏n
j=1 x j = ∑n

i=1 ai xi

+ μ
∑n

i=1 xi = ∏n
j=1 x j + μ

∑n
i=1 xi , so

n∑
i=1

xi = n − 1

μ

n∏
j=1

x j .

Multiplying the first n equations yields
∏n

i=1 xn−1
i = ∏n

i=1(ai + μ). Thus the mini-
mum value of

∑n
i=1 xi is

n − 1

μ

⎛
⎝ n∏

j=1

(a j + μ)

⎞
⎠

1/(n−1)

.

Editorial comment. The proposer notes that the problem is related to Problem 4 of the
2001 Vietnam Team Selection Test.

Also solved by R. Bagby, R. Boukharfane (Canada), P. Bracken, M. Dincă (Romania), N. Grivaux (France),
O. Kouba (Syria), J. Martı́nez (Spain), N. C. Singer, R. Stong, T. Viteam (Chile), GCHQ Problem Solving
Group (U. K.), and the proposer.

Euler and Bernoulli Make Integer Coefficients

11720 [2013, 660]. Proposed by Ira Gessel, Brandeis University, Waltham, MA. Let
En(t) be the Eulerian polynomial defined by

∞∑
k=0

(k + 1)ntk = En(t)

(1 − t)n+1
,

and let Bn be the nth Bernoulli number. Show that
(
En+1(t) − (1 − t)n

)
Bn is a poly-

nomial with integer coefficients.

Solution by Josep Martı́nez, Spain. The assertion holds for n = 0, since E1(t) = 1.
We know that Bn = 0 when n is odd and greater than 1. By the von Staudt–Clausen
theorem, when n is even and positive the denominator of Bn is the product of the prime
numbers p such that p − 1 divides n. This also holds for n = 1, since B1 = −1/2.
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Let p be a prime number such that p − 1 divides n; we prove that p divides the
coefficients of En+1(t) − (1 − t)n . We have

En+1(t) − (1 − t)n

(1 − t)n+2
= En+1(t)

(1 − t)n+2
− 1

(1 − t)2
=

∞∑
k=1

(kn+1 − k)t k−1.

If p does not divide k, then Fermat’s little theorem gives k p−1 ≡ 1 (mod k). Since
p − 1 divides n, we deduce that kn+1 − k = k(kn − 1) is divisible by p. If p divides
k, then p divides kn+1 − k. Thus every coefficient of

En+1(t) − (1 − t)n

(1 − t)n+2

is divisible by p, and therefore so is every coefficient of En+1(t) − (1 − t)n .

Also solved by R. Chapman (U. K.), G. C. Greubel, B. Karaivanov, O. Kouba (Syria), O. P. Lossers (Nether-
lands), J. Quaintance, R. Stong, R. Tauraso (Italy), T. P. Turiel, GCHQ Problem Solving Group (U. K.), TCD-
math Problem Group (Ireland), and the proposer.

A Tangent Conic

11723 [2013, 661]. Proposed by L. R. King, Davidson, NC. Let A, B, and C be three
points in the plane, and let D, E , and F be points lying on BC, CA, and AB, respec-
tively. Show that there exists a conic tangent to BC, CA, and AB at D, E , and F ,
respectively, if and only if AD, BE, and CF are concurrent.

Solution by Raul A. Simon, Chile. Consider a conic meeting the sides in two points
each, meeting BC at Db and Dc, CA at Ec and Ea , and AB at Fa and Fb. Carnot’s
theorem for conics gives

AFa · AFb · BDb · BDc · CEc · CEa

AEc · AEa · BFa · BFb · CDb · CDc
= 1,

where lengths are interpreted as signed. In the proposed problem, where each pair of
points degenerates into a single point, we get(

AF · BD · CE

AE · BF · CD

)2

= 1.

Hence
AF · BD · CE

AE · BF · CD
= ±1.

For the positive sign, Ceva’s theorem shows that AD, BE, and CF are concurrent. For
the negative sign, Menelaus’ theorem shows that D, E , and F are collinear (and the
conic has degenerated, so we exclude this case).

The converse follows from the same argument using the converses to Ceva’s and
Carnot’s theorems.

Also solved by E. Bojaxhiu & E. Hysnelaj (Albania & Australia), O. Geupel (Germany), J.-P. Grivaux
(France), A. Habil (Syria), K. Hanes, O. Kouba (Syria), O. P. Lossers (Netherlands), C. R. Pranesachar (India),
R. Stong, M. Vowe (Switzerland), GCHQ Problem Solving Group (U. K.), and the proposer.

A Limit Computation

11724 [2013, 661]. Proposed by Andrew Cusumano, Great Neck, NY. Let f (n)

= ∑n
k=1 kk and let g(n) = ∑n

k=1 f (k). Find

lim
n→∞

g(n + 2)

g(n + 1)
− g(n + 1)

g(n)
.
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Solution by Hosam M. Mahmoud, The George Washington University, Washington,
D.C. The limit is e. First we derive some asymptotics of the function g(n). As n → ∞,(

1 + a

n

)n
= ea − a2ea

2n
+ O(n−2). (1)

Now f (n) = nn + (n − 1)n−1 + ∑n−2
k=1 kk , and the remaining series is bounded by a

geometric series,

n−2∑
k=1

kk ≤
n−2∑
k=1

nk = nn−1 − n

n − 1
= O(nn−2).

Using (1) we obtain

f (n) = nn + nn−1

(
1 − 1

n

)n−1

+ O(nn−2) = nn + nn−1

e
+ O(nn−2).

This leads to an asymptotic approximation for g(n):

g(n) = f (n) + f (n − 1) +
n−2∑
k=1

O(kk)

=
(

nn + nn−1

e
+ O(nn−2)

)
+ (

(n − 1)n−1 + O(nn−2)
) + O

(∑n−2
k=1 kk

)

= nn + 2

e
nn−1 + O

(
nn−2

)
.

Thus

g(n + 1)

g(n)
= (n + 1)n+1 + 2

e (n + 1)n + O(nn−1)

nn + 2
e nn−1 + O(nn−2)

= n(1 + 1
n )n+1 + 2

e (1 + 1
n )n + O( 1

n )

1 + 2
en + O( 1

n2 )
= e n + e

2
+ O(n−1).

Hence,

g(n + 2)

g(n + 1)
− g(n + 1)

g(n)
=

(
e (n + 1) + e

2
+ O(n−1)

)
−

(
e n + e

2
+ O(n−1)

)
,

which simplifies to e + O(n−1). Thus the required limit is indeed e.

Also solved by M. Bataille (France), P. Bracken, R. Chapman (U. K.), H. Chen, W. J. Cowieson,
D. Fleischman, J.-P. Grivaux (France), A. Habil (Syria), E. A. Herman, B. Karaivanov, O. Kouba (Syria),
C. W. Lienhard & M. Haner, J. H. Lindsey II, O. P. Lossers (Netherlands), J. Martı́nez (Spain), M. Omarjee
(France), P. Perfetti (Italy), C. R. Pranesachar (India), R. E. Prather, A. Stenger, R. Stong, R. Tauraso (Italy),
D. B. Tyler, J. Vinuesa (Spain), Z. Vörös (Hungary), J. Zacharias, and GCHQ Problem Solving Group (U. K.).
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, and
Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never be
under submission concurrently to more than one journal, nor posted to the internet
before the due date for solutions. Submitted solutions should arrive before February
29, 2016. Additional information, such as generalizations and references, is wel-
come. The problem number and the solver’s name and address should appear on
each solution. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

11858. Proposed by Arkady Alt, San Jose, CA. Let D be a nonempty set and g be a
function from D to D. Let n be an integer greater than 1. Consider the set X of all x
in D such that gn(x) = x , but gk(x) �= x for 1 ≤ k < n. Prove that if X has exactly
n elements, then there is no function f from D to D such that f n = g. (Here, for
h : D → D, hk denotes the k-fold composition of h with itself.)

11859. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury Ionin, Central Michigan University, Mount Pleasant, MI. Find all pairs (m, n) of
positive integers for which there exists an m × n matrix A and an n × m matrix B, both
with real entries, such that all diagonal entries of AB are positive and all off-diagonal
entries are negative.

11860. Proposed by Dimitris Vartziotis, NIKI MEPE Digital Engineering, Katsikas
Ioannina, Greece. Let ABC be a triangle. Let D, E , and F be the feet of the alti-
tudes from A, B, and C , respectively. Extend the ray D A beyond A to a point A′,
and similarly extend E B to B ′ and FC to C ′, in such a way that

√
3|AA′| = |BC |,√

3|B B ′| = |C A|, and
√

3|CC ′| = |AB|. Prove that A′ B ′C ′ is an equilateral triangle.

11861. Proposed by Phu Cuong Le Van, College of Education, Hue, Vietnam. Let n
be a natural number and let f be a continuous function from [0, 1] to R such that∫ 1

0 f (x)2n+1 dx = 0. Prove that

(2n + 1)2n+1

(2n)2n

(∫ 1

0
f (x) dx

)2n

≤
∫ 1

0
( f (x))4n dx .

http://dx.doi.org/10.4169/amer.math.monthly.122.8.801
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11862. Proposed by David A. Cox and Uyen Thieu, Amherst College, Amherst, MA.
For positive integers n and k, evaluate

k∑
i=0

(−1)i

(
k

i

)(
kn − in

k + 1

)
.

11863. Proposed by Jeffrey C. Lagarias and Jeffrey Sun, University of Michigan, Ann
Arbor, MI. Consider integers a, b, c with 1 ≤ a < b < c that satisfy the following
system of congruences:

(a + 1)(b + 1) ≡ 1 (mod c)

(a + 1)(c + 1) ≡ 1 (mod b)

(b + 1)(c + 1) ≡ 1 (mod a).

(a) Show that there are infinitely many solutions (a, b, c) to this system.
(b) Show that under the additional condition that gcd(a, b) = 1, there are only finitely
many solutions (a, b, c) to the system, and find them all.

11864. Proposed by Bakir Farhi, University of Béjaia, Béjaia, Algeria. Let p be a
prime number, and let 〈u〉 be the sequence given by un = n for 0 ≤ n ≤ p − 1 and by
un = pun+1−p + un−p for n ≥ p. Prove that for each positive integer n, the greatest
power of p dividing un is the same as the greatest power of p dividing n.

11854. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata”, Rome, Italy.
(correction). In the Euclidean plane, given distinct points P1, . . . , Pn and distinct
lines l1, . . . , lm , prove that there is a half-line h such that for any point Q on h, any
k ∈ {1, . . . , m}, and any j ∈ {1, . . . , n}, Q is nearer to lk than to Pj .

SOLUTIONS

Taylor Approximation of the Logarithm

11725 [2013, 661]. Proposed by Mher Safaryan, Yerevan State University, Yerevan,
Armenia. Let m be a positive integer. Show that, as n → ∞,∣∣∣∣∣log 2 −

n∑
k=1

(−1)k−1

k

∣∣∣∣∣ = C1

n
+ C2

n2
+ · · · + Cm

nm
+ o

(
1

nm

)
,

where

Ck = (−1)k
k∑

i=1

1

2i

i∑
j=1

(−1) j

(
i − 1

j − 1

)
j k−1

for 1 ≤ k ≤ m.

Solution by Jean-Pierre Grivaux, Paris, France. Note that
∫ 1

0 t k dt = 1/(k + 1).
Hence,∫ 1

0

tn

1 + t
dt =

∞∑
k=n

(−1)k−n

∫ 1

0
t k dt = (−1)n

(
log 2 −

n∑
k=1

(−1)k−1

k

)
. (1)
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Let In be the integral in (1). Integrating by parts k times yields In = An,k + Rn,k , where

An,k = 1

2(n + 1)
+ 1

4(n + 1)(n + 2)
+ · · · + (k − 1)!

2k(n + 1)(n + 2) · · · (n + k)

and

Rn,k = k!

(n + 1)(n + 2) · · · (n + k)

∫ 1

0

tn+k

(1 + t)k+1
dt.

Since

0 ≤ Rn,k ≤ k!

nk

∫ 1

0
tn+k dt = O

(
1

nk+1

)
,

it follows that

In = An,k + O

(
1

nk+1

)
.

What remains is to expand the terms in this asymptotic expansion for In using pow-
ers of 1/n. First, we use partial fractions to expand 1/(x + 1)(x + 2) · · · (x + r) and
obtain

(r − 1)!

(n + 1)(n + 2) · · · (n + r)
=

r∑
j=1

(−1) j−1

(
r − 1

j − 1

)
1

n + j
.

Hence,

In =
k∑

i=1

1

2i

⎛
⎝ i∑

j=1

(−1) j−1

(
i − 1

j − 1

)
1

n + j

⎞
⎠+ O

(
1

nk+1

)
. (2)

Now we expand the terms 1/(n + j). As n tends to infinity,

1

n + j
= 1

n

k−1∑
s=0

(−1)s j s

ns
+ O

(
1

nk+1

)
.

Inserting this into (2) and grouping the powers of 1/n gives the result.

Editorial comment. Other solvers used a variety of sophisticated tools. Ulrich Abel
generalized the problem to obtain, for −1 ≤ x < 1, the asymptotic expansion∣∣∣∣∣log(1 − x) +

n∑
k=1

xk

k

∣∣∣∣∣ ∼ |x |n+1
∞∑

k=1

Ck(x)

nk
,

with coefficients

Ck(x) =
k∑

i=1

(1 − x)−i
i−1∑
j=0

(−1) j

(
i − 1

j

)
j k−1.

Also solved by U. Abel (Germany), M. Bataille (France), D. Beckwith, R. Chapman (U. K.), I. Gessel,
O. Kouba (Syria), O. P. Lossers (Netherlands), J. Martı́nez (Spain), M. Omarjee (France), P. Perfetti (Italy),
A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), Armstrong Problem Solvers, GCHQ Prob-
lem Solving Group (U. K.), and the proposer.
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Jointly Discontinuous Only on a Cantor Set

11726 [2013, 754]. Proposed by Stephen Scheinberg, Corona del Mar, CA. Let K be
Cantor’s middle-third set. Let K ∗ = K × {0}. Is there is a function F from R2 to R
such that

1. for each x ∈ R, the function t → F(x, t) is continuous on R,

2. for each y ∈ R, the function s → F(s, y) is continuous on R, and

3. F is continuous on the complement of K ∗ and discontinuous on K ∗?

Solution by Reiner Martin, Bad Soden-Neuenhain, Germany. We will construct such
a function F . Define d : R → R so that d(x) is the distance from x to K . Note that
d(x) = 0 if and only if x ∈ K . Define φ : R → R by φ(x) = max

{
min{x, 2 − x}, 0

}
.

Of course both d and φ are continuous on R.
Now define F by F(x, y) = 0 for x ∈ K and F(x, y) = φ(y/d(x)) otherwise.

Properties 1 and 2 and that F is continuous on the complement of K ∗ are straightfor-
ward. It remains to prove that F is discontinuous on K ∗. Let x ∈ K and ε > 0. The
complement of K is dense in R, so there is some z ∈ R \ K with |z − x | < ε/2. Now
d(z) < ε/2, and F(z, d(z)) = φ(1) = 1. Thus F(x, 0) = 0, but every neighborhood
of (x, 0) contains a point where F is 1. Hence, F is discontinuous at (x, 0) ∈ K ∗.

Also solved by J.-P. Grivaux (France), K. P. Hart (Netherlands), B. Karaivanov, M. D. Meyerson, P. Perfetti
(Italy), R. Stong, TCDmath Problem Group (Ireland), and the proposer.

An Apollonius Special Case

11727 [2013, 754]. Proposed by Nguyen Thanh Binh, Hanoi, Vietnam. Let R be a circle
with center O . Let R1 and R2 be circles with centers O1 and O2 inside R, such that R1

and R2 are externally tangent and both are internally tangent to R. Give a straight edge
and compass construction of the circle R3 that is internally tangent to R and externally
tangent to R1 and R2.

Solution by Kit Hanes, Bellingham, WA. Let T be the point of tangency of R and R1.
Construct the line l incident with O , O1, and T . Construct lines through T tangent to
R2 at P and Q. Construct the circle C centered at T incident with P and Q. Construct
the line k through O2 perpendicular to l. Construct lines m and n parallel to k and
tangent to R2. Since R2 is orthogonal to C , the inverse of R2 with respect to C is
R2 itself. The inverses of R1 and R are lines perpendicular to l, and, since inversion
preserves tangency, must be the lines m and n. Select one of the two circles tangent to
m, n, and R2, and construct U , V , and W , the respective points of tangency. Construct
U ′, V ′, and W ′, the respective inverses of U , V , and W with respect to C . Construct
the circle incident with U ′, V ′, and W ′; it is one of the two possibilities for R3.

Editorial comment. Charles Delorme noted that this construction works for any three
pairwise tangent circles, and it also works if circle R is replaced by a line. J. Schaer
noted that the problem is a special case of the Problem of Apollonius.

Also solved by R. Bagby, M. Bataille (France), L. Childers & C. Harden, P. P. Dályay (Hungary), C. Delorme
(France), O. Geupel (Germany), J.-P. Grivaux (France), H. Guggenheimer, B. Karaivanov, O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), V. Nita, J. Schaer (Canada), R. Stong, E. I. Verriest, Z. Vörös
(Hungary), and the proposer.
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Another Integral Sum

11728 [2013, 754]. Proposed by Walter Blumberg, Coral Springs, FL. Let p be a prime
congruent to 7 modulo 8. Prove that

p∑
k=1

⌊
k2 + k

p

⌋
= 2p2 + 3p + 7

6
.

Solution by O. P. Lossers, Eindhoven, The Netherlands. Let [x] denote the remainder
of x upon division by p. It suffices to prove

∑p−1
k=0 [k2 + k] = p(p−1)

2 , because then

p∑
k=1

⌊
k2 + k

p

⌋
=

p∑
k=1

k2 + k

p
−

p∑
k=1

[k2 + k]

p
=

p∑
k=1

k2

p
+

p∑
k=1

k

p
−

p−1∑
k=0

[k2 + k]

p

= (p + 1)(2p + 1)

6
+ p + 1

2
− p − 1

2
= 2p2 + 3p + 7

6
.

Note that with k ≡ m − p+1
2 (mod p) we have

k2 + k ≡ m2 − m(p + 1) + (p + 1)2

4
+ m − p + 1

2

≡ m2 − p + 1

4
(−p − 1 + 2) ≡ m2 − p + 1

4
(mod p),

so we can compute L = ∑p−1
m=0[m2 − p+1

4 ] instead.

Let K = ∑p−1
k=0 [k2]. Note that [m2 − p+1

4 ] = [m2] + p − p+1
4 if [m2] <

p+1
4 , so

L = K + (c1 + 1)p − p+1
4 p, where c1 is the number of m such that 0 < [m2] <

p
4 .

To study K , let us split the interval (0, p) into four equal parts (0,
p
4 ), (

p
4 ,

p
2 ),

(
p
2 ,

3p
4 ), and (

3p
4 , p). Denote respectively by K1, K2, K3, and K4 the subsums of K

with terms in these intervals, and by c1, c2, c3, and c4 the number of terms in each of
these subsums. Note that these terms come in pairs with equal values.

Because p ≡ 7 (mod 8), we know that 2 is a quadratic residue. It follows that
K = ∑p−1

k=0 [2k2]. Denote respectively by H1 and H2 the subsums of this sum with
terms in (0,

p
2 ) and in (

p
2 , p). Note that H1 has c1 + c3 terms and H1 = 2(K1 + K3)

− c3 p, while H2 has c2 + c4 terms and H2 = 2(K2 + K4) − c4 p. It follows readily that
K = (c3 + c4)p.

Repeating this trick with K = ∑p−1
k=0 [4k2], we obtain K = 2(H1 + H2) − (c2

+ c4)p, and hence K = (c2 + c4)p. It now follows that c2 = c3.
Because p ≡ 3 (mod 4), we know that −1 is a quadratic nonresidue. It follows that

whenever a is a quadratic residue, p − a is not. There are p+1
2 integers in the interval

(
p
4 ,

3p
4 ). Every quadratic residue in (

p
4 ,

p
2 ) corresponds to a quadratic nonresidue in

(
p
2 ,

3p
4 ) and vice versa. There are two terms in the sums with a particular quadratic

residue as value, and this shows that c2 + c3 = p+1
2 . Thus c2 = c3 = p+1

4 .
From L = K + (c1 + 1)p − p(p+1)

4 and K = (c3 + c4)p it follows that L =
(c1 + c3 + c4 + 1)p − p(p+1)

4 . Since c1 + c2 + c3 + c4 = p − 1 and c2 = p+1
4 , we

obtain L = (
p − p+1

4

)
p − p(p+1)

4 = p
(

p − p+1
2

) = p(p−1)

2 , as required.

Also solved by R. Chapman (U. K.), E. J. Ionascu, Y. J. Ionin, B. Karaivanov, J. Martı́nez (Spain), M. A. Prasad
(India), N. C. Singer, R. Tauraso (Italy), T. Viteam (South Africa), and the proposer.

October 2015] PROBLEMS AND SOLUTIONS 805

This content downloaded from 139.184.14.159 on Mon, 28 Sep 2015 07:34:37 UTC
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



Summing the Reciprocals of Normal Numbers Base b

11729 [2013 570]. Proposed by Vassilis Papanicolaou, National Technical University
of Athens, Athens, Greece. An integer n is called b-normal if all digits 0, 1, . . . , b − 1
appear the same number of times in the base-b expansion of n. Let Nb be the set of all
b-normal integers. Determine those b for which∑

n∈Nb

1

n
< ∞.

Solution by Nicole Grivaux, Paris, France. We denote by Nb,k the set of the elements
of Nb written with kb digits. If n belongs to Nb,k , then bkb−1 ≤ n < bkb, so that
1/bkb ≤ 1/n ≤ b(1/bkb). Since the first digit of an element of Nb,k cannot be 0, the
number of elements of Nb,k is

|Nb,k | =
(

bk − 1

k

)
×
(

bk − k

k

)
× · · · ×

(
2k

k

)
= b − 1

b
× (bk)!

(k!)b
.

By Stirling’s formula, |Nb,k | ∼ Mbbk

k(b−1)/2
as k → ∞, where M = (b − 1)

√
b

b(2π)(b−1)/2
.

We compute

|Nb,k | 1

bbk
=

∑
n∈Nb,k

1

bkb
≤

∑
n∈Nb,k

1

n
≤ b

∑
n∈Nb,k

1

bkb
= b|Nb,k | 1

bkb
,

which proves that
∑
k>0

∑
n∈Nb,k

1

n
and

∑
k>0

|Nb,k | 1

bbk
are both finite or both not. Since

|Nb,k | 1

bbk
∼ M

1

k(b−1)/2
,
∑
k>0

|Nb,k | 1

bbk
is finite if and only if

b − 1

b
> 1, i.e., b > 3.

Also solved by R. Bagby, R. Boukharfane (Canada), R. Chapman (U. K.), W. Cowieson, P. P. Dályay
(Hungary), D. Fleischman, O. Geupel (Germany), Y. J. Ionin, B. Karaivanov, O. Kouba (Syria), J. H. Lindsey
II, O. P. Lossers (Netherlands), G. Martin (Canada), R. Martin (Germany), M. A. Prasad (India), M. Safaryan
(Armenia), N. C. Singer, R. Stong, R. Tauraso (Italy), J. Vinuesa (Spain), H. Wang & J. Wojdylo, Missouri State
U. Problem Solving Group, NSA Problems Group, TCDmath Problems Group (Ireland), and the proposer.

A partition recurrence

11730 [2013, 755]. Proposed by Mircea Merca, University of Craiova, Craiova, Roma-
nia. Let p be the partition function (counting the ways to write n as a sum of positive
integers), extended so that p(0) = 1 and p(n) = 0 for n < 0. Prove that

∞∑
k=0

2k∑
j=0

(−1)k p

(
n − k(3k + 1)

2
− j

)
= 1.

Solution by Mark Wildon, Royal Holloway, University of London, Egham, U. K. Let

Q(x) =
∞∑

k=0

2k∑
j=0

(−1)k xk(3k+1)/2+ j

and let

P(x) =
∞∑

n=0

p(n)xn.
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The coefficient of xn in Q(x)P(x) is

∞∑
k=0

2k∑
j=0

(−1)k p

(
n − k(3k + 1)

2
− j

)
.

Thus we need to prove that Q(x)P(x) = 1/(1 − x), or equivalently, (1 − x)Q(x)

= 1/P(x). We have

(1 − x)Q(x) =
∞∑

k=0

(−1)k(1 − x2k+1)xk(3k+1)/2

=
∞∑

k=0

(−1)k
(
xk(3k+1)/2 − x (k+1)(3(k+1)−1)/2

)

= 1 +
∞∑

k=1

(−1)k
(
xk(3k+1)/2 + xk(3k−1)/2

)
.

By Euler’s pentagonal number theorem, this is equal to 1/P(x).

Also solved by D. Beckwith, R. Boukharfane (Canada), R. Chapman (U. K.), D. Fleischman, O. Geupel
(Germany), Y. J. Ionin, B. Karaivanov, O. P. Lossers (Netherlands), J. Martı́nez (Spain), M. A. Prasad, R. Stong,
R. Tauraso (Italy), GCHQ Problem Solving Group (U. K.), and the proposer.

The Integer Simplex

11731 [2013, 755]. Proposed by Meijie Ma and Douglas B. West, Zhejiang Normal
University, Jinhua, China. The integer simplex with dimensions d and side-length m
is the graph T d

m whose vertices are the nonnegative integer (d + 1)-tuples summing
to m, with two vertices adjacent when they differ by 1 in two places and are equal
in all other places. Determine the connectivity, the chromatic number, and the edge-
chromatic number of T d

m (the last when m > d).

Composite solution by Boris Karaivanov, Lexington, South Carolina, and the pro-
posers. The connectivity is d, the chromatic number is d + 1, and the edge-chromatic
number is (d + 1)d.

Connectivity: The d + 1 corner vertices in T d
m are those having 0 in all but one

coordinate. Joining any two coordinate vertices u and v are d internally disjoint paths:
one through convex combinations of u and v and d − 1 through the other corner ver-
tices. From any noncorner vertex, there are internally disjoint paths to the d + 1 corner
vertices; the (nonunique) path to the i th corner vertex increases coordinate i with each
step. Hence deleting fewer than d vertices cannot separate any vertex from the set
of corner vertices and cannot separate two corner vertices from each other, so T d

m is
d-connected. Equality holds, since each corner vertex has degree d.

Chromatic Number: Color each vertex (x0, . . . , xd) with the congruence class
modulo d + 1 of

∑d
k=0 kxk . Any adjacent vertices u and v differ in two coordinates

s and t ; their colors differ by |s − t |, so the coloring is proper. Also T d
m contains T d

1 , a
complete graph with chromatic number d + 1, so χ(T d

m ) = d + 1.

Edge-Chromatic Number: Each edge involves two indices that change. The edges
generated by one pair of indices form a disjoint union of paths. Devoting two colors to
each such subgraph yields a proper edge coloring with (d + 1)d colors. This is optimal
when m > d, since there then exist noncorner vertices with degree (d + 1)d.

October 2015] PROBLEMS AND SOLUTIONS 807

This content downloaded from 139.184.14.159 on Mon, 28 Sep 2015 07:34:37 UTC
All use subject to JSTOR Terms and Conditions

X
ia
ng
’s
T
ex
m
at
h



Also solved by R. Chapman (U. K.) and the SPARTA Problem Solving Group (Turkey). Partially solved by
C. Delorme (France), O. P. Lossers (Netherlands), and R. Stong.

The Functional Equation f (ax) + f (bx) = mx + n

11732 [2013, 755]. Proposed by Marcel Chirita, Bucharest, Romania. Let a and b
be real, with 1 < a < b, and let m and n be real, with m �= 0. Find all continuous
functions f from [0, ∞) to R such that for x ≥ 0,

f (ax) + f (bx) = mx + n.

Solution by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. For
t ≥ 0 let

g(t) = f ((ab)t) − n/2

m
. (1)

For x ≥ 0,

m
(
g(r x) + g((1 − r)x)

)+ n = mg(r x) + n

2
+ mg

(
(1 − r)x

)+ n

2

= f (ax) + f (bx),

where r = logab b > logab a = 1 − r > 0. Thus the problem becomes to show that
for x > 0,

g(r x) + g((1 − r)x) = x .

Let g(t) = t + h(t), so h(r x) = −h((1 − r)x). Hence, for t ≥ 0 and any positive
integer n,

h(t) = −h(αt) = h(α2t) = · · · = (−1)nh(αnt),

where α = (1 − r)/r ∈ (0, 1). Note that h(0) = (−1)nh(0) implies h(0) = 0. Since
f is continuous at 1, also h is continuous at 0. For t ≥ 0 it follows that

h(t) = lim
n→∞

(−1)nh(αnt) = 0.

This holds since αnt → 0 and h(αnt) → h(0) = 0. The unique solution is given by
g(t) = t for t ≥ 0. Substituting this result into (1) with t = logab(x) for x ≥ 1, our
unique solution is

f (x) = f ((ab)logab(x)) = m logab(x) + n

2
.

Note that in this case the identity

f (ax) + f (bx) = mx + n

holds for all x ∈ R.

Editorial comment. The proposer already published his solution in Gazeta Matematica
No. 5 (2013) pp. 225–226.

Also solved by M. Aasila (France), I. Aburub (Jordan), M. Bataille (France), D. Beckwith, R. Boukharfane
(Canada), P. Bracken, N. Caro (Brazil), R. Chapman (U. K.), P. P. Dályay (Hungary), D. Fleischman,
O. Geupel (Germany), N. Grivaux (France), E. A. Herman, B. D. Hughes (Australia), E. J. Ionascu, Y. J.
Ionin, B. Karaivanov, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), J. Martı́nez (Spain),
T. L. McCoy, V. Mikayelyan (Armenia), V. Nita, M. Omarjee (France), S. K. Patel & H. D. Kamat (India),
M. A. Prasad (India), M. Safaryan (Armenia), J. Schlosberg, R. Stong, N. Thornber, E. I. Verriest, T. Viteam
(South Africa), H. Yousefi, Armstrong Problem Solvers, GCHQ Problem Solving Group (U. K.), TCDmath
Problem Group (Ireland), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley, Kenneth Sto-
larsky, Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never be
under submission concurrently to more than one journal, nor posted to the internet
before the due date for solutions. Submitted solutions should arrive before March
31, 2016. Additional information, such as generalizations and references, is wel-
come. The problem number and the solver’s name and address should appear on
each solution. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

11865. Proposed by Gary H. Chung, Clark Atlanta University, Atlanta, GA. Let 〈an〉 be
a monotone decreasing sequence of nonnegative real numbers. Prove that

∑∞
n=1 an/n

is finite if and only if limn→∞ an = 0 and
∑∞

n=1(an − an+1) log n < ∞.

11866. Proposed by Arindam Sengupta, University of Calcutta, Kolkata, India. Con-
sider a finite set {α1, . . . , αm} of rational numbers in (0, 1). For 0 < p < 1 and k ≥ 1,
let �k be the probability space for k independent flips of a coin that comes up heads
with probability p. Show that there exists a positive integer k, a suitable p, and events
E1, . . . , Em in �k , such that for each j with 1 ≤ j ≤ m, the probability of E j is α j .

11867. Proposed by George Apostolopoulos, Messolonghi, Greece. For real numbers
a, b, c, let

f (a, b, c) =
(

a2

a2 − ab + b2

)1/4

.

Prove that f (a, b, c) + f (b, c, a) + f (c, a, b) ≤ 3.

11868. Proposed by James Propp, University of Massachusetts Lowell, Lowell, MA.
For fixed positive integers a and b, let m = ab − 1 and let R be the set {1, . . . , a}
× {1, . . . , b}, indexed as p0 through pm in lexicographic order, so that p0 = (1, 1),
p1 = (1, 2), and pm = (a, b). Define T from R to R as the map that sends p0 to p0

and pm to pm , and for 1 ≤ i ≤ m − 1 sends pi to p j where j ≡ ai (mod m). As a
bijection, T partitions R into orbits. Show that the center of mass of each orbit lies on
the line joining p0 and pm .

11869. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Prove that |y log y − x log x | ≤ |y − x |1−1/e for 0 < x < y ≤ 1.

http://dx.doi.org/10.4169/amer.math.monthly.122.9.899
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11870. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Suppose
0 ≤ x ≤ 1, y = 1 − x , and a and b are unimodular complex numbers. Let c1

= 2(xa + yb) and c2 = 2(xa2 + yb2). Prove that
∣∣|c2

1 + c2| − 3|c1|
∣∣ ≤ 3, with equality

if and only if x = y = 1/2 and ba = e2π i/3.

11871. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA, and Ştefan
Spătaru, Harvard University, Boston, MA. Let ABC be a triangle in the Cartesian
plane with vertices in Z2 (lattice vertices). Show that, if P is an interior lattice point
of ABC , then at least one of the angles P AB, P BC , and PC A has a radian measure
that is not a rational multiple of π .

11872. Proposed by Phu Cuong Le Van, College of Education, Hue, Vietnam. Let f be
a continuous function from [0, 1] into R such that

∫ 1
0 f (x) dx = 0. Prove that for all

positive integers n there exists c ∈ (0, 1) such that n
∫ c

0 xn f (x) dx = cn+1 f (c).

SOLUTIONS

A Circumradial Inequality

11735 [2013, 854]. Proposed by Cosmin Pohoata, Princeton University, Princeton,
NJ. Let P be a point inside triangle ABC . Let dA, dB , and dC be the distances from
P to A, B, and C , respectively. Let rA, rB , and rC be the radii of the circumcircles of
P BC , PC A, and P AB, respectively. Prove that

1

dA
+ 1

dB
+ 1

dC
≥ 1

rA
+ 1

rB
+ 1

rC
.

Solution by Traian Viteam, Cape Town, South Africa. Let OA, OB , and OC be the
circumcenters of P BC , PC A, and P AB, respectively. The line OA OB is the perpen-
dicular bisector of the common chord PC , and similarly for OA OC and OB OC . Hence
P is inside OA OB OC . Also, rA, rB , and rC are the distances from P to the vertices of
triangle OA OB OC , and dA/2, dB/2, and dC/2 are the distances from P to the sides.
Therefore the requested inequality is inequality (5) from A. Oppenheim, The Erdős
Inequality and Other Inequalities for a Triangle, this MONTHLY 68 (1961) 226-230.

Also solved by M. Aassila (France), A. Alt, M. Dincă (Romania), O. Geupel (Germany), B. Karaivanov, J.
Minkus, P. Nüesch (Switzerland), R. Stong, L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

Lucas numbers and roots of unity

11736 [2013, 855]. Proposed by Mircea Mirca, University of Craiova, Craiova, Ro-
mania. For n ≥ 1, let f be the symmetric polynomial in variables x1, . . . , xn given
by

f (x1, . . . , xn) =
n−1∑
k=0

(−1)k+1ek(x1 + x2
1 , x2 + x2

2 , . . . , xn + x2
n),

where ek is the kth elementary polynomial in n variables. (For example, when n = 6,
e2 has 15 terms, each a product of two distinct variables.) Also, let ξ be a primitive nth
root of unity. Prove that

f (1, ξ, ξ 2, . . . , ξ n−1) = Ln − L0,

where Lk is the kth Lucas number (L0 = 2, L1 = 1, and Lk = Lk−1 + Lk−2 for k ≥ 2).
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Solution by Borislav Karaivanov, Lexington, SC. Let

g(t1, . . . , tn) =
n−1∑
k=0

(−1)k+1ek(t1, . . . , tn) = (−1)n
n∏

k=1

tk −
n∏

k=1

(1 − tk),

and let

p(x, y) =
n−1∏
k=0

(x − ξ k y) = xn − yn.

Let α = (1 + √
5)/2 and β = (1 − √

5)/2, so that 1 − x − x2 = (1 − αx)(1 − βx),
αβ = −1, and Ln = αn + βn . We compute

f (1, ξ, . . . , ξ n−1) = g(1 + 1, ξ + ξ 2, . . . , ξ n−1 + ξ 2(n−1))

= (−1)n
n−1∏
k=0

(ξ k + ξ 2k) −
n−1∏
k=0

(1 − ξ k − ξ 2k)

=
n−1∏
k=0

(−ξ)k
n−1∏
k=0

(1 + ξ k) −
n−1∏
k=0

(1 − αξ k)

n−1∏
k=0

(1 − βξ k)

= p(0, 1)p(1, −1) − p(1, α)p(1, β)

= (−1)
(
1 − (−1)n

) − (1 − αn)(1 − βn)

= (−1 + (−1)n
) − (

1 − αn − βn + (αβ)n
)

= αn + βn − 2 = Ln − L0.

Also solved by D. Beckwith, R. Chapman (U. K.), D. Constales (Belgium), I. Gessel, Y. J. Ionin, O. P. Lossers
(Netherlands), J. Martı́nez (Spain), M. Omarjee (France), M. A. Prasad (India), R. Stong, R. Tauraso (Italy),
T. Viteam (South Africa), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

An Infinite Matrix Product

11739 [2013, 855]. Proposed by Fred Adams, Anthony Bloch, and Jeffrey Lagarias,
University of Michigan, Ann Arbor, MI. Let B(x) = [ 1 x

x 1

]
. Consider the infinite matrix

product

M(t) = B(2−t)B(3−t)B(5−t) · · · =
∏

p

B(p−t),

where the product runs over the primes, taken in increasing order. Evaluate M(2).

Solution by Finbarr Holland, University College, Cork, Cork, Ireland. The value is
3

2π2

[ 7 3
3 7

]
. Note that B(x) = Q A(x)Q−1, where

A(x) =
[

1 + x 0
0 1 − x

]
and Q =

[
1 1
1 −1

]
.

For each prime p and each complex number t with �t > 1, let x p = p−t . We compute

Q−1 M(t)Q =
∏

p

A(x p) =
∏

p

[
1 + x p 0

0 1 − x p

]
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=
[∏

p(1 + x p) 0
0

∏
p(1 − x p)

]

=
[∏

p

(
1−x2

p

1−x p

)
0

0
∏

p(1 − x p)

]
=

[
ζ(t)
ζ(2t) 0
0 1

ζ(t)

]
,

where, by Euler and Riemann,

ζ(t) =
∞∑

n=1

1

nt
=

∏
p

(1 − x p)
−1.

Since

ζ(2) = π2

6
and ζ(4) = π4

90
,

it follows that

M(2) = Q

[ 15
π2 0
0 6

π2

]
Q−1 = 3

2π2

[
7 3
3 7

]
.

Also solved by D. Beckwith, R. Boukharfane (Canada), M. A. Carlton, M. Chamberland, R. Chapman (U.K.),
H. Chen, D. Constales (Belgium), C. Degenkolb, C. Delorme (France), E. S. Eyeson, D. Fleischman, O. Furdui
(Romania), O. Geupel (Germany), M. Goldenberg & M. Kaplan, J.-P. Grivaux (France), E. A. Herman, J.
Iliams, M. Janas, B. Karaivanov, P. Khalili, J. C. Kieffer, J. H. Lindsey II, O. P. Lossers (Netherlands), G.
Martin (Canada), R. Martin (Germany), J. Martı́nez (Spain), R. Molinari, R. Nandan, M. Omarjee (France), É.
Pité (France), M. A. Prasad (France), A. J. Rosenthal, C. M. Russell, M. Safaryan (Armenia), E. Schmeichel,
N. C. Singer, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), N. Thornber, T. Trif (Romania),
E. I. Verriest, C. Vignat & V. H. Moll (France & U.S.A.), J. Vinuesa (Spain), T. Viteam (South Africa), Z. Vörös
(Hungary), T. Wiandt, L. Zhou, FAU Math Club, GCHQ Problem Solving Group (U.K.), GWstate Problem
Solving Group, Missouri State University Problem Solving Group, Northwestern University Math Problem
Solving Group, NSA Problems Group, TCDmath Problem Group (Ireland), and the proposers.

An Infinite Set of Prime Ideals

11740 [2013, 941]. Proposed by Cosmin Pohoata, Princeton University, Princeton NJ.
Let p and q be prime ideals in a commutative Noetherian ring R with unity. Suppose
that p ⊂ q. Let I be the set of all prime ideals j in R such that p ⊂ j ⊂ q. Prove that I
is either empty or infinite.

Solution by Borislav Karaivanov, Lexington, SC. Passing to the quotient ring R/p and
subsequent localization (R/p)q at the prime ideal q allows us to assume, without loss
of generality, that R is a local (integral) domain, p = (0), and q is the only maximal
ideal in R.

If I is nonempty, then q is not a minimal prime ideal, and hence its height is at least
2. Let a1 ∈ q be nonzero, and let p1 be a minimal prime ideal over the principal ideal
(a1). By Krull’s Principal Ideal Theorem, the height of p1 is 1. Therefore p1 � q.

We extend the construction by induction. Suppose we have constructed distinct
prime ideals p1, . . . , pn−1, each strictly contained in q. By Krull’s Prime Avoidance
Lemma,

⋃n−1
l=1 pk � q. Let an ∈ q

⋃n−1
l=1 pk , and let pn be a minimal prime ideal over

(an). Clearly, pn �= pk for 1 ≤ k ≤ n − 1, since only pn contains an . By Krull’s Princi-
pal Ideal Theorem again, the height of pn is 1, while that of q is at least 2. Therefore,
pn � q. This completes the induction argument, showing that I is infinite.
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Editorial comment. Several solvers mentioned that Krull’s results – and, in some
cases, the stated problem – have appeared in textbooks on commutative algebra by
Atiyah-Macdonald (Introduction to Commutative Algebra, 1994), Eisenbud Commu-
tative Algebra with an Eye Towards Algebraic Geometry, 1995), Isaacs (Algebra: A
Graduate Course, 1994, mentioned by the proposer himself), and Matsumura (Com-
mutative Ring Theory, 1970), and in a survey article by Wiegand and Wiegand in Ring
and Module Theory (2010).

Also solved by N. Caro (Brazil), R. Chapman (U. K.), O. Geupel (Germany), I. M. Isaacs, O. P. Lossers
(Netherlands), J. Rosoff, R. Stong, M. Wildon (U. K.), TCDmath Problem Group (Ireland), and the proposer.

A Homomorphism to the Center?

11741 [2013, 941]. Proposed by Chindea Filip-Andrei, University of Bucharest,
Bucharest, Romania. Given a ring A, let Z(A) denote the center of A, which is the set
of all z ∈ A that commute with every element of A. Prove or disprove: For every ring
A, there is a map F : A → Z(A) such that f (1) = 1 and f (a + b) = f (a) + f (b)

for all a, b ∈ A.

Solution by O. P. Lossers, Department of Mathematics and Computer Science, Eind-
hoven University of Technology, Eindhoven, The Netherlands. The statement is false.

Let x and y be indeterminates, and consider the ring B = Q[x, y]; its center is Q.
Let A be the subring of B generated over Z by x, y, and 2x−1

3i for i ∈ N. Note that
Z(A) ⊆ Q.

We claim that Z(A) = Z. Assuming this to be true, suppose that f : A → Z(A)

satisfies the stated conditions, namely f (1) = 1 and f (a + b) = f (a) + f (b) for
all a, b ∈ A. Observe that f (2x − 1) = 3i f

(
2x−1

3i

)
for all i . Since f (2x − 1) and

f ((2x − 1)/3i ) are both integers, we deduce that f ((2x − 1)/3i) ∈ Z for all i , which
is only possible if f (2x − 1) = 0. It follows that

2 f (x) = f (2x) = f (2x − 1) + f (1) = 1.

This contradicts f (x) being an integer. Hence Z = Z implies that there is no
f : A → Z(A) satisfying f (1) = 1 and f (a + b) = f (a) + f (b) for all a, b ∈ A.

It thus suffices to prove Z(a) = Z. To show this, it suffices to show that if a poly-
nomial with integral coefficients in x , y, and 2x−1

3i is a rational number z, then it is
an integer. If F is such a polynomial, then evaluating F at any x, y ∈ Q yields z.
Since F is a polynomial, it depends on only finitely many of the values 2x−1

3i , say

F = F(x, y, 2x−1
3 , 2x−1

32 , . . . , 2x−1
3n ) = z. Evaluate F for y = 0 and x = 3n+1

2 , an inte-
ger. We see that

z = F

(
x, y,

2x − 1

3
,

2x − 1

32
, . . . ,

2x − 1

3n

)
= F

(
3n + 1

2
, 0, 3n−1, 3n−2, . . . , 1

)
.

Since all coefficients of F are integral and all variables have integer values, we con-
clude that z ∈ Z. Hence Z = Z, as claimed.

Also solved by R. Stong, M. Towers & M. Wildon (U. K.), and the proposer.

Use the Jacobi Triple Product

11742 [2013, 941]. Proposed by Alexandr Gromeko, Odessa, Ukraine. For 0 ≤ p
< q < 1, find all zeros in C of the function f given by

f (z) =
∞∑

n=−∞
(aqn, p/(aqn); p)(−z)nqn(n−1)/2,

where (u, v; w) = ∏∞
m=0(1 − uwm)(1 − vwm).
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Solution by Xinrong Ma, Soochow University, Suzhou, China. We prove that f (z) = 0
if and only if z = qk or z = −apkq−k for some k ∈ Z. Let

(z; q)∞ =
∞∏

n=0

(1 − zqn), (a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞

for 0 < |q| < 1. These infinite products converge absolutely, so they have value zero
only if one of the factors is zero. The Jacobi theta function is defined by

θ(z; q) =
+∞∑

n=−∞
τq(n)zn, where τq(n) = (−1)nqn(n−1)/2.

We will use the Jacobi triple product identity:

θ(z; q) = (q, z, q/z; q)∞ (I)

(for example (II.28) in G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd ed.,
Cambridge University Press, 2004) and the identities

θ(z; q) = θ(q/z; q) = τq(n)znθ(zqn; q). (II)

(Lemma 2.1.4 in B. C. Berndt, Number Theory in the Spirit of Ramanujan, American
Mathematical Society, Providence, RI, 2006).

We now compute several expression for Fp(z) = (p; p)∞ f (z); steps citing ‘def’
are based on the definition of θ .

Fp(z)=
∑
n∈Z

θ(aqn; p)znτq(n) =
∑
n∈Z

znτq(n)
∑
m∈Z

(
aqn)m

τp(m) by (I) and def

=
∑
m∈Z

amτp(m)
∑
n∈Z

(
zqm)n

τq(n) by absolute convergence

=
∑
m∈Z

amτp(m)θ(zqm; q) = θ(z; q)
∑
m∈Z

amτp(m)

zmτq(m)
by def and (II)

= θ(z; q)
∑
m∈Z

(−a

z

)m

τp/q(m) = θ(z; q)θ(−a/z; p/q) def.

Now (p; p)∞ �= 0, so f (z) = 0 if and only if θ(z; q)θ(−a/z; p/q) = 0. By the Jacobi
triple product, this leads to z = qk, −apkq−k, k ∈ Z, as claimed.

Also solved by R. Chapman (U. K.) and the proposer.

Inverse of a Tridiagonal Toeplitz Matrix

11743 [2013, 941]. Proposed by François Capacès, Nancy, France. Let n be a positive
integer, let x be a real number, and let B be the n-by-n matrix with 2x in all diagonal
entries, 1 in all sub- and super-diagonal entries, and 0 in all other entries. Compute the
inverse of B, when it exists, as a function of x .

Solution by O. Geupel, Brühl, Germany. We will show that the (i, k)-entry of B−1 is

(−1)i+k

Un(x)
· Umin(i,k)−1 · Un−max(i,k)
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for (i, k) ∈ [n] × [n], where Un(x) is the n-th Chebyshev polynomial of the second
kind, defined by the recursion

U0(x) = 1, U1(x) = 2x, and Un+1(x) = 2xUn(x) − Un−1(x) for n ≥ 1

or by Un(cos θ) = sin
(
(n + 1)θ

)
/sin θ .

We will write B = Bn to emphasize the dependence on n. It is well-known (or
follows easily from expanding along the first row), that det Bn = Un(x). For 1 ≤ i ≤
k ≤ n, the (i, k)-minor of Bn has the block form

det B(i,k)
n =

∣∣∣∣∣∣
Bi−1 0 0

0 D 0
0 0 Bn−k

∣∣∣∣∣∣
where D is a (k − i) × (k − i) upper triangular matrix with constant diagonal 1. There-
fore,

det B(i,k)
n = Ui−1(x)Un−k(x).

Similarly, for 1 ≤ k < i ≤ n, we have det B(i,k)
n = Uk−1(x)Un−i(x). Thus the (i, k)-

minor has general form

det B(i,k)
n = Umin(i,k)−1(x)Un−max(i,k)(x)

and the result follows.

Editorial comment. Finding the inverse of a tridiagonal Toeplitz matrix is a standard
result. The earliest appearance seems to be D. Moskovitz, “The numerical solution of
Laplaces and Poissons equations,” Quart. Appl. Math., 2 (1944) 148–163. The explicit
solution above is contained in D. Kershawl, “The Explicit Inverses of Two Commonly
Occurring Matrices,” Math.Comp. 23 (1969) no. 105, 189-191.

Also solved by M. Bataille (France), D. Beckwith, R. Chapman (U. K.), D. Constales (Belgium), S. Falcón
& Á. Plaza (Spain), J.-P. Grivaux (France), E. A. Herman, S. Hitotumatu (Japan), R. A. Horn, B. Karaivanov,
J. C. Kieffer, O. Kouba (Syria), J. H. Lindsey II, M. Omarjee (France), R. E. Prather, M. Safaryan (Arme-
nia), N. C. Singer, R. Stong, J. L. Stuart, R. Tauraso (Italy), N. Thornber, E. I. Verriest, Z. Vörös (Hungary),
T. Wiandt, Armstrong Problem Solvers, GCHQ Problem Solving Group (U. K.), and the proposer.

An Easy Inequality

11751 [2014, 83]. Proposed by Carol Kempiak, Aliso Niguel High School, Aliso Viejo,
CA, and Bogdan Suceavă, California State University, Fullerton, CA. In a triangle with
angles of radian measure A, B, and C , prove that

csc A + csc B + csc C

2
≥ 1

sin B + sin C
+ 1

sin C + sin A
+ 1

sin A + sin B
,

with equality if and only if the triangle is equilateral.

Solution by Boris Karaivanov, Lexington, SC. Use the harmonic–arithmetic mean
inequality. For any positive x , y, and z,

1

x
+ 1

y
+ 1

z
=

1
x + 1

y

2
+

1
y + 1

z

2
+

1
z + 1

x

2
≥ 2

x + y
+ 2

y + z
+ 2

x + z

with equality if and only if x = y = z. Set x = sin A, y = sin B, z = sin C .

Also solved by A. Alt, G. Apostolopoulos (Greece), H. I. Arshagi, R. Bagby, M. Bataille (France),
D. M. Bătineţu-Giurgiu & N. Stanciu (Romania), D. Beckwith, E. Braŭne (Austria), R. Chapman (U. K.),
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C. T. R. Conley, P. P. Dályáy (Hungary), A. Ercan (Turkey), E. S. Eyeson, D. Fleischman, O. Geupel
(Germany), M. Goldenberg & M. Kaplan, E. A. Herman, Y. J. Ionin, S. Kaczkowski, S. H. Kim (Korea),
O. Kouba (Syria), P. T. Krasopoulos (Greece), W.-K. Lai & A. Khristyuk, K.-W. Lau (China), O. P. Lossers
(Netherlands), R. Mabry, V. Mikayelyan (Armenia), D. J. Moore, Y. Oh (Korea), P. Perfetti (Italy), C. R.
Pranesachar (India), M. Safaryan (Armenia), A. Salgarkar (India), E. Schmeichel, C. R. Selvaraj & S. Selvaraj,
Y. Shim (Korea), Y. Song (Korea), R. Stong, T. P. Turiel, D. Vacaru (Romania), T. Viteam (South Africa),
Z. Vörös (Hungary), M. Vowe (Switzerland), J. Wakem, T. Wiandt, J. Zacharias, GCHQ Problem Solving
Group (U. K.), NSA Problems Group, and the proposers.

The Product of n Distinct Derivatives

11753 [2014, 84]. Proposed by Prapanpong Pongsriiam, Silpakorn University, Nakhon
Pathom, Thailand. Let f be a continuous map from [0, 1] to R that is differentiable on
(0, 1), with f (0) = 0 and f (1) = 1. Show that for each positive integer n there exist
distinct numbers c1, . . . , cn in (0, 1) such that

∏n
k=1 f ′(ck) = 1.

Solution by John W. Hagood, Northern Arizona University, Flagstaff, AZ. The proof
proceeds by induction on n. The case n = 1 follows from the Mean Value Theorem.
Suppose n > 1 and the statement holds for n − 1. It then follows that there
exist distinct c1, . . . , cn−1 with f ′(c1) · · · f ′(cn−1) = 1. If there is a number cn /∈
{c1, c2, . . . , cn−1} such that f ′(cn) = 1, then the statement (for n) follows.

So, suppose f ′(x) �= 1 for all x /∈ {c1, c2, . . . , cn−1}. By the Mean Value Theorem,
f ′(ci) = 1 for some i ∈ {1, 2, . . . , n − 1}. We may assume i = 1 by reordering if need
be, which leaves

∏n−1
k=2 f ′(ci) = 1. Now let d1 < d2 < · · · < dm be the points in (0, 1)

such that f ′(di) = 1 and put d0 = 0 and dm+1 = 1. If it were the case that f ′(x) ≤ 1
on (0, 1), then on each interval (di−1, di) we should have f ′(x) < 1 and thus for each
i , that f (di) − f (di−1) < di − di−1. This leads to a contradiction: 1 = f (1) − f (0)

= ∑m+1
i=1 ( f (di) − f (di−1)) <

∑m+1
i=1 (di − di−1) = dm+1 − d0 = 1.

Thus f ′ assumes a value greater than 1 and f ′ takes on all values in some inter-
val (a, b) with a < 1 < b. Choose cn such that f ′(cn) ∈ (max{a, 1/b}, 1), but with
f ′(cn) �= f ′(ci ) and f ′(cn) �= 1/ f ′(ci), for 2 ≤ i ≤ n − 1. Since 1/ f ′(cn) ∈ (1, b),
the intermediate value property assures the existence of a value cn+1 such that f ′(cn+1)

= 1/ f ′(cn). Now we have that
∏n+1

i=2 f ′(ci) = 1 and c2, . . . , cn+1 are distinct. This
implies that the statement holds for case n, which completes the induction.

Also solved by M. Aassila (France), I. A. S. Aburub (Jordan), J. Boersema, M. W. Botsko, R. Boukharfane
(Canada), P. Budney, N. Caro (Brazil), R. Chapman (U. K.), P. P. Dályay (Hungary), A. Ercan (Turkey),
D. Fleischman, O. Geupel (Germany), J.-P. Grivaux (France), E. A. Herman, S. J. Herschkorn, E. J. Ionascu,
S. Kaczkowski, B. Karaivanov, E. Katsoulis, P. T. Krasopoulos (Greece), J. H. Lindsey II, O. P. Lossers (Nether-
lands), R. Mabry, R. Martin (Germany), M. D. Meyerson, M. Omarjee (France), N. C. Overgaard (Sweden),
V. Pambuccian, S. K. Patel (India), P. Perfetti (Italy), T. Persson & M. P. Sundqvist (Sweden), R. E. Prather,
D. Ritter, M. Safaryan (Armenia), R. Stong, R. Tauraso (Italy), E. I. Verriest, T. Viteam (South Africa), GCHQ
Problem Solving Group (U. K.), NSA Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Mohamed Omar, Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley,
Kenneth Stolarsky, Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden
Eynden, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never be
under submission concurrently to more than one journal, nor posted to the internet
before the due date for solutions. Submitted solutions should arrive before August
31, 2016. Additional information, such as generalizations and references, is wel-
come. The problem number and the solver’s name and address should appear on
each solution. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

11901. Proposed by Donald Knuth, Stanford University, Stanford, CA. For n ∈ Z+,
let [n] = {1, . . . , n}. Define the functions ↑ and ↓ on [n] by ↑ x = min{x + 1, n} and
↓ x = max{x − 1, 1}. How many distinct mappings from [n] to [n] occur as composi-
tions of ↑ and ↓?

11902. Proposed by Cornel Ioan Vălean, Teremia Mare, Timiş, Romania Let {x}
denote x − �x�, the fractional part of x . Prove

∫ 1

0

∫ 1

0

∫ 1

0

({
x

y

}{
y

z

}{ z

x

})2

dx dy dz

= 1 − ζ(2)

2
− ζ(3)

2
+ 7ζ(6)

48
+ ζ(2)ζ(3)

18
+ ζ(3)2

18
+ ζ(3)ζ(4)

12
.

11903. Proposed by Paolo Perfetti, Universitá Degli Studi di Roma “Tor Vergata,”
Rome, Italy. Find a homogeneous polynomial p of degree 2 in a, b, c, and d such that
for 0 < −d < a < b < c,∫ a

0

√
x(a − x)(x − b)(x − c)

x + d
dx =

∫ c

b

√
x(a − x)(x − b)(x − c)

x + d
dx

if and only if
√−d(a + d)(b + d)(c + d) = p(a, b, c, d).

11904. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Let
f be a function from R into [0, ∞) such that f 2(x + y) + f 2(x − y) = 2 f 2(x)

+ 2 f 2(y) for all x and y. Prove f (x + y) ≤ f (x) + f (y) for all x and y.

http://dx.doi.org/10.4169/amer.math.monthly.123.4.399
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11905. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. From a
point P inside a triangle ABC, the perpendiculars PPA, PPB , and PPC are drawn to its
sides. Let R be the circumradius and r the inradius of the triangle. Prove

R

2r
≤ |PA| |PB| |PC|

(|PPB | + |PPC |)(|PPA| + |PPC |)(|PPA| + |PPB |) .

11906. Proposed by Robert Bosch, Archimedean Academy, FL. Let x , y, and z be
positive numbers such that xyz = 1. Prove√

x + 1

x2 − x + 1
+
√

y + 1

y2 − y + 1
+
√

z + 1

z2 − z + 1
≤ 3

√
2.

11907. Proposed by Xiang-Qian Chang, MCPHS University, Boston, MA. Let A be an
n × n positive-definite Hermitian matrix, with minimum and maximum eigvenvalues
λ and ω, respectively. Prove(

1

ω

Tr(A)

n
+ ωn

Tr(A)

)n

≤ det

(
1

ω
A + ωA−1

)
,

(
1

λ

n

Tr(A−1)
+ λ

Tr(A−1)

n

)
≤ det

(
1

λ
A + λA−1

)
.

SOLUTIONS

When the p-norm is Strictly Decreasing Convex

11749 [2013, 83]. Proposed by Branko Ćurgus, Western Washington University,
Bellingham, WA. For x ∈ Cn and p > 0, let ‖x‖p denote the standard p-norm on
Cn . Prove that the function p �→ ‖x‖p is a strictly decreasing convex function on
(0, ∞) if and only if x is not of the form cek , where ek denotes the vector with 1 in the
kth position and 0 elsewhere.

Solution by John W. Hagood, Northern Arizona University, Flagstaff, AZ. If x = cek ,
then ‖x‖p is constant with value |c| and thus is not strictly decreasing. Otherwise, ‖x‖p

has the form
(∑m

k=1 a p
k

)1/p
, where 2 ≤ m ≤ n and ak > 0 for each k. Suppose further

that we have indexed a1, . . . , am so that am = max1≤k≤m ak .
Consider q with q > p. Since ak/am ≤ 1 for all k, and

∑m−1
k=1 (ak/am)p + 1 > 1,

we have

‖x‖p = am

(
m−1∑
k=1

(ak/am)p + 1

)1/p

am

(
m−1∑
k=1

(ak/am)p + 1

)1/q

≥ am

(
m−1∑
k=1

(ak/am)q + 1

)1/q

= ‖x‖q,

which proves that the map � defined by �(p) = ‖x‖p is strictly decreasing.
Since � is continuous, to show convexity it is enough to prove �

( p+q
2

)
≤ 1

2 (�(p) + �(q)) for q > p > 0. By the Cauchy–Schwarz inequality,

m∑
k=1

a(p+q)/2
k =

m∑
k=1

a p/2
k aq/2

k ≤
(

m∑
k=1

a p
k

)1/2 ( m∑
k=1

aq
k

)1/2

.
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Thus

�

(
p + q

2

)
=
(

m∑
k=1

a(p+q)/2
k

)2/(p+q)

≤
(

m∑
k=1

a p
k

)1/(p+q) ( m∑
k=1

aq
k

)1/(p+q)

= ‖x‖p/(p+q)
p ‖x‖q/(p+q)

q = (‖x‖q/‖x‖p

)q/(p+q) ‖x‖p

<
(‖x‖q/‖x‖p

)1/2 ‖x‖p,

where we have used the inequalities ‖x‖q/‖x‖p < 1 and q
p+q > 1

2 . Now the AM–GM

inequality in the form r 1/2 ≤ 1
2 (r + 1) gives

�

(
p + q

2

)
<

1

2

(‖x‖q/‖x‖p + 1
) ‖x‖p = 1

2
(�(p) + �(q)).

Editorial comment. This result has appeared before, for example in E. F. Beckenbach,
“An inequality of Jensen,” THIS MONTHLY 53 (1946) 501–505, which proves more
strongly that � is log-convex.

Also solved by D. Fleischman E. A. Herman, B. Karaivanov, J. C. Kieffer, O. Kouba (Syria), O. P. Lossers
(Netherlands), T. Persson & M. P. Sundqvist (Sweden), R. Stong, GCHQ Problem Solving Group (U. K.), and
the proposer.

Diagonal coefficients

11757 [2014, 170]. Proposed by Ira Gessel, Brandeis University, Waltham, MA. Let
[xa yb] f (x, y) denote the coefficient of xa yb in the Taylor series expansion of f . Show
that

[xn yn]
1

(1 − 3x)(1 − y − 3x + 3x2)
= 9n.

Solution I by Richard Stong, Center for Communications Research, San Diego, CA.
Let an be the desired coefficient. Using the Taylor series expansion

1

1 − y − 3x + 3x2
=

∞∑
n=0

yn

(1 − 3x + 3x2)n+1
,

we obtain

an = [xn]
1

(1 − 3x)(1 − 3x + 3x2)n+1
= [x−1]

1

(1 − 3x)(x − 3x2 + 3x3)n+1
.

By the Cauchy integral formula,

an = 1

2π i

∮
dz

(1 − 3z)(z − 3z2 + 3z3)n+1
.

In the integral make the substitution w = z − 3z2 + 3z3. Since 1 − 9w = 1 − 9z
+ 27z2 − 27z3 = (1 − 3z)3, we have dw

1−9w
= dz

1−3z , so

an = 1

2π i

∮
dw

(1 − 9w)wn+1
= [wn]

1

1 − 9w
= 9n.
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Solution II by Robin Chapman, Mathematics Research Institute, University of Exeter,
England, UK As in Solution I, an is the coefficient of x−1 in the Laurent series

hn(x) = 1

(1 − 3x)(x − 3x2 + 3x3)n+1
.

To prove an = 9n , note that [x−1]φ′(x) = 0 when φ(x) is a Laurent series. Letting
φn(x) = 1

n(x−3x2+3x3)n , we have

−φ′
n(x) = 1 − 6x + 9x2

(x − 3x2 + 3x3)n+1

= 1 − 9x + 27x2 − 27x3

(1 − 3x)(x − 3x2 + 3x3)n+1
= hn(x) − 9hn−1(x).

Since the coefficient of x−1 in φ′
n(x) is 0, we have

0 = [x−1]hn(x) − 9hn−1(x) = an − 9an−1.

Thus an = 9an−1 for n ≥ 1, and a0 = 1, so an = 9n .

Editorial comment. The proposer proved a more general result:

[xn yn]
1

(1 − mx)mα+1
(
Qm(x) − y

) = m2n

(
α + n

n

)

when Qm(x) = (
1 − (1 − mx)m

)
/m2x . This problem is the case (m, α) = (3, 0).

Also solved by D. Beckwith, A. Bostan & L. Dumont & P. Lairez (France), H. Chen, N. Grivaux (France),
E. A. Herman, S. Kaczkowski, O. Kouba (Syria), O. P. Lossers (Netherlands), M. Omarjee (France), N. C.
Singer, R. Tauraso (Italy), M. Vowe (Switzerland), and the proposer.

Twice a Prime Power is Enough

11761 [2014, 266]. Proposed by Bob Tomper, University of North Dakota, Grand
Forks, ND. For each positive integer n, determine the least integer m such that

lcm{1, 2, . . . , m} = lcm{n, n + 1, . . . , m}.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. If
n = 1 or n = 2, then clearly m = n. For n ≥ 3 we claim m = 2q, where q is the
largest prime power smaller than n. Clearly the desired equality holds if and only if
all of 1, . . . , n − 1 divide lcm{n, . . . , m}. Since every number less than n factors into
prime powers less than n, it suffices to find m such that every prime power less than
n divides lcm{n, . . . , m}, that is, divides one of n, . . . , m. Let q be the largest prime
power smaller than n. Since we need a multiple of q in the interval [n, m], we need
m ≥ 2q. By Bertrand’s postulate, 2q > n.

From Nagura’s extension of Bertrand’s postulate (for n ≥ 25 there is a prime
between n and 6n/5) and checking some small cases, it follows for n /∈ {3, 7} that
3n
4 ≤ q < n, so 2q ≥ 3n

2 . For a prime power p smaller than n, let k be the largest
integer such that kp < n. If k = 1, then n ≤ 2p ≤ 2q, so 2p is a multiple of p in
[n, 2q]. If k ≥ 2, then n ≤ (k + 1)p ≤ 3

2 kp < 3n
2 ≤ 2q, so (k + 1)p is a multiple

of p in [n, 2q]. Thus m = 2q suffices. The cases n = 3 and n = 7 can be checked
explicitly.
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Editorial comment. Many solvers failed to show that the interval from n to 2q is suf-
ficiently large so that every prime power smaller than q has a multiple in that range.
Nagura’s extension can be found in J. Nagura, On the interval containing at least one
prime number, Proc. of the Japan Academy, Series A 28 (1952), 177–181. It is avail-
able free at http://projecteuclid.org/euclid.pja/1195570997.

Also solved by N. Caro (Brazil), R. Chapman (U. K.), W. J. Cowieson, P. P. Dályay (Hungary), Y. J. Ionin,
B. Karaivanov, J. H. Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany), J. Schlosberg, N. C. Singer,
R. Tauraso (Italy), T. Viteam (South Africa), Armstrong Problem Solvers, GCHQ Problem Solving Group
(U. K.), NSA Problems Group, and the proposer.

Decomposing Partitions into Trails

11762 [2014, 266]. Proposed by Richard P. Stanley, Massachusetts Institute of Tech-
nology, Cambridge, MA. Let f (n) be the least number of strokes needed to draw the
Young diagrams of all the partitions of n. The figure below shows three of the five
diagrams in an optimal set of drawings (using a total of 12 strokes) when n = 4 (the
other two are reflections about the line x + y = 0 of the first two).

Let

F(x) =
∞∑

n=1

f (n)xn = x + 2x2 + 5x3 + 12x4 + 21x5 + 40x6 + · · · .

Find the coefficients g(n) of the power series G(x) = ∑
g(n)xn satisfying

F(x) = 1 + x + G(x)∏∞
i=1(1 − xi )

.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. The Young diagram of a partition can be viewed as a connected plane
graph where every vertex has degree 2, 3, or 4. Drawing the diagram with k strokes
means decomposing its graph into k trails. For n = 1, one trail suffices. For n ≥ 2,
there are always vertices of degree 3. From the characterization of Eulerian circuits in
graphs, the minimum number of trails is half the number of vertices of odd degree.

The points of odd degree are the points on the boundaries of the diagram that are
not corners. For a given partition λ, the boundary takes 2λ1 horizontal steps and 2k(λ)

vertical steps, where λ1 is the largest part and k(λ) is the number of parts, so it has
2λ1 + 2k(λ) vertices. If we follow the boundary clockwise, then the number of right
turns is four more than the number of left turns, and the number of left turns is one less
than the number of distinct parts of the partition. Thus the number of vertices of odd
degree for λ is 2(λ1 + k(λ) − d(λ) − 1), where d(λ) is the number of distinct parts.

It follows that for n ≥ 2,

f (n) =
∑
|λ|=n

[λ1 + k(λ) − d(λ) − 1].

Since n = 0 takes no strokes and n = 1 takes 1, when we introduce

F̃(x) =
∑
n≥0

[∑
|λ|=n

λ1 + k(λ) − d(λ) − 1

]
xn

April 2016] PROBLEMS AND SOLUTIONS 403

This content downloaded from 142.51.1.212 on Wed, 27 Apr 2016 16:03:00 UTC
All use subject to http://about.jstor.org/terms

X
ia
ng
’s
T
ex
m
at
h



we have F̃(x) = F(x) − 1 − x . Also, F̃ = G · P , where P(x) = ∑
n≥0 p(n)xn and

p(n) is the number of partitions of n.
The terms in f (n) yield F̃ = F1 + F2 − F3 − F4. To determine F1 and F2, let

q(n, m) be the number of partitions of n with largest part m, and let p(n, m) denote
the number of partitions with m parts. By reflecting the Young diagram in the main
diagonal (taking the “conjugate”), we have q(n, m) = p(n, m), so F1 = F2. To form a
generating function where the exponent on t records the number of parts, we introduce
a factor for each part size and let

H(x, t) =
∑
m,n

p(n, m)xntm =
∞∏

k=1

1

1 − xkt
.

Note that H(x, 1) = P(x). Since each partition of n with m parts contributes m to the
coefficient of xn in F2(x), we have

F1(x) = F2(x) = ∂

∂t
H(x, t)|t=1 =

∞∑
k=1

xk

1 − xk
· P(x).

Now let F3 = ∑
m r(n, m) xn , where r(n, m) is the number of partitions of n with

m distinct parts. Using the same technique, we want the exponent on t to record the
number of distinct parts. Let

J (x, t) =
∑
m,n

r(n, m)xntm =
∞∏

k=1

(
1 + t xk

1 − xk

)
.

The factor for k is the contribution from parts equal to k, contributing 1 to the exponent
on t when the number of these parts is positive. Note that J (x, 1) = P(x). Again we
extract m from the exponent on t :

F3(x) = ∂

∂t
J (x, t)|t=1 =

∞∑
k=1

xk P(x) = x

1 − x
· P(x).

Finally, F4(x) = P(x), so F̃ = F1 + F2 − F3 − F4 = G · P with

G(x) =
∞∑

k=1

(
2xk

1 − xk
− x

1 − x
− 1

)
.

From this we have g(0) = −1 and g(n) = 2τ(n) − 1 for n ≥ 1, where τ(n) is the
number of divisors of n.

Also solved by R. Chapman (U. K.), B. Karaivanov, R. Stong, R. Tauraso (Italy), and the proposer.

A Differential Inequality

11763 [2014, 266]. Proposed by Bessem Samet, Tunis College of Science and Tech-
niques, Tunis, Tunisia. Characterize the twice-differentiable, bounded functions f
mapping R+ into itself and satisfying xg′′(x) + (1 + xg′(x))g′(x) ≥ 0 for all x , where
g = log f .

Solution by Patrick J. Fitzsimmons, University of California, San Diego, CA.
The only such functions are the constant functions with strictly positive value.

Indeed, expressing g′ and g′′ in terms of f , f ′, and f ′′, the inequality imposed on
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g is seen to be equivalent to the inequality x f ′′(x) + f ′(x) ≥ 0 for all x > 0. Since
x f ′′(x) + f ′(x) = d

dx

[
x f ′(x)

]
, this means that x f ′(x) is a nondecreasing function of x .

Consequently, for fixed b > 0, for all x ∈ (b, +∞),

f (x) − f (b) =
∫ x

b
f ′(t) dt =

∫ x

b
t f ′(t) · t−1dt

≥ b f ′(b)

∫ x

b
t−1dt = b f ′(b) log

x

b
.

Because f is bounded (above), taking x → +∞ yields f ′(b) ≤ 0. Similarly, for
x ∈ (0, b), f (x) ≥ f (b) − b f ′(b) log(b/x), and again because f is bounded, taking
x → 0 yields f ′(b) ≥ 0. Thus f ′(b) = 0 for all b > 0, and f is constant as claimed.

Editorial comment. A (subtler) alternate solution: If ϕ(x, y) = f
(√

x2 + y2
)

for
(x, y) �= (0, 0), then ϕ is subharmonic in the sense that ∂2ϕ/∂x2 + ∂2ϕ/∂y2 ≥ 0 in
R2 \ {(0, 0)}. The only subharmonic functions bounded above in the punctured plane
are the constant functions.

Also solved by R. Bagby, R. Boukharfane (France), E. A. Herman, B. Karaivanov, O. Kouba (Syria), O. P.
Lossers (Netherlands), J. Martı́nez (Spain), M. Omarjee (France), N. C. Singer, R. Stong, E. I. Verriest, NSA
Problems Group, and the proposer.

Reciprocal Catalan Sums

11765 [2014, 267]. Proposed by David Beckwith, Sag Harbor, NY.
Let Cn be the nth Catalan number, given by Cn = 1

n+1

(2n
n

)
. Show that:

(a)
∑∞

n=0
2n

Cn
= 5 + 3

2π ;

(b)
∑∞

n=0
3n

Cn
= 22 + 8

√
3π .

Solution by Ulrich Abel, Technische Hochschule Mittelhessen, University of Applied
Sciences, Germany. Using the beta integral∫ 1

0
tm(1 − t)n dt = m! n!

(m + n + 1)!
,

for |x | < 4 we have
∞∑

n=0

xn

Cn
= 1 +

∞∑
n=1

n(n + 1)
(n − 1)! n!

(2n)!
xn = 1 +

∞∑
n=1

n(n + 1)xn

∫ 1

0
tn−1(1 − t)n dt

= 1 +
∫ 1

0

∞∑
n=1

n(n + 1)xntn−1(1 − t)n dt,

where the interchange of summation and integration is justified by uniform conver-
gence. Using

∑∞
n=1 n(n + 1)zn = 2z/(1 − z)3, we obtain

∞∑
n=0

xn

Cn
= 1 +

∫ 1

0

2x(1 − t)

(1 − xt (1 − t))3
dt.

Direct calculation of the integral yields
∞∑

n=0

xn

Cn
= 1 − (x − 10)x(4 − x)−2 + 24

√
x(4 − x)−5/2 arctan

√
x

4 − x
,

and setting x = 1 and x = 2 gives the desired formulas for (a) and (b).
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Editorial comment. Several solvers noted that (a) and (b) follow easily from results
in D. H. Lehmer, Interesting series involving the central binomial coefficient, THIS

MONTHLY 92 (1985) 449–457:

∞∑
n=1

2n(2n
n

) = π

2
+ 1,

∞∑
n=1

n2n(2n
n

) = π + 3

∞∑
n=1

3n(2n
n

) = 2ν + 3,

∞∑
n=1

n3n(2n
n

) = 10ν + 18,

where ν = 2π
√

3/3.
As noted by several solvers, the formula

∞∑
n=0

xn

Cn
= 1 + x

4 − x
+ 6x

(4 − x)2
+ 24

√
x

(4 − x)5/2
arcsin

√
x

2

is given by Thomas Koshy and Zhenguang Gao, Convergence of a Catalan series, Col-
lege Math. J. 43 (2012) 141–146. Koshy and Gao also gave the formulas

∑∞
n=0 1/Cn

= 2 + 4π/9
√

3 and

∞∑
n=0

(−1)n/Cn = 14

25
− 24

√
5

125
log

(
1 + √

5

2

)
,

and Omran Kouba gave the additional formulas

∞∑
n=0

(−2)n/Cn = 1

3
− 1

3
√

3
log(2 +

√
3),

∞∑
n=0

(−3)n/Cn = 10

49
− 36

49
√

21
log

(
5 + √

21

2

)
.

An alternative formula for
∑∞

n=0 xn/Cn ,

2

√
4 − x(8 + x) + 12

√
x arctan

( √
x√

4−x

)
√

(4 − x)5

can be found on the planetmath.org web site.

Also solved by T. Amdeberhan & L. Jiu & V. H. Moll & C. Vignat, R. Bagby, M. Bataille (France), R. Boukhar-
fane (Canada), K. N. Boyadzhiev, P. Bracken, B. Bradie, R. Chapman (U. K.), H. Chen, D. Constales (Bel-
gium), B. E. Davis, C. Delorme (France), E. Deutsch, A. Ercan (Turkey), E. S. Eyeson, O. Furdui (Romania),
M. L. Glasser, M. Goldenberg & M. Kaplan, N. Grivaux (France), E. A. Herman, B. Karaivanov, O. Kouba
(Syria), H. Kwong, O. P. Lossers (Netherlands), L. M. J. Martinez (Spain), R. Molinari, M. Omarjee (France),
P. Perfetti (Italy), A. Plaza (Spain), C. R. Pranesachar (India), R. Pratt, J. Schlosberg, A. Stenger, R. Stong,
R. Tauraso (Italy), T. Trif (Romania), D. B. Tyler, M. Vowe (Switzerland), J. Zacharias, GCHQ Problem Solv-
ing Group (U. K.), GWstat Problem Solving Group, TCDmath Problem Group (Ireland), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Mohamed Omar, Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley,
Kenneth Stolarsky, Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden
Eynden, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never be
under submission concurrently to more than one journal, nor posted to the internet
before the due date for solutions. Submitted solutions should arrive before Sept 30,
2016. Additional information, such as generalizations and references, is welcome.
The problem number and the solver’s name and address should appear on each solu-
tion. An asterisk (*) after the number of a problem or a part of a problem indicates
that no solution is currently available.

PROBLEMS

11908. Proposed by George. E. Andrews, The Pennsylvania State University, Uni-
versity Park, PA, and Emeric Deutsch, Polytechnic Institute of New York University,
Brooklyn, NY. Let n and k be nonnegative integers. Show that the number of partitions
of n having k even parts is the same as the number of partitions of n in which the largest
repeated part is k (defined to be 0 if the parts are all distinct). For example, 7 has three
partitions with two even parts (4 + 2 + 1 = 3 + 2 + 2 = 2 + 2 + 1 + 1 + 1) and also
three partitions in which the largest repeated part is 2: (3 + 2 + 2 = 2 + 2 + 2 + 1
= 2 + 2 + 1 + 1 + 1).

11909. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Prove that for every positive
integer m there exists a polynomial Pm in two variables, with integer coefficients, such
that for all integers n and r with 0 ≤ r ≤ n,

r∑
k=−r

(
n

r + k

)(
n

r − k

)
k2m = Pm(n, r)∏m

j=1(2n − 2 j + 1)

(
2n

2r

)
.

11910. Proposed by Cornel Ioan Vălean, Teremia Mare, Romania. Let Gk be the recip-
rocal of the kth Fibonacci number; for example, G4 = 1/3 and G5 = 1/5. Find

∞∑
n=1

(arctan G4n−3 + arctan G4n−2 + arctan G4n−1 − arctan G4n) .

11911. Proposed by Leonard Giugiuc, Drobotu Turnu Severin, Romania. Let a, b,
and c be positive numbers such that 1 + ab + bc + ca = a + b + c + 2abc. Prove
a3 + b3 + c3 + 5abc ≥ 1 and determine when equality holds.

http://dx.doi.org/10.4169/amer.math.monthly.123.5.504
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11912. Proposed by Pál Péter Dályay, Szeged, Hungary. Let ω be the circumscribed
circle of triangle ABC, and let R and r be the radii of its circumcircle and incircle,
respectively. Let rA, rB , and rC be the radii of the A-, B-, and C-mixtilinear incircles
of ABC and ω, respectively. Prove that 4r ≤ rA + rB + rC ≤ 1

4 (5R + 6r). (For the
definition of a mixtilinear incircle see problem 11774; that problem and its solution
are found on the next page of this issue.)

11913. Proposed by George Stoica, Saint John, New Brunswick, Canada. Let ε be a
positive constant, and let f map (0, ∞) to R+. Given limx→∞ x1/ε f (x) = ∞, prove

lim inf
x→∞

∣∣∣∣ f ′(x)

f 1+ε(x)

∣∣∣∣ = 0.

11914. Proposed by Robin Chapman, Mathematics Research Institute, University of
Exeter, Exeter, (U. K.), and Roberto Tauraso, Università di Roma “Tor Vergata,” Rome,
Italy. Show that for all positive integers m and n,

n∑
k=1

(−4)−k

(
n − k

k − 1

) 3m∑
j=1

(−2)− j

(
n + 1 − 2k

j − 1

)(
m − k

3m − j

)
= 0.

(Here
(x

k

) = 1
k!

∏k−1
i=0 (x − i) for x ∈ R.)

SOLUTIONS

Compositions Having At Least One 1

11767 [2014, 267]. Proposed by Mircea Merca, University of Craiova, Craiova,
Romania. Prove that ∑ (1 + t1 + t2 + · · · + tn)!

(1 + t1)! t2! · · · tn!
= 2n − Fn,

where the sum is over all nonnegative integer solutions to t1 + 2t2 + · · · + ntn = n and
Fk is the kth Fibonacci number.

Solution I by CMC 328, Carleton College, Northfield, MN. View the sum as over all
partitions of n + 1 having at least one 1, treating t1 + 1 as the number of copies of 1
and t j as the number of copies of j for 2 ≤ j ≤ n. The summand counts the ways to
permute the parts, so the sum is the number of compositions of n + 1 having at least
one 1.

The number of compositions of n + 1 is 2n , so it suffices to prove that the number
an of compositions of n + 1 with no 1 is Fn . This is clear for n = 0 and n = 1. When
n ≥ 2, these compositions have last part 2 or greater than 2. Deleting the last part
shows that there are an−2 of the first type, and subtracting 1 from the last part shows
that there are an−1 of the second type. By induction, an = an−1 + an−2 = Fn .

Solution II by Borislav Karaivanov, Lexington, SC. Rewrite the sum as∑ (t1 + t2 + · · · + tn)!

t1! t2! · · · tn!
,

summed over all integer solutions to t1 + 2t2 + · · · + ntn = n + 1 with t1 ≥ 1 and
ti ≥ 0 for i ≥ 2. This sum is the coefficient of xn+1 in the series

f (x) =
∞∑

m=0

(
(x + x2 + · · · )m − (x2 + x3 + · · · )m

)
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=
∞∑

m=0

[(
x

1 − x

)m

−
(

x2

1 − x

)m]

= 1 − x

1 − 2x
− 1 − x

1 − x − x2
= x(1 − x)2

(1 − 2x)(1 − x − x2)
.

Hence we seek the coefficient of xn in

f (x)

x
= (1 − x)2

(1 − 2x)(1 − x − x2)
= 1

1 − 2x
− x

1 − x − x2
.

The coefficient subtracted in the second term is the number of 1, 2-lists with sum n − 1,
well known to be Fn , so the answer is 2n − Fn .

Also solved by R. Bagby, D. Beckwith, R. Chapman (U. K.), M. Hoffman, Y. J. Ionin, O. P. Lossers
(Netherlands), R. Martin (Germany), R. Molinari, M. Omarjee (France), N. C. Singer, J. H. Smith, R. Stong,
R. Tauraso (Italy), T. Viteam (South Africa), T. Woodcock, GCHQ Problem Solving Group (U. K.), TCDmath
Problem Group (Ireland), and the proposer.

Mixtilinear Incircles

11774 [2015, 366]. Proposed by Yunus Tunçbilek, Ataturk High School of Science,
Istanbul, Turkey and Danny Lee, Herkimer Senior High School, New York, NY. Let ω

be the circumscribed circle of triangle ABC. The A-mixtilinear incircle of ABC and
ω is the circle that is internally tangent to ω, AB, and AC, and similarly for B and
C . Let A′, PB , and PC be the points on ω, AB, and AC , respectively, at which the A-
mixtilinear incircle touches. Define B ′ and C ′ in the same manner that A′ was defined.
(See figure.)

A

BC

PC

PB

A ′

O

OA

B ′

C ′

Prove that triangles C ′ PB B and CPC B ′ are similar.

Solution by Radouan Boukharfane (student), Poitiers, France. Let a, b, and c be the
sidelengths of ABC, and let s be its semiperimeter.

Lemma. Let X be a point on the side AB of triangle ABC, and let Y be a point on
the arc AB (not containing C) of the circumcircle ω of ABC. The rays CX and CY are
isogonal in ∠ACB if and only if AX

XB · AY
YB = AC

BC .

Proof. Suppose that CX and CY are isogonal, that is, ∠XCA = ∠BCY and ∠XCB
= ∠ACY . We also have ∠CAX = ∠CAB = ∠CYB and ∠CBX = ∠CBA = ∠CYA
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since they subtend the same arcs on ω. Thus we have similar triangles CXA ∼ CBY
and CXB ∼ CAY . Hence

AX

YB
= AC

YC
and

AY

XB
= YC

BC
.

The product of these is the claimed formula. For the converse, both the isogonality of
CX and CY and the ratio AX

XB uniquely determine a point X on side AB.

Let I map the extended plane by inverting through the circle with center C and
radius

√
ab and then reflecting across the angle bisector of BAC. Note that I swaps C

with the point at infinity and swaps A with B. Hence it swaps line C A with CB and
swaps line AB with the circumcircle ω of ABC. It also swaps the C-mixtilinear incircle
with the C-excircle. Thus I swaps the tangency point C ′ of the C-mixtilinear incircle
with ω and the tangency point, call it Q, of the C-excircle with AB. It follows that the
rays CC′ and CQ are isogonal; that is in ∠ACB. Thus by the lemma above

|BC|′
|AC|′ = |AQ|

|QB| · |BC|
|AC| = a(s − b)

b(s − a)
,

where we have used the well-known formulas |AQ| = s − b and |QB| = s − a.
Furthermore, I swaps the tangency point, call it D, of the C-mixtilinear incircle

with CA with the tangency point of the C-excircle with CB. This last tangency point is
well known to be at distance s from C . It follows that |CD| · s = ab. Hence |CD| = ab

s

and |DA| = b − |CD| = b(s−a)

s . Thus |DA|
|CD| = s−a

a .
Denote the points where the A- and B-mixtilinear incircles are tangent with AB by

PB and E , respectively. Analogs of the result of the previous paragraph yield

|BPB |
|PB A| · |BE|

|EA| = s − b

b
· a

s − a
= |BC′|

|AC′| .

Now consider the homothety with center B ′ that takes the B-mixtilinear incircle to
ω. This map takes line AB, which is tangent to the B-mixtilinear incircle, to a parallel
tangent to ω. Hence its image is the tangent to ω at the midpoint of arc AB. Since this
tangency point is the image of E under the homothety, it follows that B ′E contains
the midpoint of arc AB or, equivalently, that B ′E bisects ∠AB′ B. The angle bisector
theorem now yields |BB′|

|B′ A| = |BE|
|EA| , and this gives

|BPB |
|PB A| · |BB′|

|B ′ A| = |BC′|
|AC′| .

By the lemma above (applied to triangle ABC′), the rays C ′ PB and C ′ B ′ are isogonal
in ∠AC′ B, and hence ∠B ′C ′ A = ∠BC′ PB . Angles ∠C ′BPB = ∠C ′BA and ∠C ′ B ′ A
are also congruent since they subtend the same arc of ω. Hence, we see that triangles
C ′ PB B and C ′AB′ are similar. Analogously, triangles CPC B ′ and C ′AB′ are similar.
Hence triangles C ′ PB B and CPC B ′ are similar.

Also solved by C. Delorme (France), C. R. Pranesachar (India), R. Stong, H. Widmer (Switzerland), GCHQ
Problem Solving Group (U. K.), and the proposers.

A Partition Inequality

11775 [2014, 455]. Proposed by Isaac Sofair, Fredericksburg, VA. Let A1, . . . , Ak be

finite sets. For J ⊆ {1, . . . , k}, let NJ =
∣∣∣⋃ j∈J A j

∣∣∣, and let Sm = ∑
J :|J |=m NJ .
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(a) Express in terms of S1, . . . , Sk the number of elements that belong to exactly m of
the sets A1, . . . , Ak .
(b) Same question as in (a), except that we now require the number of elements belong-
ing to at least m of the sets A1, . . . , Ak .

Solution by Mark Meyerson, Naval Academy, Annapolis, MD.
(a) Let Tm be the desired value; we prove Tm = ∑k

i=1(−1)k+i+m+1
( i

k−m

)
Si . If an

element x belongs to exactly i of A1, . . . , Ak , then x contributes
( k

m

) − (k−i
m

)
to Sm .

Therefore,

Sm =
k∑

i=1

((
k

m

)
−
(

k − i

m

))
Ti .

It suffices to show that the inverse of the k × k matrix A with (m, i)-entry
( k

m

)
− (k−i

m

)
is the k × k matrix B with (s, m)-entry (−1)k+m+s+1

( m
k−s

)
(interpreting

(n
j

)
as

0 when j < 0 or j > n). To see this, we compute the (s, i)-entry of BA:

k∑
m=1

(−1)k+m+s+1

(
m

k − s

)((
k

m

)
−
(

k − i

m

))

=
k∑

m=0

(−1)k+m+s+1

(
m

k − s

)(
k

m

)
−

k∑
m=0

(−1)k+m+s+1

(
m

k − s

)(
k − i

m

)

=
(

k

k − s

) k∑
m=0

(−1)k+m+s+1

(
s

m−k+s

)
+
(

k − i

k − s

) k∑
m=0

(−1)k+m+s

(
s − i

m−k+s

)
.

Since the alternating sum of a row of Pascal’s triangle (other than the first) vanishes,
the first sum in the last expression vanishes, as does the second except when s = i , in
which case it is 1. Thus BA is the identity matrix.

(b) For the desired value Um , we compute

Um =
k∑

j=m

Tj =
k∑

j=m

k∑
i=1

(−1)k+i+ j+1

(
i

k − j

)
Si

=
k∑

i=1

k∑
j=m

(−1)k+i+ j+1

(
i

k − j

)
Si =

k∑
i=1

(−1)k+i+m+1

(
i − 1

k − m

)
Si ,

where the last equality comes from
∑k

j=m(−1) j
( i

k− j

) = (−1)m
( i−1

k−m

)
, which is proved

by induction on k − m.

Also solved by D. Beckwith, B. S. Burdick, R. Chapman (U. K.), Y. J. Ionin, B. Karaivanov, O. Kouba
(Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), Y. Shim (Korea), J. C. Smith, R. Stong, R. Tauraso
(Italy), TCDmath Problem Group (Ireland), and the proposer.

A Line of Urns

11776 [2014, 455]. Proposed by David Beckwith, Sag Harbor, NY. Given urns
U1, U2, . . . , Un in a line, and plenty of identical blue and identical red balls, let an

be the number of ways to put balls into the urns subject to the conditions that

(i) each urn contains at most one ball,
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(ii) any urn containing a red ball is next to exactly one urn containing a blue ball,
and

(iii) no two urns containing a blue ball are adjacent.

(a) Show that

∞∑
n=0

antn = 1 + t + 2t2

1 − t − t2 − 3t3
.

(b) Show that

an =
∑
j≥0

∑
m≥0

4 j

[(
n − 2m

j

)(
m

j

)
+
(

n − 2m − 1

j

)(
m

j

)
+ 2

(
n − 2m

j

)(
m − 1

j

)]
.

Here
(k

l

) = 0 if k < l.

Solution by James Christopher Smith, Knoxville, TN.
(a) By explicit counting, a0 = 1, a1 = 2, a2 = 5, and a3 = 10. View solutions as

strings of length n using E, B, R for empty, blue, and red, respectively, with en , bn ,
rn counting those beginning E , B, or R. Always an = en + bn + rn , and en = an−1 for
n ≥ 1. Also rn = bn−1 for n ≥ 2. For n ≥ 3, the solutions beginning B consist of en−1

beginning BEE, BEB, or BER, plus en−2 beginning BRE, plus rn−2 beginning BRR.
Thus bn = en−1 + en−2 + rn−2, and

an = en + bn + rn = an−1 + en−1 + en−2 + rn−2 + bn−1

= an−1 + an−2 + an−3 + bn−3 + en−2 + en−3 + rn−3

= an−1 + an−2 + an−3 + bn−3 + an−3 + en−3 + rn−3

= an−1 + an−2 + 3an−3.

Therefore,

(
1 − t − t2 − 3t3

) ∞∑
n=0

antn =
∞∑

n=0

antn −
∞∑

n=1

an−1tn −
∞∑

n=2

an−2tn − 3
∞∑

n=3

an−3tn

= 1 + t + 2t2 +
∞∑

n=3

(an − an−1 − an−2 − 3an−3)t
n = 1 + t + 2t2.

(b) Use the identity
∑

m≥0

(m
k

)
tm = t k/(1 − t)k+1 to obtain

∑
n≥0

(∑
m≥0

(
n − 2m

j

)(
m

j

))
tn =

(∑
m≥0

(
m

j

)
t2m

)(∑
n≥0

(
n

j

)
tn

)

=
(

t2 j

(1 − t2) j+1

)(
t j

(1 − t) j+1

)
= 1

(1 − t)(1 − t2)

(
t3

(1 − t)(1 − t2)

) j

.

It follows that

∑
n≥0

⎛
⎝∑

j≥0

∑
m≥0

4 j

(
n − 2m

j

)(
m

j

)⎞⎠ tn =
∑
j≥0

4 j
∑
n≥0

(∑
m≥0

(
n − 2m

j

)(
m

j

))
tn
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= 1

(1 − t)(1 − t2)

∑
j≥0

(
4t3

(1 − t)(1 − t2)

) j

= 1

(1 − t)(1 − t2)

(
1

1 − 4t3

(1−t)(1−t2)

)
= 1

1 − t − t2 − 3t3
.

Hence, in the expansion of 1/(1 − t − t2 − 3t3), the coefficients of tn−1 and tn−2 are,
respectively,

∑
j≥0

∑
m≥0

4 j

(
n − 1 − 2m

j

)(
m

j

)
and

∑
j≥0

∑
m≥0

4 j

(
n − 2 − 2m

j

)(
m

j

)
.

Shifting the index for m in the last expression and summing the various contributions
now yields (b).

Also solved by R. Chapman (U. K.), M. Funkhouser, O. Geupel (Germany), O. Kouba (Syria), O. P. Lossers
(Netherlands), Y. Shim (Korea), R. Stong, R. Tauraso (Italy), GCHQ Problem Solving Group (U. K.), Missouri
State University Problem Solving Group, and the proposer.

The Beast

11777 [2014, 456]. Proposed by Marian Dincă, Bucharest, Romania. Let x1, . . . , xn

be real numbers such that
∏n

k=1 xk = 1. Prove that

n∑
k=1

x2
k

x2
k − 2xk cos(2π/n) + 1

≥ 1.

Solution by Mazen Zarrouk, Montgomery College, Takoma Park, MD. When n = 1,
the inequality becomes 1

0 ≥ 1, which makes sense if we take 1
0 = +∞. The inequality

is not true for n = 2, as can be seen by taking x1 = x2 = 1. In the following it will be
shown that the inequality is true for n ≥ 3.

We will use the Shapiro inequality: If yi ≥ 0 for 1 ≤ i ≤ n, with yn+1 = y1 and
yn+2 = y2, then

n∑
k=1

yk

yk+1 + yk+2
≥
{

n/2, for even n at most 12 or odd n at most 23,
0.49n, for all other n.

(Reference: V. G. Drinfel’d, A cyclic inequality, Math. Notes. Acad. Sci. USSR 9
(1971) 68–71. H. S. Shapiro, Monthly Problem 4603, 61 (1954) 571.
http://mathworld.wolfram.com/ShapiroCyclicSumConstant.html.)

Lemma. Fix n ∈ N with n ≥ 4. If x1, . . . , xn are positive real numbers with product 1,
then

n∑
k=1

(
xk

xk + 1

)2

≥ 1.

Proof. Let yk = ∏n
j=k x j for 1 ≤ k ≤ n, with yn+1 = y1 and yn+2 = y2. Note that

yk > 0 and xk = yk/yk+1 for 1 ≤ k ≤ n. Also,

n∑
k=1

xk

xk + 1
=

n∑
k=1

yk

yk + yk+1
=

n∑
k=1

yk+1

yk+1 + yk+2
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=
n∑

k=1

yk+1 − yk

yk+1 + yk+2
+

n∑
k=1

yk

yk+1 + yk+2
≥

n∑
k=1

yk

yk+1 + yk+2
. (1)

Note that since yk > 0, setting t = max1≤k≤n{yk+1 + yk+2} > 0 yields

n∑
k=1

yk+1 − yk

yk+1 + yk+2
≥ 1

t

n∑
k=1

(yk+1 − yk) = 1

t
(yn+1 − y1) = 0.

Thus, omitting this sum leads to the stated inequality in (1). Using the quadratic mean–
arithmetic mean inequality, we obtain

n∑
k=1

(
xk

xk + 1

)2

≥ 1

n

(
n∑

k=1

xk

xk + 1

)2

≥ 1

n

(
n∑

k=1

yk

yk+1 + yk+2

)2

.

The result now follows by applying the Shapiro inequality.

We now return to the original problem and prove the case n = 3, for which the
lemma is not needed. Let x, y, z be real numbers such that xyz = 1. With z = 1/xy,
the case n = 3 becomes

x2

x2 + x + 1
+ y2

y2 + y + 1
+ 1

x2 y2 + xy + 1
≥ 1,

which is equivalent to

1
4 (2x2 y2 − x − y)2 + 3

4 (x − y)2

(x2 + x + 1)(y2 + y + 1)(x2 y2 + xy + 1)
≥ 0.

For each factor in the denominator, we have t2 + t + 1 = (t + 1
2 )

2 + 3
4 > 0. The

desired inequality follows. This completes the case n = 3.
Now we consider the case n ≥ 4. Let x1, x2, . . . , xn be real numbers with product

1. For 1 ≤ k ≤ n,

0 < 1 − cos2

(
2π

n

)
≤ x2

k − 2xk cos

(
2π

n

)
+ 1 ≤ x2

k + 2|xk | + 1 = (|xk | + 1
)2

.

Applying Lemma 1 to |x1|, . . . , |xn|, we obtain the required inequality

n∑
k=1

x2
k

x2
k − 2xk cos(2π/n) + 1

≥
n∑

k=1

( |xk |
|xk | + 1

)2

≥ 1.

Also solved by M. Aassila (France), P. P. Dályay (Hungary), D. Fleischman, Y. J. Ionin, O. P. Lossers
(Netherlands), P. Perfetti (Italy), R. E. Prather, J. C. Smith, N. Stanciu (Romania), A. Stenger, R. Stong, R.
Tauraso (Italy), Z. Vörös (Hungary), GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West

with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Mohamed Omar, Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley,
Kenneth Stolarsky, Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden
Eynden, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY

problems address on the back of the title page. Proposed problems should never be
under submission concurrently to more than one journal, nor posted to the internet
before the due date for solutions. Submitted solutions should arrive before Nov 30,
2016. Additional information, such as generalizations and references, is welcome.
The problem number and the solver’s name and address should appear on each solu-
tion. An asterisk (*) after the number of a problem or a part of a problem indicates
that no solution is currently available.

PROBLEMS

11915. Proposed by Mark E. Kidwell and Mark D. Meyerson, U.S. Naval Academy,
Annapolis, MD. Given four points A, B, C , and D in order on a line in Euclidean
space, under what conditions will there be a point P off the line such that the angles
∠AP B, ∠B PC , and ∠C P D have equal measure?

11916. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso, Univer-
sitá di Roma “Tor Vergata,” Rome, Italy. Show that if n, r , and s are positive integers,
then (

n + r

n

) s−1∑
k=0

(
r + k

r − 1

)(
n + k

n

)
=
(

n + s

n

) r−1∑
k=0

(
s + k

s − 1

)(
n + k

n

)
.

11917. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let A be a 2 × 2 matrix with integer entries and both eigenvalues
less than 1 in absolute value. Prove that log(I − A) has integer entries if and only if
A2 = 0. (Here log(I − X) = −X − X 2/2 − X 3/3 − · · · when that sum converges.)

11918. Proposed by Le Van Phu Cuong, College of Education, Hue University, Hue
City, Vietnam. Let f be n times continuously differentiable on [0, 1], with f (1/2) = 0
and f (i)(1/2) = 0 when i is even and at most n. Prove(∫ 1

0
f (x) dx

)2

≤ 1

(2n + 1)22n(n!)2

∫ 1

0
f (n)(x))2 dx .

11919. Proposed by Arkady Alt, San Jose, CA. For positive integers m and k with
k ≥ 2, prove

n∑
i1=1

· · ·
n∑

ik=1

(min{i1, . . . , ik})m =
m∑

i=1

(−1)m−i

(
m

i

)
((n + 1)i − ni )

n∑
j=1

j k+m−i .

http://dx.doi.org/10.4169/amer.math.monthly.123.6.613
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11920. Proposed by Ángel Plaza and Sergio Falcón, University of Las Palmas de Gran
Canaria, Spain. For positive integer k, let 〈Fk〉 be the sequence defined by initial con-
ditions Fk,0 = 0, Fk,1 = 1, and the recurrence Fk,n+1 = k Fk,n + Fk,n−1. Find a closed
form for

∑n
i=0

(2n+1
i

)
Fk,2n+1−2i .

11921. Proposed by Cornel Ioan Vălean, Timiş, Romania. Prove

log2(2)

∞∑
k=1

Hk

(k + 1)2k+1
+ log(2)

∞∑
k=1

Hk

(k + 1)22k
+

∞∑
k=1

Hk

(k + 1)32k

= 1

4

(
(ζ(4) + log4(2)

)
.

(Here Hk = ∑k
j=1 1/j and ζ denotes the Riemann zeta function.)

SOLUTIONS

A Partition Inequality

11772 [2014, 366]. Proposed by Mircea Merca, University of Craiova, Craiova, Roma-
nia. Let n be a positive integer. Prove that the number of integer partitions of 2n + 1
that do not contain 1 as a part is less than or equal to the number of integer partitions
of 2n that contain at least one odd part.

Solution by Jeffrey Olson, Norwich University, Northfield, VT. When p is a partition of
2n + 1 with no parts equal to 1, let φ(p) be the partition of 2n obtained by replacing a
smallest part k by k − 1 copies of 1. Note that φ is injective; p can be recovered from
φ(p) by combining the copies of 1 into one copy of k if φ(p) has k − 1 copies of 1.
This proves a stronger result: For each positive integer m, the number of partitions of
m + 1 having no 1 is at most the number of partitions of m in which the number of
copies of 1 is positive and less than the smallest other part.

Also solved by D. Beckwith, P. P. Dályay (Hungary), O. Geupel (Germany), B. Karaivanov, M. Krebs,
K. Kusejko (Switzerland), O. P. Lossers (Netherlands), R. Martin (Germany), R. Molinari, R. E. Prather,
E. Schmeichel, Y. Shim (Korea), A. V. Sills, N. C. Singer, R. Stong, J. Swenson, R. Tauraso (Italy), Z. Vörös
(Hungary), E. A. Weinstein, H. Widmer (Switzerland), CMC 328, GCHQ Problem Solving Group (U. K.),
Missouri State University Problem Solving Group, and the proposer.

A Powerful Inequality

11780 [2014, 456]. Proposed by Cézar Lupu, University of Pittsburgh, Pittsburgh, PA,
and Tudorel Lupu, Decebal High School, Constanţa, Romania. Let f be a positive-
valued, concave function on [0, 1]. Prove that

3

4

(∫ 1

0
f (x) dx

)2

≤ 1

8
+
∫ 1

0
f 3(x) dx .

Solution by Roberto Tauraso, Università di Roma, Rome, Italy.
Note that for t ≥ 0,

t3 − 3

4
t2 + 1

16
= 1

16
(4t + 1)(2t − 1)2 ≥ 0,

with a relative minimum at t = 1/2.
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Hence, since f (x) is nonnegative, it follows from this inequality that∫ 1

0

(
f 3(x) − 3

4
f 2(x) + 1

16

)
dx ≥ 0.

Moving the middle term to the right and using the Cauchy–Schwarz inequality yields∫ 1

0

(
f 3(x) + 1

16

)
dx ≥ 3

4

∫ 1

0
f 2(x) dx ≥ 3

4

(∫ 1

0
f (x) dx

)2

.

This inequality is stronger than the required inequality for all f (x) for which the inte-
grals exist. Thus, the condition that f be concave is not necessary, and equality holds
if and only if f ≡ 1/2.

Also solved by R. A. Agnew, R. Bagby, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), A.
Ercan (Turkey), P. J. Fitzsimmons, E. A. Herman, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Nether-
lands), V. Mikayelyan (Armenia), M. Omarjee (France), P. Perfetti (Italy), J. C. Smith, A. Stenger, R. Stong,
E. I. Verriest, H. Wang, GCHQ Problem Solving Group (U. K.), and the proposers.

An Application of Prime Density

11781 [2014, 456]. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,”
Rome, Italy. For n ≥ 2, call a positive integer n-smooth if none of its prime factors
is larger than n. Let Sn be the set of all n-smooth positive integers. Let C be a finite,
nonempty set of nonnegative integers, and let a and d be positive integers. Let M be
the set of all positive integers of the form m = ∑d

k=1 cksk , where ck ∈ C and sk ∈ Sn

for k = 1, . . . , d. Prove that there are infinitely many primes p such that pa 
∈ M .

Solution by Reiner Martin, Bad Soden-Neuenhain, Germany. For a positive integer r
and a prime p, the number of powers of p bounded by r is at most 1 + ln r/ ln p,
which is in O(ln r). As the number of primes bounded by k is less than k, the number
of n-smooth integers bounded by r is O((ln r)n). Thus, the number of elements in M
bounded by r is O((ln r)dn), where the constant depends only on n.

On the other hand, for fixed a the number of prime powers pa bounded by r is the
number of primes up to r 1/a , which is asymptotic to ar 1/a/ln r by the prime number
theorem. Since for c > 0 we have

lim
r→∞

(
ar 1/a

ln r
− c(ln r)dn

)
= ∞,

the claim follows.

Editorial comment. Christian Elsholtz and the proposer noted that the claim is true also
when C may contain negative integers.

Also solved by R. Chapman (U. K.), C. Elsholtz (Austria), Y. J. Ionin, O. P. Lossers (Netherlands), R. Stong,
NSA Problems Group, and the proposer.

Sparse binary representations

11782 [2014, 549]. Proposed by Ira Gessel, Brandeis University, Waltham, MA. A
signed binary representation of an integer m is a finite list a0, a1, . . . of elements of
{−1, 0, 1} such that

∑
al2l = m. A signed binary representation is sparse if no two

consecutive entries in the list are nonzero.
(a) Prove that every integer has a unique sparse representation.
(b) Prove that for all m ∈ Z, every nonsparse signed binary representation of m has at
least as many nonzero terms as the sparse representation.
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Composite solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven,
The Netherlands, and Mark D. Meyerson, U. S. Naval Academy, Annapolis, MD.

We first show by induction on k that every integer having a sparse representation
with k nonzero terms has a unique sparse representation (trailing 0s are appended as
needed). When k = 0 we can represent only 0, and since the partial sum through an2n

has absolute value less than 2n+1 there is no other signed representation of 0.
For the induction step with k > 0, consider a sparse representation of m with k

nonzero terms. Let ar be the first nonzero term. Since ar+1 = 0, we have m ≡ ar 2r

(mod 2r+2). Thus every sparse representation of m has the same first nonzero term
and is obtained by adding ar 2r to a sparse representation of m − ar 2r , which by the
induction hypothesis is unique.

Every integer has at least one signed representation (the usual binary representation
or its negative). Hence to prove both (a) and (b) it suffices to obtain a sparse rep-
resentation from any signed representation of m without increasing t , the number of
nonzero terms. A nonsparse representation has a sublist of the form 1, 1, 0 or −1, 1 or
their negatives. Changing 1, 1, 0 to −1, 0, 1 and −1, 1 to 1, 0 neither changes the sum
nor increases t , and similarly for their negatives. If such a change does not decrease t ,
then it moves a zero toward the front of the list. Thus finitely many steps yield a sparse
representation with no more nonzero terms than the original representation.

Editorial comment. Donald Knuth and John C. Kieffer observed that this result
was proved by George W. Reitwiesner [Binary arithmetic, Advances in Comput-
ers, Vol. 1, Academic Press, 1960, pp. 231–308], and a short proof is given in Knuth’s
The Art of Computer Programming, Volume 2: Seminumerical Algorithms, exercise
4.1-34. Kieffer also noted that U. Güntzer and M. Paul [Jump interpolation search trees
and symmetric binary numbers, Inform. Process. Lett. 26 (1987), 193–204] showed
that the sparse binary representation (also known as the nonadjacent form or balanced
binary representation) of m arises by subtracting the usual binary representation of
m/2 from the usual binary representation of 3m/2. A short proof of this appears in
Knuth’s The Art of Computer Programming, Volume 4A: Combinatorial Algorithms,
Part 1, exercise 7.1.3-35.

Also solved by A. Ali (India), R. Bagby, K. Banerjee, D. Beckwith, C. Blatter (Switzerland), G. Brown,
N. Caro (Brazil), R. Chapman (U. K.), P. P. Dályay (Hungary), D. Fleischman, J. Freeman, O. Geupel
(Germany), M. Goldenberg & M. Kaplan, D. Gove, E. A. Herman, E. J. Ionaşcu, Y. J. Ionin, B. Karaivanov,
J. C. Kieffer, J. H. Lindsey II, R. Martin (Germany), J. Schlosberg, Y. Shim (Korea), J. C. Smith, J. H. Smith,
R. Stong, H. Takeda (Japan), R. Tauraso (Italy), T. Viteam (India), J. Wakem, E. A. Weinstein, GCHQ Problem
Solving Group (U. K.), NSA Problems Group, TCDmath Problem Group (Ireland), and the proposer.

Enumerating Subsets by Odd Runs

11785 [2014, 550]. Proposed by Bhaskar Bagchi, India Statistics Institute, Bangalore,
India.

Let [n] = {1, . . . , n}. For a subset A of [n], a run of A is a maximal subset of A
consisting of consecutive integers. Let O(A) denote the number of runs of A with an
odd number of elements, and let μ(A) = 1

2 (|A| + O(A)). (For instance, if n = 9 and
A = {1, 3, 4, 5, 8, 9}, then A has three runs, O(A) = 2, and μ(A) = 4.)
(a) Show that if 0 ≤ k ≤ n and k/2 ≤ i ≤ k, then the number Ni,k of subsets A of [n]
such that μ(A) = i and |A| = k is given by

Ni.k =
(

n − i

k − i

)(
n − k + 1

2i − k

)
.
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(b)* Prove or disprove that if m is a positive integer and m + 1 ≤ k ≤ 2m, then the
number of subsets A of [3m + 1] such that |A| = k and μ(A) ≤ m is equal to the
number of subsets B of [3m + 1] such that |B| = 3m + 1 − k and μ(B) > m.

Solution by Richard Stong, Center for Communications Research, San Diego, CA.
(a) View Ni,k as the number of k-subsets A in [n + 1] that omit n + 1 and satisfy

μ(A) = i . Let (a1, . . . , an+1) ∈ {0, 1}n+1 be the indicator vector for A. Encode A by
a string using U , V , and W as follows: Begin with U if (a1, a2) = (1, 0), with V if
(a1, a2) = (1, 1), and with W if a1 = 0. Delete a1 from the vector in the latter case;
delete a1 and a2 in the first two cases. Repeat the process until the vector is exhausted.

Each run of length l becomes a string of length �l/2
, all V except for ending in U
if l is odd. Thus U appears O(A) times and V occurs (|A| − O(A))/2 times. Together,
they appear μ(A) times, each accounting for two positions in the vector, so W appears
n + 1 − 2i times. Since n + 1 /∈ A, the string cannot end in the symbol V .

Conversely, any (U, V, W )-string with frequencies (2i − k, k − i, n + 1 − 2i) not
ending in V encodes a desired subset. With n − i + 1 entries in total, there are

(n−i
k−i

)
ways to place the V symbols and then

(n−k+1
2i−k

)
ways to place the U symbols, yielding

the claimed formula for Ni,k .
(b) We prove that equality holds. Let h(x, y, z) = ∑

i,k,n Ni,k(n)xi yk zn . For a par-
ticular string counted by Ni,k , each U , V , or W , respectively, contributes xyz2, xy2z2,
or z, since the exponents are their contributions to i , k, and n. The forced final W or
U contributes options z or xyz2, and we divide that by z so the string contributes to
the coefficient of zn rather than zn+1. Before that the string has r terms in {U, V, W },
where r ≥ 0. Thus

h(x, y, z) = (1 + xyz)
∑

r

(
z + xyz2 + xy2z2

)r = 1 + xyz

1 − z − xyz2 − xy2z2
.

We now find the generating functions for the two counts in (b). The number of
subsets A of [n] with μ(A) ≤ m and |A| = k is the coefficient of xm yk zn in

f (x, y, z) = h(x, y, z)

1 − x
= 1 + xyz

(1 − x)(1 − z − xyz2 − xy2z2)
.

Restricting to n = 3m + 1 gives the coefficient of xm yk in

F(x, y) = 1

2π i

∮
f (x/z3, y, z)

z2
dz = 1

2π i

∮
xy + z2

(xy + xy2 − z + z2)(x − z3)
dz,

where we interpret x and y as being small and the contour as being around |z| = 1/2.

The only residue outside this contour is at z =
(

1 +
√

1 − 4xy − 4xy2
)

/2, so, after

some computation, we obtain

F(x, y) = xy + z2

(x − z3)(2z − 1))

∣∣∣∣
z=
(

1+
√

1−4xy−4xy2
)
/2

= 1 − y + (1 + y)
√

1 − 4xy − 4xy2

2(1 − x(1 + y)3)
√

1 − 4xy − 4xy2
.

Given t (x) = ∑
tn xn , let un = ∑

k>n tk and u(x) = ∑
unxn . By clearing fractions

and equating coefficients, it is easy to show that u(x) = t (1)−t (x)

1−x . Applying this with
t (x) = h(x, y, z) in which y and z are treated as constants, the number of subsets B of
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[n] with μ(B) > m and |B| = n − k is the coefficient of xm yn−k zn in h(1,y,z)−h(x,y,z)
1−x .

By computation,

h(1, y, z) − h(x, y, z)

1 − x
= yz

(1 − z − yz)(1 − z − xyz2 − xy2z2)
.

Hence we seek the coefficient of xm yk zn in g(x, y, z), where

g(x, y, z) = z

(1 − z − yz)(1 − yz − xyz2 − xz2)
,

obtained by replacing y with 1/y and z with yz in the previous expression. Again
specializing to n = 3m + 1 gives the coefficient of xm yk in

F(x, y) = 1

2π i

∮
g(x/z3, y, z)

z2
dz = 1

2π i

∮
dz

(1 − z − yz)(z − x − xy − yz2)

along the same contour |z| = 1/2. The only residue inside this contour is at
z = (1 −

√
1 − 4xy − 4xy2)/(2y), so we get

G(x, y) = 1

(1 − z − yz)(1 − 2yz))

∣∣∣∣
z=
(

1−
√

1−4xy−4xy2
)
/(2y)

= 1 − y + (1 + y)
√

1 − 4xy − 4xy2

2(1 − x(1 + y)3)
√

1 − 4xy − 4xy2
.

The two generating functions agree, proving (b).

Part (a) also solved by D. Beckwith, R. Chapman (U. K.), O. Geupel (Germany), Y. J. Ionin, O. P. Lossers
(Netherlands), and the proposer. No other solutions to (b) were received.

A Series Identity Involving Partitions and Divisors

11787 [2014, 550]. Proposed by Mircea Merca, University of Craiova, Romania. Prove
that

∞∑
k=1

(−1)k−1kpk

(
n − 1

2
k(k + 1)

)
=

∞∑
k=−∞

(−1)kτ

(
n − 1

2
k(3k − 1)

)
.

Here pk(n) denotes the number of partitions of n in which the greatest part is less than
or equal to k (with pk(0) = 1 and pk(n) = 0 for n < 0) and τ(n) is the number of
divisors of n (with τ(n) = 0 for n ≤ 0).

Solution by O.P. Lossers, Eindhoven University of Technology, The Netherlands. Let
p̃k(n) be the number of partitions of the integer n into exactly k parts, all distinct.
Such partitions correspond bijectively to arbitrary partitions of n − 1

2 k(k + 1) with at
most k parts, sending λ to λ′ by subtracting i from the i th smallest part in λ, for 1 ≤ i
≤ k. Also, partitions of n − 1

2 k(k + 1) with at most k parts correspond to partitions of
n − 1

2 k(k + 1) with largest part at most k (by conjugation). Thus it suffices to show

∞∑
k=1

(−1)k−1k p̃k(n) =
∞∑

k=−∞
(−1)kτ

(
n − 1

2
k(3k − 1)

)
.

For fixed n, let an and bn denote the left side and right side, respectively. We
prove equality of the generating functions:

∑
n≥0 an xn = ∑

n≥0 bn xn . With P(t, x)

= ∑
k,n≥0, p̃k(n)t k xn , we have

∑
n≥0 an xn = ∂

∂t P(t, x)
∣∣
t=−1

. To generate distinct parts
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and count 1 in the exponent on t for each part generated, we have P(t, x) = ∏∞
m=1

(1 + t xm). Thus

∑
n≥0

an xn = ∂

∂t
P(t, x)

∣∣∣∣
t=−1

=
( ∞∑

n=1

xn

1 − xn

) ∞∏
n=1

(1 − xn).

We compute

∞∑
n=1

xn

1 − xn
=

∞∑
n=1

∞∑
m=1

xmn =
∑

m,n : mn=k

xk =
∞∑

n=1

τ(n)xn,

and Euler’s pentagonal theorem yields

∞∏
n=1

(1 − xn) =
∞∑

n=−∞
(−1)nx

1
2 n(3n−1).

These computations combine to prove the desired result:

∑
n≥0

an xn =
( ∞∑

n=1

τ(n)xn

)
·
( ∞∑

n=−∞
(−1)nx

1
2 n(3n−1)

)
=
∑
n≥0

bn xn.

Also solved by R. Chapman (U. K.), K. Kusejko (Switzerland), R. Tauraso (Italy), and the proposer.

A Log Square-Root Inequality

11788 [2014, 550]. Proposed by Spiros Andriopoulos, Third High School of Amaliada,
Eleia, Greece. Let n be a positive integer, and suppose 0 < yi ≤ xi < 1 for 1 ≤ i ≤ n.
Prove that

log x1 + · · · + log xn

log y1 + · · · + log yn
≤
√

1 − x1

1 − y1
+ · · · + 1 − xn

1 − yn
.

Solution by Borislav Karaivanov, Lexington, SC. First we prove the case n = 1,
which is equivalent to log x1/

√
1 − x1 ≥ log y1/

√
1 − y1. We claim that the function

f defined by f (x) = log x/
√

1 − x is strictly increasing on (0, 1). The derivative
is f ′(x) = x log x+2−2x

2x(1−x)3/2 ; the denominator 2x(1 − x)3/2 is positive on (0, 1); and the
numerator g(x) = x log x + 2 − 2x is positive since its derivative g′(x) = log x − 1
is negative and g(1) = 0. Thus f is strictly increasing on (0, 1), which proves the
inequality. Equality holds only if x1 = y1.

Now consider n ≥ 2. Rewrite and apply the case n = 1 to get

log x1 + · · · + log xn

log y1 + · · · + log yn
≤
√

1 − x1 · · · xn

1 − y1 · · · yn
<

√
1 − x1

1 − y1
+ · · · + 1 − xn

1 − yn
.

Here the last inequality is obtained by induction using the inequality

1 − x1x2

1 − y1 y2
<

(1 − x1) + (1 − x2)

1 − y1 y2
= 1 − x1

1 − y1 y2
+ 1 − x2

1 − y1 y2
<

1 − x1

1 − y1
+ 1 − x2

1 − y2

for x1, x2, y1, y2 ∈ (0, 1). Note that equality is never attained when n ≥ 2.
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Editorial comment.
Roberto Tauraso proved the inequality not only for the square-root (power 1/2) but

for any power t where t ∈ [0, 1].

Also solved by M. Bataille (France), R. Chapman (U. K.), P. P. Dályay (Hungary), M. Dincă (Romania),
J.-P. Grivaux (France), H. D. Gyu (Korea), E. A. Herman, Q. Hu (China), B. Karaivanov, O. Kouba (Syria),
X. Lai (China), J. H. Lindsey II, O. P. Lossers (Netherlands), V. Mikayelyan (Armenia), M. Omarjee (France),
P. Perfetti (Italy), I. Pinelis, B. P. Pinto & W. Zhao, Á. Plaza & F. Perdomo (Spain), J. C. Smith, R. Stong,
H. Takeda (Japan), R. Tauraso (Italy), Z. Vörös (Hungary), Z.-H. Yang (China), and the proposer.

A Series with Zetas

11793 [2014, 648]. Proposed by István Mező, Nanjing University of Information
Science and Technology, Nanjing, China. Prove that

∞∑
n=1

log(n + 1)

n2
= −ζ ′(2) +

∞∑
n=3

(−1)n+1 ζ(n)

n − 2
,

where ζ denotes the Riemann zeta function and ζ ′ denotes its derivative.

Solution by FAU Problem Solving Group, Florida Atlantic University, Boca Raton, FL.
The equality to be proved is the consequence of a change in the order of summation,
using the standard formulas

ζ ′(s) = −
∞∑

n=2

log n

ns
(s > 1), log(1 + x) =

∞∑
n=1

(−1)n+1

n
xn (−1 < x ≤ 1).

Note that for x = 1, the second series converges only conditionally.
With S = ∑∞

n=3(−1)n+1 ζ(n)

n−2 , we now have

S =
∞∑

n=1

(−1)n+1 ζ(n + 2)

n
=

∞∑
n=1

(−1)n+1

n

∞∑
k=1

1

kn+2

=
∞∑

n=1

(−1)n+1

n
+

∞∑
n=1

(−1)n+1

n

∞∑
k=2

1

kn+2

= log 2 +
∞∑

k=2

1

k2

∞∑
n=1

(−1)n+1

nkn
= log 2 +

∞∑
k=2

1

k2
log

(
1 + 1

k

)

= log 2 +
∞∑

k=2

1

k2
log(k + 1) −

∞∑
k=2

1

k2
log k =

∞∑
k=1

1

k2
log(k + 1) + ζ ′(2).

Here the change of order of summation is justified by absolute convergence of the sum.
The equality to be proved follows.

Editorial comment.
Submissions that omitted justifying the interchange of the order of summation were

considered insufficient.

Also solved by R. Bagby, O. Furdui (Romania), C. Georghiou (Greece), O. Geupel (Germany), M. Gold-
enberg & M. Kaplan, J.-P. Grivaux (France), E. A. Herman, O. Kouba (Syria), O. P. Lossers (Netherlands),
J. C. Smith, A. Stenger, R. Stong, GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Mohamed Omar, Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley,
Kenneth Stolarsky, Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden
Eynden, and Fuzhen Zhang.

Proposed problems should be submitted online via http://www.americanmath
ematicalmonthly.submittable.com/submit . Proposed solutions to the prob-
lems below should be submitted on or before January 31, 2017 at the same
link. More detailed instructions are available online. Solutions to problems num-
bered 11921 or below should continue to be submitted via e-mail to monthlyprob-
lems@math.tamu.edu. Proposed problems must not be under consideration concur-
rently to any other journal nor be posted to the internet before the deadline date
for solutions. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

11922. Proposed by Max Alekseyev, George Washington University, Washington, DC
Find every positive integer n such that both n and n2 are palindromes when written in
the binary numeral system (and with no leading zeros).

11923. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Tech-
nology, Damascus, Syria. Let f p be the function on (0, π/2) given by

f p(x) = (1 + sin x)p − (1 − sin x)p − 2 sin(px).

Prove f p > 0 for 0 < p < 1/2 and f p < 0 for 1/2 < p < 1.

11924. Proposed by Cornel Ioan Vălean, Timiş, Romania. Calculate∫ π/2

0

{tan x}
tan x

dx,

where {u} denotes u − �u�.

11925. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania. Let n be an
integer with n ≥ 4. Find the largest k such that for any list a of n real numbers that
sum to 0, ⎛

⎝ n∑
j=1

a2
j

⎞
⎠

3

≥ k

⎛
⎝ n∑

j=1

a3
j

⎞
⎠

2

.

http://dx.doi.org/10.4169/amer.math.monthly.123.7.722
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11926. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let k be an integer, k ≥ 2. Find∫ ∞

0

log |1 − x |
x (1+1/k)

dx .

11927. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let
O , G, I , and K be, respectively, the circumcenter, centroid, incenter, and symme-
dian point (also called Lemoine point or Grebe point) of triangle ABC. Prove |OG|
≤ |O I | ≤ |O K |, with equality if and only if ABC is equilateral.

11928. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For positive integers n and m
and for a sequence 〈ai 〉, prove

n∑
i=0

m∑
j=0

(
n

i

)(
m

j

)
ai+ j =

n+m∑
k=0

(
n + m

k

)
ak

and

∑
i< j

(
n

i

)(
n

j

)(
i + j

n

)
=
∑
i< j

(
n

i

)(
n

j

)2

.

SOLUTIONS

Special Multiples of an Integer

11789 [2014, 648]. Proposed by Gregory Galperin, Eastern Illinois University,
Charleston, IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant,
MI.

Let a and k be positive integers. Prove that for every positive integer d there exists
a positive integer n such that d divides kan + n.

Solution by Mark Wildon, Royal Holloway, University of London, Egham, U. K.
We shall show by induction on d that there are infinitely many solutions. If d = 1,

then any n ∈ N is a solution. Consider d > 1.
Suppose first that a is not a unit modulo d. Choose a prime p dividing gcd(a, d)

and exponents α and δ such that a = a′ pα and d = d ′ pδ , where a′ and d ′ are not divis-
ible by p. Let n = pδm. When m is sufficiently large, kan + n ≡ n ≡ 0 (mod pδ).
Therefore, kan + n ≡ 0 (mod d) if and only if

ka pδm + pδm ≡ 0 (mod d ′),

or, equivalently, if and only if

�bm + m ≡ 0 (mod d ′),

where b = a pδ
and � ∈ N is chosen so that k ≡ �pδ (mod d ′). By the induction

hypothesis, we find infinitely many choices for m.
In the remaining case, d > 1 and a is a unit modulo d. Let c = gcd(φ(d), d). By

the induction hypothesis, there exists m ∈ N such that kam + m ≡ 0 (mod c). Let kam

+ m = rc, where r ∈ N, and choose s, t ∈ N so that c = sφ(d) + td. Set
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n = m − rsφ(d) + λφ(d)d, where λ ∈ N is chosen so that n ∈ N. Now aφ(d) ≡ 1
(mod d), and hence,

kan + n = kam−rsφ(d)+λφ(d)d + m − rsφ(d) + λφ(d)d

≡ kam + m − rsφ(d)d

= r(c − sφ(d)) + λφ(d)d = r td + +λφ(d)d,

where the congruence is modulo d. Hence, d divides kan + n, as required. We now
obtain infinitely many solutions by varying λ.

Also solved by J. H. Lindsey II, B. Maji (India), M. Omarjee (France), K. Razminia (Iran), N. Safei (Iran),
J. C. Smith, A. Stenger, R. Stong, R. Tauraso (Italy), R. Viteam (India), University of Louisiana at Lafayette
Math Club, and the proposers.

A Lacunary Recurrence for Bernoulli Numbers

11791 [2014, 648]. Proposed by Marián Štofka, Slovak University of Technology,
Bratislava, Slovakia.

Show that for r ≥ 1,
r∑

s=1

(
6r + 1

6s − 2

)
B6s−2 = −6r + 1

6
,

where Bn denotes the nth Bernoulli number.

Solution by Allen Stenger, Boulder, CO. Let ρ be a primitive sixth root of unity so
that ρ3 = −1 and ρ2 − ρ + 1 = 0. Recall that the nth Bernoulli polynomial Bn(x) is
defined by Bn(x) = ∑n

s=0

(n
s

)
Bs xn−s . We first prove

r∑
s=1

(
6r + 1

6s − 2

)
B6s−2 = 1

6

5∑
m=0

(−1)m B6r+1(ρ
m). (1)

We know that
∑5

m=0 ρam is 6 if a is divisible by 6 and is 0 otherwise. By the definition
of Bernoulli polynomials, we have

5∑
m=0

(−1)m B6r+1(ρ
m) =

5∑
m=0

ρ−3m
6r+1∑
k=0

(
6r + 1

k

)
Bk · (ρm)6r+1−k

=
6r+1∑
k=0

(
6r + 1

k

)
Bk

5∑
m=0

ρm(6r−2−k)

= 6
∑

0≤k≤6r+1
6|k+2

(
6r + 1

k

)
Bk = 6

r∑
s=1

(
6r + 1

6s − 2

)
B6s−2,

which proves (1).
From the generating function

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
,

it is easy to prove the well-known facts that Bn(0) = Bn(1) = 0 when n is odd and
exceeds 1 and that Bn(x + 1) − Bn(x) = nxn−1 for all n. Thus, Bn(−1) = −n when n
is odd and exceeds 1. Now
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5∑
m=0

(−1)m B6r+1(ρ
m)

= 0 − (B6r+1(ρ) − B6r+1(ρ
2)) + (6r + 1) + (B6r+1(ρ

4) − B6r+1(ρ
5)).

Using ρ2 = ρ − 1, we evaluate the two grouped terms on the right as

B6r+1(ρ) − B6r+1(ρ
2) = B6r+1(ρ

2 + 1) = B6r+1(ρ
2)

= (6r + 1)(ρ2)6r = 6r + 1

and

B6r+1(ρ
4) − B6r+1(ρ

5) = B6r+1(−ρ) − B6r+1(−ρ2)

= B6r+1(−ρ) − B6r+1(1 − ρ)

= −(6r + 1)(−ρ)6r = −(6r + 1).

Combining these facts yields

5∑
m=0

(−1)m B6r+1(ρ
m) = −(6r + 1).

Editorial comment. As noted by several solvers, this formula was proved by S.
Ramanujan, Some properties of Bernoulli’s numbers, J. Indian Math. Soc. 3 (1911),
219–234, and further work on related identities can be found in D. H. Lehmer, Lacu-
nary recurrence formulas for the numbers of Bernoulli and Euler, Ann. of Math. (2)
36 (1935), 637–649 and F. T. Howard, A general lacunary recurrence formula, in
Applications of Fibonacci Numbers, Vol. 9, Kluwer Acad. Publ., Dordrecht, 2004,
pp. 121–135.

Also solved by U. Abel (Germany), D. Beckwith, R. Chapman (U.K.), C. Georghiou (Greece),
F. T. Howard, B. Karaivanov, O. Kouba (Syria), O. P. Lossers (Netherlands), R. Tauraso (Italy), C. Vig-
nat & V. H. Moll, M. Vowe (Switzerland), and GCHQ Problem Solving Group (U.K.).

A Functional Equation

11794 [2014, 648]. Proposed by George Stoica, University of New Brunswick, Saint
John, Canada. Find every twice differentiable function f on R such that for all nonzero
x and y, x f ( f (y)/x) = y f ( f (x)/y).

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. We assume only that f is once differentiable. We claim that the solutions
are f (x) = a(x + a), where a ∈ R.

The functional equation

x f

(
f (y)

x

)
= y f

(
f (x)

y

)
(1)

can be written in the form

f
( f (y)

x

)
f (y)

x

· f (y)

y
= f

(
f (x)

y

)
(2)

when f (y) 
= 0.
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Taking x > 0, y < 0 in (1), we conclude either that f has a zero or that f has both
positive and negative values, so again f has a zero.
Case 1: f (0) 
= 0. If f (x) = f (y) = 0, then from (1) we get x = y, so the zero
is unique in this case. If f satisfies (1), then F(x) = a2 f (x/a) also does, so we may
assume F(1) = 0. Setting x = 1 and then y = 0 gives F(F(0)) = 0, so by the unique-
ness, F(0) = 1. Setting x = 1 then yields F(F(y)) = y for all y, so F is surjective. If
we substitute z for F(y) in (1) and differentiate with respect to x , we obtain

F
( z

x

)
− z

x
F ′
( z

x

)
= F ′

(
F(x)

F(z)

)
F ′(x).

Setting z = x yields F ′(1)
(
1 + F ′(x)

) = 0 for all x . It follows that F(x) = 1 − x . We
conclude that the general solution in this case is f (x) = a(a + x) with a 
= 0.
Case 2: f (0) = 0. We claim f ′(0) = 0. If not, then by scaling F(x) = a2 f (x/a) as
before, we produce an F so that F ′(0) = −1. Set x = −y in (2) and let y go to zero
to obtain F(1) · (−1) = F(1), so F(1) = 0. Now set x = 1 in (2) and let y go to zero.
We get (F ′(0))2 = 0, a contradiction; hence, f ′(0) = 0.

Now we claim that f is identically zero. If not, then there exists a such that f (a)


= 0. Set y = f (x)/a. We want to let x → 0. Since f is continuous at 0, we have
f (x) → 0 as x → 0. Thus, y = f (x)/a → 0 as x → 0. Now f (y) → 0 as x → 0.
Since f ′(0) = 0, also f (x)/x → 0, so y/x → 0 as x → 0. Furthermore, f (y)/y → 0
and f (y)/x → 0 as x → 0. Thus, by (2),

f (a) = f

(
f (x)

y

)
= f

( f (y)

x

)
f (y)

x

· f (y)

y
→ f ′(0) · f ′(0) = 0

as x → 0, a contradiction. Hence, f (x) is identically zero, and we get a(x + a) in the
last case a = 0.

Editorial comment. If the functional equation is required only for positive x, y, then
there are many other solutions, such as f (x) = (x2 + 1)1/2.

Also solved by E. A. Herman, Y. J. Ionin, and R. Stong

A Trig Integral with Gamma

11796 [2015, 738]. Proposed by Gleb Glebov, Simon Fraser University, Burnaby,
Canada. Find ∫ ∞

0

sin((2n + 1)x)

sin x
e−αx xm−1 dx

in terms of α, m, and n, when α > 0, m ≥ 1, and n is a nonnegative integer.

Solution by Michel Bataille, Rouen, France. Define I to be the proposed integral. Then
we can write it as,

I =
∫ ∞

0

(
1 + 2

∞∑
k=1

cos(2kx)

)
e−αx xm−1 dx = I0 + 2

∞∑
k=1

Ik .

From the definition of the gamma function, we have

I0 =
∫ ∞

0
e−αx xm−1 dx = 	(m)

αm
,
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and for k ≥ 1,

Ik = Re

(∫ ∞

0
e−(α−2ki)x xm−1 dx

)
= Re

	(m)

(α − 2ki)m
= Re

	(m) · (α + 2ki)m

(α2 + 4k2)m
.

To put this in real form, define θk = tan−1(2k/α) so we can write (α + 2ki)m

= (
√

α2 + 4k2)m[cos(mθk) + i sin(mθk)]. The real part Ik of the integral can be calcu-
lated from this, and

I = 	(m)

(
1

αm
+ 2

m∑
k=1

cos
(
m tan−1 2k

α

)
(α2 + 4k2)m/2

)
.

Also solved by U. Abel (Germany), K. F. Andersen (Canada), R. Bagby, D. Beckwith, R. Boukharfane
(France), K. N. Boyadzhiev, P.Bracken, B. Bradie, M. A. Carlton, R. Chapman (U. K.), H. Chen, D. F. Connon
(U. K.), B. E. Davis, J. L. Ekstrom, C. Georghiou (Greece), M. L. Glasser, E. A. Herman, M. Hoffman, B.
Karaivanov & T. S. Vassilev (U.S.A & Canada), O. Kouba (Syria), K. D. Lathrop, M. Omarjee (France), P.
Perfetti (Italy), C. M. Russell, R. Sargsyan (Armenia), M. A. Shayib & M. Misaghian, A. Stenger, R. Stong, R.
Tauraso (Italy), N. Thornber, E. I. Verriest, Z. Vörös (Hungary), M. Vowe (Switzerland), H. Widmer (Switzer-
land), M. Wildon (U. K.), GCHQ Problem Solving Group (U. K.), and the proposer.

Growth Rate for Solution

11799 [2014, 739]. Proposed by Vicenţiu Rădulescu, King Abdulaziz University, Jed-
dah, Saudi Arabia. Let a, b, and c be positive.
(a) Prove that there is a unique continuously differentiable function f from [0, ∞)

into R such that f (0) = 0 and, for all x ≥ 0,

f ′(x)
(
1 + a| f (x)|b)c = 1.

(b) Find, in terms of a, b, and c, the largest θ such that f (x) = O(x θ ) as x → ∞.

Solution by Kenneth F. Andersen, Edmonton, AB, Canada. (a) If f is a solution, then

f ′(x)
(
1 + a| f (x)|b)c = 1 (1)

implies f ′(x) > 0 for all x ≥ 0. Since f (0) = 0, we conclude that f is nonnegative
and strictly increasing on [0, ∞). We claim that f is unbounded. Indeed, if f (x) ≤ M ,
then (1) shows f ′(x) ≥ (1 + aMb)−c > 0 for x ≥ 0 so that

f (x) =
∫ x

0
f ′(t) dt ≥ x

(1 + aMb)c
,

and thus, f (x) > M for sufficiently large x , a contradiction. Thus, f is a bijection
of [0, ∞) onto itself, with a continuously differentiable inverse f −1 satisfying f −1(0)

= 0 and (
f −1

)′(
f (x)

)
f ′(x) = 1

for all x ≥ 0. Combining this with (1) yields(
f −1

)′
(y) = (

1 + ayb
)c

for all y ∈ [0, ∞). Since (1 + ayb)c is a continuous function of y, by the fundamental
theorem of calculus,

f −1(y) =
∫ y

0

(
1 + atb

)c
dt.

Since inverses are unique, this uniquely determines f on [0, ∞).
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(b) Clearly, there is no maximal value of θ satisfying the stated requirement. If θ

satisfies the requirement, then so does θ + 1. We will show that the minimal value of
θ satisfying the stated requirement is (1 + bc)−1. Note that

lim
y→∞

y−1−bc

∫ y

0

(
1 + atb

)c
dt = lim

y→∞

∫ 1

0

(
y−b + asb

)c
ds =

∫ 1

0
acsbcds = ac

bc + 1
.

Thus,

lim
x→∞

x−θ f (x) = lim
y→∞

(∫ y

0

(
1 + atb

)c
dt

)−θ

y

is finite if and only if θ ≥ (1 + bc)−1.

Editorial comment. In “simplifying” the statement, the editors mistakenly wrote
“largest” instead of “smallest.”

Also solved by R. Bagby, R. Chapman (U. K.), J.-P. Grivaux (France), O. Kouba (Syria), J. H. Lindsey II,
I. Pinelis, A. Stenger, R. Stong, M. L. Treuden, E. I. Verriest, GCHQ Problem Solving Group (U. K.), and the
proposer.

Arithmetic Minus Geometric Means

11800 [2014, 739]. Proposed by Oleksiy Klurman, University of Montreal, Montreal,
Canada. Let f be a continuous function from [0, 1] into R+. Prove that∫ 1

0
f (x) dx − exp

[∫ 1

0
log f (x) dx

]
≤ max

0≤x,y≤1

(√
f (x) −

√
f (y)

)2
.

Composite Solution by Rafik Sargsyan, Yerevan State University, Yerevan, Armenia,
and Kenneth Schilling, Mathematics Department, University of Michigan–Flint, Flint,
MI. We will prove a stronger result. Recall that the arithmetic, geometric, and harmonic
means A, G, and H of f on [0, 1] satisfy

A =
∫ 1

0
f (x) dx ≥ G = exp

[∫ 1

0
log f (x) dx

]
≥ H =

[∫ 1

0

dx

f (x)

]−1

.

Let M and m be the maximum and minimum values of f , respectively. We show
that A − H ≤ (√

M − √
m
)2

, which is stronger than the requested inequality A − G

≤ (√
M − √

m
)2

.
For x ∈ [0, 1], define s(x) by the relation

f (x) = s(x) · m + (1 − s(x)) · M

and let t = ∫ 1
0 s(x) dx . We have

∫ 1

0
f (x) dx = tm + (1 − t)M.

By convexity, 1
f (x)

≤ s(x)

m + 1−s(x)

M , so

∫ 1

0

dx

f (x)
≤ t

m
+ 1 − t

M
= t M + (1 − t)m

m M
.
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Also note that

0 ≤
(

t
√

M − (1 − t)
√

m
)2

= t M + (1 − t)m − t (1 − t)
(√

M + √
m
)2

,

so t M + (1 − t)m ≥ t (1 − t)
(√

M + √
m
)2

. Now

A − H ≤ tm + (1 − t)M − m M

t M + (1 − t)m
= t (1 − t)(M − m)2

t M + (1 − t)m

≤ t (1 − t)(M − m)2

t (1 − t)
(√

M + √
m
)2 =

(√
M − √

m
)2

,

as claimed.
Note: The argument above applies even if f need only be a bounded, positive mea-

surable function. In that version, equality holds in the strengthened inequality when f
takes the value m on a set of measure

√
m√

M+√
m

and the value M on a set of complemen-

tary measure
√

M√
M+√

m
.

Editorial comment. The discrete case of the strengthened inequality above appeared
as Problem 11469 in this Monthly (problem in December 2009 and solution in May
2011) and in B. Meyer, “Some inequalities for elementary mean values,” Math. Comp.
42 (1984) 193–194. The best possible upper bound for A − G in terms of m and M can
be proved by similar arguments to the ones above. This upper bound is the maximum of
tm + (1 − t)M − mt M1−t , which is attained at t = log[M log(M/m)/(M−m)]

log(M/m)
. This result is

also proved in S. H. Tung, “On lower and upper bounds of the difference between the
arithmetic and geometric mean,” Math. Comp. 29 (1975) 834–836.

Also solved by R. Bagby, R. Boukharfane (France), R. Chapman (U. K.), E. A. Herman, B. Karaivanov
& T. S. Vassilev (U.S.A. & Canada), J. H. Lindsey II, P. W. Lindstrom, M. Omarjee (France), P. Perfetti
(Italy), I. Pinelis, R. Sargsyan (Armenia), K. Schilling, A. Stenger, R. Stong, S. Yi (Korea), Z. Zhang (China),
FAU Problem Solving Group, Northwestern University Math Problem Solving Group, NSA Problems Group,
University of Louisiana at Lafayette Math Club, and the proposer.

Rational Polynomials with no Nonnegative Zeros

11801 [2014, October]. Proposed by David Carter, Nahant, MA. Let f be a polynomial
in one variable with rational coefficients that has no nonnegative real root. Show that
there is a nonzero polynomial g with rational coefficients such that the coefficients of
f g are all positive.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove the seemingly weaker statement that if a polynomial f has real coefficients and
no nonnegative real root, then there is a polynomial h with real coefficients such that
the coefficients of f h are nonnegative. To see that this suffices, note that if f (x)h(x)

has degree d and nonnegative coefficients, then (xd + xd−1 + · · · + x + 1) f (x)h(x)

has degree 2d and positive coefficients. Invoking continuity and the density of the
rationals, we can then take g to be a polynomial with rational coefficients close enough
to (xd + xd−1 + · · · + x + 1)h(x) to solve the problem as stated (with a slightly weaker
hypothesis on f ).

The weaker fact has a multiplicative property: If polynomials h1 and h2 exist such
that f1h1 and f2h2 have nonnegative coefficients, then ( f1 f2)(h1h2) also has nonneg-
ative coefficients. Thus, by factoring over the reals, it suffices to prove the result in

August–September 2016] PROBLEMS AND SOLUTIONS 729

This content downloaded from 131.156.224.67 on Tue, 09 Aug 2016 07:58:03 UTC
All use subject to http://about.jstor.org/terms

X
ia
ng
’s
T
ex
m
at
h



three cases: for f a nonzero constant polynomial, for f (x) = x + a with a > 0, and
for f (x) = (x − b)2 + a with a > 0.

If f (x) = c with c 
= 0 , then set h(x) = c, yielding f (x)h(x) = c2 > 0. If f (x)

= x + a with a > 0, then take h(x) = 1. For f (x) = (x − b)2 + a with a > 0, let α

denote the root b + i
√

a of f . We may also write α = reiθ . Since α lies in the upper
half-plane, 0 < θ < π , and hence, the origin lies in the convex hull of {eikθ : 0 ≤ k ≤
�2π/θ�}.

Letting d = �2π/θ�, we can write 0 = ∑d
k=0 ckeikθ for nonnegative real constants

c0, . . . , cd with sum 1. Rewriting this as 0 = ∑d
k=0 ckr−k xk expresses α as a root of

the polynomial p with nonnegative real coefficients defined by p(x) = ∑d
k=0 ckr−k xk .

Hence, f divides p, and p/ f is the desired polynomial h.

Also solved by A. J. Bevelacqua, R. Chapman (U. K.), N. Grivaux (France), E. A. Herman, Y. J. Ionin,
O. Kouba (Syria), R. E. Prather, N. C. Singer, A. Stenger, R. Tauraso (Italy), T. Viteam (India), Z. Wu (China),
NSA Problems Group, and the proposer.

A Deranged Sum

11802 [2014, 739]. Proposed by István Mező, Nanjing University of Information
Science and Technology, Nanjing, China. Let Hn,2 = ∑n

k=1 k−2, and let Dn

= n!
∑n

k=0(−1)k/k!. (This is the derangement number of n, that is, the number of
permutations of {1, . . . , n} that fix no element.) Prove that

∞∑
n=1

Hn,2
(−1)n

n!
= π2

6e
−

∞∑
n=0

Dn

n!(n + 1)2
.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.
Because the sum on the left side is absolutely convergent, the order of summation
can be interchanged. Hence,

∞∑
n=1

Hn,2
(−1)n

n!
=

∞∑
n=1

(
n∑

k=1

1

k2

)
(−1)n

n!
=

∞∑
k=1

1

k2

( ∞∑
n=k

(−1)n

n!

)

=
∞∑

k=1

1

k2

( ∞∑
n=0

(−1)n

n!
−

k−1∑
n=0

(−1)n

n!

)

=
( ∞∑

k=1

1

k2

)( ∞∑
n=0

(−1)n

n!

)
−

∞∑
k=1

1

k2

(
k−1∑
n=0

(−1)n

n!

)

= π2

6

1

e
−

∞∑
k=1

Dk−1

(k − 1)! k2
= π2

6e
−

∞∑
k=0

Dk

k! (k + 1)2
.

Also solved by U. Abel (Germany), A. Ali (India), K. F. Andersen (Canada), M. Andreoli, R. Bagby,
S. Banerjee & B. Maji (India), M. Bataille (France), R. Boukharfane (France), K. N. Boyadzhiev, P. Bracken,
M. A. Cariton, R. Chapman (U. K.), H. Chen, D. Fleischman, N. Fontes-Merz, O. Geupel (Germany),
M. L. Glasser, J.-P. Grivaux (France), E. A. Herman, M. Hoffman, B. Karaivanov & T. Vassilev (Canada),
P. M. Kayll, O. Kouba (Syria), J. Minkus, M. Omarjee (France), R. Sargsyan (Armenia), A. Stenger, R. Stong,
R. Tauraso (Italy), J. Vinuesa (Spain), M. Vowe (Switzerland), M. Wildon (U. K.), J. Zacharias, Armstrong
Problem Solvers, FAU Problem Solving Group, GCHQ Problem Solving Group (U. K.), GWstat Problem
Solving Group, NSA Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Mohamed Omar, Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley,
Kenneth Stolarsky, Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden
Eynden, and Fuzhen Zhang.

Proposed problems should be submitted online via www.americanmathematical
monthly.submittable.com. Proposed solutions to the problems below should be sub-
mitted on or before February 28, 2017 at the same link. More detailed instructions
are available online. Solutions to problems numbered 11921 or below should con-
tinue to be submitted via email to monthlyproblems@math.tamu.edu. Proposed prob-
lems must not be under consideration concurrently to any other journal not be posted
to the internet before the deadline date for solutions. An asterisk (*) after the num-
ber of a problem or a part or a problem that indicates that no solution is currently
available.

PROBLEMS

11929. Proposed by Donald Knuth, Stanford University, Stanford, CA. Let an be the
number of ways in which a rectangular box that contains 6n square tiles in three rows
of length 2n can be split into two connected pieces of size 3n without cutting any tiles.
Thus, a1 = 3, a2 = 19, and one of the 85 ways for n = 3 is shown.

Taking a0 = 1, find a closed form for the generating function A(z) = ∑∞
n=0 anzn . What

is the asymptotic nature of an as n → ∞?

11930. Proposed by Cornel Ioan Vălean, Timiş, Romania. Find

∞∑
n=1

sinh−1

(
1√

2n+2 + 2 + √
2n+1 + 2

)
.

11931. Proposed by Igor Protasov, Kiev, Ukraine. Given natural numbers m and r ,
prove that there is a finite connected graph G such that, for every r -coloring of its edge
set E(G), there is a monochromatic geodesic path of length m. (A path is geodesic if
there is no shorter path with the same endpoints.)

11932. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let r be an integer. Prove that

∞∑
n=−∞

arctan

(
sinh r

cosh n

)
= πr.

http://dx.doi.org/10.4169/amer.math.monthly.123.08.831
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11933. Proposed by José M. Pacheco and Angel Plaza, University of Las Palmas de
Gran Canaria, Spain. For positive integer n, let Hn = ∑n

k=1 1/k. Prove∫ 1

0

1

x + 1
dx ·

∫ 1

0

x + 1

x2 + x + 1
dx · · ·

∫ 1

0

xn−2 + · · · + x + 1

xn−1 + · · · + x + 1
dx ≥ 1

Hn
.

11934. Proposed by Leonard Giugiuc, Drobotu Turnu Severin, Romania. Let ABC
be an isosceles triangle, with |AB| = |AC|. Let D and E be two points on side BC
such that D ∈ BE, E ∈ DC, and m(∠DAE) = 1

2 m(∠A). Describe how to construct a
triangle XYZ such that |XY| = |BD|, |YZ| = |DE|, and |ZX| = |EC|. Also, compute
m(∠BAC) + m(∠XYZ) (in radians).

11935. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National College,
Bucharest, Romania, Anastasios Kotronis, Athens, Greece, and Neculai Stanciu,
“George Emil Palade” School, Buzău, Romania. Let f be a function from Z+ to
R+ such that limn→∞ f (n)/n = a, where a > 0. Find

lim
n→∞

⎛
⎝ n+1

√√√√n+1∏
k=1

f (k) − n

√√√√ n∏
k=1

f (k)

⎞
⎠ .

SOLUTIONS

A Powerful Inequality

11804 [2015, 946]. Proposed by George Stoica, University of New Brunswick, Saint
John, Canada. Prove that 10|x3 + y3 + z3 − 1| ≤ 9|x5 + y5 + z5 − 1| for real numbers
x , y, and z with x + y + z = 1. When does equality hold?

Solution I by Dain Kim, Yonsei University, Seoul, Korea. Since x + y + z = 1, we
have the following two identities:

x3 + y3 + z3 − 1 = x3 + y3 + z3 − (x + y + z)3 = −3(x + y)(y + z)(x + z),

x5 + y5 + z5 − 1 = x5 + y5 + z5 − (x + y + z)5

= −5

2
(x + y)(y + z)(z + x)

[
(x + y)2 + (y + z)2 + (z + x)2

]
.

Thus, if the denominator is nonzero we obtain

|x5 + y5 + z5 − 1|
|x3 + y3 + z3 − 1| = 5

6
· [(x + y)2 + (y + z)2 + (z + x)2

]

≥ 5

6

[2(x + y + z)]2

3
= 10

9
.

Equality holds if and only if x = y = z = 1
3 or (x, y, z) is a permutation of (t, −t, 1)

for some t ∈ R.

Solution II by Oliver Geupel, NRW, Germany. Due to the constraint x + y + z = 1,
the required inequality is a consequence of the relation

102(x3 + y3 + z3 − 1)2 ≤ 102(x3 + y3 + z3 − (x + y + z)3)2(x + y + z)4
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+ 225

4
(x + y)2(y − z)2(z + x)2((x − y)2 + (y − z)2 + (z − x)2)·

· (3 · (x2 + y2 + z2) + 7 · (x + y + z)2)

= 9(x5 + y5 + z5 − (x + y + z)5)2.

Equality holds for the cases listed in the first solution.

Also solved by A. Ali (India), M. A. Carlton, S. Chakravarty, R. Chapman (U. K.), J. Duemmel, D. Fleis-
chman, L. Giugiuc (Romania), E. A. Herman, E. J. Ionaşcu, Y. J. Ionin, B. Khadka, K.-W. Lau (China),
S. Lee (Korea), O. P. Lossers (Netherlands), J. Loverde, J. R. Pentland, P. Perfetti (Italy), Á. Plaza (Spain),
R. E.Prather, J. M. Sanders, R. Stong, M. L. Treuden, J. Van Hamme (Belgium), T. Viteam (India), Z. Vörös
(Hungary), H. Widmer (Switzerland), GCHQ Problem Solving Group (U. K.), and the proposer.

Sums and Integral Related to Zeta

11805 [2014, 946]. Proposed by Gleb Glebov, Simon Fraser University, Burnaby,
Canada.
(a) Show that

∞∑
k=0

(−1)k

(3k + 1)3
+

∞∑
k=0

(−1)k

(3k + 2)3
= 5π3

√
3

243

and

∞∑
k=0

(−1)k

(3k + 1)3
−

∞∑
k=0

(−1)k

(3k + 2)3
= 13

18
ζ(3).

(b) Prove that

ζ(3) = 9

13

∫ 1

0

(log x)2

x3 + 1
dx − 18

13

∞∑
k=0

(−1)k

(3k + 2)3
.

Here, ζ denotes the Riemann zeta function.

Solution I by the GCHQ Problem Solving Group, Cheltenham, U.K. (a) We denote the
two required sums by

S1 =
∞∑

k=0

(−1)k

(3k + 1)3
+

∞∑
k=0

(−1)k

(3k + 2)3
= 1

13
+ 1

23
− 1

43
− 1

53
+ · · ·

S2 =
∞∑

k=0

(−1)k

(3k + 1)3
−

∞∑
k=0

(−1)k

(3k + 2)3
= 1

13
− 1

23
− 1

43
+ 1

53
+ · · · .

The Fourier series of the odd function x3 − π2x on [−π, π] yields

x3 − π2x = 12
∞∑

n=1

(−1)n

n3
sin(nx)

for −π ≤ x ≤ π . In particular, setting x = 2π/3 yields −10π3/27 = 6
√

3(−S1),

which is equivalent to the claimed value for S1. For S2, note that

1

13
+ 1

23
+ 1

43
+ 1

53
+ · · · = ζ(3)

(
1 − 1

33

)
= 26

27
ζ(3).
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Therefore,

26

27
ζ(3) − S3 = 2

(
1

23
+ 1

43
+ 1

83
+ 1

103
+ · · ·

)
= 13

54
ζ(3),

which yields the claimed value of S2.
(b) Integration by parts yields

∫ 1
0 xn(log x)2dx = 2/(m + 1)3. So we have∫ 1

0

(log x)2

x3 + 1
dx =

∫ 1

0
(log x)3(1 − x3 + x6 − · · · )dx

= 2

(
1

13
− 1

43
+ 1

73
− · · ·

)
= S1 + S2.

Finally,

9

13

[∫ 1

0

(log x)2

x3 + 1
dx − (S1 − S2)

]
= 18

13
S2 = ζ(3).

Solution II of (a) by Ben Keigwin and John Zacharias, Alexandria VA. Euler showed

1

x
+

∞∑
k=1

2x

x2 − k2
= π cot πx

for x ∈ (0, 1). Differentiate twice:

1

x3
+

∞∑
k=1

1

(x − k)3
+

∞∑
k=1

1

(x + k)3
= π3 cos πx

sin3 πx
.

Next, set x = 1/3:

∞∑
k=0

1

(3k + 1)3
−

∞∑
k=0

1

(3k + 2)3
= 4π3

√
3

243
. (1)

Let S1, S2 be as in Solution I. Thus,

S1 − S2 = 2

( ∞∑
k=0

1

(2(3k + 1))3
−

∞∑
k=0

1

(2(3k + 2))3

)
= 2 · 1

23
S2

or S1 = (5/4)S2. Combining this with (1), we get the first relation in (a).
Let

S3 =
∞∑

k=0

(−1)k

(3k + 1)3
, S4 =

∞∑
k=0

(−1)k

(3k + 2)3
, S5 =

∞∑
k=1

(−1)k+1

(3k)3
.

Now S3 − S4 + S5 = 27S5. This in turn gives ζ(3) − 27S5 = ζ(3) − S3 + S4 − S5

= 2
∑∞

k=1(2k)−3 = 1
4ζ(3). Finally, S5 = 1

36ζ(3) and S3 − S4 = 26S5 = 13
18ζ(3), the

second relation in (a).

Editorial comment. A surprisingly wide range of methods was used for this problem:
residue calculations, polylogarithm, polygamma, Hurwitz ζ , Dirichlet η.

Also solved by A. Ali (India), K. F. Andersen (Canada), R. Bagby, R. Bauer, D. Beckwith, D. Borwein &
J. M. Borwein (Canada & Australia), P. Bracken, R. Brase, B. S. Burdick, M. A. Carlton, R. Chapman (U. K.),
H. Chen, B. E. Davis, R. L. Doucette, J. Gatheral, C. Georghiou (Greece), O. Geupel (Germany), M. L. Glasser,
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M. Goldenberg & M. Kaplan, E. A. Herman, M. Hoffman, F. Holland (Ireland), E. I. Ionaşcu, B. Keigwin &
J. Zacharias, P. Khalili, O. Kouba (Syria), K. D. Lathrop, O. P. Lossers (Netherlands), M. Omarjee (France),
J. Pentland & J. A. Green, P. Perfetti (Italy), Á. Plaza & F. Perdomo (Spain), P. G. Poonacha (India), N. C.
Singer, M. Štofka (Slovakia), R. Stong, R. Tauraso (Italy), T. P. Turiel, J. Van Hamme (Belgium), Z. Vörös
(Hungary), M. Vowe (Switzerland), S. Wagon, C. Y. Yıldırım (Turkey), FAU Problem Solving Group, NSA
Problems Group, and the proposer.

Three of Four Sides Equal

11807 [2014, 947]. Proposed by Robin Oakapple, Albany, OR. Given a quadrilateral
ABCD inscribed in a circle K , and a point Z inside K , the rays AZ, BZ, CZ, and DZ
meet K again at points E , F , G, and H , respectively, to yield another quadrilateral
also inscribed in K . Develop a construction that takes as input A, B, C , and D and
returns a point Z such that this second quadrilateral has (at least) three of its sides of
equal length.

Solution by John Cade, University of Pikeville, Pikeville, KY. We assume the vertices of
quadrilateral ABCD are named in cyclical order. Consider �A, the circle of Apollonius,
at point A of triangle BAD. This circle has the following properties.

1) It is the locus of all points P for which |PB|/|PD| = |AB|/|AD|. This locus is a
true circle except in the case that A is the apex of isosceles triangle BAD, in which case
the locus is the principal axis of the triangle, i.e., the perpendicular bisector of BD.

2) The circle may be characterized as follows: Determine the points (say M and
N ) where the internal and external bisectors of angle A meet line BD. Then MN is a
diameter of this circle.

3) The circle may also be characterized alternatively: Let the tangent line at A to the
circumcircle K intersect line BD at T . The tangent line is perpendicular to the radius
of the circumcircle from A to the center of K . And T is the center of the circle of
Apollonius, which passes through A and is perpendicular there to K .

4) Because of the facts in 2) and 3), the circle of Apollonius may be constructed
using Euclidean tools to find angle bisectors, perpendicular bisectors, etc., by well-
known methods.

Let the circles of Apollonius �B , �C , �D be constructed similarly. Point Z may be
taken as any intersection inside K of two consecutive circles of Apollonius. If two
such circles intersect at all, they intersect at two points, one inside K and the other
outside; in fact, these two points are images of each other under inversion in K .

We must now prove two claims.

I) Some two consecutive circles of Apollonius intersect inside K .
II) Any such point of intersection is a suitable Z .

Proof of Claim I: The number of consecutive pairs of circles of Apollonius that
intersect inside K can vary from one to four. We must show that it is not zero. Let VX
be an edge of ABCD that is no longer than either of its neighbors (for example, the
shortest edge of ABCD will do). Suppose that U , V , X , and Y denote the vertices of
ABCD in the same order and that U ′, V ′, X ′, and Y ′ denote E , F , G, and H in the
corresponding order.

We have chosen VX so that it is no longer than VU and also no longer than XY . If
equality holds in either case, the situation is simple because as noted earlier one (or
both) corresponding “circle(s)” of Apollonius is(are) actually a straight line (passing
through the center of K ). So let us assume that VX is shorter than both VU and XY .
We will argue that �X and �Y intersect inside K .

As noted above in property 3), �X passes through X and is perpendicular there to
K . The center, say TX , of �X is the intersection of the tangent to K at X with the line
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VY . This intersection lies outside K and is closer to V than to Y because VX is shorter
than XY . Thus, V lies inside �X . By similar reasoning, �V passes through V and is
perpendicular there to K . Its center TV lies on the line XU and is closer to X than to
U because VX is shorter than VU. So X lies inside �V . Thus, �X and �V must cross
inside K .

Proof of Claim II: Let Z lie on both �X and �V . By the vantage point theorem
(also known as the inscribed angle theorem) applied in circle K , ∠VUZ = ∠ZVU′;
also ∠VZU and ∠U ′ZV ′ are right angles. Thus, 
VUZ is similar to 
U ′V ′ Z , so (1)
|ZU|
|VU| = |ZV ′|

|U ′V ′| . In like manner, (2) |ZX|
|VX| = |ZV ′|

|X ′V ′| .

Because Z lies on �V , |ZU|
|ZX| = |VU|

|VX| or |ZU|
|VU| = |ZX|

|VX| . Thus, since the left sides of (1)

and (2) are equal, so are the right sides, i.e., |ZV ′|
|U ′V ′| = |ZV ′|

|X ′V ′| . Finally, |U ′V ′| = |X ′V ′|.
Because Z also lies on �X , by similar reasoning, |X ′V ′| = |X ′Y ′|, i.e., the quadri-

lateral U ′V ′ X ′Y ′ has three equal sides.

Editorial comment. Yuri Ionin noted the following: Let the disk K be interpreted as
Klein’s model of hyperbolic geometry, with A, B, C , and D as “ideal” points. Let Q
denote the image of O , the center of K , under a (hyperbolic) half-turn about Z . In this
context, the problem shows that Z can be chosen so that some three of the four angles
AQB, BQC, CQD, and DQA are equal.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), Y. J. Ionin, R. Stong, and the proposer.

An Euler Sum

11810 [2015, 75]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania. Let Hn = ∑n

k=1 1/k, and let ζ be the Riemann zeta function.
Find

∞∑
n=1

Hn

(
ζ(3) −

n∑
k=1

1

k3

)
.

Solution by C. Georghiou, University of Patras, Patras, Greece. The answer S is
2ζ(3) − ζ(2). To show this, we need the following well-known results:

n−1∑
k=1

Hk =
n−1∑
k=1

k∑
m=1

1

m
=

n−1∑
m=1

n−1∑
k=m

1

m
=

n∑
m=1

n − m

m
= nHn − n

and
∞∑

n=1

Hn

n2
= 2ζ(3). (E)

The latter identity is due to Euler (1775). To use these, we sum by parts with bn =
ζ(3) −∑n

k=1
1

k3 and An = ∑n
k=1 Hk to get

n∑
k=1

Hkbk = Anbn −
n−1∑
k=1

Ak(bk+1 − bk) = Anbn +
n−1∑
k=1

Hk+1 − 1

(k + 1)2
.

Since An = O(n log n) and bn = O(n−2), this gives

S =
∞∑

k=1

Hk − 1

k2
= 2ζ(3) − ζ(2).
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Editorial comment. The sum (E) at the heart of this problem, and its generalizations
have appeared multiple times in this Monthly (for example problems 4431, 10635,
and 10754). Many solvers used these generalizations, particularly Euler’s result for
the Hurwitz zeta function ζ(s, a) = ∑∞

n=0(n + a)−s :

ζ(b, 1) =
∞∑

n=1

Hn−1

nb
= b

2
ζ(b + 1) − 1

2

b−1∑
k=2

ζ(b + 1 − k)ζ(k),

to extend the stated result. For much more on Euler sums, see D. Borwein, J. M.
Borwein, and R. Girgensohn, “Explicit evaluation of Euler sums,” Proc. Edinb. Math.
Soc., 38 (1995) 277–294 or http://mathworld.wolfram.com/EulerSum.html.

Also solved by R. A. Agnew, R. Bagby, D. H. Bailey & J. M. Borwein (U.S. & Australia), D. Beckwith,
R. Boukharfane (France), P. Bracken, B. Bradie, B. S. Burdick, M. A. Carlton, R. Chapman (U. K.), H. Chen,
P. P. Dályay (Hungary), D. Fritze (Germany), J. Gatheral, O. Geupel (Germany), M. L. Glasser (Spain), G. C.
Greubel, J.-P. Grivaux (France), E. A. Herman, M. Hoffman, O. Kouba (Syria), K.-W. Lau (China), O. P.
Lossers (Netherlands), I. Mezö (Hungary), M. Omarjee (France), P. Perfetti (Italy), I. Pinelis, M. A. Prasad
(India), E. Schmeichel, B. Schmuland (Canada), N. C. Singer, A. Stadler (Switzerland), A. Stenger, R. Stong,
R. Tauraso (Italy), M. Vowe (Switzerland), M. Wildon (U. K.), C. Y. Yıldırım (Turkey), GCHQ Problem
Solving Group (U. K.), GWstat Problem Solving Group, and the proposer.

What Are the Limits?

11811 [2015, 75]. Proposed by Vazgen Mikayelyan, Yerevan State University, Yerevan,
Armenia. Let 〈a〉 and 〈b〉 be infinite sequences of positive numbers. Let 〈x〉 be the
infinite sequence given for n ≥ 1 by

xn = ab1
1 · · · abn

n(
a1b1+···+anbn

b1+···+bn

)b1+···+bn
.

(a) Prove that limn→∞ xn exists.
(b) Find the set of all c that can occur as that limit, for suitably chosen 〈a〉 and 〈b〉.
Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. (a) We first claim: xn is monotonic nonincreasing. With notation

�n = b1 + · · · + bn, λn = bn

�n
, Gn =

(
n∏

k=1

abk
k

)1/�n

, An = 1

�n

n∑
k=1

bkak,

we have xn = (Gn/An)
�n . Thus,

Gn+1 = G1−λn+1
n a

λn+1
n+1 and An+1 = (1 − λn+1)An + λn+1an+1,

so

Gn+1

An+1
= G

1−λn+1
n a

λn+1
n+1

(1 − λn+1)An + λn+1an+1
=
(

Gn

An

)1−λn+1 A
1−λn+1
n a

λn+1
n+1

(1 − λn+1)An + λn+1an+1
,

or equivalently

xn+1

xn
=
(

A
1−λn+1
n a

λn+1
n+1

(1 − λn+1)An + λn+1an+1

)�n+1

.
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By the arithmetic mean–geometric mean inequality, if a > 0, A > 0, and 0 < λ < 1,
then A1−λaλ ≤ (1 − λ)A + λa. We conclude that xn+1 ≤ xn . Moreover, note that x1 =
1 and xn > 0 for all n ≥ 1. Therefore, xn converges, and the limit belongs to [0, 1].

(b) It suffices to prove the following: If c ∈ [0, 1], then there exist sequences 〈a〉
and 〈b〉 such that xn converges to c. If c = 0, then let bn = 1 and an = 1

n(n+1)
for all

n, so

xn = (n + 1)n

n! · (n + 1)!
→ 0.

If c = 1, then let bn = 1 and an = 1 for all n, so xn = 1 for all n and xn → 1. If
0 < c < 1, then let bn = 1 for all n, and let

a1 = 1 + √
1 − c√
c

, a2 = 1 − √
1 − c√
c

, an = 1√
c

for n ≥ 3.

Now xn = c for n ≥ 2 and xn → c.

Also solved by R. A. Agnew, R. Bagby, D. Beckwith, R. Boukharfane (France), B. S. Burdick, R. Chapman
(U. K.), P. P. Dályay (Hungary), O. Geupel (Germany), N. Grivaux (France), J. H. Lindsey II, P. Lindstrom, U.
Milutinović (Slovenia), M. Omarjee (France), M. Omarjee & R. Tauraso (France & Italy), P. Perfetti (Italy),
M. A. Prasad (India), B. Schmuland (Canada), R. Stong, and the proposer.

Bound an Integral

11812 [2015, 75]. Proposed by Cristian Chiser, Craiova, Romania. Let f be a twice
continuously differentiable function from [0, 1] into R. Let p be an integer greater than
1. Given that

∑p−1
k=1 f (k/p) = − 1

2 ( f (0) + f (1)), prove that

(∫ 1

0
f (x) dx

)2

≤ 1

5!p4

∫ 1

0
( f ′′(x))2 dx .

Solution by Bruce S. Burdick, Roger Williams University, Bristol, RI. Subdivide the
interval [0, 1], and on each part, integrate f (x) by parts:

∫ 1

0
f (x) dx =

p−1∑
k=0

∫ (k+1)/p

k/p
f (x) dx

=
p−1∑
k=0

[(
x − 2k + 1

2p

)
f (x)

∣∣∣∣
(k+1)/p

k/p

−
∫ (k+1)/p

k/p

(
x − 2k + 1

2p

)
f ′(x) dx

]

=
p−1∑
k=0

[
1

2p

(
f

(
k

p

)
+ f

(
k + 1

p

))
−
∫ (k+1)/p

k/p

(
x − 2k + 1

2p

)
f ′(x) dx

]
.

The sum of the first term is 1
p ( 1

2 f (0) +∑p−1
k=1 f ( k

p ) + 1
2 f (1)), which is zero. Integrat-

ing the second term by parts yields

∫ 1

0
f (x) dx =

p−1∑
k=0

[
−
∫ (k+1)/p

k/p

(
x − 2k + 1

2p

)
f ′(x) dx

]

=
p−1∑
k=0

[
− 1

2

(
x2 − 2k + 1

p
x + k2 + k

p2

)
f ′(x)

∣∣∣∣
(k+1)/p

k/p
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+
∫ (k+1)/p

k/p

1

2

(
x2 − 2k + 1

p
x + k2 + k

p2

)
f ′′(x) dx

]
.

However,

x2 − 2k + 1

p
x + k(k + 1)

p2
=
(

x − k

p

)(
x − k + 1

p

)
,

evaluates to zero at the endpoints of the interval. Thus, the first term is again zero. The
integral becomes

∫ 1

0
f (x) dx =

p−1∑
k=0

∫ (k+1)/p

k/p

1

2

(
x − k

p

)(
x − k + 1

p

)
f ′′(x) dx

=
p−1∑
k=0

∫ (k+1)/p

k/p

1

2

[(
x − k

p

)2

− 1

p

(
x − k

p

)]
f ′′(x) dx . (1)

Let g(x) be the continuous periodic function with period 1
p and g(x) = 1

2 (x2 − 1
p x)

on [0, 1
p ]. Equation (1) becomes

∫ 1

0
f (x) dx =

∫ 1

0
g(x) f ′′(x) dx .

By the Cauchy–Schwarz inequality,(∫ 1

0
f (x) dx

)2

≤
∫ 1

0
g(x)2 dx

∫ 1

0
f ′′(x)2 dx . (2)

The integral of g(x)2 can be evaluated exactly since g(x) consists of p pieces, trans-
lates of 1

2 (x2 − 1
p x) on [0, 1

p ]:

∫ 1

0
g(x)2 dx = p

∫ 1/p

0

1

4

(
x2 − 1

p
x

)2

dx = 1

120 p4
.

Substituting this result into (2) yields the desired result.

Also solved by U. Abel (Germany), K. F. Andersen (Canada), R. Bagby, R. Boukharfane (France),
P. Bracken, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), J. Freeman, E. A. Herman, O. Kouba
(Syria), O. P. Lossers (Netherlands), M. Omarjee (France), P. Perfetti (Italy), Á. Plaza & F. Perdomo (Spain),
M. A. Prasad (India), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), FAU Problem Solving Group, and
the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Mohamed Omar, Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley,
Kenneth Stolarsky, Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden
Eynden, and Fuzhen Zhang.

Proposed problems should be submitted online via www.americanmathematical
monthly.submittable.com. Proposed solutions to the problems below should be sub-
mitted on or before March 31, 2017 at the same link. More detailed instructions are
available online. Solutions to problems numbered 11921 or below should continue
to be submitted via email to monthlyproblems@math.tamu.edu. Proposed problems
must not be under consideration concurrently to any other journal not be posted to
the internet before the deadline date for solutions. An asterisk (*) after the num-
ber of a problem or a part or a problem that indicates that no solution is currently
available.

PROBLEMS

11936. Proposed by William Weakley, Indiana University–Purdue University at Fort
Wayne, Fort Wayne, Indiana. Let S be the set of integers n such that there exist integers
i, j, k, m, p with i, j ≥ 0, m, k ≥ 2, and p prime, such that n = mk = pi + p j .
(a) Characterize S.
(b) For which elements of S are there two choices of (p, i, j)?

11937. Proposed by Juan Carlos Sampedro, UPV/EHU-University of Basque Country,
Leioa, Spain. Let s be a complex number not a zero of the gamma function �(s). Prove∫ 1

0

∫ 1

0

(xy)s−1 − y

(1 − xy) log(xy)
dx dy = �′(s)

�(s)
.

11938. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip, Macedonia.
Let a, b, c be the lengths of the sides of a triangle, and let A be its area. Let R and r
be the circumradius and inradius of the triangle, respectively. Prove

a2 + b2 + c2 ≥ (a − b)2 + (b − c)2 + (c − a)2 + 4A

√
3 + R − 2r

R
.

11939. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Find

∞∑
k=1

(
1 + 1

2
+ · · · + 1

k
− log(k) − γ − 1

2k
+ 1

12k2

)
.

Here γ is Euler’s constant.

http://dx.doi.org/10.4169/amer.math.monthly.123.9.941
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11940. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Tn = n(n + 1)/2 and
C(n, k) = (n − 2k)

(n
k

)
. For n ≥ 1, prove

n−1∑
k=0

C(Tn, k)C(Tn+1, k) = n3 − 2n2 + 4n

n + 2

(
Tn

n

)(
Tn+1

n

)
.

11941. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania. Let

L = lim
n→∞

∫ 1

0

n
√

xn + (1 − x)n dx .

(a) Find L .
(b) Find

lim
n→∞

n2

(∫ 1

0

n
√

xn + (1 − x)n dx − L

)
.

11942. Proposed by Florin Parvanescu, Slat, Romania. In acute triangle ABC, let D
be the foot of the altitude from A, let E be the foot of the perpendicular from D to AC,
and let F be a point on segment DE. Prove that AF is perpendicular to BE if and only
if |FE|/|FD| = |BD|/|CD|.

SOLUTIONS

A Recurrence from Euler’s Pentagonal Number Theorem

11795 [2014, 649]. Proposed by Mircea Merca, University of Craiova, Craiova,
Romania. Let p be the partition counting function on the set Z+ of positive integers,
and let g be the function on Z+ given by g(n) = 1

2�n/2��(3n + 1)/2�. Let A(n) be
the set of positive integer triples (i, j, k) such that g(i) + j + k = n. Prove for n ≥ 1
that

p(n) = 1

n

∑
(i, j,k)∈A(n)

(−1)�i/2�−1g(i)p( j)p(k).

Solution by Mark Wildon, Royal Holloway, Egham, U. K. In the statement, each
instance of “positive integer” should be changed to “nonnegative integer.”

Let P(x) = ∑∞
n=0 p(n)xn . Since

g(n) =

⎧⎪⎨
⎪⎩

1

2
m(3m + 1) if n = 2m

1

2
m(3m − 1) if n = 2m − 1,

we have g(n) = 1
2 (−m)[3(−m) + 1] when n = 2m − 1, and hence

∞∑
n=0

(−1)�n/2�−1xg(n) =
∞∑

m=−∞
(−1)m−1x

1
2 m(3m+1) = −1

P(x)
,

where the final equality follows from Euler’s pentagonal number theorem (see Corol-
lary 1.7 of G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA,
1976). Differentiating yields
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∞∑
n=1

(−1)�n/2�−1g(n)xg(n) = −x
d

dx

1

P(x)
= x P ′(x)

P(x)2
.

It follows that ( ∞∑
n=1

(−1)�n/2�−1g(n)xg(n)

)
P(x)2 =

∞∑
n=1

np(n)xn.

Comparing coefficients of xn yields∑
(i, j,k)∈A(n)

(−1)�i/2�−1g(i)p( j)p(k) = np(n),

as desired.

Editorial comment. Substantial additional material on Euler’s pentagonal number
theorem can be found in J. Bell, A summary of Euler’s work on the pentagonal
number theorem, Arch. Hist. Exact Sci. 64 no. 3 (2010) 301–373.

Also solved by R. Chapman (U. K.), K. T. Gyun (Korea), Y. J. Ionin, K. Kusejko (Switzerland), O. P. Lossers
(Netherlands), J. C. Smith, R. Stong, R. Tauraso (Italy), and the proposer.

Partitioning N into Four Sets

11803 [2014, 946]. Proposed by Sam Speed, Germantown, PA. Let a1(k, n)

= (9k(24n + 5) − 5)/8, a2(k, n) = (9k(24n + 13) − 5)/8, a3(k, n) = (3 · 9k(24n +
7) − 5)/8, and a4(k, n) = (3 · 9k(24n + 23) − 5)/8. Show that for each nonnegative
integer m there is a unique integer triple ( j, k, n) with j ∈ {1, 2, 3, 4} and k, n ≥ 0
such that m = a j (k, n).

Solution by Borislav Karaivanov, Lexington, SC, USA, and Tzvetalin S. Vassilev,
Nipissing University, Ontario, Canada). After multiplying by 8 and adding 5,
the problem becomes equivalent to showing that any integer of the form 8m + 5
belongs to exactly one of the four 2-parameter families 9k(24n + 5), 9k(24n + 13),
3 · 9k(24n + 7), and 3 · 9k(24n + 23). Since these families are clearly disjoint, it suf-
fices to show for each m that there is a suitable (k, n). Since 8m + 5 is odd, by the
Fundamental Theorem of Arithmetic we may write it as 3s(24n + r), with r odd, at
most 23, and relatively prime to 3. Let R = {1, 5, 7, 11, 13, 17, 19, 23}.

We now reduce modulo 8. If s is even, then 8m + 5 = 3s(24n + r) reduces to
5 ≡ r mod 8; with r ∈ R, we must have r ∈ {5, 13}. If s is odd, then 8m + 5 =
3s(24n + r) reduces to 5 ≡ 3r mod 8. Since 9 ≡ 1 mod 8, multiplying by 3 yields
15 ≡ r mod 8, which for r ∈ R yields r ∈ {7, 23}. Hence in all cases we find that m
lies in one of the four specified classes.

Also solved by A. Ali (India), R. Brase, N. Caro (Brazil), R. Chapman (U. K.), C. Danivas (India), D. Fleis-
chman, O. Geupel (Germany), J. A. Green, C. Heckman, E. A. Herman, E. J. Ionaşcu, Y. Ionin, O. Kouba
(Syria), D. Lee (South Korea), J. H. Lindsey II, O. P. Lossers (Netherlands), M. Omarjee (France), Á. Plaza
& F. Perdomo (Spain), R. E. Prather, R. Strong, N. Taylor, Z. Vörös (Hungary), H. Widmer (Switzerland),
Florida Atlantic University Problem Solving, GCHQ Problem Solving Group (U. K.), NSA Problems Group,
and the proposer.

Parseval and Kummer

11806 [2015, 947]. Proposed by István Mező, Nanjing University of Information
Science and Technology, Nanjing, China. Prove that∫ 2π

0
log �

( x

2π

)
ecos x sin(x + sin x) dx = (e − 1)(log(2π) + γ ) +

∞∑
n=2

log n

n!
.

Here � denotes the gamma function and γ denotes the Euler–Mascheroni constant.
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Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. We will use Parseval’s formula. The Fourier series for log �,

log �
( x

2π

)
= log(2π)

2
+

∞∑
n=1

1

2n
cos(nx) +

∞∑
n=1

γ + log(2πn)

πn
sin(nx),

for 0 < x < 2π , is due to Kummer. (Beitrag zur theorie der function �(x). J. Reine
Angew. Math. 35 (1847) 1–4.) The other series is an exponential:

∞∑
n=1

sin nx

(n − 1)!
= Im

( ∞∑
n=1

einx

(n − 1)!

)
= Im

(
eix

∞∑
n=0

einx

n!

)

= Im
(

eix eei x
)

= Im ecosx+i(x+sin x) = ecos x sin(x + sin x).

The two factors are both square-integrable, so Parseval’s formula yields∫ 2π

0
log �

( x

2π

)
ecosx sin(x + sin x) =

∞∑
n=1

γ + log(2πn))

πn(n − 1)!

∫ 2π

0
sin2(nx) dx

=
∞∑

n=1

γ + log(2π) + log n

n!
= (

γ + log(2π)
) ∞∑

n=1

1

n!
+

∞∑
n=1

log n

n!

= (e − 1)
(
γ + log(2π)

)+
∞∑

n=2

log n

n!
.

Also solved by D. Beckwith, R. Boukharfane (France), R. Chapman (U. K.), H. Chen, B. E. Davis, M. L.
Glasser, R. Stong, FAU Problem Solving Group, and the proposer.

A Gamma Integral Limit

11808 [2015, 947]. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National
College, Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School,
Buzău, Romania. Let � be the gamma function. Compute

lim
n→∞

n2

∫ (n!)−1/n

((n+1)!)−1/(n+1)

�(nx) dx .

Solution by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor
Vergata,” Rome, Italy. We will show that if f is a continuous function on a neighbor-
hood of e, then

lim
n→∞

n2

∫ (n!)−1/n

((n+1)!)−1/(n+1)

f (nx) dx = e f (e).

The given problem is the case f = �, and the limit in that case is e�(e), which is
equal to �(e + 1). Let bn = n(n!)−1/n and an = n((n + 1)!)−1/(n+1). By the mean value
theorem for integrals, there exists tn ∈ (an, bn) such that

n2

∫ (n!)−1/n

((n+1)!)−1/(n+1)

f (nx) dx = n
∫ bn

an

f (x) dx = n(bn − an) f (tn).
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Now, by Stirling’s approximation formula,

ln n! = n ln n − n + 1

2
ln n + ln

(√
2π
)

+ O(1/n).

Hence

bn = n exp(− ln(n!)/n) = e − e ln n

2n
−

e ln
(√

2π
)

n
+ O

(
ln2 n/n2

)
and

bn − an = bn − nbn+1

n + 1
= e

n
+ O(ln2 n/n2).

These imply

lim
n→∞

bn = lim
n→∞

an = lim
n→∞

n(bn − an) = e.

Therefore the continuity of f at e gives

lim
n→∞

n(bn − an) f (tn) = e f (e).

Also solved by K. F. Andersen (Canada), G. E. Bilodeau, P. Bracken, R. Chapman (U. K.), H. Chen, P. P.
Dályay (Hungary), D. Fleischman, O. Geupel (Germany), O. Kouba (Syria), O. P. Lossers (Netherlands),
I. Mezö (Hungary), M. Omarjee (France), P. Perfetti (Italy), R. Stong, M. Vowe (Switzerland), H. Widmer
(Switzerland), and the proposers.

A Variant Alternating Series Test

11809 [2015, 947]. Proposed by Omran Kouba, Higher Institute for Applied Science
and Technology, Damascus, Syria. Let 〈an〉 be a sequence of real numbers.
(a) Suppose that 〈an〉 consists of nonnegative numbers and is nonincreasing, and∑∞

n=1 an/
√

n converges. Prove that
∑∞

n=1(−1)�√n�an converges.
(b) Find a nonincreasing sequence 〈an〉 of positive numbers such that
limn→∞

√
nan = 0 and

∑∞
n=1(−1)�√n�an diverges.

Solution by John H. Lindsey II, Cambridge, MA.
(a) We claim that the sequence 〈Sn〉 defined by

Sn =
n∑

k=1

(−1)�√k�ak

is a Cauchy sequence. To bound
∑n

k=m(−1)�√k�ak above, if �√m� is odd, delete all
the terms involving �√m�; if �√m� is even, insert all missing terms involving �√m�.
Similarly delete or insert terms involving �√n�. (If �√n� = �√m� and this is odd,
then this tells us to delete all the terms to get 0 as an upper bound; otherwise, assume
some terms remain.) Thus, given m < n, there exist i and j with i ≤ j such that

Sn − Sm−1 =
n∑

k=m

(−1)�√k�ak ≤
(2 j+1)2−1∑

k=(2i)2

(−1)�√k�ak

≤
(2i+1)2−1∑

k=(2i)2

ak +
j∑

k=i+1

⎡
⎣2a(2k+1)2−2 +

(2k)2−(2k−1)2−1∑
l=0

(
a(2k)2+l − a(2k−1)2+l

)⎤⎦
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≤ (4i + 1)a(2i)2 +
j∑

k=i+1

2a(2k+1)2−2 ≤ (4i + 1)a(2i)2 + 2
j∑

k=i+1

1

8k

(2k+1)2−2∑
l=(2k−1)2−1

al

≤ (4i + 1)a(2i)2 +
j∑

k=i+1

(2k+1)2−2∑
l=(2k−1)2−1

al√
l

≤ (4i + 1)a(2i)2 +
(2 j+1)2−2∑

l=(2i+1)2−1

al√
l
.

Note that i → ∞ as m → ∞. We claim this last expression tends to 0 as i → ∞.
The second term tends to 0 by the assumption that

∑
al/

√
l converges. So we must

show that the first term also tends to 0. Assume not. For some ε > 0, assume that

(4i + 1)2a(2i)2 > ε

infinitely often. Recursively take ik > 2ik−1 for k ≥ 1, with

(4ik + 1)2a(2ik )2 > ε.

Now

∞∑
n=1

an√
n

≥
∞∑

k=1

(2ik )2∑
l=i2

k

al√
l

≥
∞∑

k=1

3i2
k

a(2ik )2

2ik
≥ 3

2

∞∑
k=1

ika(2ik )2

≥ 3

10

∞∑
k=1

(4ik + 1)a(2ik )2 ≥ 3

10

∞∑
l=1

ε = +∞,

a contradiction. This proves lim supm<n(Sn − Sm−1) ≤ 0.
Similarly, bound below

Sn − Sm−1 =
n∑

k=m

(−1)�√k�ak ≥
(2 j)2−1∑

k=(2i−1)2

(−1)�√k�ak

and proceed as before to conclude lim infm<n Sn − Sm−1 ≥ 0. Thus 〈Sn〉 is a Cauchy
sequence.

(b) For k ≥ 2 and (2k − 1)2 ≤ n < (2k + 1)2, let an = 1
k log k . Now

√
nan =

√
n

k log k
≤
√

(2k + 1)2

k log k
= 2k + 1

k log k
→ 0,

(2i+1)2−1∑
n=9

(−1)�√n�an =
i∑

k=2

(2k+1)2−1∑
n=(2k−1)2

(−1)�√n�an =
i∑

k=2

2

k log k
→ +∞.

Editorial comment. John Zacharias notes that Problem 11809 may be used to provide
a solution for Problem 11384 (October, 2008): Let pn be the nth prime. Show that

∞∑
n=1

(−1)�√n�

pn

converges. In (2010, 745) a defective solution was published, making an unjustified
use of the alternating series test, as was noted in the End Notes (2011, 945). Zacharias
notes that the elementary bound pn > (n log n)/4 can be combined with Problem
11809 to solve Problem 11384.
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Also solved by R. Brase, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), D. Fleischman, O. P. Lossers
(Netherlands), M. Omarjee (France) & R. Tauraso (Italy), K. Schilling, N. C. Singer, A. Stenger, R. Stong, J.
Zacharias, GCHQ Problem Solving Group (U. K.), and the proposer. Part (a) only solved by E. A. Herman.
Part (b) only solved by P. Perfetti (Italy).

A Binary Operation Whose Closed Sets Form a Chain

11813 [2015, 76]. Proposed by Greg Oman, University of Colorado–Colorado
Springs, Colorado Springs, CO. Let X be a set, and let ∗ be a binary operation on X
(that is, a function from X × X to X ). Prove or disprove: there exists an uncountable
set X and a binary operation ∗ on X such that for any subsets Y and Z of X that are
closed under ∗, either Y ⊆ Z or Z ⊆ Y .

Solution by Gary Gruenhage, Auburn University, Auburn, AL. Such sets X and binary
operations ∗ do exist, and ∗ can even be commutative. Let X be the set of count-
able ordinals. Define 0 ∗ 0 = 0, and for a finite ordinal n, define n ∗ n = 0 and n ∗ i
= i ∗ n = i + 1 for i < n. For infinite α ∈ X, let β0, β1, . . . be a one-to-one indexing
of the ordinals less than α, and define α ∗ α = β0 and α ∗ βi = βi ∗ α = βi+1 for all
i < ω. This defines α ∗ β for all α, β ∈ X , and we note that α ∗ β ≤ max{α, β}.

The closure σ(Y ) under ∗ of a subset Y of X is the smallest subset of X containing
Y that is closed under ∗, and Y is closed under ∗ if and only if Y = σ(Y ). One sees
that the closure under ∗ of {α} is {β ∈ X : β ≤ α}. It follows for any set Y that σ(Y )

= {α ∈ X : α < δ(Y )}, where δ(Y ) is the least ordinal strictly greater than every ele-
ment of Y (note that δ(Y ) = ω /∈ X if Y is uncountable). Hence, if Y and Z are subsets
of X that are closed under ∗, then Y ⊆ Z if and only if δ(Y ) ≤ δ(Z).

Remark 1. There is no such ∗ on a set X > ℵ1, and so no such ∗ exists on the set
of real numbers if and only if the continuum hypothesis holds. To see this, for each
x ∈ X let C(x) be the closure under ∗ of {x}. It is evident that C(x) is countable. Now
let Y ⊂ X have cardinality ℵ1 and choose x ∈ X −⋃

y∈Y C(y). As Y is uncountable,
there exists some y ∈ Y − C(x). Thus C(X) and C(Y ) are not comparable.

Remark 2. There is also no such ∗ that is associative. For, let X be uncountable
with associative operation ∗. By associativity, xn is uniquely defined for each positive
integer n. Let C(x) be the set of all positive integral powers of x ; it follows that C(x)

is the closure of {x}.
If C(x) is finite for every x ∈ X , then there is a positive integer k such that

{x : |C(x)| = k} is infinite. Pick any x with |C(x)| = k, and choose y /∈ C(x) such
that |C(y)| = k. Now C(x) and C(y) are not comparable.

On the other hand, if C(x) is infinite for some x ∈ X , then we claim xn �= xm

for n �= m. If not, then there exist p and q such that p < q and x p = xq . Let d =
q − p, and choose n with n ≥ q. We have xn = xq ∗ xn−q = x p ∗ xn−q = xn−d . Thus
C(x) = {xm : m < q}, a contradiction. Finally, the sets {xn : n even} and {xn : n ≡
0 mod 3} are incomparable closed sets.

Editorial comment. Solvers Hart, Konieczny, and Schilling also proved that the state-
ment fails when the cardinality of X exceeds ℵ1; Burdick and Pagano/Tauraso also
proved that the statement fails if ∗ is associative.

Also solved by B. Burdick, R. Chapman (U. K.), S. J. Garland, K. P. Hart (Netherlands), S. J. Herschkorn,
J. Konieczny, C. Pagano (Netherlands) & R. Tauraso (Italy), P. G. Poonacha (India), K. Schilling, D. Ware,
M. Wildon (U. K.), and the proposer.

A Symmetric Inequality

11815 [2015, 76]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let x ,
y, and z be positive numbers such that x + y + z = 3. Prove that
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x4 + x2 + 1

x2 + x + 1
+ y4 + y2 + 1

y2 + y + 1
+ z4 + z2 + 1

z2 + z + 1
≥ 3xyz.

Solution I by Ben Keigwin (student), West Potomac High School, Alexandria, VA.
Note that x4 + x2 + 1 = (x2 + 1)2 − x2 = (x2 + x + 1)(x2 − x + 1). Also x4+x2+1

x2+x+1
=

x2 − x + 1 = (x − 1)2 + x ≥ x , so

x4 + x2 + 1

x2 + x + 1
+ y4 + y2 + 1

y2 + y + 1
+ z4 + z2 + 1

z2 + z + 1
≥ x + y + z = 3.

By the AM–GM inequality, 1 = ( x+y+z
3

)3 ≥ xyz, and the result follows upon multi-
plication.

Solution II by Ali Adnan, A.E.C.S.-4, Mumbai, India. Since x4+x2+1
x2+x+1

= x2 − x + 1, the
left hand side reduces to

x2 + y2 + z2 = 3

(
x2 + y2 + z2

3

)
≥ 3

(
x + y + z

3

)2

= 3

(
x + y + z

3

)3

≥ 3xyz

by the QM–AM–GM inequality.

Also solved by A. Alt, T. Amdeberhan & V. H. Moll, M. Atasever (Turkey), R. Bagby, D. Bailey, E. Campbell,
& C. Diminnie, M. Bataille (France), P. Bracken, B. Bradie, R. Chapman (U. K.), H. Chen, (S. Choi, D. Kim,
S. Y. Kim, J. Lee, L. W. Lee, & S. Lee) (Korea), J. Christopher, P. P. Dályay (Hungary), (M. Dan-Ştefan,
C. Cătălin-Emil, & O. Alexandru) (Romania), P. De (India), M. Dinca (Romania), H. Y. Far, O. Faynshteyn,
J. N. Fitch, D. Fleischman, O. Geupel (Germany), M. Goldenberg & M. Kaplan, N. Grivaux (France), E. A.
Herman, S. J. Herschkorn, E. J. Ionaşcu, Y. J. Ionin, B. Karaivanov (U.S.) & T. S. Vassilev (Canada), D. Kasti,
P. Khalili, O. Kouba (Syria), K. Kusejko (Switzerland), (W.-K. Lai, A. Kristyuk, C. Kalacanic, & J. Risher), K.-
W. Lau (China), J. H. Lindsey II, G. Lord, O. P. Lossers (Netherlands), J. F. Loverde, U. Milutinović (Slovenia),
S. G. Moreno (Spain), M. Omarjee (France), J. Pentland, P. Perfetti (Italy), H. H. Pham, I. Pinelis, Á. Plaza
(Spain), M. A. Prasad (India), A. Ranallo (Italy), E. Schmeichel, B. Schmuland (Canada), M. A. Shayib, A. V.
Singh (India), A. Stadler (Switzerland), N. Stanciu & T. Zvonaru (Romania), R. Stong, R. Tauraso (Italy),
N. Thornber, D. B. Tyler, D. Vǎcaru (Romania), J. Van Hamme (Belgium), E. I. Verriest, T. Viteam (India),
Z. Vörös (Hungary), G. White, T. Wiandt, H. Widmer (Switzerland), M. Wildon (U. K.), T. Woodcock, J.
Zacharias, Con Amore Problem Group (Denmark), GCHQ Problem Solving Group (U. K.), New York Math
Circle, NSA Problems Group, Texas State University Problem Solvers Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamás Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, László
Lipták, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Steven J. Miller,
Mohamed Omar, Richard Pfiefer, Dave Renfro, Cecil C. Rousseau, Leonard Smiley,
Kenneth Stolarsky, Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden
Eynden, and Fuzhen Zhang.

Proposed problems should be submitted online via www.americanmathematical
monthly.submittable.com. Proposed solutions to the problems below should be sub-
mitted on or before April 30, 2017 at the same link. More detailed instructions are
available online. Solutions to problems numbered 11921 or lower should continue
to be submitted via email to monthlyproblems@math.tamu.edu. Proposed problems
must not be under consideration concurrently to any other journal and must not be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11943. Proposed by Keith Kearnes, University of Colorado, Boulder, CO, and Greg
Oman, University of Colorado, Colorado Springs, CO. Let X be a set, and let F be
a collection of functions f from X into X . A subset Y of X is closed under F if
f (y) ∈ Y for all y ∈ Y and f in F . With the axiom of choice given, prove or disprove:
There exists an uncountable collection F of functions mapping Z+ into Z+ such that
(a) every proper subset of Z+ that is closed under F is finite, and
(b) for every f ∈ F , there is a proper infinite subset Y of Z+ that is closed under
F\{ f }.
11944. Proposed by Yury Ionin, Central Michigan University, Mount Pleasant, MI. Let
n be a positive integer, and let [n] = {1, . . . , n}. For i ∈ [n], let Ai , Bi , Ci be disjoint
sets such that Ai ∪ Bi ∪ Ci = [n] − {i} and |Ai | = |Bi |. Suppose also that

|Ai ∩ Bj | + |Bi ∩ C j | + |Ci ∩ A j | = |Bi ∩ A j | + |Ci ∩ Bj | + |Ai ∩ C j |
for i, j ∈ [n]. Prove that i ∈ A j if and only if j ∈ Ai and, likewise, for the Bs and Cs.

11945. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip, Macedonia.
Let a, b, and c be the lengths of the sides of triangle ABC opposite A, B, and C ,
respectively, and let wa , wb, wc be the lengths of the corresponding angle bisectors.
Prove

a

wa
+ b

wb
+ c

wc
≥ 2

√
3.

11946. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let f be
a twice differentiable function from [0, 1] to R with f ′′ continuous on [0, 1] and∫ 2/3

1/3 f (x) dx = 0. Prove

http://dx.doi.org/10.4169/amer.math.monthly.123.10.1050
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4860

(∫ 1

0
f (x) dx

)2

≤ 11
∫ 1

0
f ′′(x) dx .

11947. Proposed by George Stoica, University of New Brunswick, Saint John, Canada.
Let n be a positive integer, and let z1, . . . , zn be the zeros in C of zn + 1. For a > 0,
prove

1

n

n∑
k=1

1

|zk − a|2 = 1 + a2 + · · · + a2(n−1)

(1 + an)2
.

11948. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Find
all surjective functions f : R → R+ such that (1) f (x) ≤ x + 1 for f (x) ≥ 1, (2)
f (x) �= 1 for x �= 0, and (3) for x, y ∈ R,

f (x f (y) + y f (x) − xy) = f (x) f (y).

11949. Proposed by Eugen J. Ionascu, Columbus State University, Columbus, GA.
Show that there exists a unique function f from R to R such that f is differentiable,
2 cos(x + f (x)) − cos x = 1 for all real x , and f (π/2) = −π/6.

SOLUTIONS

Flett’s Mean Value Theorem

11814 [2015, 76]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA.
Let φ be a continuously differentiable function from [0, 1] into R, with φ(0) = 0 and
φ(1) = 1, and suppose that φ′(x) �= 0 for 0 ≤ x ≤ 1. Let f be a continuous function
from [0, 1] into R such that

∫ 1
0 f (x) dx = ∫ 1

0 φ(x) f (x) dx . Show that there exists t
with 0 < t < 1 such that

∫ t
0 φ(x) f (x) dx = 0.

Solution by New York Math Circle, NY. Define

h(s) =
∫ s

0
φ(x) f (x) dx − φ(s)

∫ s

0
f (x) dx .

Note that h(0) = 0 = h(1). From Rolle’s theorem, we obtain h′(c) = 0 for some c ∈
(0, 1). Also, we compute

h′(s) = −φ′(s)
∫ s

0
f (x) dx

and, in particular, h′(0) = 0. Since φ′(s) �= 0 for all s ∈ (0, 1), the inverse function
φ−1(s) exists and is differentiable on (0, 1). Letting H(s) = h(φ−1(s)), we see that

H ′(s) = h′(φ−1(s))

φ′(φ−1(s))
.

Applying Flett’s mean value theorem [Math. Gaz. 42 (1958) 38–39] to the function H
on the interval [0, φ(c)], we have

H(T ) − H(0)

T − 0
= H ′(T )
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for some T ∈ (0, φ(c)) ⊂ (0, 1). Setting t = φ−1(T ) ∈ (0, 1), this becomes

1

φ(t)

∫ t

0
φ(x) f (x) dx −

∫ t

0
f (x) dx = h(t)

φ(t)
= h′(t)

φ′(t)
= −

∫ t

0
f (x) dx .

Thus
∫ t

0 φ(x) f (x) dx = 0, as desired.

Also solved by K. F. Andersen (Canada), R. Bagby, M. W. Botsko, B. S. Burdick, R. Chapman (U. K.),
P. P. Dályay (Hungary), M. Dan-Ştefan & F. Cătălin-Emil & O. Alexandru (Romania), L. Giugiuc (Romania),
D. Hancock, E. A. Herman, O. Kouba (Syria), J. K. Lindsey II, O. P. Lossers (Netherlands), A. Mingarelli &
J. M. Pacheco & Á. Plaza (Spain), P. Perfetti (Italy), I. Pinelis, D. Ritter, B. Schmuland (Canada), R. Stong, R.
Tauraso (Italy), T. P. Turiel, T. Wiandt, M. Wildon (U. K.), and the proposer.

Pascal’s Theorem

11816 [2015, 76]. Proposed by Sabin Tabirca, University College Cork, Cork, Ireland.
Let ABC be an acute triangle, and let B1 and C1 be the points where the altitudes from
B and C intersect the circumcircle. Let X be a point on arc BC, and let B2 and C2

denote the intersections of XB1 with AC and XC1 with AB, respectively. Prove that the
line B2C2 contains the orthocenter of ABC.

Solution by Adnan Ali, A.E.C.S.-4, Mumbai, India. The claim holds not only for the cir-
cumcircle of 
ABC but also for any circumconic of the triangle—i.e. a conic circum-
scribing the triangle—as this problem is a special case of Pascal’s theorem, according
to which, if ABCDEF is a hexagon with vertices on a conic, then the intersections of
lines AB with ED, AF with CD, and EF with CB are collinear. (A point at infinity is
allowed.)

Also solved by M. Atasever (Turkey), M. Bataille (France), B. S. Burdick, J. Cade, R. B. Campos (Spain), R.
Chapman (U. K.), P. P. Dályay (Hungary), M. Dan-Ştefan & O. Alexandru & F. Cătălin-Emil (Romania), P.
De (India), O. Faynshteyn, D. Fleischman, O. Geupel (Germany), M. Goldenberg & M. Kaplan, J.-P. Grivaux
(France), J. G. Heuver (Canada), S. Hong (Korea), E. J. Ionaşcu, Y. J. Ionin, I. M. Isaacs, O. Kouba (Syria),
G. Lord, O. P. Lossers (Netherlands), J. Minkus, M. A. Shayib, N. Stanciu & T. Zvonaru (Romania), R. Stong,
T. Viteam (India), Z. Vörös (Hungary), T. Wiandt, GCHQ Problem Solving Group (U. K.), Missouri State
University Problem Solving Group, and the proposer.

Cycle Covers for Infinite Complete Graphs

11817 [2015, 175]. Proposed by Mohammed Jahaveri, Siena College, Loudonville, NY.
A cycle double cover of a graph is a collection of cycles that, counting multiplicity,
includes every edge exactly twice. Let X be an infinite set and let K X be the complete
graph on X . Construct a cycle double cover for X .

Solution I by I. M. Isaacs, Berkeley, CA. We construct a set of triangles covering
each edge exactly once. Taking each triangle twice produces a cycle double cover.
We may replace X by another set of the same cardinality, so we consider the set S of
all nonempty finite subsets of X . For each edge AB in KS , let C = A
B (the sym-
metric difference), and use the triangle with vertices A, B, C . Since B
C = A and
C
A = B, each edge lies in exactly one such triangle.

Solution II by Jerrold Grossman and László Lipták, Oakland University, Rochester,
MI. We partition the edges into triangles. Use the axiom of choice to well order the
edges of K X using an ordinal that is also a cardinal. Transfinitely perform the fol-
lowing operation as long as there remains an edge not yet covered: For the least such
uncovered edge uv, choose a vertex w not yet in any triangle, and add uvw to the set
of triangles. Such a vertex w exists because the cardinality of the set of vertices used
so far in the process is less than the cardinality of X .
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Editorial comment. The method of Grossman and Lipták can be used to partition edges
of K X into copies of G for any finite graph G.

Also solved by E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), B. Burdick, R. Chapman (U. K.), B. Karaivanov
& T. Vassilev (Canada), R. Stong, FAU Problem Solving Group, and the proposer.

Some Trig for the Nagel Cevians

11818 [2015, 175]. Proposed by Oleh Faynshteyn, Leipzig, Germany. Let ABC be a tri-
angle and let A1, B1, and C1 be the points on sides opposite A, B, and C respectively
at which the ecircles of the triangle are tangent to those sides. Let R and r be the cir-
cumradius and inradius of the triangle. Let the name of a vertex of ABC or of A1 B1C1

also stand for the radian measure of the corresponding angle. Prove that, wherever the
expression is defined,

cot A1 + cot(A/2)

cot A
+ cot B1 + cot(B/2)

cot B
+ cot C1 + cot(C/2)

cot C
= 6R

r
.

Solution by P. Nüesch, Switzerland. In fact, more is true: Each term on the left side
of the identity equals 2R/r . Write a, b, c for the side lengths of 
ABC, s for the
semiperimeter, and F for the area. Write u, v, w for the side lengths of 
A1 B1C1 and
F1 for the area. Now

F

F1
= 2R

r
. (1)

By the law of cosines,

cot(A/2)

cot A
= 1

cos A
+1 = 4s(s − a)

b2 + c2 − a2
. (2)

The modified cosine laws

cot A = b2 + c2 − a2

4F
, and cot A1 = v2 + w2 − u2

4F1

together with (1) give us

cot A1

cot A
= 2R

r

v2 + w2 − u2

b2 + c2 − a2
. (3)

Now we have to prove (3) + (2) = 2R/r , or equivalently,

2R

r

[
(b2 − v2) + (c2 − w2) − (a2 − u2)

] = 4s(s − a).

Observe that b2 − v2 = 2(s − c)(s − a)(1 + cos B) = 4(s − c)(s − a) cos2(B/2) =
bF/R and similarly for the other two sides. Therefore, as required,

2R

r

[
bF

R
+ cF

R
− aF

R

]
= 2R

r
[b + c − a] = 2s · 2(s − a) = 4s(s − a).

Editorial comment. Lines AA1, BB1, and CC1 are the Nagel cevians of the triangle.

Also solved by A. Alt, R. Bagby, R. Chapman (U. K.), H. Y. Far, M. E. Kuczma (Poland), J. C. Smith, R.
Stong, H. Widmer, and the proposer.
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Twin Hölders

11819 [2015, 175]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA.
Let f be a continuous, nonnegative function on [0, 1]. Show that∫ 1

0
f 3(x) dx ≥ 4

(∫ 1

0
x2 f (x) dx

)(∫ 1

0
x f 2(x) dx

)
.

Solution by Radouan Boukharfane, Université du Poitiers, Chasseneuil, France. We
apply Hölder’s inequality twice∫ 1

0
x2 f (x) dx ≤

(∫ 1

0
x3 dx

)2/3 (∫ 1

0
f 3(x) dx

)1/3

∫ 1

0
x f 2(x) dx ≤

(∫ 1

0
x3 dx

)1/3 (∫ 1

0
f 3(x) dx

)2/3

.

Now multiply the inequalities∫ 1

0
x2 f (x) dx

∫ 1

0
x f 2(x) dx ≤

(∫ 1

0
x3 dx

)(∫ 1

0
f 3(x) dx

)
= 1

4

(∫ 1

0
f 3(x) dx

)
.

Editorial comment. Several solvers proved generalizations. For example, the argument
above, using the conjugate exponents (a + b)/a and (a + b)/b, yields

∫
f a(x)gb(x) dx∫

f b(x)ga(x) dx ≤ ∫
f a+b(x) dx

∫
ga+b(x) dx .

Also solved by R. A. Agnew, A. Alt, T. Amdeberhan & V. H. Moll, K. F. Andersen (Canada), R. Bagby,
M. Bataille (France), P. Bracken, M. A. Carlton, R. Chapman (U. K.), H. Chen, L. V. P. Cuong (Vietnam),
P. J. Fitzsimmons, W. R. Green, N. Grivaux (France), E. A. Herman, B. Karaivanov (USA) & T. S. Vazzilev
(Canada), O. Kouba (Syria), M. E. Kuczma (Poland), K.-W. Lau (China), J. H. Lindsey II, P. W. Lindstrom,
M. Omarjee (France), X. Oudot (France), P. Perfetti (Italy), Á. Plaza & F. Perdomo (Spain), K. Schilling, J. G.
Simmonds, J. C. Smith, A. Stenger, R. Stong, R. Tauraso (Italy), J. Vinuesa (Spain), H. Wang & J. Wojdylo,
G. White, Q. Zhang (China), Z. Zhang (China), NSA Problems Group, and the proposer.

Noetherian Subrings

11820 [2015, 175]. Proposed by Alborz Azarang, Shahid Chamran University of
Ahvaz, Ahvaz, Iran. Let K be a field and let R be a subring of K [X ] that contains K .
Prove that R is noetherian, that is, that every ascending chain of ideals in R terminates.

Solution by the National Security Agency Problems Group, Fort Meade, MD. Since a
finitely generated K -algebra is a quotient of K [x1, . . . , xn] for some n and, hence, is
noetherian, it suffices to show that R is finitely generated as a K -algebra. We use a
lemma of independent interest.

Lemma. Any set S of nonnegative integers that is closed under addition is finitely
generated: That is, there are elements d1, . . . , dn ∈ S such that every s ∈ S can be
written as s = ∑n

k=1 ekdk for some nonnegative integers e1, . . . , en .
Proof. This is clear if S is empty or equals {0}. Otherwise, let n be the least positive

integer in S. For 1 ≤ i < n, let di be the least element of S congruent to i (modulo
n), or di = 0 if S has no such element. We claim that {d1, . . . , dn−1, n} generates S.
If s ∈ S, then s ≡ di mod n for some i . Also, s ≥ di . Hence, s = di + kn for some
nonnegative integer k.

Now let R be a subring of K [X ] that contains K . Let S be the degrees of the
elements of R; note that S is closed under addition. By the lemma, there are inte-
gers d1, . . . , dn that generate S. For a ≤ i ≤ n, let fi be a monic polynomial in
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R of degree di . Using induction on the degree m of a polynomial in R, we prove
R = K [ f1, . . . , fn]. For m = 0, note that the constant polynomials are in R. For
m > 1, let a be the leading coefficient of a polynomial f in R. There are integers
ei ≥ 0 such that m = ∑n

k=1 ekdk . Let g = f − a f e1
1 f e2

2 · · · f en
n . Note that g is in R and

has degree less than m. By the induction hypothesis, g ∈ K [ f1, . . . , fn]. Hence, also,
f ∈ K [ f1, . . . , fn], as desired.

Editorial comment. Various solvers used theorems from commutative algebra such as
the Eakin–Nagata theorem, the Artin–Tate theorem, and the Hilbert basis theorem, as
well as the chicken McNugget theorem, which is also known as the Frobenius coin
problem from number theory.

Also solved by A. J. Bevelacqua, T. Borislav (Canada) & V. Karaivanov, N. Caro (Brazil), R. Chapman (U. K.),
I. M. Isaacs, J. H. Lindsey II, F. Perdomo & A. Francisco (Spain), J. C. Smith, R. Stong, D. Ware, and the
proposer.

When a Composition of Polynomials Is Real

11822 [2015, 176]. Proposed by George Stoica, University of New Brunswick, Saint
John, Canada. Call a polynomial real if all its coefficients are real. Let P and Q be
polynomials with complex coefficients such that the composition P ◦ Q is real. Show
that if the leading coefficient of Q and its constant term are both real then P and Q are
real.

Solution by Borislav Karaivanov, Sigma Space, Lanham, MD & Tzvetalin Vassilev,
Nipissing University, North Bay, ON, Canada. Let P and Q be defined as P(x) =∑p

i=0 ai xi and Q(x) = ∑q
i=0 bi xi with bq and b0 real. Since both bq and the coeffi-

cient apbp
q of x pq in P(Q(x)) are real, it can be concluded that ap is real.

We first claim that Q is real. If not, then let k be the largest index for which bk is
not real. The coefficient of xq(p−1)+k in P(Q(x)) is real and has the form apbp−1

q bk +
M , where M is a polynomial expression in ap and bi , for k < i ≤ q, with integer
coefficients, and thus real. Hence, bk must be real. This contradiction shows that Q is
real.

Next, we claim that P is real. If not, then let k be the largest index for which ak is not
real. Consider the coefficient of xqk in P(Q(x)). By the premise of the problem, it is
real. On the other hand, it has the form akbk

q + N , where N is a polynomial expression
in the real variables ak+1, . . . , ap and b0, . . . , bq with integer coefficients . Therefore,
there is no such ak , and P is real.

Also solved by B. Bekker (Russia) & Y. J. Ionin (USA), A. J. Bevelacqua, N. Caro (Brazil), R. Chapman
(U.K.), P. De, B. Sury (India) & N. V. Tejaswi (Netherlands), D. Fleischman, J.-P. Grivaux (France), E. A.
Herman, P. W. Lindstrom, R. Stong, R. Tauraso (Italy), N. Thornber, J. Van Hamme (Belgium), T. Viteam
(Japan), and the proposer.

Inversion in a Circle?

11823 [2015, 176]. Proposed by Sabin Tabirca, University College Cork, Cork,
Ireland. Let P be a point inside a circle C .
(a) Prove that there exists a point P ′ outside C such that, for all chords XY of C
through P , (|XP′| + |YP′|)/|XY| is the same. (Here, |UV| denotes the distance from U
to V .)
(b) Is P ′ unique?

Solution by Ahmad Habil, Damascus University, Damascus, Syria. Let O denote the
center of C , r the radius of C , and p the distance of P from O . We must exclude the
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case P = O (i.e., p = 0) because in that case there is no suitable P ′ at all. We (1)
show this then (2) show that, for any other P inside C , the image of P under inversion
in C can serve as P ′ and then finally (3) show that no other point can play the role of
P ′ (so in answer to (b), P ′ is unique).

(1) Suppose P = O , and let Q be any “trial” point outside C . We will demon-
strate that Q cannot meet the requirement for P ′ by finding two chords X1Y2 and X2Y2

through P for which the ratios (|X j Q| + |Y j Q|)/|X j Y j | are unequal. Let q = |OQ|.
Let X1, Y1 be the diameter lying along O Q and let X2, Y2 be the perpendicular diam-
eter. Now (|X1 Q| + |Y1 Q|)/|X1Y1| = q

r , but (|X2 Q| + |Y2 Q|)/|X2Y2| =
√

r 2 + q2/r
>

q
r .
(2) Consider P �= O , so p �= 0. Let P ′ be the image of P under inversion in C .

This is the point on ray OP such that pp′ = r 2, where p′ = |OP′|. When T is any
point on C (but not on line OP), triangles TOP and P ′OT are similar, since they have
a common angle at O and |TP|/|OP| = |OP′|/|OT| or r

p = p′
r from the definition of

p′. Thus, |TP′|/|OT| = |TP|/|OP|, or |TP′| = r
p |TP|.

Now let XY denote any chord through P . We have both |XP′| + r
p |XP| and |YP′| =

r
p |YP|. Adding, |XP′| + |YP′| = r

p (|XP| + |YP|). Since XPY is a straight line, |XP| +
|YP| = |XY|. We conclude (|XP′| + |YP′|)/|XY| = r

p .

Note that the constant value of (|XP′| + |YP′|)/|XY| must be p′
r , which equals r

p and
is the cosecant of half the angle intercepted by C at P ′.

(3) Now let Q ′ be a point outside C such that (|XQ′| + |YQ′|)/|XY| is constant for
all chords XY containing P . We must show that Q ′ is the inversion image of P in C ,
that is, the point P ′ from part (2). Let Q be the image of Q ′ under inversion in C .
Thus, qq ′ = r 2, where q = |QO| and q ′ = |Q ′O|. Inversion is self-dual, so our claim
is that Q = P .

Applying part (2) starting with Q, we obtain that (|XQ′| + |YQ′|)/|XY| is constant
for all chords through Q. Consider the diameter X1Y1 containing Q and the chord
X2Y2 lying along line PQ′. Label them so that Xi is closer than Yi to Q ′ in each case.
(These chords may be the same; in fact, we prove that they are.)

Now consider a chord X ′Y ′ through both P and Q. (If P = Q, as we will show,
then there are infinitely many such chords, but in any case, there is at least one.)

Because both X ′Y ′ and X1Y1 include Q, we have (|X ′ Q ′| + |Y ′ Q ′|)/|X ′Y ′|
= (|X1 Q ′| + |Y1 Q ′|)/|X1Y1|. Next, since both X ′Y ′ and X2Y2 include P , we have
(|X ′ Q ′| + |Y ′ Q ′|)/|X ′Y ′| = (|X2 Q ′| + |Y2 Q ′|)/|X2Y2|. Therefore,

|X1 Q ′| + |Y1 Q ′|
|X1Y1| = |X2 Q ′| + |Y2 Q ′|

|X2Y2| .

Using |Y1 Q ′| + |X1 Q ′| + |X1Y1| and |Y2 Q ′| = |X2 Q ′| + |X2Y2|, we get (2|X1 Q ′|
+ |X1Y1|)/|X1Y1| = (2|X2 Q ′| + |X2Y2|)/|X2Y2|. Subtracting 1 and dividing by 2
yields |X1 Q ′|/|X1Y1| = |X2 Q ′|/|X2Y2|. Inverting these ratios and adding 1 gives
(|X1 Q ′| + |X1Y1|)/|X1 Q ′| = (|X2 Q ′| + |X2Y2|)/|X2 Q ′|. Since Q ′ X1Y1 and Q ′ X2Y2

are straight lines, |Y1 Q ′|/|X1 Q ′| = |Y2 Q ′|/|X2 Q ′|, or equivalently, |Y1 Q ′|/|Y2 Q ′|
= |X1 Q ′|/|X2 Q ′|.

By the concurrent chords theorem, |Y2 Q ′|/|Y1 Q ′| = |X1 Q ′|/X2 Q ′|. Hence, |Y1 Q ′|/
|Y2 Q ′| = |Y2 Q ′|/|Y1 Q ′|, so |Y2 Q ′| = |Y1 Q ′|, and in turn |X2 Q ′| = |X1 Q ′|. This
implies that X1Y1 and X2Y2 are the same chord and, therefore, that P and Q are the
same point. Finally, Q ′ = P ′, and so the image of P under inversion is the unique
point with the desired constant ratio property.
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Editorial comment. Several solvers noted that circle C is the Circle of Apollonius
determined by P and its image under inversion in C , using the ratio (r − p)/(r + p)

to get started. This observation provides another way to prove (b), that the image of P
under inversion in C is a suitable P ′.

Also solved by R. Bagby, M. Bataille (France), E. Bojaxhiu (Albania)& E. Hysnelaj (Australia), J. Cade, R.
Chapman (U. K.), W. J. Cowieson, E. A. Herman, L. R. King, M. E. Kuczma (Poland), G. Lord, J. Schlosberg,
J. C. Smith, N. Stanciu & T. Zvonaru (Romania), R. Stong, E. A. Weinstein, and the proposer.

A Binomial Coefficient Inequality

11826 [2015, 284]. Proposed by Michel Bataille, Rouen, France. Let m and n be
positive integers with m ≤ n. Prove that

n∑
k=m

4n+1−k

(
m + k − 1

m − 1

)2

≥
n∑

k=m

(
m + n

k

)2

.

Solution by Timothy Woodcock, Stonehill College, Easton, MA. Equality holds
when n = m since

(2m
m

) = 2
(2m−1

m−1

)
. Now suppose n > m, and inductively assume∑n−1

k=m 4n−k
(m+k−1

m−1

)2 ≥ ∑n−1
k=m

(m+n−1
k

)2
. We have

n∑
k=m

4n+1−k

(
m + k − 1

m − 1

)2

= 4

(
m + n − 1

m − 1

)2

+ 4
n−1∑
k=m

4n−k

(
m + k − 1

m − 1

)2

≥ 4

(
m + n − 1

m − 1

)2

+ 4
n−1∑
k=m

(
m + n − 1

k

)2

= 4
n−1∑

k=m−1

(
m + n − 1

k

)2

.

It now suffices to prove 4
∑n−1

k=m−1

(m+n−1
k

)2 ≥ ∑n
k=m

(m+n
k

)2
. Since (x + y)2 ≤

2(x2 + y2) for x, y ∈ R,

n∑
k=m

(
m + n

k

)2

=
n∑

k=m

((
m + n − 1

k − 1

)
+
(

m + n − 1

k

))2

≤
n∑

k=m

2

((
m + n − 1

k − 1

)2

+
(

m + n − 1

k

)2
)

= 4

(
m + n − 1

n

)2

+ 4
n−1∑
k=m

(
m + n − 1

k

)2

= 4
n∑

k=m

(
m + n − 1

k

)2

.

Editorial comment. Allen Stenger notes that (x + y)p ≤ 2p−1(x p + y p), valid for
x, y > 0 and p > 1, may be used in place of (x + y)2 ≤ 2(x2 + y2) to yield the gen-
eralization

n∑
k=m

2p(n+1−k)

(
m + k − 1

m − 1

)p

≥
n∑

k=m

(
m + n

k

)p

.

Also solved by R. Chapman (U. K.), J. H. Lindsey II, J. C. Smith, A. Stenger, R. Stong, R. Tauraso (Italy), and
the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Daniel Cranston, Zachary Franco,
Christian Friesen, László Lipták, Rick Luttmann, Frank B. Miles, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, and Fuzhen Zhang.

Proposed problems should be submitted online at
http: // www. americanmathematicalmonthly. submittable. com/ submit.

Proposed solutions to the problems below should be submitted on or before May
31, 2017 via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11950. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,” Bı̂rlad,
Romania. Prove that for all positive integers a and b, there are infinitely many positive
integers n such that n, n + a, and n + b can all be expressed as a sum of two squares.

11951. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. Let ABC be a triangle that is not obtuse. Denote by a, b, and c the lengths
of the sides opposite A, B, and C , respectively, and denote by ha , hb, and hc the lengths of
the altitudes dropped from A, B, and C , respectively. Prove that

a2

h2
b + h2

c

+ b2

h2
c + h2

a

+ c2

h2
a + h2

b

<
5

2
.

Show also that 5/2 is the smallest possible constant in this inequality.

11952. Proposed by Z. K. Silagadze, Novosibirsk State University, Novosibirsk, Russia.
Prove that

∞∑
n=1

22n−1

2n + 1

(
(n − 1)!

(2n − 1)!!

)2

= π − 2,

where (2n − 1)!! is defined as usual to be
∏n

k=1(2k − 1).

11953. Proposed by Cornel Ioan Vălean, Teremia Mare, Timiş, Romania. Calculate∫ ∞

0

∫ ∞

0

sin x sin y sin(x + y)

xy(x + y)
dx dy.

11954. Proposed by Paul Bracken, University of Texas, Edinburg, TX. Determine the largest
constant c and the smallest constant d such that, for all positive integers n,

1

n − c
≤

∞∑
k=n

1

k2
≤ 1

n − d
.

http://dx.doi.org/10.4169/amer.math.monthly.124.1.83
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11955. Proposed by David Stoner, Aiken, SC. Some boys and girls stand on some of the
squares of an n-by-n grid. (Each square may contain several or no children.) Each child
computes the fraction of children in his or her row whose gender matches his or her own
and the fraction of children in his or her column whose gender matches his or her own.
Then each child writes down the sum of the two numbers he or she obtains. Prove that the
product of all numbers written down in such a manner is at least 1.

11956. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Show that

∞∑
n=1

arctan(sinh n) · arctan

(
sinh 1

cosh n

)

converges, and find the sum.

SOLUTIONS

Summing to the Double Factorial

11821 [2015, 176]. Proposed by Finbarr Holland and Claus Koester, University College
Cork, Cork, Ireland. Let p be a positive integer. Prove that

lim
n→∞

1

2nn p

n∑
k=0

(n − 2k)2p

(
n

k

)
=

p∏
j=1

(2 j − 1).

Solution I by Hongwei Chen, Christopher Newport University, Newport News, VA. Let
Sp(n) = ∑n

k=0(n − 2k)2p
(n

k

)
for n, p ≥ 0. We compute

Sp+1(n) =
n∑

k=0

(n − 2k)2p(n2 − 4kn + 4k2)

(
n

k

)

= n2Sp(n) − 4
n−1∑
k=1

(n − 2k)2pk(n − k)

(
n

k

)
= n2Sp(n) − 4n(n − 1)Sp(n − 2).

Let Mp(n) = 2−n Sp(n), so M0(n) = S0(n) = 1. We show by induction on p that Mp(n)

is a polynomial of degree p in n with leading coefficient
∏p

j=1(2 j − 1). From this the
desired result follows immediately.

We use the common “double factorial” notation (2p − 1)!! = ∏p
j=1(2 j − 1) and use

O(nk) to indicate a polynomial of degree k in n. Letting cp denote the coefficient of n p−1

in Mp(n), the inductive computation for p ≥ 0 is

Mp+1(n) = n2 Mp(n) − n(n − 1)Mp(n − 2)

= (2p−1)!!n p+2 + cpn p+1 − (n2−n)
(
(2p−1)!!(n−2)p + cp(n−2)p−1

)+ O(n p)

= cpn p+1 − cpn p+1 + n(2p − 1)!!(n − 2)p + n2(2p)(2p − 1)!!n p−1 + O(n p)

= (2p + 1)(2p − 1)!!n p+1 + O(n p).

Solution II by National Security Agency Problems Group, Fort Meade, MD. Let
X1, . . . , Xn be independent random variables, each taking the value +1 or −1 with
probability 1/2 each. Note that E[Xi ] = 0. Set X = ∑

Xi . Note that X = n − 2k, where
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k = |{i : Xi = −1}|. Hence P[X = n − 2k] = (n
k

)
2−n . Therefore E[X2p] =

1
2n

∑n
k=0(n − 2k)2p

(n
k

)
, and we seek limn→∞ n−pE[X2p].

We also compute E[X2p] another way:

E[X2p] = E
[(∑

Xi

)2p
]
=
∑(

2p

i1, . . . , in

)
E

⎡
⎣ n∏

j=1

X
i j
j

⎤
⎦ =

∑(
2p

i1, . . . , in

) n∏
j=1

E
[

X
i j
j

]
,

where the last step uses independence. Since any odd power of Xi equals Xi , it has expec-
tation 0. Thus, the only nonzero terms in the last sum are those with all i j even, where the
expectation is 1. Hence E[X2p] is the sum of the multinomial coefficients with all i j even.

For n ≥ p, there are
(n

p

)
terms in which each i j is 0 or 2. The sum of these coefficients

is
(n

p

)
(2p)!

2p , which equals n!
(n−p)! (2p − 1)!!.

We claim that the contribution from other terms has lower order. The terms with some i j

greater than 2 have at most p − 1 nonzero exponents. Let tp be the number of partitions of
p with at most p − 1 parts. Each such partition can be arranged as i1, . . . , in in fewer than
(p − 1)!

( n
p−1

)
ways, and the corresponding multinomial coefficient is less than

( 2p
2,2,...,2

)
.

Hence the total contribution of these terms to E[X2p] is at most tp(p − 1)!
( n

p−1

)
(2p)!/2p.

With p constant and n large, this is bounded by O(n p−1).
It follows that for large n,

n−pE(X2p) = (2p − 1)!!
p∏

j=1

(
1 − j

n

)
+ O

(
1

n

)
,

and so limn→∞ n−pE(X2p) = (2p − 1)!!.

Editorial comment. Solvers also used various other approaches. Marcin E. Kuczma
obtained a recurrence for the polynomial Mp(n) by recognizing Mp(n) as the coefficient of
x2p in the power series for (cosh x)n and differentiating (cosh x)n · cosh x using the prod-
uct rule. John H. Lindsey expressed the sum essentially as a Riemann sum to approximate
it with an integral involving an exponential function. Some others found explicit formu-
las for the sum (with or without the denominator), often involving the Stirling numbers,
and then found the limit directly. Oliver Geupel gave a somewhat combinatorial proof,
interpreting the quantities involved in terms of weighted Dyck paths.

Also solved by T. Amdeberhan & V. H. Moll, M. Bataille (France), R. Chapman (U. K.), R. Dutta (India),
P. J. Fitzsimmons, D. Fritze (Germany), N. Grivaux (France), E. A. Herman, J. C. Kieffer, O. Kouba (Syria),
M. E. Kuczma (Poland), J. H. Lindsey II, M. Omarjee (France), E. Omey (Belgium), N. C. Singer, J. C. Smith,
A. Stenger, R. Stong, R. Tauraso (Italy), Con Amore Problem Group (Denmark), GCHQ Problem Solving
Group, and the proposers.

Circular General Position

11824 [2015, 284]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann Arbor,
MI and Yusheng Luo, Harvard University, Cambridge, MA. A set X of points in the plane
is said to be in circular general position if it has the property that every circle or straight
line in the plane misses at least two points of X . (Such sets must have at least five elements,
and most five-element sets qualify.)
(a) Show that if X is a set in circular general position and contains at least seven points,
then it has a five-element subset that is in circular general position.
(b) Show that there exist sets X in circular general position containing exactly six points
for which there is no five-element subset in circular general position.
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Solution by Edward Schmeichel, San Jose State University, San Jose, CA. We write
“circles” to refer to both circles and straight lines, and we write “cgp” as an abbrevia-
tion for “circular general position.”
(a) Let n = |X |. We proceed by induction on n, postponing the base step n = 7. For n ≥ 8,
consider a set X with |X | = n in cgp. If every circle contains at most n − 3 points of X ,
then every subset of size (n − 1) is in cgp, and by the induction hypothesis it contains
a subset of size 5 in cgp. Otherwise, some circle � contains points P1, P2, . . . , Pn−2 of
X and misses two points A1, A2 of X . Since any circle through A1 and A2 meets � in at
most two points and (n − 2)/2 ≥ 3, at least three distinct circles �1, �2, �3 through A1, A2

are required to cover the n − 2 points in X ∩ �. Renumber so that P1 ∈ �1 \ (�2 ∪ �3),
P2 ∈ �2 \ (�1 ∪ �3), P3 ∈ �3 \ (�1 ∪ �2). The 5-element subset {P1, P2, P3, A1, A2} will
be in cgp. This completes the inductive step.

We now consider the base step. Let X be a 7-point set in cgp. If every circle contains
at most three points of X , then any 5-element subset of X will be in cgp. If, on the other
hand, some circle contains five points of X and misses two points of X , then the argument
at the end of the inductive step above provides a 5-element subset of X in cgp.

Hence we may assume that some circle � contains four points of X , say P1, P2, P3, P4

in order around �, and misses three points A1, A2, A3 of X . If any of the pairs (A1, A2),
(A1, A3), or (A2, A3) require at least three circles through the pair to cover the four points
in X ∩ �, then the argument at the end of the inductive step will again provide a 5-element
subset of X in cgp. Hence assume for each pair (Ai , A j ) with 1 ≤ i < j ≤ 3, there are two
circles �1

i, j and �2
i, j through Ai and A j each containing two of the points of X ∩ �. Without

loss of generality, suppose that �1
1,2 and �2

1,2 contain, respectively, the nonconsecutive pairs
(P1, P3) and (P2, P4) around �, while �1

1,3, �2
1,3, �1

2,3, and �2
2,3 contain, respectively, the

consecutive pairs (P1, P2), (P3, P4), (P1, P4), and (P2, P3) around �. The points A1, A2

where �1
1,2 and �2

1,2 intersect occur in different connected components of R2 \ �. On the
other hand, for k ∈ {1, 2} the points Ak and A3 where �1

k,3 and �2
k,3 intersect occur in the

same component of R2 \ �. This is impossible, which completes the base step.
(b) Let X = {0, 1, 2} × {0, 1}. This 6-point set has no 5-point subset in cgp, since every
5-element subset of X contains the four vertices of a rectangle.

Also solved by R. Chapman (U. K.), Y. J. Ionin, O. P. Lossers (Netherlands), M. Monea (Romania),
M. A. Prasad (India), J. C. Smith, R. Stong, E. A. Weinstein, and the proposers.

A Rational Function Identity

11828 [2015, 285]. Proposed by Roberto Tauraso, Universita di Roma “Tor Vergata,”
Rome, Italy. Let n be a positive integer, and let z be a complex number that is not a kth root
of unity for any k with 1 ≤ k ≤ n. Let S be the set of all lists (a1, . . . , an) of n nonnegative
integers such that

∑n
k=1 kak = n. Prove that

∑
a∈S

n∏
k=1

1

ak! kak (1 − zk)ak
=

n∏
k=1

1

1 − zk
.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cas, Syria. First we suppose that z is a real number with |z| < 1. For any real number r
with |r | < 1 we have

∞∑
k=1

rk

k(1 − zk)
=

∞∑
k=1

rk

k

( ∞∑
n=0

zkn

)
=

∞∑
n=0

( ∞∑
k=1

(r zn)k

k

)
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= −
∞∑

n=0

log(1 − r zn) = log

( ∞∏
n=0

1

1 − r zn

)
.

It follows that
∞∏

k=1

exp

(
rk

k(1 − zk)

)
=

∞∏
n=0

1

1 − r zn
. (1)

On the other hand, for a real number z with |z| < 1, consider the function fz defined on
the open unit disk D(0, 1) in the complex plane by

fz(w) =
∞∏

n=0

1

1 − wzn
.

This product converges uniformly on every compact subset of D(0, 1), so fz is analytic
in D(0, 1). There is a Taylor series expansion fz(w) = ∑∞

n=0 An(z)wn for w ∈ D(0, 1).
Since (1 − w) fz(w) = fz(zw),

(1 − w)

( ∞∑
n=0

An(z)w
n

)
=

∞∑
n=0

An(z)z
nwn.

It follows that An(z) − An−1(z) = zn An(z) for n ≥ 1. Also A0(z) = 1, so

An(z) =
n∏

k=1

1

1 − zk
, for n ≥ 1.

Thus, for |r | < 1, we have

∞∏
n=0

1

1 − r zn
= 1 +

∞∑
n=1

(
n∏

k=1

1

1 − zk

)
rn. (2)

From (1) and (2),

∞∏
k=1

⎛
⎝ ∞∑

ak=0

rkak

ak! kak (1 − zk)ak

⎞
⎠ = 1 +

∞∑
n=1

(
n∏

k=1

1

1 − zk

)
rn.

Equating the coefficient of rn on both sides, we obtain

∑
a∈S

n∏
k=1

1

ak! kak (1 − zk)ak
=

n∏
k=1

1

1 − zk
.

We have proved the required equality for real numbers z with |z| < 1. Each side is a rational
function of z. The validity of the formula for every complex number z such that z is not a
kth root of unity for any k with 1 ≤ k ≤ n follows by analytic continuation.

Also solved by T. Amdeberhan & R. P. Stanley, N. Caro (Brazil), R. Chapman (U. K.), S. M. Gagola Jr.,
O. P. Lossers (Netherlands), M. A. Prasad (India), J. C. Smith, R. Stong, M. Wildon (U. K.), and the proposer.

A Convergence Test

11829 (Corrected) [2015, 285; 2015, 605]. Proposed by Paul Bracken, University of
Texas-Pan American, Edinburg, TX. Let 〈a〉 be a monotone decreasing sequence of real
numbers that converges to 0. Prove that

∑∞
n=1 an/n < ∞ if and only if an = O(1/ log n)

and
∑∞

n=1(an − an+1) log n < ∞.
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Solution I by Moubinool Omarjee, Lycée Henri IV, Paris, France and Roberto Tauraso,
Dipartimento de Matematica, Università di Roma, “Tor Vergata,” Rome, Italy. Define two
sequences {SN }N≥1 and {TN }N≥1 by

SN =
N∑

n=1

an

n
and TN =

N∑
n=1

(an − an+1) log n.

If {an}n≥1 is positive and decreasing to 0, then both {SN }N≥1 and {TN }N≥1 are increasing.
Let S and T be their respective limits (finite or +∞). Notice that if n ≥ 2, then log n −
log(n − 1) = ∫ n

n−1 dx/x ∈ (1/n, 1/n − 1).
(Necessity) If S < ∞, then for N ≥ 2,

aN log N ≤ aN

N∑
n=2

(
log n − log(n − 1)

) ≤ aN

N∑
n=2

1

n − 1
≤

N∑
n=2

an−1

n − 1
= SN−1 ≤ S.

This implies that an = O(1/ log(n)). Moreover,

TN =
N∑

n=1

(an − an+1) log n =
N∑

n=2

an log n −
N+1∑
n=2

an log(n − 1)

=
N∑

n=2

an(log n − log(n − 1)) − aN+1 log N ≤
N∑

n=2

an

n − 1

≤
N∑

n=2

an−1

n − 1
= SN−1 ≤ S,

hence T < ∞.
(Sufficiency) If T < ∞ and aN log N ≤ M for N ≥ 2, then

SN − a1 =
N∑

n=2

an

n
≤

N∑
n=2

an(log n − log(n − 1)) =
N∑

n=2

an log n −
N−1∑
n=2

an+1 log n

=
N−1∑
n=2

(an − an+1) log n + aN log N = TN−1 + aN log N ≤ T + M,

hence S < ∞.

Solution II by Traian Viteam, Osaka, Japan. Let Hn = ∑n
i=1 1/ i . We use the fact

that Hn ∼ log(n); that is, their ratio converges to 1. From the comparison test for
series with nonnegative terms, we have

∑∞
n=1 (an − an+1) log(n) < ∞ if and only if∑∞

n=1(an − an+1)Hn <∞.
Suppose first that

∑∞
n=1 an/n < ∞. Since (an)n≥1 is decreasing, we have

aN

N∑
n=1

1

n
≤

N∑
n=1

an

n

for all positive integers N . Since the right-hand side is bounded as N → ∞, it follows that

aN = O

(
1

HN

)
= O

(
1

log N

)
.
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Next note that

N∑
n=1

(an − an+1)Hn =
N∑

n=1

an

n
− HN aN+1.

The latter expression is bounded, because the first sum is bounded and the second term
satisfies 0 ≤ (1 + 1/2 + · · · + 1/N )aN+1 ≤ (1 + 1/2 + · · · + 1/N )aN = O(1). Thus
the partial sums of the series

∑∞
n=1(an − an+1)Hn are bounded. Since the terms are

nonnegative, the series therefore converges, which implies the convergence of∑∞
n=1 (an − an+1) log n.
Conversely, assume that an = O(1/ log n) and

∑∞
n=1 (an − an+1) log n < ∞. The

first relation implies that HN aN+1 is bounded as N → ∞, while the second implies∑∞
n=1 (an − an+1)Hn < ∞. Thus the partial sums of this series are bounded. Now the

conclusion that the partial sums of the series
∑∞

n=1 an/n are also bounded follows, since

N∑
n=1

an

n
=

N∑
n=1

(an − an+1)Hn + HN aN+1

for all N . Since
∑∞

n=1 an/n is a series of nonnegative terms, the proof is complete.

Also solved by U. Abel (Germany), K. F. Andersen (Canada), R. Bagby, E. Bojaxhiu (Albania) & E. Hys-
nelaj (Australia), R. Boukharfane (France), R. Chapman (U. K.), H. Chen, G. H. Chung, M. Goldenberg &
M. Kaplan, N. Grivaux (France), E. A. Herman, E. J. Ionaşcu, O. Kouba (Syria), K.-W. Lau, J. H. Lindsey II,
O. P. Lossers (Netherlands), M. Omarjee (France), P. Perfetti (Italy), E. Schmeichel, N. C. Singer, J. C. Smith,
A. Stenger, R. Stong, J. Van Casteren (Belgium), M. Wildon (U. K.), GCHQ Problem Solving Group (U. K.),
and the proposer.

A Circumcentric Triangle

11830 [2015, 285]. Proposed by Leo Giugiuc, Drobeta-Turnu Severin, Romania, and Oai
Thanh Dao, Quang Trung village, Kien Xuong district, Thai Binh Province, Vietnam. Let
A, B, C be the vertices of a triangle. Let P be a parabola tangent to the line BC at A1, to
C A at B1, and to AB at C1. Let A2, B2, and C2 be the circumcenters of triangles AB1C1,
BC1 A1, and C A1 B1, respectively.
(a) Show that there is a circle through A2, B2, C2, and the focus of P .
(b) Show that the triangles ABC and A2 B2C2 are similar.

Solution by O. P. Lossers, Einhoven University of Technology, Eindhoven, The Nether-
lands. (b) We choose a Euclidean coordinate system such that the equation of the parabola
is x = y2. Let the tangents through B touch the parabola in A1 = (a2, a) and C1 = (c2, c),
and let B1 = (b2, b). Then B, the pole of the line A1C1, has the coordinates (ac,
(a + c)/2). We then compute

B2 =
(

1

4
+ (a + c)2

2
, (a + c)

(
1

4
− ac

))
.

The other points of interest for this problem may be obtained by cyclic permutations of
a, b, c. Thus C − B = (b − c)(a, 1/2) and

C2 − B2 = (b − c)

(
s

2
+ a

2
,

1

4
− as

)
, where s = a + b + c.

For the length, B2C2
2 = (c − b)2

(
s2 + 1

4

)(
a2 + 1

4

) = (
s2 + 1

4

)
BC

2
. The same relation

holds for the other sides, so the triangles ABC and A2 B2C2 are similar.
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(a) The focus F is (1/4, 0). To prove that F is on the circumcircle of A2 B2C2, we compare
the cosines of ∠A2 FC2 and ∠A2 B2C2. By (b), triangles ABC and A2 B2C2 have the same
angles, and so

cos
(
∠A2 B2C2

) = cos
(
∠ABC

) = ±
1
4 + ac√(

1
4 + a2

)(
1
4 + c2

) .

To compute the angle A2 FC2 we first compute the inner product of A2 F and C2 F :

A2 F = (b + c)

(
b + c

2
,

1

4
− bc

)
, C2 F = (a + b)

(
a + b

2
,

1

4
− ab

)
,

and (A2 F) · (C2 F) = (c + b)(b + a)

(
1

4
+ b2

)(
1

4
+ ac

)
.

The length of A2 F is |c + b|
√

1
4 + c2

√
1
4 + b2, so

cos (∠A2 FC2) = ± ( 1
4 + ac

)
√(

1
4 + a2

) (
1
4 + c2

) .

Thus cos (∠A2 FC2) and cos
(
∠A2 B2C2

)
are equal in absolute value. Therefore F is either

on the circumcircle of A2 B2C2 or on its mirror image under reflection in side A2C2. The
same is true for the other sides, so F, A2, B2, C2 are indeed on the same circle.

Editorial comment. Part (b) appears as a corollary on page 134 of R. A. Johnson, Advanced
Euclidean Geometry, Dover, 1960.

Also solved by R. Chapman (U. K.), J.-P. Grivaux (France), O. Kouba (Syria), J. McHugh, J. C. Smith, and
R. Stong.

Uncountably Many Discontinuities, Again

11833 [2015, 390]. Proposed by Mher Safaryan, Yerevan State University, Yerevan, Arme-
nia, and Vahagn Aslanyan, University of Oxford, Oxford, U. K. Let f be a real-valued
function on an open interval (a, b) such that the one-sided limits limt→x− f (t) and
limt→x+ f (t) exist and are finite for all x in (a, b). Can the set of discontinuities of
f be uncountable?

Solution by Klaas Pieter Hart, Delft University of Technology, Delft, Netherlands. No, the
set of discontinuities is countable. Let D be the set of points at which f is discontinuous.
Write f (x+) = limt→x+ f (t) and f (x−) = limt→x− f (t). Because of the assumptions,
a point x belongs to D for one of two reasons: f (x−) 
= f (x+) or f (x−) = f (x+) 
=
f (x). Thus D ⊆ A ∪ B, where A = {x : f (x) 
= f (x−)} and B = {x : f (x) 
= f (x+)}. It
suffices to show that A and B are countable. The arguments for A and B are mirror images
of each other, so we concentrate on A.

For a natural number n, let An = {x ∈ A : | f (x−) − f (x)| ≥ 2−n}. Since A = ⋃
n An ,

it suffices to show each An is countable. We claim that if p ∈ An , then there is positive real
number δp such that (p − δp, p) ∩ An = ∅. This claim suffices, because {(p − δp, p) :
p ∈ An} is a pairwise disjoint family of intervals in the real line and hence countable,
which implies that An itself is countable.

To prove the claim, choose δp > 0 small enough that
∣∣ f (x) − f (p−)

∣∣ < (1/3)2−n

whenever x ∈ (p − δp, p). By the triangle inequality, we have | f (y) − f (x)| < 2
3 · 2−n

whenever x, y ∈ (p − δp, p). From this we get | f (x−) − f (x)| ≤ 2
3 · 2−n whenever x ∈

(p − δp, p). So (p − δp, p) ∩ An = ∅, as claimed.
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Editorial comment. A slightly stronger version of this result appeared as MONTHLY Prob-
lem 10979 [109 (2002), 921; solution 111 (2004), 630]. The solution given there (also by
Hart) includes many references to this result in the literature.

Also solved by R. Acosta & J. Losada (Spain), M. Bataille (France), M. W. Botsko, R. Boukharfane (France),
P. Budney, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), O. Geupel (Germany), N. Grivaux (France),
J. W. Hagood, D. L. Hancock, Y. J. Ionin, B. Karaivano (U.S.A.) & T. S. Vassilev (Canada), J. H. Lindsey II,
M. D. Meyerson, P. Perfetti (Italy), Á. Plaza & F. Perdomo (Spain), D. Ritter, K. S. Sarkaria, S. Scheinberg,
K. Schilling, J. C. Smith, R. Stong, R. Tauraso (Italy), and the proposer.

A Putnam Addendum

11837 [2015, 391]. Proposed by Iosif Pinelis, Michigan Technological University,
Houghton, MI. Let a0 = 1, and, for n ≥ 0, let an+1 = an + e−an . Let bn = an − log n.
For n ≥ 0, show that 0 < bn+1 < bn; also show that limn→∞ bn = 0. (The proposer
notes that the content of Problem B4 of the 73rd William Lowell Putnam Mathematical
Competition—see, e.g., this MONTHLY, Volume 120, No. 8, pages 682 and 686—was the
question of whether bn has a finite limit as n → ∞.)

Composite solution by Nicole Grivaux, Paris, France, and Oliver Geupel, Brühl, NRW,
Germany. The sequence (an)n≥0 satisfies an+1 = f (an), where f (t) = t + e−t . The
function f is increasing and positive on [0,∞). For any positive integer n, we have
log(1 + 1/n) < 1/n and log(1 − 1/(n + 1)) < −1/(n + 1), and so

log(n + 1) < log n + 1

n
(1)

and

1

n + 1
< log

(
1 + 1

n

)
<

1

n
. (2)

We prove by induction that an > log(n + 1) for all positive integers n. First, a0 = 1
> log 2. Next, if an > log(n + 1), then an+1 > f (log(n + 1)) = log(n + 1) + 1/(n + 1),
and so (1) implies that an+1 > log(n + 2).

Because an > log(n + 1) > log n, we have bn > 0 for any positive integer n.
Because an+1 − an = e−an , we have an+1 − an < e− log(n+1) = 1/(n + 1) for any posi-

tive integer n. Using (2), we obtain an+1 − an < log(n + 1) − log(n), and so bn+1 < bn .
Now an increases to infinity, so

lim
n→∞

ean+1 − ean

(n + 1) − n
= lim

n→∞
ee−an − 1

e−an
= lim

h→0

eh − 1

h
= 1.

By the Stolz–Cesàro lemma, it follows that limn→∞ ean /n = 1. Consequently, limn→∞ ebn

= 1 and limn→∞ bn = 0.

Also solved by T. Amdeberhan & V. H. Moll, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), E. A. Her-
man, K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands), G. Marks, M. Omarjee (France), P. Per-
fetti (Italy), M. A. Prasad (India), S. Roy & J. Bose (India), M. Sawhney, J. C. Smith, A. Stenger, R. Stong,
R. Tauraso (Italy), E. I. Verriest, T. Viteam (Japan), GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Daniel Cranston, Zachary Franco,
Christian Friesen, László Lipták, Rick Luttmann, Frank B. Miles, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, and Fuzhen Zhang.

Proposed problems should be submitted online at
http: // www. americanmathematicalmonthly. submittable. com/ submit.

Proposed solutions to the problems below should be submitted on or before June
30, 2017 via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11957. Proposed by Éric Pité, Paris, France. Let m and n be two integers with n ≥ m ≥ 2.
Let S(n, m) be the Stirling number of the second kind, i.e., the number of ways to partition
a set of n objects into m nonempty subsets. Show that

nm S(n, m) ≥ mn

(
n

m

)
.

11958. Proposed by Kent Holing, Trondheim, Norway.
(a) Find a condition on the side lengths a, b, and c of a triangle that holds if and only if the
nine-point center lies on the circumcircle.
(b) Characterize the triangles whose nine-point center lies on the circumcircle and whose
incenter lies on the Euler line.

11959. Proposed by Donald Knuth, Stanford University, Stanford, CA. Prove that, for any
n-by-n matrix A with (i, j)-entry ai, j and any t1, . . . , tn , the permanent of A is

1

2n

∑ n∏
i=1

σi

(
ti +

n∑
j=1

σ j ai, j

)
,

where the outer sum is over all 2n choices of (σ1, . . . , σn) ∈ {1,−1}n .

11960. Proposed by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg,
Germany. Let m and n be natural numbers, and, for i ∈ {1, . . . m}, let ai be a real number
with 0 ≤ ai ≤ 1 . Define

f (x) = 1

x2

(
m∑

i=1

(1 + ai x)mn − m
m∏

i=1

(1 + ai x)n

)
.

Let k be a nonnegative integer, and write f (k) for the kth derivative of f . Show that
f (k)(−1) ≥ 0.

http://dx.doi.org/10.4169/amer.math.monthly.124.2.179
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11961. Proposed by Mihaela Berindeanu, Bucharest, Romania. Evaluate∫ π/2

0

sin x

1 + √
sin(2x)

dx .

11962. Proposed by Elton Hsu, Northwestern University, Evanston, IL. Let {Xn}n≥1 be
a sequence of independent and identically distributed random variables each taking the
values ±1 with probability 1/2. Find the distribution of the random variable√√√√1

2
+ X1

2

√
1

2
+ X2

2

√
1

2
+ · · · .

11963. Proposed by Gheorghe Alexe and George-Florin Serban, Braila, Romania. Let
a1, . . . , an be positive real numbers with

∏n
k=1 ak = 1. Show that

n∑
i=1

(ai + ai+1)
4

a2
i − ai ai+1 + a2

i+1

≥ 12n,

where an+1 = a1.

SOLUTIONS

An Inequality with Squared Tangents

11778 [2014, 456]. Proposed by Li Zhou, Polk State College, Winter Haven, FL.
Let x, y, z be positive real numbers such that x + y + z = π/2. Let f (x, y, z) =
1/(tan2 x + 4 tan2 y + 9 tan2 z). Prove that

f (x, y, z) + f (y, z, x) + f (z, x, y) ≤ 9

14

(
tan2 x + tan2 y + tan2 z

)
.

Solution by Vazgen Mikayelyan, Department of Mathematics and Mechanics, Yerevan
State University, Yerevan, Armenia. Letting a = tan x , b = tan y, and c = tan z, we have
a, b, c > 0, since 0 < x, y, z < π/2, and ab + bc + ca = 1 since

a = tan x = cot(y + z) = 1 − tan y tan z

tan y + tan z
= 1 − bc

b + c
.

By the Cauchy–Schwarz inequality,

3(a2 + 4b2 + 9c2) = 3a2b2

b2
+ 11a2b2

a2
+ b2c2

c2
+ 13b2c2

b2
+ 14c2a2

a2

= (3ab)2

3b2
+ (11ab)2

11a2
+ (bc)2

c2
+ (13bc)2

13b2
+ (14ca)2

14a2

≥ (14ab + 14bc + 14ca)2

3b2 + 11a2 + c2 + 13b2 + 14a2
= 142

25a2 + 16b2 + c2
.

Hence,

f (x, y, z) = 1

a2 + 4b2 + 9c2
≤ 3(25a2 + 16b2 + c2)

142
.
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Adding this and the analogous inequalities obtained by cycling the variables, we obtain

f (x, y, z) + f (y, z, x) + f (z, x, y) ≤ 3(42a2 + 42b2 + 42c2)

142
= 9(a2 + b2 + c2)

14
,

which is the desired inequality.

Editorial comment. Paolo Perfetti proved the stronger result

f (x, y, z) + f (y, z, x) + f (z, x, y) ≤ 9

14
≤ 9

14
(tan2 x + tan2 y + tan2 z).

Also solved by A. Ali (India), S. Baek (Korea), R. Bagby, P. P. Dályay (Hungary), O. Geupel (Germany),
P. Perfetti (Italy), R. Stong, R. Tauraso (Italy), and the proposer.

Concyclic or Collinear

11779 [2014, 456]. Proposed by Michel Bataille, Rouen, France.

Let M , A, B, C , and D be distinct points
(in any order) on a circle � with center O .
Let the medians through M of triangles
MAB and MC D cross lines AB and CD at
P and Q, respectively, and meet � again
at E and F , respectively. Let K be the
intersection of AF with DE, and let L be
the intersection of BF with CE. Let U
and V be the orthogonal projections of
C onto MA and D onto MB, respectively,
and assume U �= A and V �= B. Prove
that A, B, U , and V are concyclic if and
only if O , K , and L are collinear.

B
V

M

C

F

O
U

A

K

L

D

E
P

Q

Solution by Richard Stong, Center for Communications Research, San Diego, CA. The
problem is not quite correct. We must also assume that E and F do not coincide, hence
K and L do not coincide. (If K and L coincide, then O, K , L are clearly collinear, but
A, U, B, V need not be concyclic.)

Let R be the radius of �, let N the point where lines AC and BD intersect, and let X and
Y be the reflections of O across lines AC and BD, respectively. The claim is the equivalence
of (1) A, B, U, V are concyclic, and (2) O, K , L are collinear. We show that each of these
is equivalent to (3) M is equidistant from X and Y .

(1) ⇐⇒ (3). Note that A, B, U, V are concyclic if and only if the powers from M are
equal: |MA| · |MU| = |MB| · |MV|. From trigonometry and the extended law of sines,

|MB| · |MV| = 4R2 sin
(

1
2∠MOB

)
sin
(

1
2∠MOD

)
cos

(
1
2∠BOD

)
.

From the law of cosines applied to 
MOY , we find that |MY|2 equals

R2 + 4R2 cos2 ( 1
2∠BOD

)− 4R2 cos
(

1
2∠BOD

)
cos

(
1
2 (∠MOB + ∠MOD)

)
= R2 + 8R2 sin

(
1
2∠MOB

)
sin
(

1
2∠MOD

)
cos

(
1
2∠BOD

)
= R2 + 2|MB| · |MV|,
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and analogously, |MX|2 = R2 + 2|MA| · |MU|. Thus, |MX| = |MY| if and only if |MA| ·
|MU| = |MB| · |MV|.

(2) ⇐⇒ (3). Lay down complex coordinates with � equal to the unit circle. If a point
Z with coordinate z is on the unit circle and point W with coordinate w is any other point
in the complex plane, then the second intersection of line WZ with the unit circle has
coordinate (z − w)/(wz − 1). Hence, letting lower case letters denote coordinates of the
points with the corresponding upper case letter, we compute

e = ab(a + b − 2m)

2ab − am − bm
and f = cd(c + d − 2m)

2cd − cm − dm
.

By Pascal’s theorem applied to the hexagon CEDBFA, we see that K , L , and N all lie on
the line

(ce + db + f a − ed − b f − ac)z + (abd f + ace f + bcde − abc f − acde − bde f )z

= ce(b + f ) + db(a + c) + f a(e + d) − ed( f + a) − b f (c + e) − ac(b + d).

If K �= L , then this is the unique line through K and L . Hence, O , K , and L are collinear
if and only if

ce(b + f ) + db(a + c) + f a(e + d) − ed( f + a) − b f (c + e) − ac(b + d) = 0.

Plugging in the formulas for e and f above and factoring out (a − b)(c − d), this becomes

m

(
1

a
+ 1

c
− 1

b
− 1

d

)
+ (a + c − b − d)m = (ab − cd)(ad − bc)

abcd
.

Since x = a + c and y = b + d, this is the equation of the line perpendicular to XY through
the midpoint (a + b + c + d)/2 of XY . Hence, O , K , and L are collinear if and only if
|MX| = |MY|.
Also solved by R. Chapman (U. K.), J.-P. Grivaux (France), C. R. Pranesachar (India), and the proposer.

Altitudes of a Tetrahedron

11783 [2014, 549] and 11797 [2014, 738]. Proposed by Zhang Yun, Xi’an City, Shaanxi,
China. Given a tetrahedron, let r denote the radius of its inscribed sphere. For 1 ≤ k ≤ 4,
let hk denote the distance from the kth vertex to the plane of the opposite face. Prove that

4∑
k=1

hk − r

hk + r
≥ 12

5
.

Solution by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor Ver-
gata,” Rome, Italy. The volume of the tetrahedron is given by

hk Ak

3
= r S

3
,

where Ak is the area of the face opposite the kth vertex and S = ∑4
k=1 Ak is the surface

area of the tetrahedron. Hence, hk = r/tk , where tk = Ak/S. Since 0 < tk < 1 and the
function f (t) = (1 − t)/(1 + t) is convex on [0,+∞), we have

4∑
k=1

hk − r

hk + r
=

4∑
k=1

f (tk) ≥ 4 f

(
1

4

4∑
k=1

tk

)
= 4 f

(
1

4

)
= 12

5
.
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Editorial comment. The problem was inadvertently repeated as Problems 11783 and 11797.
Several solvers noted that equality holds if and only if the face areas are equal. This
does not require, however, that the tetrahedron be regular. Some solvers noted that the
n-dimensional analogue of the inequality holds with lower bound n(n + 1)/(n + 2).

Also solved by A. Ali (India), S. Baek (Korea), R. Bagby, M. Bataille (France), D. M. Bătinetu-Giurgiu &
T. Zvonaru (Romania), I. Borosh, R. Boukharfane (Morocco), R. Chapman (U. K.), N. Curwen (U. K.),
P. P. Dályay (Hungary), M. Dincă (Romania), D. Fleischman, H. S. Geun (Korea), O. Geupel (Germany),
M. Goldenberg & M. Kaplan, J. G. Heuver (Canada), S. Hitotumatu (Japan), E. J. Ionaşcu, Y. J. Ionin,
B. Karaivanov (U.S.A.) & T. S. Vassilev (Canada), O. Kouba (Syria), D. Lee (Korea), O. P. Lossers (Nether-
lands), V. Mikayelyan (Armenia), R. Nandan, Y. Oh (Korea), P. Perfetti (Italy), I. Pinelis, C. R. Pranesachar
(India), Y. Shim (Korea), J. C. Smith, R. Stong, T. Viteam (India), M. Vowe (Switzerland), T. Zvonaru &
N. Stanciu (Romania), GCHQ Problem Solving Group (U. K.), Missouri State University Problem Solving
Group, University of Louisiana at Lafayette Math Club, and the proposer.

Circles around an Equilateral Triangle

11784 [2014, 549]. Proposed by Abdurrahim Yilmuz, Middle East Technical University,
Ankara, Turkey. Let ABC be an equilateral triangle with center O and circumradius r .
Given R > r , let ρ be a circle about O of radius R. All points named “P” are on ρ.
(a) Prove that |PA|2 + |PB|2 + |PC|2 = 3(R2 + r2).
(b) Prove that minP∈ρ |PA| |PB| |PC| = R3 − r3 and maxP∈ρ |PA| |PB| |PC| = R3 + r3.

(c) Prove that the area of a triangle with sides of length |PA|, |PB|, and |PC| is
√

3
4 (R2 − r2).

(d) Prove that if H , K , and L are the respective projections of P onto AB, AC, and BC,
then the area of triangle HKL is 3

√
3

16 (R2 − r2).
(e) With the same notation, prove that |HK|2 + |KL|2 + |HL|2 = 9

4 (R2 + r2).

Solution by TCDmath Problem Group, Trinity College, Dublin, Ireland.
(a) We represent the points by complex numbers: A = r , B = rω, C = rω2, O = 0,
P = z, where r > 0 and ω = e2π i/3. We compute

|PA|2 = (z − r)(z − r) = |z|2 − r(z + z) + r2,

|PB|2 = (z − rω)(z − rω2) = |z|2 − r(zω + zω2) + r2, and

|PC|2 = (z − rω2)(z − rω) = |z|2 − r(zω2 + zω) + r2.

Summing these equations and using 1 + ω + ω2 = 0 yields

|PA|2 + |PB|2 + |PC|2 = 3(R2 + r2).

(b) We have

|PA| |PB| |PC| = ∣∣(z − r)(z − rω)(z − rω2)
∣∣ = ∣∣z3 − r3

∣∣.
This formula takes its maximum value R3 + r3 when z3 = −R3, that is, when z = Reiθ

with 3θ ≡ π (mod 2π) or when P lies on one of the altitudes of the triangle on the oppo-
site side to the vertex. It takes its minimum value R3 − r3 when z3 = R3, that is, when P
lies on one of the three altitudes of the triangle on the same side as the vertex.
(c) Heron’s formula for the area � of a triangle with sides a, b, c is

16�2 = 2
(
a2b2 + b2c2 + c2a2

)− (
a4 + b4 + c4

)
= (

a2 + b2 + c2
)2 − 2

(
a4 + b4 + c4

)
.

In our case, we have (|PA|2 + |PB|2 + |PC|2)2 = 9(R2 + r2)2 and
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|PA|4 + |PB|4 + |PC|4 = (
R2 + r2 − r(z + z)

)2

+ (
R2 + r2 − r(zω + zω2)

)2 + (
R2 + r2 − r(zω2 + zω)

)2

= 3
(
R2 + r2)2 − 2

(
R2 + r2) r

(
z + z + zω + zω2 + zω2 + zω

)
+ r2 ((z + z)2 + (zω + zω2)2 + (zω2 + zω)2)

= 3
(
R2 + r2

)2 + 6r2zz = 3
(
R2 + r2

)2 + 6R2r2.

Thus, 16�2 = 3(R2 + r2)2 − 12(R2r2) = 3(R2 − r2)2. Hence, � =
√

3
4 (R2 − r2).

(d) In coordinates (x, y), line BC has equation x = −r/2, and the projection PL has equa-
tion y = b, where b is the imaginary part of z. Thus,

L = 1

2
(−r + z − z).

To determine H , we rotate the plane with the transformation z 
→ ωz and then rotate back
with z 
→ ω2z. This yields

H = ω2

2
(−r + ωz − ω2z) = 1

2
(−ω2r + z − ωz).

Similarly,

K = 1

2
(−ωr + z − ω2z).

Thus, using |1 − ω| = |1 − ω2| = |ω − ω2| = √
3, we have

|H K | =
√

3

2
|z − r |, |K L| =

√
3

2
|z − ωr |, and |L H | =

√
3

2
|z − ω2r |.

Replacing z with z in these expressions leaves the triple {|HK|, |KL|, |LH|} unchanged.
The triangle HKL is therefore similar to the triangle in part (c) with coefficient of similarity
equal to

√
3/2. It follows that the area of 
HKL is 3/4 times the area of the earlier triangle,

that is, 3
√

3
16 (R2 − r2).

(e) Similarly, comparing with the earlier triangle, |HK|2 + |KL|2 + |HL|2 = 9
4 (R2 + r2).

Editorial comment. The Editors regret that the “16” in the denominator of part (d) was
misprinted as “116.”

All parts also solved by R. Bagby, M. Bataille (France), R. Boukharfane (Morocco), R. Chapman (U. K.),
N. Curwen (U. K.), P. P. Dályay (Hungary), A. Ercan (Turkey), M. Goldenberg & M. Kaplan, J.-P. Grivaux
(France), A. Habil (Syria), E. J. Ionaşcu, Y. J. Ionin, B. Karaivanov, O. Kouba (Syria), M. D. Meyerson,
J. Minkus, C. R. Pranesachar (India), J. C. Smith, R. Stong, T. Zvonaru & N. Stanciu (Romania), GCHQ
Problem Solving Group (U. K.), and the proposer. Some but not all parts solved by A. Ali (India), R. B. Cam-
pos (Spain), D. Fleischman, O. Geupel (Germany), P. Nüesch (Switzerland), J. Schlosberg, C. R. Selvaraj &
S. Selvaraj, T. Viteam (India), and Z. Vörös (Hungary).

A Limit of a Ratio of Logarithms

11786 [2014, 550]. Proposed by George Stoica, University of New Brunswick, Saint John,
Canada. Let x1, x2, . . . be a sequence of positive numbers such that limn→∞ xn = 0 and
limn→∞

log xn
x1+···+xn

is a negative number. Prove that limn→∞
log xn
log n = −1.

Solution by Lixing Han, University of Michigan, Flint, MI. Suppose that

lim
n→∞ log xn/(x1 + · · · + xn) = β < 0.
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Then by the Stolz–Cesàro theorem, we have

lim
n→∞

log(xn+1/xn)

xn+1
= lim

n→∞
log xn+1 − log xn

xn+1
= lim

n→∞
log xn

x1 + · · · + xn
= β. (1)

This implies that xn+1 < xn for large n since xn > 0 and limn→∞ xn = 0 by assumption.
Since xn goes to zero as n → ∞, (1) implies limn→∞ βxn+1 = limn→∞ log(xn+1/xn) = 0.
It follows that

lim
n→∞

xn+1

xn
= 1. (2)

By the mean value theorem, there exists ζn such that

log xn+1 − log xn = 1

ζn
(xn+1 − xn),

where ζn is between xn and xn+1. Thus, for large n, xn+1/xn < ζn/xn < 1. From (2), we
conclude limn→∞ ζn/xn = 1. Using this result and (1) again,

lim
n→∞

log xn+1 − log xn

xn+1
= lim

n→∞
1

ζn
· xn+1 − xn

xn+1
= lim

n→∞
xn

ζn
· xn+1 − xn

xn xn+1
= β.

This implies that for any ε ∈ (0, |β|), there exists a positive integer N such that

β − ε <
1

xn
− 1

xn+1
< β + ε

for all n ≥ N . Summing these inequalities from n = N to N + m − 1, we obtain

(β − ε)m <
1

xN
− 1

xN+m
< (β + ε)m.

Dividing by N + m and taking the limit as m → ∞,

β − ε ≤ lim
m→∞

(
1

(N + m)xN
− 1

(N + m)xN+m

)
≤ β + ε.

Since limm→∞ 1
(N+m)xN

= 0,

1

β + ε
≤ − lim

m→∞ (N + m)xN+m = − lim
n→∞ nxn ≤ 1

β − ε
.

Let ε approach 0 to obtain limn→∞ nxn = −1/β > 0. Thus,

lim
n→∞ log(nxn) = lim

n→∞(log n + log xn) = log

(
− 1

β

)
.

However, if this holds, then, since log n → ∞, it must be the case that

lim
n→∞

log n + log xn

log n
= lim

n→∞
log(− 1

β
)

log n
= 0.

Hence,

lim
n→∞

(
1 + log xn

log n

)
= 0,

so limn→∞ log xn/ log n = −1.
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Also solved by P. Bracken, P. P. Dályay (Hungary), P. J. Fitzsimmons, E. J. Ionaşcu, O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), M. Omarjee (France), T. Persson & M. P. Sundqvist (Sweden),
I. Pinelis, J. C. Smith, A. Stenger, R. Stong, and the proposer.

Sum of Medians of a Triangle

11790 [2014, 648]. Proposed by Arkady Alt, San Jose, CA, and Konstantin Knop, St. Peters-
burg, Russia. Given a triangle with semiperimeter s, inradius r , and medians of length ma ,
mb, and mc, prove that ma + mb + mc ≤ 2s − 3(2

√
3 − 3)r .

Solution by James Christopher Smith, Knoxville, TN. Write R for the circumradius. We use
two inequalities. The first is

(ma + mb + mc)
2 ≤ 4s2 − 16Rr + 5r2,

due to Xiao-Guang Chu and Xue-Zhi Yang. (See J. Liu, “On an inequality for the medians
of a triangle,” Journal of Science and Arts, 19 (2012) 127–136.) The second is

s ≤ (3
√

3 − 4)r + 2R,

known as Blundon’s inequality. (See problem E1935, this MONTHLY, 73 (1966) 1122.)
Write u = 2

√
3 − 3. From Blundon’s inequality,

(2s − 3ur)2 = 4s2 − 12sur + 9u2r2

≥ 4s2 − 12ur
(
(3

√
3 − 4)r + 2R

)+ 9u2r2

= 4s2 − 24u Rr + (
9u2 − 12u(3

√
3 − 4)

)
r2

= 4s2 − 16Rr + (16 − 24u)Rr + 3u(7 − 6
√

3 )r2.

Next, we use Euler’s inequality R ≥ 2r to get(
2s − 3ur

)2 ≥ 4s2 − 16Rr + (16 − 24u)2r2 + 3u(7 − 6
√

3 )r2

= 4s2 − 16Rr + 5r2,

which is greater than or equal to (ma + mb + mc)
2 by the Chu–Yang inequality.

Also solved by R. Boukharfane (Canada), O. Geupel (Germany), O. Kouba (Syria), R. Tauraso (Italy), M. Vowe
(Switzerland), and T. Zvonaru & N. Stanciu (Romania).

A Middle Subspace

11792 [2014, 648]. Proposed by Stephen Scheinberg, Corona del Mar, CA. Show that every
infinite-dimensional Banach space contains a closed subspace of infinite dimension and
infinite codimension.

Solution by University of Louisiana at Lafayette Math Club, Lafayette, LA. Let V be an
infinite-dimensional normed vector space (we do not require completeness). We construct a
sequence of linearly independent vectors v0, v1, . . . in V and a sequence of bounded linear
functionals λ0, λ1, . . . such that λi (v j ) = δi, j for all nonnegative integers i and j . Choose
a nonzero v0 ∈ V . By the Hahn–Banach theorem, there is a bounded linear functional λ0

on V with λ0(v0) = 1. Suppose that nonzero vectors v0, . . . , vk ∈ V and bounded linear
functionals λ0, . . . , λk have been defined such that λi (v j ) = δi, j for i, j ∈ {1, . . . , k}. The
vector subspace

⋂k
i=1 ker λi has infinite dimension since it has finite codimension in V ,

which is infinite-dimensional. In particular, there exists nonzero vk+1 ∈ ⋂k
i=1 ker λi . The
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functional λk+1 may be defined by λk+1(v j ) = 0 for 0 ≤ j ≤ k and λk+1(vk+1) = 1 and
then extended by the Hahn–Banach theorem to a bounded linear functional on V . The
vectors v0, . . . , vk+1 are linearly independent since applying λ j to

∑
civi = 0 shows that

c j = 0. Continuing in this way, we construct the desired sequence v0, v1, . . . .
Let W be the closure of the linear span of {v0, v2, v4, . . . }. The subspace W has infi-

nite dimension, since the vi are linearly independent. We claim also that W has infinite
codimension, that is, that V/W is infinite-dimensional. We prove this by showing that
the cosets v1 + W, v3 + W, v5 + W, . . . are linearly independent. Suppose otherwise, that
there is some n and there are some scalars α1, . . . , αn ∈ R with at least one of them nonzero
such that

∑n
i=1 αiv2i−1 ∈ W . Say α j �= 0. Since λ2 j−1(vi ) = 0 for even i , the linear func-

tional λ2 j−1 vanishes on their linear span and therefore on the closure W . This contradicts

λ2 j−1

(
n∑

i=1

αiv2i−1

)
= α j �= 0.

Thus, W has infinite codimension.

Also solved by R. Chapman (U. K.), N. Eldredge, M. González & Á. Plaza (Spain), J. P. Grivaux (France),
P. Perfetti (Italy), R. Tauraso (Italy), and the proposer.

Sums of Unit Vectors

11825 [2015, 284]. Proposed by Marian Dinca, Vahalia University of Târgoviste, Bucharest,
Romania, and Sorin Radulescu, Institute of Mathematical Statistics and Applied Mathe-
matics, Bucharest, Romania. Let E be a normed linear space. Given x1, . . . , xn ∈ E (with
n ≥ 2) such that ‖xk‖ = 1 for 1 ≤ k ≤ n and the origin of E is in the convex hull of
{x1, . . . , xn}, prove that ‖x1 + · · · + xn‖ ≤ n − 2.

Solution by Edward Schmeichel, San José State University, San José, CA. Since the origin
is in the convex hull of {x1, . . . , xn}, there are nonnegative real numbers tk for 1 ≤ k ≤ n
with

∑n
k=1 tk = 1 and

∑n
k=1 tk xk = 0. Since

tk = ‖tk xk‖ =
∥∥∥∥∥∥−

∑
j �=k

t j x j

∥∥∥∥∥∥ ≤
∑
j �=k

t j = 1 − tk,

we see that 1 − 2tk ≥ 0. Thus,

‖x1 + · · · + xn‖ =
∥∥∥∥∥

n∑
k=1

(1 − 2tk)xk

∥∥∥∥∥ ≤
n∑

k=1

(1 − 2tk) = n − 2.

Editorial comment. This inequality seems to have first appeared in M. S. Klamkin and
D. J. Newman, An inequality for the sums of unit vectors, Univ. Beo. Publ. Elek. Fac., Ser.
Mat. i. Fiz. 338–352 (1971) 47–48. A more accessible reference is G. D. Chakerian and
M. S. Klamkin, Inequalities for Sums of Distances, this MONTHLY 80 (1973) 1009–1017.

Also solved by M. Aassila (France), U. Abel (Germany), K. F. Andersen (Canada), R. Bagby, E. Bojaxhiu
(Albania) & E. Hysnelaj (Australia), R. Boukharfane (France), F. Brulois, P. Budney, S. Byrd & R. Nichols,
N. Caro (Brazil), R. Chapman (U. K.), W. J. Cowieson, P. P. Dályay (Hungary), P. J. Fitzsimmons, N. Grivaux
(France), E. A. Herman, Y. J. Ionin, E. G. Katsoulis, J. H. Lindsey II, O. P. Lossers (Netherlands), V. Muragan
& A. Vinoth (India), M. Omarjee (France), M. A. Prasad (India), R. Stong, R. Tauraso (Italy), J. Van Hamme
(Belgium), J. Zacharias, R. Zarnowki, New York Math Circle, and the proposers.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Daniel Cranston, Zachary Franco,
Christian Friesen, László Lipták, Rick Luttmann, Frank B. Miles, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, and Fuzhen Zhang.

Proposed problems should be submitted online at
http: // www. americanmathematicalmonthly. submittable. com/ submit.

Proposed solutions to the problems below should be submitted on or before July 31,
2017 via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11964. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,” Bı̂rlad,
Romania. Find all triples of integers (a, b, c) with a �= 0 such that the function f defined
by f (x) = ax2 + bx + c has the property that, for every positive integer n, there exists an
integer m with f (n) f (n + 1) = f (m).

11965. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania. Let ABC be a
triangle with circumradius R. Prove that there exists a point M on side BC such that
M A · M B · MC = 32R3/27 if and only if 2 cot B cot C = 1.

11966. Proposed by Cornel Ioan Vălean, Teremia Mare, Timiş, Romania. Prove that∫ 1

0

x ln(1 + x)

1 + x2
dx = π2

96
+ (ln 2)2

8
.

11967. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Fn be the nth Fermat number
22n + 1. Find

lim
n→∞

√√√√
6F1 +

√
6F2 +

√
6F3 +

√
· · · +

√
6Fn.

11968. Proposed by Christopher J. Hillar, Redwood Center for Theoretical Neuroscience,
Berkeley, CA, Robert Krone, Queens University, Kingston, Ontario, Canada, and Anton
Leykin, Georgia Tech University, Atlanta, GA. Let Fn be the nth Fibonacci number, with
F0 = 0, F1 = 1, and Fk = Fk−1 + Fk−2 for k ≥ 2. For n ≥ 1, prove that F5n/(5Fn) is an
integer congruent to 1 modulo 10.

11969. Proposed by Askar Dzhumadil’daev, Kazakh-British Technical University, Almaty,
Kazakhstan. Let x1, . . . , xn be indeterminates, and let A be the n-by-n matrix with
i , j-entry sec(xi − x j ). Prove

det A = (−1)(
n
2)

∏
1≤i< j≤n

tan2(xi − x j ).

http://dx.doi.org/10.4169/amer.math.monthly.124.3.274
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11970. Proposed by Albert Stadler, Herrliberg, Switzerland. Let

ζ5(z) = 1 + 2−z + 3−z + 4−z + 5−z,

where z is a complex number. Prove that ζ5(z) �= 0 when the real part of z is greater than
or equal to 0.9.

SOLUTIONS

Successors of Squares Without Large Prime Divisors

11831 [2015, 390]. Proposed by Raitis Ozols, University of Latvia, Riga, Latvia. Prove that
for ε > 0 there exists an integer n such that the greatest prime divisor of n2 + 1 is less than
εn.

Solution by John P. Robertson, National Council on Compensation Insurance, Boca Raton,
Florida. We show more generally that, for every integer k and every ε > 0, there exists an
integer n such that the greatest prime divisor of n2 + k is less than εn.

When k = 0, it suffices to let n be a sufficiently large power of 2.
When k �= 0, let n = 4k2m3 + 3km for some positive integer m. We compute

n2 + k = k(km2 + 1)(4km2 + 1)2.

The largest prime p dividing n2 + k can be no larger than |4km2 + 1|. In addition,
|4km2 + 1|/n < ε when m is sufficiently large, so p < εn.

Editorial comment. Some solutions involved the factorization of x420 − 1 into cyclotomic
polynomials, and some used Pell’s equation.

Also solved by D. Beckwith, B. Bekker (Russia) & Y. J. Ionin, R. Chapman (U. K.), V. De Angelis, J. Hosle,
P. W. Lindstrom, O. P. Lossers (Netherlands), W. McDermott, M. Omarjee (France), L. Robitaille, C. P. Rupert,
J. Schlosberg, N. C. Singer, R. Stong, R. Tauraso (Italy), E. Weinstein, M. Wildon (U. K.), and the proposer.

An Inequality When Two Triples Agree in Order

11834 [2015, 390]. Proposed by Arkady Alt, San Jose, CA. For nonnegative real numbers
u, v, w, let �(u, v, w) = 2(uv + vw + wu) − (u2 + v2 + w2). Say that two lists (a, b, c)
and (x, y, z) agree in order if (a − b)(x − y) ≥ 0, (b − c)(y − z) ≥ 0, and (c − a)(z −
x) ≥ 0. Prove that if (x, y, z) and (a, b, c) agree in order, then �(a, b, c)�(x, y, z) ≥
3�(ax, by, cz).

Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA. The quantity � is
invariant under permutation of its arguments. The relation “agree in order” and the inequal-
ity to be proved do not change when (a, b, c) and (x, y, z) undergo the same permutation.
Therefore we may assume a ≥ b ≥ c ≥ 0 and x ≥ y ≥ z ≥ 0. One then sees that

�(a, b, c)�(x, y, z) − 3�(ax, by, cz) = (a − b)2
(
4(x − y)2 + 3(y − z)2

)
+ 3(b − c)2(x − y)2 + 2(a − b)2

(
(x − y)(3y − z) + z(y − z)

)
+ 2(a − b)

(
(x − y)2(3b − c) + (x − y)(3by − cz) + cz(y − z)

)
+ 2c(b − c)

(
(x − y)2 + z(x − z) + z(y − z)

)
is nonnegative, since each term is nonnegative.

Also solved by R. Chapman (U. K.), H. Y. Far, J. F. Loverde, L. Matejı́čka (Slovakia), J. C. Smith, R. Stong,
S. Wagon, and the proposer.
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A Functional Inequality

11835 [2015, 390]. Proposed by George Stoica, University of New Brunswick, St. John,
NB, Canada. Find all functions f from [0,∞) to [0,∞) such that whenever x, y ≥ 0,

√
3 f (2x) + 5 f (2y) ≤ 2 f (

√
3x + 5y).

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The Nether-
lands. We look at the slightly more general (a, b)-condition

a f (x) + b f (y) ≤ f (ax + by),

for some fixed pair (a, b) satisfying 0 < a < 1 < b. The actual problem corresponds to
the case a = √

3/2 and b = 5/2, with 2x, 2y replaced by x, y. We claim that the only
solutions are functions of the form f (x) = qx with q ≥ 0.

From b f (0) ≤ f (0) we have f (0) = 0, since b > 1. We claim that if f (c) = 0 for
some c > 0, then f (x) = 0 for all x . Indeed, if x and y satisfy ax + by = c, then a f (x) +
b f (y) = 0, and so f (x) = f (y) = 0. It follows that f (z) = 0 for all z in the interval
[0, c/a] and then for all z in the interval [0, c/a2], and, continuing in this way, finally
f (z) = 0 for all z ≥ 0. In this case, f (x) = 0 = qx for all x , where q = 0.

Now assume f (x) > 0 for all x > 0. Two special cases of our condition are a f (x) ≤
f (ax) and b f (x) ≤ f (bx). For x > 0, these are equivalent to

f (x)

x
≤ f (ax)

ax
and

f (x)

x
≤ f (bx)

bx
.

Let q = inf{ f (x)/x : 1 ≤ x ≤ b}. Using the second inequality, q = inf{ f (x)/x : 1 ≤ x <

∞}. We then use the first inequality to obtain q = inf{ f (x)/x : 0 < x < ∞}.
Next let g(x) = f (x) − qx . Note that g is a function from [0,∞) to [0,∞) satisfying

the (a, b)-condition, and inf{g(x)/x : 1 ≤ x ≤ b} = 0. We claim g(1) = 0. Indeed, g(a +
by) ≥ ag(1) + bg(y) ≥ ag(1) for all y, so g(z) ≥ ag(1) for all z ≥ a. Choose ε > 0 and
z ∈ [1, b] with g(z) < ε. Since z ≥ 1 > a, we have ag(1) < ε. Since ε is arbitrary, we
conclude g(1) = 0.

Thus g(z) = 0 when z ≥ 0, which yields f (x) = qx for all x ≥ 0.

Also solved by R. Boukharfane (France), O. Bucicovschi, R. Chapman (U. K.), P. P. Dályay (Hungary),
L. Matejı́čka (Slovakia), M. Omarjee (France), M. Omarjee (France) & R. Tauraso (Italy), R. Stong, and the
proposer.

From Nesbitt to Gerretsen

11836 [2015, 391]. Proposed by Traian Viteam, Montevideo, Uruguay. Let ABC be a
triangle with sides of lengths a, b, and c, circumradius R, and inradius r . For p, q, r > 0,
let f (p, q, r) = pqr/(p + q)(r2 − (p − q)2). Prove that

R

2r
≥ 2

3
( f (a, b, c) + f (b, c, a) + f (c, a, b)) .

Solution by Mehtaab Sawhney (student), University of Pennsylvania, Philadelphia, PA. Let
K and s denote the area and semiperimeter of the triangle, respectively. From the area
formulas K = rs = abc/(4R) = √

s(s − a)(s − b)(s − c), we find

R

r
= abc/4K

K/s
= abcs

4K 2
= 2abc

(a + b − c)(b + c − a)(c + a − b)
, or

a + b − c

a + b

R

2r
= abc

(a + b)(a − b + c)(b + c − a)
= f (a, b, c).
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Thus

∑
cyc

f (a, b, c) = R

2r

∑
cyc

a + b − c

a + b
= R

2r

(
3 −

∑
cyc

a

b + c

)
,

where the sums are taken over the cyclic permutations of (a, b, c). It follows that

3R

4r
−
∑
cyc

f (a, b, c) = R

2r

((∑
cyc

a

b + c

)
− 3

2

)
.

The problem is to show that this is nonnegative. By Engel’s form of the Cauchy–Schwarz
inequality,

∑
cyc

a

b + c
=
∑
cyc

a2

a(b + c)
≥ (a + b + c)2

2(ab + bc + ca)
= 3

2
+
∑
cyc

(a − b)2

4(ab + bc + ca)
≥ 3

2
.

This proves the result, with equality if and only if a = b = c.

Editorial comment. The inequality a/(b + c) + b/(c + a) + c/(a + b) ≥ 3/2 was first
noted by A. M. Nesbitt (Problem 15144, Educational Times) in 1903. Its many proofs
include: (i) averaging the two possible applications of the rearrangement inequality to
the sequences a ≤ b ≤ c and 1/(b + c) ≤ 1/(c + a) ≤ 1/(a + b), and (ii) normalizing
to a + b + c = 1, then applying Jensen’s inequality to f (a) = a/(1 − a) which is convex
on (0, 1). R. Boukharfane, P. P. Dályay, and A. Gundamraj showed that the inequality in
the problem is equivalent to s2 ≥ 7r2 + 10Rr , thus relating Nesbitt’s inequality to that of
Gerretsen: s2 ≥ 16Rr − 5r2.

Also solved by A. Ali (India), A. Alt, M. Bataille (France), R. Boukharfane (France), R. Chapman (U. K.),
P. P. Dályay (Hungary), H. Y. Far, D. Fleischman, O. Geupel (Germany), A. Gundamraj, B. Karaivanov
(U. S. A.) & T. S. Vassilev (Canada), B. Keigwin & J. Zacharias, D. Kim (Korea), J. F. Loverde, P. Per-
fetti (Italy), S. Roy & J. Bose (India), J. Schlosberg, J. C Smith, N. Stanciu & T. Zvonaru, R. Stong, T. Sun &
S. Archer, R. Tauraso (Italy), L. Wimmer (Germany), Con Amore Problem Group (Denmark), GCHQ Problem
Solving Group (U. K.), GWstat Problem Solving Group, and the proposer.

Forcing a Double Transversal

11838 [2015, 500]. Proposed by Richard Stanley, Massachusetts Institute of Technology,
Cambridge, MA. Let n be a positive integer. Find the least integer f (n) with the following
property: if M is an n × n matrix of nonnegative integers with every row and column sum
equal to f (n), then M contains n entries, all greater than 1, with no two of these n entries
in the same row or column.

Solution by Mark Wildon, Royal Holloway, Egham, U. K. More generally, for b ∈ N, we
determine fb(n), defined to be the least t such that when the rows and columns sum to
t there will always be a transversal whose entries exceed b, where a transversal is a set
of n positions with one in each row and column. Let gb(n) = b

⌊
n+1

2

⌋ 
 n+1
2 �; we prove

fb(n) = gb(n) + 1.
Given a nonnegative integer matrix M with rows and columns having sum t , let G be the

corresponding bipartite graph with bipartition (X, Y ) whose edge set is {xi y j : Mi, j > b}.
It suffices to show that G must have a perfect matching when t > gb(n), and otherwise G
may fail to have a perfect matching.

If G has no perfect matching, then by Hall’s theorem there is a set S ⊆ X such that
|N (S)| = |S| − 1, where N (S) is the set of vertices in Y having neighbors in S. Let k =
|N (S)|. The submatrix M ′ with rows indexed by S and columns indexed by N (S) has sum
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at most kt . Since entries in these rows outside these columns are at most b, the submatrix
M ′ has sum at least (k + 1)(t − b(n − k)).

Thus (k + 1)(t − b(n − k)) ≤ kt , which simplifies to t ≤ (k + 1)b(n − k) ≤ gb(n).
Hence t > gb(n) implies that the desired transversal exists.

To show that gb(n) does not suffice, we consider odd and even n separately; note
gb(2m − 1) = bm2 and gb(2m) = bm(m + 1). Let Jr,s and Or,s be the r -by-s matrices
that are all-1 and all-0, respectively. When n = 2m − 1, let

M = b

(
Jm,m m Jm,m−1

m Jm−1,m Om−1,m−1

)
.

When n = 2m, let

M = b

(
Jm,m+1 (m + 1)Jm,m−1

m Jm,m+1 Om,m−1

)
.

Rows and columns sum to gb(n). The desired transversal does not exist, because the entries
in the first m rows that exceed b occur in only m − 1 columns.

An n-by-n matrix with constant row and column sums gb(n) − 1 may be obtained from
either of the matrices above by taking a transversal of entries each at least 1, and reducing
each of these entries by 1. This cannot create a new transversal with entries greater than b.
Iterating this process shows that fb(n) > gb(n).

Editorial comment. The generalization was also given by Robin Chapman, Pierre Lalonde,
and John H. Smith.

Also solved by R. Chapman (U. K.), Y. J. Ionin, P. Lalonde (Canada), O. P. Lossers (Netherlands), R. E. Prather,
J. H. Smith, R. Stong, T. Viteam (Japan), and the proposer.

Kooi Variant

11839 [2015, 500]. Proposed by Pál Péter Dályay, Szeged, Hungary. Let R be the circum-
radius, r the inradius, and s the semiperimeter of a triangle. Prove that

16R3 + 20R2r + 15Rr2 + 5r3 ≥ s2(4R + r),

with equality if and only if the triangle is equilateral.

Solution by Peter Nüesch, École Polytechnique Fédérale, Lausanne, Switzerland. We
deduce this as a consequence of Kooi’s inequality

2(2R − r)s2 ≤ R(4R + r)2

(O. Kooi, Inequalities for the triangle, Simon Stevin 32 (1958) 97–101; O. Bottema, Geo-
metric Inequalities, Groningen, 1969, 5.7). It suffices to show

R(4R + r)2

4R − 2r
≤ 16R3 + 20R2r + 15Rr2 + 5r3

4R + r
.

To prove this, note that

(16R3 + 20R2r + 15Rr2 + 5r3)(4R − 2r) − R(4R + r)3

= r2(8R2 − 11Rr − 10r2) = r2(R − 2r)(8R + 5r) ≥ 0,

with equality only if R = 2r , i.e., the triangle is equilateral.

Also solved by A. Ali (India), A. Alt, S. Archer & T. Sun, E. Bojaxhiu (Albania) & E. Hysnelaj (Australia),
R. Chapman (U. K.), A. Fanchini (Italy), O. Geupel (Germany), B. Karaivanov (U. S. A.) & T. S. Vassilev
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(Canada), K.-W. Lau (China), J. H. Lindsey II, J. F. Loverde, P. Perfetti (Italy), M. Sawhney, J. Schlosberg,
M. A. Shayib, J. C. Smith, R. Stong, M. Vowe (Switzerland), T. Zvonaru & N. Stanciu (Romania), GCHQ
Problem Solving Group (U. K.), and the proposer.

A Complex Inequality

11840 [2015, 500]. Proposed by George Stoica, University of New Brunswick, Saint John,
Canada. Let z1, . . . , zn be complex numbers. Prove that

(
n∑

k=1

|zk |
)2

−
∣∣∣∣∣

n∑
k=1

zk

∣∣∣∣∣
2

≥
(

n∑
k=1

|Re zk | −
∣∣∣∣∣

n∑
k=1

Re zk

∣∣∣∣∣
)2

.

(Here Re z denotes the real part of z.)

Solution by Yongtao Li, Hunan Normal University, Changsha, China. Let
z1, . . . , zn be complex numbers, and write zk = ak + ibk for 1 ≤ k ≤ n, where ak and
bk are real. The stated inequality may be written in the equivalent form

(
n∑

k=1

√
a2

k + b2
k

)2

−
⎛
⎝( n∑

k=1

ak

)2

+
(

n∑
k=1

bk

)2
⎞
⎠ ≥

(
n∑

k=1

|ak | −
∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣
)2

. (1)

According to Minkowski’s inequality and the fact that |bk | ≥ bk , we have

(
n∑

k=1

√
a2

k + b2
k

)2

≥
(

n∑
k=1

|ak |
)2

+
(

n∑
k=1

|bk |
)2

≥
(

n∑
k=1

|ak |
)2

+
(

n∑
k=1

bk

)2

.

This implies

(
n∑

k=1

√
a2

k + b2
k

)2

−
⎛
⎝( n∑

k=1

ak

)2

+
(

n∑
k=1

bk

)2
⎞
⎠ ≥

(
n∑

k=1

|ak |
)2

−
(

n∑
k=1

ak

)2

. (2)

However, (
n∑

k=1

|ak |
)2

=
((

n∑
k=1

|ak | −
∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣
)

+
∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣
)2

≥
(

n∑
k=1

|ak | −
∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣
)2

+
(

n∑
k=1

ak

)2

.

Consequently,

(
n∑

k=1

|ak |
)2

−
(

n∑
k=1

ak

)2

≥
(

n∑
k=1

|ak | −
∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣
)2

. (3)

Combining (2) and (3), we obtain the required inequality (1).

Also solved by K. F. Andersen (Canada), R. Chapman (U. K.), P. P. Dályay (Hungary), R. Dutta (India),
D. Fleischman, E. A. Herman, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), J. H. Lindsey II,
O. P. Lossers (Netherlands), M. Omarjee (France), M. Sawhney, J. C. Smith, A. Stenger, R. Stong, R. Tauraso
(Italy), E. I. Verriest, University of Louisiana at Lafayette Math Club, and the proposer.
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A Quadrilateral’s Perimeter Exceeds Its Diagonals

11841 [2015, 500]. Proposed by Leonard Giugiuc, Drobeta Turnu, Romania. Let ABC D
be a convex quadrilateral. Let E be the midpoint of AC , and let F be the midpoint of B D.
Show that

|AB| + |BC | + |C D| + |D A| ≥ |AC | + |B D| + 2|E F |.
(Here |XY | denotes the distance from X to Y .)

Composite solution by many solvers. This is a consequence of Hlavka’s inequality, which
states (in one form) that for any three complex numbers x, y, z,

|x | + |y| + |z| + |x + y + z| ≥ |x + y| + |y + z| + |z + x |.
Let a, b, c, and d represent complex numbers associated with the points A, B, C , and
D, respectively. Apply Hlavka’s inequality with x = b − a, y = c − b, and z = d − c to
obtain the desired result.

Editorial comment. There is no need for the four points A, B, C, D to form a convex
quadrilateral. Hlavka’s inequality applies with any four distinct points in the plane irre-
spective of their position.

This inequality actually holds in all 2-dimensional real normed spaces: see A. Sudbery,
The quadrilateral inequality in two dimensions, this MONTHLY 82 (1975) 629–632.

Solved by A. Ali (India), E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), R. Boukharfane (France), J. Cade,
R. Chapman (U. K.), P. P. Dályay (Hungary), M. Dincă (Romania), R. Dutta (India), O. Geupel (Germany),
E. J. Ionaşcu, Y. J. Ionin, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), O. P. Lossers (Netherlands),
S. R. Mousavi (Iran), P. Nüesch (Switzerland), V. Pambuccian, R. Stong, R. Tauraso (Italy), T. Viteam (Japan),
M. Vowe (Switzerland), University of Louisiana at Lafayette Math Club, and the proposer.

Creative Telescoping

11844 [2015, 501]. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso,
Università di Roma “Tor Vergata,” Rome, Italy. For nonnegative integers m and n, prove

n∑
k=0

(m − 2k)

(
m

k

)3

= (m − n)

(
m

n

) m−1∑
j=0

(
j

n

)(
j

m − n − 1

)
.

(Here
(u
v

)
is zero if u < v, and a sum is zero if its range of summation is empty.)

Solution I by Richard Stong, San Diego, CA. For n = 0 the identity reduces to m = m.
Thus it suffices to show that both sides have the same differences for consecutive values of
n, that is,

(m − 2n)

(
m

n

)3

= (m − n)

(
m

n

) m−1∑
j=0

(
j

n

)(
j

m − n − 1

)

− (m − n + 1)

(
m

n − 1

) m−1∑
j=0

(
j

n − 1

)(
j

m − n

)
.

Observing that (m − n + 1)
( m

n−1

) = n
(m

n

)
, we may cancel a factor of

(m
n

)
(equality clearly

holds when
(m

n

) = 0) to reduce the identity to

(m − 2n)

(
m

n

)2

=
m−1∑
j=0

(
(m − n)

(
j

n

)(
j

m − n − 1

)
− n

(
j

n − 1

)(
j

m − n

))
. (∗)
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Multiplying the easily verifiable computation

(m − n)2( j + 1 − n) − n2( j + n + 1 − m) = (m − 2n)(mj + m + n2 − mn)

= (m − 2n)
(
( j + 1)2 − ( j + 1 − n)( j + n + 1 − m)

)
by ( j!)2 and dividing it by n!( j + 1 − n)!(m − n)!( j + n + 1 − m)!, we obtain

(m − n)

(
j

n

)(
j

m − n − 1

)
− n

(
j

n − 1

)(
j

m − n

)

= (m − 2n)

((
j + 1

n

)(
j + 1

m − n

)
−
(

j

n

)(
j

m − n

))
.

Hence the sum on the right side of (∗) telescopes to

(m − 2n)

((
m

n

)(
m

m − n

)
−
(

0

n

)(
0

m − n

))
= (m − 2n)

(
m

n

)2

,

as desired, where we used that the second term is nonzero only if m = n = 0, in which
case m − 2n = 0.

Solution II by Tewodros Amdeberhan, Tulane University, New Orleans, LA, and Shalosh
B. Ekhad, U.S.A. Let F1(m, k) = (m − 2k)

(m
k

)3
, F2(m, j) = (m − n)

(m
n

)( j
n

)( j
m−n−1

)
,

f1(m) = ∑n
k=0 F1(m, k), and f2(m) = ∑m−1

j=0 F2(m, j). We need to show f1(m) = f2(m).
Using Zeilberger’s creative telescoping algorithm as described in the book “A=B” by
M. Petkovšek, H. S. Wilf, and D. Zeilberger, we obtain the Wilf–Zeilberger mates
G1(m, k) = (2m − k + 2)

( m
k−1

)3
and G2(m, j) = (n + 1)

(m
n

)( j
n+1

)( j
m−n

)
. These lead to

the identities

F1(m + 1, k) + F1(m, k) = G1(m, k + 1) − G1(m, k) and

F2(m + 1, j) + F2(m, j) = G2(m, j + 1) − G2(m, j),

which are easy (though tedious) to check. Summing respectively over k and j , using that
G1 and G2 telescope and G1(m, 0) = G2(m, 0) = 0, we find

n∑
k=0

(F1(m + 1, k) + F1(m, k)) = G1(m, n + 1) = (2m − n + 1)

(
m

n

)3

and

m−1∑
j=0

(
F2(m + 1, j) + F2(m, j)

) = G2(m, m) = m

(
m − 1

n

)(
m

n

)2

.

The first of these gives the recurrence f1(m + 1) + f1(m) = (2m − n + 1)
(m

n

)3
, while

adding the term F2(m + 1, m) to the second yields f2(m + 1) + f2(m) = m
(m−1

n

)(m
n

)2 +
(m + 1 − n)

(m+1
n

)(m
n

)2 = (2m − n + 1)
(m

n

)3
. Thus f1 and f2 satisfy the same recurrence.

Note: when n ≥ m, we get f2(m) = 0 trivially, while f1(m) = ∑m
k=0(m − k)

(m
k

)3 −∑m
k=0 k

(m
k

)3 = ∑m
k=0 k

( m
m−k

)3 −∑m
k=0 k

(m
k

)3 = 0. Since f1(0) = f2(0), the identity f1(m)

= f2(m) follows.

Also solved by R. Bianconi & M. Elia, R. Chapman (U. K.), P. P. Dályay (Hungary), M. Omarjee (France),
M. Wildon (U. K.), and the proposers.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Daniel Cranston, Zachary Franco,
Christian Friesen, László Lipták, Rick Luttmann, Frank B. Miles, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, and Fuzhen Zhang.

Proposed problems should be submitted online at
http://www.americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by August 31, 2017
via the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11971. Proposed by Spiros P. Andriopoulos, Third High School of Amaliada, Eleia, Greece.
For n ≥ 2, let a1, . . . , an be positive real numbers. Prove(

n∏
i=1

(1 + ai )

)n−1

≥
⎛
⎝∏

i< j

(
1 + 2ai a j

ai + a j

)⎞⎠
2

.

11972. Proposed by Yun Zhang, Xi’an Senior High School, Xi’an, China. Let r be the
radius of the sphere inscribed in a tetrahedron whose exscribed spheres have radii r1, r2,
r3, and r4. Prove

r
(

3
√

r1 + 3
√

r2 + 3
√

r3 + 3
√

r4
) ≤ 2 3

√
r1r2r3r4.

11973. Proposed by Derek Orr, University of Pittsburgh, Pittsburgh, PA. Catalan’s constant
G is defined to be

∑∞
n=0(−1)n/(2n + 1)2. Prove

G = π

2

∞∑
n=0

ζ(2n)

(2n + 1)4n

(
1 − 2

4n

)
,

where ζ is the Riemann zeta function, defined by ζ(s) = ∑∞
n=1 1/ns for s > 1 and with

ζ(0) = −1/2 by analytic continuation.

11974. Proposed by Haoran Chen, Gustavus Adolphus College, St. Peter, MN. Any n points
on a line divide that line into n − 1 segments and two rays. If these n − 1 segments all have
the same length, then we say the line is well-divided by the set. Classify the arrangements
consisting of a finite number of lines in the plane, no two parallel, such that each line is
well-divided by its points of intersection with the other lines.

11975. Proposed by István Mező, Nanjing University of Information Science and Technol-
ogy, Nanjing, China. Let x be a real number in [0, 1), and let L(x) = ∫ 1

0 �
x (t) dt , where

� is the gamma function defined by �(t) = ∫∞
0 xt−1e−x dx . Prove

(1 − γ )x

1 − x
≤ L(x) ≤ 1

1 − x
,

http://dx.doi.org/10.4169/amer.math.monthly.124.4.369
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where γ is the Euler–Mascheroni constant limn→∞
(− ln n +∑n

k=1 1/k
)
.

11976. Proposed by Robert Bosch, Miami, FL. Given a positive real number s, consider
the sequence {un} defined by u1 = 1, u2 = s, and un+2 = unun+1/n for n ≥ 1.

(a) Show that there is a constant C such that limn→∞ un = ∞ when s > C and limn→∞ un

= 0 when s < C .
(b) Calculate limn→∞ un when s = C .

11977. Proposed by Joseph Foy, University of Chicago, Chicago, IL, Ali Hassani, Dear-
born, MI, Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, and Clark Zhang,
University of Pennsylvania, Philadelphia, PA.
(a) Suppose that a, b, c, and d are positive integers with gcd(a, b, c, d) = 1 and with√

a + √
b = √

c + √
d. Prove that if {a, b} �= {c, d}, then each of a, b, c, and d is a perfect

square.
(b)∗ More generally, suppose that k is an integer with k ≥ 3, and suppose that a, b, c, and d
are positive integers with gcd(a, b, c, d) = 1 and with k

√
a + k

√
b = k

√
c + k

√
d. Assuming

{a, b} �= {c, d}, must each of a, b, c, and d be a perfect kth power?

SOLUTIONS

Snake Oil Triumphs Again

11798 [2014, 738]. Proposed by Finbarr Holland, University College Cork, Cork, Ireland.
For positive integers n, let fn be the polynomial given by

fn(x) =
n∑

r=0

(
n

r

)
x	r/2
.

(a) Prove that if n + 1 is prime, then fn is irreducible over Q.
(b) Prove that for all n (whether n + 1 is prime or not),

fn(1 + x) =
	n/2
∑
k=0

(
n − k

k

)
2n−2k xk .

Solution I by Mark Wildon, U. K. For nonnegative integer s, the coefficient of xs in fn(x)
is
( n

2s

)+ ( n
2s+1

)
, which equals

( n+1
2s+1

)
.

(a) Note that f1(x) = 2. This is a unit, which usually is not considered irreducible even
though it is not a product of two nonunits.

Let n + 1 be an odd prime. If m �= 0, then m
(n+1

m

)
equals (n + 1)

( n
m−1

)
, which is divis-

ible by n + 1. Hence
(n+1

m

)
is divisible by n + 1 for m ∈ {1, . . . , n}. It follows that all

coefficients of fn(x) are divisible by n + 1 except the coefficient of xn/2, which is 1. Also,
fn(0) = (n+1

1

) = n + 1, and n + 1 is not divisible by (n + 1)2. By Eisenstein’s criterion,
fn(x) is irreducible over Q.

(b) We have

fn(1 + x) =
	n/2
∑
s=0

(
n + 1

2s + 1

)
(1 + x)s =

	n/2
∑
s=0

s∑
k=0

(
n + 1

2s + 1

)(
s

k

)
xk .

The required polynomial identity is therefore equivalent to

	n/2
∑
s=k

(
n + 1

2s + 1

)(
s

k

)
=
(

n − k

k

)
2n−2k (1)
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for n ≥ 2k. Fix k, and let an denote the left side of (1). Applying the “snake oil” method
of H. S. Wilf, we form the generating function for {an}n≥0, switch the order of summation,
and use

∑∞
n=0

(n+k
k

)
yn = (1 − y)−(k+1) and

∑∞
s=k

(s
k

)
zs = zk(1 − z)−(k+1) to compute

∞∑
n=2k

an yn =
∞∑

n=2k

	n/2
∑
s=k

(
n + 1

2s + 1

)(
s

k

)
yn =

∞∑
s=k

∞∑
n=2s

(
n + 1

2s + 1

)(
s

k

)
yn

=
∞∑

s=k

(
s

k

) ∞∑
n=2s

(
n + 1

2s + 1

)
yn =

∞∑
s=k

(
s

k

) ∞∑
m=0

(
m + 2s + 1

2s + 1

)
ym+2s

=
∞∑

s=k

(
s

k

)
y2s

(1 − y)2s+2
= y2k

(1 − y)2k+2

1(
1 − y2

(1−y)2

)k+1 = y2k

(1 − 2y)k+1

=
∞∑

m=0

(
m + k

k

)
2m ym+2k =

∞∑
n=2k

(
n − k

k

)
2n−2k yn .

The desired result follows by comparing the coefficients of yn .

Solution II of part (b) by Borislav Karaivanov, Lexington, SC, and Tzvetalin S. Vassilev,
Nipissing University, North Bay Ontario, Canada. We give a combinatorial proof of the
needed identity (1) by showing that both sides count the ternary (n + 1)-tuples having a 2
in exactly k positions such that the copies of 2 separate the string into k + 1 portions each
of which has an odd number of copies of 1.

On the left, start with n + 1 positions, and choose an odd number (at least 2k + 1) to be
nonzero. Choose k of the positions that are even-indexed relative to this sublist to receive
2. Between any two such positions, the number of copies of 1 is odd, and the number at
the beginning or end is also odd.

On the right, begin with any ternary list of length n − k having exactly k copies of 2.
There are

(n−k
k

)
2n−2k such lists; copies of 2 may be consecutive. Now insert one position

immediately before each 2 and at the end. This position receives 1 or 0 as needed so that
the number of copies of 1 in that portion between copies of 2 is odd. This choice is unique,
so we obtain exactly one of the desired lists for each of the

(n−k
k

)
2n−2k original lists of

length n − k.

Editorial comment. Identity (1) needed for part (b) appears as identity (3.121) on p. 36 in
H. W. Gould, Combinatorial Identities, Morgantown, WV, 1972. A closed form for fn(x)
is ((1 + √

x)n+1 − (1 − √
x)n+1)/(2

√
x).

Also solved by A. Ali (India), D. D’Addezio (Italy), C. Georghiou (Greece), O. Geupel (Germany), M. Gold-
enberg & M. Kaplan, Y. J. Ionin, O. Kouba (Syria), M. Omarjee (France), N. C. Singer, A. Stenger, R. Stong,
B. Sury (India), R. Tauraso (Italy), M. Vowe (Switzerland), H. Widmer (Switzerland), GCHQ Problem Solving
Group (U. K.), NSA Problems Group, and the proposer. Part (a) also solved by D. Fleischman, E. A. Herman,
Á. Plaza (Spain), and R. Sargsyan (Armenia). Part (b) also solved by D. Beckwith.

A Golden Series of Digammas

11842 [2015, 501]. Proposed by István Mező, Nanjing University of Information Science
and Technology, Nanjing, China. Let ψ be the digamma function, that is, ψ(x) =
(log�(x))′. Let φ = (1 + √

5)/2. Prove that

∞∑
n=1

ψ(n + φ)− ψ(n − 1/φ)

n2 + n − 1
= π2

2
√

5
+ π2 tan2(

√
5π/2)√

5
+ 4

5
π tan(

√
5π/2).
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Solution by Rituraj Nandan, SunEdison, St. Peters, MO. The recurrence and reflection for-
mulas for �(x) lead to recurrence and reflection formulas for ψ(x):

ψ(x + 1) = ψ(x)+ 1

x
, (1)

ψ(1 − x)− ψ(x) = π cot(πx). (2)

Differentiate to get a reflection formula for the trigamma function ψ(1)(x) = d
dxψ(x):

ψ(1)(x)+ ψ(1)(1 − x) = − π2

sin2(πx)
.

From another representation of the digamma function,

ψ(z) = −γ +
∞∑

n=0

(
1

n + 1
− 1

n + z

)
,

we get

ψ(φ)− ψ(−1/φ) = −
∞∑

n=0

(
1

n + φ
− 1

n − 1/φ

)
.

Differentiate to get

ψ(1)(z) =
∞∑

n=0

1

(n + z)2
,

from which it follows that

ψ(1)(φ)+ ψ(1)(−1/φ) =
∞∑

n=0

(
1

(n + φ)2
+ 1

(n − 1/φ)2

)
.

Now we need to evaluate

S1 =
∞∑

n=1

1

n2 + n − 1
,

S2 =
∞∑

n=1

1

n2 + n − 1

n−1∑
k=0

1

k2 + k − 1
, and

S3 =
∞∑

n=1

1

(n2 + n − 1)2
.

First,

S1 =
∞∑

n=1

1

n2 + n − 1
= 1

1 − 2φ

∞∑
n=0

(
1

n + φ
− 1

n − 1/φ

)
+ 1

= − 1√
5

(
ψ(φ)− ψ(−1/φ)

)+ 1 = − 1√
5

(
ψ(φ)− ψ(1 − φ)

)+ 1

= π√
5

cot(πφ)+ 1 = π√
5

tan
(π

2

√
5
)

+ 1.
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Next,

S3 =
∞∑

n=1

1

(n2 + n − 1)2
= 1

(1 − 2φ)2

∞∑
n=0

(
1

n + φ
− 1

n − 1/φ

)2

− 1

= 1

5

(
ψ(1)(φ)+ ψ(1)(−1/φ)

)− 2

5

∞∑
n=1

1

n2 + n − 1
− 1

= 1

5

(
− π2

sin2(πφ)

)
− 2

5

(
π√

5
tan

(π
2

√
5
)

+ 1

)
− 1

= π2

5
+ π2

5
tan2

(π
2

√
5
)

− 2

5

(
π√

5
tan

(π
2

√
5
)

+ 1

)
− 1.

Finally,

S2 = 1

2

(
S2

1 − S3
)− S1 = π

5
√

5
tan

(π
2

√
5
)

− π2

10
.

Now by (1) we have

ψ(n + φ) = ψ(φ)+
n−1∑
k=0

1

k + φ

and similarly for ψ(n − 1/φ). Thus

ψ(n + φ)− ψ(n − 1/φ) = ψ(φ)− ψ(−1/φ)+
n−1∑
k=0

(
1

k + φ
− 1

k − 1/φ

)

= ψ(φ)− ψ(−1/φ)+ (1 − 2φ)
n−1∑
k=0

1

k2 + k − 1
.

Applying (2) we get

ψ(n + φ)− ψ(n − 1/φ) = −π cot(πφ)−
√

5
n−1∑
k=0

1

k2 + k − 1
.

Therefore
∞∑

n=1

ψ(n + φ)− ψ(n − 1/φ)

n2 + n − 1
= π tan

(π
2

√
5
)

S1 −
√

5 S2

= π2

2
√

5
+ π2

√
5

tan2
(π

2

√
5
)

+ 4π

5
tan

(π
2

√
5
)
.

Editorial comment. Some solvers used other methods for evaluation of the series S1 and
S2, such as table lookup or residue calculus. The proposer did it by equating coefficients in
the interesting infinite product

∞∏
n=1

(
1 + x2

n2 + n − 1

)
= 1

cos((π/2)
√

5 )

cos((π/2)
√

5 − 4x2 )

1 − x2
.

Also solved by R. Boukharfane (France), R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), R. Dutta
(India), M. L. Glasser, K. D. Lathrop, O. P. Lossers (Netherlands), M. Omarjee (France), R. Stong, R. Tauraso
(Italy), GCHQ Problem Solving Group (U. K.), and the proposer.
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Hidden Jensen

11843 [2015, 501]. Proposed by Mihali Bencze, Bucharest, Romania. Let n and k be posi-
tive integers, and let x j ≥ 1 for 1 ≤ j ≤ n. Let y = ∏n

j=1 x j . Show that
n∑

i=1

1

1 + xi
≥

n∑
j=1

1

1 + (xk−1
j y)1/(n+k−1)

.

Solution by James Christopher Smith, Knoxville, TN. The function f (t) = 1/(1 + et ) is
convex on 0 ≤ t < ∞, because f ′′(t) = et (et − 1)/(1 + et )3 > 0 on 0 < t < ∞. There-
fore we may apply Jensen’s inequality to see that for any numbers z1, . . . , zM , all at least
1, we have

M∑
i=1

1

1 + zi
≥ M

1 + M
√

z1z2 · · · zM
.

In particular, letting M = n + k − 1 and taking z1, . . . , zM to consist of k copies of x j and
one copy of each of the other xi , we get

k − 1

1 + x j
+

n∑
i=1

1

1 + xi
≥ n + k − 1

1 + (xk−1
j y)1/(n+k−1)

.

Summing this inequality over j , we get

(n + k − 1)
n∑

i=1

1

1 + xi
≥ (n + k − 1)

n∑
j=1

1

1 + (xk−1
j y)1/(n+k−1)

.

Also solved by A. Ali (India), A. Alt, T. Amdeberhan, O. Bucicovschi, R. Chapman (U. K.), P. P. Dályay
(Hungary), M. Dincă (Romania), O. Geupel (Germany), N. Grivaux (France), W.-K. Lai, O. P. Lossers (Nether-
lands), M. Omarjee (France), P. Perfetti (Italy), M. Sawhney, A. Stenger, R. Stong, R. Tauraso (Italy), T. Viteam
(Japan), and the proposer.

A Partition Suggested by a Regular Polygon

11845 [2015, 604]. Proposed by Gregory Galperin, Eastern Illinois University, and Yury
Ionin, Central Michigan University.
(a) Let P be a convex polyhedron inside a sphere S, and let e1, . . . , en be the edges of P .
Let ci be the chord of S containing edge ei . Note that ci\ei is the union of two disjoint
segments; we denote these by ai and bi . Prove that if all the edges of P have the same
length, then the 2n-element set consisting of the ai and the bi can be partitioned into two
subsets such that the sum of the lengths of the elements in each part is the same.
(b) Let A0, A1, . . . , An−1 be a regular n-gon inscribed in a circle γ . Let γ ′ be a circle
containing γ , and let the tangent line to γ at Ai meet γ ′ at points Xi and Yi . Prove that
the 2n-element set consisting of the segments Ai Xi and Ai Yi can be partitioned into two
subsets such that the sum of the lengths of the elements in each part is the same.

Solution to part (b) by Robin Chapman, University of Exeter, Exeter, UK. We may assume
that γ is the unit circle in the complex plane, and that Ak = e2π ik/n .

Let the lengths of Ak Xk and AkYk be denoted by ak and bk ; we distinguish between ak

and bk by letting ak be the length of the segment in the anticlockwise direction from Ak

and bk be the length of the segment in the clockwise direction from Ak . We claim that

n−1∑
k=0

ak =
n−1∑
k=0

bk,

which displays the required partition. We need a formula for ak − bk .
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Let the circle γ ′ have radius r and center c + di . The tangent to γ at A0 is a vertical
line that meets γ ′ at 1 + iy+ and 1 + iy−, where

y± = d ±
√

r2 − (1 − c)2.

Now γ ′ surrounds γ , so y− < 0 < y+, and thus a0 − b0 = y+ + y− = 2d.
To find ak − bk in general, let the configuration be rotated through 2πk/n radians

clockwise about 0. Then circle γ remains the same, Ak is mapped to z = 1, and γ ′ is
mapped to the circle with radius r and center (c + di)e−2π ik/n . So ak − bk = 2dk with dk =
Im
(
(c + di)e−2π ik/n

)
. Thus

n−1∑
k=0

(ak − bk) = 2 Im

(
(c + di)

n−1∑
k=0

e−2π ik/n

)
= 2 Im(0) = 0.

Editorial comment. The claim in part (a) is false. The simplest and most commonly given
counterexample is a small regular tetrahedron positioned near S so that 9 of the 12 disjoint
segments are relatively short compared to the other 3, each of whose lengths is roughly 1/3
of the total sum of the lengths. No partition of the type desired can exist in this situation.

Part (b) also solved by E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), L. R. King, O. Kouba (Syria), O. P.
Lossers (Netherlands), M. D. Meyerson, and the proposers.

Galois Groups of Polynomials with Missing Terms

11846 [2015, 604]. Proposed by Kent Holing, Trondheim, Norway. Let f = ∑n
j=0 a j x j be

an irreducible monic polynomial of odd degree with integer coefficients. Writing the terms
a j x j of f in order of increasing j , assume that either there is at least one term of f missing
between two (nonmissing) terms of the same sign, or there is more than one term missing
between two (nonmissing) terms of opposite sign. Prove that the Galois group G of f is
not abelian. Also, prove that G is not a dihedral group if, in addition, f (x) = 0 has at least
two real roots.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. By
Descartes’s rule of signs (applied to both f (x) and f (−x)), the given condition implies
that f has at most n − 2 real roots. Thus, f has at least one pair of complex roots, and
hence complex conjugation is an element of order 2 in the Galois group G of f . Together
with the lemma below, this will yield the desired conclusions.

Lemma. If an abelian group G acts transitively and faithfully on a set S, then each element
of S has trivial stabilizer, and if S is finite then |G| = |S|.
Proof. If a nontrivial element g ∈ G stabilizes s, then since the action is faithful and g is
nontrivial there is an element t ∈ S such that g · t �= t . Since the action is transitive, there
is an element h ∈ G such that h · s = t . Now

hg · s = h · s = t, but gh · s = g · t �= t.

Hence hg �= gh, contradicting the assumption that G is abelian.

We return now to the problem. If G is abelian, then by the lemma |G| equals the number
of roots of f . Since f has odd degree, we conclude that |G| is odd, and hence G cannot
contain an element of order 2.

Similarly, if G is dihedral with a cyclic subgroup H of index 2, then the lemma implies
that no element of H can fix a root of f . Hence, |H | is the number of roots of f , and
the stabilizer of any root has order 2. In particular, |H | is odd. Hence all elements of H
are squares, and thus all elements of order 2 in G are conjugate. Moreover, each of these
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elements fixes the same number of roots. Since each root is fixed by only one element of
order 2, it follows that each element of order 2 fixes exactly one root. In particular, complex
conjugation fixes only one root, and we conclude that f has exactly one real root.

Also solved by A. J. Bevelacqua, R. Chapman (U. K.), and the proposer.

Bounds for a Sum

11847 [2015, 604]. Proposed by Mihaly Bencze, Brasov, Romania. Prove that for n ≥ 1,

n(n + 1)(n + 2)

3
<

n∑
k=1

1

log2(1 + 1/k)
<

n

4
+ n(n + 1)(n + 2)

3
.

Solution by M. Bello, M. Benito, Ó. Ciaurri, E. Fernández, and L. Roncal, Logroño, Spain.
From the inequality

√
t + 1 < (t + 2)/2 for t > 0, we have

4

(t + 2)2
<

1

1 + t
<

t + 2

2(t + 1)3/2
.

Integrating this from 0 to x yields
2x

x + 2
< log(1 + x) <

x√
x + 1

.

It follows that
1 + x

x2
<

1

log2(1 + x)
<
(x + 2)2

4x2
.

Taking x = 1/k yields

k(k + 1) <
1

log2(1 + 1/k)
<
(2k + 1)2

4
= 1

4
+ k(k + 1).

Using
n∑

k=1

k(k + 1) = n(n + 1)(n + 2)

3
,

we get the desired inequality.

Also solved by U. Abel (Germany), R. A. Agnew, A. Alt, T. Amdeberhan, K. F. Andersen (Canada), R. Bagby,
E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), R. Boukharfane (France), P. Bracken, M. A. Carlton,
M. V. Channakeshava (India), R. Chapman (U. K.), H. Chen, N. Crwen (U. K.), P. P. Dályay (Hungary),
B. E. Davis, R. Dutta (India), O. Geupel (Germany), M. Goldenberg & M. Kaplan, N. Grivaux (France),
T. Horine, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), O. Kouba (Syria), M. Lacruz (Spain),
K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Nandan, M. Omarjee (France), P. Per-
fetti (Italy), V. Rajasekaran & J. Grzesik, M. Sawhney, E. Schmeichel, N. C. Singer, A. Stenger, R. Stong,
H. Takeda (Japan), R. Tauraso (Italy), D. B. Tyler, J. Van Casteren (Belgium), R. van der Veer (Netherlands),
Z. Vörös (Hungary), M. Vowe (Switzerland), H. Wang & J. Wojdylo, L. Wimmer, J. Zacharias, L. Zhou,
GCHQ Problem Solving Group (U. K.), GWstat Problem Solving Group, NSA Problems Group, and the
proposer.

The Dilogarithm of an Exponential

11848 [2015, 605]. Proposed by István Mező, Nanjing University of Information Science
and Technology, Nanjing, China. Prove that

1

2π
Li2

(
e−2π

) = log(2π)− 1 − 5π

12
−

∞∑
m=1

(−1)mζ(2m)

m(2m + 1)
.

Here ζ is the Riemann zeta function, and Li2(x) = ∑∞
n=1 xn/n2.
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Solution by Ramya Dutta, Chennai Mathematical Institute, India. We write the series as

∞∑
k=1

(−1)kζ(2k)

k(2k + 1)
= 2

( ∞∑
k=1

(−1)kζ(2k)

2k
−

∞∑
k=1

(−1)kζ(2k)

2k + 1

)

and consider the two parts separately. For the first series, we compute

∞∑
k=1

(−1)kζ(2k)

2k
=

∞∑
k=1

∞∑
n=1

(−1)kn−2k

2k
= −1

2

∞∑
n=1

log

(
1 + 1

n2

)

= −1

2
log

( ∞∏
n=1

(
1 + 1

n2

))
= −1

2
log

(
sinhπ

π

)

= 1

2
log(2π)− π

2
+ 1

2
log

(
1

1 − e−2π

)
.

Here we used the series log(1 + x) = ∑∞
k=1 (−1)k−1xk/k and the product expansion

sinh(πx)

πx
=

∞∏
n=1

(
1 + x2

n2

)
. (∗)

For the second series, we compute

∞∑
k=1

(−1)kζ(2k)

2k + 1
=

∞∑
k=1

∞∑
n=1

(−1)kn−2k

2k + 1
=
∫ 1

0

∞∑
k=1

∞∑
n=1

(−1)kn−2k x2k dx

=
∫ 1

0

∞∑
n=1

(
−1 + 1

1 + x2

n2

)
dx =

∫ 1

0

∞∑
n=1

−x2

x2 + n2
dx

= 1

2

∫ 1

0
(1 − πx coth(πx)) dx .

Here we used the partial fraction expansion π coth(πx) = 1/x + 2x
∑∞

n=1 1/(n2 + x2),
obtained by differentiating the logarithm of (∗). Finally,

∫ 1

0
(1 − πx coth(πx)) dx =

∫ 1

0

(
1 − πx

(
1 + 2e−2πx

1 − e−2πx

))
dx

= 1 − π

2
−
∫ 1

0
2πx

∞∑
n=1

e−2πnx dx

= 1 − π

2
− 2π

∞∑
n=1

∫ 1

0
xe−2πnx dx

= 1 − π

2
− 2π

∞∑
n=1

(
1

4π2n2
− e−2πn

2πn
− e−2πn

4π2n2

)

= 1 − π

2
− π

12
+ log

(
1

1 − e−2π

)
+ 1

2π
Li2(e

−2π ).

Combine the results to obtain the desired equation.
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Also solved by R. Bagby, K. N. Boyadzhiev, P. Bracken, B. Bradie, R. Chapman (U. K.), H. Chen, B. E. Davis,
O. Geupel (Germany), M. L. Glasser, M. Goldenberg & M. Kaplan, M. Hoffman, O. Kouba (Syria), M. Omar-
jee (France), S. Pathak (Canada), R. Stong, R. Tauraso (Italy), J. Van Casteren (Belgium), M. Wildon (U. K.),
GCHQ Problem Solving Group (U. K.), and the proposer.

Asymptotics for Coefficients

11849 [2015, 605]. Proposed by George Stoica, University of New Brunswick, Saint John,
Canada. Define numbers a0, a1, . . . by

exp

( ∞∑
k=0

x2k

)
=

∞∑
n=0

an xn .

Prove that lim infn→∞
log an
log n ≤ 1

log 2 − 1 ≤ lim supn→∞
log an
log n .

Solution by Allen Stenger, Boulder, CO. Write g(x) for the series
∑∞

n=0 an xn . We use the
following result.

Proposition: Suppose vn ≥ 0 for all n and
∑
vn = +∞. Suppose also that

∑
vn xn con-

verges for |x | < 1. If limn→∞
∑n

k=0 uk/
∑n

k=0 vk = s, then

lim
x→1−

∞∑
k=0

uk xk/

∞∑
k=0

vk xk = s.

We also use the following application of the proposition: For α > 0,

lim
x→1−

(1 − x)α
∞∑

n=1

nα−1xn = �(α). (1)

(See G. Pólya, G. Szegő, Problems and Theorems in Analysis I, Springer, Berlin, 1972,
Problems I.88 and I.89.)

First we estimate g(x) asymptotically as x → 1−. Let un = 1 if n is a power of 2 and
un = 0 otherwise; and let v0 = 0 and vn = 1/n for n ≥ 1. Thus

∑n
k=0 un = 1 + 	log2 n


and
∑n

k=0 vn = log n + O(1) as n → ∞. Let s = 1/log 2 in the proposition, which yields
log g(x)/(− log(1 − x)) → 1/log 2 or, equivalently,

log g(x) ∼ 1

log 2
log

1

1 − x
as x → 1−. (2)

Next we show lim infn→∞ log an/log n ≤ 1/log 2 − 1. Assume otherwise. There is
L > 1/log 2 − 1 such that log an/log n > L for all sufficiently large n; that is, an > nL .
By (1) we have

log g(x) > log

( ∞∑
n=0

nL xn + O(1)

)
∼ log

�(L + 1)

(1 − x)L+1
∼ (L + 1) log

1

1 − x

as x → 1−. Since L + 1 > 1/log 2, this contradicts (2).
The reasoning for the second inequality is similar. Assume, in order to obtain a contra-

diction, that lim supn→∞ log an/log n < 1/log 2 − 1. Hence there is a number U , less than
1/log 2 − 1, such that log an/log n < U for all sufficiently large n; that is, an < nU . By (1)
we have

log g(x) < log

( ∞∑
n=0

nU xn + O(1)

)
∼ log

�(U + 1)

(1 − x)U+1
∼ (U + 1) log

1

1 − x

as n → 1−. Since U + 1 < 1/log 2, this contradicts (2).

Also solved by R. Chapman (U. K.), M. Omarjee (France), R. Stong, and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, and Fuzhen Zhang.

Proposed problems should be submitted online at
http: // www. americanmathematicalmonthly. submittable. com/ submit.

Proposed solutions to the problems below should be submitted by September 30, 2017
via the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11978. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Fn be the nth Fibonacci num-
ber, with F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 when n ≥ 2. Find

∞∑
n=0

(−1)n

cosh Fn cosh Fn+3
.

11979. Proposed by Zachary Franco, Houston, Texas. Let O and I denote the circumcenter
and incenter of a triangle ABC. Are there infinitely many nonsimilar scalene triangles ABC
for which the lengths AB, BC, CA, and OI are all integers?

11980. Proposed by George Stoica, Saint John, NB, Canada. Let a1, . . . , an be a nonin-
creasing list of positive real numbers, and fix an integer k with 1 ≤ k ≤ n. Prove that there
exists a partition {B1, . . . , Bk} of {1, . . . , n} such that

min
1≤ j≤k

∑
i∈B j

ai ≥ 1

2
min

1≤ j≤k

1

k + 1 − j

n∑
i= j

ai .

11981. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. Suppose that
f : [0, 1] → R is a differentiable function with continuous derivative and with∫ 1

0
f (x) dx =

∫ 1

0
x f (x) dx = 1.

Prove ∫ 1

0

∣∣ f ′(x)
∣∣3 dx ≥

(
128

3π

)2

.

11982. Proposed by Ovidiu Furdui, Mircea Ivan, and Alina Sı̂ntămărian, Technical Uni-
versity of Cluj-Napoca, Cluj-Napoca, Romania. Calculate

lim
x→∞

( ∞∑
n=1

( x

n

)n
)1/x

.

http://dx.doi.org/10.4169/amer.math.monthly.124.5.465
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11983. Proposed by Askar Dzhumadil’daev, Kazakh-British Technical University, Almaty,
Kazakhstan. Given a positive integer n, let x1, . . . , xn−1 and y1, . . . , yn be indeterminates.
Let A be the 2n-by-2n matrix that is antisymmetric with respect to both main diagonals
and whose i, j-entry is sinh(xi + y j ) when i < j ≤ n and cosh(xi + y j ) when i < n <

j ≤ 2n − i . For example, when n = 3, the matrix A is⎡
⎢⎢⎢⎢⎢⎢⎣

0 s(x1 + y2) s(x1 + y3) c(x1 + y3) c(x1 + y2) 0
−s(x1 + y2) 0 s(x2 + y3) c(x2 + y3) 0 −c(x1 + y2)

−s(x1 + y3) −s(x2 + y3) 0 0 −c(x2 + y3) −c(x1 + y3)

−c(x1 + y3) −c(x2 + y3) 0 0 −s(x2 + y3) −s(x1 + y3)

−c(x1 + y2) 0 c(x2 + y3) s(x2 + y3) 0 −s(x1 + y2)

0 c(x1 + y2) c(x1 + y3) s(x1 + y3) s(x1 + y2) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where we have written s(z) for sinh(z) and c(z) for cosh(z). Prove det(A) = 0 when n is
odd and det(A) = 1 when n is even.

11984. Proposed by Daniel Sitaru, Drobeta-Turnu Severin, Romania. Let a, b, and c be
the lengths of the sides of a triangle with inradius r . Prove a6 + b6 + c6 ≥ 5184r6.

SOLUTIONS

Orthogonal Functions

11850 [2015, 605]. Proposed by Zafar Ahmed, Bhabha Atomic Research Centre, Mumbai,
India. Let

An(x) =
√

2

π

1

n!
(1 + x2)n/2 dn

dxn

(
1

1 + x2

)
.

Prove that
∫∞
−∞ Am(x)An(x) dx = δ(m, n) for nonnegative integers m and n. Here δ(m, n) =

1 if m = n, and otherwise δ(m, n) = 0.

Solution by Ramya Dutta, Chennai Mathematical Institute, Chennai, India. We have

dn

dxn

(
1

1 + x2

)
= 1

2i

dn

dxn

(
1

x − i
− 1

x + i

)
= (−1)n n!

2i

(
1

(x − i)n+1
− 1

(x + i)n+1

)
.

Now let θ = cot−1 x , so cot θ = x and 0 < θ < π . We have

x − i = cot θ − i = 2ie−iθ

eiθ − e−iθ
= e−iθ

sin θ
.

Similarly, x + i = eiθ /sin θ . Since 1 + x2 = 1/sin2 θ and sin θ > 0,

dn

dxn

(
1

1 + x2

)
= (−1)n n! sinn+1 θ

2i

(
ei(n+1)θ − e−i(n+1)θ

) = (−1)n n! sin ((n + 1)θ)

(1 + x2)(n+1)/2
.

Thus ∫ ∞

−∞
Am(x)An(x) dx = (−1)m+n 2

π

∫ ∞

−∞

sin((m + 1)θ) sin((n + 1)θ)

1 + x2
dx

= (−1)m+n 2

π

∫ π

0
sin((m + 1)θ) sin((n + 1)θ) dθ.

The last integral is easily evaluated to yield δ(m, n).
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Editorial comment. The problem as originally printed asserted that An(x) is a polynomial.
The editors are responsible for this error.

Also solved by T. Amdeberhan & H. Kilete-Seleste, T. Amdeberhan & S. B. Ekhad, R. Bagby, D. Beckwith,
G. E. Bilodeau, R. Boukharfane (France), P. Bracken, H. Chen, P. P. Dályay (Hungary), P. J. Fitzsimmons,
N. Grivaux (France), F. Holland (Ireland), O. Kouba (Syria), G. Kuldeep (India), O. P. Lossers (Netherlands),
R. Stong, R. Tauraso (Italy), J. Van Hamme (Belgium), M. Vowe (Switzerland), H. Widmer (Switzerland),
GCHQ Problem Solving Group (U. K.), and the proposer.

An Enumeration of the Positive Rationals

11852 [2015, 700]. Proposed by Sam Northshield, SUNY Plattsburgh, Plattsburgh, NY. For
n ∈ Z+, let νn = k if 3k divides n but 3k+1 does not. Let X1 = 2, and for n ≥ 2 let

Xn = 4νn + 2 − 2

Xn−1
,

so that 〈Xn〉 begins with 2, 1, 4, 3/2, 2/3, 3, . . .. Show that every positive rational number
appears exactly once in the list (X1, X2, . . .).

Solution by László Lipták, Oakland University, Rochester, MI. Define linear fractional
transformations S, P , Q, and R by

S(x) = x + 2, P(x) = 2x + 2

x + 2
, Q(x) = x

x + 1
, and R(x) = 1

x
.

The recurrence becomes

Xn = 4νn + 2 − 2R(Xn−1),

and the following identities hold:

2 − 2R(S(x)) = P(x), 2 − 2R(P(x)) = Q(x), 2 − 2R(Q(x)) = −2R(x),

P−1(w) = −2w + 2

w − 2
, Q−1(w) = −w

w − 1
, S−1(w) = w − 2.

We first prove for n ≥ 1 the three equalities

X3n = S(Xn), X3n+1 = P(Xn), X3n+2 = Q(Xn). (1)

This is clear for n = 1, and we proceed by induction. Consider n > 1. Since ν3n = 1 + νn ,
we have

X3n = 4 + 4νn + 2 − 2R(X3n−1)

= 4νn + 2 + (2 − 2R(Q(Xn−1)) + 2

= 4νn + 2 − 2R(Xn−1) + 2 = Xn + 2 = S(Xn).

Using this and ν3n+1 = 0, we obtain

X3n+1 = 2 − 2R(X3n) = 2 − 2R(S(Xn)) = P(Xn).

Using this and ν3n+2 = 0, we obtain

X3n+2 = 2 − 2R(X3n+1) = 2 − 2R(P(Xn)) = Q(Xn).

It is now immediate that every Xi is positive and that, for n > 1, we have

0 < X3n+2 < 1 < X3n+1 < 2 < X3n. (2)

For relatively prime positive integers a and b, define σ(a/b) = a + b. When a/b
belongs to (0, 1), (1, 2), or (2,∞), let T denote Q, P , or S, respectively. We claim that
always σ(T −1(a/b)) < σ(a/b), via the following computations.
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• If a/b ∈ (0, 1), then a < b and σ(Q−1(a/b)) = σ(a/(b − a)) = b < σ(a/b).
• If a/b ∈ (1, 2), then b < a < 2b and σ(P−1(a/b)) = σ

(
2a−2b
2b−a

) = a < σ(a/b).
• If a/b ∈ (2,∞), then 2b < a and σ(S−1(a/b)) = σ

(
a−2b

b

) = a − b < σ(a/b).

Note that in each case T −1(a/b) is a ratio of relatively prime positive integers.
To prove the result, note first that by (2) the initial terms 2 and 1 cannot appear later in

the sequence. Write any other positive rational in reduced form a/b. As T −1 is successively
applied, the value of σ declines, which cannot continue forever. The process terminates
only by reaching a value not in one of the intervals, namely c ∈ {1, 2}. That is, there is a
list T1, . . . , Ts with each Ti ∈ {Q, P, S} such that

T −1
s · · · T −1

1 (a/b) = c ∈ {1, 2}. (3)

Thus a/b = T1 · · · Ts(c), and from (1) we have a/b = Xm for some m.
It remains to prove uniqueness. With a/b = Xm , by (2) and (1) the transformation

T1 is S, P , or Q depending on whether the congruence class of m modulo 3 is 0, 1,
or 2, respectively. Similarly, T2 is determined by �m/3� mod 3, and Ti is determined by⌊

m/3i−1
⌋

mod 3. Since the base 3 representation of a positive integer is unique, m is
uniquely determined by a/b, and each positive rational occurs exactly once.

Editorial comment. Let R(x) = β/x , and let Q, S, and P denote linear fractional transfor-
mations such that the formulas given above for 2 − 2R(T (x)) hold when T ∈ {Q, S, P}.
A straightforward calculation shows that Q, S, and P are then given by

Q(x) = βx

x + β
, S(x) = β(2 − β)x + 2β2

2(1 − β)x + β(2 − β)
, P(x) = 2β(x + β)

(2 − β)x + 2β
.

The determinants of S, P , Q, and R are β4, 2β3, β2, and −β, respectively. For β = 1 these
reduce to the transformations used above. It might be of interest to determine for which β

these transformations generate a free semigroup.
Lipták noted that the simpler sequence {1, 2, 1/2, 3/1, 2/3, 3/2, . . .} generated by xn =

2νn + 1 − 1/xn−1 (where νn is “2-adic” rather than “3-adic”) also has the full enumera-
tion property, and that a proof can be based on the equalities x2n = xn + 1 and x2n+1 =
xn/(xn + 1).

Michael Josephy, O. P. Lossers, and Lipták indicated connections and similarities with
the Calkin–Wilf tree (THIS MONTHLY 107 (2000) 360–363). A striking feature of the
present problem is that the three equalities of (1) are compressed into the single recurrence
of the problem. This compression theme seems to have been initiated by Moshe Newman
(see the solution to Problem 10906, THIS MONTHLY 110 (2003) 642–643).

Enumerating the positive rationals in a nicely structured way has as its ultimate
source the 19th-century paper of Abraham Stern, Über eine zahlentheoretische Funk-
tion, J. reine angew. Math. 55 (1858) 193–220. Much of the current study of this topic can
be viewed as an elaboration of this work. In fact, the simpler sequence given by Lipták
does indeed yield the original Stern enumeration. The novelty in the present case is having
a ternary rather than a binary tree.

It is also well known that the numerator and denominator sequences used by Stern
(now known as Stern sequences) have many relations to the Fibonacci numbers. The
paper T. Garrity, A multidimensional continued fraction generalization of Stern’s diatomic
sequence, J. Integer Sequences 16 (2013) 1–23 has some similarity in spirit with the present
problem in that it introduces analogues of the Stern sequences related to the Tribonacci
numbers.

Also solved by R. Chapman (U. K.), J. Gately, T. Horine, M. Josephy (Costa Rica), P. Lalonde (Canada),
O. P. Lossers (Netherlands), R. Tauraso (Italy), FAU Problem Solving Group, GCHQ Problem Solving Group
(U. K.), and the proposer.
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A Hyperbolic Sine Series

11853 [2015, 700]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Find

∞∑
n=1

1

sinh 2n
.

Solution I by Tewodros Amdeberhan, Tulane University, and Armin Straub, University
of South Alabama. Dividing sinh x = sinh(2x − x) = sinh(2x) cosh x − cosh(2x) sinh x
through by sinh(2x) sinh x yields 1

sinh 2x = coth x − coth 2x . A repeated application of this
leads to a telescoping sum:

∞∑
n=1

1

sinh(2n x)
=

∞∑
n=1

[
coth(2n−1x) − coth(2n x)

] = coth x − lim
n→∞ coth(2n x)

= coth x − 1,

for all x > 0. The requested sum is the special case where x = 1.

Solution II by Rituraj Nandan, SunEdison, St. Peters, MO.

∞∑
n=1

1

sinh(2n x)
=

∞∑
n=1

2

e2n x − e−2n x
= 2

∞∑
n=1

e−2n x

1 − e−2n+1x
= 2

∞∑
n=1

∞∑
j=0

e−2n (2 j+1)x

= 2
∞∑

k=1

e−2kx = 2

e2x − 1
,

where in the penultimate step we have used the fact that every even, positive integer 2k can
be written uniquely as 2k = 2n(2 j + 1) for n ≥ 1 and j ≥ 0.

Editorial comment. This sum appears as 1.121.2 in Gradshteyn and Ryzhik, Table of Inte-
grals, Series, and Products.

Also solved by U. Abel (Germany), Z. Ahmed (India), A. Ali (India), K. Andersen (Canada), M. Arake-
lian (Armenia), H. I. Arshagi, M. Bataille (France), D. Beckwith, M. Bello & M. Benito & Ó. Ciaurri &
E Fernández & L. Roncal (Spain), S. C. Bhoria (India), R. Boukharfane (France), P. Bracken, B. Bradie,
N. Caro (Brazil), R. Chapman (U. K.), H. Chen, S. Choi (Korea), C. Curtis, N. Curwen (U. K.), P. P. Dályay
(Hungary), B. E. Davis, R. Dutta (India), E. Errthum, D. Fleischman, J. Gaisser, O. Geupel (Germany),
H. B. Ghaffari (Iran), M. L. Glasser, M. Goldenberg & M. Kaplan, N. Grivaux (France), J. A. Grzesik, M. Hoff-
man, F. Holland (Ireland), T. Horine, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), O. Kouba (Syria),
H. Kwong, P. Lalonde (Canada), W. C. Lang, K.-W. Lau (China), L. Lipták, O. P. Lossers (Netherlands),
J. Magliano, L. Matejı́čka (Slovakia), V. Mikayelyan (Armenia), J. Mooney, M. Omarjee (France), S. Pathak
(Canada), F. Perdomo & Á. Plaza (Spain), C. M. Russell, M. Sawhney, V. Schindler (Germany), N. C. Singer,
J. Sorel (Romania), A. Stenger, R. Stong, H. Takeda (Japan), R. Tauraso (Italy), C. I. Vălean (Romania), G. Vid-
iani (France), J. Vinuesa (Spain), T. Viteam (Japan), Z. Vörös (Hungary), M. Vowe (Switzerland), T. Wiandt,
H. Widmer (Switzerland), M. Wildon (U. K.), J. Zacharias, L. Zhou, FAU Problem Solving Group, GCHQ
Problem Solving Group (U. K.), GWstat Problem Solving Group, NSA Problems Group, Northwestern Uni-
versity Math Problem Solving Group, PHP Solving Team, and the proposer.

Avoid the Parabolas

11854 [2015, 700] correction [2015, 802]. Proposed by Roberto Tauraso, Università di
Roma “Tor Vergata,” Rome, Italy. In the Euclidean plane, given distinct points P1, . . . , Pn

and distinct lines l1, . . . , lm , prove that there is a half-line h such that for any point Q on
h, any k ∈ {1, . . . , m}, and any j ∈ {1, . . . , n}, Q is nearer to lk than to Pj .
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Solution by Irl C. Bivens and L. R. King, Davidson College, Davidson, NC. Let Sj,k denote
the closed interior of the parabola having focus Pj and directrix lk . (If Pj is on line lk , let
Sj,k denote the line through Pj perpendicular to lk .) Any point not in Sj,k is closer to lk

than to Pj . Thus it suffices to find a half-line h that avoids Sj,k for all j and k.
Any line perpendicular to the directrix of a parabola intersects the parabola’s closed

interior in a ray; but any other line intersects the parabola’s closed interior in a segment,
a point, or not at all. Let g be any line not perpendicular to lk for any k. The intersection
of g with the union of all Sj,k consists of finitely many points and finitely many segments,
all of finite length. Thus when these points and segments are removed, there remain two
half-lines of g, which have empty intersection with every Sj,k . Either may be chosen to be
the required h.

Editorial comment. O. P. Lossers observed that the set of points Pj can be infinite, as
long as it is bounded. Victor Pambuccian noted that the result here is false in hyperbolic
geometry.

Also solved by R. Chapman (U. K.), R. Dutta (India), O. Geupel (Germany), T. Horine, Y. J. Ionin, J. H. Lind-
sey II, O. P. Lossers (Netherlands), M. D. Meyerson, V. Pambuccian, J. Schlosberg, E. Schmeichel, R. Stong,
L. Zhou, and the proposer.

A Momentous Inequality

11855 [2015, 700]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA.
For a continuous and nonnegative function f on [0, 1], let μn = ∫ 1

0 xn f (x) dx . Show that
μn+1μ0 ≥ μnμ1 for n ∈ N.

Solution I by Ross Dempsey, student, Thomas Jefferson High School, Alexandria, VA. If
μn = 0 for some n, then f is identically zero. So we may assume μn > 0 for all n.

For n ≥ 1, consider the integral∫ 1

0

(
x − μn

μn−1

)2

xn−1 f (x) dx .

The integrand is nonnegative, so

0 ≤
∫ 1

0

(
x − μn

μn−1

)2

xn−1 f (x) dx

=
∫ 1

0
xn+1 f (x) dx − 2

μn

μn−1

∫ 1

0
xn f (x) dx + μ2

n

μ2
n−1

∫ 1

0
xn−1 f (x) dx

= μn+1 − μ2
n/μn−1.

It follows that μn+1/μn ≥ μn/μn−1. By induction, μn+1/μn ≥ μ1/μ0, which is equivalent
to the required inequality.

Solution II by Oliver Geupel, Brühl, NRW, Germany. Let g : [0, 1] → R be defined by

g(x) =
∫ x

0
tn+1 f (t) dt ·

∫ x

0
f (t) dt −

∫ x

0
tn f (t) dt ·

∫ x

0
t f (t) dt.

The function g is differentiable on [0, 1] with derivative

g′(x) = f (x)

∫ x

0
(x − t)(xn − tn) f (t) dt ≥ 0.

Therefore, g(x) is increasing on [0, 1], and since g(0) = 0, we have g(x) ≥ 0. This implies
that g(1) ≥ 0, or μn+1μ0 − μnμ1 ≥ 0.
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Solution III by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany. We
prove more generally that μmμn ≤ μm+nμ0. The required inequality is the case m = 1.
We have

μmμn = 1

2
(μmμn + μnμm) = 1

2

∫ 1

0

∫ 1

0
(xm yn + xn ym) f (x) f (y) dxdy.

For 0 ≤ x, y ≤ 1, we have 0 ≤ (xm − ym)(xn − yn) = (xm+n + ym+n) − (xm yn + xn ym),
or xm yn + xn ym ≤ xm+n + ym+n , and this implies

μmμn ≤ 1

2

∫ 1

0

∫ 1

0
(xm+n + ym+n) f (x) f (y) dxdy = 1

2
(μm+nμ0 + μ0μm+n).

Hence μmμn ≤ μm+nμ0, as claimed.

Also solved by R. A. Agnew, A. Ali (India), T. Amdeberhan & A. Straub, K. F. Andersen (Canada),
M. Andreoli, H. I. Arshagi, R. Bagby, M. Bataille (France), M. Bello & M. Benito & Ó. Ciaurri &
E. Fernández & L. Roncal (Spain), P. Bracken, M. A. Carlton, R. Chapman (U. K.), H. Chen, L. V. P. Cuong
(Vietnam), C. Curtis, N. Curwen (U. K.), P. P. Dályay (Hungary), B. E. Davis, J. Duemmel, R. Dutta (India),
D. L. Farnsworth, P. J. Fitzsimmons, D. Fleischman, L. Giugiuc (Romania), N. Grivaux (France), J. A. Grzesik,
L. Han, E. A. Herman, F. Holland (Ireland), T. Horine, E. J. Ionaşcu, B. Karaivanov (U. S. A.) & T. S. Vassilev
(Canada), O. Kouba (Syria), P. T. Krasopoulos (Greece), J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers
(Netherlands), L. Matejı́čka (Slovenia), V. Mikayelyan (Armenia), M. Omarjee (France), E. Omey (Belgium),
D. Ritter, M. Sawhney, K. Schilling, N. C. Singer, A. Stenger, R. Stong, R. Tauraso (Italy), N. Thornber, R. van
der Veer (Netherlands), E. I. Verriest, J. Vinuesa (Spain), J. Wakem, T. Wiandt, J. Zacharias, Z. Zhang (China),
L. Zhou, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer.

The Number of Sylow Subgroups

11856 [2015, 700]. Proposed by Keith Kearnes, University of Colorado, Boulder, CO. Let
G be a finite group. Show that the number of Sylow subgroups of G is at most 2

3 |G|.
Solution by Richard Stong, Center for Communications Research, San Diego, CA. Let p
be a prime, and let sp(G) denote the number of Sylow p-subgroups of G. It is well known
that if P is a Sylow p-subgroup of G, then all Sylow p-subgroups of G are conjugates of
P . It follows that sp(G) equals the index in G of the normalizer NG(P), which equals
|G|/|NG(P)|. In particular P ⊂ NG(P), so if p divides |G| with multiplicity m, then
sp(G) ≤ |G|/pm .

Now let A be the set of primes that divide |G| with multiplicity 1. Note that A is the set
of primes p such that every Sylow p-subgroup of G is cyclic of order p. Two such Sylow
p-subgroups intersect only in the identity element, and thus G has (p − 1)sp(G) elements
of order p. Hence

∑
p∈A(p − 1)sp(G) < |G|.

If p ∈ A and sp(G) = |G|/p, then NG(P) = P for each Sylow p-subgroup P . Now
P ⊂ Z(NG(P)). By the Burnside transfer theorem, it follows that there exists a normal
subgroup H of G with index p. Hence when q is a prime different from p, every Sylow
q-subgroup is a Sylow subgroup of H . If p ≥ 3, then by induction on |G| for the number
s of Sylow subgroups of G we compute

s ≤ |G|
p

+ 2

3
|H | = 5

3p
|G| <

2

3
|G|.

If p = 2, then there are |G|/2 elements of order 2, so every element of G − H has order 2.
Given such an element x , let h be an element of H . We have (xh)2 = 1, so xhx−1 = h−1.
Thus, inversion is a group homomorphism from H to itself, and hence H is abelian. In this
case the number of Sylow subgroups of H equals the number of distinct primes dividing
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|H | (note that |H | = |G|/2). Since |H | is odd, there are at most |H |/3 such primes—with
equality if and only if |H | = 3. Hence s ≤ |G|/2 + |G|/6.

We may therefore assume sp(G) < |G|/p for p ∈ A, and hence sp(G) ≤ |G|/(2p).
Since p−2

p(p−1)
≤ 1

6 for integer p, this implies sp(G) − |G|
p2 ≤ (p−1)

6 sp(G).
Summing over p, we compute

∑
p

sp(G) ≤
∑
p∈A

sp(G) +
∑
p/∈A

|G|
p2

=
∑
p∈A

(
sp(G) − |G|

p2

)
+
∑

p

|G|
p2

≤
∑
p∈A

p − 1

6
sp(G) +

∑
p

|G|
p2

< |G|
(

1

6
+
∑

p

1

p2

)
<

2

3
|G|,

where we have used the fact that
∑

p
1
p

2 ≈ 0.452224742 < 1/2.
The argument shows that equality occurs only when G is the group S3 of order six.

Also solved by the proposer.

The Square Root of a Triangle

11857 [2015, 700]. Proposed by Mehmet Şahin, Ankara University, Ankara, Turkey. Let
ABC be a triangle with corresponding sides of lengths a, b, and c, inradius r , and corre-
sponding exradii ra , rb, and rc. Let A′ B ′C ′ be another triangle with sides of lengths

√
a,√

b, and
√

c. Show that A′ B ′C ′ has area given by

1

2

√
r(ra + rb + rc).

Solution by Borislav Karaivanov, Sigma Space, Lanham, MD, and Tzvetalin S. Vassilev,
Nipissing University, North Bay, ON, Canada. Write s for the semiperimeter of ABC. Using
the formulas

r =
√

(s − a)(s − b)(s − c)

s
, ra =

√
s(s − b)(s − c)

(s − a)

and similar formulas for rb and rc, we derive

rra = (s − b)(s − c), rrb = (s − c)(s − a), rrc = (s − a)(s − b). (1)

Let �′ denote the area of A′ B ′C ′. Using Heron’s formula, we find

16(�′)2 =
(√

a +
√

b + √
c
) (

−√
a +

√
b + √

c
) (√

a −
√

b + √
c
) (√

a +
√

b − √
c
)

=
((√

b + √
c
)2

− a

)(
a −

(√
b − √

c
)2
)

=
(

2
√

bc + (b + c − a)
) (

2
√

bc − (b + c − a)
)

= 2ab + 2bc + 2ca − a2 − b2 − c2

= a2 − (b − c)2 + b2 − (c − a)2 + c2 − (a − b)2

= 4
(
(s − b)(s − c) + (s − c)(s − a) + (s − a)(s − b)

)
= 4r(ra + rb + rc),

where we applied (1) in the final step.
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Editorial comment. Sin Hitotumatu showed that for all triangles ABC, the triangle A′ B ′C ′

is acute.

Also solved by Z. Ahmed (India), A. Ali (India), A. Alt, M. Bataille (France), B. S. Burdick, M. V. Chan-
nakeshava (India), R. Chapman (U. K.), C. Curtis, N. Curwen (U. K.), P. P. Dályay (Hungary), P. De (India),
A. Fanchini (Italy), D. Fleischman, O. Geupel (Germany), M. Goldenberg & M. Kaplan, J.-P. Grivaux (France),
J. A. Grzesik, J. G. Heuver (Canada), S. Hitotumatu (Japan), O. Hughes, Y. J. Ionin, L. R. King, O. Kouba
(Syria), W.-K. Lai & J. Risher & W. D. Ethridge, K.-W. Lau (China), J. M. Lewis, J. H. Lindsey II, G. Lord,
O. P. Lossers (Netherlands), V. Mikayelyan (Armenia), J. Minkus, D. J. Moore, R. Nandan, P. Nüesch (Switzer-
land), C. G. Petalas (Greece), M. Sawhney, V. Schindler (Germany), M. A. Shayib, I. Sofair, N. Stanciu &
T. Zvonaru (Romania), R. Stong, W. Szpunar-Lojasiewicz, H. Takeda (Japan), R. Tauraso (Italy), T. Viteam
(Japan), Z. Vörös (Hungary), M. Vowe (Switzerland), T. Wiandt, L. Wimmer, J. Zacharias, L. Zhou, GCHW
Problem Solving Group (U. K.), and the proposer.

A Condition for Nonexistence of Compositional Roots

11858 [2015, 801]. Proposed by Arkady Alt, San Jose, CA. Let D be a nonempty set and
g be a function from D to D. Let n be an integer greater than 1. Consider the set X of all
x in D such that gn(x) = x , but gk(x) �= x for 1 ≤ k < n. Prove that if X has exactly n
elements, then there is no function f from D to D such that f n = g. (Here, for h : D → D,
hk denotes the k-fold composition of h with itself.)

Composite solution by Janusz Konieczny, University of Mary Washington, Fredericksburg,
VA, and NSA Problems Group, Fort Meade, MD. For h : D → D, let 	(h) denote the func-
tional digraph of h, with an edge from a to b if and only if h(a) = b. From the definition
of X , we see that X induces a single cycle of length n in 	(g). Fix x on this cycle, and
suppose that f exists. Since f n2

(x) = gn(x) = x , vertex x lies on a cycle in 	( f ). Let C
be this cycle, and let m be its length. Both f and g permute the vertices on C ; it is a single
cycle under f , and g produces the nth power of this cycle.

Thus g acts on C as a product of d disjoint cycles of equal length m/d, where d =
gcd(m, n). One of these cycles contains x . We have seen that the cycle in 	(g) containing
x has length n and contains all of X . Hence g on C must produce a single cycle of length
n. This requires d = 1 and m = n, which in turn requires n = 1.

Also solved by K. Banerjee, P. Budney, B. S. Burdick, N. Caro (Brazil), S. Chan-Aldebol, R. Chapman
(U. K.), P. P. Dályay (Hungary), O. Geupel (Germany), H. B. Ghaffari (Iran), E. A. Herman, T. Horine,
Y. J. Ionin, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), K. E. Lewis (Gambia), J. H. Lindsey II,
J. Olson, J. M. Pacheco & Á. Plaza (Spain), A. J. Rosenthal, A. H. Sadeghimanesh (Denmark), J. Schlosberg,
J. H. Smith, R. Stong, T. Viteam (Japan), GCHQ Problem Solving Group (U. K.), TCDmath Problem Group
(Ireland), and the proposer.

Avoiding Voids

11862 [2015, 802]. Proposed by David A. Cox and Uyen Thieu, Amherst College, Amherst,
MA. For positive integers n and k, evaluate

k∑
i=0

(−1)i

(
k

i

)(
kn − in

k + 1

)
.

Solution I by Borislav Karaivanov, Sigma Space, Lanham, MD, and Tzvetalin S. Vassilev,
Nipissing University, North Bay, Ontario, Canada. The value is knk−1

(n
2

)
.

Consider a deck of kn cards, with n distinct cards in each of k suits. Both the summation
and the value count the ways to pick k + 1 cards with at least one card from each suit. For
the value, we pick one of the k suits to contribute two cards and pick one card from each
of the other suits.
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For the summation, we use inclusion-exclusion. No suit can be omitted. When i speci-
fied suits are omitted, we choose k + 1 cards from the remaining kn − in cards. Hence the
summand here is exactly the summand in the standard inclusion-exclusion computation to
count the selections of k + 1 cards omitting no suits.

Solution II by BSI Problems Group, Bonn, Germany. We use generating functions. Let [zn]
denote the coefficient operator extracting the coefficient of zn in a formal power series.
Using the Binomial theorem, we obtain

k∑
i=0

(−1)i

(
k

i

)(
kn − in

k + 1

)
=

k∑
i=0

(−1)i

(
k

i

)
[zk+1](1 + z)n(k−i)

= [zk+1]((1 + z)n − 1)k = [z]

(
(1 + z)n − 1)

z

)k

= [z]

(
n +

(
n

2

)
z + · · ·

)k

= knk−1

(
n

2

)
.

Editorial comment. Extending Solution I, the FAU Problem Solving Group noted that
choosing k + 2 cards yields a similar formula:

k∑
i=0

(−1)i

(
k

i

)(
kn − in

k + 2

)
=
(

k

2

)(
n

2

)2

nk−2 +
(

k

1

)(
n

3

)
nk−1.

One could of course continue farther.
Several solutions used Stirling numbers and various identities. Others used finite differ-

ences. If the factor
(kn−in

k+1

)
is replaced by any polynomial in i of degree at most k − 1, then

the sum evaluates to 0. Thus, we need only compute the contribution from the coefficients
of i k+1 and i k in

(kn−in
k+1

)
.

Also solved by U. Abel (Germany), A. Ali (India), M. Bataille (France), D. Beckwith, M. Bello & M. Benito
& Ó. Ciaurri & E. Fernández & L. Roncal (Spain), R. Chapman (U. K.), P. P. Dályay (Hungary), R. Dutta
(India), O. Geupel (Germany), M. L. Glasser, N. Grivaux (France), M. Hoffman, Y. J. Ionin, O. Kouba (Syria),
H. Kwong, P. Lalonde (Canada), J. H. Lindsey II, R. Nandan, M. Omarjee (France), M. Sawhney, E. Schme-
ichel, N. C. Singer, A. Stenger, R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), H. Widmer (Swizerland),
M. Wildon (U. K.), Armstrong Problem Solvers, FAU Problem Solving Group, GCHQ Problem Solving Group
(U. K.), and the proposers.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, Elizabeth Wilmer, Paul
Zeitz, and Fuzhen Zhang.

Proposed problems should be submitted online at
http: // www. americanmathematicalmonthly. submittable. com/ submit.

Proposed solutions to the problems below should be submitted by October 31, 2017
via the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11985. Proposed by Donald Knuth, Stanford University, Stanford, CA. For fixed s, t ∈
N with s ≤ t , let an = (n

s

) + ( n
s+1

) + · · · + (n
t

)
. Prove that this sequence is log-concave,

namely that a2
n ≥ an−1an+1 for all n ≥ 1.

11986. Proposed by Martin Lukarevski, Goce Delčev University, Štip, Macedonia. Let x ,
y, and z be positive real numbers. Prove

4(xy + yz + zx) ≤ (√
x + y + √

y + z + √
z + x

)√
(x + y)(y + z)(z + x).

11987. Proposed by Shen-Fu Tsai, Redmond, WA. Let n1, . . . , nk be positive integers. Let
S = [n1] × · · · × [nk], where we write [n] for {1, . . . , n}. Define a binary relation on S by
putting (x1, . . . , xk) < (y1, . . . , yk) whenever xi < yi for every i ∈ [k]. An antichain A
is a subset of S such that, for all x and y in A, neither x < y nor y < x . An antichain is
maximal if it is not a proper subset of any other antichain. Show that all maximal antichains
in S have the same size.

11988. Proposed by Michel Bataille, Rouen, France. Let ABC be a triangle. Find the
extrema of

AC2 + CE2 + EB2 + BD2 + DA2

AB2 + BC2 + CD2 + DE2 + EA2

over all points D and E in the plane of ABC. At which points D and E are these extrema
attained?

11989. Proposed by Spiros P. Andriopoulos, Third High School of Amaliada, Eleia, Greece.
Let x be a number between 0 and 1. Prove

∞∏
n=1

(
1 − xn

) ≥ exp

(
1

2
− 1

2(1 − x)2

)
.

http://dx.doi.org/10.4169/amer.math.monthly.124.6.563

June–July 2017] PROBLEMS AND SOLUTIONS 563

This content downloaded from 207.162.240.147 on Tue, 16 May 2017 17:17:03 UTC
All use subject to http://about.jstor.org/terms

X
ia
ng
’s
T
ex
m
at
h



11990. Proposed by Nicuşor Minculete, Transilvania University of Braşov, Romania. Let
a, b, and c be the lengths of the sides of a triangle of area S. Weitzenböck’s inequality
states that a2 + b2 + c2 ≥ 4

√
3S. Prove the following stronger inequality:

a2 + b2 + c2 ≥
√

3
(
4S + (c − a)2

)
.

11991. Proposed by Yongge Tian, Central University of Finance and Economics, Beijing,
China. Given two complex n-by-n positive definite matrices A and B, let C = (A + B)/2

and D = A1/2
(

A−1/2BA−1/2
)1/2

A1/2; the matrices C and D are the arithmetic mean and
geometric mean of A and B. Prove range(C − D) = range(A − B) and

range

[
C D
D C

]
= range

[
A B
B A

]
.

SOLUTIONS

Rational triples

11827 [2015, 284]. Proposed by George Stoica, University of New Brunswick, Saint John,
Canada. Show that there are infinitely many rational triples (a, b, c) such that a + b + c =
abc = 6.

Solution by Boris Bekker, St. Petersburg State University, Russia, and Yury J. Ionin, Central
Michigan University, Mt. Pleasant, MI. Given rational (x, y) satisfying x3 − 9x + 9 = y2,
define

a = 6

3 − x
, b = 6 − 3x + y

3 − x
, c = 6 − 3x − y

3 − x
.

Note that a + b + c = (18 − 6x)/(3 − x) = 6 and abc = 6
(
(6 − 3x)2 − y2

)
/(3 − x)3 =

6, since (6 − 3x)2 − y2 = 36 − 36x + 9x2 − x3 + 9x − 9 = (3 − x)3. Also, (a, b, c) is a
rational triple when (x, y) is rational. Hence it suffices to find infinitely many such rational
(x, y).

Let E be the set of rational points of the elliptic curve given by y2 = x3 − 9x + 9; note
by computation that (9/4,−3/8) ∈ E . We produce points (xn, yn) ∈ E , beginning with
(x1, y1) = (9/4,−3/8). Given (xn, yn), let (xn+1, yn+1) be the point at which the tangent
line at (xn, yn) intersects the curve.

Using implicit differentiation, the equation for the tangent line is

y = 3x2
n − 9

2yn
(x − xn)+ yn.

Since intersection points must satisfy x3 − 9x + 9 − y2 = 0, we have

x3 − 9x + 9 −
(

3x2
n − 9

2yn
(x − xn)+ yn

)2

= 0.

Note that xn is a double root of this equation, since the elliptic curve and tangent line are
tangent at xn . Since the three roots must sum to the negative of the coefficient of x2, we
have xn + xn + xn+1 = (

(3x2
n − 9)/(2yn)

)2
. Thus

xn+1 =
(

3x2
n − 9

2yn

)2

− 2xn = x4
n + 18x2

n − 72xn + 81

4(x3
n − 9xn + 9)

.
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For nonzero rational r , let ν(r) be the unique integer such that 2−ν(r)r equals a fraction
with odd numerator and odd denominator. For nonzero rational r and s, we have ν(rs) =
ν(r)+ ν(s) and ν(r/s) = ν(r)− ν(s). Also, ν(r + s) = ν(r)when ν(r) < ν(s). Note that
ν(x1) = −2. Inductively, with ν(xn) < 0,

ν(xn+1) = ν(x4
n + 18x2

n − 72xn + 81)− ν(4(x3
n − 9xn + 9))

= min{ν(x4
n), ν(18x2

n ), ν(72xn), ν(81)} − (2 + min{ν(x3
n), ν(9xn), ν(9)})

= min{4ν(xn), 1 + 2ν(xn), 3 + ν(xn), 0} − 2 − min{3ν(xn), ν(xn), 0}
= 4ν(xn)− 2 − 3ν(xn) < ν(xn).

We conclude that (xn, yn)n≥1 has no repeated terms, and E is infinite.

Editorial comment. Other solutions used the machinery of elliptic curves. Several solvers
cited a paper by A. Schinzel, Triples of positive integers with the same sum and the same
product, Serdica Math. J. 22 (1996) 587–588, or one by J. B. Kelly, Partitions with equal
products (II), Proc. Amer. Math. Soc. 107 (1989) 887–893.

Also solved by A. J. Bevelacqua, R. Boukharfane (France), R. Chapman (U. K.), J. Christopher, O. Geupel
(Germany), M. Huibregtse, P. Lalonde (Canada), J. F. Loverde, G. Malisani (Italy), M. Omarjee (France),
M. A. Prasad (India), F. Perdomo & Á. Plaza (Spain), J. P. Robertson, D. Singer, J. C. Smith, R. Stong,
R. Tauraso (Italy), L. G. Vidiani, E. Weinstein, GCHQ Problem Solving Group (U. K.), New York Math
Circle, NSA Problems Group, and the proposer.

Variations on the Euler-Mascheroni Constant

11851 [2015, 391]. Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade Secondary School, Buzău,
Romania. For real a and b and integer n ≥ 1, let γn(a, b) = − log(n + a)+∑n

k=1
1

k+b .
(a) Prove that γ (a, b) = limn→∞ γn(a, b) exists and is finite.
(b) Find

lim
n→∞

(
log

(
e

n + a

)
+

n∑
k=1

1

k + b
− γ (a, b)

)n

.

Solution by Ramya Dutta, Chennai Mathematical Institute, Chennai, India. The statement
is not quite correct. If b is a negative integer, then γn(a, b) is defined only for finitely
many values of n and the problem does not make sense. We assume below that such b are
excluded.

Let ψ(x) denote the digamma function. We have

γn(a, b) = −ψ(b + 1)+ ψ(n + 1 + b)− log(n + a).

From the asymptotic formula

ψ(z) = log z − 1

2z
+ O(z−2)

as |z| → ∞, we get

ψ(n + 1 + b) = log n + 2b + 1

2n
+ O(n−2),

and therefore

γn(a, b) = −ψ(b + 1)+ 2b − 2a + 1

2n
+ O(n−2).
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Hence we see that γ (a, b) = limn→∞ γn(a, b) = −ψ(b + 1) exists and is finite when b is
not a negative integer.

Furthermore,

log

(
e

n + a

)
+

n∑
k=1

1

k + b
− γ (a, b) = 1 + γn(a, b)− γ (a, b) = 1 + 2b − 2a + 1

2n
+ O(n−2).

Hence

lim
n→∞

(
log

(
e

n + a

)
+

n∑
k=1

1

k + b
− γ (a, b)

)n

= lim
n→∞

(
1 + 2b − 2a + 1

2n
+ O(n−2)

)n

= e(2b−2a+1)/2.

Also solved by K. F. Andersen (Canada), R. Boukharfane (France), P. Bracken, B. Bradie, R. Chapman (U. K.),
H. Chen, P. P. Dályay (Hungary), P. J. Fitzsimmons, D. Fleischman, M. Goldenberg & M. Kaplan, J.-P. Grivaux
(France), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Nandan, M. Omarjee (France),
E. Omey & S. Van Gulck (Belgium), P. Perfetti (Italy), E. Saha (India), K. Schilling, R. Stong, R. Tauraso
(Italy), J. Vinuesa (Spain), and the proposer.

Two Matrices

11859 [2015, 801]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,
IL, and Yury Ionin, Central Michigan University, Mount Pleasant, MI. Find all pairs (m, n)
of positive integers for which there exists an m × n matrix A and an n × m matrix B,
both with real entries, such that all diagonal entries of AB are positive and all off-diagonal
entries are negative.

Solution by Edward Schmeichel, San Jose State University, San Jose, CA. Given (m, n), let
such matrices A and B be called a suitable pair. Suitable pairs (A, B) exist for all pairs
(m, n) except (m, 1) with m ≥ 3 and (m, 2) with m ≥ 4. The proof is by cases, depending
on the value n.

n = 1: Letting At = B = [
1
]

and At = B = [
1 −1

]
provides suitable pairs for

m = 1 and m = 2. For m ≥ 3, a suitable pair (A, B) with A = [a b c · · · ]t and
B = [d e f · · · ] would require bd < 0 and a2 f 2bd = (b f )(ad)(a f ) > 0, which is
a contradiction.

n = 2: For m ∈ {1, 2, 3}, obtain suitable pairs by letting A and Bt both equal one of the
matrices below.

[
1 − 1

] [
1 −1

−1 1

] ⎡
⎣ 2 −1

−1 2
−1 −1

⎤
⎦

For m ≥ 4, suppose that (A, B) is a suitable pair. We may let the rows of A be unit vectors
v1, . . . , vm and the columns of B be unit vectors w1, . . . , wm in R2. Thus AB = [vi · w j ],
where · denotes the dot product. Now vi · w j > 0 (respectively, < 0) if and only if w j lies
inside the open (respectively, outside the closed) half of the unit circle centered at vi . Since
m ≥ 4, some three (say w1, w2, w3) lie in some half of the unit circle; say w2 is between
w1 and w3. Now v2 ·w2 > 0, so v2 lies in the half-circle centered at w2. Also, either w1 or
w3 lies in the closed half-circle centered at v2. This contradicts the assertion that (A, B) is
a suitable pair.

n = 3: On a latitude L of the unit sphere in R3 positioned slightly south of the equator,
consider unit vectors v1, v2, . . . , vm equally spaced around L . Let Hi denote the closed
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hemisphere centered at vi , for 1 ≤ i ≤ m. For each index i , there is a unit vector wi due
north of vi , and slightly less than 90◦ from vi , such that wi is in the interior of Hi but in
the exterior of all Hj with j 
= i . Let A be the m × 3 matrix with row vectors v1, . . . , vm ,
and let B be the 3 × m matrix with column vectors w1, . . . , wm . Now (A, B) is a suitable
pair for (m, 3).

n ≥ 4: Given any m ≥ 1, let (A3, B3) be a suitable pair for (m, 3) as above. Define the
m × n matrix A and n × m matrix B by

A = [
A3 0

]
and B =

[
B3

0

]
.

Now (A, B) is a suitable pair for (m, n).

Also solved by R. Chapman (U. K.), M. Javaheri, R. Stong, M. Wildon (U. K.), GCHQ Problem Solving Group
(U. K.), and the proposers.

A Power of an Integral versus an Integral of a Power

11861 [2015, 801]. Proposed by Phu Cuong Le Van, College of Education, Hue, Vietnam.
Let n be a natural number, and let f be a continuous function from [0, 1] to R such that∫ 1

0 f (x)2n+1 dx = 0. Prove that

(2n + 1)2n+1

(2n)2n

(∫ 1

0
f (x) dx

)2n

≤
∫ 1

0
( f (x))4n dx .

Solution by Paolo Perfetti, Departimento di Matematica, Università degli Studi di Roma,
Rome, Italy. If

∫
f (x) dx = 0, then the inequality is trivially true. If

∫
f (x) dx 
= 0, then

the inequality need not hold. To see this, consider λ f with λ > 0. The right side goes to
zero with λ according to λ4n , while the left side goes to zero with λ according to λ2n .
Hence, for sufficiently small λ, the right side is smaller.

The correct statement is

(2n + 1)2n+1

(2n)2n

(∫ 1

0
f (x) dx

)4n

≤
∫ 1

0
( f (x))4n dx .

To prove this, consider c ∈ R. By the Cauchy–Schwarz inequality,(∫ 1

0

(
c + f (x)2n

)
f (x) dx

)2

≤
∫ 1

0

(
c + f (x)2n

)2
dx

∫ 1

0
f (x)2dx .

Since
∫ 1

0 f 2n+1 dx = 0, this becomes

(∫ 1

0
c f (x) dx

)2

≤
∫ 1

0

(
c + f (x)2n

)2
dx
∫ 1

0
f (x)2dx

=
(

c2 + 2c
∫ 1

0
f (x)2ndx +

∫ 1

0
f (x)4ndx

)∫ 1

0
f (x)2dx,

or

c2

((∫ 1

0
f (x)2dx

)2

−
∫ 1

0
f (x)2dx

)
− 2c

∫ 1

0
f (x)2dx

∫ 1

0
f (x)2ndx

≤
∫ 1

0
f (x)4ndx

∫ 1

0
f (x)2dx .

(1)
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Let

A =
(∫ 1

0
f (x) dx

)2

−
∫ 1

0
f (x)2dx .

By the Cauchy–Schwarz inequality, A ≤ 0. Also, A = 0 only if f is constant, and since∫
f (x)2n+1dx = 0, the function f would be the constant 0. In this case, the inequality

holds trivially. So assume A < 0. Now choose

c = 1

A

∫ 1

0
f (x)2dx

∫ 1

0
f (x)2ndx

(chosen to maximize the top line of (1)). Now (1) becomes

∫ 1

0
f (x)4ndx

∫ 1

0
f (x)2dx ≥ −1

A

(∫ 1

0
f (x)2dx

)2 (∫ 1

0
f (x)2n

)2

,

or ∫ 1

0
f (x)4ndx ≥ −1

A

∫ 1

0
f (x)2dx

(∫ 1

0
f (x)2ndx

)2

.

Using the Hölder inequality, we get

∫ 1

0
f (x)4ndx ≥ −1

A

∫ 1

0
f (x)2dx

(∫ 1

0
f (x)2dx

)2n

.

With p = ∫ 1
0 f (x)2dx and p0 = (

∫ 1
0 f (x) dx)2, this becomes∫ 1

0
f (x)4ndx ≥ p2n+1

p − p0
, with p > p0.

Combining this with the fact that the function p �→ p2n+1/(p − p0) has minimum value
p2n

0 (2n + 1)2n+1/(2n)2n , we see that

∫ 1

0
f (x)4ndx ≥ (2n + 1)2n+1

(2n)2n

(∫ 1

0
f (x) dx

)4n

,

which is the inequality to be proved.

Editorial comment. The proposer’s original version indeed had 4n, not 2n.

Also solved by U. Abel (Germany), K. Andersen (Canada), P. P. Dályay (Hungary), M. Omarjee (France),
M. Sawhney, R. Stong, R. Tauraso (Italy), GCHQ Problem Solving Group (U. K.), and the proposer.

Circular Congruences with a Unique Solution

11863 [2015, 802]. Proposed by Jeffrey C. Lagarias and Jeffrey Sun, University of Michi-
gan, Ann Arbor, MI. Consider integers a, b, c with 1 ≤ a < b < c that satisfy the following
system of congruences:

(a + 1)(b + 1) ≡ 1 (mod c)

(a + 1)(c + 1) ≡ 1 (mod b)

(b + 1)(c + 1) ≡ 1 (mod a).

(a) Show that there are infinitely many solutions (a, b, c) to this system.
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(b) Show that under the additional condition that gcd(a, b) = 1, there are only finitely
many solutions (a, b, c) to the system, and find them all.

Solution by Yury J. Ionin, Central Michigan University, Mount Pleasant, MI.
(a) For m ∈ N, letting a = 6m, b = 12m, and c = 18m yields a solution.

(b) If gcd(b, c) = d > 1, then 1 ≡ (a + 1)(b + 1) ≡ a + 1 (mod d), so gcd(a, b) ≥ d,
a contradiction. Thus gcd(b, c) = 1, and similarly gcd(a, c) = 1. If a is even, then the
congruence (b + 1)(c + 1) ≡ 1 (mod a) implies that both b and c are even, yielding a
common factor. Thus a is odd, and similarly b and c are also odd.

Note that (a + 1)(b + 1)(c + 1) is congruent to 1 modulo a, b, and c. It is also congruent
to 1 modulo abc since a, b, and c have no common factors. Hence (a + 1)(b + 1)(c + 1) =
1 + nabc for some positive integer n. Dividing by abc yields

1

a
+ 1

b
+ 1

c
+ 1

ab
+ 1

ac
+ 1

bc
= n − 1. (1)

If a ≥ 3, then b ≥ 5, c ≥ 7, ab ≥ 15, ac ≥ 21, and bc ≥ 35. Therefore the left side of (1)
is at most 1

3 + 1
5 + 1

7 + 1
15 + 1

21 + 1
35 , which equals 86

105 , so the sum cannot be a positive
integer. Hence a = 1, and (1) reduces to

2

b
+ 2

c
+ 1

bc
= n − 2. (2)

If b ≥ 5, then c ≥ 7, and 2
b + 2

c + 1
bc ≤ 2

5 + 2
7 + 1

35 = 5
7 . Again the sum cannot be a

positive integer. Hence b = 3, and (2) reduces to 2c+7
3c = n − 2. Thus c divides 7, implying

c = 7, so (1, 3, 7) is the only solution to (b).

Editorial comment. T. Horine showed that the solutions in part (a) are the triples (a, b, c)
that can be written as a = a′d, b = b′d, c = c′d such that a′, b′, c′ are pairwise relatively
prime, 1 ≤ a′ < b′ < c′, and d > 0 satisfies the system

a′b′d ≡ −(a′ + b′) (mod c′)

a′c′d ≡ −(a′ + c′) (mod b′)

b′c′d ≡ −(b′ + c′) (mod a′),

which by the Chinese remainder theorem has a unique solution modulo a′b′c′.

Also solved by A. Ali (India), N. Bouchareb (Morocco), B. S. Burdick, R. Chapman (U. K.), N. Curwen
(U. K.), P. P. Dályay (Hungary), O. Geupel (Germany), S. Hitotumatu (Japan), T. Horine, B. Karaivanov
(U. S. A.) & T. S. Vassilev (Canada), O. Kouba (Syria), P. Lalonde (Canada), V. Mikayelyan (Armenia),
J. P. Robertson, S. Roy (India), M. Sawhney, K. Schilling, J. Schlosberg, N. C. Singer, R. Stong, R. Tauraso
(Italy), Z. Vörös (Hungary), E. T. White, BSI Problems Group (Germany), GCHQ Problem Solving Group
(U. K.), NSA Problems Group, and the proposers.

A Congruence Property of an Integer Sequence

11864 [2015, 802]. Proposed by Bakir Farhi, University of Béjaia, Béjaia, Algeria. Let p
be a prime number, and let 〈u〉 be the sequence given by un = n for 0 ≤ n ≤ p − 1 and
un = pun+1−p + un−p for n ≥ p. Prove that for each positive integer n, the greatest power
of p dividing un is the same as the greatest power of p dividing n.

Solution by John H. Lindsey II, Cambridge, Massachussetts. Let νp(n) be the greatest
integer e such that pe divides n. For n ≥ 1, we first prove by induction that νp(n!) ≤ n − 1,
with strict inequality for p > 2 and n > 1. This is immediate for n < p. Let n = j + i p
with 0 ≤ j < p and i > 0. Using the induction hypothesis, we compute

νp(( j + i p)!) = νp(p(2p) · · · (i p)) = i + νp(i!) ≤ i + i − 1 ≤ i p − 1,
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with strict inequality for p > 2.
We now show u j+i p = ∑i

k=0

(i
k

)
pku j+k for i ≥ 0 and j ≥ 0. We use induction on i .

The result is trivial for i = 0, and for i ≥ 1 we compute

u j+i p = u j+(i−1)p + pu j+1+(i−1)p =
i−1∑
k=0

(
i − 1

k

)
pku j+k +

i−1∑
k=0

(
i − 1

k

)
p1+ku j+1+k

=
i−1∑
k=0

(
i − 1

k

)
pku j+k +

i∑
k=1

(
i − 1

k − 1

)
pku j+k =

i∑
k=0

(
i

k

)
pku j+k .

We must prove νp(un) = νp(n) for n ≥ 1. For 1 ≤ j < p and i ≥ 0, we have u j+i p =
u j +∑i

k=1

(i
k

)
pku j+k . Since u j = j , we have that u j+i p is not divisible by p. Also j + i p

is not divisible by p. Thus νp(u j+i p) = 0 = νp( j + i p).
Since u0 = 0 and u1 = 1, we have u0+i p = ∑i

k=0

(i
k

)
pkuk = i p + ∑i

k=2

(i
k

)
pkuk .

Suppose p > 2. When k > 1,

νp

((i
k

)
pkuk

)
≥ νp(i)− νp(k!)+ k > νp(i)− k + 1 + k = νp(i p).

Since the terms in the sum are divisible by higher powers of p, the powers of p dividing
uip are just the powers dividing i p, and we have νp(uip) = νp(i p).

The final case is p = 2. For k = 2, we have ν2

((i
2

)
22u2

)
≥ ν2(i) − 1 + 2 + 1 =

ν2(2i) + 1. For k > 2, we use the factors i(i − 1)(i − 2) in the numerator of
(i

k

)
(with

i − 1 or i − 2 being even) to obtain

ν2

((i
k

)
2kuk

)
≥ ν2(i)+ ν2((i − 1)(i − 2))− ν2(k!)+ k

≥ ν2(i)+ 1 − k + 1 + k = ν2(2i)+ 1.

As in the preceding case, we thus have ν2(u2i ) = ν2(2i).

Editorial comment. Other solution techniques included using generating functions or the
characteristic polynomial of the linear recursion.

Also solved by N. Caro (Brazil), R. Chapman (U. K.), P. P. Dályay (Hungary), T. Horine, Y. J. Ionin, P. Lalonde
(Canada), J. P. Robertson, N. C. Singer, R. Stong, R. Tauraso (Italy), J. Van hamme (Belgium), T. Viteam
(Japan), and the proposer.

Two Sums Compared

11865 [2015, 899]. Proposed by Gary H. Chung, Clark Atlanta University, Atlanta, GA.
Let 〈an〉 be a monotone decreasing sequence of nonnegative real numbers. Prove that∑∞

n=1 an/n is finite if and only if limn→∞ an = 0 and
∑∞

n=1(an − an+1) log n < ∞.

Solution by Robin Chapman, University of Exeter, Exeter, United Kingdom. If
∑∞

n=1 an/n
is finite, then limn→∞ an = 0. Assuming limn→∞ an = 0, we prove that

∑∞
n=1 an/n < ∞

if and only if
∑∞

n=1(an − an+1) log n < ∞. Let bn = an − an+1 ≥ 0. Since lim an = 0, we
have an = ∑∞

k=n bk , and thus
∞∑

n=1

an

n
=

∞∑
n=1

∞∑
k=n

bk

n
.

A nonnegative double series converges if and only if the series obtained by reversing the
order of summation also converges. That series is

∞∑
k=1

∞∑
n=1

bk

n
=

∞∑
k=1

bk Hk,
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where the harmonic numbers Hk given by Hk = 1 + 1
2 + 1

3 + · · · + 1
k are asymptotic to

log k as k → ∞. By the limit comparison test,
∑

an/n < ∞ if and only if
∑∞

k=1 bk log k <
∞. This completes the proof.

Also solved by K. F. Andersen (Canada), B. S. Burdick, H. Chen, P. P. Dályay (Hungary), C. J. Dowd,
P. J. Fitzsimmons, E. J. Ionaşcu, M. Javaheri, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Nether-
lands), L. Madejı́c̆ka (Slovakia), T. L. McCoy, V. Mikayelyan (Armenia), A. Minasyan (Russia), M. Omarjee
(France), M. Omarjee (France) & R. Tauraso (Italy), P. Perfetti (Italy), Á. Plaza (Spain), D. Ritter, S. M. Sasane
& A. Sasane, K. Schilling, N. C. Singer, A. Stenger, R. Stong, D. B. Tyler, J. Vinuesa (Spain), T. Wiandt,
GCHQ Problem Solving Group (U. K.), Northwestern University Math Problem Solving Group, NSA Prob-
lems Group, and the proposer.

Random Events Simulated by a Biased Coin

11866 [2015, 899]. Proposed by Arindam Sengupta, University of Calcutta, Kolkata, India.
Consider a finite set {α1, . . . , αm} of rational numbers in (0, 1). For 0 < p < 1 and k ≥
1, let �k be the probability space for k independent flips of a coin that comes up heads
with probability p. Show that there exists a positive integer k, a suitable p, and events
E1, . . . , Em in �k , such that for each j with 1 ≤ j ≤ m, the probability of E j is α j .

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Let M
be the least common multiple of the denominators of α1, . . . , αm . We show that there exists
a suitable k and p so that the space �k can be partitioned into M disjoint pieces each of
probability 1/M . (That is, we simulate a fair M-sided die using a fixed number k of tosses
of a biased coin whose probability of heads is a fixed number p.) The required set E j can
then be taken as the union of Mα j of these pieces.

To build this partition we take k to be an odd prime congruent to −1 (mod M). We
choose p so that�k can be partitioned into k + 1 pieces, each having probability 1/(k + 1).
Grouping these in blocks of size (k + 1)/M gives us a partition into pieces of probability
1/M .

Now we describe the choice of p. The continuous function f defined on [0, 1] by f (t) =
t k + (1 − t)k has minimum f (1/2) = 21−k ≤ 1/(k + 1) and maximum f (0) = f (1) = 1,
so we can choose p so that f (p) = 1/(k + 1).

Finally, we describe the partition into sets having probability 1/(k + 1). The first block
Q0 of our partition consists of the event that all flips agree (either k heads or k tails). So
Q0 has probability pk + (1 − p)k , which equals 1/(k + 1). The rest �k\Q0 has proba-
bility k/(k + 1); we partition it into k sets of equal probability. For 1 ≤ r < k, the set
Zr of flips consisting of r heads and k − r tails is made up of

(k
r

)
events having the

same probability pk(1 − p)k−r . Since
(k

r

)
is a multiple of k, the set Zr may be partitioned

into k sets Q1,r , . . . , Qk,r having the same probability. Repeating this for all r and setting
Qi = ∪k−1

r=1 Qi,r when 1 ≤ i ≤ k, we partition �k\Q0 into k sets Q1, . . . , Qk having equal
probability.

Editorial comment. The GCHQ Problem Solving Group (U. K.) noted that, in general, it is
not possible to take the probability p to be rational.

Also solved by N. Grivaux (France), O. P. Lossers (Netherlands), GCHQ Problem Solving Group (U. K.), and
the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, Elizabeth Wilmer, Paul
Zeitz, and Fuzhen Zhang.

Proposed problems should be submitted online at
http: // www. americanmathematicalmonthly. submittable. com/ submit.

Proposed solutions to the problems below should be submitted by December 31, 2017
via the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11992. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Prove
that, for every positive integer n, there is a positive integer m such that 3m + 5m − 1 is
divisible by 7n .

11993. Proposed by Cornel Ioan Vălean, Timiş, Romania. Prove∫ 1

0

log(1 − x)(log(1 + x))2

x
dx = − π4

240
.

11994. Proposed by Miguel Ochoa Sanchez, Lima, Peru, and Leonard Giugiuc, Drobeta
Turnu Severin, Romania. Let ABC be
a triangle with incenter I and circum-
circle ω. Let M , N , and P be the sec-
ond points of intersection of ω with
lines AI, BI, and CI, respectively. Let
E and F be the points of intersection
of NP with AB and AC, respectively.
Similarly, let G and H be the points of
intersection of MN with AC and BC,
respectively, and let J and K be the
points of intersection of MP with BC
and AB, respectively. Prove

EF + GH + JK ≤ KE + FG + HJ.

A

E F

G

H

I

J

K

B C

P
N

M

11995. Proposed by Dan Ştefan Marinescu, National College “Iancu de Hunedoara,”
Hunedoara, Romania, and Mihai Monea, National College “Decebal,” Deva, Romania.
Suppose 0 < x0 < π , and for n ≥ 1 define xn = 1

n

∑n−1
k=0 sin xk . Find limn→∞ xn

√
ln n.

11996. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy.
Consider all the tilings of a 2-by-n rectangle comprised of tiles that are either a unit square,

http://dx.doi.org/10.4169/amer.math.monthly.124.7.659
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a domino, or a right tromino. Let fn be the fraction of tiles among all such tilings that are
unit squares. For example, f2 = 4/7, because 16 out of the 28 tiles in the 11 tilings of a
2-by-2 rectangle are squares. What is limn→∞ fn?

11997. Proposed by Michael Drmota, Technical University of Vienna, Vienna,
Austria; Christian Krattenthaler, University of Vienna, Vienna, Austria; and Gleb Pogudin,
Johannes Kepler University, Linz, Austria. Assume |p| < 1 and pz �= 0. With
f (z) = (

e(p−1)z − e−z
)
/(pz), define f ∗(z) = ∏∞

k=0 f (pk z), and then define Fn(p) so that
f ∗(z) = ∑∞

n=0 Fn(p)zn . Prove the identity

∞∑
n=0

Fn(p) p(n
2) = 0.

11998. Proposed by Roger Cuculière, Lycée Pasteur, Neuilly-sur-Seine, France. Find all
continuous functions f : R → R that satisfy f (z) ≤ 1 for some nonzero real number z
and

f (x)2 + f (y)2 + f (x + y)2 − 2 f (x) f (y) f (x + y) = 1

for all real numbers x and y.

SOLUTIONS

Log-squared of the Catalan Generating Function

11832 [2015, 390]. Proposed by Donald Knuth, Stanford University, Stanford, CA. Let
C(z) = ∑∞

n=0

(2n
n

)
zn

n+1 (thus C(z) is the generating function of the Catalan numbers). Prove
that

(log C(z))2 =
∞∑

n=1

(
2n

n

)
(H2n−1 − Hn)

zn

n
.

Here Hk = ∑k
j=1 1/j ; that is, Hk is the kth harmonic number.

Solution by James Christopher Smith, Knoxville, TN. From the well-known formula

C(z) = 1−√
1−4z

2z , it follows that C ′(z)
C(z) = 1

2z

(
1√

1−4z
− 1

)
. The generating function for

the central binomial coefficients is also well known; it is
∑∞

k=0

(2k
k

)
zk = 1√

1−4z
. This yields

C ′(z)
C(z)

= 1

2

∞∑
k=1

(
2k

k

)
zk−1 and log(C(z)) = 1

2

∞∑
k=1

(
2k

k

)
zk

k
,

where we obtain the second formula by integration. After squaring and collecting terms of
degree n, we obtain

(log C(z))2 =
∞∑

n=1

(
1

4

n−1∑
k=1

(
2k

k

)(
2n − 2k

n − k

)
1

k(n − k)

)
zn
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=
∞∑

n=1

(
1

4

n−1∑
k=1

(
2k

k

)(
2n − 2k

n − k

)
1

n

(
1

k
+ 1

n − k

))
zn

=
∞∑

n=1

(
1

2

n−1∑
k=1

(
2k

k

)(
2n − 2k

n − k

)
1

k

)
zn

n
.

Thus it remains to show

1

2

n−1∑
k=1

(
2k

k

)(
2n − 2k

n − k

)
1

k
=
(

2n

n

)
(H2n−1 − Hn).

Letting Hn(x) = ∑n
k=1

1
x+k and using

(x
k

) =
(∏k−1

i=0 (x − i)
)

/k!, for m ≤ n we obtain

d

dx

(
x + n

m

)
=
(

x + n

m

)
(Hn(x) − Hn−m(x)).

In D. Merlini, R. Sprugnoli, M. C. Verri, Lagrange inversion: when and how, Acta
Applicandae Mathematica 94 (2006) 233–249, Lagrange inversion is used to prove∑n

k=0
a

a+qk

(a+qk
k

)(qn−qk
n−k

) = (a+qn
n

)
. Setting a = x and q = 2 yields

n∑
k=0

x

x + 2k

(
x + 2k

k

)(
2n − 2k

n − k

)
=
(

x + 2n

n

)
.

Differentiation of both sides with respect to x yields

n∑
k=1

d

dx

(
x

x + 2k

(
x + 2k

k

))(
2n − 2k

n − k

)
=
(

x + 2n

n

)
(H2n(x) − Hn(x)).

Expanding the differentiation of the product on the left side, evaluating at x = 0, and using
x

x+2k
d

dx

(x+2k
k

)∣∣∣
x=0

= 0 and d
dx

x
x+2k

∣∣∣
x=0

= 1
2k , we obtain

1

2

n∑
k=1

(
2k

k

)(
2n − 2k

n − k

)
1

k
=
(

2n

n

)
(H2n − Hn).

Moving the term for k = n to the other side yields the desired equation

1

2

n−1∑
k=1

(
2k

k

)(
2n − 2k

n − k

)
1

k
=
(

2n

n

)
(H2n − 1

2n
− Hn) =

(
2n

n

)
(H2n−1 − Hn).

Editorial comment. Solvers used a variety of techniques, including integrations and Zeil-
berger’s algorithm with telescoping sums. The proposer commented more generally that
if f (z) = ∑∞

n=0

(tn
n

)
zn

(t−1)n+1 , then the coefficient of zn in (ln f (z))p is the coefficient of

x p−1 in p!
x+tn

(x+tn
n

)
. Several solvers noted that (log C(z))2 was ambiguously typeset as

log(C(z))2 in the original publication of the problem.

Also solved by T. Amdeberhan & V. H. Moll, D. Beckwith, R. Chapman (U. K.), H. Chen, R. Dutta (India),
M. L. Glasser, P. Lalonde (Canada), K. D. Lathrop, K.-W. Lau (China), L. Matejı́čka (Slovakia), M. Omarjee
(France), B. Salvy (France), A. Stenger, R. Stong, R. Tauraso (Italy), C. I. Vălean (Romania), M. Wildon, and
the proposer.
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Napoleon into the Fray

11860 [2015, 801]. Proposed by Dimitris Vartziotis, NIKI MEPE Digital Engineerings,
Katsikas Ioannina, Greece. Let ABC be a triangle. Let D, E , and F be the feet of the
altitudes from A, B, and C , respectively. Extend the ray DA beyond A to a point A′, and
similarly extend EB to B ′ and FC to C ′, in such a way that

√
3|AA′| = |BC|, √

3|BB′| =
|CA|, and

√
3|CC′| = |AB|. Prove that A′ B ′C ′ is an equilateral triangle.

Solution I by Irl C. Bivens and L. R. King, Davidson College, Davidson, NC. Let A∗ be the
reflection of A through the midpoint of the opposite side BC, and let B∗ and C∗ be defined
similarly. The triangles A∗CB, CB∗ A, and BAC∗ are all congruent to the original triangle
ABC. Therefore A, B, and C are the midpoints of the sides of triangle A∗ B∗C∗, and so
ABC is the medial triangle of A∗ B∗C∗. The six triangles such as A′ AB∗ are all 1 :

√
3: 2

right triangles, so the points A′, B ′, and C ′ defined in the problem are the centers of the
equilateral triangles constructed outward on the sides of triangle A∗ B∗C∗. Therefore, the
Napoleon theorem guarantees that A′ B ′C ′ is equilateral.

Solution II by TCDmath Problem Group, Trinity College, Dublin, Ireland. Set the construc-
tion in the complex plane, and use a corresponding lower-case letter to denote the complex
number associated with the point whose name is an upper-case letter. For definiteness, let
ABC be oriented positively. Let ω = e2π i/3 = −1/2 + i

√
3/2, so that ω3 = (ω2)3 = 1,

(ω2)2 = ω, and ω2 = −1/2 − i
√

3/2.
Because of the positive orientation of ABC, the angle from BC to AA′ is π/2. Since√

3|AA′| = |BC |, we have
√

3(a′ − a) = i(c − b). Thus
√

3a′ = √
3a − bi + ci . Simi-

larly,
√

3b′ = √
3b − ci + ai and

√
3c′ = √

3c − ai + bi , so (
√

3i/2)(b′ − a′) = ω2a +
ωb + c. Similarly, (

√
3i/2)(c′ − b′) = ω2b + ωc + a and (

√
3i/2)(a′ − c′) = ω2c +

ωa + b. Hence b′ − a′ = ω2(c′ − b′) = ω(a′ − c′), so |A′ B ′| = |B ′C ′| = |C ′ A′|, and thus
A′ B ′C ′ is equilateral.

Editorial comment. The problem did not specify that ABC is acute. When it is obtuse, the
orthocenter lies outside of it. Some solutions did not allow for this possibility.

Also solved by A. Ali (India), H. Bailey, M. Bataille (France), B. S. Burdick, E. Chadraa, M. V. Channakeshava
(India), R. Chapman (U. K.), K. Charatsaris (Greece), C. Curtis, N. Curwen (U. K.), P. P. Dályay (Hungary),
S. N. Dinh (Germany), C. Effenberger (Germany), A. Fanchini (Italy), B. Fritzching (Germany), O. Geupel
(Germany), M. Goldenberg & M. Kaplan, A. Gretsistas (Greece), A. Häcker (Germany), M. Hanselmann
(Germany), I. Held (Germany), J. G. Heuver (Canada), S. Hitotumatu (Japan), S. Huggenberger (Germany),
Y. J. Ionin, H. Jung (Korea), B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), O. Kouba (Syria), M. Kronen-
welt (Germany), M. D. Meyerson, V. Mikayelyan (Armenia), J. Minkus, D. J. Moore, K. Nikolaou (Greece),
P. Nüesch (Switzerland), C. R. Pranesachar (India), M. Sawhney, J. Schlosberg, N. Stanciu & T. Zvonaru
(Romania), R. Stong, T. Toyonari (Japan), T. Viteam (Japan), Z. Vörös (Hungary), M. Vowe (Switzerland),
T. Wiandt, J. Zacharias, GCHQ Problem Solving Group (U. K.), and the proposer.

A Symmetric Bound

11867 [2015, 899]. Proposed by George Apostolopoulos, Messolonghi, Greece. For real
numbers a, b, c, let

f (a, b, c) =
(

a2

a2 − ab + b2

)1/4

.

Prove f (a, b, c) + f (b, c, a) + f (c, a, b) ≤ 3.

Solution by Vazgen Mikayelyan, Yerevan State University, Armenia. For real numbers x , y,
and z, we have

f (x, y, z) =
(

x2

x2 − xy + y2

)1/4

≤
( |x |2

|x |2 − |x ||y| + |y|2
)1/4

.

Hence we may assume that a, b, c are all nonnegative.

662 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 124

This content downloaded from 130.64.11.153 on Fri, 21 Jul 2017 15:46:08 UTC
All use subject to http://about.jstor.org/terms

X
ia
ng
’s
T
ex
m
at
h



If one of the numbers a, b or c is zero, for example c = 0, then

f (a, b, c) + f (b, c, a) + f (c, a, b) =
(

a2

a2 − ab + b2

)1/4

+ 1.

Thus, in this case, we need to prove

a2

a2 − ab + b2
≤ 24.

This holds because

a2

a2 − ab + b2
= 1

( b
a − 1

2 )2 + 3
4

≤ 4

3
< 24.

Therefore, we may assume that a, b, c are all positive numbers. Note that for positive
numbers x , y, and z,

f (x, y, z) =
(

x2

x2 − xy + y2

)1/4

=
(

4x2

(x + y)2 + 3(x − y)2

)1/4

≤
(

4x2

(x + y)2

)1/4

≤
√

2x

x + y
.

It follows that

f (a, b, c) + f (b, c, a) + f (c, a, b) ≤
√

2a

a + b
+
√

2b

b + c
+
√

2c

a + c
.

Using the Cauchy–Schwarz inequality and the inequality x + y ≥ 2
√

xy, we get

√
2a

a + b
+
√

2b

b + c
+
√

2c

a + c

= √
a + c

√
2a

(a + b)(a + c)
+ √

a + b

√
2b

(b + c)(a + b)
+ √

b + c

√
2c

(a + c)(b + c)

≤
√

2(a + b + c)

(
2a

(a + b)(a + c)
+ 2b

(b + c)(a + b)
+ 2c

(a + c)(b + c)

)

= 2

√
2(a + b + c)(ab + bc + ac)

(a + b)(b + c)(a + c)
= 2

√
2(a + b)(b + c)(a + c) + 2abc

(a + b)(b + c)(a + c)

= 2

√
2 + 2abc

(a + b)(b + c)(a + c)
≤ 2

√
2 + 2abc

2
√

ab · 2
√

bc · 2
√

ac
= 3.

Also solved by A. Ali (India), T. Amdeberhan, P. Bracken, B. Bradie, M. V. Channakeshava (India), R. Chap-
man (U. K.), P. P. Dályay (Hungary), D. Fleischman, O. Geupel (Germany), P. W. Gwanyama, T. Horine,
O. Kouba (Syria), J. H. Lindsey II, J. Loverde, P. W. Lindstrom, O. P. Lossers (Netherlands), L. Matejı́c̆ka
(Slovakia), T. L. McCoy, M. Omarjee (France) & R. Tauraso (Italy), P. Perfetti (Italy), J. Schlosberg, R. Stong,
T. Wiandt, M. R. Yegan (Iran), GCHQ Problem Solving Group (U. K.), and the proposer.
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Center of Mass of Multiplicative Orbits in a Grid

11868 [2015, 899]. Proposed by James Propp, University of Massachusetts, Lowell, MA.
For fixed positive integers a and b, let m = ab − 1 and let R be the set {1, 2, . . . , a} ×
{1, 2, . . . , b}, indexed as p0 through pm in lexicographic order, so that p0 = (1, 1), p1 =
(1, 2), and pm = (a, b). Define T from R to R as the map that sends p0 to p0 and pm to pm ,
and for 1 ≤ i ≤ m − 1 sends pi to p j where j ≡ ai (mod m). As a bijection, T partitions
R into orbits. Show that the center of mass of each orbit lies on the line joining p0 and pm .

Solution by Jamie Simpson, Murdoch University, Perth, Australia. If pn = (x, y), then
n = b(x − 1) + y − 1. Choose an orbit S under T and let n, x , and y be the average values
of n, x , and y in S. The center of mass of S is then (x, y). Note that

n = b(x − 1) + (y − 1). (1)

Letting n′ be the successor of n in the orbit, we have

n′ ≡ ab(x − 1) + a(y − 1) ≡ x − 1 + a(y − 1) (mod m).

Since the right side lies in the interval [1, m], we have n′ = x − 1 + a(y − 1). The average
value of n′ over S is n, so

n = x − 1 + a(y − 1). (2)

Together, (1) and (2) yield

y = b − 1

a − 1
(x − 1) + 1,

and this is the equation of the line through (1, 1) and (a, b).

Editorial comment. The solution shows that the average value of (a − 1)y − (b − 1)x
on each orbit is a − b. The phenomenon that prevails when the time-average of some
quantity is the same for all orbits of a dynamical system is called homomesy and occurs
in a broad range of contexts. For a catalog of examples, see Propp and Roby, Homo-
mesy in products of two chains, Electronic J. Combinatorics 22 (2015) 3.4. The partic-
ular map T in this problem can be interpreted as a “re-reading map”: for all k it maps the
kth element of {1, 2, . . . , a} × {1, 2, . . . , b} in lexicographic order to the kth element of
{1, 2, . . . , a} × {1, 2, . . . , b} in colexicographic order.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), A. Hammett & K. A. Roper, Y. J. Ionin, P. Lalonde
(Canada), O. P. Lossers (Netherlands), R. Stong, the GCHQ Problem Solving Group (U. K.), TCDmath Prob-
lem Group (Ireland), and the proposer.

An Optimal Hölder Exponent

11869 [2015, 899]. Proposed by George Stoica, University of New Brunswick, Saint John,
Canada. Prove that |y log y − x log x | ≤ |y − x |1−1/e for 0 < x < y ≤ 1.

Solution by Bruce S. Burdick, Roger Williams University, Bristol, RI. Using elementary
calculus, we see that the function f (t) = t1/t for t > 0 has its unique maximum when
t = e. Therefore, for t > 0, we have t1/t ≤ e1/e, so t ≤ et/e with equality only when t = e.
Putting t = log u, we have log u ≤ u1/e for u > 1, with equality only when u = ee. With
u = 1/v we have − log v ≤ v−1/e for 0 < v < 1, with equality only when v = e−e.

Let x and y be real numbers satisfying 0 < x < y ≤ 1, and consider the difference
quotient S = (g(y) − g(x))/(y − x), where g(t) = t log t . Because g is convex on [0, 1],
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the lower bound of S for fixed y occurs as x → 0. Also S ≤ 1 by the mean value theorem.
So we have log y = g(y)/y < S ≤ 1, which gives us

|S| ≤ max{− log y, 1} ≤ max{y−1/e, 1} < |y − x |−1/e.

This yields the desired inequality.

Editorial comment. Omran Kouba noted that 1 − 1/e is the best possible exponent in the
inequality. This is seen by choosing y = e−e and letting x tend to 0.

Also solved by K. F. Andersen (Canada), P. P. Dályay (Hungary), D. Fleischman, O. Geupel (Germany),
O. Kouba (Syria), J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers (Netherlands), L. Matejı́c̆ka (Slovakia),
T. L. McCoy, V. Mikayelyan (Armenia), M. Omarjee (France) & R. Tauraso (Italy), E. Schmeichel, A. Stenger,
R. Stong, GCHQ Problem Solving Group (U. K.), and NSA Problems Group.

Bounds Related to Convex Univalent Functions

11870 [2015, 900]. Proposed by Finbarr Holland, University College Cork, Cork, Ireland.
Suppose 0 ≤ x ≤ 1 and y = 1 − x , and let a and b be unimodular complex numbers. Let
c1 = 2(xa + yb) and c2 = 2(xa2 + yb2). Prove

∣∣|c2
1 + c2| − 3|c1|

∣∣ ≤ 3, with equality if
and only if x = y = 1/2 and ba = e2π i/3.

Solution by the GCHQ Problem Solving Group, Cheltenham, UK. Correction: The last
equation should read ba = e±2π i/3. We can see that the stated equation is incorrect, since
the inequality is invariant under swapping (a, x) and (b, y).

Lemma. |c2
1 + c2| ≥ 2

∣∣|c1|2 − 1
∣∣, with equality if and only if (x, y) ∈ {(0, 1), (1/2, 1/2),

(1, 0)
}

or a = b.

Proof. Use |z|2 = zz, x + y = 1, a = a−1, b = b−1 to obtain

|c2
1 + c2|2 − 4

(|c1|2 − 1
)2 = (c2

1 + c2)(c1
2 + c2) − 4

(
c1c1 − 1

)2

= (
4(xa + yb)2 + 2(xa2 + yb2)

)(
4(xa + yb)2 + 2(xa2 + yb

2
)
)

− 4
(
4(xa + yb)(xa + yb) − 1

)2

= (
4(xa + yb)2 + 2(x + y)(xa2 + yb2)

)(
4(xa−1 + yb−1)2

+ 2(x + y)(xa−2 + yb−2)
)− 4

(
4(xa + yb)(xa−1 + yb−1) − (x + y)2)2

= 12x3 ya2b−2 − 24x2 y2a2b−2 + 12xy3a2b−2 − 48x3 yab−1 + 96x2 y2ab−1

− 48xy3ab−1 + 72x3 y − 144x2 y2 + 72xy3 − 48x3 ya−1b + 96x2 y2a−1b

− 48xy3a−1b + 12x3 ya−2b2 − 24x2 y2a−2b2 + 12xy3a−2b2

= 12xy(x − y)2(a − b)2(a−1 − b−1)2 = 12xy(x − y)2(a − b)2(a − b)2

= 12xy(x − y)2|a − b|4 ≥ 0,

with equality if and only if x = 0, y = 0, x = y, or a = b.

Using the triangle inequality, we have |c1| ≤ 2x |a| + 2y|b| = 2, |c2| ≤ 2x |a2| +
2y|b2| = 2, and

|c2
1 + c2| − 3|c1| ≤ |c1|2 + |c2| − 3|c1| ≤ 2|c1| + 2 − 3|c1| = 2 − |c1| < 3.

Thus the upper bound 3 is always strict. Now if |c1| < 1, then

|c2
1 + c2| − 3|c1| > 0 − 3 · 1 = −3.
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Thus the lower bound of −3 is strict in this case. For the case |c1| ≥ 1, we use the lemma
to obtain

|c2
1 + c2| − 3|c1| ≥ 2

∣∣|c1|2 − 1
∣∣− 3|c1| = 2

(|c1|2 − 1
)− 3|c1|

= (
2|c1| − 1

)(|c1| − 1
)− 3 ≥ −3.

According to the lemma, equality holds in the first inequality here if and only if (x, y) ∈{
(0, 1), (1/2, 1/2), (1, 0)

}
or a = b. However, since |c1| ≥ 1, equality holds in the second

inequality if and only if |c1| = 1. This rules out (x, y) = (0, 1), (x, y) = (1, 0), and a = b,
because all these imply |c1| = 2. Hence in the |c1| ≥ 1 case, the lower bound of −3 is
achieved if and only if x = y = 1/2 and |c1| = 1. Putting these together, we obtain∣∣|c2

1 + c2| − 3|c1|
∣∣ ≤ 3,

with equality if and only if x = y = 1/2 and |c1| = 1. This equality condition is equivalent
to x = y = 1/2 and |a + b| = 1. Equation |a + b| = 1 is equivalent to aa + ab + ab +
bb = −1, i.e., 2Re(ba) = ab + ab = −1. Since ba is unimodular, this is equivalent to
ba = e±2π i/3.

Editorial comment. The proposer notes that this is a toy version of an open prob-
lem: namely, the problem of finding sharp bounds for the functionals

∣∣|an+1| − |an|
∣∣,

n = 0, 1, 2, . . . , where a0 = 0, a1 = 1, and
∑∞

n=0 anzn is convex univalent on the open
disk {z : |z| < 1}. The corresponding problem for starlike functions was resolved by Yuk
Leung in 1977.

Also solved by P. Bracken, P. P. Dályay (Hungary), O. P. Lossers (Netherlands), V. Mikayelyan (Armenia),
R. Stong, and the proposer.

Not All Angles are Rational Multiples of Pi

11871 [2015, 900]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA, and
Ştefan Spătaru, Harvard University, Boston, MA. Let ABC be a triangle in the Cartesian
plane with vertices in Z2 (lattice vertices). Show that, if P is an interior lattice point of
ABC, then at least one of the angles PAB, PBC, and PCA has a radian measure that is not a
rational multiple of π .

Solution by L. R. King, Davidson, NC. The only rational values of tan(kπ/n) when k/n
is rational are 0 and ±1. (See J. S. Calcut, Gaussian integers and arctangent identities for
π , this MONTHLY 116 (2009) 515–530.) Since every angle of a triangle embedded in the
integer lattice Z2 is either a right angle or has rational tangent, the possible angle measure
for such an angle is reduced to π/4, π/2, and 3π/4. As the sum of the radian measures of
the named angles must be less than π , each must be π/4.

Assume ∠PAB = ∠PBC = π/4. We show ∠PCA < π/4. If ∠CAP ≥ π/4 or ∠ABP ≥
π/4, then we immediately get ∠PCA < ∠BCA ≤ π/4, since the sum of the radian mea-
sures of the angles in triangle ABC is π . Therefore, assume ∠CAP < π/4 and ∠ABP <

π/4, and let I be the incenter of triangle ABC, where its angle bisectors meet. Since
∠CAP < π/4 = ∠PAB, ray AP is internal to angle CAI. Likewise, ∠PBA < π/4 = ∠PBC,
so ray BP is internal to angle ABI. We conclude that line CP is internal to ∠ACI, and thus
∠PCA < ∠ACI = ∠ACB/2 < (π/2)/2 = π/4. Therefore, at least one of the angles PAB,
PBC, and PCA has a radian measure that is not a rational multiple of π .

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), M. Goldenberg & M. Kaplan, T. Horine,
Y. J. Ionin, O. P. Lossers (Netherlands), V. Pambuccian, R. Stong, R. Tauraso (Italy), J. Zacharias &
R. Dempsey, GCHQ Problem Solving Group (U. K.), and the proposers.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, Elizabeth Wilmer, Paul
Zeitz, and Fuzhen Zhang.

Proposed problems should be submitted online at
http: // www. americanmathematicalmonthly. submittable. com/ submit.

Proposed solutions to the problems below should be submitted by February 28, 2018
via the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11999. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. Evaluate

∞∑
k=1

(−1)�
√

k+√
k+1�

k(k + 1)
.

12000. Proposed by Mehtaab Sawhney, student, Massachusetts Institute of Technology,
Cambridge, MA. Let Hk = ∑k

i=1 1/ i . Prove that the function f : R → R defined by

f (x) = 1 +
∞∑

n=1

xn∏n
k=1 Hk

has no real zeroes.

12001. Proposed by Marius Coman, Bucharest, Romania, and Florian Luca, Johannes-
burg, South Africa. A base-2 pseudoprime is an odd composite number n that divides
2n − 2. Prove that if p is a prime number greater than 13, then there is a base-2 pseudo-
prime that divides 2p−1 − 1.

12002. Proposed by Florin Stanescu, Gaesti, Romania. Let ABC be a triangle with area S,
circumradius R, circumcenter O , and orthocenter H . Let D be the point of intersection of
lines AO and BC. Similarly, let E be the point of intersection of lines BO and CA, and let
F be the point of intersection of lines CO and AB. Let T =

√
(3R2 − OH2)2 + 16S2/R2.

Prove

T ≤ AH

OD
+ BH

OE
+ CH

OF
≤ 3 + T

2
.

12003. Proposed by Nikolai Osipov, Siberian Federal University, Krasnoyarsk, Russia.
Given an odd positive integer n, compute

n∑
k=1

gcd(k, n)

cos2(πk/n)
.

http://dx.doi.org/10.4169/amer.math.monthly.124.8.754
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12004. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let a1, a2, . . . be
a strictly increasing sequence of real numbers satisfying an ≤ n2 ln n for all n ≥ 1. Prove
that the series

∑∞
n=1 1/(an+1 − an) diverges.

12005. Proposed by Donald E. Knuth, Stanford, CA. A tight m-by-n paving is a decompo-
sition of an m-by-n rectangle into m + n − 1 rectangular tiles with integer sides such that
each of the m − 1 horizontal lines and n − 1 vertical lines within the rectangle is part of the
boundary of at least one tile. For example, one of the 1,071 possible tight 3-by-5 pavings
is pictured here:

Let am,n denote the number of tight m-by-n pavings.
(a) Determine a3,n as a function of n.
(b) Show for m ≥ 3 that limn→∞ am,n/mn exists, and compute its value.

SOLUTIONS

Another Mean Value Theorem

11872 [2015, 900]. Proposed by Phu Cuong Le Van, Hue University, Hue, Vietnam. Let f
be a continuous function from [0, 1] into R such that

∫ 1
0 f (x) dx = 0. Prove that for all

positive integers n there exists c ∈ (0, 1) such that n
∫ c

0 xn f (x) dx = cn+1 f (c).

Composite solution by Brian Bradie and Hongwei Chen, Christopher Newport University,
Newport News, VA. In fact, n can be any positive real number.

If f is identically zero, then there is nothing to prove. Assume that f (x) is not identi-
cally zero. Since

∫ 1
0 f (x) dx = 0, there exist distinct a, b ∈ [0, 1] such that

f (a) = max
x∈[0,1]

f (x) > 0 and f (b) = min
x∈[0,1]

f (x) < 0.

Let

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

f (x) − n

xn+1

∫ x

0
tn f (t) dt, x > 0;

f (0)

(
1 − n

n + 1

)
, x = 0.

Since limx→0+ F(x) = F(0), the function F is continuous on [0, 1]. We claim F(a) > 0.
This is clear when a = 0. For a > 0,

F(a) ≥ f (a) − n

an+1

∫ a

0
tn f (a) dt =

(
1 − n

n + 1

)
f (a) > 0.

Similarly, F(b) < 0. The intermediate value theorem implies that there is a number c
between a and b such that F(c) = 0. That is, n

∫ c
0 xn f (x) dx = cn+1 f (c).

Editorial comment. Chen noted that this problem is similar to Problem 11555 (Febru-
ary, 2011). The GCHQ Problem Solving Group showed that the hypothesis

∫
f = 0

can be replaced by the hypothesis that f has a zero in (0, 1). Moubinool Omarjee and
Roberto Tauraso generalized the function xn: If u ∈ C1[0, 1], u(0) = 0, and u′(x) > 0 for
x ∈ (0, 1), then there exists c ∈ (0, 1) such that

u′(c)
u(c)2

∫ c

0
u(x) f (x) dx = f (c).
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Also solved by A. Ali (India), T. Amdeberhan, K. F. Andersen (Canada), M. W. Botsko, P. Bracken,
K. Breeding & K. Bursac & C. Davis & T. McClanahan & R. Muller, B. S. Burdick, P. P. Dályay (Hungary),
J. Dickerson & D. Harris & A. Young & J. Dodson, E. J. Ionaşcu, B. Karaivanov (U. S. A.) & T. S. Vassilev
(Canada), O. Kouba (Syria), P. W. Lindstrom, O. P. Lossers (Netherlands), G. Macias & R. Smith,
V. Mikayelyan (Armenia), M. Omarjee (France), M. Omarjee (France) & R. Tauraso (Italy), P. Perfetti
(Italy), Á. Plaza (Spain), V. Rutherford-Rand, A. Stenger, R. Stong, T. Wiandt, GCHQ Problem Solving Group
(U. K.), and the proposer.

Arithmetic Trigonometric Sums

11873 [2015, 1010]. Proposed by Eugen J. Ionascu, Columbus State University, Columbus,
GA. Show that for n ∈ N with n ≥ 2,

n∑
j=1

(
1 − 2 j − 1

n

)
cot

(2 j − 1)π

2n
=

n∑
j=1

csc jπn.

Correction: The right-hand side should have been
∑n−1

j=1 csc( jπ/n).

Solution by Pierre Lalonde, Kingsey Falls, QC, Canada. Let z be an nth root of −1. Sum-
ming a geometric series gives

−
n−1∑
k=1

zk = z − zn

z − 1
= z + 1

z − 1
.

If z is a 2nth root of unity and z �= ±1, then

(z2 − 1)

n∑
j=1

(aj + b)z2 j−1 =
n∑

j=1

(aj + b)z2 j+1 −
n−1∑
j=0

(aj + a + b)z2 j+1

= (an + b)z2n+1 − bz − a
n−1∑
j=0

z2 j+1 = anz − a
z(z2n − 1)

z2 − 1
= anz.

Therefore, setting a = −2/n and b = 1 + 1/n, we have
∑n

j=1

(
1 − 2 j−1

n

)
z2 j−1 = − 2z

z2−1
.

Now let ω = eiπ/2n . We compute

n∑
j=1

(
1 − 2 j − 1

n

)
cot

(2 j − 1)π

2n

= i
n∑

j=1

(
1 − 2 j − 1

n

)
ω2(2 j−1) + 1

ω2(2 j−1) − 1
= −i

n∑
j=1

(
1 − 2 j − 1

n

) n−1∑
k=1

ω2(2 j−1)k

= −i
n−1∑
k=1

n∑
j=1

(
1 − 2 j − 1

n

)
ω2(2 j−1)k =

n−1∑
k=1

n∑
j=1

2iω2k

ω4k − 1
=

n−1∑
k=1

csc
kπ

n
.

Editorial comment. The GCHQ Problem Solving Group gave the generalization

n∑
j=1

sin((n − 2 j + 1)y)

sin ny
cot

(2 j − 1)π

2n
=

n−1∑
j=1

csc

(
y + jπ

n

)
,

for any y that is not an integer multiple of π/n.
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Also solved by T. Amdeberhan, R. Boukharfane (France), P. Bracken, R. Chapman (U. K.), H. Chen,
P. P. Dályay (Hungary), O. Kouba (Syria), M. Omarjee (France), S. Pathak (Canada), N. C. Singer, A. Stenger,
R. Stong, R. Tauraso (Italy), M. Wildon (U. K.), GCHQ Problem Solving Group (U. K.), and the proposer.

Minimal Zeta Knowledge Required

11874 [2015, 1010]. Proposed by Cornel Ioan Vălean, Timiş, Romania. Evaluate the limits
below, where ζ denotes the Riemann zeta function and � denotes the gamma function:

lim
n→∞

n−1∑
k=2

ζ(k)

�(n − k)
, lim

n→∞

n−2∑
k=1

ζ(n − k)

�(k)
.

Solution by Kenneth F. Andersen, Edmonton, AB, Canada. The limits are e and 1/e, respec-
tively. More generally, let a1, a2, . . . and b1, b2, . . . be real numbers, and assume that
limn→∞ an exists and equals a, that some bk is nonzero, and that

∑∞
k=1 |bk | exists and

equals B. When n > N + 1,

n−1∑
k=1

akbn−k − a
∞∑

k=1

bk =
N∑

k=1

akbn−k +
n−1∑

k=N+1

(ak − a)bn−k − a
∞∑

k=n−N

bk . (∗)

We show that the left side of (∗) tends to 0 as n → ∞.
As n → ∞, the first and third terms on the right side of (∗) tend to 0. Given ε > 0,

we can choose N so that |ak − a| < ε/B for k > N . It then follows (applying the triangle
inequality to the second term on the right) that

lim sup
n→∞

∣∣∣∣∣
n−1∑
k=1

akbn−k − a
∞∑

k=1

bk

∣∣∣∣∣ < ε.

Hence

lim
n→∞

n−1∑
k=1

akbn−k = a
∞∑

k=1

bk .

Letting a1 = 0 and ak = ζ(k) for k ≥ 2, we have a = 1. For the first limit, set
bk = 1/�(k) = 1/(k − 1)! to obtain the value e. Since

n−2∑
k=1

(−1)k−1ζ(n − k)

�(k)
=

n−1∑
k=2

(−1)n−k−1ζ(k)

�(n − k)
,

setting bk = (−1)k−1/�(k) shows that the second limit is 1/e.

Editorial comment. One can avoid the epsilon argument by forcing the problem into the
mold of the dominated convergence theorem or Tannery’s theorem. Another approach is to
work directly with inequalities. O. P. Lossers deduced the first limit directly from

n−1∑
k=2

ζ(k)

�(n − k)
−

n−1∑
k=2

1

�(n − k)
<

3

2n/2
e + 3/2

�(n/2)

and the second limit from a similar inequality. As in Problem 11755 [2014, 170], there is
a sophisticated approach using polylogarithms. The solution of Rituraj Nandan used the
representation

1

(n − 1)!

∫ ∞

0

xn−1

zex − 1
dx = Lin(1/2).
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Also solved by T. Amdeberhan, P. Bracken, R. Chapman (U. K.), P. P. Dályay, D. Fleischman, M. L. Glasser,
O. Kouba (Syria), L. Liptak, O. P. Lossers (Netherlands), R. Nandan, M. Omarjee (France), M. Omarjee
(France) & R. Tauraso (Italy), C. Pathak (Canada), C. M. Russell, M. Sawhney, A. Stenger, R. Stong, GCHQ
Problem Solving Group (U. K.), and the proposer.

Stirling to the Rescue

11875 [2015, 1010]. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National Col-
lege, Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania. Let fn = (1 + 1/n)n ((2n − 1)!!Ln)

1/n . Find limn→∞( fn+1 − fn). Here n!! =∏�(n−1)/2�
j=0 (n − 2 j), while Ln denotes the nth Lucas number, given by L0 = 2, L1 = 1, and

Ln = Ln−1 + Ln−2 for n ≥ 2.

Solution by László Lipták, Oakland University, Rochester, MI. The answer is 1 + √
5,

which equals twice the golden ratio ϕ. We find the limit by giving an estimate of fn with
error O(1/n). From Stirling’s formula, we get

(2n − 1)!! = (2n)!

2nn!
=

√
2π(2n)2n+ 1

2 e−2neO(1/n)

2n
√

2πnn+ 1
2 e−neO(1/n)

=
√

2

(
2n

e

)n

eO(1/n).

Hence ((2n − 1)!!)1/n = 2n
√

2 2n
e eO(1/n2). Since

2n
√

2 = e
ln 2
2n = 1 + ln 2

2n
+ O

(
1

n2

)
,

this gives

((2n − 1)!!)1/n = 2n

e

(
1 + ln 2

2n
+ O

(
1

n2

))
.

Similarly, using the estimate ln(1 + x) = x − x2

2 + O(x3) as x → 0, we get

(
1 + 1

n

)n

= e
n ln

(
1+ 1

n

)
= e

1− 1
2n +O

(
1

n2

)
= e

(
1 − 1

2n
+ O

(
1

n2

))
.

Finally, Ln = ϕn + (−ϕ)−n , so

L1/n
n = ϕ

(
1 + (−ϕ2)−n

)1/n = ϕ

(
1 + O

(
1

n2

))
.

Hence as n → ∞, we get

fn = e

(
1 − 1

2n
+ O

(
1

n2

))
2n

e

(
1 + ln 2

2n
+ O

(
1

n2

))
ϕ

(
1 + O

(
1

n2

))

= 2nϕ + ϕ(ln 2 − 1) + O

(
1

n

)
.

This implies fn+1 − fn = 2ϕ + O
(

1
n

)
; hence limn→∞( fn+1 − fn) = 2ϕ.

Also solved by T. Amdeberhan, R. Boukharfane (France), B. S. Burdick, R. Chapman (U. K.), H. Chen,
P. P. Dályay (Hungary), D. Fleischman, O. Kouba (Syria), J. H. Lindsey II, V. Mikayelyan (Armenia), Á. Plaza
(Spain), M. Sawhney, A. Stenger, R. Stong, R. Tauraso (Italy), D. B. Tyler, J. Zacharias, GCHQ Problem
Solving Group (U. K.), NSA Problems Group, and the proposers.
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A Limit Equals 1

11877 [2015, 1011]. Proposed by George Stoica, University of New Brunswick, Saint John,
NB, Canada. Let f be a differentiable function from R to R+ such that limx→∞ x f ′(x)

f (x)
= 0.

Let g be a function on R such that limx→∞ g(x) > −1. Prove

lim
x→∞

f (x + xg(x))

f (x)
= 1.

Solution by NSA Problems Group, Fort Meade, MD. Since f (x) > 0 for all x , we may
define a function F by F(x) = log( f (x)). Suppose limx→∞ g(x) = −1 + α, where α > 0.
Observe that

f (x + xg(x))

f (x)
= exp[F(x + xg(x)) − F(x)].

Thus it suffices to prove F(x + xg(x)) − F(x) → 0 as x → ∞. To see this, note that
for x much greater than zero, we have α/2 < 1 + g(x). Hence, for large x it follows that
x + xg(x) > αx/2. Since limx→∞ x F ′(x) = 0, when ε > 0 the bound |x F ′(x)| < ε must
hold for all sufficiently large x . Hence,

∣∣F(x + xg(x)) − F(x)
∣∣ =

∣∣∣∣
∫ x+xg(x)

x
F ′(t) dt

∣∣∣∣ ≤
∣∣∣∣
∫ x+xg(x)

x
|F ′(t)| dt

∣∣∣∣
≤

∣∣∣∣
∫ x+xg(x)

x

ε

t
dt

∣∣∣∣ = ε | log(1 + g(x))|.

However, 1 + g(x) approaches α as x → ∞, so

|F(x + xg(x)) − F(x)| ≤ 2ε | log(α)|
for sufficiently large x . Since ε > 0 is arbitrary, this establishes the claim.

Also solved by K. F. Andersen (Canada), N. H. Bingham & A. Ostaszewski & A. Sasane, R. Chapman (U. K.),
P. P. Dályay (Hungary), P. J. Fitzsimmons, N. Grivaux (France), E. A. Herman, B. Karaivanov (U. S. A) &
T. S. Vassilev (Canada), O. Kouba (Syria), O. P. Lossers (Netherlands), T. L. McCoy, V. Mikayelyan (Armenia),
E. Omey (Belgium), C. G. Petalas (Greece), A. Stenger, R. Stong, E. I. Verriest, GCHQ Problem Solving Group
(U. K.), and the proposer.

A Medley of Chords

11878 [2015, 1011]. Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan.
Consider a circle w and an exterior point D. Let B and F be the points where lines through
D are tangent to w. Let E be another point exterior to w on line BF, and similarly let A
and C be the points where lines through E are tangent to w.
(a) Prove that D, A, and C are collinear.
(b) Let KL be a chord passing through the intersection N of chords AC and BF. Prove that
lines DK and EL intersect at a point R on w.
(c) Find choices of K and L on w that minimize, respectively maximize, the measure of
angle KRL.

Solution to (a) by S. Hitotumatu, Kyoto University, Kyoto, Japan. Let w be the unit circle
in the Cartesian plane. Let D = (a, b) and E = (c, d) lie outside w. The equation of the
chord through the ends of the tangent segments from D is ax + by = 1. Likewise, the
equation of the chord through the ends of the tangent segments from E is cx + dy = 1.
The condition for E to lie on the first line is ac + bd = 1. This is also the condition for D
to lie on the second line, so each implies the other.
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Solution I to (b) by Richard Stong, Center for Communications Research, San Diego,
CA. Let the tangents to w at K and L meet at P . Note that D, E , and P all lie on
the polar to N . Applying Pascal’s theorem (the theorem of the “mystic hexagon”) to
the (degenerate) hexagons BBLFFK and KKBLLF, we see that the points KB ∩ LF and
LB ∩ KF are collinear with both D and P . Hence, they lie on the polar of N as well. Let
R = DK ∩ EL. Opposite sides of the (degenerate) hexagon RKBFFL meet at the collinear
points RK ∩ EF = D, KB ∩ LF, and BF ∩ LR = E . It follows from the Braikenridge–
MacLaurin theorem (the converse of Pascal’s theorem) that this hexagon is inscribed in a
conic. Since five points determine a conic uniquely, this conic must be w. That is, R is on
w as claimed.

Solution II to (b) by the proposer. Let us make a projective transformation of the plane to
send line DE to infinity. The circle may become an ellipse, but then an affine transforma-
tion can convert it back to a circle. (We will continue to use the original notations for their
images under these transformations.) Both BF and AC are diameters, and they are perpen-
dicular. Also, N is the center of w so any chord KL passing through N is also a diameter.
Since DK and EL are perpendicular (because they are respectively parallel to AC and BF),
R lies on w by the converse of the theorem that a triangle inscribed in a semicircle is right.

Solution to (c) by S. Hitotumatu. The extreme values of angle KRL occur when KL is as
short as possible, which means that KL must be perpendicular to a diameter through N .
The angle will be maximized when R is on the minor arc between K and L , and it will be
minimized when R is on the major arc. (The two cases result from interchanging K and
L .) Note that the maximum and minimum angles are supplementary.

Editorial comment. Many readers pointed out that part (a) is essentially the content of La
Hire’s theorem, which says that a point X is on the polar of point Y if and only if Y is on
the polar of X . Here, because DB and DF are tangent segments to w from D, we see that
BF is the polar of D, and similarly AC is the polar of E . Thus if E lies on BF, then D lies
on AC.

One or more parts also solved by A. Ali (India), B. S. Burdick, J. Cade, R. Chapman (U. K.), P. Chrysostom
(Greece), P. P. Dályay (Hungary), D. Fleischman, O. Geupel (Germany), J.-P. Grivaux (France), O. Kouba
(Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), P. Nüesch (Switzerland), M. Sawhney, L. Wimmer
(Germany), and GCHQ Problem Solving Group (U.K.).

Law of Sines Conversely

11879 [2015, 1011]. Proposed by Stefano Siboni, University of Trento, Trento, Italy. For
positive a, b, and c, prove that there exist positive α, β, and γ with α + β + γ = π such
that

a

sin α
= b

sin β
= c

sin γ

if and only if |b − c| < a < b + c.

Solution by Tamas Wiandt, Rochester Institute of Technology, Rochester, NY. Assume that
|b − c| < a < b + c, which after resolving the absolute value reduces to the three triangle
inequalities c < a + b, b < a + c, and a < b + c. In this case, there is a triangle with side
lengths a, b, and c. The opposite angles α, β, and γ satisfy the requirements by the law of
sines.

Conversely, assume that angles with the given requirements exist. Take a line segment
of length a, and draw half-lines through the endpoints subtending angles β and γ , respec-
tively. Because α + β + γ = π , we obtain a triangle with angles α, β, and γ and sides
a, b′, and c′. Using the law of sines for this triangle, we obtain b = b′ and c = c′. Hence
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a, b, and c are the side-lengths of a triangle, and they satisfy the three triangle inequalities.
Therefore |b − c| < a < b + c.

Also solved by A. Ali (India), K. F. Andersen (Canada), D. Bailey & E. Campbell & C. Diminnie, B. S. Bur-
dick, R. Chapman (U. K.), H. J. Cho (Korea), J. Christopher, P. P. Dályay (Hungary), D. Fleischman, O. Geu-
pel (Germany), M. Hajja (Jordan), S. Hitotumatu (Japan), T. Horine, Y. J. Ionin, B. Karaivanov (U. S. A) &
T. S. Vassilev (Canada), P. Kohn, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), T. L. McCoy,
V. Mikayelyan (Armenia), A. Nakhash, M. G. Park & I. G. Yang (Korea), C. Petalas (Greece), M. Sawh-
ney, R. Stong, R. Tauraso (Italy), D. B. Tyler, E. I. Verriest, Z. Vörös (Hungary), H. Widmer (Switzerland),
M. R. Yegan (Iran), J. Zacharias, Armstrong Problem Solvers, GCHQ Problem Solving Group (U. K.), NSA
Problems Group, Seton Hall Problem Solving Group, Skidmore College Problem Group, and the proposer.

A Parallelogram Circumscribing a Quadrilateral

11880 [2016, 97]. Proposed by Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca,
Romania. Let ABCD be any plane quadrilateral (not necessarily convex or even simple).
Let a parallelogram be created by constructing through the ends of each diagonal of ABCD
lines parallel to the other diagonal. Show that each diagonal of this parallelogram passes
through the intersection point of a pair of opposite sides of ABCD.

Editorial comment. Several readers observed that if AC is parallel to BD, then the desired
parallelogram cannot be constructed. Also, if two sides of the quadrilateral are parallel,
then they must be considered to meet “at infinity,” in which case the claim reduces to
showing that the corresponding diagonal of the parallelogram also meets these sides “at
infinity” (that is, is parallel to them).

In each of the three solutions below, we let EFGH be the parallelogram with E the
intersection of the sides through A and B, F the intersection of the sides through B and C ,
etc. It suffices to establish the claim for only one diagonal of the parallelogram; the claim
regarding the other diagonal is established similarly.

Solution I by Victor Pambuccian, Arizona State University, Glendale, AZ. Let AB intersect
FH at point P and CD intersect FH at point Q. Apply the Menelaus theorem to triangle
EFH crossed by line ABP to obtain

EB

BF
· FP

PH
· HA

AE
= −1.

Then apply the Menelaus theorem to triangle GFH crossed by line DCQ to obtain

GC

CF
· FQ

QH
· HD

DG
= −1.

Because opposite sides of a parallelogram are equal in length, we have AE = CF, HA =
GC, BF = DG, and EB = HD. Therefore, FP/PH = FQ/QH, so P = Q.

Solution II by Li Zhou, Polk State College, Winter Haven, FL. The dual in the projective
plane of the theorem of Pappus states the following: Let a1, a2, a3 be three concurrent
lines, and let b1, b2, b3 be three concurrent lines. Define c1 as the line through a2 ∩ b3 and
a3 ∩ b2, and define c2 and c3 similarly. The lines c1, c2, c3 are concurrent.

Let EH, BD, and FG be the lines a1, a2, and a3, respectively. They meet at infinity. Let
EF, AC, and HG be the lines b1, b2, and b3, respectively. They also meet at infinity. The
lines c1, c2, and c3 from the dual to Pappus’s theorem are CD, FH, and AB, respectively.
Hence they are concurrent, by the theorem. That is, the diagonal FH of the parallelogram
passes through the intersection of sides AB and CD.

Solution III by the proposer. Consider the quadrilateral ABDC. Its diagonals are AD and
BC. Let M be the midpoint of diagonal AD. Let N be the midpoint of diagonal BC. Let
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sides AB and DC meet at P , let sides BD and CA meet at Q, and let the midpoint of PQ
be O . The points M, N , O are collinear: The line through them is known as the Newton–
Gauss line of the quadrilateral ABDC. Now consider the dilation by factor 2 about Q.
The image of M under this dilation is H because M is the midpoint of diagonal AD of
paralellogram AHDQ. Hence M is also the midpoint of the other diagonal QH. Similarly,
the image of N is F . The image of O is P because O is the midpoint of PQ. Hence H , P ,
and F are collinear. That is, the diagonal HF of the parallelogram EFGH passes through
P , which is the intersection of sides AB and DC. This is the claim to be proved.

Also solved by A. Ali (India), M. Bataille (France), B. S. Burdick, R. Chapman (U. K.), P. P. Dályay (Hungary),
O. Geupel (Germany), J.-P. Grivaux (France), S. Hitotumatu (Japan), Y. J. Ionin, O. Kouba (Syria), J. H. Lind-
sey II, O. P. Lossers (Netherlands), M. D. Meyerson, R. Pembroke, M. Sawhney, J. Schlosberg, J. C. Smith,
R. Stong, B. D. Suceavă, R. Tauraso (Italy), T. Viteam (Denmark), GCHQ Problem Solving Group (U. K.),
and Missouri State University Problem Solving Group.

Avoiding Left-Full Entries

11882. [2016, 97]. Proposed by David Callan, University of Wisconsin, Madison, WI. In
a list of distinct positive integers, say that an entry a is left-full if the entries to the left
of a include 1, . . . , a − 1. For example, the left-full entries in 241739 are 1 and 3. Show
that the number of arrangements of n elements from {1, 2, . . . , 2n + 1} that contain 1 but
no other left-full entry is equal to (2n − 1)!/n! times the sum of the entries of the n × n
Hilbert matrix M with Mi, j = 1/(i + j − 1). (The seven arrangements for n = 2 are 13,
14, 15, 21, 31, 41, and 51.)

Solution by Adnan Ali, student, Atomic Energy Central School–4, Mumbai, India. The
Hilbert matrix is constant along each antidiagonal, and the entries in each of the first n
antidiagonals sum to 1. Thus, the entries of the matrix sum to n + ∑n−1

j=1
n− j
n+ j .

Let S denote the set of all arrangements with the required properties, and let Sk denote
the subset of S with 1 in position k (from the left). To construct an element of Sk , we
first permute k − 1 of the elements 2, 3, . . . , 2n + 1 and place them to the left of 1. Next
we permute n − k of the remaining elements and place them to the right of 1; to have a
desired arrangement, it is necessary and sufficient that the latter n − k elements exclude
the smallest element not appearing to the left of 1 (since it would be left-full). This gives

|Sk | =
(

2n

k − 1

)
(k − 1)!

(
2n − k

n − k

)
(n − k)! = (2n − 1)!

n!

2n

2n − k + 1
.

Now

|S| =
n∑

k=1

|Sk | =
n∑

k=1

(2n − 1)!

n!

2n

2n − k + 1

= (2n − 1)!

n!

n∑
k=1

(
1 + k − 1

2n − k + 1

)

= (2n − 1)!

n!

⎛
⎝n +

n−1∑
j=1

n − j

n + j

⎞
⎠ .

Also solved by D. Beckwith, R. Chapman (U. K.), P. P. Dályay (Hungary), K. David, Y. J. Ionin, P. Lalonde
(Canada), O. P. Lossers (Netherlands), J. C. Smith, R. Stong, R. Tauraso (Italy), L. Zhou, Armstrong Problem
Solvers, Con Amore Problem Group (Denmark), GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Leonard Smiley, Kenneth
Stolarsky, Richard Stong, Walter Stromquist, Daniel Velleman, Stan Wagon, Elizabeth
Wilmer, Paul Zeitz, and Fuzhen Zhang.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit

Proposed solutions to the problems below should be submitted by May 31,
2018 via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

12013. Proposed by David Stoner, student, Harvard University, Cambridge, MA. Suppose
that a, b, c, d, e, and f are nonnegative real numbers that satisfy a+ b+ c = d + e+ f .
Let t be a real number greater than 1. Prove that at least one of the inequalities

at + bt + ct > dt + et + f t,

(ab)t + (bc)t + (ca)t > (de)t + (e f )t + ( f d)t, and

(abc)t > (de f )t

is false.

12014. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania. Let a, b, c, and d be real numbers with bc > 0. Calculate

lim
n→∞

[
cos(a/n) sin(b/n)
sin(c/n) cos(d/n)

]n
.

12015. Proposed by Dao Thanh Oai, Kien Xuong, Vietnam. Let ABC be a triangle, let G be
its centroid, and let D, E, and F be the midpoints of BC,CA, and AB, respectively. For any
point P in the plane of ABC, prove

PA+ PB+ PC ≤ 2(PD+ PE + PF ) + 3PG,

and determine when equality holds.

12016. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso, Università
di Roma “Tor Vergata,” Rome, Italy. For nonnegative integers m, n, r, and s, prove

s∑
k=0

(
m+ r

n− k

)(
r + k

k

)(
s

k

)
=

r∑
k=0

(
m+ s

n− k

)(
s+ k

k

)(
r

k

)
.

doi.org/10.1080/00029890.2018.1397465
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12017. Proposed by Mowaffaq Hajja, Philadelphia University, Amman, Jordan. For n ≥ 2,
let R be the ring F[t1, . . . , tn] of polynomials in n variables over a field F . For j with 1 ≤
j ≤ n, let s j = ∑∏ j

i=1 tmi , where the sum is taken over all j-element subsets {m1, . . . ,mj}
of {1, . . . , n}. This is the elementary symmetric polynomial of degree j in the variables
t1, . . . , tn. Let f = ∑n

i=0 cisi for some c0, . . . , cn in F with c1, . . . , cn not all 0. Show that
f is reducible in R if and only if either c0 = · · · = cn−1 = 0 or (c0, . . . , cn) is a geometric
progression, meaning that there is r ∈ F such that ci = rci−1 for all i with 1 ≤ i ≤ n.

12018. Proposed by Zachary Franco, Houston, TX. For n > 1, let k(n) be the largest integer
k for which there exists a triangle with sides of length nk, (n+ 4)k, and (n+ 5)k. Find
limn→∞ k(n)/n.

12019. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Find all
positive integers n such that (2n − 1)(5n − 1) is a perfect square.

SOLUTIONS

Almost-Binary Expansions

11883 [2016, 97]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For |q| > 1, prove that
∞∑
k=0

1

(q20 + q)(q21 + q) · · · (q2k + q)
= 1

q− 1

∞∏
i=0

1

q1−2i + 1
.

Solution I by Adnan Ali (student), Atomic Energy Central School–4, Mumbai, India. Setting
q = 1/x converts the assertion to

∞∑
k=0

k∏
j=0

x2
j

(1 + x2 j−1)
= x

1 − x

∞∏
i=0

1

1 + x2i−1

for |x| < 1. After rearranging and summing the exponents in the numerator, we seek

1

x

( ∞∏
i=0

(1 + x2
i−1)

) ∞∑
k=0

x2
k+1−1∏k

j=0(1 + x2 j−1)
= 1

1 − x
.

The left side of this equation simplifies to
∑∞

k=0 x
2k+1−2∏∞

j=k+1(1 + x2
j−1).

Letting Fn(x) = ∑n
k=0 x

2k+1−2∏n
j=k+1(1 + x2

j−1), where an empty product is 1, observe

that F0(x) = 1 and that Fn(x) = (1 + x2
n−1)Fn−1(x) + x2

n+1−2 for n ≥ 1. Hence it follows
by induction on n that Fn(x) = ∑2n+1−2

k=0 xk. Letting n → ∞ yields both sides of the desired
identity.

Solution II by GCHQ Problem Solving Group, Cheltenham, U. K. In Solution I, the identity
is reduced to

∞∑
k=0

x2
k+1−1

∞∏
j=k+1

(1 + x2
j−1) = x

1 − x
.

As a formal power series, this is the statement that every positive integer has a unique ex-
pression as a sum of distinct numbers of the form 2 j − 1 for j ≥ 1, except that the smallest
number used (expressed as 2k+1 − 1) can appear once or twice. We establish this by parti-
tioning the positive integers into blocks of the form [2k − 1, 2k+1 − 2] for k ≥ 1 and using
induction on k.
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For k = 1, the block is [1, 2], and the partitions are 1 and 1 + 1. For the block [2k −
1, 2k+1 − 2], one obtains such partitions by using 2k − 1 and (2k+1 − 1) + (2k+1 − 1) for
the two extreme elements and adding the part 2k − 1 to the partitions already found for 1
through 2k − 2. For uniqueness, note that the largest number that can be so partitioned with-
out using a number at least 2k − 1 is in fact 2k − 2. Since 2k+1 − 1 is too big for numbers
in the block [2k − 1, 2k+1 − 2], partitions of numbers in this block must use one copy of
2k − 1, and then uniqueness follows inductively.

Given the identity as a formal power series, it then suffices to observe that the Taylor
series for x/(1 − x) converges when |x| < 1.

Also solved by T. Amdeberhan, P. Bracken, B. Bradie, R. Chapman (U. K.), P. P. Dályay (Hungary),
R. S. Dubey, R. Dutta (India), O. Geupel (Germany), W. P. Johnson, O. Kouba (Syria), H. Kwong, O. P. Lossers
(Netherlands), V. Mikayelyan (Armenia), M. Omarjee (France), M. Sawhney, J. C. Smith, R. Stong, R. Tauraso
(Italy), L. Zhou, and the proposer.

It’s a Quartic Equation

11890 [2016, 197]. Proposed by George Apostolopoulos, Messolonghi, Greece. Find all x
in (1,∞) such that

∞∑
k=1

1

2k − 1

(
1

x2k−1
+
(
x− 1

x+ 1

)2k−1
)

= 1

2

∫ x

0

dt√
1 + t2

.

Solution by Thomas Horine, Indiana University Southeast, New Albany, IN. The
right side equals 1

2 sinh
−1 x, which equals 1

2 ln(x+ √
x2 + 1 ). For |x| < 1, let

f (x) = ∑∞
k=1 x

2k−1/(2k − 1). This series converges absolutely, and f ′(x) = ∑∞
k=0 x

2k =
1/(1 − x2), so

f (x) =
∫ x

0

dt

1 − t2
= tanh−1 x = 1

2
ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣.
When x > 1, both 1

x and
x−1
x+1 are in (0, 1), so f (

1
x ) = 1

2 ln | x+1
x−1 | and f ( x−1

x+1 ) = 1
2 ln |x|. Since

the left side of the original equation is f ( 1x ) + f ( x−1
x+1 ), we need to solve

1

2
ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣+ 1

2
ln |x| = 1

2
ln(x+

√
x2 + 1 ),

which reduces to x4 − 2x3 − 2x2 − 2x+ 1 = 0. Dividing this equation by x2 yields x2 +
1
x2 − 2(x+ 1

x ) − 2 = 0. With u = x+ 1
x , we have u

2 − 2u− 4 = 0. Since u > 1, this im-

plies u = 1 + √
5. Finally, the only solution of 1 + √

5 = x+ 1
x with x > 1 is x = 1+√

5
2 +√

1+√
5

2 .

Also solved by A. Ali (India), R. Amdeberhan, K. F. Andersen (Canada), M. Bello & M. Benito & Ó. Ciaurri
& E. Fernández & L. Roncal (Spain), B. S. Burdick, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary),
B. E. Davis, P. De (India), O. Geupel (Germany), M. L. Glasser, M. Goldenberg & M. Kaplan, N. Grivaux
(France), A. Hannan (India), E. A. Herman, R. Howard, B. Karaivanov (U. S. A.) & T. Vassilev (Canada),
O. Kouba (Syria), D. López-Aguayo (Mexico), O. P. Lossers (Netherlands), V. Mikayelyan (Armenia),
M. Omarjee (France), M. Panchatcharam (Ireland), R. Pratt, M. Sawhney, A. Stenger, R. Stong, R. Tauraso
(Italy), D. B. Tyler, M. Vowe (Switzerland), T. Wiandt, J. Zacharias, L. Zhou, Armstrong Problem Solvers,
GCHQ Problem Solving Group (U. K.), GWstat Problem Solving Group, NSA Problems Group, San Francisco
University High School Problem Solving Group, and the proposer.
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A Mean-Value Point

11892 [2016, 198]. Proposed by Francisco Perdomo and Ángel Plaza, University of Las
Palmas de Gran Canaria, Spain. Let f be a real-valued continuously differentiable function
on [a, b] with positive derivative on (a, b). Prove that for all pairs (x1, x2) with a ≤ x1 <

x2 ≤ b and f (x1) f (x2) > 0, there exists ξ ∈ (x1, x2) such that

x1 f (x2) − x2 f (x1)

f (x2) − f (x1)
= ξ − f (ξ )

f ′(ξ )
.

Solution by Henry Ricardo, Tappan, NY. Suppose that (x1, x2) is a pair satisfying the
given conditions. We note that f ′(x) > 0 on (a, b) and f (x1) f (x2) > 0 imply f (x) 
= 0 for
x ∈ [x1, x2]. Thus, if we define F (x) = −x/ f (x) and G(x) = −1/ f (x), then F and G are
continuous on [x1, x2] and differentiable on (x1, x2), withG′(x) 
= 0 for x ∈ (x1, x2). There-
fore, we may apply Cauchy’s extended mean value theorem to conclude that there exists
ξ ∈ (x1, x2), such that

F (x2) − F (x1)

G(x2) − G(x1)
= F ′(ξ )
G′(ξ )

.

This yields

− x2
f (x2)

+ x1
f (x1)

− 1

f (x2)
+ 1

f (x1)

=
− f (ξ ) + ξ f ′(ξ )

( f (ξ ))2

f ′(ξ )
( f (ξ ))2

,

which simplifies to the desired equation.

Also solved by A. Ali (India), T. Amdeberhan, K. F. Andersen (Canada), G. Apostolopoulos (Greece),
M. Bello & M. Benito & Ó. Ciaurri & E. Fernández & L. Doncal (Spain), R. Chapman (U. K.), H. Chen,
P. P. Dályay (Hungary), R. Dutta (India), J. Grivaux (France), J. W. Hagood, L. Han, O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), A. Markoe, V. Mikayelyan (Armenia), M. Omarjee (France),
C. G. Petalas (Greece), J. C. Smith, R. Stong, R. Tauraso (Italy), E. I. Verriest, Z. Vőrős (Hungary), T. Wiandt,
M. R. Yegan (Iran), J. Zacharias, L. Zhou, GCHQ Problem Solving Group (U. K.), Northwestern University
Math Problem Solving Group, NSA Problems Group, and the proposers.

Constructing an Inscribed Quadrilateral

11893 [2016, 198]. Proposed by Florin S. Pârvănescu, Slatina, Romania. Let O be the
center of a circle, let AB and CD be the perpendicular chords of this circle that do not
containO, letM be the intersection of these chords, and suppose thatMA is longer thanMB
andMC is longer thanMD. Give a compass and straightedge construction of a quadrilateral
inscribed in the circle with sides of lengths |MA| + |MB|, |MC| + |MD|, |MA| − |MB|, and
|MC| − |MD|.

Solution by James Christopher Smith, Knoxville, TN. Using a straightedge, draw ray AO
and let E be its other intersection with the circle. Use a compass spiked at M to produce
point F on AM such that |MF| = |MB|. Then use a compass spiked at A to produce point
G on the circle such that |AG| = |AF|. Now ABEG is a quadrilateral with the desired side
lengths. (There are two choices for pointG; one choice leads to a self-intersecting polygon,
whereas the other does not. Either will meet the required conditions.)

Note that AB has length |MA| + |MB| and that AG has the same length as AF , which is
|MA| − |MB|. We show next that |BE| = |MC| − |MD| and |EG| = |MC| + |MD|.

Let ray BO intersect the circle again at P, and let PE intersect CD at N. By symmetry,
|NC| = |MD|, so |MN| = |MC| − |MD|. Since ABE is a right angle, BE and DMNC are
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parallel (both being perpendicular to AMB). Also PNE is parallel to AMB; thus, MNEB is
a rectangle and |BE| = |MN| = |MC| − |MD|.

Since AOE is a diameter, both AGE and ABE are right triangles. Let the radius of the
circle be r. Applying the Pythagorean theorem to AGE yields

4r2 = |EG|2 + |AG|2 = |EG|2 + (|MA| − |MB|)2.
Applying the Pythagorean theorem to ABE yields

4r2 = |AB|2 + |BE|2 = (|MA| + |MB|)2 + (|MC| − |MD|)2.
Thus,

|EG|2 = (|MC| − |MD|)2 + (|MA| + |MB|)2 − (|MA| − |MB|)2
= |MC|2 + |MD|2 − 2|MC| |MD| + 4|MA| |MB|
= |MC|2 + |MD|2 + 2|MC| |MD|
= (|MC| + |MD|)2,

using for the penultimate equality the power-of-the-point theorem, which asserts that
|MA| |MB| is equal to |MC| |MD|. Thus, |EG| = |MC| + |MD|.

Editorial comment.O. P. Lossers pointed out that if chordsAB andCD do notmeet inside the
circle, then they can be extended to cross at pointM outside the circle, and the construction
required is still possible. Oliver Geupel proved the following converse: For every inscribed
convex quadrilateral PQRS such that PR is a diameter, there are two perpendicular chords
AB and CD (not containing O) with intersection M such that |MA| − |MB| > 0, |MC| −
|MD| > 0, and the sides of PQRS have lengths |MA| + |MB|, |MC| + |MD|, |MA| − |MB|,
and |MC| − |MD|.

There was a misprint in the published statement of the problem. The third side length
|MA| − |MB| was inadvertently misprinted as |MA| − |MD|.

Also solved by R. Chapman (U. K.), O. Geupel (Germany), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), M. D. Meyerson, R. Stong, L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

Orthogonal Projection of Ellipsoids

11896 [2016, 296]. Proposed by Ron Evans, University of California, San Diego, CA. Let
n ≥ 2, and let E ⊂ Rn+1 be an n-dimensional ellipsoid, by which we mean that E has n
orthogonal semi-axis vectors. (For instance, E is an ellipse in R3 when n = 2.) Show that
the projection of E onto an n-dimensional subspace of Rn+1 is either an n-dimensional
ellipsoid or a solid (n− 1)-dimensional set bounded by an (n− 1)-dimensional ellipsoid
(when n = 2, the solid is a line segment.)

Solution by Richard Stong, Center for Communications Research, San Diego, CA. More
generally, we show that any image of the unit sphere Sn−1 ⊂ Rn under any affine map is
either an ellipsoid of dimension n− 1 (if the map is nonsingular) or the convex hull of an
ellipsoid of dimension n− k − 1 (if the map is singular with a k-dimensional kernel). Since
the given ellipsoid E is an affine image of Sn−1 and the projection is affine with at most a
1-dimensional kernel, this implies the requested result.

Note that by composing with a translation, we may assume that the affine map is simply
a linear map L : Rn → RN defined by a matrix A. Also, note that by restricting to the image
L(Rn), we may assume the linear map is onto.
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First, suppose n = N, and hence L is nonsingular. In that case, E = L(Sn−1) =
{Y : YT (A−1)TA−1Y = 1}. Since � = (A−1)TA−1 is a symmetric positive-definite matrix,
it has an orthonormal basis of eigenvectors. It follows that E is an ellipsoid.

Next, suppose that L:Rn → Rn−k has a k-dimensional kernel for some k ≥ 1. Let K
be the kernel of L, and let π :Rn → K⊥ be the orthogonal projection of Rn onto the
orthogonal complement K⊥ of K. We can write L = L′ ◦ π for some nonsingular lin-
ear map L′:K⊥ → Rn−k. The image of Sn−1 under π is the closed unit ball Bn−k ⊂ K⊥.
By the previous case, L′ sends the boundary Sn−k−1 of this ball to an ellipsoid of di-
mension n− k − 1, and hence it sends the convex hull Bn−k to the convex hull of the
ellipsoid.

Also solved by J.-P. Grivaux (France), J. H. Lindsey II, O. P. Lossers (Netherlands), M. Sawhney, J. C. Smith,
GCHQ Problem Solving Group (U. K.), and the proposer.

A Product of Catalan Numbers

11897 [2016, 296]. Proposed by Pál Péter Dályay, Szeged, Hungary. Prove for n ≥ 0 that

∑
k+l=n, k≥0, l≥0

(2k
k

)(2l+2
l+1

)
k + 1

= 2

(
2n+ 2

n

)
. (∗)

Solution I by Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Let Ck =
1

k+1 (
2k
k ). It is well known that

∑
k+l=n CkCl = Cn+1 for n ≥ 0. Note that

∑
k+l=n

lCkCl = 1

2

∑
k+l=n

(k + l)CkCl = n

2

∑
k+l=n

CkCl = n

2
Cn+1.

Now set j = l + 1 (canceling the term j = 0 from the summation) to conclude

∑
k+l=n

(2k
k

)(2l+2
l+1

)
k + 1

=
∑
k+l=n

(l + 2)CkCl+1 =
∑

k+ j=n+1

( j + 1)CkCj −Cn+1

= n+1

2
Cn+2 +Cn+2 −Cn+1 = (n+ 3)(2n+ 4)!

2(n+ 2)!(n+ 3)!
− (2n+ 2)!

(n+ 1)!(n+ 2)!
= 2

(
2n+ 2

n

)
.

Solution II by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
Let

C(x) =
∞∑
k=0

Ckx
k+1 =

∞∑
k=0

(
2k

k

)
xk+1

(k + 1)
.

The recurrence
∑

k+l=n CkCl = Cn+1 for n ≥ 0 with C0 = 1 yields C(x) − x = C(x)2.
Hence, C(x)C′(x) = 1

2 (C
′(x) − 1). The summand on the left side of (∗) is the product of

the coefficients of xk+1 inC(x) and xl+1 inC′(x), summed over (k + 1) + (l + 1) = n+ 2,
but lacking the term for l = −1. Since the constant term in C′(x) is 1, the sum is the coef-
ficient of xn+2 in C(x)(C′(x) − 1). We compute

C(x)(C′(x) − 1) = 1

2
(C′(x) − 1) −C(x) = 1

2

∞∑
k=1

(
2k

k

)
xk −

∞∑
k=0

(
2k

k

)
xk+1

k + 1
.

The coefficient of xn+2 is 1
2

(2n+4
n+2

)− 1
n+2

(2n+2
n+1

)
, which equals 2

(2n+2
n

)
.
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Solution III by John H. Smith, Needham, Massachusetts. Consider lattice paths in the xy-
plane, consisting of unit steps in the positive x- or y-direction. It is well known that the
number of such paths from (0, 0) to (n, n) not rising above the line y = x is the Catalan
number Cn, equal to 1

n+1

(2n
n

)
.

The total number of lattice paths from (0,−1) to (n+ 1, n+ 1) is
(2n+3
n+1

)
. Among these,

the number that first meet the line y = x at the point (k, k) is 1
k+1

(2k
k

)(2(n+1−k)
n+1−k

)
, since the

initial portion does not rise above the line y = x− 1. Therefore, the left side of (∗) counts all
paths from (0,−1) to (n+ 1, n+ 1) except those that first meet the line y = x at (n+ 1, n+
1), since the term for k = n+ 1 is missing. Note also that Cn+1 = 1

n+2

(2n+2
n+1

) = (2n+2
n+1

)−(2n+2
n

)
. Thus, to evaluate the sum we compute(
2n+ 3

n+ 1

)
−Cn+1 =

((
2n+ 2

n+ 1

)
+
(
2n+ 2

n

))
−
((

2n+ 2

n+ 1

)
−
(
2n+ 2

n

))

= 2

(
2n+ 2

n

)
.

Also solved by U. Abel (Germany), A. Ali (India), T. Amdeberhan, M. Apagodu, M. Arakelian (Armenia),
N. Balachandran & P. De (India), D. Beckwith, M. Bello & M. Benito & Ó. Ciaurri & E. Fernández &
L. Roncal, B. Bradie, R. Chapman (U. K.), H. Chen, J. Cigler (Austria), C. Georghiou (Greece), O. Geupel
(Germany), M. Goldenberg & M. Kaplan, J.-P. Grivaux (France), A. Hannan (India), M. Hoffman, O. Kouba
(Syria), H. Kwong, P. Lalonde (Canada), L. Mannion, R. Nandan, M. Omarjee (France), S. Pathak (Canada),
Á. Plaza & S. Falcón (Spain), J. Schlosberg, E. Schmeichel, J. C. Smith, A. Stenger, M. Štofka (Slovakia),
D. Stoner, R. Stong, M. Tang, R. Tauraso (Italy), Z. Vőrős (Hungary), M. Vowe (Switzerland), M. Wildon
(U. K.), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

No Matter How You Slice It

11898 [2016, 297]. Proposed by Richard Stanley, University of Miami, Coral Gables, FL.
Let n and k be integers, with n ≥ k ≥ 2. LetG be a graph with n vertices whose components
are cycles of length greater than k. Let fk(G) be the number of k-element independent sets
of vertices ofG. Show that fk(G) depends only on k and n. (A set of vertices is independent
if no two of them are adjacent.)

Solution by Edward Schmeichel, San Jose State University, San Jose, California. It suf-
fices to show that the number of independent k-sets is the same when G consists of two
cycles as when G is just one cycle. When G has more components, one can then repeat-
edly merge two cycles to reach a single cycle without changing the number of independent
k-sets.

Let V (Cs) = {v1, . . . , vs} and V (Ct ) = {w1, . . . ,wt}. Form Cs+t by replacing vsv1 and
wtw1 with vsw1 and wtv1. The independent sets in Cs+t that do not contain {v1, vs} or
{w1,wt} are the same as the independent sets in Cs +Ct that do not contain {vs,w1} or
{wt, v1}. It suffices to pair the remaining independent k-sets in Cs+t and Cs +Ct .

Let S = {v1, vs,w1,wt}. Let I be an independent k-set in Cs+t . In the remaining case,
I ∩ S is {v1, vs} or {w1,wt}. Letm be the least index such that vm,wm /∈ I; note thatm exists
and is less than min{s, t}, since otherwise |I| ≥ min{s, t} > k. Define I′ by exchanging the
incidence vector of I over (v1, . . . , vm) with its incidence vector over (w1, . . . ,wm).

The result is an independent k-set in Cs +Ct , since vm,wm /∈ I′ and I′ ∩ S is {vs,w1} or
{wt, v1}. The map is also an involution. Hence, it produces a one-to-one correspondence
between the two desired families of independent k-sets.

Editorial comment. The proposer and most solvers used generating functions. A substantial
generalization has been proved inductively by Hannah Spinoza and Douglas West. They
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showed that the conclusion about independent k-sets also holds for every k-vertex subgraph,
over all n-vertex graphs whose components are cycles with more than k vertices or paths
with at least k − 1 vertices, as long as the number of components that are paths is the same.
They used this in determining when a graph with maximum degree 2 can be reconstructed
from its multiset of k-vertex induced subgraphs.

Also solved by M. Arakelian (Armenia), D. Beckwith, R. Chapman (U. K.), Y. J. Ionin, P. Lalonde (Canada),
J. H. Lindsey II, J. C. Smith, J. H. Smith, R. Stong, R. Tauraso (Italy), L. Zhou, GCHQ Problem Solving Group
(U. K.), and the proposer.

A Couple of Convolutions

11899 [2016, 297]. Proposed by Julien Sorel, PNI, Piatra Neamt, Romania. Show that for
every positive integer n,

n∑
k=0

(
2n

k

)(
2n+ 1

k

)
+

2n+1∑
k=n+1

(
2n+ 1

k

)(
2n

k − 1

)
=
(
4n+ 1

2n

)
+
(
2n

n

)2

.

Solution I by Li Zhou, Polk State College, Winter Haven, FL.We begin with the well-known
Vandermonde convolution, comparing coefficients of x2n in the expansions of (1 + x)4n+1

and (1 + x)2n(1 + x)2n+1:(
4n+ 1

2n

)
=

2n∑
k=0

(
2n

2n− k

)(
2n+ 1

k

)
=

n∑
k=0

(
2n

k

)(
2n+ 1

k

)
+

2n∑
k=n+1

(
2n

k

)(
2n+ 1

k

)
.

Manipulating the second term, we obtain

2n∑
k=n+1

(
2n

k

)(
2n+ 1

k

)
=

2n∑
k=n+1

(
2n

k

)((
2n

k − 1

)
+
(
2n

k

))

=
2n∑

k=n+1

(
2n

k

)(
2n

k − 1

)
+

2n+1∑
j=n+2

(
2n

j − 1

)(
2n

j − 1

)

=
2n∑

k=n+1

(
2n

k

)(
2n

k − 1

)
+

2n+1∑
k=n+1

(
2n

k − 1

)(
2n

k − 1

)
−
(
2n

n

)2

=
2n+1∑
k=n+1

(
2n+ 1

k

)(
2n

k − 1

)
−
(
2n

n

)2

,

completing the proof.

Solution II by John H. Smith, Needham, MA. It suffices to show

n∑
k=0

(
2n

k

)(
2n+ 1

2n+ 1 − k

)
+

2n+1∑
k=n+1

(
2n+ 1

k

)(
2n

2n− k + 1

)
−
(
2n

n

)2

=
(
4n+ 1

2n+ 1

)
.

We count the ways of choosing 2n+ 1 objects from {1, . . . , 4n+ 1}. The first sum counts
the choices with at most n objects from the first 2n. The second counts those having at least
n+ 1 objects from the first 2n+ 1. Each choice is counted in at least one of these sums.
Those counted twice are the choices having exactly n from the first 2n, plus n from the last

2n, plus the element 2n+ 1. There are thus
(2n
n

)2
choices counted twice.

Also solved by A. Ali (India), T. Amdeberhan, B. Bradie, R. Chapman (U. K.), H. Chen, P. P. Dályay
(Hungary), P. De (India), N. Fontes-Merz, N. Grivaux (France), T. Guan (China), M. Hoffman, Y. J. Ionin,
B. Karivanov (U. S. A) & T. S. Vassilev (Canada), O. Kouba (Syria), P. Lalonde (Canada), J. H. Lindsey II,
O. P. Lossers (Netherlands), M. Madhyastha (India), R. Nandan, M. Nathanson, S. Pathak (Canada), Á. Plaza
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(Spain), M. Sawhney, E. Schmeichel, J. C. Smith, A. Stenger, R. Stong, R. Tauraso (Italy), Z. Vőrős (Hungary),
M. Vowe (Switzerland), S. Y. Wang (Korea), G. Whieldon, M. Wildon (U. K.), Con Amore Problem Group
(Denmark), GCHQ Problem Solving Group (U. K.), and the proposer.

Circles Next after Incircles

11900 [2016, 297]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let ABC
be a triangle, and let I and r be the center and radius of its incircle. The circle with center
and radius (IA, rA) is externally tangent to the incircle and internally tangent to sides AB
and AC of ABC. Define (IB, rB) and (IC, rC ) similarly. Prove for n ≥ 1 that(

r + rA
r − rA

)n
+
(
r + rB
r − rB

)n
+
(
r + rC
r − rC

)n
≥ 3 · 2n.

Solution by Oleh Faynshteyn, Leipzig, Germany. Let D and E be the feet of the perpendicu-
lars dropped onto side AB from I and IB, respectively. Let F be the foot of the perpendicular
dropped onto segment ID from IB. We have IF = r − rB and IIB = r + rB. From the right
triangle �IFIB, we have

I IB
IF

= r + rB
r − rB

= csc(B/2).

Similarly,

r + rA
r − rA

= csc(A/2) and
r + rC
r − rC

= csc(C/2).

Since xn + yn + zn ≥ 1
3n−1 (x+ y+ z)n,(

r + rA
r − rA

)n
+
(
r + rB
r − rB

)n
+
(
r + rC
r − rC

)n
= cscn(A/2) + cscn(B/2) + cscn(C/2)

≥ 1

3n−1

(
csc(A/2) + csc(B/2) + csc(C/2)

)n
. (1)

From the harmonic-geometric mean inequality, the identity

sin(A/2) sin(B/2) sin(C/2) = r

4R
,

and Euler’s inequality R ≥ 2r, we obtain

3

csc(A/2) + csc(B/2) + csc(C/2)
≤ 3
√
sin(A/2) sin(B/2) sin(C/2) ≤ 3

√
1

8
= 1

2
.

This implies

csc(A/2) + csc(B/2) + csc(C/2) ≥ 6. (2)

Substituting (2) into (1), we obtain

cscn(A/2) + cscn(B/2) + cscn(C/2) ≥ 1

3n−1
· 6n = 3 · 2n,

as required.

Also solved by J. J. Ahn (Korea), A. Ali (India), R. Bagby, R. Boukharfane (France), M. V. Channakeshava
(India), R. Chapman (U. K.), P. P. Dályay (Hungary), D. Fleischman, O. Geupel (Germany), M. Goldenberg &
M. Kaplan, N. & J.-P. Grivaux (France), T. Guan (China), B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada),
O. Kouba (Syria), W.-K. Lai & J. Risher, K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands),
V. Mikayelyan (Armenia), R. Nandan, D. Pispinis (Saudi Arabia), M. Sawhney, V. Schindler (Germany),
E. Schmeichel, J. C. Smith, N. Stanciu & T. Zvonaru (Romania), D. Stoner, R. Stong, R. Tauraso (Italy),
M. Vowe (Switzerland), T. Wiandt, M. R. Yegan (Iran), J. Zacharias, L. Zhou, Armstrong Problem Solvers,
Con Amore Problem Group (Denmark), GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong,Walter Stromquist, Daniel Velleman, StanWagon, ElizabethWilmer, Paul Zeitz, and
Fuzhen Zhang.

Proposed problems should be submitted online at
http://www.americanmathematicalmonthly.submittable.com/submit

Proposed solutions to the problems below should be submitted by June 30, 2018 via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12020. Proposed by Erhard Braune, Linz, Austria. Let α, β, and γ be the radian measures
of the three angles of a triangle, and let ω be the radian measure of its Brocard angle.
(The Brocard angle of triangle ABC is the angle TAB, where T is the unique point such
that ∠TAB, ∠TBC, and ∠TCA are congruent.) Yff’s inequality asserts that 8ω3 is a lower
bound for αβγ . Show that ωπ3/4 is an upper bound for the same product.

12021. Proposed by Omar Sonebi, Lycée Technique, Settat, Morroco. Let φ be the Euler
totient function. Given a ∈ Z+ and b ∈ Z+, show that there exists n ∈ Z+ such that an+ b
is not in the range of φ.

12022. Proposed by Mircea Merca, University of Craiova, Craiova, Romania. Let n be a
positive integer, and let x be a real number not equal to −1 or 1. Prove

n−1∑
k=0

(1 − xn)(1 − xn−1) · · · (1 − xn−k )
1 − xk+1

= n

and
n−1∑
k=0

(−1)k
(1 − xn)(1 − xn−1) · · · (1 − xn−k )

1 − xk+1
x(

n−1−k
2 ) = nx(

n
2).

12023. Proposed by Vazgen Mikayelyan, Yerevan State University, Yerevan, Armenia. Let
α be a positive real number. Prove∫ π

0
xα−2 sin x dx ≥ πα α + 6

α(α + 2)(α + 3)
.

12024. Proposed by Marian Cucoaneş, Mărăşeşti, Romania, Marius Drăgan, Bucharest,
Romania, and Neculai Stanciu, Buzău, Romania. Let x, y, and z be positive real numbers
satisfying xyz = 1. Prove

(x10 + y10 + z10)2 ≥ 3(x13 + y13 + z13).

doi.org/10.1080/00029890.2017.1405685
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12025. Proposed by Askar Dzhumadil’daev, S. Demirel University, Almaty, Kazakhstan.
The Chebyshev polynomials of the second kind are defined by the recurrence relation
U0(x) = 1,U1(x) = 2x, andUn(x) = 2xUn−1(x) −Un−2(x) for n ≥ 2. For an integer n with
n ≥ 2, prove

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1 1
x 0 1 · · · 1 1
x2 x 0 · · · 1 1
...

...
...

. . .
...

...
xn−2 xn−3 xn−4 · · · 0 1
xn−1 xn−2 xn−3 · · · x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)n−1xn/2Un−2(
√
x).

12026. Proposed by Michel Bataille, Rouen, France. For n ∈ N, let Hn = ∑n
k=1 1/k and

Sn = ∑n
k=1(−1)n−k(H1 + · · · + Hk )/k. Find limn→∞ Sn/ ln n and limn→∞(S2n − S2n−1).

SOLUTIONS

Expressing the Sum of Three Squares as the Sum of Two

11894 [2016, 296]. Proposed by Eugen J. Ionascu, Columbus State University, Columbus,
GA. Let a, b, c, and d be integers such that a2 + b2 + c2 = d2 and d �= 0. Let x, y, and z be
three integers such that ax+ by+ cz = 0.
(a) Prove that x2 + y2 + z2 can be written as the sum of two squares.
(b) Let ABCD be a square in R3 with integer vertices A, B, C, and D. Show that the side
lengths of ABCD have the form

√
l, where l is the sum of two squares.

Solution by James Christopher Smith, Knoxville, TN.
(a) Since d �= 0, at least one of a, b, and c is nonzero, so we may assume c �= 0. Using
cz = −(ax+ by) and algebraic manipulation, we obtain

(a2 + c2)c2(x2 + y2 + z2) = (a2 + c2) (c2x2 + c2y2 + (ax+ by)2)

= ((a2 + c2)x+ aby)2 + (a2 + b2 + c2)c2y2

= ((a2 + c2)x+ aby)2 + (dcy)2.

It is well known that an integer can be written as the sum of two squares if and only if every
prime congruent to 3 modulo 4 occurs in its prime factorization with even exponent. Also,
every prime occurs with even exponent in the factorization of a square. Thus, each of the
quantities c2, a2 + c2, and

(
(a2 + c2)x+ aby

)2 + (dcy)2 has the property that every prime
congruent to 3 modulo 4 occurs with even exponent in its prime factorization. Also, none of
these quantities equals 0. Hence after cancelation the same property holds for x2 + y2 + z2,
which proves that it can be written as the sum of two squares.
(b) Translate the square so that one of its vertices is at the origin; still all vertices are at
integer points. Let (α, β, γ ) and (x, y, z) be the coordinates of the two vertices of the square
adjacent to the vertex at the origin, so αx+ βy+ γ z = 0 and l = α2 + β2 + γ 2 = x2 +
y2 + z2. Let (a, b, c) be the cross-product of (α, β, γ ) and (x, y, z) (so a = βz− γ y, b =
γ x− αz, c = αy− βx). We observe that (a, b, c) is orthogonal to (x, y, z) and has length l,
so the claim follows from part (a).

Also solved by B. S. Burdick, R. Chapman (U. K.), R. Dempsey, Y. J. Ionin, O. P. Lossers (Netherlands),
M. Omarjee (France), J. P. Robertson, M. Sawhney, A. Stenger, R. Stong, R. Tauraso (Italy), T. Viteam
(Denmark), M. Wildon (U. K.), GCHQ Problem Solving Group (UK), and the proposer.
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On the Definition of “Regularly Varying Function”

11895 [2016, 296]. Proposed by George Stoica, University of New Brunswick, Saint John,
Canada. Let f be a regularly varying function from (0,∞) into (0,∞), with index ρ > 0,
and let g be a function from (0,∞) into (0,∞) such that limx→∞ g(x) = ∞. (A function L
on R+ is regularly varying with index ρ if limx→∞ L(ax)/L(x) = aρ .) Prove

lim
x→∞

f (x)

f (g(x))
= L if and only if lim

x→∞
x

g(x)
= L1/ρ.

Solution by Richard Stong, Center for Communications Research, SanDiego, CA.The prob-
lem is not correct without some additional hypothesis that limx→∞ f (ax)/ f (x) = aρ occurs
“uniformly in a.” We provide a counterexample.

A function L : R → R is Q-linear if L(ax+ by) = aL(x) + bL(y) for all x, y ∈ R and
a, b ∈ Q. Let L : R → R be a discontinuous Q-linear function. The graph of any such
function is dense in the plane. Define h : R → (−1, 1) by h(x) = tanh(L(x)/x) for x �= 0,
and define h(0) arbitrarily. The graph of h is dense in R × [−1, 1]. Fix a real α, and let
β = L(α). We have

h(x+ α) − h(x) = tanh
L(x+ α)

x+ α
− tanh

L(x)

x

=
(
tanh

L(x+ α)

x+ α
− tanh

L(x)

x+ α

)
−

(
tanh

L(x)

x
− tanh

L(x)

x+ α

)

= β

x+ α
sech2 ξ1 − αL(x)

x(x+ α)
sech2 ξ2

for some ξ1 between L(x)/(x+ α) and (L(x) + β )/(x+ α) and some ξ2 between L(x)/(x+
α) and L(x)/x. The first term goes to 0 as x → ∞ since the hyperbolic secant is bounded
by 1. The second term also goes to 0 since ξ2 sech2 ξ2 is bounded and∣∣∣∣ αL(x)

x(x+ α)ξ2

∣∣∣∣ ≤ |α|
min

(|x|, |x+ α|) → 0.

We conclude that limx→∞
(
h(x+ α) − h(x)

) = 0 for any α.
Now let

f (x) = xρeh(log x).

For any a > 0, we have

f (ax)

f (x)
= aρeh(log x+log a)−h(log x) → aρ

as x → ∞. Thus, f is “regularly varying” according to the definition given in the problem
statement. Note that since β is unbounded, the rate of this convergence depends on a in a
complicated way. Now from the density of the graph of h, there is a sequence (xn)n≥1 of
positive reals that increases monotonically to∞ such that (−1)nh(log xn) → 1. Again using
the density, let yn be chosen so that yn is within 1 of xn and (−1)nh(log yn) → −1. Define
g by making its graph linearly interpolate the points (0, 0), (x1, y1), (x2, y2), (x3, y3), . . . .
We have limx→∞ x/g(x) = 1, but

f (xn)

f (g(xn))
= f (xn)

f (yn)
=

(
xn
yn

)ρ

eh(log xn )−h(log yn ) ≈ e2(−1)n ,

so limx→∞ f (x)/ f (g(x)) fails to exist.
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Editorial comment. Most solvers noted that the textbook definition of “regularly vary-
ing” usually includes an additional condition on f such as measurability. With that addi-
tional condition, the required assertion follows from a representation theorem of Karamata
found in all textbooks on the subject. The GCHQ Problem Solving Group showed that the
claimed conclusion holds for all functions g going to ∞ and all L ∈ [0,∞] if and only
if, for all compact subsets K ⊆ (0,∞), limx→∞ f (ax)/ f (x) converges uniformly to aρ for
a ∈ K.

Also solved by P. Bracken, P. J. Fitzsimmons, O. P. Lossers (Netherlands), M. Omarjee (France), E. Omey
(Belgium), J. M. Sanders, J. C. Smith, GCHQ Problem Solving Group (U. K.), and the proposer.

A Finite Semigroup of Endofunctions

11901 [2016, 399]. Proposed by Donald Knuth, Stanford, CA. For n ∈ Z+, let [n] =
{1, 2, . . . , n}. Define the functions ↑ and ↓ on [n] by ↑ x = min{x+ 1, n} and ↓ x =
max{x− 1, 1}. How many distinct mappings from [n] to [n] occur as compositions of ↑
and ↓?

Solution by Rob Pratt, Washington, DC.We show that every such mapping f has the form

( f (1), . . . , f (n)) = (i, i, . . . , i︸ ︷︷ ︸
j

, i+ 1, i+ 2, . . . i+ d︸ ︷︷ ︸
d

, i+ d, . . . , i+ d︸ ︷︷ ︸
n−d− j

)

with d ∈ {0, 1, . . . , n− 1}, i ∈ [n− d], and j ∈ [n− d]. Clearly composition with both ↑
and ↓ preserves this form. From the empty composition (itself the case i = j = 1 and d =
n− 1), application of ↑i−1 ◦ ↓n−d−1 ◦ ↑n−d− j achieves the specified function, given d, i,
and j.

The allowable mappings are easily counted: for d = 0 there are n, and for d ∈ [n− 1]
both i and j may take any value in [n− d]. Hence, the computation is

n+
n−1∑
d=1

(n− d)2 = n+
n−1∑
m=1

m2 = n+ (n− 1)n(2n− 1)

6
= n(2n2 − 3n+ 7)

6
.

Editorial comment. Many solvers excluded the empty composition from their count (for
n �= 1). The proposer’s solution included it.

Also solved by J. Bartz, C. Blatter (Switzerland), N. Caro (Spain), P. P. Dályay (Hungary), K. David, F. Eckstrom
(Sweden), S. Gagola, O. Geupel (Germany), J. Grossman & S. Kruk, Y. Ionin, O. Kouba (Syria), M. Kuczma
(Poland), M. Lafond (France), J. H. Lindsey II, O. P. Lossers (Netherlands), M. Meyerson, J. Olson, M. Patnott,
J. Schlosberg, J. C. Smith, J. H. Smith, R. Stong, R. Tauraso (Italy), M. Wildon (U. K.), Armstrong Problem
Solvers Group, Con Amore Problem Group, FAU Problem Solving Group, GCHQ Problem Solving Group,
and the proposer.

A Row of Zetas

11902 [2016, 399]. Proposed by Cornel Ioan Vălean, Teremia Mare, Timiş, Romania. Let
{x} denote x− �x�, the fractional part of x. Prove

∫ 1

0

∫ 1

0

∫ 1

0

({
x

y

} {
y

z

} {
z

x

})2

dx dy dz

= 1 − ζ (2)

2
− ζ (3)

2
+ 7ζ (6)

48
+ ζ (2)ζ (3)

18
+ ζ (3)2

18
+ ζ (3)ζ (4)

12
.
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Solution by Rituraj Nandan, SunEdison, Maryland Heights, MO. For (x, y, z) ∈ [0, 1]3,
there are six possibilities for the ordering of x, y, and z. We write the requested integral
as the sum of the integrals corresponding to these six orderings.

For z ≤ y ≤ x, we have {x/y} = x/y− n whenever x/(n+ 1) < y ≤ x/n and n is a pos-
itive integer, {y/z} = y/z− m whenever y/(m+ 1) < z ≤ y/m and m is a positive integer,
and {z/x} = z/x. Therefore

∫∫∫
0≤z≤y≤x≤1

({
x

y

} {
y

z

}{
z

x

})2

dx dy dz

=
∞∑
n=1

∞∑
m=1

∫ 1

0

∫ x/n

x/(n+1)

∫ y/m

y/(m+1)

((
x

y
− n

)
·
(
y

z
− m

)
· z
x

)2

dz dy dx

=
∞∑
n=1

∞∑
m=1

4n+ 1

108m(m+ 1)3n2(n+ 1)4

= 1

108

∞∑
n=1

4n+ 1

n2(n+ 1)4

∞∑
m=1

1

m(m+ 1)3
. (1)

We evaluate the summations by partial fractions, obtaining

∞∑
n=1

4n+ 1

n2(n+ 1)4
=

∞∑
n=1

((
1

n2
− 1

(n+ 1)2

)
− 2

(n+ 1)3
− 3

(n+ 1)4

)

= 1 − 2(ζ (3) − 1) − 3(ζ (4) − 1) = 6 − 2ζ (3) − 3ζ (4)

and

∞∑
m=1

1

m(m+ 1)3
=

∞∑
m=1

((
1

m
− 1

m+ 1

)
− 1

(m+ 1)2
− 1

(m+ 1)3

)

= 1 − (ζ (2) − 1) − (ζ (3) − 1) = 3 − ζ (2) − ζ (3).

Substituting into (1), we obtain

∫∫∫
0≤z≤y≤x≤1

({
x

y

} {
y

z

} {
z

x

})2

dx dy dz

= 1

108

(
6 − 2ζ (3) − 3ζ (4)

)(
3 − ζ (2) − ζ (3)

)
. (2)

For x ≤ z ≤ y and y ≤ x ≤ z, the cyclic permutations of z ≤ y ≤ x, the integrals have the
same form and therefore the same value.

For y ≤ z ≤ x, we have {x/y} = x/y− n whenever x/(n+ 1) < y ≤ x/n and n is a pos-
itive integer, {y/z} = y/z, and {z/x} = z/x. Therefore

∫∫∫
0≤y≤z≤x≤1

({
x

y

} {
y

z

} {
z

x

})2

dx dy dz

=
∞∑
n=1

∫ 1

0

∫ x/n

x/(n+1)

∫ x

y

((
x

y
− n

)
· y
z

· z
x

)2

dz dy dx

=
∞∑
n=1

4n2 − 1

36n2(n+ 1)4
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= 1

36

∞∑
n=1

(
4

(
1

n
− 1

n+ 1

)
− 1

n2
− 3

(n+ 1)2
− 2

(n+ 1)3
+ 3

(n+ 1)4

)

= 1

36

(
4 − ζ (2) − 3(ζ (2) − 1) − 2(ζ (3) − 1) + 3(ζ (4) − 1)

)
= 1

36

(
6 − 4ζ (2) − 2ζ (3) + 3ζ (4)

)
. (3)

As before, for x ≤ y ≤ z and z ≤ x ≤ y, the cyclic permutations of y ≤ z ≤ x, the integrals
have the same value.

Using (2) and (3), we obtain

∫ 1

0

∫ 1

0

∫ 1

0

({
x

y

}{
y

z

}{
z

x

})2

dx dy dz

= 3 · 1

108

(
6 − 2ζ (3) − 3ζ (4)

)(
3 − ζ (2) − ζ (3)

) + 3 · 1

36

(
6 − 4ζ (2) − 2ζ (3) + 3ζ (4)

)

= 1 − ζ (2)

2
− ζ (3)

2
+ ζ (2)ζ (4)

12
+ ζ (2)ζ (3)

18
+ ζ (3)2

18
+ ζ (3)ζ (4)

12

= 1 − ζ (2)

2
− ζ (3)

2
+ 7ζ (6)

48
+ ζ (2)ζ (3)

18
+ ζ (3)2

18
+ ζ (3)ζ (4)

12
.

Editorial comment. Several solvers derived the more general formula

∫ 1

0

∫ 1

0

∫ 1

0

({
x

y

}{
y

z

}{
z

x

})n

dx dy dz

= 1 − 3
∑n

j=1 ζ ( j + 1)

2(n+ 1)
+

∑n
j=1 ζ ( j + 1)

(n+ 1)2(n+ 2)

⎛
⎝ n∑

j=1

( j + 1)ζ ( j + 2)

⎞
⎠ .

Also solved by T. Amdeberhan & V. H. Moll, K. F. Andersen (Canada), R. Boukharfane (France), R. Dempsey,
R. Dutta (India), D. Fritze (Germany), M. L. Glasser, M. Hoffman, O. Kouba (Syria), O. P. Lossers
(Netherlands), M. Omarjee (France), J. C. Smith, R. Stong, R. Tauraso (Italy), GCHQ Problem Solving Group
(UK), and the proposer.

An Integral Identity

11903 [2016, 399]. Proposed by Paolo Perfetti, Universitá Degli Studi di Roma “Tor Ver-
gata,” Rome, Italy. Find a homogeneous polynomial p of degree 2 in a, b, c, and d such
that for 0 < −d < a < b < c,

∫ a

0

√
x(a− x)(x− b)(x− c)

x+ d
dx =

∫ c

b

√
x(a− x)(x− b)(x− c)

x+ d
dx

if and only if
√−d(a+ d)(b+ d)(c+ d) = p(a, b, c, d).

Solution by GCHQ Problem Solving Group, Cheltenham, U. K. The integral written on the
left does not exist due to its singularity at x = −d. We assume that instead of 0 < −d <

a < b < c, the condition on a, b, c, d is 0 < a < b < c and d > 0, and the condition we are
aiming for is

√
d(a+ d)(b+ d)(c+ d) = p(a, b, c, d).

Let

p(a, b, c, d) = 2ab+ 2bc+ 2ca+ 4ad + 4bd + 4cd − a2 − b2 − c2 + 8d2

8
.
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We show that, for 0 < a < b < c and d > 0, we have∫ a

0

√
x(a− x)(x− b)(x− c)

x+ d
dx−

∫ c

b

√
x(a− x)(x− b)(x− c)

x+ d
dx

= π · p(a, b, c, d) − π
√
d(a+ d)(b+ c)(c+ d),

which gives the result.
Let D be the complex plane, removing vertical half-lines starting at 0, a, b, c ∈ R and

going through the lower half-plane. As D is a simply-connected, open subset of the plane
and z �→ z(z− a)(z− b)(z− c) is a nonzero holomorphic function on D, it has a holomor-
phic square root, so there is a holomorphic s on D with s(z)2 = z(z− a)(z− b)(z− c) for
z ∈ D. Restricting to the real axis, the argument of s decreases by π/2 (mod 2π ) as s goes
from 0− to 0+, from a− to a+, from b− to b+, and from c− to c+, with the argument locally
constant at other points. Hence, if we take s to be positive real on (−∞, 0), then s is nega-
tive imaginary on (0, a), negative real on (a, b), positive imaginary on (b, c), and positive
real again on (c,+∞).

Now consider f (z) = s(z)/(z+ d). Note that f is holomorphic on D \ {−d} with a sim-
ple pole at−d. Choose R > max{c, d} and ε > 0 small. LetC be the closed contour defined
as follows. The contour goes from −R to R on the real axis, taking semicircular detours
C0,Ca,Cb,Cc,C−d of radius ε around 0, a, b, c,−d into the upper half-plane, with semicir-
cle CR in the upper half-plane from R to −R. In calculating the counterclockwise contour
integral of f around C, the contributions from C0,Ca,Cb,Cc are O(ε) and the contribution
fromC−d is

−π i
√
d(a+ d)(b+ d)(c+ d) + O(ε)

as ε → 0+. Hence, the integral along the part of the contour from −R to R along the real
axis with detours C−d,C0,Ca,Cb,Cc is(∫ −d−ε

−R
+

∫ −ε

−d+ε

−i
∫ a−ε

ε

−
∫ b−ε

a+ε

+i
∫ c−ε

b+ε

+
∫ R

c+ε

) √|x| |x− a| |x− b| |x− c|
x+ d

dx

−π i
√
d(a+ d)(b+ d)(c+ d) + O(ε).

Next, we determine the behavior of f (z) as z → ∞ in the upper half-plane. Since

s(z)2 = z4 + (−a− b− c)z3 + (ab+ bc+ ca)z2 − abcz,

we have

s(z) = z2 + −a− b− c

2
z+ 2ab+ 2bc+ 2ca− a2 − b2 − c2

8
+ O(z−1).

Since

1

z+ d
= z−1 − dz−2 + d2z−3 + O(z−4),

we obtain

f (z) = z+ −a− b− c− 2d

2

+ 2ab+ 2bc+ 2ca+ 4ad + 4bd + 4cd − a2 − b2 − c2 + 8d2

8
z−1 + O(z−2)

= z+ −a− b− c− 2d

2
+ p(a, b, c, d)z−1 + O(z−2).
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The integral of f along CR is then (a+ b+ c+ 2d)R+ p(a, b, c, d)π i+ O(R−1). By
Cauchy’s theorem, the contour integral of f around C is 0. Taking the imaginary part with
ε → 0+ and R → ∞, we get the claimed identity and hence the result.

Also solved by R. Stong, R. Tauraso (Italy), and the proposer.

The Triangle Inequality from the Parallelogram Law

11904 [2016, 399]. Proposed by Navid Safaei, Sharif University of Technology, Tehran,
Iran. Let f be a function from R into [0,∞) such that f 2(x+ y) + f 2(x− y) = 2 f 2(x) +
2 f 2(y) for all x and y. Prove f (x+ y) ≤ f (x) + f (y) for all x and y.

Solution by Henry Ricardo, Westchester AreaMath Circle, Purchase, NY. Setting x = y = 0
in the given functional equation yields 2 f (0)2 = 4 f (0)2, implying f (0) = 0. Letting x = 0,
we conclude that f 2(y) + f 2(−y) = 2 f 2(y), or (since f is nonnegative) f (y) = f (−y) for
all y ∈ R.

If we define g(x, y) = (
f 2(x+ y) − f 2(x− y)

)
/4, then we see from the original equa-

tion that g(x, x) = f 2(2x)/4 = f 2(x). Furthermore, the result of the previous paragraph
gives g(x, y) = g(y, x). Subtracting the functional equation for (y− z, x) from the func-
tional equation for (x+ y, z), then adding the functional equation for (y, z) and subtracting
it for (x, y), we obtain

f 2(x+ y+ z) − f 2(x− y+ z) = 2 f 2(x+ y) − 2 f 2(y− z) + 2 f 2(z) − 2 f 2(x)

= f 2(x+ y) − f 2(x− y) + f 2(y+ z) − f 2(y− z).

Thus, we conclude g(x+ z, y) = g(x, y) + g(z, y). Since g is symmetric, we conclude that
it is also additive in its second argument. The additivity of g implies g(nx, y) = ng(x, y)
for all n ∈ Z. It follows that g(rx, y) = rg(x, y) for all r ∈ Q. Thus for rational r we
have

0 ≤ f 2(rx+ y) = g(rx+ y, rx+ y) = r2g(x, x) + 2rg(x, y) + g(y, y).

Since the right-hand side is a polynomial in r, it follows that the inequality holds for all
real r. Hence, the discriminant of this quadratic must be nonpositive, that is, g2(x, y) ≤
g(x, x)g(y, y) or equivalently |g(x, y)| ≤ f (x) f (y). Hence

f 2(x+ y) = g(x, x) + 2g(x, y) + g(y, y) ≤ ( f (x) + f (y))2,

which implies f (x+ y) ≤ f (x) + f (y).

Editorial comment. Allen Stenger noted that the problem appeared (in a slightly more
general form) in this Monthly, Problem 5264 [1965, 193; 1966, 211], proposed by
D. E. Knuth, with solutions by E. O. Buchman and W. G. Dotson, Jr.

Also solved by D. Bailey & E. Campbell & C. Diminnie, P. P. Dályay (Hungary), R. Ger (Poland),
M. Goldenberg & M. Kaplan, J. W. Hagood, O. Kouba (Syria), O. P. Lossers (Netherlands), J. C. Smith,
A. Stenger, R. Stong, GCHQ Problem Solving Group (U. K.), and the proposer.

Strengthening the Mordell–Oppenheim Inequality

11905 [2016, 400].Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA. From
a point P inside a triangle ABC, the perpendiculars PPA, PPB, and PPC are drawn to its sides.
Let R be the circumradius and r the inradius of the triangle. Prove

R

2r
≤ |PA| |PB| |PC|

(|PPB| + |PPC|)(|PPA| + |PPC|)(|PPA| + |PPB|) .
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Solution by Mohammad Reza Yegan, Central Tehran Branch, Islamic Azad University,
Tehran, Iran. We assume that PA lies on segment BC, PB lies on segment CA, and PC
lies on segment AB. Let PA divide angle A into A1 and A2 so that |PPB| = |PA| sinA1

and |PPC| = |PA| sinA2. It follows that |PPB| + |PPC| = |PA|(sinA1 + sinA2). Similarly,
|PPC| + |PPA| = |PB|(sinB1 + sinB2) and |PPA| + |PPB| = |PC|(sinC1 + sinC2). Hence

(|PPA| + |PPB|)(|PPB| + |PPC|)(|PPC| + |PPA|)
= |PA| |PB| |PC|(sinA1 + sinA2)(sinB1 + sinB2)(sinC1 + sinC2),

or equivalently

(sinA1 + sinA2)(sinB1 + sinB2)(sinC1 + sinC2)

= (|PPA| + |PPB|)(|PPB| + |PPC|)(|PPC| + |PPA|)
|PA| |PB| |PC| .

Since

sinA1 + sinA2 = 2(sin(A1 + A2)/2) (cos(A1 − A2)/2) ≤ 2 sinA/2,

this implies

(|PPA| + |PPB|)(|PPB| + |PPC|)(|PPC| + |PPA|)
|PA| |PB| |PC| ≤ 8 sinA/2 sinB/2 sinC/2.

Taking reciprocals and using sinA/2 sinB/2 sinC/2 = r/4R, we obtain the desired result.

Editorial comment.This inequality is (12.28) on p. 111 inGeometric Inequalities byO. Bot-
tema et al. (1969). They reference L. J. Mordell, “On geometric problems of Erdös and
Oppenheim,” Math. Gazette 46 (1962) 213–215.

Using Euler’s inequality R ≥ 2r, we may conclude

|PA| |PB| |PC| ≥ (|PPA| + |PPB|)(|PPB| + |PPC|)(|PPC| + |PPA|),
which is the Mordell–Oppenheim inequality.

The problem statement is correct even if “side” is interpreted as “extended side,” the
angle at A, say, is obtuse, and the projection PB of P onto line AC falls outside the segment
AC. Define angles A1 and A2 as above. Note that ∠PAPB is equal not to ∠PAC but rather
to its supplement. However, the sine of an angle and the sine of its supplement are equal,
so it remains true that |PPC| + |PPB| = |PA|(sinA1 + sinA2), and therefore Yegan’s proof
continues to be valid.

Also solved by A. Ali (India), M. Bello & M. Benito & Ó. Ciaurri & E. Fernández & L. Roncal (Spain),
R. Bosch, M. V. Channakeshava (India), P. P. Dályay (Hungary), P. De (India), M. Dincă (Romania),
D. Fleischman, S. Gayen (India), O. Geupel (Germany), B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada),
O. Kouba (Syria), W. Liu, O. P. Lossers (Netherlands), V. Mikayelyan (Armenia), R. Nandan, P. Nüesch
(Switzerland), M. Sawhney, J. C. Smith, R. Stong, R. Tauraso (Italy), Z. Vőrős (Hungary), M. Vowe (Switzer-
land), T. Wiandt, L. Wimmer (Germany), J. Zacharias, GCHQ Problem Solving Group (UK), and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Paul Zeitz,
and Fuzhen Zhang.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit

Proposed solutions to the problems below should be submitted by July 31, 2018 via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12027. Proposed by Abdul Hannan, Chennai Mathematical Institute, Chennai, India. Let
ABC be a triangle with circumradius R and inradius r. Let D, E, and F be the points where
the incircle of ABC touches BC,CA, and AB, respectively, and let X ,Y , and Z be the second
points of intersection between the incircle ofABC and AD, BE, andCF , respectively. Prove

|AX |
|XD| + |BY |

|YE| + |CZ|
|ZF| = R

r
− 1

2
.

12028. Proposed by Michael Elgersma, Minneapolis, MN, Ramin Naimi, Occidental Col-
lege, Los Angeles, CA, and StanWagon, Macalester College, St. Paul, MN.We have n coins,
where n = d + p+ q for positive integers d, p, and q. Suppose that whenever any d of the
coins are removed, the rest can be split into sets of size p and q that balance when placed
on a balance with arm lengths q and p, respectively. That is, q times the weight of the p
coins equals p times the weight of the q coins. Must all n coins have the same weight?

12029. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For a > 0, evaluate

lim
n→∞

n∏
k=1

(
a+ k

n

)
.

12030. Proposed by Jonathan Sondow, New York, NY. Let S be the set of positive integers
d such that, for some multiple m of d,(

m+ d

d

)
≡ 1 (mod m).

(a) Does S contain a prime number?

(b) Does S contain a number with distinct prime factors?
(c)* Does S contain a nontrivial prime power?

doi.org/10.1080/00029890.2018.1424478
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12031. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca,
Romania.
(a) Prove ∫ 1

0

∫ 1

0

{
x

1 − xy

}
dx dy = 1 − γ ,

where {a} denotes the fractional part of a, and γ is Euler’s constant.

(b) Let k be a nonnegative integer. Prove∫ 1

0

∫ 1

0

{
x

1 − xy

}k
dx dy =

∫ 1

0

{
1

x

}k
dx.

12032. Proposed by David Galante (student) and Ángel Plaza, University of Las Palmas
de Gran Canaria, Las Palmas, Spain. For a positive integer n, compute

n∑
p=0

n∑
k=p

(−1)k−p

(
k

2p

)(
n

k

)
2n−k.

12033. Proposed by Dao Thanh Oai, Thai Binh, Vietnam, and Leonard Giugiuc, Drobeta
Turnu Severin, Romania. Let ABCD be a convex quadrilateral with area S. Prove

AB2 + AC2 + AD2 + BC2 + BD2 +CD2 ≥ 8S+ AB ·CD+ BC · AD− AC · BD.

SOLUTIONS

A Radical Bound

11906 [2016, 400]. Proposed by Robert Bosch, Archimedean Academy, FL. Let x, y, and z
be positive numbers such that xyz = 1. Prove√

x+ 1

x2 − x+ 1
+
√

y+ 1

y2 − y+ 1
+
√

z+ 1

z2 − z+ 1
≤ 3

√
2.

Solution by Ramya Dutta, Chennai Mathematical Institute, Chennai, India. Since xyz = 1,
we can choose a, b, c ∈ R+ such that x = a/b, y = b/c, and z = c/a. The inequality then
becomes ∑

cyc

√
b(a+ b)

a2 − ab+ b2
≤ 3

√
2,

where
∑

cyc τ (a, b, c) denotes the cyclic sum τ (a, b, c) + τ (b, c, a) + τ (c, a, b). Since

∑
cyc

√
b(a+ b)

a2 − ab+ b2
=
∑
cyc

√
b(a+ b)

1
4 (a+ b)2 + 3

4 (a− b)2
≤
∑
cyc

2

√
b

a+ b

and since

∑
cyc

√
b

a+ b
=
∑
cyc

√
b+ c ·

√
b

(a+ b)(b+ c)
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≤
(∑

cyc

(b+ c)

)1/2

·
(∑

cyc

b

(a+ b)(b+ c)

)1/2

=
√
2 ·
[∑

cyc

b(a+ b+ c)

(a+ b)(b+ c)

]1/2

,

by the Cauchy–Schwarz inequality, it suffices to prove

∑
cyc

b(a+ b+ c)

(a+ b)(b+ c)
≤ 9

4
.

This is equivalent to

∑
cyc

(
1 − b(a+ b+ c)

(a+ b)(b+ c)

)
≥ 3

4
, or

∑
cyc

ac

(a+ b)(b+ c)
≥ 3

4
,

which is in turn equivalent to

∑
cyc

ac(a+ c) ≥ 3

4
(a+ b)(b+ c)(a+ c) = 3

4

(
2abc+

∑
cyc

ac(a+ c)

)
.

Solving this for the cyclic sum, we obtain∑
cyc

ac(a+ c) ≥ 6abc.

This follows from the AM–GM inequality applied to the six terms a2b, ab2, a2c, ac2, b2c,
and bc2. Therefore,

∑
cyc

√
b(a+ b)

a2 − ab+ b2
≤ 2

∑
cyc

√
b

a+ b
≤ 2

√
2 ·
√
9

4
= 3

√
2.

Also solved by R. A. Agnew, T. Amdeberhan & V. H. Moll, R. Boukharfane (France), P. Bracken,
M. V. Channakeshava (India), H. Chen, P. P. Dályay (Hungary), M. Dincă (Romania), H. Evans, D. Fleischman,
S. Gayen (India), J.-P. Grivaux (France), N. Grivaux (France), O. Kouba (Syria), M. E. Kuczma (Poland),
K.-W. Lau (China), J. H. Lindsey II, S. Malikić (Canada), V. Mikayelyan (Armenia), M. Omarjee (France),
Á. Plaza (Spain), J. C. Smith, A. Stenger, R. Stong, R. Tauraso (Italy), T. Wiandt, M. R. Yegan (Iran),
Con Amore Problem Group (Denmark), FAU Problem Solving Group, GCHQ Problem Solving Group (U. K.),
GWstat Problem Solving Group, NSA Problems Group, and the proposer.

An Inequality Applied To Eigenvalues

11907 [2016, 400]. Proposed by Xiang-Qian Chang, Massachusetts College of Pharmacy
and Health Sciences, Boston, MA. Let A be an n× n positive-definite Hermitian matrix,
with minimum and maximum eigvenvalues λ and ω, respectively. Prove(

1

ω

Tr(A)

n
+ ωn

Tr(A)

)n
≤ det

(
1

ω
A+ ωA−1

)
,

(
1

λ

n

Tr(A−1)
+ λ

Tr(A−1)

n

)n
≤ det

(
1

λ
A+ λA−1

)
.

Solution by Richard Stong, Center for Communications Research, SanDiego, CA.The func-
tion f (t ) = log(t + 1/t ) = log(t2 + 1) − log t has

f ′′(t ) = 1

t2
+ 2(1 − t2)

(1 + t2)2
≥ 0
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for 0 < t ≤ 1. Hence by Jensen’s inequality, for any x1, . . . , xn ∈ (0, 1], we have(
x1 + · · · + xn

n
+ n

x1 + · · · + xn

)n
≤

n∏
k=1

(xk + x−1
k ).

Let the eigenvalues of A (with multiplicities) be λ1, . . . , λn > 0. Applying this inequality
to xk = λk/ω, we obtain the first inequality requested. Applying it to xk = λ/λk ≤ 1, we
obtain the second inequality.

Editorial comment. The problem statement contained a typographical error: The exponent
n was missing from the second inequality.

Also solved by H. Chen, P. P. Dályay (Hungary), R. Dutta (India), D. Fleischman, N. Grivaux (France),
E. A. Herman, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), V. Mikayelyan (Armenia),
M. Omarjee (France) & R. Tauraso (Italy), J. C. Smith, FAU Problem Solving Group, GCHQ Problem Solving
Group (U. K.), and the proposer.

A Generalized Bijection for Partitions

11908 [2016, 504]. Proposed by George E. Andrews, The Pennsylvania State University,
University Park, PA, and Emeric Deutsch, Polytechnic Institute of New York University,
Brooklyn, NY. Let n and k be nonnegative integers. Show that the number of partitions of n
having k even parts is the same as the number of partitions of n in which the largest repeated
part is k (defined to be 0 if the parts are all distinct). For example, 7 has three partitions with
two even parts (4 + 2 + 1 = 3 + 2 + 2 = 2 + 2 + 1 + 1 + 1) and also three partitions in
which the largest repeated part is 2 (3 + 2 + 2 = 2 + 2 + 2 + 1 = 2 + 2 + 1 + 1 + 1).

Solution I by Meghana Madhyastha, International Institute of Information Technology,
Bangalore, India. Fixing k, we find the generating functions of the two quantities, indexed
by n. In a partition where k is the largest repeated part, each part smaller than k can appear
any number of times, k appears at least twice, and parts larger than k appear at most once.
Hence, the generating function is(

k−1∏
i=1

1

1 − xi

)
x2k

1 − xk

∞∏
i=k+1

(1 + xi).

For a partition with exactly k even parts, consider the even and odd parts separately.
In the conjugate of the partition using the even parts, each part occurs an even number of
times, and the largest part is k (occurring at least twice). There is no restriction on the use
of odd parts. Hence, the generating function is(

k−1∏
i=1

1

1 − x2i

)
x2k

1 − x2k

∞∏
i=1

1

1 − x2i−1
.

Straightforward manipulation shows that both generating functions equal

x2k
∞∏
i=1

1 − x2(k+i)

1 − xi
.

Solution II by Nicolas Allen Smoot, Georgia Southern University, Statesboro, GA.We prove
the following generalization: Given nonnegative integers n and k and a positive integer d,
the number of partitions of n having exactly k parts divisible by d is the same as the number
of partitions of n in which k is the largest part that occurs at least d times.

When n = 0, the claim is trivial, so assume n > 0. We construct a bijection. Let λ be a
partition of n having exactly k parts divisible by d. Let A consist of all the parts in λ that
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are divisible by d, and let B consist of the other parts (A is empty when k = 0). Map A to
its conjugate partition A∗, in which the largest part is k and every part occurs a multiple of
d times.

We map B, which has no part divisible by d, to a partition B′, in which no part occurs at
least d times, bijectively. For this we use Glaisher’s bijection (J. W. L. Glaisher, A theorem
in partitions, Messenger of Math. 12 (1883) 158–170). This turns B into B′ by iteratively
combining d equal parts into one part until no instance of d identical parts remains. The
proof that this is a bijection relies on the fact that every positive integer is expressible as a
power of d times a number not divisible by d in a unique way.

Note that in the union of A∗ and B′, the largest part occurring at least d times is k. To
invert the map, we separate a partition μ in which k is the largest part occurring at least d
times into the contributions A∗ and B′, where A∗ will have each part occurring a multiple
of d times (k being the largest part) and B′ will have no part occurring at least d times.

For each part i, occurring mi times in μ, put d �mi/d
 of the copies of i into A∗. Put the
remaining copies into B′; no part occurs at least d times among these. This is the only way
that μ can be separated into two partitions in the specified families. We can now invert the
two maps separately and recombine the outcomes to retrieve the only partition λ that maps
to μ under the given function.

Editorial comment.Mingjia Yang also proved the generalization in Solution II.

Also solved by D. Beckwith, K. David, Y. J. Ionin, P. Lalonde (Canada), P. W. Lindstrom, G. Lord, O. P. Lossers
(Netherlands), R. Nandan, M. Sawhney, J. H. Smith, R. Stong, R. Tauraso (Italy), V. Walavalkar (India),
E. T. White, M. Wildon (U. K.), M. Yang, GCHQ Problem Solving Group (U. K.), and the proposers.

Reciprocal Fibonacci Arctangents

11910 [2016, 504]. Proposed by Cornel Ioan Vălean, Teremia Mare, Romania. Let Gk be
the reciprocal of the kth Fibonacci number, for example, G4 = 1/3 and G5 = 1/5. Find

∞∑
n=1

(arctanG4n−3 + arctanG4n−2 + arctanG4n−1 − arctanG4n) .

Solution by Ramya Dutta, Chennai Mathematical Institute, Chennai, India. The sum is
π/2 + arctan((

√
5 − 1)/2). To see this, we write Fn for the nth Fibonacci number, and we

make use of Catalan’s identityF2
n − Fn−1Fn+1 = (−1)n+1 and d’Ocagne’s identityFnFn+1 +

FnFn−1 = F2n. Since

arctan
1

F2n
− arctan

1

F2n+2
= arctan

F2n+2 − F2n
F2nF2n+2 + 1

= arctan
F2n+1

F2
2n+1

= arctan
1

F2n+1
,

we have

arctan
1

F4n−3
+ arctan

1

F4n−1
= arctan

1

F4n−4
− arctan

1

F4n−2

+ arctan
1

F4n−2
− arctan

1

F4n
= arctan

1

F4n−4
− arctan

1

F4n
. (1)

Equation (1) holds for all positive integers n, including n = 1, provided that we interpret
arctan(1/0) to be π/2. We also have

arctan
Fn−1

Fn
− arctan

Fn
Fn+1

= arctan
Fn+1Fn−1 − F2

n

FnFn−1 + FnFn+1

= arctan
(−1)n

F2n
= (−1)n arctan

1

F2n
. (2)
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Thus,
∞∑
n=1

(
arctan

1

F4n−3
+ arctan

1

F4n−2
+ arctan

1

F4n−1
− arctan

1

F4n

)

=
∞∑
n=1

(
arctan

1

F4n−4
− arctan

1

F4n

)
+

∞∑
n=1

(
arctan

1

F4n−2
− arctan

1

F4n

)
by (1)

= π

2
+

∞∑
n=1

(−1)n−1 arctan
1

F2n
= π

2
−

∞∑
n=1

(
arctan

Fn−1

Fn
− arctan

Fn
Fn+1

)
by (2)

= π

2
+ lim

n→∞ arctan
Fn
Fn+1

= π

2
+ arctan

1

ϕ
,

where ϕ = (1 + √
5 )/2. This gives the claimed result.

Also solved by K. Adegoke (Nigeria) & Á. Plaza (Spain), B. Bradie, M. V. Channakeshava (India),
P. P. Dályay (Hungary), D. Fleischman, D. Fritze (Germany), M. Goldenberg & M. Kaplan, S. Hitotu-
matu (Japan), O. Kouba (Syria), M. E. Kuczma (Poland), P. Lalonde (Canada), O. P. Lossers (Netherlands),
R. Nandan, M. Omarjee (France), A. Rajkumar & F. Mawyer, M. Sawhney, A. Stenger, R. Stong, R. Tauraso
(Italy), D. Terr, D. B. Tyler, M. Wildon (U. K.), J. Zacharias, L. Zhou, GCHQ Problem Solving Group (U. K.),
NSA Problems Group, and the proposer.

A Symmetric Inequality for Real Triples

11911 [2016, 504]. Proposed by Marian Cucoanes, Focşani, Romania, and Leonard
Giugiuc, Drobeta-Turnu Severin, Romania. Let a, b, and c be positive real numbers such
that 1 + ab+ bc+ ca = a+ b+ c+ 2abc. Prove a3 + b3 + c3 + 5abc ≥ 1, and determine
when equality holds.

Solution by Marcin E. Kuczma, University of Warsaw, Poland. The claim holds trivially
when max{a, b, c} ≥ 1. Hence we assume a, b, c ∈ (0, 1), which yields abc < 1. In terms
of the elementary symmetric polynomials A = a+ b+ c, B = ab+ bc+ ca, andC = abc,
the constraint says 1 + B = A+ 2C. Let

X = a3 + b3 + c3 + 5abc− 1 = A3 − 3AB+ 8C − 1 = A3 + (4 − 3A)B+ (3 − 4A).

We must show that X is nonnegative.
The AM–GM inequality implies B/3 ≥ C2/3. Combining this with C < 1 yields B ≥

3C2/3 > 3C > 2C, which impliesA = 1 + B− 2C > 1. If 4 − 3A > 0, thenB = A+ 2C −
1 > A− 1 yields

X > A3 + (4 − 3A)(A− 1) + (3 − 4A) = (A− 1)3 > 0.

If 4 − 3A ≤ 0, then the Cauchy–Schwarz inequality yieldsA2 ≤ 3(a2 + b2 + c2) = 3(A2 −
2B), and thus B ≤ A2/3. Therefore,

X ≥ A3 + (4 − 3A)(A2/3) + (3 − 4A) = (2A− 3)2/3 ≥ 0.

Equality requires 2A− 3 = 0 as well as equality in the Cauchy–Schwarz application; the
latter occurs when a = b = c. Thus equality holds if and only if a = b = c = 1/2.

Also solved by A. Alt, P. P. Dályay (Hungary), M. Dincă (Romania), D. Fleischman, N. Grivaux (France),
Y. Ionin, K.-W. Lau (China), J. H. Lindsey II, T. L. McCoy, R. Stong, T. Wiandt, GCHQ Problem Solving
Group (U. K.), NSA Problems Group, and the proposer.

Bounds for the Sum of the Mixtilinear Radii

11912 [2016, 505]. Proposed by Pál Péter Dályay, Szeged, Hungary. Let ω be the circum-
scribed circle of triangle ABC, and let R and r be the radii of its circumcircle and incircle,
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respectively. Let rA, rB, and rC be the radii of the A-, B-, andC-mixtilinear incircles of ABC
and ω, respectively. Prove 4r ≤ rA + rB + rC ≤ (5R+ 6r)/4.

Solution by Tamas Wiandt, Rochester Institute of Technology, Rochester, NY.
Lower bound: Let the angles at A, B, and C be α, β, and γ , respectively. We have

rA = r sec2(α/2), and similarly for rB and rC. (See, for example, L. Bankoff, A mixtilinear
adventure, Crux Mathematicorum 9 (1983) 2–7.) Now we have

sec2
(

α/2 + β/2 + γ /2

3

)
= sec2

π

6
= 4

3
.

For x ∈ (0, π ), let f (x) = sec2(x/2). Since f ′′(x) ≥ 0, we may apply Jensen’s inequality to
f and obtain

4r = 3r sec2
(

α/2 + β/2 + γ /2

3

)

≤ 3r
sec2(α/2) + sec2(β/2) + sec2(γ /2)

3
= rA + rB + rC.

Upper bound: Let a, b, c denote the side lengths opposite angles A,B,C, respectively.
Let x, y, z be the distances from A,B,C, respectively, to the points of tangency of the in-
circle. Since a = y+ z, b = z+ x, and c = z+ y, the semiperimeter s of the triangle is
x+ y+ z. Now sec2(α/2) = tan2(α/2) + 1 = r2/x2 + 1, and similarly for β and γ . So
rA = r(r2/x2 + 1), rB = r(r2/y2 + 1), and rC = r(r2/z2 + 1), and the desired inequality be-
comes

r2
(
r2

x2
+ r2

y2
+ r2

z2

)
+ 3r2 ≤ 3r2

2
+ 5Rr

4
.

The area T of the triangle is given by any of the three formulae T = rs, T = abc/4R, or
T 2 = s(s− a)(s− b)(s− c) = sxyz (Heron’s formula). From the first and the third, we ob-
tain r2 = xyz/s. From the first and second, we obtain Rr = abc/4s. Substituting these ex-
pressions into the desired inequality yields

xyz

s

(
xyz

sx2
+ xyz

sy2
+ xyz

sz2

)
+ 3xyz

2s
≤ 5abc

16s
.

Expressing a, b, c in terms of x, y, z and rearranging, we produce the equivalent inequality

3(2x2y2 + 2y2z2 + 2z2x2) + 2(2x2yz+ 2y2zx+ 2z2xy)

≤ 5(x3y+ y3x+ y3z+ z3y+ z3x+ x3z). (∗)
We now recall Muirhead’s inequality, which asserts the following (in the case of three

variables). Let (a, b, c) and (p, q, r) be two nonnegative triples satisfying the conditions a ≥
b ≥ c, p ≥ q ≥ r, a ≥ p, a+ b ≥ p+ q, and a+ b+ c = p+ q+ r. For all nonnegative
real numbers x, y, and z, we have

∑
xaybzc ≥ ∑

xpyqzr, where the sums are taken over all
3! = 6 permutations of the three variables x, y, z.

Applying Muirhead’s inequality with (a, b, c) = (3, 1, 0) and (p, q, r) = (2, 2, 0), we
get

x3y+ y3x+ y3z+ z3y+ z3x+ x3z ≥ 2x2y2 + 2y2z2 + 2z2x2.

Applying Muirhead’s inequality with (a, b, c) = (3, 1, 0) and (p, q, r) = (2, 1, 1), we get

x3y+ y3x+ y3z+ z3y+ z3x+ x3z ≥ 2x2yz+ 2y2zx+ 2z2xy.

Together these give the required inequality (∗).
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Also solved by O. Geupel (Germany), O. Kouba (Syria), M. E. Kuczma (Poland), R. Stong, J. Zacharias,
GCHQ Problem Solving Group (U. K.), and the proposer.

An Integral Inequality

11918 [2016, 613]. Proposed by Phu Cuong Le Van, College of Education, Hue University,
Hue City, Vietnam. Let f be n times continuously differentiable on [0, 1], with f (1/2) = 0
and f (i)(1/2) = 0 when i is even and at most n. Prove(∫ 1

0
f (x) dx

)2

≤ 1

(2n+ 1)22n(n!)2

∫ 1

0
( f (n)(x))2 dx.

Solution by Patrick J. Fitzsimmons, University of California, San Diego, La Jolla, CA. Let
F be an antiderivative of f . Using Taylor’s theorem with remainder in integral form, we
expand F in powers of t − 1/2 to obtain

F (t ) = F (1/2) +
n−1∑
k=0

f (k)(1/2)

(k + 1)!

(
t − 1

2

)k+1

+
∫ t

1/2

f (n)(x)

n!
(t − x)ndx

for any t in [0, 1]. In particular, with t = 1,∫ 1

1/2
f (x) dx =

n−1∑
k=0

f (k)(1/2)

(k + 1)!

(
1

2

)k+1

+
∫ 1

1/2

f (n)(x)

n!
(1 − x)ndx,

and with t = 0,∫ 1/2

0
f (x) dx = −

n−1∑
k=1

f (k)(1/2)

(k + 1)!

(
−1

2

)k+1

+
∫ 1/2

0

f (n)(x)

n!
(−x)ndx.

When we add these, the terms for odd k cancel, while the terms for even k vanish by hy-
pothesis. It follows that ∫ 1

0
f (x) dx =

∫ 1

0
g(x) f (n)(x) dx,

where

g(x) =
{
(−x)n/n! when 0 ≤ x ≤ 1/2;
(1 − x)n/n! when 1/2 ≤ x ≤ 1.

Now the desired inequality follows from the Cauchy–Schwarz inequality, because∫ 1

0
g(x)2 dx =

∫ 1/2

0

x2n

(n!)2
dx+

∫ 1

1/2

(1 − x)2n

(n!)2
dx = 1

(2n+ 1)22n(n!)2
.

Also solved by U. Abel (Germany), K. F. Andersen (Germany), P. Bracken, R. Chapman (U. K.), H. Chen,
P. P. Dályay (Hungary), R. Dutta (India), N. Grivaux (France), A. Harnist (France), E. A. Herman, K. Koo
(China), O. Kouba (Syria), M. E. Kuczma (Poland), J. H. Lindsey II, O. P. Lossers (Netherlands), F. Marino
(Italy), V. Mikayelyan (Armenia), R. Nandan, M. Omarjee (France), Á. Plaza & F. Perdomo (Spain),
M. A. Prasad (India), M. Sawhney, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), E. I. Verriest,
T. Wiandt, L. Zhou, GCHQ Problem Solving Group (U. K.), Missouri State University Problem Solving Group,
and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong,Walter Stromquist, Daniel Velleman, StanWagon, ElizabethWilmer, Paul Zeitz, and
Fuzhen Zhang.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit

Proposed solutions to the problems below should be submitted by August 31,
2018 via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

12034. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Let N be any natural num-
ber that is not a multiple of 10. Prove that there is a multiple of N each of whose digits in
base 10 is 1, 2, 3, 4, or 5.

12035. Proposed by Dinh Thi Nguyen, Tuy Hòa, Vietnam. Find the minimum value of

(a2 + b2 + c2)

(
1

(3a− b)2
+ 1

(3b− c)2
+ 1

(3c− a)2

)

as a, b, and c vary over all real numbers with 3a �= b, 3b �= c, and 3c �= a.

12036. Proposed by Greg Oman, University of Colorado, Colorado Springs, CO. Twomet-
ric spaces (X, d) and (X ′, d′) are said to be isometric if there is a bijection φ : X → Y such
that d(a, b) = d′(φ(a), φ(b)) for all a, b ∈ X . Let X be an infinite set. Find all metrics d on
X such that (X, d) and (X ′, d′) are isometric for every subset X ′ of X of the same cardinality
as X . (Here, d′ is the metric induced on X ′ by d.)
12037. Proposed by José Manuel Rodríguez Caballero, University of Quebec (UQAM),
Montreal, QC, Canada. For a positive integer n, let Sn be the set of pairs (a, k) of positive
integers such that

∑k−1
i=0 (a+ i) = n. Prove that the set⎧⎨

⎩n :
∑

(a,k)∈Sn
(−1)a−k �= 0

⎫⎬
⎭

is closed under multiplication.

12038. Proposed by George Apostolopoulos, Messolonghi, Greece. Let ABC be an acute
triangle with sides of length a, b, and c opposite angles A, B, and C, respectively, and with
medians of length ma, mb, and mc emanating from A, B, and C, respectively. Prove

m2
a

b2 + c2
+ m2

b

c2 + a2
+ m2

c

a2 + b2
≥ 9 cosA cosB cosC.

doi.org/10.1080/00029890.2018.1438001
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12039. Proposed by Sandeep Silwal, Brookline, MA. Let G be a graph with an even num-
ber of vertices. Show that there are two vertices in G with an even number of common
neighbors.

12040. Proposed by George Stoica, Saint John, NB, Canada. Find all convergent se-
ries

∑∞
n=1 xn of positive terms such that

∑∞
n=1 xnxn+k/xk is independent of the positive

integer k.

SOLUTIONS

AWeighted Vandermonde Convolution

11909 [2016, 504]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Prove that for every
positive integer m there exists a polynomial Pm in two variables, with integer coefficients,
such that for all integers n and r with 0 ≤ r ≤ n,

r∑
k=−r

(
n

r + k

)(
n

r − k

)
k2m = Pm(n, r)∏m

j=1(2n− 2 j + 1)

(
2n

2r

)
.

Solution by Richard Stong, Center for Communications Research, San Diego, California.
A special case of the well-known Vandermonde convolution (proved by counting in two
ways the choices of 2r balls from among n distinct black balls and n distinct white balls)
is

r∑
k=−r

(
n

r + k

)(
n

r − k

)
=
(
2n

2r

)
.

Letting x( j) = ∏ j−1
i=0 (x− i), we compute

r∑
k=−r

(
n

r + k

)(
n

r − k

)
(r + k)(m)(r − k)(m)

= (n(m) )
2

r−m∑
k=m−r

(
n− m

r + k − m

)(
n− m

r − k − m

)

= (n(m) )
2

(
2(n− m)

2(r − m)

)
= (n(m) )

2

∏2m
j=1(2r − j + 1)∏2m
j=1(2n− j + 1)

(
2n

2r

)

= n(m)r(m)
∏m

j=1(2r − 2 j + 1)∏m
j=1(2n− 2 j + 1)

(
2n

2r

)
,

which has the desired form. Since, for fixed r, the polynomial (−1)m(r + k)(m)(r − k)(m)
is monic of degree m in the variable k2, we can write k2m as a sum of integer multiples of
these polynomials. Thus

∑r
k=−r

( n
r+k
)( n
r−k
)
k2m also has the desired form.

Also solved by P. P. Dályay (Hungary), P. Lalonde (Canada), O. P. Lossers (Netherlands), R. Tauraso (Italy),
GCHQ Problem Solving Group (U. K.), and the proposer.

A Liminf Ratio

11913 [2016, 505]. Proposed by George Stoica, Saint John, NB, Canada. Let ε be a positive
constant, and let f map (0,∞) to R+. Given limx→∞ x1/ε f (x) = ∞, prove

lim inf
x→∞

∣∣∣∣ f ′(x)
f 1+ε (x)

∣∣∣∣ = 0.
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Solution by Nicole Grivaux, Paris, France. The statement of the problem should have in-
cluded the assumption that f is differentiable. We proceed under this assumption.

For x > 0, let g(x) = f (x)−ε . The function g is positive, and

lim
x→∞

g(x)

x
= lim

x→∞
1

(x1/ε f (x))ε
= 0.

By the triangle inequality,

|g(2x) − g(x)|
x

≤ 2
g(2x)

2x
+ g(x)

x
.

Thus limx→∞ |g(2x) − g(x)|/x = 0. By the mean value theorem,

|g(2x) − g(x)|
x

≥ inf
t∈[x,2x]

|g′(t )|.

Thus limx→∞ inft≥x |g′(t )| = 0. Since g′(t ) = −ε f ′(t )/ f 1+ε (t ), we obtain

lim inf
x→∞

∣∣ f ′(x)/ f 1+ε (x)
∣∣ = 0,

as desired.

Editorial comment. The assumption that f is differentiable was included in the original
problem proposal but was accidentally omitted in the editorial process.

Also solved by K. F. Andersen (Canada), P. P. Dályay (Hungary), O. Kouba (Syria), M. E. Kuczma (Poland),
J. H. Lindsey II, O. P. Lossers (Netherlands), A. Stenger, R. Stong, GCHQ Problem Solving Group (U. K.),
NSA Problems Group„ and the proposer.

Exchanging the Arguments

11916 [2016, 613]. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso,
Universitá di Roma “Tor Vergata,” Rome, Italy. Show that if n, r, and s are positive integers,
then (

n+ r

n

) s−1∑
k=0

(
r + k

r − 1

)(
n+ k

n

)
=
(
n+ s

n

) r−1∑
k=0

(
s+ k

s− 1

)(
n+ k

n

)
.

Solution by GCHQ Problem Solving Group, Cheltenham, U. K. We use induction on s.
For s = 1, we need

(n+r
n

)
r = (n+ 1)

∑r−1
k=0

(n+k
n

)
, which holds by the standard identity∑r−1

k=0

(n+k
n

) = (n+r
n+1

)
.

For the induction step, note that the left side increases by
(n+r
n

)(r+s
r−1

)(n+s
n

)
when s changes

to s+ 1. For the change in the right side, we compute(
n+ s+ 1

n

) r−1∑
k=0

(
s+ 1 + k

s

)(
n+ k

n

)
−
(
n+ s

n

) r−1∑
k=0

(
s+ k

s− 1

)(
n+ k

n

)

=
((

n+ s

n

)
+
(
n+ s

n− 1

)) r−1∑
k=0

(
s+ 1 + k

s

)(
n+ k

n

)
−
(
n+ s

n

) r−1∑
k=0

(
s+ k

s− 1

)(
n+ k

n

)

=
(
n+ s

n

) r−1∑
k=0

(
s+ k

s

)(
n+ k

n

)
+
(
n+ s

n− 1

) r−1∑
k=0

(
s+ 1 + k

s

)(
n+ k

n

)

=
(
n+ s

n

) r−1∑
k=0

((
s+ k

s

)(
n+ k

n

)
+
(
s+ 1 + k

s+ 1

)(
n+ k

n− 1

))
.
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To complete the inductive step in s, it therefore suffices to show(
n+ r

n

)(
r + s

r − 1

)
=

r−1∑
k=0

((
s+ k

s

)(
n+ k

n

)
+
(
s+ 1 + k

s+ 1

)(
n+ k

n− 1

))
. (1)

We proceed by induction on r. When r = 1, this reduces to n+ 1 = 1 + n, which is true.
By considering the change in each side of (1) as r is incremented to r + 1, we see that we
need to show(

n+r+1

n

)(
r+s+1

r

)
−
(
n+ r

n

)(
r + s

r − 1

)
=
(
s+ r

s

)(
n+ r

n

)
+
(
s+1+r
s+ 1

)(
n+ r

n− 1

)
.

Fortunately,(
n+ r

n

)(
r + s

r − 1

)
+
(
s+ r

s

)(
n+ r

n

)
+
(
s+1+r
s+ 1

)(
n+ r

n− 1

)

=
(
n+ r

n

)(
s+ r + 1

s+ 1

)
+
(
s+1+r
s+ 1

)(
n+ r

n− 1

)
=
(
n+r+1

n

)(
r+s+1

r

)
.

This completes the proof.

Editorial comment. Solvers used a variety of techniques. Moa Apagodu used the Wilf–
Zeilberger Method. Robin Chapman and Omran Kouba generalized to polynomial iden-
tities. Christian Krattenthaler and Pierluigi Magli used a standard transformation formula
from the theory of hypergeometric series.

Also solved by M. Apagodu, R. Chapman (U. K.), O. Kouba (Syria), C. Krattenthaler (Austria), P. Lalonde
(Canada), J. H. Lindsey II, P. Magli (Italy), J. H. Smith, A. Stadler (Switzerland), R. Stong, and the proposers.

Rational Logarithms of Matrices

11917 [2016, 613]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let A be a 2 × 2 matrix with rational entries and both eigenvalues less
than 1 in absolute value. Prove that log(I − A) has rational entries if and only if A2 = 0.
(Here log(I − X ) = −X − X2/2 − X3/3 − · · · when that sum converges.)

Solution by Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND. Let λ

and μ be the eigenvalues of A, with |λ| < 1 and |μ| < 1. Since A is rational, the series for
log(I − A) converges to a real 2 × 2 matrix with eigenvalues log(1 − λ) and log(1 − μ).
(See, for example, Jacobson’s Lectures in Abstract Algebra II: Linear Algebra, Springer,
1953, p. 194.) The characteristic polynomial of a square rational matrix has rational coef-
ficients. Hence, the eigenvalues of a square rational matrix are algebraic numbers.

If log(I − A) is a rational matrix, then both λ and log(1 − λ) are algebraic numbers.
Since 1 − λ is an algebraic number, we have log(1 − λ) = 0 by a theorem of Lindemann,
which states that if α is a nonzero algebraic number, then eα is transcendental. Hence λ = 0.
By the same argument, μ = 0. Since both eigenvalues of A are zero, A2 = 0.

Conversely, if A2 = 0 then log(I − A) = −A, and −A is a rational matrix.

Editorial comment. In the original problem statement, the word “rational” was errantly
printed as “integer” (twice), rendering the problem nearly trivial.

Also solved by K. F. Andersen (Canada), E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), P. P. Dályay (Hun-
gary), S. de Luxán (Germany) & F. Perdomo (Spain) & Á. Plaza (Spain), D. Fleischman, C. Georghiou
(Greece), N. Grivaux (France), J. Hartman, E. A. Herman, E. J. Ionaşcu, K. Koo (China), M. E. Kuczma
(Poland), V. Kumar & R. Sarma (India), P. Lalonde (Canada), J. H. Lindsey II, O. P. Lossers (Netherlands),
M. Omarjee (France), M. Sawhney, E. Schmeichel, A. Stadler (Switzerland), A. Stenger, R. Stong, J. Stuart,

April 2018] PROBLEMS AND SOLUTIONS 373X
ia
ng
’s
T
ex
m
at
h



R. Tauraso (Italy), N. S. Thornber, E. I. Verriest, Z. Vőrős (Hungary), T. Wiandt, L. Zhou, GCHQ Problem
Solving Group (U. K.), the Missouri State University Problem Solving Group, NSA Problems Group, and the
proposer.

The Power of Minima

11919 [2016, 613]. Proposed by Arkady Alt, San Jose, CA. For positive integers m and k
with k ≥ 2, prove

n∑
i1=1

· · ·
n∑

ik=1

(min{i1, . . . , ik})m =
m∑
i=1

(−1)m−i
(
m

i

)
((n+ 1)i − ni)

n∑
j=1

jk+m−1.

Solution by Pierre Lalonde, Kingsey Falls, QC, Canada. For n ∈ N, let [n] = {1, . . . , n}.
The number of k-tuples (i1, . . . , ik ) ∈ [n]k such that min{i1, . . . , ik} ≥ r is (n− r + 1)k, so
the number of k-tuples such that min{i1, . . . , ik} = r is (n− r + 1)k − (n− r)k. Thus

n∑
i1=1

· · ·
n∑

ik=1

(min{i1, . . . , ik})m =
n∑
r=1

((n− r + 1)k − (n− r)k )rm.

Break this expression into two sums, setting j = n− r + 1 in the first sum and j = n− r
in the second. After recombining the summations, apply the binomial theorem to each term
in the first factor and then interchange the order of summation. This gives

n∑
i1=1

· · ·
n∑

ik=1

(min{i1, . . . , ik})m =
n∑
r=1

(n− r + 1)krm −
n∑
r=1

(n− r)krm

=
n∑
j=1

jk(n− j + 1)m −
n∑
j=1

jk(n− j)m =
n∑
j=1

((n+ 1 − j)m − (n− j)m) jk

=
n∑
j=1

m∑
i=0

(
m

i

)(
(n+ 1)i − ni

)
(− j)m−i jk =

m∑
i=1

(−1)m−i
(
m

i

)(
(n+ 1)i − ni

) n∑
j=1

jk+m−i,

as desired.

Editorial comment. The identity also holds for k = 1. Ramya Dutta noted that the argument
above implies

n∑
i1=1

· · ·
n∑

ik=1

(min{i1, . . . , ik})m =
n∑

i1=1

· · ·
n∑

im=1

(min{i1, . . . , im})k,

so these sums also equal
∑k

i=1(−1)k−i
(k
i

)
((n+ 1)i − ni)

∑n
j=1 j

k+m−i.

Also solved byU.Abel (Germany), T. Amdeberhan&V.H.Moll, D. Beckwith, P. P. Dályay (Hungary), R. Dutta
(India), N. Grivaux (France), Y. J. Ionin, O. Kouba (Syria), O. P. Lossers (Netherlands), M. A. Prasad (India),
M. Sawhney, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), GCHQ Problem Solving Group (U. K.),
NSA Problems Group, and the proposer.

A Generalization of a Fibonacci Identity

11920 [2016, 614]. Proposed by Ángel Plaza and Sergio Falcón, University of Las Palmas
de Gran Canaria, Spain. For positive integer k, let 〈Fk〉 be the sequence defined by ini-
tial conditions Fk,0 = 0, Fk,1 = 1, and the recurrence Fk,n+1 = kFk,n + Fk,n−1. Find a closed
form for

∑n
i=0

(2n+1
i

)
Fk,2n+1−2i.
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Solution by Johann Cigler, University of Vienna, Vienna, Austria. The value of the sum is
(k2 + 4)n.

We consider more generally the Fibonacci polynomial fn(x, s) defined by the re-
currence fn(x, s) = x fn−1(x, s) + s fn−2(x, s) with f0(x, s) = 0 and f1(x, s) = 1. Let α =
(x+ √

x2 + 4s)/2 and β = (x− √
x2 + 4s)/2, so that α and β are the roots of the charac-

teristic equation z2 − xz− s = 0 of the recurrence. Since α2 = xα + s and β2 = xβ + s, the
well-knownBinet formula fn(x, s) = (αn − βn)/(α − β ) follows immediately by induction
on n.

Since s = −αβ, we have α + s
α

= −(β + s
β
) = α − β = √

x2 + 4s. Using the binomial
theorem in the main step, we compute

n∑
i=0

(
2n+ 1

i

)
si f2n+1−2i(x, s) = 1

α − β

n∑
i=0

(
2n+ 1

i

)
si(α2n+1−2i − β2n+1−2i)

= 1

α − β

n∑
i=0

(
2n+ 1

i

)
(−1)i(α2n+1−iβ i − β2n+1−iαi)

= 1

α − β

n∑
i=0

(
2n+ 1

i

)
α2n+1−i(−β )i + 1

α − β

n∑
i=0

(
2n+ 1

2n+ 1 − i

)
αi(−β )2n+1−i

= (α − β )2n+1

α − β
= (x2 + 4s)n.

Editorial comment. The kth sequence {Fk,n}n≥0 is known as the sequence of k-Fibonacci
numbers. For k = 1, it is the usual Fibonnaci sequence, and Brian Bradie noted that this
special case of the problem is part (b) of Problem O362 inMathematical Reflections, Issue
1, 2016.

Also solved by T. Amdeberhan & V. H. Moll, D. Beckwith, B. Bradie, J. F. Buitrago Vélez, T. Cunningham,
P. P. Dályay (Hungary), D. Fleischman, E. J. Ionaşcu, O. Kouba (Syria), H. Kwong, P. Lalonde (Canada),
J. H. Lindsey II, O. P. Lossers (Netherlands), R. Nandan, M. A. Prasad (India), A. Stadler (Switzerland),
A. Stenger, R. Stong, R. Tauraso (Italy), D. Terr, Z. Vőrős (Hungary), M. Vowe (Switzerland), L. Zhou, GCHQ
Problem Solving Group (U. K.), Missouri State University Problem Solving Group, NSA Problems Group, and
the proposers.

A Harmonious Series

11921 [2016, 614]. Proposed by Cornel Ioan Vălean, Timiş, Romania. Prove

log2(2)
∞∑
k=1

Hk

(k + 1)2k+1
+ log(2)

∞∑
k=1

Hk

(k + 1)22k
+

∞∑
k=1

Hk

(k + 1)32k
= ζ (4) + log4(2)

4
.

(Here, Hk = ∑k
j=1 1/ j and ζ denotes the Riemann zeta function.)

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cus, Syria. First note that by two applications of integration by parts, for k ≥ 1 and t > 0
we have ∫ t

0
xk log2(x) dx = tk+1 log2(t )

k + 1
− 2tk+1 log(t )

(k + 1)2
+ 2tk+1

(k + 1)3
. (1)

Since
∞∑
m=0

xm = 1

1 − x
and

∞∑
n=1

xn

n
= − log(1 − x)
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for |x| < 1, we have

∞∑
k=1

Hkx
k =

∞∑
k=1

xk
k∑

n=1

1

n
=

∞∑
n=1

1

n

∞∑
k=n

xk =
∞∑
n=1

xn

n

∞∑
m=0

xm = − log(1 − x)

1 − x
. (2)

Let S denote the left side of the proposed equality. Using (1) with t = 1/2 and then (2),
we find

S =
∞∑
k=1

Hk

(
log2(2)

(k + 1)2k+1
+ log(2)

(k + 1)22k
+ 1

(k + 1)32k

)

=
∞∑
k=1

Hk

∫ 1/2

0
xk log2(x) dx =

∫ 1/2

0

∞∑
k=1

Hkx
k log2(x) dx (3)

= −
∫ 1/2

0

log(1 − x) log2(x)

1 − x
dx,

where the interchange of the integration and summation signs is justified by the positivity
of the integrands.

Using integration by parts and then substituting x for 1 − x, we have

S = −
∫ 1/2

0

log(1 − x) log2(x)

1 − x
dx

=
[
1

2
log2(1 − x) log2(x)

]1/2
0

−
∫ 1/2

0

log2(1 − x) log(x)

x
dx (4)

= 1

2
log4(2) −

∫ 1

1/2

log2(x) log(1 − x)

1 − x
dx.

Adding (3) and (4), we obtain

2S = 1

2
log4(2) + I, where I = −

∫ 1

0

log2(x) log(1 − x)

1 − x
dx. (5)

To calculate I, we use (2) and then (1) with t = 1 to obtain

I =
∫ 1

0
log2(x)

( ∞∑
k=1

Hkx
k

)
dx =

∞∑
k=1

Hk

∫ 1

0
xk log2(x) dx

=
∞∑
k=1

2Hk

(k + 1)3
= 2

∞∑
k=0

1

(k + 1)3

(
Hk+1 − 1

k + 1

)
= 2

∞∑
n=1

Hn

n3
− 2ζ (4). (6)

Since Hn = ∑∞
k=1

(
1
k − 1

k+n
) = ∑∞

k=1
n

k(k+n) , we have

∞∑
n=1

Hn

n3
=
∑
n,k≥1

1

n2k(k + n)
=
∑
n,k≥1

1

nk2(k + n)
.

Therefore,

2
∞∑
n=1

Hn

n3
=
∑
n,k≥1

(
1

n2k(k + n)
+ 1

nk2(k + n)

)
=
∑
n,k≥1

1

n2k2
= ζ (2)2.
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Substituting into (6) and (5) yields

I = ζ (2)2 − 2ζ (4) = π4

36
− π4

45
= π4

180
= 1

2
ζ (4)

and therefore S = 1
4 log

4(2) + 1
4ζ (4), which is the desired result.

Editorial comment. Several solvers found the values of the three summations in the original
problem statement:

∞∑
k=1

Hk

(k + 1)2k+1
= 1

2
log2(2),

∞∑
k=1

Hk

(k + 1)22k
= 1

4
ζ (3) − 1

3
log3(2),

and
∞∑
k=1

Hk

(k + 1)32k
= 1

4
ζ (4) + 1

12
log4(2) − 1

4
log(2)ζ (3).

Also solved by P. Bracken, H. Chen, P. P. Dályay (Hungary), B. E. Davis, R. Dutta (India), M. L. Glasser,
K.-W. Lau (China), R. Nandan, M. A. Prasad (India), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy),
M. Vowe (Switzerland), GCHQ Problem Solving Group (U. K.), and the proposer.

Squares of Palindromes Are Not Palindromes

11922 [2016, 722]. Proposed by Max Alekseyev, George Washington University, Washing-
ton, DC. Find every positive integer n such that both n and n2 are palindromes when written
in binary (with no leading zeros).

Solution by Yury J. Ionin, Central Michigan University, Mt. Pleasant, MI. The only such
integers n are 1 and 3. Since leading zeros are forbidden, palindromes must be odd. Since
n = 1 and n = 3 obviously succeed, it suffices to assume n ≥ 5. Let n be a palindrome with
n ≥ 5. We refer to the binary expansion of n as n itself.

Let s = ⌊
log2 n

⌋
, so n has s+ 1 bits and 2s < n < 2s+1. We have 22s < n2 < 22s+2. If

all bits of n are 1, then n = 2s+1 − 1 and n2 = 22s+2 − 2s+2 + 1. Since s ≥ 2, we conclude
that n2 begins with 11 and ends with 01 and is not a palindrome.

Hence, we may let k and l be the positive integers such that n has k leading bits equal
to 1 and the next l bits of n equal 0, followed by a 1. Using parenthesized superscripts for
multiplicity, we thus have n = 1(k)0(l) · · · 10(l)1(k).

We use two facts. First, if a and b are odd and agree in their last m bits, so a ≡ b
(mod 2m), then a2 and b2 agree in their last m+ 1 bits (that is, a2 ≡ b2 (mod 2m+1)).
If also m ≥ 2 and they disagree in the previous bit, so a �≡ b (mod 2m+1), then a2 �≡ b2

(mod 2m+2) (using a ≡ b+ 2m (mod 2m+1)).
If k ≥ 3, then n > 2s + 2s−1 + 2s−2 and n ≡ 7 (mod 8). Therefore, 22s+2 > n2 >

22s+1 + 22s and n2 ≡ 49 (mod 16). Thus, n2 begins with 11 and ends with 0001 and is
not a palindrome.

If k = 2, then 2s+1 > n > 2s + 2s−1 + 2s−l−2. At the low end, n ≡ 3 (mod 2l+2) and
n �≡ 3 (mod 2l+3). Therefore, n2 ≡ 9 (mod 2l+3), but n2 �≡ 9 (mod 2l+4). Thus the last
l + 4 bits of n2 are 10(l−1)1001. If n2 is a palindrome, then it begins with 10010(l−1)1, and
hence n2 < 22s+1 + 22s−2 + 22s−l−1. This contradicts

n2 > (2s + 2s−1 + 2s−l−2)2 > 22s+1 + 22s−2 + 22s−l−1.

Finally, if k = 1, then n ≡ 1 (mod 2l+1) and n �≡ 1 (mod 2l+2). Thus n2 ≡ 1
(mod 2l+2) and n2 �≡ 1 (mod 2l+3), so the last l + 3 bits of n2 are 10(l+1)1. If n2 is a
palindrome with n2 < 22s+1, then n2 < 22s + 22s−l . However, n ≥ 2s + 2s−l−1, so n2 ≥
22s + 22s−l + 22s−2l−2, a contradiction. Therefore, we may assume n2 > 22s+1.
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Since (2s + 2s−2)2 = 25 · 22s−4 < 22s+1, we have n > 2s + 2s−2, and hence l = 1. Now n2

must begin with 1001 to be a palindrome, yielding n2 ≥ 22s+1 + 22s−2 = 9 · 22s−2. This
requires n ≥ 3 · 2s−1 = 2s + 2s−1, contradicting k = 1.

Also solved by R. Boukharfane (France), R. Chapman (U. K.), J. Christopher, E. Donelson, B. Karaivanov
(U. S. A.) & T. S. Vassilev (Canada) & D. Dimitrov (Slovenia), K. T. L. Koo (China), J. H. Lindsey II, B. Randé
(France), R. Stong, R. Tauraso (Italy), Z. Vőrős (Hungary), GCHQ Problem Solving Group (U. K.), and the
proposer.

Sign of a Sine Expression

11923 [2016, 722]. Proposed by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria. Let fp be the function on (0, π/2) given by

fp(x) = (1 + sin x)p − (1 − sin x)p − 2 sin(px).

Prove fp > 0 for 0 < p < 1/2 and fp < 0 for 1/2 < p < 1.

Solution by M. A. Prasad, Mumbai, India. The binomial expansion of (1 + z)α converges
absolutely for any real α when |z| < 1. Since 0 < tan x

2 < 1 on (0, π
2 ) and the expansion of

(1 + z)α − (1 − z)α has only odd powers of z, de Moivre’s theorem yields

2 sin px = 1

i

(
(cos x+ i sin x)p − (cos x− i sin x)p

)
= 1

i

((
cos

( x
2

)
+ i sin

( x
2

))2p
−
(
cos

( x
2

)
− i sin

( x
2

))2p)
(1)

= 2 cos2p
( x
2

) ∞∑
k=0

(
2p

2k + 1

)
(−1)k tan2k+1

( x
2

)
.

Similarly,

(1 + sin x)p − (1 − sin x)p =
(
cos

( x
2

)
+ sin

( x
2

))2p
−
(
cos

( x
2

)
− sin

( x
2

))2p
= 2 cos2p

( x
2

) ∞∑
k=0

(
2p

2k + 1

)
tan2k+1

( x
2

)
. (2)

When we subtract (2) from (1), all terms involving even values of k cancel, and thus

fp(x) = 4 cos2p
( x
2

) ∞∑
k=0

(
2p

4k + 3

)
tan4k+3

( x
2

)
.

The result follows, since each term is positive if 0 < 2p < 1 and negative if 1 < 2p < 2.

Editorial comment. This solution brings to mind Hadamard’s dictum: “The shortest path
between two real truths in the real domain passes through the complex domain.” Without
going to the complex domain, several solvers observed that fp(x) is a solution to a second-
order inhomogeneous differential equation with constant coefficients, and this leads to a
representation of fp(x) as an integral transform. A detailed calculation yields

fp(x) =
∫ x

o
K(p, t ) sin(p(x− t )) dt,

where the kernel K(p, t ) has the desired positivity and negativity properties.

Also solved by E. Butler, R. Chapman (U. K.), V. Georges (France), N. Ghosh, K.-W. Lau (China), L. Matejička
(Slovakia),M.Omarjee (France), A. Poplawski (Poland), B. Randé (France), A. Stadler (Switzerland), R. Stong,
GCHQ Problem Solving Group (U. K.), and the proposer.
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the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12048. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI. Call an
integer a special Carmichael number if it can be written as, (6k + 1)(12k + 1)(18k + 1) for
some integer k, with each of 6k + 1, 12k + 1, and 18k + 1 being prime. Call an integer a
taxicab number if it can be written as the sum of two positive integer cubes in two different
ways. Show that 1729 is the only positive integer that is both a special Carmichael number
and a taxicab number.

12049. Proposed by Z. K. Silagadze, Novosibirsk State University, Novosibirsk, Russia. For
all nonnegative integers m and n with m ≤ n, prove

n∑
k=m

(−1)k+m

2k + 1

(
n+ k

n− k

)(
2k

k − m

)
= 1

2n+ 1
.

12050. Proposed by Dao Thanh Oai, Thai Binh, Vietnam. Let ABC be a triangle, and let t
be a real number with 1 < t < 2. Let points D and G be chosen on side AB, points E and
H on side BC, and points F and I chosen on side AC so that

AB

BD
= AB

AG
= BC

CE
= BC

BH
= CA

AF
= CA

CI
= t.

Let A′ = BF ∩CG, B′ = CD ∩ AH, and C′ = AE ∩ BI.

(a) Prove that the Euler lines of ABC and A′B′C′ coincide.
(b) Let H and O denote the orthocenter and circumcenter, respectively, of ABC, and
let H ′ and O′ denote the orthocenter and circumcenter, respectively, of A′B′C′. Let
φ = (1 + √

5)/2. Prove that HO′/O′O = OH ′/H ′O′ if and only if t = φ, in which case
HO′/O′O = φ.
(c) Prove A′ = DH ∩ EI, B′ = FG ∩ EI, and C′ = DH ∩ FG if and only if t = φ.
(d)When t = φ, compute the ratio of the area of ABC to the area of A′B′C′.

doi.org/10.1080/00029890.2018.1460990
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12051. Proposed by Pedro Ribeiro, student, University of Porto, Porto, Portugal. Prove
∞∑
n=0

(
2n

n

)
1

4n(2n+ 1)3
= π3

48
+ π

4
ln2(2).

12052. Proposed by Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. An
m-dimensional parallelotope is the image of anm-dimensional cube under a nondegenerate
affine transformation. Let m and n be positive integers with n ≥ m. Prove that the number
of m-dimensional parallelotopes formed by the vertices of the n-dimensional cube is

2n−m

m!

m∑
i=0

(−1)i
(
m

i

)
(m+ 1 − i)n .

12053. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let n be an integer greater than 1,
and let t, x1, x2, . . . , xn+2 be positive real numbers with xn+1 = x1 and xn+2 = x2. Prove

n∑
k=1

xk
xk+1

≥
n∑

k=1

xk + txk+1

xk+1 + txk+2
.

12054. Proposed by Cornel Ioan Vălean, Teremia Mare, Romania. Prove∫ 1

0

arctan x

x
log

(
1 + x2

(1 − x)2

)
dx = π3

16
.

SOLUTIONS

Disappearing Power Series

11914 [2016, 505]. Proposed by Robin Chapman, University of Exeter, Exeter, U. K., and
Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. Show that for all positive
integers m and n,

n∑
k=1

(−4)−k
(
n− k

k − 1

) 3m∑
j=1

(−2)− j

(
n+ 1 − 2k

j − 1

)(
m− k

3m− j

)
= 0.

(Here
(x
k

) = 1
k!

∏k−1
i=0 (x− i) for x ∈ R.)

Solution by the proposers. We use the snake oil method popularized by Herbert Wilf in
generatingfunctionology, A K Peters (2006). Let S(m, n) be the specified sum, and let [xt]
be the “coefficient operator” that extracts the coefficient of xt from a formal power series in
x. We introduce the formal variable x and express S(m, n) using a double sum in which the
terms contributing to the coefficient of x3m−1 are those, where i = 3m− j. We then separate
the sums and apply the binomial formula to obtain

S(m, n) =
n∑

k=1

(−4)−k
(
n− k

k − 1

)
[x3m−1]

∞∑
j=1

∞∑
i=0

(−2)− j

(
n+ 1 − 2k

j − 1

)
x j−1

(
m− k

i

)
xi

=
n∑

k=1

(−4)−k
(
n− k

k − 1

)
[x3m−1]

(−1

2

(
1 − x

2

)n+1−2k
(1 + x)m−k

)
.
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Continuing, we let r = n− k and s = k − 1 and use
(r
s

) = 0 for r < s. The outer sum is
then over pairs (r, s) such that r + s = n− 1 and s ≤ r:

S(m, n) = −1

2

∑
r+s=n−1

s≤r

(−4)−1−s
(
r

s

)
[x3m−1]

((
1 − x

2

)r−s
(1 + x)m−s−1

)

= 1

8

∑
r+s=n−1

s≤r

(−1)s2−r−s
(
r

s

)
[x3m−1]

(
(2 − x)r−s(1 + x)m−s−1

)
.

We now use snake oil again. For m ≥ 1, let Fm(y) = 8
∑∞

n=1 S(m, n)(2y)n−1. Again intro-
ducing a double sum, where the terms contributing to the coefficient of yn−1 are those with
r + s = n− 1, we compute

Fm(y) =
∞∑
r=0

r∑
s=0

(−1)s
(
r

s

)
[x3m−1]

(
(2 − x)r−s(1 + x)m−s−1yr+s

)

= [x3m−1](1 + x)m−1
∞∑
r=0

(y(2 − x))r
r∑

s=0

(
r

s

)( −y
(1 + x)(2 − x)

)s

= [x3m−1](1 + x)m−1
∞∑
r=0

(y(2 − x))r
(
1 − y

(1 + x)(2 − x)

)r

= [x3m−1](1 + x)m−1
∞∑
r=0

(
y(2 − x) − y2

1 + x

)r
= [x3m−1]

(1 + x)m−1

1 − y(2 − x) + y2

1+x

= [x3m−1]
(1 + x)m

1 + x− y(2 − x)(1 + x) + y2
= [x3m−1]

(1 + x)m

(1 − y)2 + (1 − y)x+ yx2

= 1

(1 − y)2
[x3m−1]

(1 + x)m

1 + x
1−y + yx2

(1−y)2
= u2[x3m−1]

(1 + x)m

1 + ux+ (u2 − u)x2
,

where we let u = 1
1−y in the last step. Using partial fractions, we obtain

1

1 + ux+ (u2 − u)x2
= 1

(1 − αx)(1 − βx)
= 1

α − β

(
α

1 − αx
− β

1 − βx

)

= 1

α − β

∞∑
n=0

(αn+1 − βn+1)xn,

where α and β are the solutions for x (as formal power series) in the quadratic equation
0 = x2 + ux+ (u2 − u) = x2 + x

1−y + y
(1−y)2 . These solutions are

α = −u+√
4u− 3u2

2
= −1+√

1 − 4y

2(1 − y)
and β = −u−√

4u− 3u2

2
= −1−√

1 − 4y

2(1 − y)
.

Since α and β are solutions to 0 = x2 + ux+ (u2 − u), we have α + β = −u, and
α2 = −αu+ (u− u2) = (u+ β )u+ (u− u2) = u(1 + β ).

564 C© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 125X
ia
ng
’s
T
ex
m
at
h



Similarly, β2 = u(1 + α). Hence, α2(1 + α) = u(1 + β )(1 + α) = β2(1 + β ), and

(α − β ) [x3m−1]
(1 + x)m

1 + ux+ (u2 − u)x2
= [x3m−1](1 + x)m

∞∑
n=0

(αn+1 − βn+1)xn

= [x3m−1]
m∑
j=0

(
m

j

)
xm− j

∞∑
n=0

(αn+1 − βn+1)xn

=
m∑
j=0

(
m

j

)
(α2m+ j − β2m+ j ) = α2m

m∑
j=0

(
m

j

)
α j − β2m

m∑
j=0

(
m

j

)
β j

= α2m(1 + α)m − β2m(1 + β )m = (
α2(1 + α)

)m − (
β2(1 + β )

)m = 0.

Thus, every coefficient of Fm(y) vanishes, and S(m, n) = 0 for all m and n.

Also solved by R. Stong and GCHQ Problem Solving Group (U. K.).

Strehl’s Identity in Disguise

11928 [2016, 723]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For positive integers
n and m and for a sequence a0, a1, . . . , prove

n∑
i=0

n∑
j=0

(
n

i

)(
m

j

)
ai+ j =

n+m∑
k=0

(
n+ m

k

)
ak

and ∑
i< j

(
n

i

)(
n

j

)(
i+ j

n

)
=
∑
i< j

(
n

i

)(
n

j

)2

.

Solution by Quentin Guignard, Institut des Hautes Études Scientifiques, Bures-sur-Yvette,
France, and Bernard Randé, Paris, France. Collecting terms involving ak yields the first
identity, using the well-known Vandermonde convolution∑

i+ j=k

(
n

i

)(
m

j

)
=
(
n+ m

k

)
. (1)

The convolution can also be written as∑
k≤n

(
i

n− k

)(
j

k

)
=
(
i+ j

n

)
.

Multiplying by
(n
i

)(n
j

)
and summing over (i, j) such that i < j ≤ n yields

∑
i< j≤n

(
n

i

)(
n

j

)(
i+ j

n

)
=
∑
k≤n

∑
i< j≤n

(
i

n− k

)(
j

k

)(
n

i

)(
n

j

)
.

Let S denote the left-side of both this and the second desired identity. Since(
i

n− k

)(
n

i

)
=
(
n

k

)(
k

n− i

)
and

(
j

k

)(
n

j

)
=
(
n

k

)(
n− k

j − k

)
,

we have

S =
∑
k≤n

∑
i< j≤n

(
n

k

)2( k

n− i

)(
n− k

j − k

)
.
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In the inner sum, write r = k + (i− j). Since i < j, we have r < k. Reindexing,

S =
∑
r<k≤n

(
n

k

)2∑
j

(
k

n+ k − r − j

)(
n− k

j − k

)
.

Applying (1) once more, this time to the inner sum, gives

S =
∑
r<k≤n

(
n

k

)2( n

n− r

)
=
∑
r<k≤n

(
n

r

)(
n

k

)2

,

as desired.

Editorial comment. As noted by several readers, the second identity is equivalent to

∑
k

(
n

k

)2(2k
n

)
=
∑
k

(
n

k

)3

,

which is equation (29) of V. Strehl, Binomial identities – combinatorial and algebraic as-
pects,Discrete Mathematics 136 (1994) 309–346. Two copies of the requested identity plus
Strehl’s identity yield

∑
i

∑
j

(
n

i

)(
n

j

)(
i+ j

n

)
=
∑
i

∑
j

(
n

i

)(
n

j

)2

,

which can be proved by applying the Vandermonde convolution on both sides.
Strehl explored his identity in the context of hypergeometric techniques. It can also be

proved by using the Vandermonde convolution twice along with various other identities, or
by showing that both sides count the ways to start with n black cards and n white cards,
designate an equal number of cards of each color as bad, and discard n bad cards.

Also solved by M. Apadogu, R. Chapman (U. K.), P. P. Dályay (Hungary), R. Dutta, N. Ghosh, Y. J. Ionin,
B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), O. Kouba (Syria), P. Lalonde (Canada), J. Nieto
(Venezuela), M. Prasad, J. H. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Tiso, M. Wildon
(U. K.), Y. Zhao, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer.

Balanced Tilings of a Rectangle with Three Rows

11929 [2016, 831]. Proposed by Donald Knuth, Stanford University, Stanford, CA. Let an
be the number of ways in which a rectangular box that contains 6n square tiles in three rows
of length 2n can be split into two connected pieces of size 3nwithout cutting any tiles. Thus
a1 = 3, a2 = 19, and one of the 85 ways for n = 3 is shown.

Taking a0 = 1, find a closed form for the generating function A(z) = ∑∞
n=0 anz

n. What is
the asymptotic nature of an as n → ∞?

Solution by the editors. The generating function is

A(z) = 1 + √
1 − 4z

(
√
1 − 4z+ z)2

1√
1 − 4z

− 1 − z2 + 2z3

(1 − z)3
.

The coefficients an are asymptotic to 4n+2/
√

πn.
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In a splitting of a 3-by-m board into two connected pieces, call the piece contain-
ing more of the three cells in the first column black and the other piece white. Let
fm(b,w) be the number of splittings having b black and w white cells and let F (X,Y,Z) =∑∞

m=0

∑
b+w=3m fm(b,w)XmYbZw. We derive an explicit expression for F (X,Y,Z) by re-

lating fm to paths in a directed multigraphG. The vertices ofG represent cases for a column
of the 3-by-m board using connectivity information from the cells to the left. We process
columns of a tiling from left to right, using 11 states:

1. Start,

2. BBB, with no white cells anywhere to the left,

3. BBB, with some white cells to the left,

4. BBW or WBB,

5. BWB, with the two black cells connected via cells to the left,

6. BWB, with the two black cells not connected via cells to the left,

7. BWW or WWB,

8. WBW, with the two white cells connected via cells to the left,

9. WBW, with the two white cells not connected via cells to the left,

10. WWW,

11. End.

Due to the black-majority convention, Start leads next only to vertices 2, 4 (in two ways),
6, or 11. The possible transitions are encoded in the matrixM below. The entry in position
(i, j) encodes a step from state i to state j as one column is added. When the transition
is possible, it augments the power of X by 1 (for length) and the sum of the powers of Y
and Z by 3 (for the three tiles). The coefficient is 2 when there are two ways to make the
transition. The requirement that both pieces are connected is encoded by the impossibility
of various transitions.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 XY 3 0 2XY 2Z 0 XY 2Z 0 0 0 0 1
0 XY 3 0 2XY 2Z XY 2Z 0 2XYZ2 0 XYZ2 XZ3 1
0 0 XY 3 0 0 0 0 0 0 0 1
0 0 XY 3 XY 2Z 0 0 XYZ2 0 XYZ2 XZ3 1
0 0 XY 3 0 XY 2Z 0 2XYZ2 0 0 XZ3 1
0 0 XY 3 0 0 XY 2Z 0 0 0 0 0
0 0 XY 3 XY 2Z 0 XY 2Z XYZ2 0 0 XZ3 1
0 0 XY 3 2XY 2Z 0 0 0 XYZ2 0 XZ3 1
0 0 0 0 0 0 0 0 XYZ2 XZ3 0
0 0 0 0 0 0 0 0 0 XZ3 1
0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For the example given, the state path is 〈1, 2, 5, 7, 4, 9, 10, 11〉. Splittings with m
columns correspond to paths from state 1 to state 11 using m+ 1 transitions; we seek the
coefficient of X2nY 3nZ3n in position (1, 11) of M2n+1. Thus, F (X,Y,Z) = (I −M)−1

1,11.
The resulting expression for F is the fraction with numerator

1 − X5Y 6Z4(Y + Z)
(
Y 4 + 3Y 3Z + 2Y 2Z2 − 2Z4

)
+ X4Y 4Z2

(
Y 6 + 4Y 5Z + 7Y 4Z2 + 7Y 3Z3 + 6Y 2Z4 − Z6

)
− X3Y 2Z

(
Y 6 + 3Y 5Z + 8Y 4Z2 + 9Y 3Z3 + 5Y 2Z4 + YZ5 + Z6

)
+ X2YZ

(
4Y 4 + 3Y 3Z + 3Y 2Z2 + 3YZ3 + 2Z4

)
− X

(
Y 3 + 2YZ2 + Z3

)
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and denominator(
XY 3 − 1

)2 (
XZ3 − 1

) (
XY 2Z − 1

) (
XYZ2 − 1

) (
XY 2Z + XYZ2 − 1

)
.

The coefficients of X2nY 3nZ3n for the first few values of n are 1, 3, 19, 85, 355, and
1435. The problem was first investigated in 2009, with these counts appearing in R. H.
Hardin, number of ways to partition a 2n× 3 grid into 2 connected equal-area regions,
oeis.org/A167242.

To extract the generating functionA(z), considerH = F (X,Y, 1/Y ). To have equal count
in black and white, we seek the coefficient of Y 0 in H. Viewing H as a Laurent series in Y ,
we seek the constant term h0 (an expression inX). The Cauchy coefficient formula applies to
H (see P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press,
New York, 2009). We obtain h0 = 1

2π i

∮
C

1
Y HdY , where C is a small counterclockwise

circle around the origin. Now h0 is the sum of the residues with respect to theY -poles. Since
the denominator of H is (XY 3 − 1)2(XY−3 − 1)(XY − 1)(XY−1 − 1)(XY + XY−1 − 1),
the poles are at 0, X , the three cube roots of X , and (1 − √

1 − 4 X2)/(2X ). There are eight
additional poles, but they lie outside C when X is small. With the help of Mathematica,
we find an exact expression for h0, and then changing variables from X to

√
z gives A(z)

as stated earlier.
The asymptotic behavior of an is governed by the singularity of A(z) at z = 1/4. Write

A(z) = B(z) + 16/θ − Q with θ = √
1 − 4z. We have 16/θ = ∑∞

n=1 16
(2n
n

)
zn, with coeffi-

cients asymptotic to 4n+2/
√

πn by Stirling’s formula. Setting Q equal to 3086/27 means
that B (z)/θ is bounded in a disk of radius larger than 1/4. Hence, a “transfer theorem”
applies: Use Theorem VI.4 of the book of Flajolet and Sedgewick cited above to deduce
that an = 4n+2/

√
πn+ O(4n/n3/2). In that theorem, use ζ = 1/4, a = −1/2, σ (z) = 0, and

τ (z) = 1 − t.
With more work, one can obtain a formula for an, with Fm denoting the mth Fibonacci

number:

an = −3 + n− n2 − 1

5

(
(n− 5)F3 n+1 + (2 n− 1)F3 n

)
+ 1

5

n∑
m=0

(
2(n− m)

n− m

)(
(3m+ 5)F3m+1 − (4m+ 3)F3m

)
.

Also solved by J. Semonsen, R. Tauraso (Italy), GCHQ Problem Solving Group, and the proposer.

A Telescoping Series with Inverse Hyperbolic Sine

11930 [2016, 831]. Proposed by Cornel Ioan Vălean, Timiş, Romania. Find
∞∑
n=1

sinh−1

(
1√

2n+2 + 2 + √
2n+1 + 2

)
.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.Writing

1√
2n+2 + 2 + √

2n+1 + 2
=

√
2n+2 + 2 − √

2n+1 + 2

2n+1

=
√

1

2n
·
√
1 + 1

2n+1
−
√

1

2n+1
·
√
1 + 1

2n
,

we see that

sinh−1

(
1√

2n+2 + 2 + √
2n+1 + 2

)
= sinh−1

(√
1

2n

)
− sinh−1

(√
1

2n+1

)
.
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Since limn→∞ sinh−1 √
1/2n = 0, the given sum S telescopes, and

S =
∞∑
n=1

(
sinh−1

(√
1

2n

)
− sinh−1

(√
1

2n+1

))
= sinh−1

(
1√
2

)
.

Also solved by M. Bello &M. Benito & Ó. Ciaurri & E. Fernández & L. Roncal (Spain), A. Berkane (Algeria),
R. Boukharfane (Romania), P. Bracken, R. Chapman (U. K.), P. P. Dályay (Hungary), B. Davis, H. Far,
L. Giugiuc (Romania), J. Hartman, E. Herman, W. Johnson, B. Karaivanov (U. S. A.) and T. S. Vassilev
(Canada), K. Kolczyńska-Przybycień (Poland), K. Koo (China), O. Kouba (Syria), H. Kwong, P. Lalonde
(Canada), O. P. Lossers (Netherlands), P. Magli (Italy), J. Magliano, S. Mandal (India), R. Molinari, R. Nandan,
M. Omarjee (France), M. Prasad (India), A. N. Sharma (India), N. Singer, A. Stenger, R. Stong, R. Tauraso
(Italy), D. Tyler, J. Vinuesa (Spain), M. Vowe (Switzerland), H. Widmer (Switzerland), J. Zacharias, L. Zhou,
Armstrong Problem Solvers, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer.

A Geodesic Variation on Ramsey’s Theorem for Paths

11931 [2016, 831]. Proposed by Igor Protasov, Kiev, Ukraine. Given natural numbers m
and r, prove that there is a finite connected graph G such that, for every r-coloring of its
edge set E(G), there is a monochromatic geodesic path of length m. (A path is geodesic if
there is no shorter path with the same endpoints.)

Solution I by Richard Stong, Center for Communications Research, San Diego, CA. Let Qd

be the d-dimensional hypercube: vertices are binary d-tuples, adjacent when they differ in
exactly one coordinate. Given r, we will produce by induction on m a number n such that
every r-coloring of E(Qn) has a monochromatic geodesic path of length m. The base case
m = 1 is trivial; n = 1 suffices. For the induction step, suppose that every r-edge-coloring
of Qn contains a monochromatic geodesic of length m; it suffices to prove that, for N =
n(r2n−1 + 1), every r-coloring of QN contains a monochromatic geodesic of length 2m.

To prove this, consider an r-edge-coloring of QN . Partition the N coordinates into
r2n−1 + 1 sets of n consecutive coordinates. For each such n-tuple of coordinates, QN con-
tains 2nr2

n−1
disjoint copies of Qn, obtained by fixing the values in the other nr2n−1 coor-

dinates and allowing just these n to vary. Each such copy of Qn contains a monochromatic
geodesic of length m. Each such geodesic has two endpoints. Since

(r2n−1 + 1)2nr2
n−1
2 > r 2n (1+r 2

n−1 ) = r|V (QN )|,
by the pigeonhole principle some vertex of QN is an endpoint of at least r + 1 of these
monochromatic geodesics. By the pigeonhole principle again, some two geodesics of the
same color end at this vertex. Since they come from disjoint n-tuples of coordinates, their
union is also a monochromatic geodesic, because a path in Qd is a geodesic if and only if
no coordinate changes twice along the path. We thus obtain a monochromatic geodesic of
length 2m.

Solution II by Stephen C. Locke, Florida Atlantic University, Boca Raton, FL. For any
positive integers k and g, there is a finite k-regular graph with girth g (see P. Erdős and
H. Sachs, Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z.
Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 12 (1963) 251–258). Let G be a
finite 2r-regular graph with girth 2m+ 1. We may assume that G is connected; otherwise,
we take a component ofG containing a shortest cycle. By the pigeonhole principle, any par-
tition of E(G) into r spanning subgraphs has some subgraph with average degree at least 2.
Such a subgraph H contains a cycle C, which has length at least 2m+ 1. A path of length
m along C is a monochromatic geodesic of length m.
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Editorial comment. The graphs of Solution I grow very rapidly in terms of r and m. Locke
observed that Qrm suffices. Because Qrm is rm-regular, an r-edge-coloring yields some
monochromatic subgraph H with average degree at least m. Now there is a geodesic in
H with length at least m by Theorem 1.2 of I. Leader and E. Long, Long geodesics in
subgraphs of the cube, Discrete Mathematics 326 (2014) 29–33.

Also solved by A. Poplawski (Poland), GCHQ Problem Solving Group (U. K.), and the proposer.

Geometric Mean Rates

11935 [2016, 832]. Proposed by D. M. Bătinetu̧-Giurgiu, “Matei Basarab” National Col-
lege, Bucharest, Romania; Anastasios Kotronis, Athens, Greece; and Neculai Stanciu,
“George Emil Palade” School, Buzău, Romania. Let f be a function from Z+ to R+ such
that limn→∞ f (n)/n = a, where a > 0. Find

lim
n→∞

⎛
⎝ n+1

√√√√n+1∏
k=1

f (k) − n

√√√√ n∏
k=1

f (k)

⎞
⎠ .

Solution by Marcin E. Kuczma, University of Warsaw, Warsaw, Poland. The limit is a/e.
Let xn = f (n)/n so that xn converges to a and hence (x1x2 · · · xn)1/n also converges to a. We
want to compute the limit of g(n+ 1) − g(n), where

g(n) =
(

n∏
k=1

f (k)

)1/n

= (n!)1/n(x1x2 · · · xn)1/n ∼ an

e
.

Let

cn =
(
g(n+ 1)

g(n)

)n+1

= (n+ 1)!(x1x2 · · · xn+1)

(n!x1x2 · · · xn)(n+1)/n
= n+ 1

(n!)1/n
· xn+1

(x1x2 · · · xn)1/n .

Since xn+1 → a, (x1x2 · · · xn)1/n → a, and (n!)1/n ∼ n/e, we see that cn → e. Conse-
quently,

g(n+ 1)

g(n)
= c1/(n+1)

n → 1.

Finally,

g(n+ 1) − g(n) = g(n)

(
g(n+ 1)

g(n)
− 1

)
∼ g(n) · log g(n+ 1)

g(n)

= g(n) · log cn
n+ 1

∼ an

e
· 1

n+ 1
→ a

e
.

Editorial comment. Several solvers pointed out that this result (and some generalizations)
appear in Gh. Toader, Lalescu sequences, Publikacije Elektrotehničkog fakulteta, Serija
Matematika 9 (1998) 25–28. This result is a consequence of Theorem 2 in that paper.

Also solved by A. Ali (India), K. Andersen (Canada), A. Berkane (Algeria), R. Boukharfane (France),
P. Bracken, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), L. Giugiuc (Romania), N. Grivaux (France),
E. Herman, K. Koo (China), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Mortini,
M. Omarjee (France) and R. Tauraso (Italy), Á. Plaza (Spain), M. A. Prasad (India), G.-F. Serban (Romania),
A. Stenger, R. Stong, T. Wiandt, Y. Zhang, L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS
Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, and Fuzhen Zhang.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by December 31,
2018 via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

12055. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Let a1, a2, . . .
be a sequence of nonnegative integers with a1 ≥ a2 ≥ · · · and with finite sum. For a
positive integer j, let b j be the number of indices i such that ai ≥ j. (The sequence
b1, b2, . . . is the conjugate of a1, a2, . . . .) Prove that the multisets {a1 + 1, a2 + 2, . . . } and
{b1 + 1, b2 + 2, . . . } are equal. For example, if 〈ai〉 = 〈5, 3, 2, 2, 0, 0, 0, . . . 〉, then 〈bj〉 =
〈4, 4, 2, 1, 1, 0, 0, . . . 〉, and the corresponding multisets are {6, 5, 5, 6, 5, 6, 7, 8, . . . } and
{5, 6, 5, 5, 6, 6, 7, 8, . . . }.
12056. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania, Kadir Altintas,
Emirdağ, Turkey, and Florin Stanescu, Gaesti, Romania.Let ABCD be a rectangle inscribed
in a circle S of radius R, and let P be a point inside S. The lines AP, BP,CP, and DP inter-
sect S a second time at K, L, M, and N, respectively. Prove AK2 + BL2 +CM2 + DN2 ≥
16R4/(R2 + OP2).

12057. Proposed by Peter Kórus, University of Szeged, Szeged, Hungary.
(a) Calculate the limit of the sequence defined by a1 = 1, a2 = 2, and

a2k+1 = a2k−1 + a2k
2

and a2k+2 = √
a2k a2k+1

for positive integers k.

(b) Calculate the limit of the sequence defined by b1 = 1, b2 = 2, and

b2k+1 = b2k−1 + b2k
2

and b2k+2 = 2 b2k b2k+1

b2k + b2k+1

for positive integers k.

12058. Proposed by Max A. Alekseyev, George Washington University, Washington, DC.
Let b be an integer greater than 1. For a positive integer n, let ub(n) be the number of
nonzero digits in the base b representation of n. Prove that for any positive integers n and
k, there exists a positive integer m such that ub(mn) = ub(n) + k.

doi.org/10.1080/00029890.2018.1483682
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12059. Proposed by George Stoica, Saint John, NB, Canada. Let n be an integer greater
than 1, and let R be the ring of polynomials in the variables x1, . . . , xn with real coefficients.
Let S be the ideal in R generated by the elementary symmetric polynomials e1, . . . , en,
where

ek(x1, . . . , xn) =
∑

1≤i1<···<ik≤n
xi1 · · · xik

for 1 ≤ k ≤ n. The degree of a monomial xm1
1 · · · xmn

n is m1 + · · · + mn. Prove that
n(n− 1)/2 is the largest degree among all monomials that do not belong to S.

12060. Proposed by Ovidiu Furdui and Alina Sîntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania. Let ζ (3) be Apéry’s constant

∑∞
n=1 1/n

3, and let Hn be
the nth harmonic number 1 + 1/2 + · · · + 1/n. Prove

∞∑
n=2

HnHn+1

n3 − n
= 5

2
− π2

24
− ζ (3).

12061. Proposed by Dao Thanh Oai, Thai Binh, Viet Nam, and Le Viet An, Hue, Viet Nam.
Two triangles ABC and A′B′C′ in the plane are perspective from a point if the lines AA′,
BB′, andCC′ are concurrent (the common point is the perspector) and are perspective from
a line if the points of intersection of AB and A′B′, of AC and A′C′, and of BC and B′C′ are
collinear (the common line is the perspectrix). Desargues’s theorem states that two triangles
are perspective from a point if and only if they are perspective from a line. Consider three
triangles, each pair of which are perspective from a point, hence per Desargues’s theorem
perspective from a line. Show that the three perspectrices are identical if and only if the
three perspectors are collinear.

SOLUTIONS

A Triangle out of Pieces

11934 [2016, 832]. Proposed by Leonard Giugiuc, Drobotu Turnu Severin, Romania. Let
ABC be an isosceles triangle, with |AB| = |AC|. Let D and E be two points on side BC
such thatD ∈ BE,E ∈ DC, andm(∠DAE ) = 1

2m(∠A). Describe how to construct a triangle
XYZ such that |XY | = |BD|, |YZ| = |DE|, and |ZX | = |EC|. Also, compute m(∠BAC) +
m(∠YXZ) (in radians).
Solution by Pál Péter Dályay, Szeged, Hungary. Write α, β, γ for the radian measures of
the angles at A,B,C, respectively. Construct three circles C1, C2, C3 with center A and radii
r1, r2, r3, respectively, with r1 = |AB|, r2 = |AD|, r3 = |AE|. Let X be the intersection of
the ray from A to the midpoint of BC with C1, let Y be the intersection of ray AE with C2,
and let Z be the intersection of the ray ADwith C3. We claim that �XYZ meets the required
conditions.

Let �ABD be rotated around A by α/2 to bring B to X and D to Y . Since �ABD is
congruent to �AXY , we have |XY | = |BD| and m(∠AXY ) = m(∠ABD) = β.

Similarly, let �ACE be rotated around A by α/2 to bring C to X and E to Z. As before
we conclude |ZX | = |EC| and m(∠AXZ) = m(∠ACE ) = γ .

Triangles ADE and AYZ are congruent, since they share an angle A, |AY | = |AD|, and
|AZ| = |AE|. Thus |YZ| = |DE|, and triangle XYZ satisfies the required conditions.
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Since m(∠YXZ) = m(∠AXY ) + m(∠AXZ) = β + γ , we have m(∠BAC) + m(∠YXZ)
= α + (β + γ ) = π .

Editorial comment. The problem as originally published had∠XYZ for the last angle where
∠YXZ was intended.

Also solved by R. B. Campos (Spain), R. Chapman (U. K.), I. Dimitric, J. Han (Korea), E. Ionascu,
B. Karaivanov (U. S. A) & T. S. Vassilev (Canada), O. Kouba (Syria), O. P. Lossers (Netherlands), M. Meyer-
son, R. Stong, Armstrong State University Problem Solvers, GCHQ Problem Solving Group (U. K.), GWstat
Problem Solving Group, and the proposer.

Hidden Mersenne

11936 [2016, 941]. Proposed by William Weakley, Indiana University–Purdue University
at Fort Wayne, Fort Wayne, IN. Let S be the set of integers n such that there exist integers i,
j, k, m, p with i, j ≥ 0, m, k ≥ 2, and p prime, such that n = mk = pi + pj.
(a) Characterize S.
(b) For which elements of S are there two choices of (p, i, j)?

Solution by Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND.
(a) The set S is the union of three sets: (1) {2d : d ≥ 2}, (2) {(2t3)2 : t ≥ 0}, and
(3) {(2pt )k : t ≥ 0 and p = 2k − 1 (a Mersenne prime)}.

First, we prove that if 1 + pd = vk, where p is a prime, d ≥ 1, and v, k ≥ 2, then either
p = 2 and d = 3 (that is, 1 + 23 = 32), or p = 2k − 1 (a Mersenne prime) and d = 1 (so
1 + (2k − 1) = 2k).

We prove this claim in two cases. Suppose first that p = 2 and 1 + 2d = vk. In this case,
2d = vk − 1 = (v − 1)(vk−1 + · · · + v + 1). Since all factors of 2d are even, it follows that
v is odd and vk−1 + · · · + v + 1 is even, so k must be even, with k = 2t for some t ∈ N.
This yields 2d = vk − 1 = (v t − 1)(v t + 1), so v t − 1 and v t + 1 are powers of 2 differing
by 2. Thus they must be 2 and 4, so v t − 1 = 2, and this implies v = 3, t = 1, and d = 3.

In the remaining case, p is an odd prime. Factor k as ptm, where t ≥ 0 and p � m, and let
w = v p

t
.We have pd = vk − 1 = wm − 1 = (w − 1)(wm−1 + · · · + w + 1). Ifw − 1 > 1,

then p divides both w − 1 and wm−1 + · · · + w + 1, but then w ≡ 1 mod p and wm−1 +
· · · + w + 1 ≡ m mod p. Hence p divides m, a contradiction. Therefore w = 2, and so
v = 2 and 1 + pd = 2k. Since we are given k ≥ 2, it follows that 1 + pd ≡ 0 mod 4, so
d is odd. If d > 1, then d = qs, where q is an odd prime and s is odd. We must have s = 1,
since otherwise

2k = pd + 1 = (pq + 1)
(
(pq)s−1 + (pq)s−2 − · · · − pq + 1

)
,

and the second factor is an odd number larger than 1. Thus d is an odd prime, and p has
order 2d modulo 2k, because p2 
≡ 1 mod 2k (since 1 < p2 < pd < 2k) and pd ≡ −1 mod
2k. Thus 2d divides φ(2k ) = 2k−1, a contradiction. We conclude d = 1, and p = 2k − 1
must be a Mersenne prime, finishing the proof of the claim.

Now consider the general case n = mk = pi + pj. If i = j, then mk = 2pi, so p = 2
and n = 2i+1. Thus n can be 2d with d ≥ 2 (d = 1 is excluded by m, k ≥ 2). If i < j,
then mk = pi(1 + pj−i). Since pi and 1 + pj−i are relatively prime, we have i = kt for
some t ≥ 0, and 1 + pj−i = vk for some v ≥ 2. By our claim we have either p = 2 with
j − i = 3 (so v = 3 and k = 2), or p = 2k − 1 is a Mersenne prime with j − i = 1 (so
v = 2). Thus n = (2t3)2 = 22t + 22t+3 for some t ≥ 0, or n = (2pt )k = pkt + pkt+1 for
some t ≥ 0, where p = 2k − 1 is a Mersenne prime. Hence the set S is as claimed above.
(b) We further assume i ≤ j to exclude two such trivial representations obtained by switch-
ing i and j, so each member of (1), (2), or (3) has only one representation in that family.

662 C© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 125X
ia
ng
’s
T
ex
m
at
h



Clearly, values of n in (1) and (2) cannot be the same. If n is in both (1) and (3), then
t = 0 and d = k (so n = 2k, where 2k − 1 is a Mersenne prime), while if n has a represen-
tation in (2) and (3), then p = 3 (which is a Mersenne prime), t = 1 (in both representa-
tions), and k = 2 (so n = 36). Hence the only numbers in S with two different representa-
tions are 36 (represented as 22 + 25 and 32 + 33) and 2k (represented as 2k−1 + 2k−1 and
(2k − 1)0 + (2k − 1)1) whenever 2k − 1 is a Mersenne prime.

Editorial comment. To simplify the proof, several solvers referred to Catalan’s conjecture
(proved byMihăilescu in 2004) that the only consecutive integers that are powers of integers
with exponents at least 2 are 23 and 32.

Also solved by B. Karaivanov (U. S. A) & T. S. Vassilev (Canada), GCHQ Problem Solving Group (U. K.), and
NSA Problems Group. Part (a) also solved by Y. J. Ionin, M. Josephy (Costa Rica), O. P. Lossers (Netherlands),
R. Stong, and the proposer.

A Double Integral for the Digamma Function

11937 [2016, 941]. Proposed by Juan Carlos Sampedro, University of the Basque Country,
Leioa, Spain. Let s be a complex number that is not a zero of the gamma function �(s).
Prove ∫ 1

0

∫ 1

0

(xy)s−1 − y

(1 − xy) log(xy)
dx dy = �′(s)

�(s)
.

Composite solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven,
Netherlands, and Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.No finite complex number is a zero of �(s), but we must assume Re s > 0
for the integral to converge. Write the integral as

I(s) = −
∫ 1

0

∫ 1

0

1 − (xy)s−1

1 − xy

dx dy

log(xy)
+
∫ 1

0

∫ 1

0

1 − y

1 − xy

dx dy

log(xy)
.

Notice that (1 − (xy)s−1)/(1 − xy) has finite limit as xy → 1, the functions xs−1 and ys−1 are
integrable at 0, and

∫ 1
0

∫ 1
0 dx dy/| log(xy)| < +∞. Therefore, the first integral converges ab-

solutely. Since 0 ≤ (1 − y)/(1 − xy) ≤ 1 whenever 0 < x, y < 1, the second integral con-
verges absolutely as well.

Now I(s) is an analytic function of s in the right half-plane, so it suffices to prove the
result for 0 < s < 1. In this case, the integrand is real and has constant sign, so we may
interchange the order of integration. Thus,

I(s) =
∫ 1

0

(∫ 1

0

(xy)s−1 − y

1 − xy

dx

log(xy)

)
dy =

∫ 1

0

(∫ y

0

ts−1 − y

y(1 − t ) log t
dt

)
dy

=
∫ 1

0

1

(1 − t ) log t

(∫ 1

t

ts−1 − y

y
dy

)
dt

=
∫ 1

0

−ts−1 log t − (1 − t )

(1 − t ) log t
dt =

∫ 1

0

(−ts−1

1 − t
− 1

log t

)
dt.

This is a well-known integral representation of the digamma function ψ (s) = �′(s)/�(s)
due to Gauss.

Also solved by M. Arnold, A. Berkane (Algeria), P. Bracken, R. Chapman (U. K.), H. Chen, B. Davis,
C. Georghiou (Greece), G. Greubel, J.-P. Grivaux (France), J. A. Grzesik, E. Herman, R. Nandan, M. O’Brien,
M. Omarjee (France), F. Perdomo & Á. Plaza (Spain), P. Perfetti (Italy), S. Sharma, A. Stadler (Switzerland),
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R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), M. Wildon (U. K.), Y. Zhang, GCHQ Problem Solving
Group (U. K.), and the proposer.

An Inequality for Triangles

11938 [2016, 941]. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip, Mace-
donia. Let a, b, c be the lengths of the sides of a triangle, and let A be its area. Let R and r
be the circumradius and inradius of the triangle, respectively. Prove

a2 + b2 + c2 ≥ (a− b)2 + (b− c)2 + (c− a)2 + 4A

√
3 + R− 2r

R
.

Solution by John G. Heuver, Grande Prairie, AB, Canada. Let ∠A = α, ∠B = β, and
∠C = γ . By the law of cosines

a2 = b2 + c2 − 2bc cosα = (b− c)2 + 2bc(1 − cosα) = (b− c)2 + 4A tan
α

2
,

where we have used 2A = bc sinα and (1 − cosα)/ sinα = tan(α/2). It follows that

a2 + b2 + c2 = (a− b)2 + (b− c)2 + (c− a)2 + 4A

(
tan

α

2
+ tan

β

2
+ tan

γ

2

)
.

We have

tan
α

2
+ tan

β

2
+ tan

γ

2
= 4R+ r

s
,

where s is the semiperimeter of the triangle. (This is equation 83 on page 59 of D. S. Mitri-
novic (1989), Recent Advances in Geometric Inequalities, Dordrecht: Kluwer.) Kooi’s
inequality

s2 ≤ R(4R+ r)2

2(2R− r)

(see, for example, item 5.7 in O. Bottema, et. al. (1969),Geometric Inequalities,Groningen:
Wolters-Noordhoff) then gives

tan
α

2
+ tan

β

2
+ tan

γ

2
≥
√
3 + R− 2r

R
.

This completes the proof. Equality holds if and only if the triangle is equilateral.

Also solved by A. Ali (India), R. Boukharfane (France), P. P. Dályay (Hungary), L. Giugiuc (Romania),
B. Karaivanov (U. S. A.) and T. S. Vassilev (Canada), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II,
D. Moore, R. Nandan, P. Nüesch (Switzerland), P. Perfetti (Italy), V. Schindler (Germany), M. Stănean (Ro-
mania), R. Stong, M. Vowe (Switzerland), T. Wiandt, J. Zacharias, L. Zhou, GCHQ Problem Solving Group
(U. K.), and the proposer.

Summing Errors in Approximations to Euler’s Constant

11939 [2016, 941]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Find
∞∑
k=1

(
1 + 1

2
+ · · · + 1

k
− log(k) − γ − 1

2k
+ 1

12k2

)
.

Here γ is Euler’s constant.
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Solution by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. Let
Hk = 1 + 1/2 + · · · + 1/k. We have

n∑
k=1

Hk =
n∑

k=1

k∑
j=1

1

j
=

n∑
j=1

1

j

n∑
k= j

1 =
n∑
j=1

n+ 1 − j

j
= (n+ 1)Hn − n.

Hence,
n∑

k=1

(
Hk − log(k) − γ − 1

2k

)
= (n+ 1)Hn − n− log(n!) − nγ − Hn

2

=
(
n+ 1

2

)(
log(n) + γ + 1

2n
+ O(1/n2)

)
− n− nγ

−
(
n log(n) − n+ log(2π )

2
+ log(n)

2
+ O(1/n)

)

= 1 + γ − log(2π )

2
+ O(1/n),

where we have used the approximations Hn = log(n) + γ + 1
2n + O(1/n2) and log(n!) =

n log(n) − n+ log(2π )
2 + log(n)

2 + O(1/n). Also,

∞∑
k=1

1

12k2
= 1

12
· π

2

6
= π2

72
.

Combining these results, we obtain

∞∑
k=1

(
Hk − log(k) − γ − 1

2k
+ 1

12k2

)
= 1 + γ − log(2π )

2
+ π2

72
.

Editorial comment. Several solvers noted that the requested sum, without the final term
1/(12k2), appears as Problem 3.42 on page 195 of O. Furdui (2013), Limits, Series, and
Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer. The
more general formula

∞∑
k=1

(
Hpk − log(pk) − γ − 1

2pk

)
= log(p) + γ − log(2π )

2
+ 1

2p
+ π

2p2

p−1∑
k=1

k cot

(
kπ

p

)
,

where p is a positive integer, appears in O. Kouba (2016), Inequalities for finite trigono-
metric sums. An interplay: with some series related to harmonic numbers, J. Inequal. Appl.,
Paper No. 173, 15 pp.

Also solved by A. Balfaqih (Yemen), A. Berkane (Algeria), R Boukharfane (France), P. Bracken, R. Chapman
(U. K.), H. Chen, R. Guculiére (France), R. Dutta (India), O. Furdui (Romania), N. Ghosh, M. L. Glasser,
J. A. Grzesik, L. Han, E. A. Herman, E. J. Ionaşcu, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada),
O. Kouba (Syria), C. W. Lienhard, O. P. Lossers (Netherlands), G. N. Macris, P. Magli (Italy), C. R. McCarthy,
R. Nandan, P. Perfetti (Italy), F. A. Rakhimjanovich (Uzbekistan), E. Schmeichel, A. Stadler (Switzerland),
A. Stenger, R. Stong, M. Vowe (Switzerland), S. Wagon, H. Widmer (Switzerland), J. Zacharias, Y. Zhang,
GCHQ Problem Solving Group (U. K.), and the proposer.

A Hypergeometric Identity

11940 [2016, 942]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Tn = n(n+ 1)/2
and C(n, k) = (n− 2k)

(n
k

)
. For n ≥ 1, prove
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n−1∑
k=0

C(Tn, k)C(Tn+1, k) = n3 − 2n2 + 4n

n+ 2

(
Tn
n

)(
Tn+1

n

)
.

Solution I by Pierre Lalonde, Kingsey Falls, QC, Canada. Let m be a positive integer. We
prove by induction on m the more general formula

m−1∑
k=0

C(Tn, k)C(Tn+1, k) = m2(n2 + 2n− 4m+ 4)

n(n+ 2)

(
Tn
m

)(
Tn+1

m

)
.

For m = 1 both sides give TnTn+1. Given the formula for m, we compute

m∑
k=0

C(Tn, k)C(Tn+1, k) =
m−1∑
k=0

C(Tn, k)C(Tn+1, k) +C(Tn,m)C(Tn+1,m)

=
(
m2(n2 + 2n− 4m+ 4)

n(n+ 2)
+ (Tn − 2m)(Tn+1 − 2m)

)(
Tn
m

)(
Tn+1

m

)

= (n2 + 2n− 4m)

n(n+ 2)

(n2 + n− 2m)(n2 + 3n− 2m+ 2)

4

(
Tn
m

)(
Tn+1

m

)

= (m+ 1)2(n2 + 2n− 4m)

n(n+ 2)

(Tn − m)(Tn+1 − m)

(m+ 1)2

(
Tn
m

)(
Tn+1

m

)

= (m+ 1)2(n2 + 2n− 4m)

n(n+ 2)

(
Tn

m+ 1

)(
Tn+1

m+ 1

)
,

where the step from the second to the third line is easy (though tedious) to check. The
special case m = n gives the desired result.

Solution II by Akalu Tefera, Grand Valley State University, Allendale, MI. Dividing both
sides of the desired equality by its right side yields

∑n−1
k=0 F (n, k) = 1, where

F (n, k) = n+ 2

n3 − 2n2 + 4n

C(Tn, k)C(Tn+1, k)(Tn
n

)(Tn+1

n

) .

Applying Gosper’s algorithm to F (n, k) produces a rational function

R(n, k) = 4k2(n2 + 2n− 4k + 4)

n(n+ 2)(n2 + n− 4k)(n2 + 3n− 4k + 2)

such that setting G(n, k) = F (n, k)R(n, k) yields F (n, k) = G(n, k + 1) − G(n, k), which
can be confirmed easily. Summing both sides of this equality with respect to k then gives
the telescoping sum

n−1∑
k=0

F (n, k) =
n−1∑
k=0

(
G(n, k + 1) − G(n, k)

) = G(n, n) − G(n, 0) = 1.

Also solved by R. Chapman (U. K.), R. Stong, R. Tauraso (Italy), and the proposer.

Rate of Convergence for an Integral

11941 [2016, 492]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let

L = lim
n→∞

∫ 1

0

n
√
xn + (1 − x)n dx.

666 C© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 125X
ia
ng
’s
T
ex
m
at
h



(a) Find L.
(b) Find

lim
n→∞ n2

(∫ 1

0

n
√
xn + (1 − x)n dx− L

)
.

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA. (a) We
prove L = 3/4. To see this, let In = ∫ 1

0
n
√
xn + (1 − x)n dx. We have

In =
∫ 1/2

0

n
√
xn + (1 − x)n dx+

∫ 1

1/2

n
√
xn + (1 − x)n dx

≥
∫ 1/2

0
(1 − x) dx+

∫ 1

1/2
x dx = 3

4
.

On the other hand, since x ≤ 1 − x for x ∈ [0, 1/2] and 1 − x ≤ x for x ∈ [1/2, 1],

In =
∫ 1/2

0

n
√
xn + (1 − x)n dx+

∫ 1

1/2

n
√
xn + (1 − x)n dx

≤
∫ 1/2

0

n
√
2 (1 − x) dx+

∫ 1

1/2

n
√
2 x dx = 3

4
n
√
2.

The squeeze theorem implies that L = limn→∞ In = 3/4.

(b) The limit is π2/48. Notice that
∫ 1/2
0 (1 − x) = ∫ 1

1/2 x dx = 3/8. We claim

lim
n→∞ n2

(∫ 1/2

0

n
√
xn + (1 − x)n dx− 3

8

)
= π2

96
(1)

and

lim
n→∞ n2

(∫ 1

1/2

n
√
xn + (1 − x)n dx− 3

8

)
= π2

96
, (2)

from which the required limit follows. To prove (1), we compute

lim
n→∞ n2

(∫ 1/2

0

(
n
√
xn + (1 − x)n − (1 − x)

)
dx

)

= lim
n→∞ n2

(∫ 1/2

0
(1 − x)

(
n

√
1 +

(
x

1 − x

)n
− 1

))
dx

= lim
n→∞ n2

(∫ 1

0

1

(1 + t )3

(
n
√
1 + tn − 1

))
dt (letting t = x/(1 − x))

= lim
n→∞ n

(∫ 1

0

1

(1 + u1/n)3

(
n
√
1 + u− 1

)
u1/n−1

)
du (letting u = tn)

=
∫ 1

0
lim
n→∞

1

(1 + u1/n)3
n
(

n
√
1 + u− 1

)
u1/n−1 du

= 1

8

∫ 1

0

ln(1 + u)

u
du = 1

8

∞∑
n=1

(−1)n+1

n2
= π2

96
.

Equation (2) follows from (1) upon substituting 1 − x for x.

August–September 2018] PROBLEMS AND SOLUTIONS 667X
ia
ng
’s
T
ex
m
at
h



Editorial comment. Chen noted that the results can be generalized as follows. For part (a):
If f and g are nonnegative and integrable on [a, b], then

lim
n→∞

∫ b

a

n
√
f (x)n + g(x)n dx =

∫ b

a
max{ f (x), g(x)} dx.

For part (b): If f is a positive continuous function on [0, 1] with f (0) = 1 and g(x) is con-
tinuous on [0, 1], then

lim
n→∞ n2

(∫ 1

0

n
√
f (xn)g(x) dx−

∫ 1

0
g(x) dx

)
= g(1)

∫ 1

0

ln f (x)

x
dx.

Letting f (x) = 1 + x and g(x) = 1/(1 + x)3 yields the result in part (b).

Also solved by R. Agnew, K. F. Andersen (Canada), A. Berkane (Algeria), R. Boukharfane (France), P. Bracken,
R. Chapman (U. K.), P. P. Dályay (Hungary), B. E. Davis, R. Dutta (India), D. Fleischman, N. Ghosh,
J.-P. Grivaux (France), L. Han, F. Holland (Ireland), E. J. Ionaşcu, O. Kouba (Syria), J. H. Lindsey II,
O. P. Lossers (Netherlands), S. de Luxán (Germany) & Á. Plaza (Spain), M. Omarjee (France), N. Osipov
(Russia), P. Perfetti (Italy), A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), GCHQ Problem
Solving Group (U. K.), NSA Problems Group, and the proposer.

On Perpendicularity

11942 [2016, 492]. Proposed by Florin Parvanescu, Slat, Romania. In acute triangle ABC,
let D be the foot of the altitude from A, let E be the foot of the perpendicular from D to AC,
and let F be a point on segment DE. Prove that AF is perpendicular to BE if and only if
|FE|/|FD| = |BD|/|CD|.
Solution by Wei-Kai Lai and John Risher (student), University of South Carolina Salke-

hatchie, Walterboro, SC. Note that since
−→
AD · −→

BD = 0,
−→
AF · −→

BE = (
−→
AD+ −→

DF ) · (−→BD+ −→
DE ) = −→

AD · −→
DE + −→

DF · −→
BD+ −→

DF · −→DE
= (

−→
AE − −→

DE ) · −→
DE + |DF| |BD| cos(∠EDC) + |DF| |DE|

= −|DE|2 + |DF| |BD| |DE|
|DC| + |DF| |DE|. (1)

Consider first the necessity of the condition. When AF ⊥ BE, (1) yields |DF| |BD| +
|DF| |DC| = |DE| |DC|. Since |DE| = |DF| + |FE|, we get

|DF| |BD| + |DF| |DC| = |DF| |DC| + |FE| |DC|,
which implies |DF| |BD| = |FE| |DC| as required.

Now consider the sufficiency of the condition. Since |DE| = |DF| + |FE|, and
|FE|/|FD| = |BD|/|CD| is assumed, we can write (1) in the equivalent form

−→
AF · −→

BE = −(|DF| + |FE|)2 + |DF| |DE| · |FE|
|FD| + |DF|(|DF| + |FE|)

= −|DF|2 − 2|DF| · |FE| − |FE|2 + (|DF| + |FE|)|FE| + |DF|2 + |DF| · |FE|.
This equals zero, and hence AF is perpendicular to BE, as desired.

Also solved by A. Ali (India), H. Bailey, R. Chapman (U. K.), P. P. Dályay (Hungary), P. De (India), I. Dim-
itrić, A. Fanchini, D. Fleischman, O. Geupel, L. Giugiuc (Romania), N. Grivaux (France), J. Han (South Korea),
E. A. Herman, S. Hitotumatu (Japan), E. J. Ionaşcu, Y. Ionin, S.-H. Jeong (Korea), O. Kouba (Syria), J. H. Lind-
sey II, O. P. Lossers (Netherlands), M. D.Meyerson, I. Mihăilă, J. Minkus, R. Nandan, A. Stadler (Switzerland),
R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), T. Wiandt, L. Zhou, T. Zvonaru & N. Stanciu (Romania),
Armstrong Problem Solvers, GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, and Fuzhen Zhang.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by February 28, 2019
via the same link. More detailed instructions are available online. Proposed prob-
lems must not be under consideration concurrently at any other journal nor be posted
to the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12062. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yuri J. Ionin, Central Michigan University, Mount Pleasant, MI. Let l be a line, and let P

be a point off l. Call a triangle QPQ′ with {Q,Q′} ⊂ l nice if it is isosceles or if ∠QPQ′
is a right angle. Let n be an integer with n ≥ 2. Of all the subsets X of l of size n, what is
the largest possible number of nice triangles with two vertices in X?

12063. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let p and q be real numbers with
p > 0 and q > −p2/4. Let U0 = 0, U1 = 1, and Un+2 = pUn+1 + qUn for n ≥ 0. Calcu-
late

lim
n→∞

√√√√√
U 2

1 +

√√√√
U 2

2 +
√

U 2
4 +

√
· · · +

√
U 2

2n−1 .

12064. Proposed by Cesar Adolfo Hernandez Melo, State University of Maringá, Maringá,
Brazil. Let f be a convex, continuously differentiable function from [1,∞) to R such that
f ′(x) > 0 for all x ≥ 1. Prove that the improper integral

∫ ∞
1 1/f ′(x) dx is convergent if

and only if the series
∑∞

n=1

(
f −1 (f (n) + ε) − n

)
is convergent for all positive ε.

12065. Proposed by Hojoo Lee, Seoul National University, Seoul, South Korea. Let n be a
positive integer, and let x1, . . . , xn be a list of n positive real numbers. For k ∈ {1, . . . , n},
let yk = xk(n + 1)/(n + 1 − k) and let

zk = (k!)1/k

k + 1

⎛
⎝ k∏

j=1

yj

⎞
⎠

1/k

.

Prove that the arithmetic mean of x1, . . . , xn is greater than or equal to the arithmetic mean
of z1, . . . , zn, and determine when equality holds.

doi.org/10.1080/00029890.2018.1498689
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12066. Proposed by Xiang-Qian Chang, MCPHS University, Boston, MA. Let n and k be
integers greater than 1, and let A be an n-by-n positive definite Hermitian matrix. Prove

(det A)1/n ≤
(

tracek(A) − trace(Ak)

nk − n

)1/k

.

12067. Proposed by Paul Bracken, University of Texas, Edinburg, TX. For a positive inte-
ger n, let γn = (∑n

k=1 1/k
) − ln n, so that limn→∞ γn is Euler’s constant γ . Let βn =

6n + 12n2(γ − γn). Prove that βn+1 > βn for all n.

12068. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National College, Bucharest,
Romania, and Neculai Stanciu, “George Emil Palade” School, Buzău, Romania. Consider
a triangle with altitudes ha , hb, and hc and corresponding exradii ra , rb, and rc. Let s, r ,
and R denote the triangle’s semiperimeter, inradius, and circumradius, respectively.
(a) Prove

hb + hc

ha

r2
a + hc + ha

hb

r2
b + ha + hb

ha

r2
c ≥ 2s2.

(b) Prove

rb + rc

ra

h2
a + rc + ra

rb

h2
b + ra + rb

ra

h2
c ≥ 4s2r

R
.

SOLUTIONS

Subsets Closed Under a Family of Functions

11943 [2016, 1050]. Proposed by Keith Kearnes, University of Colorado, Boulder, CO,
and Greg Oman, University of Colorado, Colorado Springs, CO. Let X be a set, and let
F be a collection of functions f from X into X. A subset Y of X is closed under F if
f (y) ∈ Y for all y ∈ Y and f in F . With the axiom of choice given, prove or disprove:
There exists an uncountable collection F of functions mapping Z+ into Z+ such that
(a) every proper subset of Z+ that is closed under F is finite, and
(b) for every f ∈ F , there is a proper infinite subset Y of Z+ that is closed under F\{f }.
Solution by Klaas Pieter Hart, Delft University of Technology, Delft, Netherlands. There is
no family satisfying the specified conditions. Let F be an uncountable family of functions
from N to N. We claim that there exists f ∈ F such that, for all n, there exists g ∈ F \ {f }
such that g(i) = f (i) for all i ≤ n.

Once this claim is proved, it follows that (b) fails for this choice of f if F satisfies (a).
Indeed, if A is closed under F \ {f }, then A is also closed under f . To see this, take n ∈ A

and take g ∈ F \ {f } such that g(i) = f (i) for i ≤ n. In particular, f (n) = g(n) ∈ A. It
follows that exactly the same sets are closed under F and under F \ {f } and this means
that once (a) holds for F , condition (b) fails for f .

To prove the claim, let C denote the set of f ∈ F that do not have the desired property.
For each f ∈ C, let nf be the first natural number n for which there is no g ∈ F \ {f } such
that g(i) = f (i) for i ≤ n. Let sf denote the finite list 〈f (i) : i ≤ nf 〉. The map f �→ sf

is injective from C to the set of finite lists of natural numbers. The latter set is countable,
hence so is C. Thus F \ C is uncountable and therefore nonempty, as desired.

Editorial comment. Hart pointed out that the claim is a special case of the general fact
that an uncountable subset of a separable and metrizable space has nonisolated points. The
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argument of the middle paragraph shows that if f is a nonisolated point of F , then a set is
closed under F if and only if it is closed under F \ {f }.
Also solved by W. Chen, A. Dow, F. Galvin, G. Gruenhage, GCHQ Problem Solving Group (U. K.), and the
proposers.

A Special Instance of Rock–Paper–Scissors

11944 [2016, 1050]. Proposed by Yury Ionin, Central Michigan University, Mount Pleas-
ant, MI. Let n be a positive integer, and let [n] = {1, . . . , n}. For i ∈ [n], let Ai , Bi , and Ci

be disjoint sets such that Ai ∪ Bi ∪ Ci = [n] − {i} and |Ai | = |Bi |. Suppose also that∣∣Ai ∩ Bj

∣∣ + ∣∣Bi ∩ Cj

∣∣ + ∣∣Ci ∩ Aj

∣∣ = ∣∣Bi ∩ Aj

∣∣ + ∣∣Ci ∩ Bj

∣∣ + ∣∣Ai ∩ Cj

∣∣
for i, j ∈ [n]. Prove that i ∈ Aj if and only if j ∈ Ai and, likewise, for the Bs and Cs.

Solution by Kyle Hansen (student), Westmont College, Santa Barbara, CA. Because Ai ,
Bi , and Ci are disjoint, we have Ci = [n] − ({i} ∪ Ai ∪ Bi). Therefore the left side of the
given sum becomes∣∣Ai ∩ Bj

∣∣ + ∣∣Bi ∩ Cj

∣∣ + ∣∣Aj ∩ Ci

∣∣
= ∣∣Ai ∩ Bj

∣∣ + ∣∣Bi − ({j} ∪ Aj ∪ Bj

)∣∣ + ∣∣Aj − ({i} ∪ Ai ∪ Bi)
∣∣

= ∣∣Ai ∩ Bj

∣∣ + |Bi | − |Bi ∩ {j}| − ∣∣Bi ∩ Aj

∣∣ − ∣∣Bi ∩ Bj

∣∣
+ ∣∣Aj

∣∣ − ∣∣Aj ∩ {i}∣∣ − ∣∣Aj ∩ Bi

∣∣ − ∣∣Aj ∩ Ai

∣∣ .
Similarly, the right side becomes∣∣Aj ∩ Bi

∣∣ + ∣∣Bj ∩ Ci

∣∣ + ∣∣Ai ∩ Cj

∣∣
= ∣∣Aj ∩ Bi

∣∣ + ∣∣Bj − ({i} ∪ Ai ∪ Bi)
∣∣ + ∣∣Ai − ({j} ∪ Aj ∪ Bj

)∣∣
= ∣∣Aj ∩ Bi

∣∣ + ∣∣Bj

∣∣ − ∣∣Bj ∩ {i}∣∣ − ∣∣Bj ∩ Ai

∣∣ − ∣∣Bj ∩ Bi

∣∣
+ |Ai | − |Ai ∩ {j}| − ∣∣Ai ∩ Bj

∣∣ − ∣∣Ai ∩ Aj

∣∣ .
Equating these expressions and rearranging using |Ai | = |Bi | yields

3
(∣∣Ai ∩ Bj

∣∣ − ∣∣Bi ∩ Aj

∣∣) = |Bi ∩ {j}| − ∣∣Bj ∩ {i}∣∣ + ∣∣Aj ∩ {i}∣∣ − |Ai ∩ {j}| .
The left side is an integer multiple of 3, and the right side has absolute value at most 2,
so the right side must be 0. Since Ai ∩ Bi = ∅, we must have |Ai ∩ {j}| = ∣∣Aj ∩ {i}∣∣ and
|Bi ∩ {j}| = ∣∣Bj ∩ {i}∣∣. That is, i ∈ Aj if and only if j ∈ Ai and likewise for the Bs.
For the final conclusion, if i ∈ Cj and j /∈ Ci , then j �= i and j ∈ Ai ∪ Bi , which means
i ∈ Aj ∪ Bj , contradicting i ∈ Cj .

Editorial comment. The GCHQ Problem Solving Group interpreted the question using the
children’s game of rock–paper–scissors. In this game, each of two players picks one of
these three options. When both choose the same option, neither wins. When the choices
are different, the winner is as follows: rock beats (breaks) scissors, scissors beats (cuts)
paper, and paper beats (covers) rock.

Now imagine that n players play n rounds of this game, except that player i does not
play in round i, for each i ∈ [n]. On a given round, all choose one of the three options
simultaneously, and the winner is determined for each pair. Assume that each player plays
rock and paper equally often, and that for every two players X and Y , the number of times
that player X beats player Y in the pairwise comparison is the same as the number of times
that Y beats X (in the rounds where they both play).
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Letting Ai , Bi , and Ci be the sets of rounds on which player i chooses rock, paper, and
scissors, respectively, the question posed becomes equivalent to showing that for every two
players, the options each chooses in the round skipped by the other are the same.

Also solved by P. P. Dályay (Hungary), T. Hakobyan, O. P. Lossers (Netherlands), S. Patel (India), J. C. Smith,
R. Stong, Y. Zhao, GCHQ Problem Solving Group (U. K.), Texas State Problem Solving Group, and the
proposer.

A Bisector Inequality

11945 [2016,1050]. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip,
Macedonia. Let a, b, and c be the lengths of the sides of triangle ABC opposite A, B, and
C, respectively, and let wa , wb, and wc be the lengths of the corresponding angle bisectors.
Prove

a

wa

+ b

wb

+ c

wc

≥ 2
√

3.

Solution by Dmitry Fleischman, Santa Monica, CA. Writing twice the area of triangle ABC

in two ways, we get wa(b + c) sin(A/2) = bc sin A, from which follows the known for-
mula

wa = 2bc

b + c
cos

(
A

2

)
.

From the AM-GM inequality used multiple times, we obtain

a

wa

+ b

wb

+ c

wc

≥ 3

(
abc

wawbwc

)1/3

= 3

(
(a + b)(b + c)(c + a)

8abc cos(A/2) cos(B/2) cos(C/2)

)1/3

≥ 3

(cos(A/2) cos(B/2) cos(C/2))1/3
.

Now Jensen’s inequality applied to log cos x yields

cos(A/2) cos(B/2) cos(C/2) ≤ cos3(π/6) = 3
√

3

8
,

so

a

wa

+ b

wb

+ c

wc

≥ 2
√

3.

Editorial comment. Radouan Boukharfane noted that the stronger inequality

a

wa

+ b

wb

+ c

wc

≥ 2
√

3 + 3

2

(
1 − 2r

R

)

appears in S. H. Wu and Z. H. Zhang (2006), A class of inequalities related to angle
bisectors and the sides of a triangle, J. Inequal. Pure Appl. Math. 7(3): 1–16. Several
solvers noted that the requested inequality is an easy consequence of the inequality
awa + bwb + cwc ≤ (a + b + c)2/(2

√
3), which appears as item 11.5 in D. S. Mitrinović

et. al. (1989), Recent Advances in Geometric Inequalities, Dordrecht: Kluwer. Adnan Ali
and Albert Stadler (independently) proved the stronger inequality a/ma + b/mb + c/mc ≥
2
√

3, where ma , mb, and mc denote the lengths of the corresponding medians.
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Also solved by A. Ali (India), G. Apostolopoulos (Greece), R. Bagby, D. Bailey & E. Campbell & C. Dimin-
nie, D. M. Bătineţu & D. Sitaru (Romania), E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), R. Boukhar-
fane (France), S. Brown, D. Chakerian, M. V. Channakeshava (India), R. Chapman (U. K.), P. P. Dályay
(Hungary), M. Drăgan & N. Stanciu & T. Zvonaru (Romania), H. Y. Far, S. Gayen (India), O. Geupel (Ger-
many), L. Giugiuc (Romania), M. Goldenberg and M. Kaplan, J.-P. Grivaux (France), N. Grivaux (France),
J. G. Heuver (Canada), F. Holland (Ireland), A. Kadaveru & J. Zacharias, B. Karaivanov (U. S. A.) &
T. S. Vassilev (Canada), K. T. L. Koo (China), O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Nether-
lands), D. Moore, G. Musinu (Italy), R. Nandan, P. Nüesch (Switzerland), P. Perfetti (Italy), M. Reid, D. Ritter,
V. Schindler (Germany), C. R. Selvaraj & S. Selvaraj, J. C. Smith, A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), M. Vowe (Switzerland), T. Wiandt, L. Zhou, GCHQ Problem Solving Group (U. K.),
Skidmore College Problem Group, and the proposer.

A Second-Derivative Integral Inequality

11946 [2016, 1050]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let
f be a twice differentiable function from [0, 1] to R with f ′′ continuous on [0, 1] and∫ 2/3

1/3 f (x) dx = 0. Prove

4860

(∫ 1

0
f (x) dx

)2

≤ 11
∫ 1

0

(
f ′′(x)

)2
dx.

Solution by Tamas Wiandt, Rochester Institute of Technology, Rochester, NY. Consider the
function g defined by

g(x) =

⎧⎪⎨
⎪⎩

x2/2, when 0 ≤ x ≤ 1/3;
−x2 + x − 1/6, when 1/3 ≤ x ≤ 2/3;
x2/2 − x + 1/2, when 2/3 ≤ x ≤ 1.

Observe that g is continuously differentiable with g(0) = g(1) = g′(0) = g′(1) = 0 and
that the second derivative is piecewise continuous, taking values 1, −2, and 1 on [0, 1/3),
(1/3, 2/3), and (2/3, 1], respectively, with discontinuities at 1/3 and 2/3. A calculation
gives

∫ 1
0 g2 dx = 11/4860. Using integration by parts twice, we have∫ 1

0
gf ′′ dx = gf ′

∣∣∣1

0
−

∫ 1

0
g′f ′ dx

= −
(

g′f
∣∣∣1/3

0
−

∫ 1/3

0
g′′f dx + g′f

∣∣∣2/3

1/3

−
∫ 2/3

1/3
g′′f dx + g′f

∣∣∣1

2/3
−

∫ 1

2/3
g′′f dx

)

=
∫ 1

0
f dx − 3

∫ 2/3

1/3
f dx =

∫ 1

0
f dx.

The Cauchy–Schwarz inequality then yields(∫ 1

0
f dx

)2

=
(∫ 1

0
gf ′′ dx

)2

≤ 11

4860

∫ 1

0
(f ′′)2 dx.

Editorial comment. There was an error in the original problem statement, omitting the
square on f ′′.

Also solved by K. F. Andersen (Canada), R. Bagby, A. Berkane (Algeria), R Boukharfane (France), R. Chap-
man (U. K.), P. P. Dályay (Hungary), P. Fitzsimmons, K. T. L. Koo (China), O. Kouba (Syria), J. H. Lindsey II,
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O. P. Lossers (Netherlands), R. Nandan, S. Patel, P. Perfetti (Italy), J. C. Smith, R. Stong, R. Tauraso (Italy),
GCHQ Problem Solving Group (U. K.), and the proposer.

Reality After Logarithmic Differentiation

11947 [2016, 1051]. Proposed by George Stoica, University of New Brunswick, Saint John,
Canada. Let n be a positive integer, and let z1, . . . , zn be the zeros in C of zn + 1. For
a > 0, prove

1

n

n∑
k=1

1

|zk − a|2 = 1 + a2 + · · · + a2(n−1)

(1 + an)2
.

Solution by Finbarr Holland, University College Cork, Cork, Ireland. We prove a more
general result, assuming only that a /∈ {z1, . . . , zn}. After logarithmic differentiation of

zn + 1 =
n∏

k=1

(z − zk),

setting z = a yields

2nan

an + 1
=

n∑
k=1

(a + zk) + (a − zk)

a − zk

= n +
n∑

k=1

a + zk

a − zk

.

Division by n gives

1

n

n∑
k=1

a + zk

a − zk

= an − 1

an + 1
.

Take the real part of both sides using

Re

(
u + v

u − v

)
= |u|2 − |v|2

|u − v|2
to obtain

1

n

n∑
k=1

|a|2 − 1

|a − zk|2 = |an|2 − 1

|an + 1|2 .

Factoring the numerator of the fraction on the right yields

1

n

n∑
k=1

1

|zk − a|2 = 1 + |a|2 + · · · + |a|2(n−1)

|1 + an|2 .

The case |a| = 1 follows by continuity. The case a > 0 is the desired result.

Also solved by K. F. Andersen (Canada), D. Beckwith, A. Berkane (Algeria), A. J. Bevelacqua, P. Bracken,
D. Chakerian, R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), N. Ghosh, J.-P. Grivaux (France), J. Grze-
sik, E. Herman, Y. Ionin, M. Kaplan, K. T. L. Koo (China), O. Kouba (Syria), D. Kyle, P. Lalonde (Canada),
J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers (Netherlands), P. Magli (Italy), P. Perfetti (Italy), V. Schindler
(Germany), J. C. Smith, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), J. Van hamme (Bel-
gium), M. Vowe (Switzerland), T. Wiandt, M. Wildon (U. K.), J. Zacharias, L. Zhou, GCHQ Problem Solving
Group (U. K.), NSA Problems Group, and the proposer.
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A Functional Equation

11948 [2016, 1051]. Proposed by Navid Safaei, Sharif University of Technology, Tehran,
Iran. Find all surjective functions f : R → R+ such that (1) f (x) ≤ x + 1 for f (x) ≥ 1,
(2) f (x) �= 1 for x �= 0, and (3) for x, y ∈ R,

f (xf (y) + yf (x) − xy) = f (x)f (y).

Composite solution by Robin Chapman, University of Exeter, Exeter, U. K., Richard Stong,
Center for Communications Research, San Diego, CA, and GCHQ Problem Solving Group,
U. K. For a > 0, define Fa : R+ → R by the equation Fa(x) = x − 1/xa . Note that
F ′

a(x) > 0, Fa(x) → −∞ as x → 0+, and Fa(x) → ∞ as x → ∞. Thus Fa is an increas-
ing bijection. Therefore it has an inverse function fa : R → R+, which is also an increasing
bijection. We claim that the solutions are precisely the functions fa .

We begin by verifying that fa satisfies all of the given conditions. If fa(x) ≥ 1, then

x = Fa(fa(x)) = fa(x) − 1

(fa(x))a
≥ fa(x) − 1,

so fa(x) ≤ x + 1. This shows that (1) holds for fa . We have Fa(1) = 0, so fa(0) = 1, and
since fa is a bijection, this implies (2). Finally, consider any x, y ∈ R, and let u = fa(x),
v = fa(y). Since x = Fa(u) = u − 1/ua , we have 1/ua = u − x, and similarly 1/va =
v − y. Therefore

Fa(uv) = uv − 1

(uv)a
= uv − (u − x)(v − y)

= xv + yu − xy = xfa(y) + yfa(x) − xy,

so

fa(xfa(y) + yfa(x) − xy) = fa(Fa(uv)) = uv = fa(x)fa(y),

which is (3).
Next we claim that the functions fa are the only ones that satisfy the given conditions.

Suppose that f satisfies the conditions. For any real number x, we have f (x) > 0, so
since f is surjective, there is some y ∈ R such that f (y) = 1/f (x). Therefore by (3),
f (xf (y) + yf (x) − xy) = f (x)f (y) = 1. It follows by (2) that xf (y) + yf (x) − xy =
0, and thus (f (x) − x)(f (y) − y) = 1. Therefore f (x) �= x; in other words, f has no fixed
points. Also, if there is some x ′ such that f (x ′) = f (x), then (f (x) − x ′)(f (y) − y) =
1 = (f (x) − x)(f (y) − y) and hence x ′ = x. We conclude that f is a bijection, so we can
let F : R+ → R be the inverse of f .

For arbitrary positive real numbers u and v, let x = F(u) and y = F(v). Since f (x) =
u and f (y) = v, by (3), we have

f (F (u)v + F(v)u − F(u)F (v)) = f (xf (y) + yf (x) − xy) = f (x)f (y) = uv,

and therefore

uv − F(uv) = uv − F(u)v − F(v)u + F(u)F (v) = (u − F(u))(v − F(v)).

In other words, if we define g : R+ → R by g(x) = x − F(x), then

g(uv) = g(u)g(v)

for all u, v ∈ R+. In particular, g(u) = (g(
√

u))2 ≥ 0. Since f has no fixed points, F also
has none, and therefore g never takes the value 0. Thus, g takes only positive values.
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Define L : R → R by the equation L(x) = log(g(ex)), so that g(x) = eL(log(x)) for
x > 0. For all x, y ∈ R,

L(x + y) = log(g(exey)) = log(g(ex)) + log(g(ey)) = L(x) + L(y),

and this implies that L(rx) = rL(x) for every rational number r . In particular, if we let
c = L(1), then L(r) = cr for every rational number r .

We claim next that L is a weakly decreasing function. To see why, suppose x, y ∈ R
and x ≤ y. Let t = y − x, u = et ≥ 1, and z = F(u). Since f (z) = u ≥ 1, by condition
(1), we have f (z) ≤ z + 1, which means u ≤ F(u) + 1. Therefore g(u) = u − F(u) ≤ 1,
so L(t) = log(g(u)) ≤ 0. We conclude that L(y) = L(x + t) = L(x) + L(t) ≤ L(x).

We can now determine all values of L. For any x ∈ R, if r1 and r2 are rational numbers
with r1 ≤ x ≤ r2 then

cr1 = L(r1) ≥ L(x) ≥ L(r2) = cr2.

The only possible value for L(x) is therefore L(x) = cx. Thus g(x) = eL(log(x)) =
ec log(x) = xc and F(x) = x − xc.

Since L is weakly decreasing, c ≤ 0. If c = 0, then F(x) = x − 1, which contradicts
the fact that F is a bijection from R+ to R. Therefore c < 0; say c = −a, where a > 0.
Then F(x) = x − 1/xa , so F = Fa , and therefore f = fa .

Also solved by W. Chen, P. P. Dályay (Hungary), N. Ghosh, O. P. Lossers (Netherlands), NSA Problems Group,
and the proposer.

A Functional Equation with Cosines

11949 [2016, 1051]. Proposed by Eugen J. Ionascu, Columbus State University, Columbus,
GA. Show that there exists a unique function f from R to R such that f is differentiable,
2 cos(x + f (x)) − cos x = 1 for all real x, and f (π/2) = −π/6.

Solution by GCHQ Problem Solving Group, U. K. The arccos function from [−1, 1] to
[0, π ] is differentiable with (arccos x)′ = −1/

√
1 − x2 when x �= ±1. We first prove exis-

tence of f . For x ∈ [0, 2π ], define

f (x) = arccos

(
1 + cos x

2

)
− x.

By definition, f satisfies the functional equation for all x ∈ [0, 2π ] and f (π/2) =
−π/6. By the chain rule, f is differentiable on (0, 2π), since (1 + cos x)/2 �= ±1. Now
arccos(1 − y) ∼ √

2y as y → 0+. To see this, set z = arccos(1 − y), which by Taylor’s
theorem yields z ∼ √

2(1 − cos z) = √
2y as z → 0+. Since (1 − cos x)/2 ∼ x2/4 as

x → 0+,

f (x) + x = arccos

(
1 − 1 − cos x

2

)
∼

√
2x2

4
= x√

2
as x → 0+.

Let α = 1/
√

2. Since f (0) = 0, we conclude that f is right differentiable at 0 with right
derivative α − 1. A similar argument shows f is left differentiable at 2π with left derivative
−α − 1. Now extend f to [−2π, 2π ] by taking f to be odd on this interval, which is
possible since f (0) = 0. The equation 2 cos(x + f (x)) − cos x = 1 now holds for all
x ∈ [−2π, 2π ]. Further, since

f (−x) − f (0)

−x − 0
= f (x)

x
= f (x) − f (0)

x
,

we see that f is left differentiable at 0 with the same value as its right derivative, α − 1.
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Hence, f is differentiable at 0, and since f is differentiable on (0, 2π) and is odd on
[−2π, 2π ], we conclude that f is in fact differentiable on (−2π, 2π). We also know that
f is left differentiable at 2π with left derivative −α − 1 and, since f is odd on [−2π, 2π ],
f is right differentiable at −2π with right derivative also equal to −α − 1. Also f (2π) −
f (−2π) = 2f (2π) = −4π . Hence, we may extend f to a continuous function on R by
means of the relation f (x + 4π) = f (x) − 4π . The equation 2 cos(x + f (x)) − cos x = 1
is easily seen to hold on R.

Since f is differentiable on (−2π, 2π), the function f is differentiable on all of R,
except possibly at 2π + 4nπ for integer n. To show that f is differentiable everywhere, it
suffices to show that f is differentiable at 2π . We know that f is differentiable at 2π with
left derivative −α − 1. Since x + f (x) is 4π -periodic and f is right differentiable at −2π

with right derivative −α − 1, the same is true at 2π . Hence, f is differentiable at 2π . This
shows existence.

Next, we prove uniqueness. Suppose that f is as described above and g : R → R also
satisfies the given conditions. Let F(x) = x + f (x) and G(x) = x + g(x), so F and G

are differentiable with 2 cos(F (x)) − cos x = 1 and 2 cos(G(x)) − cos x = 1 for all x ∈ R,
and F(π/2) = G(π/2) = π/3. We first show F(x) = G(x) for all x ≥ π/2. Assume oth-
erwise. The set {x ≥ π/2 | F(x) �= G(x)} is nonempty and has an infimum x0 ≥ π/2.
If this inequality is strict, then F(x) = G(x) for x ∈ [π

2 , x0), and by continuity we have
F(x0) = G(x0). This also holds if x0 = π/2, by assumption.

First suppose x0 is not an integer multiple of 2π . Since cos x0 �= 1, we have cos F(x0) �=
±1, so F(x0) is not an integer multiple of π . Since F(x0) + G(x0) = 2F(x0), this quantity
is not an integer multiple of 2π . We conclude that F + G is bounded away from the set
2πZ in some open interval I containing x0. Since cos F(x) = cos G(x) for all x, which
implies F(x) + G(x) or F(x) − G(x) is an integer multiple of 2π , we must have the latter
on I . Since F(x) − G(x) is continuous, equals 0 at x0, and is an integer multiple of 2π on
I , we conclude F(x) − G(x) = 0 on I , contradicting the definition of x0 an infimum.

On the other hand, suppose that x0 is a multiple of 2π . By construction, F(x0) = 0, and
F is differentiable at x0 with derivative α or −α. Since G agrees with F up to x0, G is left
differentiable at x0 with left derivative F ′(x0). We know that G(x) is differentiable every-
where, so G′(x0) = F ′(x0) �= 0. Since F(x0) = G(x0) = 0, and F and G are continuous,
we may find an open interval J containing x0 such that F − G is not a nonzero integer mul-
tiple of 2π on J . By the definition of x0, we can find a sequence xt ∈ J with xt → x+

0 and
F(xt ) �= G(xt ). Since cos F(xt ) = cos G(xt ) for all t , we have F(xt ) + G(xt ) = 2πnt for
some nt ∈ Z. As t → ∞, the left side tends to zero, which means nt = 0 for t sufficiently
large. Therefore, using F(x0) = G(x0) = 0 again,

F(xt ) − F(x0)

xt − x0
= −G(xt ) − G(x0)

xt − x0

for sufficiently large t . This implies F ′(x0) = −G′(x0), contradicting F ′(x0) = G′(x0) �=
0. This contradiction establishes that F(x) = G(x) for all x ≥ π/2.

A similar argument shows F(x) = G(x) for all x ≤ π/2. Hence, F(x) = G(x) for all
x ∈ R, and so f (x) = g(x) for all x ∈ R.

Also solved by K. F. Andersen (Canada), R. Boukharfane (France), P. Bracken, D. Chakerian, R. Chapman
(U. K.), H. Chen, P. P. Dályay (Hungary), B. Davis, D. Fleischman, J.-P. Grivaux (France), T. Hakobyan,
O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), I. Mihăilă, S. Muthiah, M. Omarjee (France),
P. Perfetti (Italy), J. C. Smith, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), H. Wang,
T. Wiandt, Missouri State University Problem Solving Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, and Fuzhen Zhang.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by March 31, 2019 via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12069. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Place n nonat-
tacking rooks on an n-by-n chessboard in such a way as to maximize the sum of the
Euclidean distances from the rooks to the center of the chessboard. (Regard a rook as a
point positioned at the center of its square.) How many placements attain this maximum?

12070. Proposed by Cornel Ioan Vălean, Teremia Mare, Romania. Prove∫ π/4

0

∫ π/4

0

cos x cos y (y sin y cos x − x sin x cos y)

cos(2x) − cos(2y)
dx dy = 7ζ(3) + 4π ln 2

64
,

where ζ is the Riemann zeta function.

12071. Proposed by Paul Hagelstein and Daniel Herden, Baylor University, Waco, TX.
For a positive integer n, let Q(n) denote the greatest integer with the following property:
Any family of n closed squares in the plane whose sides are parallel to the coordinate axes
contains either a subfamily of Q(n) squares with a nonempty intersection or a subfamily
of Q(n) squares that are pairwise disjoint.
(a) Prove Q(n)/

√
n ≥ 0.5 for all n.

(b) Prove lim supn→∞ Q(n)/
√

n ≤ √
0.8.

12072. Proposed by Stephen Scheinberg, Corona del Mar, CA.
(a) Let X be a connected Hausdorff topological space with the property that every point
has a neighborhood whose cardinality c is that of the continuum. Assume the following:
For every x ∈ X and Y ⊂ X with x ∈ closure(Y ), there exists a sequence (yn)

∞
n=1 in Y

with limn→∞ yn = x. Prove that the cardinality of X is c.
(b) Give an example of a connected, locally connected, locally compact Hausdorff topo-
logical space whose cardinality is greater than c but every one of whose points has a neigh-
borhood of cardinality c.

12073. Proposed by Hakan Karakus, Antalya, Turkey. Given a scalene triangle ABC, let G

denote its centroid and H denote its orthocenter. Let PA be the second point of intersection
of the two circles through A that are tangent to BC at B and at C. Similarly define PB and
PC . Prove that G, H , PA, PB , and PC are concyclic.

doi.org/10.1080/00029890.2018.1507359
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12074. Proposed by E. Paul Goldenberg, Education Development Center, Waltham, MA.
Start with an equilateral triangle of area 1. Attach externally three equilateral triangles to
the vertices of the original triangle as in the first picture below, so that the altitude of each
new triangle is an extension of one side of the original triangle and half its length. Always
use the side that is counterclockwise from the vertex. Continue this process, producing each
new generation by attaching three triangles to each triangle of the previous generation. Let
τn be the union of all triangles (and their interiors) produced through generation n. What is
the area of ∪∞

n=1τn?

τ2 τ3 τ4 τ10

12075. Proposed by George Stoica, Saint John, NB, Canada. For n ≥ 1, let xn =∑∞
k=1 kn/ek . Prove that limn→∞ xn/n! equals 1 but the sequence (xn − n!)n≥1 is

unbounded.

SOLUTIONS

Sums of Squares

11950 [2017, 84]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Prove that for all positive integers a and b, there are infinitely
many positive integers n such that n, n + a, and n + b can each be expressed as a sum of
two squares.

Solution by John P. Robertson, National Council on Compensation Insurance, Boca Raton,
FL. Fix a, b ∈ N. By parametrizing the problem, we combine several cases into one. If
a ≡ 2 (mod 4) and b ≡ 2 (mod 4), then let c = b − a and d = −a. We now seek integers
m such that each element of {m,m + c,m + d} is a sum of two squares; the desired integer
n is then m − a. In this case, c ≡ 0 (mod 4).

If a and b are not both congruent to 2 modulo 4, then by symmetry we may assume
a �≡ 2 (mod 4). We again seek m such that each of {m,m + c,m + d} is a sum of two
squares, where now c = a and d = b. The desired integer n will equal m. In this case, c is
odd or divisible by 4, but not congruent to 2 modulo 4.

Hence in all cases c �≡ 2 (mod 4). Let i = c/4 − 1 and j = c/4 + 1 when 4 divides c.
Let i = (c − 1)/2 and j = (c + 1)/2 when c is odd. In each case, i and j are integers and
j 2 − i2 = c.

Let � be an integer with opposite parity to i2 + d. Set r = (�2 − i2 − d + 1)/2 and
k = r − 1. Letting m = r2 + i2, we have m + c = r2 + j 2 and m + d = k2 + �2. Since
we have infinitely many choices for �, we obtain infinitely many choices for m having the
desired property.

Editorial comment. The problem is solved in Hooley, C. (1973), On the intervals between
numbers that are the sum of two squares II, J. Number Theory, 5: 215–217.
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Also solved by A. Bevelacqua, R Boukharfane (France), T. Horine, K. Koo (China), O. P. Lossers
(Netherlands), B. Randé (France), M. Reid, J. C. Smith, A. Stadler (Switzerland), GCHQ Problem Solv-
ing Group (U. K.), NSA Problems Group, and the proposer.

An Inequality for the Altitudes

11951 [2017, 84]. Proposed by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. Let ABC be a triangle that is not obtuse. Denote by a, b,
and c the lengths of the sides opposite A, B, and C, respectively, and denote by ha , hb, and
hc the lengths of the altitudes dropped from A, B, and C, respectively. Prove

a2

h2
b + h2

c

+ b2

h2
c + h2

a

+ c2

h2
a + h2

b

<
5

2
.

Show also that 5/2 is the smallest possible constant in this inequality.

Solution by Haoran Chen, Gustavus Adolphus College, St. Peter, MN. Let A, B, and C

denote the angles of the triangle. Since ha = b sin C = c sin B and similarly for hb and hc,
the requested inequality becomes

1

sin2 B + sin2 C
+ 1

sin2 C + sin2 A
+ 1

sin2 A + sin2 B
<

5

2
.

If A = π/2, B → π/2, and C → 0, then the left side tends to 5/2, hence the constant 5/2
cannot be lowered.

Now assume π/2 ≥ A ≥ B ≥ C. The inequality becomes

1

sin2 A + sin2 B
− 1

2
< 1 − 1

sin2 C + sin2 A
+ 1 − 1

sin2 B + sin2 C
,

or

cos2 A + cos2 B

2(sin2 A + sin2 B)
<

sin2 C − cos2 A

sin2 C + sin2 A
+ sin2 C − cos2 B

sin2 B + sin2 C
.

Since 0 ≤ A − C ≤ B, we have cos(A − C) ≥ cos B, and hence

sin2 C − cos2 A = − cos(A + C) cos(A − C) = cos B cos(A − C) ≥ cos2 B.

Thus it suffices to show

cos2 A + cos2 B

2(sin2 A + sin2 B)
<

cos2 B

sin2 C + sin2 A
+ cos2 A

sin2 B + sin2 C
.

This follows directly, since both denominators on the right are smaller than the denomina-
tor on the left.

Also solved by R. Chapman (U. K.), M. Dra̧gan & N. Stanciu (Romania), Y. Ionin, K. Koo (China),
J. H. Lindsey II, O. P. Lossers (Netherlands), G. Musinu (Italy), M. Reid, V. Schindler (Germany), A. Schwenk,
J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, Armstrong Problem Solvers,
GCHQ Problem Solving Group (U. K.), and the proposer.

Telescoping Without Partial Fractions

11952 [2017, 83]. Proposed by Z. K. Silagadze, Novosibirsk State University, Novosibirsk,
Russia. Prove

∞∑
n=1

22n−1

2n + 1

(
(n − 1)!

(2n − 1)!!

)2

= π − 2,

where (2n − 1)!! is defined as usual to be
∏n

k=1(2k − 1).
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Solution by Chikkanna R. Selvaraj and Suguna Selvaraj, Pennsylvania State University–
Shenango, Sharon, PA. Let an be the nth term of the series, and let

bn = 2

(
22

1 · 3
· 42

3 · 5
· · · · · (2n − 2)

2

(2n − 3)(2n − 1)

)
and cn = 1

(2n − 1)(2n + 1)
.

We then have an = bncn. Instead of the partial fraction decomposition of cn, write cn =
(2n)2

(2n−1)(2n+1)
− 1 to obtain an = bn+1 − bn. The N th partial sum then telescopes:

N∑
n=1

an = bN+1 − b1 = bN+1 − 2.

By Wallis’s formula, limN→∞ bN+1 = 2 (π/2) = π, and the result follows.

Editorial comment. Some solvers rewrote the formula

(arcsin x)2 =
∞∑

n=1

2n−1

n

(n − 1)!

(2n − 1)!!
x2n for − 1 ≤ x ≤ 1,

as

t2 =
∞∑

n=1

2n−1

n

(n − 1)!

(2n − 1)!!
sin2n t for

−π

2
≤ t ≤ π

2
,

multiplied by sin t , and then integrated from 0 to π/2. Multiplying by (sin t)2k+1 instead
of sin t , Omran Kouba obtained the generalization

∞∑
n=1

22n+k−1

n

(n − 1)!

(2n − 1)!!

(n + k)!

(2n + 2k + 1)!!
= Akπ − Bk,

where

Ak = 1

22k

k∑
j=0

(2k+1
k−j

)
(2j + 1)2

and Bk = 1

22k−1

k∑
j=0

(−1)j

(2k+1
k−j

)
(2j + 1)3

.

When k = 0, the right side reduces to the desired value π − 2.
The problem was suggested by the paper of Friedmann, T. and Hagen, C. R. (2015),

Quantum mechanical derivation of the Wallis formula for π , J. Math. Phys. 56: 112101.

Also solved by A. Berkane (Algeria), R. Boukharfane (France), P. Bracken, D. Fritze (Germany), O. Kouba
(Syria), O. P. Lossers (Netherlands), P. Magli (Italy), V. Mikayelyan (Armenia), R. Nandan, M. Omarjee
(France), P. Perfetti (Italy), J. C. Smith, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy),
C. I. Va̧lean (Romania), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

Using Plancherel to Evaluate a Double Integral

11953 [2017, 84]. Proposed by Cornel Ioan Vălean, Teremia Mare, Timiş, Romania. Cal-
culate ∫ ∞

0

∫ ∞

0

sin x sin y sin(x + y)

xy(x + y)
dx dy.

Solution by Robin Chapman, University of Exeter, Exeter, UK. We claim∫ ∞

0

∫ ∞

0

sin x sin y sin(x + y)

xy(x + y)
dx dy = π2

6
.
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For convenience, set S(x) = (sin x)/x. We first calculate∫ ∞

−∞

∫ ∞

−∞
S(x)S(y)S(x + y) dx dy,

using some of the theory of the Fourier transform. Define f̂ (x) = ∫∞
−∞ f (t)e−ixt dt when-

ever f is an L1 function. Note that S = ĥ/2, where h is the indicator function of the interval
[−1, 1].

The Plancherel theorem states that
∫∞
−∞ f̂ (x)ĝ(x) dx = 2π

∫∞
−∞ f (t)g(t) dt whenever

f and g are both L1 and L2 functions. For each real y,

S(x + y) = 1

2

∫ 1

−1
e−i(x+y)t dt = 1

2

∫ ∞

−∞
e−i(x+y)th(t) dt,

and so x 
→ S(x + y) is the Fourier transform of the function t 
→ (1/2)h(t)e−iyt . Apply-
ing the Plancherel theorem to this function and to h/2 gives∫ ∞

−∞
S(x)S(x + y) dx = π

2

∫ 1

−1
e−iyt dt = πS(y).

Thus we obtain∫ ∞

−∞

∫ ∞

−∞
S(x)S(y)S(x + y) dx dy = π

∫ ∞

−∞
S(y)2 dy = π2.

We now show that the function (x, y) 
→ S(x)S(y)S(x + y) is an L1 function.
Observe that S(x) is even, is bounded near 0, and is in O(1/|x|) as |x| → ∞. Hence
there exists A such that S(x) ≤ A/(1 + |x|) as |x| → ∞. Therefore, to show that
(x, y) 
→ S(x)S(y)S(x + y) is L1, it suffices to show that

(x, y) 
→ 1

(1 + |x|)(1 + |y|)(1 + |x + y|)
is L1. First of all, for y > 0,∫ ∞

0

dx

(1 + |x|)(1 + |y|)(1 + |x + y|) = 1

1 + y

∫ ∞

0

dx

(1 + x)(1 + x + y)

= 1

y(1 + y)

∫ ∞

0

(
1

1 + x
− 1

1 + x + y

)
dx = log(1 + y)

y(1 + y)
.

As y → 0, we have log(1 + y)/(y(1 + y)) → 1. Hence∫ ∞

0

∫ ∞

0

dx dy

(1 + |x|)(1 + |y|)(1 + |x + y|) =
∫ ∞

0

log(1 + y)

y(1 + y)
dy

is finite. Therefore, the integral I = ∫∞
0

∫∞
0 S(x)S(y)S(x + y) dx dy is absolutely conver-

gent.
We can therefore freely apply changes of variable to I :

I =
∫ ∞

0

∫ ∞

0
S(x)S(y)S(x + y) dx dy (1)

=
∫ ∞

0

∫ −y

−∞
S(−x ′ − y)S(y)S(−x ′) dx ′ dy

=
∫ ∞

0

∫ −y

−∞
S(x ′ + y)S(y)S(x ′) dx ′ dy
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on setting x ′ = −x − y and using the fact that S is even. Therefore,

I =
∫ ∞

0

∫ −y

−∞
S(x)S(y)S(x + y) dx dy. (2)

Now mapping (x, y) to (−y,−x) gives

I =
∫ ∞

0

∫ 0

−y

S(x)S(y)S(x + y) dx dy. (3)

By summing (1)–(3),

3I =
∫ ∞

0

∫ ∞

−∞
S(x)S(y)S(x + y) dx dy.

By the evenness of the integrand,

6I =
∫ ∞

−∞

∫ ∞

−∞
S(x)S(y)S(x + y) dx dy = π2.

We conclude I = π2/6.

Also solved by A. Berkane (Algeria), R. Boukharfane (France), P. Bracken, B. Davis, J. Grzesik, M. Hoffman,
F. Holland (Ireland), O. Kouba (Syria), V. Mikayelyan (Armenia), M. Omarjee (France), P. Perfetti (Italy),
V. Schindler (Germany), A. N. Sharma (India), S. Sharma, J. C. Smith, A. Stadler (Switzerland), S. Stewart
(Australia), R. Stong, R. Tauraso (Italy), E. I. Verriest, H. Widmer (Switzerland), GCHQ Problem Solving
Group (U. K.), and the proposer.

A Tale of the Tails of ζ(2)

11954 [2017, 83]. Proposed by Paul Bracken, University of Texas, Edinburg, TX. Deter-
mine the largest constant c and the smallest constant d such that, for all positive integers
n,

1

n − c
≤

∞∑
k=n

1

k2
≤ 1

n − d
.

Composite solution by Douglas B. Tyler, Torrance, CA, and NSA Problems Group, Fort
Meade, MD. The answer is c = 1 − 6/π2 ≈ 0.39 and d = 1/2. To prove this, set
Tn = ∑

k≥n 1/k2. The required inequality is equivalent to c ≤ n − (1/Tn) ≤ d. Thus
c = inf{n − 1/Tn : n = 1, 2, . . .} and d = sup{n − 1/Tn : n = 1, 2, . . .}.

Note that the function x 
→ 1/x2 is convex on (0,∞). Since the trapezoid rule overes-
timates the integral of a convex function,

Tn =
∞∑

k=n

1

k2
>

1

2n2
+
∫ ∞

n

dx

x2
= 2n + 1

2n2
= 1

n − 1/2 + 1/(4n + 2)
. (1)

Similarly, the midpoint rule underestimates the integral of a convex function, so

Tn =
∞∑

k=n

1

k2
<

∫ ∞

n−1/2

dx

x2
= 1

n − 1/2
. (2)

Combining (1) and (2), we get

1

2
− 1

4n + 2
< n − 1

Tn

<
1

2
.
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These inequalities imply d = 1/2. Also, for n ≥ 2,

n − 1

Tn

>
1

2
− 1

4n + 2
≥ 2

5
> 1 − 6

π2
= 1 − 1

T1
.

It follows that c = 1 − 1/T1 = 1 − 6/π2.

Also solved by K. F. Andersen (Canada), R. Bagby, B. Burdick, R. Chapman (U. K.), N. Grivaux (France),
J. Grzesik, E. Herman, O. Kouba (Syria), J. H. Lindsey II, J. Lockhart, O. P. Lossers (Netherlands),
V. Mikayelyan (Armenia), M. Omarjee (France), B Randé (France), M. Reid, J. C. Smith, A. Stadler
(Switzerland), A. Stenger, G. Stoica (Canada), R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), L. Zhou,
GCHQ Problem Solving Group (U. K.), and the proposer.

Boys and Girls in Disarray

11955 [2017, 84]. Proposed by David Stoner, Aiken, SC. Some boys and girls stand on
some of the squares of an n-by-n grid. (Each square may contain several or no children.)
Each child computes the fraction of children in his or her row whose gender matches his
or her own and the fraction of children in his or her column whose gender matches his or
her own. Each child writes down the sum of the two numbers he or she obtains. Prove that
the product of all numbers written down in such a manner is at least 1.

Solution by O. P. Lossers, Eindhoven University of Technology, The Netherlands. We prove
that the claim holds more generally for any m-by-n grid with m, n ≥ 1. Discarding empty
rows or columns, we may assume that each row and column contains at least one child. Let
xi,j be the number of girls and yi,j be the number of boys on square i, j . Let xi• = ∑

j xi,j

and x•j = ∑
i xi,j , and similarly for yi• and y•j . Our task is to prove

∏
i,j

(
xi•

xi• + yi•
+ x•j

x•j + y•j

)xij
(

yi•
xi• + yi•

+ y•j

x•j + y•j

)yij

≥ 1,

where by convention 00 = 1. Since a + b ≥ 2
√

ab for nonnegative a and b, the product on
the left is at least∏

i,j

(
2
√

xi•
xi• + yi•

· x•j

x•j + y•j

)xij
(

2
√

yi•
xi• + yi•

· y•j
x•j + y•j

)yij

,

which rearranges to√√√√∏
i

(
2xi•

xi• + yi•

)xi• ( 2yi•
xi• + yi•

)yi• ∏
j

(
2x•j

x•j + y•j

)x•j
(

2y•j
x•j + y•j

)y•j

.

In this last expression, each factor corresponding to i or j has the form(
2zz(1 − z)1−z

)k
,

where z is the fraction of girls and k is the total number of children in the row or column.
Finally, we show that 2zz(1 − z)1−z is at least 1 for every z ∈ [0, 1]. This is equivalent to
showing that z log2 z + (1 − z) log2(1 − z) is at least −1 for every z ∈ [0, 1]. Let f (x) =
x log2 x on [0, 1] (extended to x = 0 by f (0) = 0). Since f is convex, f (x) + f (1 − x) ≥
2f (1/2) = −1. Hence, the desired quantity is a product of numbers each of which is at
least 1.

Also solved by P. P. Dályay (Hungary), N. Grivaux (France), M. A. Prasad (India), R. Stong, GCHQ Problem
Solving Group (U. K.), and the proposer.

November 2018] PROBLEMS AND SOLUTIONS 857

X
ia
ng
’s
T
ex
m
at
h



A Hyperbolic Arctangent Series

11956 [2017, 85]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Show that
∞∑

n=1

arctan(sinh n) · arctan

(
sinh 1

cosh n

)

converges, and find the sum.

Solution by Pierluigi Magli, Liceo “Marzolla-Leo-Simone-Durano,” Brindisi, Italy. We
write A(x) for arctan x. From the identities A(u) + A(1/u) = π/2 and A(u) − A(v) =
A ((u − v)/(1 + uv)) for u, v > 0, we obtain

A(sinh n) = A

(
en − e−n

2

)
= A(en) − A(e−n) = 2A(en) − π

2

and

A

(
sinh 1

cosh n

)
= A

(
en+1 − en−1

1 + e2n

)
= A(en+1) − A(en−1).

Thus the partial sum of the required series is given by

SM = 2
M∑

n=1

(
A(en+1)A(en) − A(en)A(en−1)

)
− π

2

M∑
n=1

(
A(en+1) − A(en−1)

)

= 2
(
A(eM+1)A(eM) − π

4
A(e)

)
− π

2

(
A(eM) + A(eM+1) − A(e) − π

4

)

= 2A(eM+1)A(eM) − π

2
A(eM) − π

2
A(eM+1) + π2

8
.

It follows that limM→+∞ SM = π2/8.

Also solved by A. Berkane (Algeria), R. Boukharfane (France), P. Bracken, R. Chapman (U. K.), H. Chen,
P. P. Dályay (Hungary), N. Grivaux (France), E. Ionaşcu, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada),
K. Koo (China), O. Kouba (Syria), O. P. Lossers (Netherlands), V. Mikayelyan (Armenia), R. Nandan,
M. Omarjee (France), P. Perfetti (Italy), A. N. Sharma (India), N. Singer, J. C. Smith, A. Stadler (Switzerland),
S. Stewart (Australia), R. Stong, R. Tauraso (Italy), C. I. Vălean (Romania), T. Wiandt, J. Zacharias, L. Zhou,
GCHQ Problem Solving Group (UK), NSA Problems Group, and the proposer.

Are Surjections More Probable than Injections?

11957 [2017, 179]. Proposed by Éric Pité, Paris, France. Let m and n be two integers with
n ≥ m ≥ 2. Let S(n,m) be the Stirling number of the second kind, i.e., the number of
ways to partition a set of n objects into m nonempty subsets. Show

nmS(n,m) ≥ mn

(
n

m

)
.

Solution I by Thomas Horine, Indiana University Southeast, New Albany, IN. To partition
the set [n] into m nonempty unlabelled sets, first choose m elements and place one in each
set, which can be done in

(
n

m

)
ways. The remaining n − m elements can be assigned to

those m sets in mn−m ways to complete a partition. However, a partition with part sizes
s1, . . . , sm has been counted

∏m
i=1 si times, since each part can be initiated by any of its

si elements. In each case
∑m

i=1 si = n, so the arithmetic-geometric mean inequality yields∏m
i=1 si ≤ (n/m)m for each partition. Thus

S (n,m) ≥
(

n

m

) · mn−m(
n
m

)m =
(

n

m

)
mn

nm
.
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Solution II by Mark Wildon, Royal Holloway, University of London, Egham, U. K. We
interpret the desired inequality as comparing the sizes of certain sets.

The left side, nmS(n,m), is the number of ways to form a partition P of [n] into m

parts and assign to each part a number in [n] via a function f . The right side, mn
(

n

m

)
, is the

number of ways to choose a set Z of m elements in [n] and assign to each member of [n]
one element of Z via a function g.

Let Lr be the set of such pairs (P, f ) such that exactly r elements of [n] are used in the
image of f , and let Rr be the set of such pairs (Z, g) such that exactly r elements of [m]
are used in the image of g. It suffices to prove |Lr | ≥ |Rr | for all r . Since m ≤ n, we may
assume r ≤ m.

For (Z, g) ∈ Rr , the preimages of elements of [n] under g form a partition Q of [n]
into r parts. Since the image of g is contained in Z, we can build the pair (Z, g) by first
choosing an r-element subset W of [n] for the image of g, then m − r additional members
of [n] to complete Z, then the partition Q, and finally the bijective assignment of elements
of Z to parts of Q. Thus

|Rr | =
(

n

r

)(
n − r

m − r

)
S(n, r)r!.

To count Lr , note that for any partition P of [n], we can build the function f by first
choosing an r-element subset X of [n] to be the image of f , then a partition of the m parts
of P into r nonempty blocks, and finally the bijective assignment of elements of X to these
blocks. Thus,

|Lr | = S(n,m)

(
n

r

)
S(m, r)r!.

To prove |Lr | ≥ |Rr |, it thus suffices to prove

S(n,m)S(m, r) ≥
(

n − r

m − r

)
S(n, r).

Given a partition Q of [n] with r parts, let M(Q) be the r-subset of [n] consisting of
the largest element of each part. Choose also a set T of m − r elements from [n] − M(Q).
The right side is the number of such pairs (Q, T ).

Given such a pair (Q, T ), we define a partition P of [n] into m parts such that P refines
Q. Simply extract each element of T from its part in Q and make it a new singleton part.

Next consider all the pairs (Q,P) of partitions of [n] such that Q has r parts, P has m

parts, and P is a refinement of Q. We can build such pairs by first choosing P and then
grouping the parts of P into a partition with r parts. Hence, there are S(n,m)S(m, r) such
pairs. It therefore suffices to show that our map obtaining (Q,P) from (Q, T ) is injective.

If (Q,P) arises from (Q, T ) by this map, then P has at least m − r singleton parts. The
element x of a singleton part lies in T if and only if x /∈ M(Q). Thus, we can reconstruct
(Q, T ) from (Q,P), and the map is injective, as desired.

Editorial comment. This problem was also posted on MathOverflow by Filip Nikšić
(mathoverflow.net/questions/268544), who noted that when the inequality is rewritten as

S(n,m)m!

mn
≥ n(m)

nm
,

where n(m) = n!/(n − m)!, the left side is the probability that a uniformly chosen random
function [n] → [m] is surjective, while the right side is the probability that a uniformly
chosen random function [m] → [n] is injective.

Also solved by N. Grivaux (France), O. P. Lossers (Netherlands), F. Niks̆ić (Germany), M. Omarjee (France),
E. Schmeichel, and R. Tauraso (Italy).
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by April 30, 2019 via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12076. Proposed by Tibor Beke, University of Massachusetts, Lowell, MA. From each of
the three feet of the altitudes of an arbitrary triangle, produce two points by projecting this
foot onto the other two sides. Show that the six points produced in this way are concyclic.

12077. Proposed by Max A. Alekseyev, George Washington University, Washington, DC.
Let f (x) be a monic polynomial of degree n with distinct zeros a1, . . . , an. Prove

n∑
i=1

an−1
i

f ′(ai)
= 1.

12078. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let
(

n

m

)
q

be the q-binomial coeffi-
cient defined by (

n

m

)
q

=
m−1∏
i=0

1 − qn−i

1 − qi+1
.

For a positive integer s and for 0 < q < 1, prove

∞∑
n=1

qsn(
s+n

s+1

)
q

= qs(1 − qs+1)

1 − qs
.

12079. Proposed by Moubinoul Omarjee, Lyceé Henri IV, Paris, France. Choose x1 in
(0, 1), and let xn+1 = (1/n)

∑n
k=1 ln(1 + xk) for n ≥ 1. Compute limn→∞ xn ln n.

12080. Proposed by Daniel Sitaru, Drobeta Turnu Severin, Romania. Let ABC be a scalene
acute triangle with semiperimeter s. Let A1, A2, and A3 be the points on BC such that AA1

is an altitude, AA3 is a median (i.e., A3 is the midpoint of BC), and AA2 is a symmedian
(i.e., the ray AA2 is the reflection of the ray AA3 across the angle bisector at A). Define B1,
B2, B3 and C1, C2, C3 similarly. Prove

A2A3

A1A2
+ B2B3

B1B2
+ C2C3

C1C2
>

4s2

a2 + b2 + c2
.

doi.org/10.1080/00029890.2018.1524660
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12081. Proposed by Cristian Chiser, Elena Cuza College, Craiova, Romania. Let A and
B be complex n-by-n matrices such that AB − BA is invertible and such that A2 + B2 =
c(AB − BA) for some rational number c. Prove c ∈ {−1, 0, 1}, and show that n is a multiple
of 4 when c �= 0.

12082. Proposed by Stan Wagon, Macalester College, St. Paul, MN, and Piotr Zielinski,
Boston, MA. Alice, Bob, and Charlie are prisoners in the care of a warden who lines them
up in order, Charlie in front of Bob and Bob in front of Alice. The warden has k differently
colored hats with k ≥ 3 and places one hat on each prisoner’s head, making the selection at
random and discarding the k − 3 unused hats. The prisoners know what the k colors are but
see only the hats of the prisoners in front of them (i.e., Alice sees two hats, Bob sees one,
and Charlie sees none). The prisoners then guess the colors of their hats in turn, first Alice,
then Bob, then Charlie. All prisoners hear the guesses. If the three guesses are correct, then
the prisoners will all be freed.

The prisoners know the rules and can devise a strategy in advance. No communication
other than the guesses is allowed once the hats are placed. What is the best possible strategy
for the prisoners?

SOLUTIONS

When the Nine-Point Center Lies on the Circumcircle

11958 [2017, 179]. Proposed by Kent Holing, Trondheim, Norway. (a) Find a condition on
the side lengths a, b, and c of a triangle that holds if and only if the nine-point center lies
on the circumcircle.
(b) Characterize the triangles whose nine-point center lies on the circumcircle and whose
incenter lies on the Euler line.

Solution by Koupa Tak Lun Koo, Beacon College, Hong Kong, China.
(a) Let O,H, and N be the circumcenter, orthocenter, and nine-point center, respectively.
It is well known that N is the midpoint of OH and that OH2 = 9R2 − (a2 + b2 + c2),
where R is the circumradius. Note that N lies on the circumcircle if and only if ON = R,

or 9R2 − (a2 + b2 + c2) = OH2 = (2R)2. Substituting R = abc/(4K), where K is the
area of the triangle, this condition becomes

a2 + b2 + c2 = 5R2 = 5a2b2c2

16K2
= 5a2b2c2

(a + b + c)(−a + b + c)(a − b + c)(a + b − c)
,

which is equivalent to

a6 + b6 + c6 + a2b2c2 = (a2 + b2)(b2 + c2)(c2 + a2). (∗)

(b) It is well known that the incenter lies on the Euler line if and only if the triangle is
isosceles. Letting b = c in (∗), we have

a6 + 2b6 + a2b4 = (a2 + b2)(2b2)(a2 + b2),

or a2(a2 + b2)(a2 − 3b2) = 0. Hence the triangle satisfies the required conditions if and
only if a2 = 3b2 = 3c2 so that the angles of the triangle are π/6, π/6, and 2π/3.

Editorial comment. For more on the triangles satisfying the condition in part (a), see
O. Bottema (2008), Topics in Elementary Geometry, New York: Springer, page 76. There
one finds the equivalent condition t = −3/8 where t = cos A cos B cos C. Also, if the
nine-point circle and the circumcircle intersect at angle θ, then t = − sin2(θ/2). For more
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on the location of the incenter relative to the Euler line, see A. P. Guinand (1984), Euler
lines, tritangent centers, and their triangles, this Monthly, 91(5): 290–300.

Also solved by M. Bataille (France), B. S. Burdick, P. P. Dályay (Hungary), O. Geupel (Germany), S. Hito-
tumatu, (Japan), T. Horine, M. Goldenberg, M. Kaplan, O. Kouba (Syria), J. Minkus, C. R. Pranesachar
(India), A. Stadler (Switzerland), R. Stong, Z. Vőrős (Hungary), M. Vowe (Switzerland), T. Wiandt, L. Zhou,
T. Zvonaru (Romania), N. Stanciu (Romania), GCHQ Problem Solving Group (U. K.), and the proposer.

A Permanent Solution

11959 [2017, 179]. Proposed by Donald Knuth, Stanford University, Stanford, CA. Prove
that, for any n-by-n matrix A with (i, j)-entry ai,j and any t1, . . . , tn, the permanent of A

is

1

2n

∑ n∏
i=1

σi

(
ti +

n∑
j=1

σjai,j

)
,

where the outer sum is over all 2n choices of (σ1, . . . , σn) ∈ {1,−1}n.

Solution by Fredrik Ekström, University of Oulu, Oulu, Finland. We use the signs in the
choices for (σ1, . . . , σn) to cancel spurious contributions to the sum, leaving 2n perm(A).
Let [n] = {1, . . . , n}.

With σ0 = 1 and ai,0 = ti , we have σi(ti +∑n
j=1 σjai,j ) = ∑n

j=0 σiσjai,j . In expand-
ing the product over i, we select an index ϕ(i) for each i, where ϕ is a function from
[n] to {0, . . . , n}. Hence

∏n
i=1

∑n
j=0 σiσjai,j = ∑

ϕ

∏n
i=1 σiσϕ(i)ai,ϕ(i). where the sum is

over all such functions ϕ. After interchanging the order of summation, the sum in the
problem statement becomes

∑
ϕ

∑
σ

∏n
i=1 σiσϕ(i)ai,ϕ(i), where σ runs through all elements

of {1} × {1,−1}n.
Consider ϕ whose image omits some k ∈ [n]. In the sum over σ for such ϕ, the terms

when σk = 1 and σk = −1 cancel. After grouping terms by the least such k, the sum over ϕ

reduces to the sum over terms where (ϕ(1), . . . , ϕ(n)) is a permutation of [n], eliminating
the dependence on t1, . . . , tn. Summing over permutations π of [n], we then claim

∑
ϕ

∑
σ

n∏
i=1

σiσϕ(i)ai,ϕ(i) =
∑
π

∑
σ

n∏
i=1

σiσπ(i)ai,π(i) = 2n
∑
π

n∏
i=1

ai,π(i) = 2nperm(A).

For the central equality above, note that the product for a particular choice of σ accesses
2n factors in the image of σ , each one twice. Therefore, for each σ the coefficient on∏n

i=1 ai,π(i) is 1, and there are 2n choices for σ .

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), D. Fleischman, O. Geupel (Germany), T. Horine,
O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), S. Navasardyan, M. Omarjee (France),
M. A. Prasad (India), J. C. Smith, R. Stong, R. Tauraso (Italy), and the proposer.

Hurwitz to the Rescue

11960 [2017, 179]. Proposed by Ulrich Abel, Technische Hochschule Mittelhessen, Fried-
berg, Germany. Let m and n be natural numbers, and, for i ∈ {1, . . . , m}, let ai be a real
number with 0 ≤ ai ≤ 1 . Define

f (x) = 1

x2

(
m∑

i=1

(1 + aix)mn − m

m∏
i=1

(1 + aix)n

)
.

Let k be a nonnegative integer, and write f (k) for the kth derivative of f . Show that
f (k)(−1) ≥ 0.
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Solution by the editors. Let S be the collection of functions f that are infinitely differ-
entiable at −1 and such that f (k)(−1) ≥ 0 for all integers k ≥ 0. Note that S is closed
under sums, products, and nonnegative scalar multiples. For 0 ≤ ai ≤ 1, we claim that the
function g(x) = 1 + aix belongs to S. Indeed, g(−1) = 1 − ai ≥ 0, g′(−1) = ai ≥ 0, and
g(k)(−1) = 0 for k ≥ 2.

For m = 1, we have f (x) = 0, so f ∈ S.
For m = 2, we have

f (x) = x−2
(
(1 + a1x)2n + (1 + a2x)2n − 2(1 + a1x)n(1 + a2x)n

)
= (a1 − a2)

2

(
(1 + a1x)n − (1 + a2x)n

(1 + a1x) − (1 + a2x)

)2

= (a1 − a2)
2

(
n−1∑
i=0

(1 + a1x)i(1 + a2x)n−1−i

)2

.

Thus, by the closure properties, f ∈ S.
Finally, let m ≥ 3. We cite the 3-page note on the AM–GM inequality due to

Hurwitz, A. (1891), Uber den Vergleich des arithmetischen und des geometrischen
Mittels, J. Reine Ange. Math., 108: 266–268, in which it is proved that the polynomial
Xm

1 + Xm
2 + · · · + Xm

m − mX1X2 · · ·Xm has a representation in the form∑
1≤i<j≤m

(Xi − Xj)
2 Pi,j (X1, . . . , Xm),

where Pi,j are polynomials with all nonnegative coefficients. So

f (x) =
∑

1≤i<j≤m

(
(1 + aix)n − (1 + ajx)n

)2

x2
Pi,j

(
(1 + a1x)n, . . . , (1 + amx)n

)
.

Now x−2((1 + aix)n − (1 + ajx)n)2 ∈ S by the case m = 2, and

Pi,j ((1 + a1x)n, . . . , (1 + amx)n) ∈ S

by the closure properties, so finally f ∈ S again by the closure properties.

No solutions were received for m ≥ 3.

A Radical Distribution

11962 [2017, 180]. Proposed by Elton Hsu, Northwestern University, Evanston, IL. Let
{Xn}n≥1 be a sequence of independent and identically distributed random variables each
taking the values ±1 with probability 1/2. Find the distribution of the random variable√√√√1

2
+ X1

2

√
1

2
+ X2

2

√
1

2
+ · · · .

Solution by Li Zhou, Polk State College, Winter Haven, FL. The probability that the random
variable is at most x is (2/π) arcsin x, for x ∈ [0, 1].

Let Y0, Y1, . . . and Z0, Z1, . . . be random variables defined by

Y0 =
√

1

2
, Y1 =

√
1

2
+ X1

2

√
1

2
, Y2 =

√√√√1

2
+ X1

2

√
1

2
+ X2

2

√
1

2
, . . .
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and

Z0 =
√

1

2
, Z1 =

√
1

2
+ X2

2

√
1

2
, Z2 =

√√√√1

2
+ X2

2

√
1

2
+ X3

2

√
1

2
, . . . .

For n ≥ 0, the variable Zn is independent of X1 and has the same distribution as Yn.
Furthermore, note that Yn+1 = √

(1 + X1Zn)/2.
We first prove inductively that Yn and Zn take the value cos(kπ/2n+2) with probability

1/2n, for k ∈ {1, 3, 5, . . . , 2n+1 − 1}. The claim is immediate for n = 0. If it holds for
some value n, then for k ∈ {1, 3, 5, . . . , 2n+1 − 1} the random variable Yn+1 takes the value√(

1 + cos(kπ/2n+2)
)
/2 or

√(
1 − cos(kπ/2n+2)

)
/2 with probability 1/2n+1 each. Since√

1

2
+ 1

2
cos

kπ

2n+2
= cos

kπ

2n+3
and

√
1

2
− 1

2
cos

kπ

2n+2
= sin

kπ

2n+3
= cos

(2n+2 − k)π

2n+3
,

this completes the induction.
Therefore, the probability that Yn is at most x is |An(x)|/2n, where

An(x) =
{
k ∈ {1, 3, 5, . . . , 2n+1 − 1

}
: 0 ≤ cos

kπ

2n+2
≤ x

}
.

As n → ∞,

|An(x)| ∼ 2n+1

π
(arccos 0 − arccos x) = 2n+1

π
arcsin x,

which yields the claimed limiting distribution.

Also solved by R. Agnew, E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), R. Chapman (U. K.), P. J. Fleis-
chman, N. Grivaux (France), J. A. Grzesik, J. C. Keiffer, O. Kouba (Syria), J. H. Lindsey II, M. A. Prasad
(India), K. Schilling, N. C. Singer, J. C. Smith, R. Stong, D. B. Tyler, E. I. Verriest, T. Wiandt, and the pro-
poser.

A Summation Inequality

11963 [2017, 180]. Proposed by Gheorghe Alexe and George-Florin Serban, Braila,
Romania. Let a1, . . . , an be positive real numbers with

∏n
k=1 ak = 1. Show that

n∑
i=1

(ai + ai+1)
4

a2
i − aiai+1 + a2

i+1

≥ 12n,

where an+1 = a1.

Solution by Leonard Giugiuc, Drobeta Turnu Severin, Romania. We first observe that if a

and b are positive real numbers, then

(a + b)4

a2 − ab + b2
≥ 12ab.

This follows from

(a + b)4

a2 − ab + b2
− 12ab = (a2 − 4ab + b2)2

a2 − ab + b2
≥ 0.

Applying this fact to each term of the summation and then using the AM–GM inequality,
we obtain

n∑
i=1

(ai + ai+1)
4

a2
i − aiai+1 + a2

i+1

≥ 12
n∑

i=1

aiai+1 ≥ 12n
n

√√√√( n∏
i=1

ai

)2

= 12n.
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Editorial comment. Several solvers noted that the inequality in the problem is an equality
when n is even and the terms of the sequence a1, . . . , an alternate between (

√
6 + √

2)/2
and (

√
6 − √

2)/2. When n is odd, the inequality is always strict.

Also solved by A. Ali (India), A. Alt, R. Boukharfane (France), P. Bracken, E. Braune (Austria), R. Chapman
(U. K.) P. P. Dályay (Hungary), D. Fleischman, N. Ghosh, T. Horine, K. T. L. Koo (China), O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), V. Mikayelyan (Armenia), R. Nandan, P. Perfetti (Italy), M. Reid,
E. Schmeichel, J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), L. Zhou, GCHQ Problem
Solving Group (U. K.), and the proposer.

Condition for a Certain Point on a Triangle

11965 [2017, 274]. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania. Let
ABC be a triangle with circumradius R. Prove that there exists a point M on side BC such
that MA · MB · MC = 32R3/27 if and only if 2 cot B cot C = 1.

Solution by Dain Kim, Seoul Science High School, Seoul, South Korea. We begin with the
following result.
Lemma. Let ABC be inscribed in the circle �. If AD is the diameter of � through A, and
M is the point where BC and AD meet, then

cot B · cot C = MB · MC

MA2 .

Proof. Because AD is a diameter, ∠ABD = ∠ACD = π/2, and by the inscribed angle
theorem it follows that ∠BAD = ∠BCD = π/2 − C and ∠CAD = ∠CBD = π/2 − B.
The law of sines gives

cos C

sin B
= sin( π

2 − C)

sin B
= MB

MA
and

cos B

sin C
= sin( π

2 − B)

sin C
= MC

MA
.

Multiplying these two equations together yields the desired result. �
We now address separately the necessity and sufficiency of 2 cot B cot C = 1.

(Necessity) Assume there exists a point M on side BC such that MA · MB · MC = 32R3/27.
Let line MA intersect the circumcircle of triangle ABC again at D. Let MA = x and MD =
y. Since 2R is the diameter of the circumcircle, x + y = AD ≤ 2R. By the power-of-
the-point theorem, MB · MC = MA · MD. Multiplying this on both sides by MA yields
MA · MB · MC = MA2 · MD = x2y. The AM–GM inequality then implies

MA · MB · MC = x2y ≤ 1

2

(
x + x + 2y

3

)3

≤ (2(2R))3

54
= 32R3

27
.

Equality holds only when x = 2y and x + y = 2R, in which case x = (4/3)R and y =
(2/3)R. Thus AD is a diameter.

Applying the lemma,

cot B · cot C = MB · MC

MA2 = MA · (MD)2

MA · MB · MC
= xy2

x2y
= y

x
= 1

2
.

This is the required condition 2 cot B · cot C = 1.

(Sufficiency) Assume 2 cot B cot C = 1. Let AD be the diameter of the circumcircle
through A, and let M be the point where BC and AD meet. We must show that MA · MB ·
MC = 32R3/27. As before, MA · MB · MC = x2y, with x = MA and y = MD. From the
lemma,

x2y = MA · MB · MC = MB · MC

MA2 · MA3 = cot B cot C · MA3 = x3

2
.
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Therefore y = x/2, so x + x/2 = 2R. It follows that x = 4R/3 and x3/2 = 32R3/27.

Also solved by M. Bataille (France) D. Fleischman, T. Horine, O. Kouba (Syria), O. P. Lossers (Netherlands),
R. Nandan, V. Schindler (Germany), J. C. Smith, R. Stong, E. I. Verriest, L. Zhou, and the proposer.

Evaluate an Integral

11966 [2017, 274]. Proposed by Cornel Ioan Vălean, Teremia Mare, Timiş, Romania.
Prove ∫ 1

0

x ln(1 + x)

1 + x2
dx = π2

96
+ (ln 2)2

8
.

Solution by Juan Manuel Sánchez (student), Universidad de Antioquia, Medellin, Colom-
bia. Since

∫ 1
0

x dt
1+xt

= ln(1 + x),

∫ 1

0

x ln(1 + x)

1 + x2
dx =

∫ 1

0

∫ 1

0

x2

(1 + x2)(1 + xt)
dt dx =

∫ 1

0

∫ 1

0

x2

(1 + x2)(1 + xt)
dx dt

=
∫ 1

0

1

1 + t2

∫ 1

0

(
(tx − 1)

1 + x2
+ 1

1 + tx

)
dx dt

=
∫ 1

0

1

1 + t2

(
t ln 2

2
− π

4
+ ln(1 + t)

t

)
dt

= ln 2

2

∫ 1

0

t

1 + t2
dt − π

4

∫ 1

0

1

1 + t2
dt +

∫ 1

0

ln(1 + t)

t (1 + t2)
dt

= (ln 2)2

4
− π2

16
+
∫ 1

0
ln(1 + t)

(
1

t
− t

1 + t2

)
dt

= (ln 2)2

4
− π2

16
+
∫ 1

0

ln(1 + t)

t
dt −

∫ 1

0

t ln(1 + t)

1 + t2
dt.

Solving this for
∫ 1

0
x ln(1+x) dx

1+x2 yields

∫ 1

0

x ln(1 + x)

1 + x2
dx = (ln 2)2

8
− π2

32
+ 1

2

∫ 1

0

ln(1 + t)

t
dt.

Since ∫ 1

0

ln(1 + t)

t
dt =

∫ 1

0

∞∑
i=0

(−1)i t i

i + 1
dt =

∞∑
i=1

(−1)i−1

i2

=
∞∑
i=1

1

i2
− 2

∞∑
i=1

1

(2i)2
= 1

2

∞∑
i=1

1

i2
= π2

12
,

we obtain ∫ 1

0

x ln(1 + x)

1 + x2
dx = (ln 2)2

8
− π2

32
+ 1

2
· π2

12
= π2

96
+ (ln 2)2

8
.

Also solved by T. Amdeberhan & V. H. Moll, K. F. Andersen (Canada), A. Arenas & M. Bello & M. Benito
& Ó. Ciaurri & E. Fernández & E. Labarga & L. Roncal (Spain), M. Bataille (France), A. Berkane (Algeria),
R. Boukharfane (France), K. N. Boyadzhiev, P. Bracken, B. Bradie, R. Chapman (U. K.), H. Chen, P. P. Dályay
(Hungary), B. E. Davis, D. Fritze (Germany), S. Gao, C. Georghiou (Greece), N. Ghosh, M. L. Glasser (Spain),
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H. Grandmontagne (France), J. M. Groah, J. A. Grzesik, T. Hakobyan & S. Navasardyan (Armenia), A. Han-
nan (India), E. A. Herman, T. Horine, M. Ivan (Romania), S. Kaczkowski, K. T. L. Koo (China), O. Kouba
(Syria), A. Kourdouklas (Greece), K.-W. Lau (China), H. Lee (South Korea), O. P. Lossers (Netherlands),
V. Lucic (U. K.), L. Kempeneers & J. Van Casteren (Belgium), P. Magli (Italy), V. Mikayelyan (Armenia),
R. Nandan, G. Negri (Italy), M. Omarjee (France), P. Perfetti (Italy), R. Poodiack, F. A. Rakhimjanovich
(Uzbekistan), H. Ricardo, S. Seales, A. N. Sharma (India), S. Sharma (India), S. Silwal & N. Taylor, J. Singh
(India), J. C. Smith, A. Stadler (Switzerland), J. Steier, R. Stong, R. Tauraso (Italy), E. I. Verriest, H. Wang
& J. Wojdylo, T. Wiandt, M. Wildon (U. K.), M. R. Yegan (Iran), Y. Zhao, L. Zhou, GCHQ Problem Solving
Group (U. K.), Get Stoked Student Problem Solving Group, and the proposer.

Zeros of a Truncated Riemann Zeta Function

11970 [2017, 275]. Proposed by Albert Stadler, Herrliberg, Switzerland. Let

ζ5(z) = 1 + 2−z + 3−z + 4−z + 5−z,

where z is a complex number. Prove that ζ5(z) �= 0 when the real part of z is greater than
or equal to 0.9.

Solution by Li Zhou, Polk State College, Winter Haven, FL. Let z = x + iy with x ≥ 0.9.

Since |3−z + 5−z| ≤ |3−z| + |5−z| = 3−x + 5−x ≤ 3−0.9 + 5−0.9 < 0.61, it suffices to show∣∣1 + 2−z + 4−z
∣∣ > 0.61. To this end, we compute

∣∣1 + 2−z + 4−z
∣∣2 =

(
1 + cos(y ln 2)

2x
+ cos(2y ln 2)

4x

)2

+
(

sin(y ln 2)

2x
+ sin(2y ln 2)

4x

)2

= 1 + 1

4x
+ 1

16x
+ 2

(
cos(y ln 2)

2x
+ cos(2y ln 2)

4x
+ cos(y ln 2)

8x

)

= 4

(
cos(y ln 2)

2x
+ 1

4

(
1 + 1

4x

))2

+ 3

4

(
1 − 1

4x

)2

≥ 3

4

(
1 − 1

40.9

)2

> 0.612,

completing the proof.

Editorial comment. A discussion, with plots, of the zeros of truncated zeta functions ζk(z)

can be found in Borwein, P., Fee, G., Ferguson, R., van der Waall, A. (2007), Zeros of
partial sums of the Riemann zeta function, Experiment. Math. 16(1): 21–39.

Also solved by P. Bracken, T. Horine, O. P. Lossers (Netherlands), V. Mikayelyan (Armenia), R. Stong,
E. I. Verriest, and the proposer.

A Mean Inequality

11971 [2017, 369]. Proposed by Spiros P. Andriopoulos, Third High School of Amaliada,
Eleia, Greece. For n ≥ 2, let a1, . . . , an be positive real numbers. Prove

(
n∏

i=1

(1 + ai)

)n−1

≥
⎛
⎝∏

i<j

(
1 + 2aiaj

ai + aj

)⎞⎠
2

.

Solution by Koopa Tak Lun Koo, Beacon College, Hong Kong, China. In the product∏
i<j (1 + ai)(1 + aj ), there are precisely n − 1 occurrences of (1 + ak) for each k in
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{1, . . . , n}. Therefore, using both the AM–GM and GM–HM inequalities, we can write(
n∏

i=1

(1 + ai)

)n−1

=
∏

1≤i<j≤n

(1 + ai)(1 + aj ) =
∏

1≤i<j≤n

(1 + ai + aj + aiaj )

≥
∏

1≤i<j≤n

(1 + 2
√

aiaj + aiaj ) =
∏

1≤i<j≤n

(1 + √
aiaj )

2

≥
∏

1≤i<j≤n

(
1 + 2

1
ai

+ 1
aj

)2

=
⎛
⎝ ∏

1≤i<j≤n

(
1 + 2aiaj

ai + aj

)⎞⎠
2

.

Equality occurs if and only if all the real numbers ai are equal.

Also solved by M. Bataille (France), A. Berkane (Algeria), R. Boukharfane (France), R. Chapman (U. K.),
P. P. Dályay (Hungary), S. Dubey, D. Fleischman, O. Geupel (Germany), N. Ghosh, L. Giugiuc (Romania),
M. Goldenberg & M. Kaplan, T. Hakobyan & S. Navasardyan (Armenia), A. Hannan (India), E. A. Herman,
T. Horine, S. Hwang (South Korea), J. Kim (South Korea), O. Kouba (Syria), H. Kwong, W. Lai & J. Risher,
J. H. Lindsey ll, O. P. Lossers (Netherlands), D. Marinescu (Romania), R. Martin (Germany), V. Mikayelyan
(Armenia), R. Nandan, M. Omarjee (France), P. Perfetti (Italy), F. A. Rakhimjanovich (Uzbekistan), E. Schme-
ichel, J. C. Smith, A. Stadler (Switzerland), N. Stanciu & T. Zvonaru (Romania), R. Stong, R. Tauraso (Italy),
D. B. Tyler, E. I. Verriest, H. Widmer (Switzerland), L. Zhou, GCHQ Problem Solving Group (U. K.), NSA
Problem Solving Group, and the proposer.

Inradius and Exradii of a Tetrahedron

11972 [2017, 369]. Proposed by Yun Zhang, Xi’an Senior High School, Xi’an China. Let
r be the radius of the sphere inscribed in a tetrahedron whose exscribed spheres have radii
r1, r2, r3, and r4. Prove

r
(

3
√

r1 + 3
√

r2 + 3
√

r3 + 3
√

r4
) ≤ 2 3

√
r1r2r3r4.

Solution by Hansruedi Widmer, Baden, Switzerland. By the AM–GM inequality,

1

3

( 1

ri

+ 1

rj

+ 1

rk

)
≥ 3

√
1

rirj rk

for 1 ≤ i, j, k ≤ 4. Summing over the four triplets {i, j, k} yields

4∑
k=1

1

rk

≥
4∑

k=1

3
√

rk

3
√

r1r2r3r4
.

The result follows from the identity
∑4

k=1 1/rk = 2/r . (See Toda, A. A. (2014). Radii of
the inscribed and escribed spheres of a simplex. Inter. J. Geom. 3(2): 5–13.)

Editorial comment. Equality occurs if and only if r1 = · · · = r4, e.g., for isosceles tetrahe-
dra. The n-dimensional analogues are

∑n+1
k=1 1/rk = (n − 1)/r (Toda, 2014) and

r( n
√

r1 + n
√

r2 + · · · + n
√

rn+1) ≤ (n − 1) n
√

r1r2 · · · rn+1.

Also solved by M. Bataille (France), R. Boukharfane (France), R. Chapman (U. K.), P. P. Dályay (Hungary),
O. Geupel (Germany), L. Giugiuc (Romania), T. Horine, K. T. L. Koo (China), O. Kouba (Syria), O. P. Lossers
(Netherlands), D. Marinescu (Romania), R. Nandan, J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso
(Italy), T. Wiandt, L. Zhou, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by May 31, 2019 via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12083. Proposed by Alijadallah Belabess, Khemisset, Morocco. Let x, y, and z be positive
real numbers. Prove

1

x + y
+ 1

y + z
+ 1

z+ x
≥ 3

√
3

2
√
x2 + y2 + z2

.

12084. Proposed by George Stoica, Saint John, NB, Canada. Let a1, a2, . . . be a sequence
of nonnegative numbers. Prove that (1/n)

∑n
k=1 ak is unbounded if and only if there

exists a decreasing sequence b1, b2, . . . such that limn→∞ bn = 0,
∑∞

n=1 bn is finite, and∑∞
n=1 anbn is infinite. Is the word “decreasing” essential?

12085. Proposed by Joseph DeVincentis, Salem, MA, Stan Wagon, Macalester College,
St. Paul, MN, and Michael Elgersma, Plymouth, MN. For which positive integers n can
{1, . . . , n} be partitioned into two sets A and B of the same size so that∑

k∈A
k =

∑
k∈B

k,
∑
k∈A

k2 =
∑
k∈B

k2, and
∑
k∈A

k3 =
∑
k∈B

k3?

12086. Proposed by Miguel Ochoa Sanchez, Lima, Peru, and Leonard Giugiuc, Drobeta
Turnu Severin, Romania. Let ABC be a triangle with right angle at A, and letH be the foot
of the altitude from A. LetM ,N , and P be the incenters of triangles ABH, ABC, and ACH,
respectively. Prove that the ratio of the area of triangle MNP to the area of triangle ABC is
at most (

√
2 − 1)3/2, and determine when equality holds.

12087. Proposed by M. L. J. Hautus, Heeze, Netherlands. Let K be a field, and let A be
a linear map from Kn into itself. The equation X2 = AX has the trivial solutions X = 0
and X = A. Show that it has a nontrivial solution if and only if the characteristic polyno-
mial det(λI − A) is reducible, with the following sole exception: If K has two elements,
n = 2, and A is nilpotent and nonzero, then the characteristic polynomial is reducible, yet
X2 = AX has no nontrivial solutions.

doi.org/10.1080/00029890.2018.1537413
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12088. Proposed by Florin Stanescu, Serban Cioculescu School, Gaesti, Romania. Let k
be a positive integer with k ≥ 2, and let f : [0, 1] → R be a function with continuous
kth derivative. Suppose f (k)(x) ≥ 0 for all x ∈ [0, 1], and suppose f (i)(0) = 0 for all
i ∈ {0, 1, . . . , k − 2}. Prove∫ 1

0
xk−1f (1 − x) dx ≤ (k − 1)!k!

(2k − 1)!

∫ 1

0
f (x) dx.

12089. Proposed by Greg Oman, University of Colorado, Colorado Springs, CO, and
Adam Salminen, University of Evansville, Evansville, IN. All rings in this problem are
assumed to be commutative with a nonzero multiplicative identity. A homomorphism from
a ring R to a ring S is an identity-preserving map φ : R → S such that φ(x + y) =
φ(x)+ φ(y) and φ(xy) = φ(x)φ(y) for all x, y ∈ R. Consider the following two proper-
ties of a ring R:

(1) For every proper ideal I of R, there is an injective homomorphism φ : R/I → R.
(2) For every proper ideal I of R, there is an injective homomorphism φ : R → R/I .

(a) Must a ring that enjoys property (1) be a field?
(b) Must a ring that enjoys property (2) be a field?
(c) Must a ring that enjoys properties (1) and (2) be a field?

SOLUTIONS

A Trigonometric Integral

11961 [2017, 180]. Proposed by Mihaela Berindeanu, Bucharest, Romania. Evaluate∫ π/2

0

sin x

1 + √
sin(2x)

dx.

Solution by Koopa Tak Lun Koo, Beacon College, Hong Kong, China. The integral equals
(π/2)− 1. To see this, denote the integral by I . The substitution x 	→ (π/2)− x yields

I =
∫ π/2

0

sin x

1 + √
sin 2x

dx =
∫ π/2

0

cos x

1 + √
sin 2x

dx.

Adding these two integrals, substituting u = cos x − sin x, and noting that u2 = cos2 x −
2 sin x cos x + sin2 x = 1 − sin 2x gives

2I =
∫ π/2

0

sin x + cos x

1 + √
sin 2x

dx =
∫ 1

−1

1

1 + √
1 − u2

du = 2
∫ 1

0

1

1 + √
1 − u2

du.

To compute this integral, substitute u = sin θ to obtain∫ 1

0

1

1 + √
1 − u2

du =
∫ π/2

0

cos θ

1 + cos θ
dθ =

[
θ − tan

θ

2

]π/2
0

= π

2
− 1.

Editorial comment. Several solvers noted a more general result, with essentially the same
proof: If f is continuous on [0, π/2], then∫ π/2

0
f (sin 2x) sin x dx =

∫ π/2

0
f (cos2 θ) cos θ dθ.

January 2019] PROBLEMS AND SOLUTIONS 83

X
ia
ng
’s
T
ex
m
at
h



This has appeared in Besge, M. (1853), Addition à la note sur une transformation d’inté-
grales défines, insérée dans le cahier de mars, J. de Math. Pures et Appl. 18: 168.

Also solved by P. Acosta, A. Ali (India), A. Alt, K. F. Andersen (Canada), G. Apostolopoulos (Greece),
M. Bataille (France), A. Berkane (Algeria), R. Boukharfance (France), B. Bowers & T. Fauss & R. Melton,
P. Bracken, D. Bronicki, K. Bryant & A. Cathers & B. Zaretzky, B. Burdick, M. V. Channakeshava (India),
R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), B. E. Davis, P. De (India), H. Y. Far, N. Ghosh,
L. Giugiuc (Romania), M. L. Glasser, M. Goldenberg & M. Kaplan, J. M. González (Chile), H. Grandmontagne
(France), J. M. Groah, L. Han, P. Hauber (Germany), E. A. Herman, M. Hoffman, T. Horine, E. J. Ionaşcu,
Y. J. Ionin, W. P. Johnson, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), M. E. Kidwell & M. D. Meyer-
son, O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands), V. Mikayelyan (Armenia), M. Omarjee
(France), B. Prescott, H. Ricardo, V. Schindler (Germany), S. Sharma (India), J. Showmaker, N. C. Singer,
J. C. Smith, A. Stadler (Switzerland), A. Stenger, S. M. Stewart (Australia), R. Stong, J. Swenson, R. Tauraso
(Italy), D. B. Tyler, E. I. Verriest, L. Walker, H. Wang & J. Wojdylo, T. Wiandt, H. Widmer (Switzerland),
M. R. Yegan (Iran), L. Zhou, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer.

Almost Perfect Squares

11964 [2017, 274]. Proposed by Marian Tetiva, National College “Gheorghe Roşca
Codreanu,” Bı̂rlad, Romania. Find all triples of integers (a, b, c) with a 
= 0 such that
the function f defined by f (x) = ax2 + bx + c has the property that, for every positive
integer n, there exists an integer m with f (n)f (n+ 1) = f (m).

Solution by Allen Stenger, Boulder, CO. Let (∗) denote f (n)f (n+ 1) = f (m). The triples
(a, b, c) such that (∗) is solvable for all n are of two types: (i) a = 1 with b and c arbitrary,
and (ii) a 
= 1 with (a, b, c) = (r2, 2rs, s2), where r and s are integers such that r divides
s(s − 1) or s(s + 1).

Observe first that 4f (n)f (n+ 1) is “near” a perfect square: Expanding both sides and
canceling like terms yields

4f (n)f (n+ 1) = (2an2 + (2a + 2b)n+ (b + 2c))2 − (b2 − 4ac). (1)

Thus (∗) requires 4f (m) = y2 − (b2 − 4ac), where y = 2an2 + (2a + 2b)n+ (b + 2c).
Multiplying by a leads to

ay2 − a(b2 − 4ac) = 4af (m) = (2am+ b)2 − (b2 − 4ac).

Writing x = 2am+ b and rearranging yields

x2 − ay2 = (1 − a)(b2 − 4ac), (2)

which has the form of Pell’s equation. Note that a > 0, because if a < 0, then f (m) is
bounded above while f (n)f (n+ 1) → +∞ as n → ∞.

There are three cases: (1 − a)(b2 − 4ac) 
= 0, or a = 1, or b2 − 4ac = 0. The first case
is the usual Pell’s equation. Solutions to Pell’s equation are sparse, with successive values
growing exponentially, so the number of solutions with 0 ≤ x ≤ X is O(lnX) — see pp.
205–206 in LeVeque, W. J. (1996), Fundamentals of Number Theory, New York: Dover.
On the other hand, (∗) implies m ∼ √

an2, where p ∼ q means that p is asymptotic to
q, so x ∼ 2a3/2n2. If (∗) has an integral solution m for every positive integer n, then the
number of x with 0 ≤ x ≤ X is asymptotic to

√
X/(2a3/2). Since this expression grows

much faster than the upper bound O(lnX), in this case (∗) cannot have an integer solution
m for every n.

When a = 1, setting m = n2 + (b + 1)n+ c yields a solution to (∗), verified by multi-
plying out both sides of (∗).

When b2 − 4ac = 0, we have x2 = ay2. Therefore a is a perfect square (set a = r2),
and 4ac = b2 implies that c is also a perfect square. Set c = s2. Replacing −r with r if
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necessary, this gives b = 2rs. With these substitutions, f (x) equals (rx + s)2 and is also
a perfect square. Substituting these into (1), we see that satisfying (∗) requires

(rm+ s)2 = (r2n2 + (r2 + 2rs)n+ (rs + s2))2.

Taking square roots yields

|rm+ s| = |r2n2 + (r2 + 2rs)n+ (rs + s)2|. (3)

All the summands are divisible by r except the s on the left and the s2 on the right. Hence,
depending on the choice of sign, we have ±s ≡ s2 mod r , so the existence of an integer
solution m to (∗) requires r divides s(s ∓ 1).

Conversely, choose

m = rn2 + (r + 2s)n+ (s + s(s − 1)/r) if r divides s(s − 1),

and

m = −(rn2 + (r + 2s)n+ (s + s(s + 1)/r)
)

if r divides s(s + 1).

In either case, the divisibility assumptions make m an integer. In the first case,

rm+ s = r(rn2 + (r + 2s)n+ (s + s(s − 1)/r))+ s,

so

rm+ s = r2n2 + (r2 + 2rs)n+ (rs + s(s − 1))+ s = r2n2 + (r2 + 2rs)n+ (rs + s2),

which satisfies (3), as required. Similarly, in the second case

rm+ s = −(r2n2 + (r2 + 2rs)n+ (rs + s2)
)
,

which again satisfies (3).
Therefore, if r and s are chosen such that r divides s(s − 1) or s(s + 1), then (a, b, c) =

(r2, 2rs, s2) is a triple such that (∗) has an integer solution m for all n.

Editorial comment. Several solvers used the theorem that if some polynomial P(x) eval-
uates to a square integer whenever x is a positive integer, then P(x) is the square of a
polynomial. A good treatment of this result appears in Murty, M. R. (2002), Prime num-
bers and irreducible polynomials, this Monthly, 109(5): 452–458.

Also solved by T. Hakobyan (Armenia), T. Horine, E. J. Ionaşcu, Y. J. Ionin, S. Jung (South Korea), O. Kouba
(Syria), O. P. Lossers (Netherlands), C. R. Pranesachar (India), M. Reid, J. Robertson, C. Schacht, O. Senobi
(Morroco), N. C. Singer, J. C. Smith, R. Stong, E. I. Verriest, L. Zhou, and the proposer.

A Divisibility Property of Fibonacci Numbers

11968 [2017, 274]. Proposed by Christopher J. Hillar, Redwood Center for Theoretical
Neuroscience, Berkeley, CA, Robert Krone, Queens University, Kingston, Ontario, Canada,
and Anton Leykin, Georgia Tech University, Atlanta, GA. Let Fn be the nth Fibonacci
number, with F0 = 0, F1 = 1, and Fk = Fk−1 + Fk−2 for k ≥ 2. For n ≥ 1, prove that
F5n/ (5Fn) is an integer congruent to 1 modulo 10.

Solution by Michael Tang (student), Massachusetts Institute of Technology, Cambridge,
MA. Let r and s be the roots of x2 − x − 1 with r = (1 + √

5)/2. Note that rs = −1.
Binet’s formula gives

√
5Fk = rk − sk . Hence

r2n + s2n = (
rn − sn

)2 + 2rnsn = 5F 2
n + 2(−1)n

January 2019] PROBLEMS AND SOLUTIONS 85

X
ia
ng
’s
T
ex
m
at
h



and

r4n + s4n = (
r2n + s2n

)2 − 2r2ns2n

= (
5F 2

n + 2(−1)n
)

2 − 2 = 25F 4
n + 20(−1)nF 2

n + 2.

Using the preceding identities,

F5n = Fn
r5n − s5n

rn − sn
= Fn

(
r4n + r3nsn + r2ns2n + rns3n + s4n

)
= Fn

(
r4n + (−1)nr2n + 1 + (−1)ns2n + s4n)

= Fn
(
25F 4

n + (−1)n25F 2
n + 5

) = 5Fn
(
5F 2

n

(
F 2
n ± 1

)+ 1
)
.

Because F 2
n

(
F 2
n ± 1

)
is even, the preceding identity shows that F5n/ (5Fn) is an integer

congruent to 1 modulo 10.

Editorial comment. Radouan Boukharfane showed that if an = F5n/ (5Fn), then

∞∑
n=0

anx
n = 1 − 4x − 9x2 + 6x3 + x4

1 − 5x − 15x2 + 15x3 + 5x4 − x5
.

This implies

∞∑
n=0

(an − 1) xn = 10x2(x + 1)

1 − 5x − 15x2 + 15x3 + 5x4 − x5
.

It follows that an − 1 is an integer divisible by 10.
Eugen Ionaşcu observed that when p is prime and 1 ≤ n ≤ p − 1, the ratio Fpn/(FpFn)

seems to be an integer congruent to 0 or 1 (mod p). The cases where only the residue 1
occurs (with n ≤ p − 1) appear to be the set of primes in oeis.org/A000057, plus p = 5.
The case p = 5 is exceptional in that F5 = 5 and the desired property holds for all n.

More information on F5n/ (5Fn) can be found at oeis.org/A088545.

Also solved by D. Bailey & E. Campbell & C. Diminnie, M. Bataille (France), R. Boukharfane (France),
B. Bradie, R. Chapman (U. K.), J. Christopher, P. P. Dályay (Hungary), D. Fleischman, C. Georghiou (Greece),
O. Geupel (Germany), M. Goldenberg & M. Kaplan, T. Hakobyan (Armenia), A. Hannan (India), T. Horine,
E. J. Ionascu, Y. J. Ionin, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), D. E. Knuth, K. T. L. Koo (China),
O. Kouba (Syria), H. Kwong, W.-K. Lai, P. Lalonde (Canada), J. H. Lindsey II, O. P. Lossers (Netherlands),
R. Martin (Germany), R. Nandan, M. Omarjee (France), Á. Plaza (Spain), M. Reid, J. C. Smith, A. Stadler
(Switzerland), R. Stong, J. Swenson, R. Tauraso (Italy), D. Terr, E. I. Verriest, T. Wiandt, L. Zhou, GCHQ
Problem Solving Group (U. K.), NSA Problems Group, and the proposers.

A Trigonometric Determinant

11969 [2017, 274]. Proposed by Askar Dzhumadil’daev, Kazakh-British Technical Univer-
sity, Almaty, Kazakhstan. Let x1, . . . , xn be indeterminates, and let A be the n-by-n matrix
with i, j -entry sec(xi − xj ). Prove

detA = (−1)(
n
2)

∏
1≤i<j≤n

tan2(xi − xj ).

Solution by Oliver Geupel, Brühl, Germany. We use induction on n for n ≥ 2. Let An
denote the n-by-n matrix A. The case n = 2 follows from tan2 θ = 1 + sec2 θ .
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For n > 2, without changing the value of detAn, we subtract sec(xi − xn) times the last
row from the ith row, for 1 ≤ i < n. The last column now is all 0 except for 1 in the last
row. For i, j ∈ {1, . . . , n− 1}, the resulting i, j -entry is

sec(xi − xj )− sec(xi − xn) sec(xn − xj ).

We compute

sec(xi − xj )− sec(xi − xn) sec(xn − xj )

= cos(xi − xn) cos(xj − xn)− cos(xi − xj )

cos(xi − xj ) cos(xi − xn) cos(xj − xn)

= − sin(xi − xn) sin(xj − xn)

cos(xi − xj ) cos(xi − xn) cos(xj − xn)

= − tan(xi − xn) tan(xj − xn) sec(xi − xj ).

All entries of row i have the factor tan(xi − xn), while all entries of column j have the
factor tan(xj − xn). We extract these factors and expand the determinant along the last
column to obtain, using the induction hypothesis,

detAn = (−1)n−1
∏

1≤i<n
tan2(xi − xn) · detAn−1

= (−1)(
n
2)

∏
1≤i<j≤n

tan2(xi − xj ).

Editorial comment. The problem can also solved using the Cauchy matrix. Robin Chapman
proved a generalization where the matrix has i, j -entry sec(xi + yj ).

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), D. Fleischman, E. A. Herman, T. Horine,
W. P. Johnson, K. T. L. Koo (China), O. Kouba (Syria), H. Kwong, P. Lalonde (Canada), O. P. Lossers (Nether-
lands), V. Mikayelyan (Armenia), S. Navasardyan (Armenia), M. Omarjee (France), O. Sonebi (Morocco),
A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), J. Walsh, L. Zhou, and the proposer.

An Application of Partial Fractions

11973 [2017, 369]. Proposed by Derek Orr, University of Pittsburgh, Pittsburgh, PA. Cata-
lan’s constant G is defined to be

∑∞
n=0(−1)n/(2n+ 1)2. Prove

G = π

2

∞∑
n=0

ζ(2n)

(2n+ 1)4n

(
1 − 2

4n

)
,

where ζ is the Riemann zeta function, defined by ζ(s) = ∑∞
n=1 1/ns for s > 1 and ζ(0) =

−1/2 by analytic continuation.

Composite solution by Omran Kouba, Higher Institute for Applied Sciences and Tech-
nology, Damascus, Syria, and Mark Wildon, Royal Holloway, Egham, U. K. Expanding
arctan x in a Maclaurin series yields

G =
∞∑
n=0

(−1)n

(2n+ 1)2
=
∫ 1

0

arctan x

x
dx.

After setting x = tan θ and using sin(2θ) = 2 sin θ cos θ , we obtain

G =
∫ π

4

0

θdθ

sin θ cos θ
= 1

2

∫ π
2

0
s csc s ds = π

2

∫ 1
2

0
πz csc(πz) dz.
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By the partial fraction expansion of the cosecant and the formula for the sum of a geometric
series,

πz csc(πz) =
∞∑

k=−∞
(−1)k−1 z2

k2 − z2
= 1 + 2

∞∑
k=1

(−1)k−1 z2/k2

1 − z2/k2

= 1 + 2
∞∑
n=1

( ∞∑
k=1

(−1)k−1

k2n

)
z2n

= 1 + 2
∞∑
n=1

((
1 − 2

22n

) ∞∑
k=1

1

k2n

)
z2n

= 1 + 2
∞∑
n=1

(
1 − 2

22n

)
ζ(2n)z2n,

where the interchange of summation is easily justified. With ζ(0) = −1/2,

πz csc(πz) = 2
∞∑
n=0

(
1 − 2

22n

)
ζ(2n)z2n.

The result now follows, since the integral from 0 to 1/2 of this final summation is

2
∞∑
n=0

(
1 − 2

22n

)
ζ(2n)

22n+1(2n+ 1)
.

Editorial comment. The Clausen function, defined by Cl2(θ) = ∑∞
k=1 sin(kθ)/k2, equals

G when θ = π/4. Several solvers employed known identities (or produced identities)
for this function to obtain the solution. Others used Bernoulli numbers. Richard Stong
employed the Barnes gamma function. For an enlightening look at the derivation and appli-
cation of partial fraction expansions, see the chapter on analysis in Aigner M., Ziegler,
G. M. (2018), Proofs from the BOOK, 6th ed., Berlin: Springer.

Also solved by A. Berkane (Algeria), R. Boukharfane (France), K. N. Boyadzhiev, P. Bracken, B. Bradie,
R. Chapman (U. K.), H. Chen, P. P. Dályay (Hungary), C. Georghiou (Greece), M. L. Glasser, M. Kaplan,
O. P. Lossers (Netherlands), S. Singh, J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy),
M. Vowe (Switzerland), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

Integrating a Power of the Gamma Function

11975 [2017, 369]. Proposed by István Mező, Nanjing University of Information Science
and Technology, Nanjing, China. Let x be a real number in [0, 1), and let L(x) =∫ 1

0 �
x(t) dt , where � is the gamma function defined by �(t) = ∫∞

0 xt−1e−x dx. Prove

(1 − γ )x

1 − x
≤ L(x) ≤ 1

1 − x
,

where γ is the Euler–Mascheroni constant limn→∞
(− ln n+∑n

k=1 1/k
)
.

Solution by Paul Bracken, University of Texas Rio Grande Valley, Edinburg, TX. We claim

e(s−1)(1−γ ) ≤ �(1 + s) ≤ 1 (1)

when s ∈ [0, 1]. The gamma function is strictly convex on the positive real axis, so the
upper bound in (1) follows from �(1) = �(2) = 1. For s ∈ (0, 1), the mean value theorem
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asserts that there exists τ ∈ (s, 1) such that

log(�(2))− log(�(1 + s))

1 − s
= d

ds
log(�(1 + s))

∣∣
s=τ = ψ(1 + τ),

where ψ is the digamma function. Since ψ(x) is increasing for x > 0, this implies

log(�(1 + s)) > (s − 1)ψ(2).

Using ψ(2) = 1 − γ , we obtain the lower bound in (1), with equality when s = 1.
Next we claim e(s−1)(1−γ ) > 1 − γ . Indeed, this is a calculation for s = 0, and the

left side is an increasing function of s. Hence (1) implies 1 − γ ≤ �(1 + s) ≤ 1. Since
�(1 + s) = s�(s), we have

1 − γ

s
≤ �(s) ≤ 1

s

when s ∈ (0, 1]. For x ∈ [0, 1), it follows that

(1 − γ )x

sx
≤ �x(s) ≤ 1

sx
.

Integration with respect to s from 0 to 1 produces the desired result.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), R. Boukharfance (France), R. Chap-
man (U. K.), P. P. Dályay (Hungary), A. Hannan (India), O. Kouba (Syria), O. P. Lossers (Netherlands),
V. Mikayelyan (Armenia), M. Omarjee (France) & R. Tauraso (Italy), J. C. Smith, A. Stadler (Switzerland),
A. Stenger, R. Stong, L. Zhou, and the proposer.

A Nonlinear Recurrence with Fibonacci Exponents

11976 [2017, 370]. Proposed by Robert Bosch, Miami, FL. Given a positive real number
s, consider the sequence {un} defined by u1 = 1, u2 = s, and un+2 = unun+1/n for n ≥ 1.

(a) Show that there is a constant C such that limn→∞ un = ∞ when s > C and
limn→∞ un = 0 when s < C.
(b) Calculate limn→∞ un when s = C.

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA.
(a) We may compute the next few terms:

u3 = s, u4 = s2

2
, u5 = s3

2 · 3
,

u6 = s5

22 · 3 · 4
, u7 = s8

23 · 32 · 4 · 5
, u8 = s13

25 · 33 · 42 · 5 · 6
.

Let Fn be the nth Fibonacci number, defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for
n > 2. It follows by induction that un+2 = sFn+1/bn, where

bn =
n∏
k=2

kFn+1−k = 2Fn−1 · 3Fn−2 · · · · · (n− 1)F2 · nF1 .

Let φ = (1 + √
5)/2, let l = ∑∞

n=1 ln k/φk ≈ 1.16345, and let C = el ≈ 3.20096. We
now show bn ∼ CFn+1 as n → ∞. Indeed, since

ln bn =
n∑
k=1

Fn+1−k ln k
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and Fn = (φn − τn) /
√

5, where τ = −1/φ, we have

ln bn = 1√
5

(
n∑
k=1

(φn+1−k − τn+1−k) ln k

)

= 1√
5
φn+1

n∑
k=1

φ−k ln k − 1√
5

n∑
k=1

τn+1−k ln k.

Therefore
√

5 ln bn
φn+1

=
n∑
k=1

ln k

φk
− 1

φn+1

n∑
k=1

τn+1−k ln k.

Since −1 < τ < 0, we have∣∣∣∣∣
n∑
k=1

τn+1−k ln k

∣∣∣∣∣ ≤
n∑
k=1

ln k = ln n! < n ln n,

and so

1

φn+1

∣∣∣∣∣
n∑
k=1

τn+1−k ln k

∣∣∣∣∣ → 0

as n → ∞. Thus (
√

5 ln bn)/φn+1 ∼ l and (ln bn)/Fn+1 ∼ l as n → ∞. When ln s 
= l,

ln un+2 = Fn+1 ln s − ln b ∼ Fn+1(ln s − l) = Fn+1 ln
s

C
.

Therefore

lim
n→∞ un =

{
0 if s < C;
∞ if s > C.

(b) When s = C,

ln un+2 = Fn+1l − ln bn

= 1√
5
φn+1

∞∑
k=n+1

ln k

φk
− 1√

5
τn+1l + 1√

5

n∑
k=1

τn+1−k ln k

∼ 1√
5
φn+1

∞∑
k=n+1

ln k

φk
≥ φ√

5
ln(n+ 1),

and so limn→∞ un = ∞.

Editorial comment. Douglas B. Tyler provided a generalization: If the initial condition is
relaxed to u1 = t > 0, then un → ∞ when tφ−1s ≥ C and un → 0 when tφ−1s < C.

Also solved by A. Berkane (Algeria), P. Bracken, N. Caro (Brazil), R. Chapman (U. K.), P. P. Dályay
(Hungary), B. Golosio & G. Stegel (Italy), J. Grivaux (France), T. Hakobyan & S. Navasardyan (Armenia),
T. Horine, O. Kouba (Syria), O. P. Lossers (Netherlands), M. Omarjee (France), R. K. Schwartz, J. C. Smith,
A. Stadler (Switzerland) A. Stenger, R. Stong, R. Tauraso (Italy), D. B. Tyler, L. Zhou, GCHQ Problem
Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by June 30, 2019 via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12090. Proposed by Hideyuki Ohtsuka, Saitama, Japan. The Pell–Lucas numbers Qn sat-
isfy Q0 = 2, Q1 = 2, and Qn = 2Qn−1 + Qn−2 for n ≥ 2. Prove

∞∑
n=1

arctan

(
2

Qn

)
arctan

(
2

Qn+1

)
= π2

32
.

12091. Proposed by Cornel Ioan Vălean, Teremia Mare, Romania. Prove

2
∞∑
i=1

∞∑
j=1

∞∑
k=1

i! j ! k!

ij (i + j + k)!

(
Hi+j+k − Hk

) = ζ(3),

where Hk is the kth harmonic number and ζ is the Riemann zeta function.

12092. Proposed by Michael Diao, student, University High School, Irvine, CA, and
Andrew Wu, student, St. Albans School, Washington, DC. Let ABC be a triangle, and
let P be a point in the plane of the triangle satisfying ∠BAP = ∠CAP . Let Q and R

be diametrically opposite P on the circumcircles of �ABP and �ACP , respectively.
Let X be the point of concurrency of line BR and line CQ. Prove that XP and BC are
perpendicular.

12093. Proposed by Melih Üçer, Yildirim Beyazit University, Ankara, Turkey. Let S be a
finite set of points in the plane no three of which are collinear and no four of which are
concyclic. A coloring of the points of S with colors red and blue is circle-separable if there
is a circle whose interior contains all the red points of S and whose exterior contains all the
blue points of S. Determine the number of circle-separable colorings of S.

12094. Proposed by Pablo Fernández Refolio, Madrid, Spain. Let G be Catalan’s constant,
defined to be

∑∞
n=0(−1)n/(2n + 1)2. Prove

∞∑
n=0

(2n

n

)2

16n(n + 1)3
= 16 log 2 − 32G

π
+ 48

π
− 16.

doi.org/10.1080/00029890.2019.1547601
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12095. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Find all
functions f : R → R that satisfy f (x + 1) = f (x) + 1 and f (x4 − x2) = f (x)4 − f (x)2

for all x.

12096. Proposed by Dan Ştefan Marinescu, Hunedoara, Romania, and Mihai Monea,
Deva, Romania. Let a and b be real numbers with a < b. Given a function f : (a, b) → R,
we let g(x) = (x − a)f (x) and h(x) = (x − b)f (x). Prove that if g and h are convex,
then f is differentiable.

SOLUTIONS

A Continued Radical of Fermat Numbers

11967 [2017, 274]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Fn be the nth
Fermat number 22n + 1. Find

lim
n→∞

√√√√
6F1 +

√
6F2 +

√
6F3 +

√
· · · +√

6Fn .

Solution by GCHQ Problem Solving Group, Cheltenham, U. K. The desired limit L exists
and equals 13/2. Let

an =

√√√√
6F1 +

√
6F2 +

√
6F3 +

√
· · · +√

6Fn .

We first prove an ≤ 13/2 for n ∈ N. Since an+1 > an and every bounded increasing
sequence has a limit, this will imply that L exists and is at most 13/2.

To study an, let bj =
√

6Fj +
√

· · · + √
6Fn for 1 ≤ j ≤ n. We use induction on n − j

to prove bj < 3 · 22j−1 + (1/2)2j−1
. For j = n, since 6Fj = 6 · 22j + 6 < 9 · 22j + 6 +

(1/2)2j
, we have bn = √

6Fn < 3 · 22n−1 + (1/2)2n−1
. For smaller j , we use the induction

hypothesis to compute 6Fj + bj+1 < 9 · 22j + 6 + (1/2)2j
. Thus bj = √

6Fn−1 + bj+1 <

3 · 22j−1 + (1/2)2j−1
. Hence an = b1 < 3 · 220 + (1/2)20 = 13/2.

It remains to prove L ≥ 13/2. Note that L = √
t1, where

tn = 6Fn +
√

6Fn+1 +√
6Fn+2 + · · ·

for n ∈ N. Let un = √
tn for all n. Starting from a fixed term un, we will use induction on k

to prove un−k > 3 · 22n−1−k + 2k−1
2k

1

22n−1−k . With k = n − 1 in this particular induction, we

obtain u1 > 3 · 220 + 2n−1−1
2n−1 (1/2)20

. Since this inequality on u1 holds for all n, we obtain

L = u1 ≥ 3 · 220 + (1/2)20 = 13/2.
First note Fn = 22n + 1 > 22n

, so

un >

√
6 · 22n +

√
6 · 22n+1 +

√
6 · 22n+2 + · · · =

√
22n

(
6 +

√
6 + √

6 + · · ·
)

.

Let s = 6 +
√

6 + √
6 + · · ·. With s0 = 6 and sn = 6 + √

sn−1 for n > 0, it is immediate
inductively that {sn}n≥0 is an increasing sequence bounded by 9, so the limit s exists. Also
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s must satisfy (s − 6)2 = s, and s > 6, so s = 9. Hence un > 3 · 22n−1
. This is the base

step (k = 0) for the induction.
For k > 0, we use the induction hypothesis to compute

(un−k)
2 = tn−k = 6Fn−k + √

tn−k+1 = 6 · (22n−k + 1) + un−k+1

> 6 · 22n−k + 6 + 3 · 22n−k + 2k−1 − 1

2k−1

1

22n−k

= 9 · 22n−k + 6 + 1

22n−k
− 1

2k−1

1

22n−k
= A2 − 1

2k−1+2n−k
,

where A = 3 · 22n−1−k + (1/2)2n−1−k
. A simple calculation shows

A2 − 1

2k−1+2n−k
>

(
A − 1

2k+2n−1−k

)2

,

and it follows that un−k > A − (1/2)k+2n−1−k
, as required.

Also solved by A. Berkane (Algeria), P. P. Dályay (Hungary), D. Fleischman, M. Goldenberg & M. Kaplan,
J. A. Grzesik, T. Horine, O. Kouba (Syria), P. Lalonde (Canada), O. P. Lossers (Netherlands), M. Omarjee
(France), M. Reid, A. Stadler, A. Stenger, R. Stong, R. Tauraso (Italy), L. Zhou, and the proposer.

Well-divided Arrangements

11974 [2017, 369]. Proposed by Haoran Chen, Gustavus Adolphus College, St. Peter, MN.
Any n points on a line divide that line into n − 1 segments and two rays. If these n − 1
segments all have the same length, then we say the line is well-divided by the set. Classify
the arrangements consisting of a finite number of lines in the plane, no two parallel, such
that each line is well-divided by its points of intersection with the other lines.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We show
that all such arrangements are either (1) n concurrent lines, or (2) n − 1 concurrent lines
that well-divide an nth line.

Such arrangements clearly satisfy the conditions. Suppose that another type of arrange-
ment satisfies them. Since it is not type (1), some three lines form a triangle. Let XYZ

be a triangle with smallest area formed by three of the lines. Any line cutting a triangle
produces a piece that is again a triangle and has smaller area, so no other line cuts XYZ.

Consider barycentric coordinates with respect to triangle XYZ such that X = (1, 0, 0),
Y = (0, 1, 0), and Z = (0, 0, 1). Points on the lines YZ, ZX, and XY have coordinates of
the form (0, 1 − k, k), (�, 0, 1 − �), and (1 − m,m, 0), respectively. Setting k, �, or m to
0 or 1 yields a point in {X, Y,Z}. Since no line cuts into XYZ, the corners of the triangle
are consecutive intersection points on their respective lines. Thus the intersection points
on these lines correspond to values of k, �, and m that are contiguous blocks of integers
including {0, 1}.

Since the arrangement of lines is not type (2), one of these lines has another intersection
point S with a fourth line passing through it. By symmetry, we may assume that S is on
YZ and has coordinates (0,−1, 2). Let the fourth line intersect lines XZ and XY at points
R and T , with coordinates (�, 0, 1 − �) and (1 − m,m, 0), respectively. The theorem of
Menelaus requires

XT

T Y
· YS

SZ
· ZR

RX
= −1,

where we use signed lengths of segments. Therefore,
−m

m − 1
· −2

1
· �

1 − �
= −1,

which simplifies to (� + 1)(m + 1) = 2. Thus {�,m} = {0, 1} or {�,m} = {−3,−2}.
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The case (�,m) = (0, 1) gives line YZ, which cannot be the fourth line.
The case (�,m) = (1, 0) gives line XS as the fourth line. In this case triangle XZS also

has minimal area, so we can use XZS instead of XYZ. In fact, every triangle formed by
X and two consecutive intersection points on YZ has minimal area. If every line through
every intersection point on YZ that neighbors a consecutive pair yields the case {�,m} =
{0, 1} and passes through X, then the arrangement is type (2), a contradiction. Hence we
may consider a smallest triangle yielding the case {�,m} = {−3,−2}.

If (�,m) = (−2,−3), then R = (−2, 0, 3) and T = (4,−3, 0) (see the left side of
Figure 1). Here triangle ZRS has twice the area of triangle XYZ, and some fifth line in
the arrangement must pass through the midpoint (−1, 0, 2) of RZ, since the intersection
points are equally spaced on line XZ. Letting M = (−1, 0, 2), this fifth line cannot be
MS, because that is parallel to XY . Hence it intersects the interior of ZS or SR, forming a
triangle smaller than XYZ, a contradiction. Thus this case is not possible.

Figure 1. (�, m) = (−2,−3) (left) and (�,m) = (−3,−2) (right).

Finally, if (�,m) = (−3,−2), then R = (−3, 0, 4) and T = (3,−2, 0) (see the right
side of Figure 1). The area of triangle ZRS is three times that of XYZ, and two more
lines must pass through (−1, 0, 2) and (−2, 0, 3), respectively. To avoid parallel lines and
triangles smaller than XYZ, the line through (−1, 0, 2) must intersect the interior of seg-
ment RS, forming a triangle with area less than twice that of XYZ. The line through
(−2, 0, 3) then cuts this triangle, forming a triangle smaller than XYZ, which is again a
contradiction.
Also solved by Y. J. Ionin and the proposer.

Distinct Roots with Equal Sums Are Integers

11977 [2017, 370]. Proposed by Joseph Foy, University of Chicago, Chicago, IL, Ali
Hassani, Dearborn, MI, Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, and
Clark Zhang, University of Pennsylvania, Philadelphia, PA.
(a) Suppose that a, b, c, and d are positive integers with gcd(a, b, c, d) = 1 and with√

a + √
b = √

c + √
d . Prove that if {a, b} 
= {c, d}, then each of a, b, c, and d is a perfect

square.
(b)∗ More generally, suppose that k is an integer with k ≥ 3, and suppose that a, b, c, and d

are positive integers with gcd(a, b, c, d) = 1 and with k
√

a + k
√

b = k
√

c + k
√

d. Assuming
{a, b} 
= {c, d}, must each of a, b, c, and d be a perfect kth power?

Solution to (a) by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. Squaring

√
a + √

b = √
c + √

d leads to
√

ab + x = √
cd , where x is some

rational number. Squaring again gives ab + x2 + 2
√

ab = cd, so
√

ab and thus
√

cd are
rational. By applying this procedure to

√
a − √

c = √
d − √

b and
√

a − √
d = √

c − √
b
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we obtain that
√

ac,
√

bd ,
√

ad , and
√

bc are rational. Hence ab, ac, ad, bc, bd, and cd

are all perfect squares. If a is not a perfect square, then for some prime p, the largest e such
that pe divides a is odd. This implies that all of b, c, d are also divisible by p, contradicting
the gcd condition. Hence a is a perfect square. By symmetry, the result follows.

Solution to (b) by Richard Stong, Center for Communications Research, San Diego, CA.
We prove a stronger fact.

Claim. For k ≥ 2, if m1, . . . , mn are distinct positive integers with no divisors that are kth
powers, and r1, . . . , rn are rational numbers such that r1

k
√

m1 + · · · + rn
k
√

mn = 0, then
r1 = · · · = rn = 0.

Proof of Claim. Consider a counterexample such that k is minimal and such that n is
minimal among counterexamples with this k. Since n is minimized, all of r1, . . . , rn are
nonzero. Since m1, . . . , mn are distinct and kth-power-free, the ratio of any two terms in
the sum is irrational.

Let ω = e2πi/k and K = Q[ω]. Fix g in the Galois group of K[ k
√

m1, . . . , k
√

mn] over
K . We have g( k

√
mj) = ωs k

√
mj for some s with 0 ≤ s < k. Let Ss denote the sum of all

terms in the given sum with this power of ω. Applying gt to the given identity yields

S0 + ωtS1 + · · · + ωstSs + · · · + ω(k−1)tSk−1 = 0.

By a Fourier transformation or by noting that the coefficient matrix of the resulting system
for 0 ≤ t < k is an invertible Vandermonde matrix, we conclude Ss = 0 for all s. By the
minimality of n, it follows that only one of the sums S0, . . . , Sk−1 is nontrivial. Thus every
element g of the Galois group acts by the same power of ω on each of the kth roots and
hence fixes k

√
mj/mn for all j . Therefore, k

√
mj/mn is in K for all j .

Now fix j , and write a = mj/mn. Suppose that k
√

a has degree d over Q. Let P(X) be
the degree d monic minimal polynomial of k

√
a. Note that P(X) divides the polynomial

Xk − a, whose roots are k
√

a times a kth root of unity. Thus the magnitude of the constant
term of P is ad/k , which must therefore be rational. If m = gcd(d, k), then we can write
am/k = a(rd+sk)/k = (

ad/k
)r

as for some integers r and s. Hence am/k is rational and k
√

a =
m
√

am/k is a root of a polynomial of degree m. It follows that d = m and d | k. Since [K :
Q] = φ(k), where φ is the Euler φ-function, we have d | l, where l = gcd(k, φ(k)) < k.
Furthermore, k

√
a, which equals d

√
ad/k , is a dth root of a rational and hence an lth root of

a rational as well.
We conclude that k

√
mj/mn is an lth root of a rational for all j . Dividing the given

identity by k
√

mn and rewriting, we obtain a similar sum with l instead of k. We cannot
have l = 1, since the ratio of any two distinct terms is still irrational, so this contradicts the
minimality of k. This proves the claim. �

From the claim, the desired result is simple bookkeeping. Writing each of a, b, c, d

as a kth power of an integer times a kth-power-free integer and collecting terms with the
same kth-power-free part would give a sum as in the claim, so this sum must be trivial.
Thus each collected coefficient must vanish; in particular, each kth-power-free part that
occurs must occur at least twice. If two distinct kth-power-free parts each occur exactly
twice, then the terms of k

√
a + k

√
b = k

√
c + k

√
d cancel in pairs, which can only happen if

{a, b} = {c, d}. Otherwise, all four of a, b, c, d have the same kth-power-free part, which
by the gcd condition must be 1, and hence a, b, c, d are all kth powers.

Also solved in full by A. J. Bevelacqua. Part (a) also solved by R. Boukharfane (France), P. Budney,
R. Chapman (U. K.), P. P. Dályay (Hungary), D. Fleischman, S. M. Gagola, Jr., N. Ghosh, Y. J. Ionin,
K. T. L. Koo (China), J. C. Smith, J. H. Smith, M. Tetiva (Romania), H. Widmer (Switzerland), GCHQ
Problem Solving Group (U. K.), NSA Problems Group, and the proposers.
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A Sum of Hyperbolic Cosines of Fibonacci Numbers

11978 [2017, 465]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Fn be the nth
Fibonacci number, with F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 when n ≥ 2. Find

∞∑
n=0

(−1)n

cosh Fn cosh Fn+3
.

Solution by Kyle Gatesman, Thomas Jefferson High School for Science and Technology,
Alexandria, VA. The value of the sum is (2 cosh2 1)−1.

Using the identity cosh(α + β) + cosh(α − β) = 2 cosh α cosh β and the identities
Fn+3 = Fn+2 + Fn+1 and Fn = Fn+2 − Fn+1, we obtain

cosh Fn + cosh Fn+3 = 2 cosh Fn+1 cosh Fn+2.

Noting that

lim
n→∞

1

cosh Fn cosh Fn+3
= 0

and rewriting the sum as a telescoping series, we have

∞∑
n=0

(−1)n

cosh Fn cosh Fn+3
=

∞∑
n=0

(−1)n

cosh Fn + cosh Fn+3

(
1

cosh Fn

+ 1

cosh Fn+3

)

=
∞∑

n=0

(−1)n

2 cosh Fn+1 cosh Fn+2

(
1

cosh Fn

+ 1

cosh Fn+3

)

= 1

2 cosh F0 cosh F1 cosh F2
+

∞∑
n=0

(−1)n + (−1)n+1

2 cosh Fn+1 cosh Fn+2 cosh Fn+3

= 1

2 cosh2 1
= 2e2

e4 + 2e2 + 1
.

Editorial comment. Several solvers noted that the Fibonacci numbers can be replaced
more generally with any sequence Gn satisfying the recurrence Gn+2 = Gn+1 + Gn. The
resulting sum is (2 cosh G0 cosh G1 cosh G2)

−1. Examples include Gn = aFn (for a > 0),
Gn = Ln (the Lucas numbers), and Gn = φn (powers of the golden ratio).

Also solved by A. Berkane (Algeria), R. Boukharfane (France), B. S. Burdick, R. Chapman (U. K.),
P. P. Dályay (Hungary), G. Fera (Italy), M. Goldenberg & M. Kaplan, O. Kouba (Syria), H. Kwong,
P. Lalonde (Canada), O. P. Lossers (Netherlands), R. Martin (Germany), R. Nandan, M. Omarjee (France),
F. A. Rakhimjanovich (Uzbekistan), R. Stong, R. Tauraso (Italy), D. B. Tyler, Florida Atlantic University
Problem Solving Group, and the proposer.

Integer Triangles

11979 [2017, 465]. Proposed by Zachary Franco, Houston, Texas. Let O and I denote the
circumcenter and incenter, respectively, of a triangle. Are there infinitely many nonsimilar
scalene triangles ABC for which the lengths AB, BC, CA, and OI are all integers?

Solution by Michael Reid, University of Central Florida, Orlando, FL. We exhibit an infi-
nite family of such triangles in parametric form. For a positive integer t , let

a = 9t4 + 48t3 + 90t2 + 68t + 16,

b = 9t4 + 54t3 + 123t2 + 126t + 49, and

c = 9t4 + 60t3 + 144t2 + 148t + 55.
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Comparing termwise, we see a < b < c < a + b, so a, b, c are indeed the side lengths
of a scalene triangle. Write A,B,C for the angles of the triangle opposite sides a, b, c,
respectively. Write s for the semiperimeter (a + b + c)/2. Using the law of cosines, we
compute cos B = (a2 + c2 − b2)/(2ac) = 1/2, so B = π/3.

Let d = OI , and let r and R be the inradius and circumradius, respectively. Since
B = π/3, we have r = (s − b) tan(B/2) = (a + c − b)/(2

√
3). From the law of sines,

R = b/(2 sin B) = b/
√

3. Therefore, by Euler’s theorem,

d = √
R(R − 2r) =

√
b(2b − a − c)

3
= (2t + 3)(3t2 + 9t + 7),

which is an integer.
Finally, we show that the triangles are pairwise dissimilar. The ratio R/d is equal to

(3t2 + 9t + 7)((2t + 3)
√

3) and hence is an increasing function of t for t > 0, so different
values of t yield different values of R/d and thus dissimilar triangles.

Editorial comment. All solutions from all solvers used the angle π/3. Are there solutions
that don’t?

Also solved by R. Boukharfane (France), R. Chapman (U. K.) & R. Tauraso (Italy), M. E. Kidwell &
M. D. Meyerson, J. C. Smith, Missouri State University Problem Solving Group, and the proposer.

Lower Bound for an L3 Norm

11981 [2017, 465]. Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh, PA.
Suppose that f : [0, 1] → R is a differentiable function with continuous derivative and
with ∫ 1

0
f (x) dx =

∫ 1

0
xf (x) dx = 1.

Prove ∫ 1

0

∣∣f ′(x)
∣∣3 dx ≥

(
128

3π

)2

.

Solution by Richard Bagby, New Mexico State University, Las Cruces, NM. Using integra-
tion by parts, we have

1 =
∫ 1

0
(2x − 1)f (x) dx = (x2 − x)f (x)

∣∣∣1
0
+
∫ 1

0
(x − x2)f ′(x) dx

=
∫ 1

0
x(1 − x)f ′(x) dx.

Using Hölder’s inequality with exponents 3/2 and 3 yields

1 ≤
∫ 1

0
|x(1 − x)f ′(x)| dx ≤

(∫ 1

0
x3/2(1 − x)3/2 dx

)2/3 (∫ 1

0
|f ′(x)|3 dx

)1/3

= B

(
5

2
,

5

2

)2/3 (∫ 1

0
|f ′(x)|3 dx

)1/3

=
(

	(5/2)2

	(5)

)2/3 (∫ 1

0
|f ′(x)|3 dx

)1/3

,

where B is Euler’s beta integral. Substituting the values 	(5) = 24 and 	(5/2) = 3
√

π/4,
we obtain ∫ 1

0
|f ′(x)|3 dx ≥

(
24 · 16

9π

)2

=
(

128

3π

)2

.
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The bound is achieved when f ′(x) = x3/2(1 − x)3/2.

Editorial comment. The AN-anduud Problem Solving Group provided the following exten-
sion: Let f be continuously differentiable, assume α > β ≥ 0, and assume

∫ 1
0 xαf (x) dx =∫ 1

0 xβf (x) dx = 1. If 1 < q < ∞ and 1
p

+ 1
q

= 1, then

∫ 1

0
|f ′(x)|qdx ≥ (α − β)2q−1

B

(
(β + 1)p + 1

α − β
, p + 1

)q−1 ,

where B is Euler’s beta function.

Also solved by P. Acosta, K. F. Andersen (Canada), A. Berkane (Algeria), R. Boukharfane (France),
R. Chapman (U. K.), P. P. Dályay (Hungary), P. J. Fitzsimmons, N. Grivaux (France), L. Han, E. A. Herman,
K. T. L. Koo (China), O. Kouba (Syria), K. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands),
J. McHugh, V. Mikayelyan (Armenia), R. Nandan, M. Omarjee (France), A. Pathak, S. Pathak (Canada),
P. Perfetti (Italy), J. C. Smith, J. Steier, A. Stenger, R. Stong, R. Tauraso (Italy), E. I. Verriest, L. Zhou,
AN-anduud Problem Solving Group (Mongolia), Florida Atlantic University Problem Solving Group, GCHQ
Problem Solving Group (U. K.), Missouri State University Problem Solving Group, and the proposer.

A Limit of a Power of a Sum

11982 [2017, 465]. Proposed by Ovidiu Furdui, Mircea Ivan, and Alina Sı̂ntămărian, Tech-
nical University of Cluj-Napoca, Cluj-Napoca, Romania. Calculate

lim
x→∞

( ∞∑
n=1

(x

n

)n

)1/x

.

Solution by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. It is easy

to verify by induction that the known inequalities
(
1 + 1

n

)n
< e <

(
1 + 1

n

)n+1
imply

(n − 1)!en−1 ≤ nn ≤ n!en for n ≥ 1. Hence for x > 0,

exp(x/e) − 1 =
∞∑

n=1

xn

n!en
≤

∞∑
n=1

(x

n

)n ≤
∞∑

n=1

xn

(n − 1)!en−1
= x exp(x/e),

and therefore

(
exp(x/e) − 1

)1/x ≤
( ∞∑

n=1

(x

n

)n

)1/x

≤ x1/x exp(1/e).

Since

lim
x→∞(exp(x/e) − 1)1/x = exp(1/e) and lim

x→∞ x1/x exp(1/e) = exp(1/e),

the required limit is exp(1/e).

Also solved by R. A. Agnew, K. F. Andersen (Canada), A. Berkane (Algeria), G. E. Bilodeau, R. Boukharfane
(France), P. Bracken, R. Chapman (U. K.), P. P. Dályay (Hungary), G. Fera (Italy), D. Fleischman, N. Ghosh,
N. Grivaux (France), E. A. Herman, S. Kaczkowski, O. Kouba (Syria), K. Lau (China), O. P. Lossers
(Netherlands), R. Martin (Germany), L. Matejı́čka (Slovakia), C. Mendico (Italy), R. Molinari, M. Omarjee
(France), S. Pathak (Canada), P. Perfetti (Italy), B. Ravan, M. Reid, P. K. Sharma (India), J. C. Smith,
A. Stadler (Switzerland), A. Stenger, R. Stong, D. B. Tyler, C. I. Vălean (Romania), E. I. Verriest, M. Vowe
(Switzerland), Florida Atlantic University Problem Solving Group, GCHQ Problem Solving Group (U. K.),
and the proposers.

February 2019] PROBLEMS AND SOLUTIONS 187

X
ia
ng
’s
T
ex
m
at
h



Sum of Powers of the Sides of a Triangle

11984 [2017, 466]. Proposed by Daniel Sitaru, Drobeta Turnu Severin, Romania. Let a, b,
and c be the lengths of the sides of a triangle with inradius r . Prove a6 + b6 + c6 ≥ 5184r6.

Solution by Leonard Giugiuc, Drobeta Turnu Severin, Romania. We first prove the well-
known inequality a + b + c ≥ 6

√
3r . Writing a + b + c = 2s, where s is the semiperime-

ter and recalling that

s

r
= cot

A

2
cot

B

2
cot

C

2
= cot

A

2
+ cot

B

2
+ cot

C

2
, (∗)

we see that this follows from Jensen’s inequality in the form

cot
A

2
+ cot

B

2
+ cot

C

2
≥ 3 cot

A + B + C

6
= 3 cot

π

6
= 3

√
3.

The requested inequality follows from combining this with the power mean inequality
(a6 + b6 + c6)/3 ≥ ((a + b + c)/3)6.

Editorial comment. Motivated by the power mean inequality, we examine the inequalities(
ap + bp + cp

3

)1/p

≥ 2
√

3r.

The requested inequality is the case p = 6, so to solve the problem it suffices to prove
this for any p ≤ 6. When p = 1 we get the much stronger inequality (Question 1273
posed by M. E. Fauquembergue in 1878 in Nouv. Ann. Math. 37, p. 475, or item 5.11 in
Bottema, O. et al. (1969), Geometric Inequalities, Groningen: Wolters-Noordhoff) that is
proved above and was cited or reproved by many solvers. The strongest version that is in
the literature seems to be the case p = −1, the inequality

√
3

2r
≥ 1

a
+ 1

b
+ 1

c
. This appears

(without proof) on page 342 of Posamentier, A. S., Lehmann, I. (2012), The Secrets of
Triangles, New York: Prometheus Books. The p = −2 case is the strongest member of
this family that holds. It asserts

1

4r2
≥ 1

a2
+ 1

b2
+ 1

c2
.

To prove it, we let s = (a + b + c)/2 as above and let x = s − a, y = s − b, and z = s − c.
Using (∗), we see that this inequality becomes

x + y + z

4xyz
≥ 1

(y + z)2
+ 1

(z + x)2
+ 1

(x + y)2
,

which follows by summing three inequalities

1

4yz
≥ 1

(y + z)2
,

1

4xz
≥ 1

(x + z)2
. and

1

4xy
≥ 1

(x + y)2
,

each a form of the AM–GM inequality.

Also solved by K. F. Andersen (Canada), D. Bailey & E. Campbell & C. Diminnie, H. Bailey, M. Bataille
(France), R. Boukharfane (France), P. Bracken, D. Chakerian, R. Chapman (U. K.), P. P. Dályay (Hungary),
D. Fleischman, O. Geupel (Germany), M. Goldenberg & M. Kaplan, A. Hannan (India), E. A. Herman,
J. G. Heuver (Canada), A. Kadaveru, J. S. Kim (South Korea), K. T. L. Koo (China), O. Kouba (Syria),
W. Lai, J. H. Lindsey II, O. P. Lossers (Netherlands), M. Lukarevski (Macedonia), D. Marinescu (Romania),
J. McHugh, V. Mikayelyan (Armenia), R. Molinari, D. Moore, R. Nandan, T. Y. Noh (South Korea), A. Pathak,
P. Perfetti (Italy), C. R. Pranesachar (India), M. Reid, J. C. Smith, A. Stadler (Switzerland) N. Stanciu &
T. Zvonaru (Romania), R. Stong, M. Tang, R. Tauraso (Italy), V. Tibullo (Italy), M. Vowe (Switzerland),
T. Wiandt, M. R. Yegan (Iran), L. Zhou, AN-anduud Problem Solving Group (Mongolia), GCHQ Problem
Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by July 31, 2019 via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12097. Proposed by Zachary Franco, Houston, TX, and Richard P. Stanley, University of
Miami, Coral Gables, FL. The Calkin–Wilf tree T is a complete binary tree whose vertex
set is the set of positive rational numbers. The root is 1/1, and the children of p/q are
p/(p + q) and (p + q)/q. For n ≥ 0, let Tn be the set of rational numbers at level n in T .
For example T0 = {1/1}, T1 = {1/2, 2/1}, and T2 = {1/3, 3/2, 2/3, 3/1}.
(a) Find the sum of the entries in Tn.
(b) Let mk(n) be the mean of the kth powers of the entries in Tn. Show that limn→∞ mk(n)

exists and, denoting this limit by mk , find 9m2 − 2m3.

(c) Show that when k is odd, mk is a rational linear combination of m0,m1, . . . , mk−1.

12098. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania, and Kadir
Altintas, Emirdağ, Turkey. Suppose that the centroid of a triangle with semiperimeter s and
inradius r lies on its incircle. Prove s ≥ 3

√
6r , and determine conditions for equality.

12099. Proposed by Michel Bataille, Rouen, France. Let m and n be integers with 0 ≤
m ≤ n − 1. Evaluate

n−1∑
k=0,k �=m

cot2
(

(m − k)π

n

)
.

12100. Proposed by Finbarr Holland, University College, Cork, Ireland, Thomas Laffey,
University College, Dublin, Ireland, and Roger Smyth, Belfast, U. K. For a positive integer
n, let An be the n-by-n tridiagonal matrix whose i,j -entry is given by

ai,j =

⎧⎪⎨
⎪⎩

−2j (n − j + 1) if j = i;
j (n − j + 1) if j = i ± 1; and

0 if |i − j | > 1.

Determine the eigenvalues of An.

doi.org/10.1080/00029890.2019.1561114
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12101. Proposed by Hojoo Lee, Seoul National University, South Korea. Find the least
upper bound of

∞∑
n=1

√
xn+1 − √

xn√
(1 + xn+1)(1 + xn)

over all increasing sequences x1, x2, . . . of positive real numbers.

12102. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania. Prove

∞∑
n=1

H 2
n

(
ζ(2) −

n∑
k=1

1

k2
− 1

n

)
= 2 − ζ(2) − 2ζ(3),

where Hn is the nth harmonic number
∑n

k=1 1/k and ζ is the Riemann zeta function,
defined by ζ(s) = ∑∞

k=1 1/ks .

12103. Proposed by George Apostolopoulos, Messolonghi, Greece. Let a, b, and c be the
side lengths of a triangle with inradius r and circumradius R. Let ra , rb, and rc be the
exradii opposite the sides of length a, b, and c, respectively. Prove

1

2R3
≤ ra

a4
+ rb

b4
+ rc

c4
≤ 1

16r3
.

SOLUTIONS

Greedy Partitioning

11980 [2017, 465]. Proposed by George Stoica, Saint John, NB, Canada. Let a1, . . . , an

be a nonincreasing list of positive real numbers, and fix an integer k with 1 ≤ k ≤ n. Prove
that there exists a partition {B1, . . . , Bk} of {1, . . . , n} such that

min
1≤j≤k

∑
i∈Bj

ai ≥ 1

2
min

1≤j≤k

1

k + 1 − j

n∑
i=j

ai .

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove the stronger inequality in which 1/(2k + 2 − 2j) in the lower bound is replaced
by 1/(2k + 1 − 2j).

View a1, . . . , an as weights and B1, . . . , Bk as boxes. Put the weights into the boxes
iteratively by the following greedy algorithm: for 1 ≤ i ≤ n, put weight ai into any box
having least total weight up to that point.

Let x be the least resulting total weight among the boxes, and call one box with weight
x the lightest. Let j be one more than the number of boxes that are not lightest and that
contain only one weight; note that j ∈ [k]. We may assume that the single-weight boxes
contain a1, . . . , aj−1, since we can exchange the labels of aj−1 and aj if aj−1 = aj = x.

The total weight of the other boxes is
∑n

i=j ai . Consider any of these boxes other than
the lightest. By the definition of the algorithm, it had least total weight before its last weight
was added, and that weight must have been at most x, since there is a box with weight x at
the end. Since the weights are nonincreasing, and this box had at least one weight already
when its last weight was added, the last addition at most doubled its weight. Hence its final
weight is at most 2x.
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We now have a lightest box of weight x and k − j nonsingleton boxes with weight at
most 2x. Their total weight is

∑n
i=j ai , so x + (k − j)2x ≥ ∑n

i=j ai . Thus

min
1≤j≤k

∑
i∈Bj

ai = x ≥ 1

2k + 1 − 2j

n∑
i=j

ai ≥ min
1≤j≤k

1

2k + 1 − 2j

n∑
i=j

ai .

Editorial comment. John H. Lindsey II also proved this stronger inequality, noting that it
is sharp, since equality holds when n = 2k − 1 and the weights are equal. From the proof
above, one can deduce that equality occurs when n = 2k − j for some j ∈ [k] and the
weights satisfy aj−1 ≥ 2aj = 2aj+1 = · · · = 2an.

Also solved by Y. J. Ionin, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), A. Pathak, and the
proposer.

A Doubly-Antisymmetric Determinant

11983 [2017, 466]. Proposed by Askar Dzhumadil’daev, Kazakh–British Technical Uni-
versity, Almaty, Kazakhstan. Given a positive integer n, let x1, . . . , xn−1 and y1, . . . , yn be
indeterminates. Let A be the 2n-by-2n matrix that is antisymmetric with respect to both
main diagonals and whose i, j -entry is sinh(xi + yj ) when i < j ≤ n and cosh(xi + yj )

when i < n < j ≤ 2n − i. For example, when n = 3, the matrix A is⎡
⎢⎢⎢⎢⎢⎢⎣

0 s(x1 + y2) s(x1 + y3) c(x1 + y3) c(x1 + y2) 0
−s(x1 + y2) 0 s(x2 + y3) c(x2 + y3) 0 −c(x1 + y2)

−s(x1 + y3) −s(x2 + y3) 0 0 −c(x2 + y3) −c(x1 + y3)

−c(x1 + y3) −c(x2 + y3) 0 0 −s(x2 + y3) −s(x1 + y3)

−c(x1 + y2) 0 c(x2 + y3) s(x2 + y3) 0 −s(x1 + y2)

0 c(x1 + y2) c(x1 + y3) s(x1 + y3) s(x1 + y2) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where we have written s(z) for sinh(z) and c(z) for cosh(z). Prove det(A) = 0 when n is
odd and det(A) = 1 when n is even.

Solution by Robin Chapman, University of Exeter, Exeter, U. K. Reversing the order of
the last n rows and of the last n columns changes A into a new matrix B with the same

determinant. This matrix B has block decomposition B =
(

S

C

C

S

)
, where S and C are

n-by-n skew-symmetric matrices whose entry in position (i, j) with i < j is sinh(xi + yj )

for S and cosh(xi + yj ) for C. The matrix J defined by J =
(

In
In

In
−In

)
has inverse

J−1 = 1
2J . Also,

JBJ−1 =
(

S + C O

O S − C

)
=
(

E+ O

O −E−

)
,

where E+ and E− are the n-by-n skew-symmetric matrices with (i, j)-entry for i < j

equal to exp(xi + yj ) and exp(−xi − yj ), respectively. Hence

det(A) = det(B) = det(E+) det(−E−) = (−1)n det(E+) det(E−).

Now det(A) = 0 is evident for odd n, since the determinant of an odd-sized skew-
symmetric matrix (such as E+ here) is zero.

If n is even, then det(A) = det(E+) det(E−). Write ai = exp(xi) and bj = exp(yj ).
Note that ai and bj are nonzero. For i < j , entry (i, j) of E+ is aibj . We apply row
operations to E+. Subtracting 1/b2 times row 2 of E+ from a2/(a1b2) times row 1 of E+
yields the vector (a1, a2, 0, . . . , 0). Adding bj times this vector to row j of E+ for j ≥ 3
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does not change the determinant of the matrix, which now has the form
(

F

O

∗
G

)
, where

F =
(

0
−a1b2

a1b2
0

)
and G is the (n − 2)-by-(n − 2) analogue of E+ based on the variables

x3, . . . , xn−1 and y4, . . . , yn. Thus det(E+) = a2
1b

2
2 det(G). Iterating this process gives

det(E+) =
n/2∏
k=1

a2
2k−1b

2
2k =

n/2∏
k=1

exp(2x2k−1 + 2y2k).

Replacing each xi and yj by its negative gives

det(E−) =
n/2∏
k=1

exp(−2x2k−1 − 2y2k).

We conclude

det(A) = det(E+) det(E−) = 1.

Also solved by P. P. Dályay (Hungary), D. Fleischman, E. A. Herman, O. Kouba (Syria), O. P. Lossers
(Netherlands), R. Stong, and the proposer.

Log-Concavity of a Binomial Sum

11985 [2017, 563]. Proposed by Donald Knuth, Stanford University, Stanford, CA. For
fixed s, t ∈ N with s ≤ t , let an = (

n

s

) + (
n

s+1

) + · · · + (
n

t

)
. Prove that this sequence is

log-concave, namely that a2
n ≥ an−1an+1 for n ≥ 1.

Solution I by Li Zhou, Polk State College, Winter Haven, FL. After substituting for each
binomial coefficient in

(
n

i

)(
n

j

)− (
n

i−1

)(
n

j+1

)
in terms of

(
n+1

i

)
or
(
n+1
j+1

)
, we obtain(

n

i

)(
n

j

)
−
(

n

i − 1

)(
n

j + 1

)
= j − i + 1

n + 1

(
n + 1

i

)(
n + 1

j + 1

)
.

Hence, for 0 ≤ i ≤ j ≤ n, (
n

i

)(
n

j

)
>

(
n

i − 1

)(
n

j + 1

)
, (∗)

where
(
n

k

) = 0 when k = −1 or k = n + 1. A special case of (∗) is
(

n

s−1

)(
n

t−1

) ≥ (
n

s−2

)(
n

t

)
.

Moreover, letting an(s, t) = ∑t
i=s

(
n

i

)
, we have

(
n

s−1

)
an(s − 1, t − 2) ≥ (

n

s−2

)
an(s, t − 1)

by summing (∗) over j , and an(s, t − 1)
(

n

t−1

) ≥ an(s − 1, t − 2)
(
n

t

)
by summing (∗) over

i. These inequalities yield

a2
n(s − 1, t − 1) =

((
n

s − 1

)
+ an(s, t − 1)

)(
an(s − 1, t − 2) +

(
n

t − 1

))

≥
((

n

s − 2

)
+ an(s − 1, t − 2)

)(
an(s, t − 1) +

(
n

t

))

= an(s − 2, t − 2)an(s, t).

Add an(s − 1, t − 1)an(s, t) to both sides, factor out an(s − 1, t − 1) on the left and
an(s, t) on the right, and on each side apply an(i − 1, j − 1) + an(i, j) = an+1(i, j) (which
follows by summing the binomial recurrence). The result is

an(s − 1, t − 1)an+1(s, t) ≥ an(s, t)an+1(s − 1, t − 1).
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Finally, add an(s, t)an+1(s, t) to both sides, factor out an+1(s, t) on the left and an(s, t) on
the right, and apply the recurrence again on each side. The result is the desired inequality

a2
n+1(s, t) ≥ an(s, t)an+2(s, t).

Solution II by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. Let
fn(x) = ∑t

k=s

(
n

k

)
xk . By the binomial recurrence,

fn(x) =
t∑

k=s

((
n − 1

k − 1

)
+
(

n − 1

k

))
xk =

(
n−1

s−1

)
xs −

(
n−1

t

)
xt+1 + (x+1)fn−1(x).

Let gn(x) = (fn(x))2 − fn−1(x)fn+1(x). We show that all coefficients in the polyno-
mial g are nonnegative. We compute

gn(x) = fn(x)

((
n − 1

s − 1

)
xs −

(
n − 1

t

)
xt+1 + (x + 1)fn−1(x)

)

− fn−1(x)

((
n

s − 1

)
xs −

(
n

t

)
xt+1 + (x + 1)fn(x)

)

=
((

n − 1

s − 1

)
fn(x) −

(
n

s − 1

)
fn−1(x)

)
xs +

((
n

t

)
fn−1(x) −

(
n − 1

t

)
fn(x)

)
xt+1

=
t∑

k=s

((
n−1

s−1

)(
n

k

)
−
(

n

s−1

)(
n−1

k

))
xk+s +

t∑
k=s

((
n

t

)(
n−1

k

)
−
(

n−1

t

)(
n

k

))
xk+t+1.

Now note (
n − 1

i

)(
n

j

)
= n − i

n

(
n

i

)(
n

j

)
≥ n − j

n

(
n

i

)(
n

j

)
=
(

n

i

)(
n − 1

j

)

when i ≤ j . Applying this identity with (i, j) = (s − 1, k) and (i, j) = (k, t) shows that
the coefficients of gn are indeed nonnegative.

Setting x = 1 then yields a2
n − an−1an+1 ≥ 0, as desired.

Also solved by O. Geupel (Germany), Y. J. Ionin, O. P. Lossers (Netherlands), M. Omarjee (France),
J. C. Smith, R. Stong, and the proposer.

A Cyclic Square Root Inequality

11986 [2017, 563]. Proposed by Martin Lukarevski, Goce Delčev University, Štip,
Macedonia. Let x, y, and z be positive real numbers. Prove

4(xy + yz + zx) ≤ (√
x + y + √

y + z + √
z + x

)√
(x + y)(y + z)(z + x).

Solution by Li Zhou, Polk State College, Winter Haven, FL. By the Cauchy–Schwarz
inequality,

√
x + y ·√(x + y)(y + z)(z + x) =

√
x2 + xy + yz + zx ·

√
y2 + xy + yz + zx

= ‖〈x,
√

xy + yz + zx〉‖ · ‖〈y,
√

xy + yz + zx〉‖
≥ 〈x,

√
xy + yz + zx〉 · 〈y,

√
xy + yz + zx〉

= 2xy + yz + zx,
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where we have written 〈u, v〉 for the vector in R2 with components u and v. Similarly,
√

y + z ·√(x + y)(y + z)(z + x) ≥ xy + 2yz + zx,

√
z + x ·√(x + y)(y + z)(z + x) ≥ xy + yz + 2zx.

Summing these inequalities completes the proof.

Editorial comment. Neculai Stanciu pointed out that this problem appeared on the 2012
Balcan Mathematical Olympiad.

Also solved by A. Ali (India), H. I. Arshagi, D. Bailey & E. Campbell & C. Diminnie, M. Bataille (France),
A. Berkane (Algeria), R. Boukharfane (France), E. Braune (Austria), R. Chapman (U. K.), P. P. Dályay
(Hungary), G. Fera (Italy), D. Fleischman, O. Geupel (Germany), L. Giugiuc (Romania), M. Goldenberg &
M. Kaplan, J. Grivaux (France), A. Hannan (India), E. A. Herman, F. Holland (Ireland), S. Hwang (South
Korea), B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada), P. Khalili, K. T. L. Koo (China), O. Kouba (Syria),
W. Lai, O. P. Lossers (Netherlands), D. Marinescu (Romania), L. Matejı́čka (Slovakia), V. Mikayelyan
(Armenia), R. Nandan, T. Y. Noh (South Korea), A. Pathak, P. Perfetti (Italy), F. A. Rakhimjanovich
(Uzbekistan), S. Reich (Israel), M. Reid, D. Smith, J. C. Smith, A. Stadler (Switzerland), N. Stanciu (Romania),
A. Stenger, R. Stong, R. Tauraso (Italy), Z. Vörös (Hungary), T. Wiandt, M. R. Yegan (Iran), V. P. Yellambalse
(India), J. Zacharias, B. Zhao (China), GCHQ Problem Solving Group (U. K.), and the proposer.

Maximal Antichains under Componentwise Strict Order

11987 [2017, 563]. Proposed by Shen-Fu Tsai, Redmond, WA. Let n1, . . . , nk be positive
integers. Let S = [n1] × · · · × [nk], where we write [n] for {1, . . . , n}. Define a binary
relation on S by putting (x1, . . . , xk) < (y1, . . . , yk) whenever xi < yi for every i ∈ [k].
An antichain A is a subset of S such that, for all x and y in A, neither x < y nor y < x.
An antichain is maximal if it is not a proper subset of any other antichain. Show that all
maximal antichains in S have the same size.

Solution by Richard Ehrenborg, University of Kentucky, Lexington, KY. Define an equiva-
lence relation on S by making x and y equivalent if xi − yi has the same value for all i. In
each equivalence class, the elements form a chain in S, and these chains partition S. Let D
be the resulting chain decomposition.

The bottom element of a chain in D has 1 in at least one coordinate. Hence these bottom
elements are minimal in S and form an antichain of size |D|. Since an antichain and a
chain share at most one element, this is a largest antichain and D is a smallest chain cover.
Furthermore, every element having 1 in at least one coordinate is the bottom of a chain in
D. The number of such elements is

∏k
i=1 ni −∏k

i=1(ni − 1).
An antichain A contains elements from distinct chains in D. If |A| < |D|, then let C

be a chain in D having no element of A. Each element of C must be comparable to some
element of A, and no element above an element of A can lie below an element that is below
an element of A. Hence C splits into two chains, with the portion C1 whose elements are
below some element of A lying below the remaining portion C2. Since the top and bottom
of C are maximal and minimal elements of S, both portions are nonempty.

Let x be the top element of C1 and v be the bottom element of C2. These elements are
consecutive on C, so v = (x1 + 1, . . . , xd + 1). We also have y, z ∈ A such that x < y and
z < v. However, this requires zi < vi = xi + 1 ≤ yi for all i, which implies z < y. This
contradiction implies that some element of C can be added to A. Hence every maximal
antichain intersects every chain in D.

Also solved by W. J. Cowieson, S. Datta (India), Y. J. Ionin, O. P. Lossers (Netherlands), A. Pathak, R. Stong,
L. Zhou, and the proposer.
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A Lower Bound for an Infinite Product

11989 [2017, 563]. Proposed by Spiros P. Andriopoulos, Third High School of Amaliada,
Eleia, Greece. Let x be a number between 0 and 1. Prove

∞∏
n=1

(
1 − xn

) ≥ exp

(
1

2
− 1

2(1 − x)2

)
.

Solution I by Omran Kouba, Higher Institute for Applied Science and Technology,
Damascas, Syria. For 0 < x < 1,

−
∞∑

n=1

ln(1 − xn) =
∞∑

n=1

( ∞∑
k=1

xnk

k

)
=

∞∑
k=1

1

k

( ∞∑
n=1

(xk)n

)
=

∞∑
k=1

1

k

xk

1 − xk

= x

1 − x

(
1 +

∞∑
k=2

xk−1

k(1 + x + · · · + xk−1)

)
≤ x

1 − x

(
1 +

∞∑
k=2

xk−1

2

)

= x

1 − x

(
1 + x

2(1 − x)

)
= −1

2
+ 1

2(1 − x)2
.

Change sign and exponentiate to get the desired inequality.

Composite solution II by Robin Chapman, University of Exeter, Exeter, U. K., and Aritro
Pathak, student, Brandeis University, Waltham, MA. Taking the logarithm of each side of
the desired inequality yields

∞∑
n=1

log(1 − xn) ≥ 1

2
− 1

2(1 − x)2
.

Since 1/(1 − x)2 = 1 + 2x + 3x2 + · · · , this is equivalent to

−
∞∑

n=1

log(1 − xn) ≤ 1

2

∞∑
m=1

(m + 1)xm.

Now
∞∑

n=1

log(1 − xn) = −
∞∑

n=1

∞∑
k=1

xnk

k
= −

∞∑
n=1

∞∑
k=1

nxnk

nk
= −

∞∑
m=1

σ(m)

m
xm,

where σ(m) is the sum of all the positive integer divisors of m. Certainly, σ(m) is at most
the sum of all the numbers from 1 to m, which is m(m + 1)/2. We conclude that

−
∞∑

n=1

log(1 − xn) =
∞∑

m=1

σ(m)xm

m
≤ 1

2

∞∑
m=1

(m + 1)xm,

as required.

Also solved by R. A. Agnew, M. Bataille (France), A. Berkane (Algeria), R. Boukharfane (France), P. Bracken,
S. Chakravarty, W. J. Cowieson, P. P. Dályay (Hungary), H. Y. Far, G. Fera (Italy), P. J. Fitzsimmons,
D. Fleischman, F. Franco (Italy), M. Goldenberg & M. Kaplan, L. Han, A. Hannan (India), S. Hwang
(South Korea), S. Kaczkowski, K. T. L. Koo (China), W. Lai, K. Lau (China), J. H. Lindsey II, O. P. Lossers
(Netherlands), L. Matejı́čka (Slovakia), V. Mikayelyan (Armenia), R. Molinari, M. Omarjee (France), S. Pathak
(Canada), J. C. Smith, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), D. Terr, A. V. Vaze
(India), E. I. Verriest, M. Wildon (U. K.), V. P. Yellambalse (India), L. Zhou, GCHQ Problem Solving Group
(U. K.), and the proposer.
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Weitzenböck Revisited

11990 [2017, 564]. Proposed by Nicuşor Minculete, Transilvania University of Braşov,
Romania. Let a, b, and c be the lengths of the sides of a triangle of area S. Weitzenböck’s
inequality states that a2 + b2 + c2 ≥ 4

√
3S. Prove the following stronger inequality:

a2 + b2 + c2 ≥ √
3(4S + (c − a)2).

Solution by Parviz Khalili, Newport News, VA. We prove the still stronger inequality

a2 + b2 + c2 ≥ 4
√

3S + 2(a − c)2,

which rearranges to b2 − a2 − c2 + 4ac ≥ 4
√

3S. From Heron’s formula

S =
√

(a + b + c)(a + b − c)(b + c − a)(c + a − b)

16
=
√

(a + c)2 − b2

4
· b2 − (c − a)2

4
,

we obtain

4
√

3S =
√(

(a + c)2 − b2
)(

3b2 − 3(c − a)2
)
.

Applying the AM–GM inequality, we therefore have

4
√

3S ≤
(
(a + c)2 − b2

)+ (
3b2 − 3(c − a)2

)
2

= b2 − a2 − c2 + 4ac,

as desired.

Editorial comment. A proof of Weitzenböck’s inequality that yields the stronger result
given in this solution (and by most solvers) appears as item 4.4 on page 43 of Bottema
et. al. (1968), Geometric Inequalities, Groningen: Walters–Noordhoff.

Also solved by A. Ali (India), D. Bailey & E. Campbell & C. Diminnie, H. Bailey, M. Bataille (France),
R. Boukharfane (France), P. Bracken, D. Chakerian, R. Chapman (U. K.), O. Geupel (Germany), A. Hannan
(India), F. Holland (Ireland), S. Kaczkowski, K. T. L. Koo (China), O. Kouba (Syria), G. Lord, O. P. Lossers
(Netherlands), J. F. Loverde, D. Marinescu (Romania), J. Minkus, D. Moore, M. Reid, J. C. Smith, R. Stong,
R. Tauraso (Italy), E. I. Verriest, M. Vowe (Switzerland), T. Wiandt, M. R. Yegan (Iran), J. Zacharias, L. Zhou,
and the proposer.

Matrices with the Same Range

11991 [2017, 564]. Proposed by Yongge Tian, Central University of Finance and Eco-
nomics, Beijing, China. Given two complex n-by-n positive definite matrices A and B,
let C = (A + B)/2 and D = A1/2

(
A−1/2BA−1/2

)1/2
A1/2; the matrices C and D are the

arithmetic mean and geometric mean of A and B. Prove range(C − D) = range(A − B)

and
range

[
C D

D C

]
= range

[
A B

B A

]
.

Solution by BSI Problem Solving Group, Bonn, Germany. Let R and S be n-by-n matri-
ces. First note that if range(R) = range(S), then range(PRQ) = range(PSQ) for all
n-by-n invertible matrices P and Q. Also, if range(PRQ) = range(PSQ) for some n-
by-n invertible matrices P and Q, then range(R) = range(S). In view of this, to show
range(C − D) = range(A − B) we consider the equivalent statement range(P (C − D)Q)

= range(P (A − B)Q), where P = Q = A−1/2. That is, the desired range identity will
follow if (I + E)/2 − E1/2 and I − E have the same range, where E = A−1/2BA−1/2.
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Through unitary diagonalization, we may assume that E is a diagonal matrix with pos-
itive eigenvalues μ1, . . . , μn; that is, E = diag (μ1, . . . , μn). Thus,

I + E

2
− E1/2 = diag

(1 + μ1

2
− √

μ1, . . . ,
1 + μn

2
− √

μn

)
and I − E = diag(1 − μ1, . . . , 1 − μn). For 1 ≤ i ≤ n, we have 1+μi

2 − √
μi �= 0 if and

only if 1 − μi �= 0 (since μi > 0), so the ranges of C − D and A − B are identical.

For the block matrices, we show that P
[

C

D

D

C

]
Q and P

[
A

B

B

A

]
Q have the same range,

where P = Q =
[

A−1/2

0
0

A−1/2

]
, which is equivalent to saying

range

[
(I + E)/2 E1/2

E1/2 (I + E)/2

]
= range

[
I E

E I

]
.

Again we may assume E to be the diagonal matrix diag (μ1, . . . , μn). Applying simultane-
ous row and column permutations to the block matrices yields two block-diagonal matrices

consisting respectively of n 2-by-2 blocks of the form
[

(1+μi)/2√
μi

√
μi

(1+μi)/2

]
and

[
1
μi

μi
1

]
, for

1 ≤ i ≤ n. Since the ranges of these blocks are the same, the claim follows.

Also solved by R. Chapman (U. K.), E. A. Herman, O. P. Lossers (Netherlands), R. Stong, and the proposer.

An Entire Function with No Real Zeros

12000 [2017, 754]. Proposed by Mehtaab Sawhney, student, Massachusetts Institute of
Technology, Cambridge, MA. Let Hk = ∑k

i=1 1/i. Prove that the function f : R → R
defined by

f (x) = 1 +
∞∑

n=1

xn∏n
k=1 Hk

has no real zeroes.

Solution by Moubinool Omarjee, Lycée Herni IV, Paris, France. Let un = 1/
∏n

k=1 Hk .
Since limn→∞ |un/un+1| = limn Hn+1 = ∞, the radius of convergence of the power series
is infinite. Thus f is defined on R and is continuous. Suppose to the contrary that f has
at least one real zero. Writing a = sup{x ∈ R : f (x) = 0} and noting that f (x) ≥ 1 for
x ≥ 0, we have a < 0, f (a) = 0, and f (x) > 0 for a < x ≤ 0. Therefore∫ 0

a

f (x) − f (a)

x − a
dx =

∫ 0

a

f (x)

x − a
dx > 0.

On the other hand, since a power series with infinite radius of convergence may be inte-
grated term by term,∫ 0

a

f (x) − f (a)

x − a
dx =

∫ 0

a

∞∑
n=1

xn − an

x − a

dx∏n
k=1 Hk

=
∞∑

n=1

1∏n
k=1 Hk

∫ 0

a

(xn−1 + xn−2a + · · · + an−1) dx

= −
∞∑

n=1

anHn∏n
k=1 Hk

= −af (a) = 0.

This contradiction completes the proof that f has no real zeros.

Also solved by O. Kouba (Syria), R. Tauraso (Italy), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by August 31, 2019
via the same link. More detailed instructions are available online. Proposed prob-
lems must not be under consideration concurrently at any other journal nor be posted
to the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12104. Proposed by Joe Buhler, Larry Carter, and Richard Stong, Center for Communi-
cations Research, San Diego, CA. Consider a standard clock, where the hour, minute, and
second hands all have integer lengths and all point straight up at noon and midnight. Is
it possible for the ends of the hands to form, at some time, the vertices of an equilateral
triangle?

12105. Proposed by Gary Brookfield, California State University, Los Angeles, CA. Let r
be a real number, and let f (x)= x3 + 2rx2 + (r2 − 1)x− 2r . Suppose that f has real roots
a, b, and c. Prove a, b, c ∈ [−1, 1] and |arcsin a| + |arcsin b| + |arcsin c| =π .

12106. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For any positive integer n, prove

n∑
k=1

(
n

k

) ∑
1≤i≤j≤k

1

ij
=

∑
1≤i≤j≤n

2n − 2n−i

ij
.

12107. Proposed by Cornel Ioan Vălean, Teremia Mare, Romania. Prove∫ 1

0

∫ 1

0

1√
1 + x2

√
1 + y2(1 − x2y2)

dx dy = G,

where G is Catalan’s constant
∑∞

n=1(−1)n−1/(2n− 1)2.

12108. Proposed by Yifei Pan and William D. Weakley, Purdue University Fort Wayne, Fort
Wayne, IN. Let n be a positive integer, and let β1, . . . , βn be indeterminates over a field
F . Let M be the n-by-n matrix whose i, j -entry mij is given by mij = βi when i = j and
mij = 1 when i �= j . Show that the polynomial det(M) is irreducible over F .

12109. Proposed by George Stoica, Saint John, NB, Canada. Let f be a function on
[0,∞) that is nonnegative, bounded, and continuous. For a > 0 and x ≥ 0, let g(x) =
exp

(∫ a
0 log (1 + xf (s)) ds

)
. For 0 < p < 1, prove∫ a

0
f p(x) ds = p sin(pπ)

π

∫ ∞

0

log g(x)

xp+1
dx.

doi.org/10.1080/00029890.2019.1574184
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12110. Proposed by Pedro Jesús Rodrı́guez de Rivera (student) and Ángel Plaza, University
of Las Palmas de Gran Canaria, Las Palmas, Spain. Let αk = (k + √

k2 + 4)/2. Evaluate

lim
k→∞

∞∏
n=1

(
1 − k

αnk + αk

)
.

SOLUTIONS

An Extremal Property of Affinely Regular Pentagons

11988 [2017, 563]. Proposed by Michel Bataille, Rouen, France. Let ABC be a triangle.
Find the extrema of

AC2 + CE2 + EB2 + BD2 + DA2

AB2 + BC2 + CD2 + DE2 + EA2

over all points D and E in the plane of ABC. At which points D and E are these extrema
attained?

Solution by Li Zhou, Polk State College, Winter Haven, FL. Let φ = (1 + √
5)/2. We show

that the given expression attains its minimum value φ−2 and its maximum value φ2 at
the left and right configurations shown below, respectively, where all the diagonals of the
pentagons are parallel to the corresponding sides.

First note that the law of cosines gives CD2 = DA2 + AC2 + 2
−→
DA · −→

AC and EA2 =
AC2 + CE2 + 2

−→
AC · −→

CE. Also,
−→
DA + −→

CE = −−→
AC − −→

ED. Therefore, CD2 + EA2 = DA2 +
CE2 − 2

−→
AC · −→

ED. Moreover, −(AC)(DE) ≤ −→
AC · −→

ED ≤ (AC)(DE). Equality holds in the
left inequality if and only if

−→
AC and

−→
ED have opposite direction, while the equality holds

in the right inequality if and only if they have the same direction. Hence

−2(AC)(DE) ≤ CD2 + EA2 − DA2 − CE2 ≤ 2(AC)(DE).

Adding to this the other four analogous inequalities, we get −r2 ≤ q2 − p2 ≤ r2, where
p2 and q2 are respectively the numerator and denominator of the given expression, and

r2 = (AC)(DE)+ (CE)(AB)+ (EB)(CD)+ (BD)(EA)+ (DA)(BC).

By the Cauchy–Schwarz inequality, we have r2 ≤ pq, with equality if and only if

AC

DE
= CE

AB
= EB

CD
= BD

EA
= DA

BC
= λ (∗)

for some λ. Thus, −pq ≤ q2 − p2 ≤ pq, and so φ−1 ≤ p/q ≤ φ.
By (∗), p/q = φ−1 only if λ = φ−1, which leads to a construction by ruler and compass

of D and E for minimal p/q: Locate F on BC such that BF/FC = φ, and then construct
D so that BFAD is a parallelogram, and draw the line through D and parallel to AC to
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intersect AF at E. Let G be the intersection of DE and BC. Since �BDG is congruent to
�FAC, we have BG = FC. We have

GF

FC
= BF

FC
− BG

FC
= φ − 1 = φ−1,

from which it follows that CE is parallel to AB, similarly EB is parallel to CD, and (∗) is
satisfied.

Likewise, p/q = φ only if λ = φ, which leads to a construction ofD andE for maximal
p/q: LocateH on AC such that AH/HC = φ, and then draw the line throughA and parallel
BC to intersect line BH at D. Construct E so that AHDE is a parallelogram. Arguing as
before, CE is parallel to BA, BE is parallel to CD, and (∗) is satisfied.

Editorial comment. A pentagon of this type, where each diagonal is parallel to one of the
sides, is affinely equivalent to a regular pentagon.

Also solved by G. Fera (Italy), O. Kouba (Syria), R. Stong, and the proposer.

Divisibility by an Arbitrary Power of Seven

11992 [2017, 659]. Proposed by Navid Safaei, Sharif University of Technology, Tehran,
Iran. Prove that, for every positive integer n, there is a positive integer m such that 3m +
5m − 1 is divisible by 7n.

Solution by Sandeep Silwal, Brookline, MA. We show that m = 7n−1 works. Let vp(k)
denote the largest integer e such that pe divides k. The lifting-the-exponent lemma
states that if p is an odd prime dividing x + y but dividing neither x nor y, then
vp(x

n + yn) = vp(x + y) + vp(n). Hence v7(5m + 2m) = v7(5 + 2) + v7(m) = n and
similarly v7(3m + 4m) = n. We conclude 5m ≡ −2m (mod 7n) and 3m ≡ −22m (mod 7n),
and therefore

3m + 5m − 1 ≡ −(22m + 2m + 1) (mod 7n).

Note that (2m − 1)(22m + 2m + 1) = 8m − 1. By another application of the lifting-the-
exponent lemma, v7(8m − 1) = v7(8 − 1)+ v7(m) = n, and thus 8m − 1 ≡ 0 (mod 7n).
Becausem ≡ 1 (mod 6), Fermat’s little theorem implies 2m ≡ 21 = 2 (mod 7), so 2m − 1
is not divisible by 7. We conclude 22m + 2m + 1 ≡ 0 (mod 7n), and hence 3m + 5m − 1 ≡
0 (mod 7n), as desired.

Editorial comment. The lifting-the-exponent lemma can be found at brilliant.org/wiki/
lifting-the-exponent/. Peter Lindstrom, O. P. Lossers, H. F. Mattson, and Michael Reid
showed that setting m = 5 · 7n−1 also works. Boris Bekker & Yury Ionin, Stephen Gagola,
and the BSI Problems Group showed that if a and b are the primitive 6th roots of unity
modulo p, then ap

n−1 + bp
n−1 − 1 is divisible by pn. Allen Stenger proved that if p > 3 is

a prime, n ≥ 1, r = (p − 1)/2, m = pn−1, and a1, . . . , ar is the complete list of quadratic
residues modulo p, then

∑r
k=1 a

m
k ≡ 0 (mod pn). Marian Tetiva showed that if p > 3 is a

prime and a, b, c are integers such that both a + b + c and ab + ac + bc are divisible by
p, then both ap

n + bp
n + cp

n
and ap

n
bp

n + ap
n
cp

n + bp
n
cp

n
are divisible by pn+1.

Also solved by B. M. Bekker & Y. J. Ionin, R. Boukharfane (France), R. Chapman (U. K.), J. Christopher,
S. M. Gagola, Jr., M. Goldenberg & M. Kaplan, R. A. Gordon, J. Iiams, E. J. Ionaşcu, O. Kouba (Syria),
J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers (Netherlands), H. F. Mattson, U. Milutinović (Slovenia),
V. I. Murashka (Belarus), M. Omarjee (France), C. R. Pranesachar (India), M. Reid, N. C. Singer, J. Singh
(India), O. Sonebi (France), A. Stadler (Switzerland), A. Stenger, R. Stong, M. Tang, R. Tauraso (Italy),
M. Tetiva (Romania), J. Van hamme (Belgium), Z. Vörös (Hungary), L. Wimmer, L. Zhou, BSI Problem
Solving Group (Germany), GCHQ Problem Solving Group (U. K.) Northwestern University Problem Solving
Group, and the proposer.
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An Integral Related to Euler Sums

11993 [2017, 659]. Proposed by Cornel Ioan Vălean, Timiş, Romania. Prove∫ 1

0

log(1 − x)(log(1 + x))2

x
dx = − π4

240
.

Solution by Abdelhak Berkane, University of Mentouri Brothers, Constantine, Algeria.
We use the equality ab2 = (

(a + b)3 + (a − b)3 − 2a3
)
/6 with a = log(1 − x) and b =

log(1 + x). From this we obtain∫ 1

0

log(1 − x)(log(1 + x))2

x
dx = 1

6
I1 + 1

6
I2 − 1

3
I3,

where

I1 =
∫ 1

0

(log(1 − x)+ log(1 + x))3

x
dx =

∫ 1

0

(log(1 − x2))3

x
dx

= 1

2

∫ 1

0

(log(1 − u))3

u
du = 1

2

∫ 1

0

(log t)3

1 − t
dt,

I2 =
∫ 1

0

(log(1 − x)− log(1 + x))3

x
dx =

∫ 1

0

(
log

(
1−x
1+x

))3

x
dx

= 2
∫ 1

0

(log t)3

(1 − t)(1 + t)
dt =

∫ 1

0

(log t)3

1 − t
dt +

∫ 1

0

(log t)3

1 + t
dt,

and

I3 =
∫ 1

0

(log(1 − x))3

x
dx =

∫ 1

0

(log t)3

1 − t
dt.

Combining these yields∫ 1

0

log(1 − x)(log(1 + x))2

x
dx = − 1

12

∫ 1

0

(log t)3

1 − t
dt + 1

6

∫ 1

0

(log t)3

1 + t
dt.

It is known (see, for example, entries 4.626.1 and 4.626.2 in I. S. Gradshteyn, I. M. Ryzhik,
et al. (2015), Tables of Integrals, Series, and Products, 8th ed., San Diego, CA: Academic
Press) that ∫ 1

0

(log t)3

1 − t
dt = −π

4

15
and

∫ 1

0

(log t)3

1 + t
dt = −7π4

120
.

We conclude ∫ 1

0

log(1 − x)(log(1 + x))2

x
dx = π4

180
− 7π4

720
= − π4

240
.

Editorial comment. This integral was previously given by P. J. de Doelder (1991), On
some series containing ψ(x) − ψ(y) and (ψ(x) − ψ(y))2 for certain values of x and y,
J. Comput. Appl. Math. 37(1–3): 125–141.

As many solvers noted, this integral is closely related to Euler sums. Expanding the
logarithms in power series, one sees that the requested integral is

I =
∞∑
n=0

(−1)n
HnHn+1

(n+ 1)2
=

∞∑
n=0

(−1)n
H 2
n

(n+ 1)2
+

∞∑
n=0

(−1)n
Hn

(n+ 1)3
,
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where Hn = ∑n
k=1 1/k. The sum in the first expression was evaluated in W. Chu (1997),

Hypergeometric series and the Riemann zeta function, Acta Arith. 82(2): 103–118. The
two sums in the final expression are evaluated in D. H. Bailey, J. M. Borwein, and R. Gir-
gensohn, Experimental evaluation of Euler sums (1994), Exper. Math. 3(1): 17–30, which
gives the first sum as

ah(2, 2) = −2Li4(1/2)− 1

12
log4 2 + 99

48
ζ(4)− 7

4
ζ(3) log 2 + 1

2
ζ(2) log2 2,

and in D. Borwein, J. M. Borwein, and R. Girgensohn (1995), Explicit evaluation of Euler
sums, Proc. Edin. Math. Soc. (2). 38(2): 277–294, which gives a nearly cancelling formula
for the second sum αh(1, 3).

Also solved by P. Acosta, K. F. Andersen (Canada), M. Bello & M. Benito & Ó. Ciaurri & E. Fernández &
L. Roncal (Spain), R. Boukharfane (France), K. N. Boyadzhiev, P. Bracken, H. Chen, V. Dassios (Greece),
B. E. Davis, G. Fera (Italy), M. L. Glasser, A. Hannan (India), O. Kouba (Syria), K. Lau (China), L. Matejı́čka
(Slovakia), V. Mikayelyan (Armenia), M. Omarjee (France), P. Perfetti (Italy), R. Schumacher (Switzerland),
S. Sharma (India), S. Silwal, J. Singh (India), J. C. Smith, A. Stadler (Switzerland), M. Stofka (Slovakia),
R. Tauraso (Italy), J. Van Casteren & L. Kempeneers (Belgium), M. R. Yegan (Iran), and the proposer.

A Hexagram Inequality

11994 [2017, 659]. Proposed by Miguel Ochoa Sanchez, Lima, Peru, and Leonard Giugiuc,
Drobeta Turnu Severin, Romania. Let ABC be a triangle with incenter I and circumcircle
ω. Let M , N , and P be the second
points of intersection of ω with lines
AI, BI, and CI, respectively. Let E
and F be the points of intersection
of NP with AB and AC, respectively.
Similarly, let G and H be the points
of intersection of MN with AC and
BC, respectively, and let J andK be
the points of intersection of MP with
BC and AB, respectively. Prove

EF + GH + JK ≤ KE + FG + HJ.

Solution by Li Zhou, Polk State College, Winter Haven, FL. As usual, we let A, B, and C
denote the angles of �ABC. Since ∠NPA and ∠NBA are subtended by the same arc of ω
and BN bisects ∠ABC, we have ∠NPA = ∠NBA = B/2. Similarly, ∠PAB = C/2. Since
∠FEA is an exterior angle of �APE, we have

∠FEA = ∠NPA + ∠PAB = (B + C)/2,

and a similar argument shows that ∠EFA = (B + C)/2. Therefore �AEF is isosceles and
AI bisects EF perpendicularly. Let Q be the intersection point of AI and EF.

We have ∠PEK = ∠FEA = (B + C)/2, and similarly ∠PKE = (A + C)/2. Since
these are both acute angles, the perpendicular from P to KE hits KE at a point R that
is strictly between E and K . By the similarity of �AQE and �PRE and the law of sines in
�APE,

2RE

EF
= RE

EQ
= PE

EA
= sin(∠PAB)

sin(∠NPA)
= sin(C/2)

sin(B/2)
.

374 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 126

X
ia
ng
’s
T
ex
m
at
h



Likewise, 2KR/JK = sin(C/2)/ sin(A/2). Hence,

KE = KR + RE = JK sin(C/2)

2 sin(A/2)
+ EF sin(C/2)

2 sin(B/2)
.

Similarly,

FG = EF sin(B/2)

2 sin(C/2)
+ GH sin(B/2)

2 sin(A/2)
and HJ = GH sin(A/2)

2 sin(B/2)
+ JK sin(A/2)

2 sin(C/2)
.

Adding these three equations and invoking the AM–GM inequality yields

KE + FG + HJ = EF

(
sin(C/2)

2 sin(B/2)
+ sin(B/2)

2 sin(C/2)

)

+ GH

(
sin(B/2)

2 sin(A/2)
+ sin(A/2)

2 sin(B/2)

)
+ JK

(
sin(C/2)

2 sin(A/2)
+ sin(A/2)

2 sin(C/2)

)

≥ EF + GH + JK.

Also solved by M. Bataille (France), R. Boukharfane (France), N. G. Cripe, G. Fera (Italy) O. Geupel (Ger-
many), M. Goldenberg & M. Kaplan, J. G. Heuver (Canada), O. Kouba (Syria), P. McPolin (U. K.), P. Nüesch
(Switzerland), M. Omarjee (France), C. R. Pranesachar (India), C. Schacht, R. Stong, R. Tauraso (Italy), T. Toy-
onari (Japan), T. Wiandt, T. Zvonaru & N. Stanciu (Romania), and the proposer.

A Sequence Generated by Averaging Sines

11995 [2017, 659]. Proposed by Dan Ştefan Marinescu, National College “Iancu de
Hunedoara,” Hunedoara, Romania, and Mihai Monea, National College “Decebal,”
Deva, Romania. Suppose 0 < x0 < π , and for n ≥ 1 define xn = (1/n)

∑n−1
k=0 sin xk. Find

limn→∞ xn
√

ln n.

Solution by Florin Stanescu, Gaesti, Romania. Since sin xk ≤ 1, we have xn ≤ 1. It follows
by induction that xn > 0 for all n. Thus xn is bounded. From nxn = ∑n−1

k=0 sin xk and
(n+ 1)xn+1 = ∑n

k=0 sin xk , we obtain

(n+ 1)xn+1 − nxn = sin xn, (∗)
and hence

xn − xn+1 = (xn − sin xn)/(n+ 1) > 0.

Thus {xn}∞n=1 is decreasing and hence convergent. Let l = limn→∞ xn. Applying the Stolz–
Cesaro theorem, we obtain

l = lim
n→∞ xn = lim

n→∞

∑n−1
k=0 sin xk
n

= lim
n→∞

∑n
k=0 sin xk −∑n−1

k=0 sin xk
n+ 1 − n

= lim
n→∞ sin xn = sin l.

Thus l = 0, since this is the only solution to l = sin l. The recurrence (∗) may be rewritten

xn+1

xn
= n

n+ 1
+ sin xn
(n+ 1)xn

.

Noting that limn→∞(sin xn)/xn = 1, we see that limn→∞ xn+1/xn = 1. Using the Stolz–
Cesaro theorem again we calculate
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lim
n→∞ x

2
n ln n = lim

n→∞
ln n

1/x2
n

= lim
n→∞

ln(n+ 1)− ln n
1

x2
n+1

− 1
x2
n

= lim
n→∞

ln
(
1 + 1

n

)
x2
n+1x

2
n

(xn − xn+1)(xn + xn+1)

= lim
n→∞

(n+ 1) ln
(
1 + 1

n

)
x2
n+1x

2
n

(xn − sin xn)(xn + xn+1)

= lim
n→∞

n+ 1

n
· x3

n

xn − sin xn
· ln

(
1 + 1

n

)n
xn
xn+1

+
(

xn
xn+1

)2 = 1 · 6 · 1

2
= 3,

where we have used limx→0 (x − sin x)/x3 = 1/6 and limn→∞
(
1 + 1

n

)n = e. Hence

limn→∞ xn
√

ln n = √
3.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), R. Boukharfane (France), R. Chapman
(U. K.), G. Fera (Italy), E. J. Ionaşcu, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands),
V. Mikayelyan (Armenia), M. Omarjee (France), A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso
(Italy) & M. Omarjee (France), M. Tetiva (Romania), D. B. Tyler, L. Zhou, GCHQ Problem Solving Group
(U. K.), and the proposer.

Tilings of a Strip

11996 [2017, 659]. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,”
Rome, Italy. Consider all the tilings of a 2-by-n rectangle comprised of tiles that are either
a unit square, a domino, or a right tromino. Let fn be the fraction of tiles among all such
tilings that are unit squares. For example, f2 = 4/7, because 16 out of the 28 tiles in the
11 tilings of a 2-by-2 rectangle are squares. What is limn→∞ fn?

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The Nether-
lands. The answer is (30 − 4

√
5)/41, which is approximately 0.513554 . . . . A primitive

tiling of a strip is a tiling that cannot be split into tilings of two shorter strips. Let sn be
the number of primitive tilings of a 2-by-n strip. We have s1 = 2, s2 = 7, and sn = 8 for
n ≥ 3. The last is because there are two cases of trominoes at both ends, four cases of a
tromino at only one end, and two cases of no trominoes.

Let an be the number of all tilings of a 2-by-n strip. We have a0 = 1 and an =∑n
i=1 sian−i for n ≥ 1. Subtracting the expression for an from that for an+1, we obtain

an+1 − 3an − 5an−1 − an−2 = 0.

Let xn be the total number of squares in all of the 2-by-n tilings. Let pn be the num-
ber of squares in the primitive tilings, so p1 = 2 and pn = 8 for n ≥ 2. We obtain xn =
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∑n
i=1(pian−i + sixn−i ), which arises by letting i be the least index so that the initial 2-by-i

subtiling is primitive, with the first term counting the squares in the first i positions and the
second term counting the squares in the last n− i positions. Subtracting the expression for
xn from that for xn+1 yields

xn+1 − 3xn − 5xn−1 − xn−2 = 2an + 6an−1.

Let zn be the total number of trominoes in 2-by-n tilings. We similarly obtain

zn+1 − 3zn − 5zn−1 − zn−2 = 4an−1 + 4an−2.

Let yn be the total number of dominoes. Using xn + 2yn + 3zn = 2nan, we get

yn+1 − 3yn − 5yn−1 − yn−2 = 2an + an−1 − 3an−2.

Let tn be the total number of tiles in all the tilings. Since tn = xn + yn + zn,

tn+1 − 3tn − 5tn−1 − tn−2 = 4an + 11an−1 + an−2.

The general solution of the recurrence for an is

Aλn + Bμn + Cνn,

where λ, μ, and ν are the zeros of x3 − 3x2 − 5x − 1. Take λ to be 2 + √
5, the largest

root. Since the characteristic polynomials in the recurrences for xn and tn are the same as
for an, and since their nonhomogeneous parts satisfy the same homogeneous recurrence
(by definition), the general solutions for xn and tn have the form

(nA1 + A0) λ
n + (nB1 + B0) μ

n + (nC1 + C0) ν
n.

One can generate six initial values for an, xn, and tn using the recurrences. They are
(1, 2, 11, 44, 189, 798), (0, 2, 16, 92, 512, 2654), and (0, 3, 28, 66, 940, 4929), respec-
tively. Solving 6 × 6 systems of linear equations then gives A1 = (5 + √

5)/20 in the
solution for xn and A1 = (17 + 5

√
5)/40 in the solution for tn. The desired limiting ratio

is the ratio of these two coefficients, which is (30 − 4
√

5)/41.

Editorial comment. The proposer found the following closed-form expressions, with Fn
being the nth Fibonacci number:

an = (
F3n+2 + (−1)n

)/
2 (see oeis.org/A110679);

xn = F3n−1 + (−1)n(n− 1);
tn = 1

20

(
(17n+ 10)F3n+1 + (4n− 12)F3n + (15n− 10)(−1)n

)
.

Also solved by S. B. Ekhad, G. Fera (Italy), P. Lalonde (Canada), P. McPolin (U. K.), R. Molinari, R. Nandan,
R. Pratt, R. Stong, and the proposer.

A Vanishing Sum

11997 [2017, 660]. Proposed by Michael Drmota, Technical University of Vienna, Vienna,
Austria; Christian Krattenthaler, University of Vienna, Vienna, Austria; and Gleb Pogudin,
Johannes Kepler University, Linz, Austria. Assume |p| < 1 and pz �= 0. With
f (z) = (

e(p−1)z − e−z
)
/(pz), define f ∗(z) = ∏∞

k=0 f (p
kz), and then define Fn(p) so

that f ∗(z) = ∑∞
n=0 Fn(p)z

n. Prove the identity

∞∑
n=0

Fn(p) p
(n2) = 0.
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Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands).
More generally, we claim that the identity holds for functions f (z) with f (0) = 1 that
have the form

f (z) = b(pz)− 1

pz b(z)

with b(z) = ∑∞
k=0 bkz

k and b0 = b1 = 1, provided that all infinite sums and products con-
verge for |z| and |p| sufficiently small. Here the numbers bk may depend on p.

Consider f (z) = a(z)/b(z)with a(z) = ∑∞
k=0 akz

k and b(z) = ∑∞
k=0 bkz

k , where a0 =
b0 = 1 and in general ak and bk may be functions of p. With f ∗(z) = ∏∞

k=0 f (p
kz), define

Fn(p) by f ∗(z) = ∑∞
n=0 Fn(p)z

n. Since f ∗(z) = f (z)f ∗(pz), we have b(z)f ∗(z) =
a(z)f ∗(pz), and hence( ∞∑

k=0

bkz
k

)( ∞∑
n=0

Fn(p)z
n

)
=
( ∞∑
k=0

akz
k

)( ∞∑
n=0

Fn(p)p
nzn

)
.

Comparing the coefficients of zm on both sides of the above expression shows

m∑
n=0

Fn(p)(bm−n − am−npn) = 0 (1)

for m ≥ 0. Let (cm(p))∞m=0 be any sequence. Multiply (1) by cm and sum over m, then
interchange the summation order and rescale to obtain

∑∞
n=0 Fn(p)Cn(p) = 0, where

Cn(p) =
∞∑
k=0

cn+k(bk − akp
n). (2)

If cn+k+1bk+1 = cn+kakpn for all n and k with n, k ≥ 0, then the sum in (2) telescopes to
yield Cn(p) = cn. This happens if and only if

ak

bk+1
= ak−1p

bk
= cn+k+1

cn+k
p−n

for all n and k with n ≥ 0 and k ≥ 1, in which case

an = pnbn+1/b1 and Cn(p) = cn = p(
n
2)/bn1 . (3)

For the convergence of the telescoping sums we require limk→∞ cn+kakpn = 0. Using
(3) above (and recalling b1 = 1), we obtain

lim
k→∞ cn+kakp

n = lim
k→∞p

(n+k2 )pkbk+1p
n.

Since we assumed in defining b(z) that its sum converges for suitably small z and p,
it follows that limk→∞ bk+1z

k+1 = 0 and hence also limk→∞ bk+1p
k+1 = 0. Therefore

limk→∞ cn+kakpn = 0 and the telescoping sum for Cn(p) converges.
Finally, note that the first part of (3) is equivalent to a(z) = (b(pz) − 1)(pzb1). The

identity in the problem results from the case b(z) = ez = ∑∞
k=0 z

n/n!, where b0 = b1 = 1
and a(z) = (epz − 1)/(pz).

Also solved by P. Lalonde (Canada) and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit

Proposed solutions to the problems below should be submitted by September 30,
2019 via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

12111. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. A line segment AB can
be oriented in two ways, which we denote (AB) and (BA). A square ABCD can be oriented
in two ways, which we denote (ABCD) (the same as (BCDA), (CDAB), and (DABC)) and
(DCBA) (the same as (CBAD), (BADC), and (ADCB)). We say that the orientation (ABCD)

of a square agrees with the orientations (AB), (BC), (CD), and (DA) of its sides. Suppose
that each edge and 2-dimensional face of an n-dimensional cube is given an orientation.
(a) What is the largest possible number of 2-dimensional faces whose orientation agrees
with the orientations of its four sides?
(b) What is the largest possible number of edges whose orientation agrees with the orien-
tations of all 2-dimensional faces containing the edge?

12112. Proposed by Dao Thanh Oai, Thai Binh, Vietnam. Let ABC be a triangle with
circumcenter O and nine-point center N . Let P be a point on its circumcircle and let D,
E, and F be the circumcenters of triangles AOP, BOP, and COP, respectively. Let A′, B ′,
and C ′ be the feet of perpendiculars from D, E, and F onto the lines BC, CA, and AB,
respectively. Prove that A′, B ′, C ′, and N are collinear.

12113. Proposed by Richard P. Stanley, University of Miami, Coral Gables, FL. Define
f (n) and g(n) for n ≥ 0 by

∑
n≥0

f (n)xn =
∑
j≥0

x2j
j−1∏
k=0

(
1 + x2k + x3·2k

)

and ∑
n≥0

g(n)xn =
∏
i≥0

(
1 + x2i + x3·2i

)
.

Find all values of n for which f (n) = g(n), and find f (n) for these values.

doi.org/10.1080/00029890.2019.1583529
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12114. Proposed by Zachary Franco, Houston, TX. Let n be a positive integer, and let
An = {1/n, 2/n, . . . , n/n}. Let an be the sum of the numerators in An when these frac-
tions are expressed in lowest terms. For example, A6 = {1/6, 1/3, 1/2, 2/3, 5/6, 1/1}, so
a6 = 1 + 1 + 1 + 2 + 5 + 1 = 11. Find

∑∞
n=1 an/n4.

12115. Proposed by Marius Drăgan, Bucharest, Romania. Let a, b, c, and d be positive
real numbers. Prove

(a3 + b3)(a3 + c3)(a3 + d3)(b3 + c3)(b3 + d3)(c3 + d3)

≥ (a2b2c2 + a2b2d2 + a2c2d2 + b2c2d2)3.

12116. Proposed by Rishubh Thaper, Fleminton, NJ. In a round-robin tournament with n

players, each player plays every other player exactly once, and each match results in a win
for one player and a loss for the other. When player A defeats player B, we call B the
victim of A. At the end of the tournament, each player computes the total number of losses
incurred by the player’s victims. Let q be the average of this quantity over all players.
Prove that there exists a player with at most �√q� wins and a player with at most �√q�
losses.

12117. Proposed by Michel Bataille, Rouen, France. Let n be a nonnegative integer. Prove

sinn+1(4π/7)

sinn+2(π/7)
− sinn+1(π/7)

sinn+2(2π/7)
+ (−1)n

sinn+1(2π/7)

sinn+2(4π/7)

= 2
√

7
∑ (i + j + k)!

i! j ! k!
(−1)n−i2i ,

where the sum is taken over all triples (i, j, k) of nonnegative integers satisfying i + 2j +
3k = n.

SOLUTIONS

A Trigonometric Functional Equation

11998 [2017, 660]. Proposed by Roger Cuculière, Lycée Pasteur, Neuilly-sur-Seine,
France. Find all continuous functions f : R → R that satisfy f (z) ≤ 1 for some nonzero
real number z and

f (x)2 + f (y)2 + f (x + y)2 − 2f (x)f (y)f (x + y) = 1

for all real numbers x and y.

Solution by FAU Problem Solving Group, Florida Atlantic University, Boca Raton, FL.
The solutions are the constant functions f (x) = 1 and f (x) = −1/2 and the functions
f (x) = cos αx for α > 0. It is easy to see that all these functions satisfy the requirements.

Conversely, suppose that f is a continuous function satisfying the functional equation,
f (z) ≤ 1 for some nonzero z, and f (x) is not identically 1 or −1/2. We first prove f (0) =
1. Let c = f (0). Setting x = y = 0 in the functional equation yields 3c2 − 2c3 = 1, an
equation with a double root of 1 and a simple root of −1/2. Setting y = 0 in the functional
equation yields 2(1 − c)f (x)2 = 1 − c2 for all x. If c = −1/2, then this equation implies
f (x)2 = 1/4 for all x; by continuity and since f (0) = c = −1/2, we conclude f (x) =
−1/2 for all x, a contradiction. Thus, c = 1; that is, f (0) = 1.
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Next, setting x = y yields

2f (x)2 + f (2x)2 − 2f (x)2f (2x) = 1,

or

(f (2x) − 1)(f (2x) − 2f (x)2 + 1) = 0.

Hence

f (2x) = 1 or f (2x) = 2f (x)2 − 1 (1)

for all x ∈ R.
We claim f (y) = 1 for some nonzero y. Suppose otherwise. By (1), f (2x) =

2f (x)2 − 1, when x �= 0. If f (x) = 0 for some nonzero x, then f (2x) = −1 and
f (4x) = 1, which is a contradiction. Since f (0) = 1, we conclude f (x) > 0 for all x.
By assumption there is some nonzero z such that f (z) ≤ 1, and therefore 0 < f (z) < 1.
Letting ε = 1 − f (z), we have 0 < ε < 1 and

f (2z) = 2(1 − ε)2 − 1 = 1 − 2ε(2 − ε) ≤ 1 − 2ε.

By induction, f (2nz) ≤ 1 − 2nε, implying f (2nz) ≤ 0 if n is large enough, a contradiction
that establishes the claim.

Assume now y �= 0 and f (y) = 1. Applying the functional equation, we get

f (x)2 + f (x + y)2 − 2f (x)f (x + y) = 0.

Thus f (x + y) = f (x) for all real x, so y is a period of f . Since f is not identically 1,
it has a minimum period T . Similarly, if f (x) = 1, then x is a period of f , and hence
x = kT for some k ∈ Z. Therefore the second alternative of (1) holds for all x /∈ (T /2)Z.
It follows by continuity that it holds for all x. Thus

f (2x) = 2f (x)2 − 1 (2)

for all x ∈ R.
To conclude, we prove f (x) = cos(2πx/T ). Since it is clear that f satisfies the func-

tional equation if and only if x 
→ f (αx) also satisfies it (where α > 0 is a constant), it suf-
fices to prove f (x) = cos x when T = 2π . Using (2), from f (2π) = 1 we get f (π)2 = 1,
and thus f (π) = −1 (since π is not a period). Using (2) again we get f (π/2) = 0. More-
over, if 0 < x < π/2, then f (x) �= 1, and if f (x) = 0, then using (2) yields f (4x) = 1 and
0 < 4x < 2π , a contradiction. Since f (0) = 1 and f (π/2) = 0, we conclude 0 < f (x) <

1 for 0 < x < π/2. Since we have proved 0 ≤ f (x) ≤ 1 when x ∈ [0, π/2], equation (2)
implies |f (x)| ≤ 1 first for all x ∈ [0, π ], then for all x ∈ [0, 2π ], and finally by periodic-
ity for all x ∈ R.

From (2) and induction on n, since both f (x) and cos x are nonnegative in [0, π/2],
we see that f (x) = cos x when x = π/2n for n ∈ N. Next, define g : R → R by g(x) =√

1 − f (x)2. Solving the functional equation for f (x + y), we find

f (x + y) = f (x)f (y) ± g(x)g(y).

To decide which sign applies when 0 < x, y < π/2, let Q = (0, π/2) × (0, π/2), and let

A = {(x, y) ∈ Q : f (x + y) = f (x)f (y) − g(x)g(y)}.
The set A is clearly closed in Q. It is also open in Q; in fact, its complement is the closed
set {(x, y) ∈ Q : f (x + y) = f (x)f (y) + g(x)g(y)}. Since Q is connected, either A = Q

or A is empty. Now f (π/4) = cos(π/4) = 1/
√

2, and hence g(π/4) = 1/
√

2, so

f (π/2) = 0 = 1√
2

1√
2

− 1√
2

1√
2

= f (π/4)f (π/4) − g(π/4)g(π/4).
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Thus (π/4, π/4) ∈ A, implying A is not empty, so A = Q and

f (x + y) = f (x)f (y) − g(x)g(y) (3)

for all (x, y) ∈ Q. Since f , g, cosine, and sine are all positive in (0, π/2), it follows that
at points (x, y) ∈ Q such that f (x) = cos x and f (y) = cos y, we also have g(x) = sin x,
g(y) = sin y, and f (x + y) = cos(x + y). Having proved that f (π/2n) = cos(π/2n) for
n ∈ N, we can thus conclude that f (x) = cos x for all points x = mπ/2n, where n ∈ N
and m = 0, . . . , 2n−1. Since these points are dense in [0, π/2] and since f is continuous,
we have established that f (x) = cos x for 0 ≤ x ≤ π/2. It follows from (2) that we also
have f (x) = cos x in [0, π ], then in [0, 2π ], and finally for all x ∈ R.

Editorial comment. Several solvers pointed out that if we drop the condition that f (z) ≤ 1
for some nonzero z, then we get the additional solutions f (x) = cosh αx for α > 0.

Also solved by R. Chapman (U. K.), R. Ger (Poland), J. W. Hagood, E. A. Herman, E. J. Ionaşcu, Y. J. Ionin,
M. E. Kidwell & M. D. Meyerson, O. Kouba (Syria), O. P. Lossers (Netherlands), R. Stong, GCHQ Problem
Solving Group (U. K.), and the proposer.

A Variation on Euler’s Formula for Pi

11999 [2017, 754]. Proposed by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. Evaluate

∞∑
k=1

(−1)�
√

k+√
k+1�

k(k + 1)
.

Solution by Russell A. Gordon, Whitman College, Walla Walla, WA. The value is π2/3 − 3.

First, we compute �√k + √
k + 1� for k ∈ N. Let n = �√k�, so n2 ≤ k < (n + 1)2. We

prove

⌊√
k + √

k + 1
⌋

=
{

2n, when n2 ≤ k ≤ n2 + n − 1;
2n + 1, when n2 + n ≤ k ≤ n2 + 2n.

(∗)

It is immediate that
√

k + √
k + 1 is either 2n or 2n + 1. If k ≤ n2 + n − 1, then

√
k + √

k + 1 ≤
√

n2 + n − 1 +
√

n2 + n < 2
√

n2 + n <
√

4n2 + 4n + 1 = 2n + 1.

If k ≥ n2 + n, then
√

k + √
k + 1 ≥

√
n2 + n +

√
n2 + n + 1

=
√

n2 + n + 2
√

(n2 + n)(n2 + n + 1) + n2 + n + 1

>
√

4(n2 + n) + 1 = 2n + 1.

This yields (∗).
The given series is absolutely convergent, since the series comprised of the absolute

values of its terms is dominated by
∑∞

k=1 1/k2. Hence rearrangements and regroupings do
not affect the sum. Also, we note the simplifying presence of telescoping sums:

n∑
k=m

1

k(k + 1)
=

n∑
k=m

(
1

k
− 1

k + 1

)
=

n∑
k=m

1

k
−

n+1∑
k=m+1

1

k
= 1

m
− 1

n + 1
.
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Finally, recall Euler’s famous formula
∑∞

n=1 1/n2 = π2/6. Putting these facts together, we
obtain

∞∑
k=1

(−1)�
√

k+√
k+1�

k(k + 1)
=

∞∑
n=1

⎛
⎝n2+n−1∑

k=n2

1

k(k + 1)
−

n2+2n∑
k=n2+n

1

k(k + 1)

⎞
⎠

=
∞∑

n=1

((
1

n2
− 1

n2 + n

)
−

(
1

n2 + n
− 1

(n + 1)2

))

=
∞∑

n=1

1

n2
− 2

∞∑
n=1

1

n(n + 1)
+

∞∑
n=1

1

(n + 1)2

= 2
∞∑

n=1

1

n2
− 1 − 2

∞∑
n=1

(
1

n
− 1

n + 1

)
= 2 · π2

6
− 1 − 2 · 1 = π2

3
− 3.

Also solved by U. Abel (Germany), M. Bello & M. Benito & Ó. Ciaurri & E. Fernández & L. Roncal
(Spain), A. Berkane (Algeria), R. Bittencourt (Brazil), R. Boukharfane (France), R. Brase, R. Chapman
(U. K.), H. Chen, W. J. Cowieson, R. Cuculière (France), P. P. Dályay (Hungary), V. Dassios (Greece),
B. E. Davis, T. de Souza Leão (Brazil), S. Dzhatdoyev & Q. Liu, G. Fera (Italy), K. Gatesman, C. Georghiou
(Greece), O. Geupel (Greece), M. L. Glasser, N. Grivaux (France), A. Habil (Syria), E. A. Herman, Y. J. Ionin,
W. P. Johnson, B. Karaivanov (U. S. A.) & T. S. Vassilev (Canada) & L. Cooper (Canada) & E. Drake
(Canada) & L. Kenney (Canada), M. Lafond (France), P. Lalonde (Canada), J. H. Lindsey II, L. Lipták,
O. P. Lossers (Netherlands), J. Magliano, R. Martin (Germany), P. McPolin (U. K.), N. Merz, M. D. Meyerson,
V. Mikayelyan (Armenia), R. Molinari, R. Nandan, M. Omarjee (France), A. Pathak, Á. Plaza & F. Perdomo
(Spain), M. A. Prasad (India), F. A. Rakhimjanovich (Uzbekistan), H. Ricardo, C. Schacht, V. Schindler
(Germany), E. Schmeichel, R. Schumacher (Switzerland), N. C. Singer, J. C. Smith, A. Stadler (Switzerland),
A. Stenger, R. Stong, M. Tang, R. Tauraso (Italy), D. B. Tyler, J. Vinuesa (Spain), M. Vowe (Switzerland),
T. Wiandt, H. Widmer (Switzerland), Y. Xiang (China), L. Zhou, GCHQ Problem Solving Group (U. K.),
Lafayette Problem Solving Group, Missouri State University Problem Solving Group, NSA Problems Group,
and the proposer.

Unlucky Thirteen

12001 [2017, 754]. Proposed by Marius Coman, Bucharest, Romania, and Florian Luca,
Johannesburg, South Africa. A base-2 pseudoprime is an odd composite number n that
divides 2n − 2. Prove that if p is a prime number greater than 13, then there is a base-2
pseudoprime that divides 2p−1 − 1.

Solution by Michael Tang, student, Massachusetts Institute of Technology, Cambridge, MA.
First suppose that p − 1 has a prime factor q with q ≥ 5. We claim that n = (22q − 1)/3 is
a base-2 pseudoprime that divides 2p−1 − 1. To see this, first note n = (2q − 1)(2q + 1)/3.
Both factors in the numerator are larger than 3 and odd, so n is also odd and composite.
Since q > 3 and ϕ(2q) = q − 1, where ϕ is Euler’s totient function, by Euler’s theorem
n ≡ (22 − 1)/3 = 1 (mod 2q), so 2q | (n − 1). Also 2q | (p − 1), because both 2 and q

divide p − 1. Hence, 22q − 1 divides both 2n−1 − 1 and 2p−1 − 1, so n divides both 2n − 2
and 2p−1 − 1 as claimed.

It remains to consider primes p with p > 13 such that p − 1 = 2a · 3b for some integers
a, b ≥ 0. Since p − 1 is even, a ≥ 1. Also, p ≥ 17, so p − 1 ≥ 16. Hence either b = 0 and
a ≥ 4, or b = 1 and a ≥ 3, or b ≥ 2 and a ≥ 1. We conclude that 16, 24, or 18, respec-
tively, must divide p − 1. It is easy to verify that 4369 (equal to 17 · 257), 1105 (equal
to 5 · 13 · 17), and 1387 (equal to 19 · 73) are base-2 pseudoprimes that divide 216 − 1,
224 − 1, and 218 − 1, respectively. Hence at least one of these integers divides 2p−1 − 1,
completing the proof.
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Editorial comment. Yury J. Ionin noted (as can be also seen from the above proof) that p

does not need to be prime, only odd, and that the result also holds for p = 11 in addition
to every odd number larger than 13. Stephen M. Gagola Jr. showed that for any prime p

and any a ≥ 2 with gcd(p, a) = 1, there is a base-a pseudoprime that divides ap−1 − 1
with the exceptions given in the problem (a = 2, p = 3, 5, 7, 13) and when (a, p) is either
(3, 2) or (3, 5).

Also solved by R. Brase, S. M. Gagola Jr., Y. J. Ionin, P. Komjáth (Hungary), P. W. Lindstrom, O. P. Lossers
(Netherlands), M. A. Prasad (India), J. P. Robertson, A. Stadler (Switzerland), R. Stong, GCHQ Problem
Solving Group (U. K.), NSA Problems Group, and the proposers.

A Geometric Realization of Hlawka’s Inequality

12002 [2017, 754]. Proposed by Florin Stanescu, Gaesti, Romania. Let ABC be a tri-
angle with area S, circumradius R, circumcenter O, and orthocenter H . Let D be the
point of intersection of lines AO and BC. Similarly, let E be the point of intersection
of lines BO and CA, and let F be the point of intersection of lines CO and AB. Let
T =

√
(3R2 − OH2)2 + 16S2

/
R2. Prove

T ≤ AH

OD
+ BH

OE
+ CH

OF
≤ 3 + T

2
.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cus, Syria. Without loss of generality, we assume that the circumcircle of �ABC is the unit
circle in the complex plane, and the vertices are represented by the complex numbers α,
β, and γ . The radian measures of the angles at A, B, and C are also denoted A, B, and C.
Recalling that

−→
OH = −→

OA + −→
OB + −→

OC, we see that

OH2 = 3 + 2(cos 2A + cos 2B + cos 2C). (1)

On the other hand, since A + B = π − C,

S = 1

2
ab sin C = 2 sin A sin B sin C = (

cos(A − B) − cos(A + B)
)

sin C

= cos(A − B) sin(A + B) − cos(A + B) sin(A + B)

= 1

2
(sin 2A + sin 2B + sin 2C). (2)

It follows from (1) and (2) that

T 2 = 4 (cos 2A + cos 2B + cos 2C)2 + 4 (sin 2A + sin 2B + sin 2C)2 ,

which can be put in the form

T = 2|e2iA + e2iB + e2iC |. (3)

Since D is the point of intersection of the lines OA and BC, there exist two real numbers
t and s such that

−→
OD = t

−→
OA = −→

OB + s
−→
BC. This condition is exactly tα = β + s(γ − β).

Taking complex conjugates and then multiplying both sides by αβγ , we obtain

tβγ = α(γ − s(γ − β)) = α(γ + β − tα).

Thus t (βγ + α2) = α(β + γ ), so OD = |t | = |β + γ |/|βγ + α2|. Also
−→
AH = −→

OB + −→
OC,

and hence AH = |β + γ |. Therefore

AH

OD
= |βγ + α2| =

∣∣∣∣βα + α

γ

∣∣∣∣ = |e2iC + e2iB |. (4)
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Similarly,

BH

OE
= |e2iA + e2iC | and

CH

OF
= |e2iB + e2iA|. (5)

By the triangle inequality,

∣∣e2iC + e2iB + e2iA + e2iC + e2iB + e2iA
∣∣

≤ ∣∣e2iC + e2iB
∣∣ + ∣∣e2iA + e2iC

∣∣ + ∣∣e2iB + e2iA
∣∣.

The left side of this is T by (3), so using (4) and (5) on the right side, we get the first
inequality in the problem statement. Hlawka’s inequality yields

|e2iC + e2iB | + |e2iA + e2iC | + |e2iB + e2iA|
≤ |e2iA| + |e2iB | + |e2iC | + |e2iA + e2iB + e2iC |,

and the right side of this inequality is equal to 3 + T/2, yielding the desired second in-
equality.

Also solved by P. P. Dályay (Hungary), D. Fleischman, R. Stong, and the proposer.

A GCD-weighted Trigonometric Sum

12003 [2017, 754]. Proposed by Nikolai Osipov, Siberian Federal University, Krasnoyarsk,
Russia. Given an odd positive integer n, compute

n∑
k=1

gcd(k, n)

cos2(πk/n)
.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Letting
the prime factorization of n be

∏s
i=1 p

ri
i , we prove

n∑
k=1

gcd(k, n)

cos2(πk/n)
=

s∏
i=1

(
p

2ri
i + p

2ri−1
i − p

ri−1
i

)
.

We first show
∑n

k=1(cos(πk/n))−2 = n2. Let Tn be the nth Chebyshev polynomial
of the first kind, defined by the recurrence Tn+1(z) = 2zTn(z) − Tn−1(z) for n ≥ 1,
with T0(z) = 1 and T1(z) = z. From this recurrence, one can show by induction on n

that Tn(cos θ) = cos nθ , Tn(−1) = (−1)n, and T ′
n(−1) = (−1)n−1n2. Now let Pn(x) =

Tn(2x − 1) − 1. The n roots of the polynomial Pn, with the correct multiplicities, are
(cos(2πk/n) + 1)/2 for 1 ≤ k ≤ n. The constant term c0 of Pn is Tn(−1) − 1, which is
−2, since n is odd. The linear coefficient c1 of Pn is 2T ′

n(−1), which is 2(−1)n−1n2, or
2n2. Since the sum of the reciprocals of the roots of a polynomial

∑n
i=0 cix

i is −c1/c0, we

obtain
∑n

k=1

(
cos(πk/n)

)−2 = ∑n
k=1

(
(cos(2πk/n) + 1)/2

)−1 = n2.
The Euler totient φ(m) is the number of values in [m] that are relatively prime to m; it

satisfies m = ∑
d|m φ(d) for all m ∈ N. Applying this with m = gcd(k, n), interchanging

the order of summation, and letting r = k/d, we obtain

n∑
k=1

∑
d|gcd(k,n)

φ(d)

cos2(πk/n)
=

∑
d|n

n/d∑
r=1

φ(d)

cos2(πr/(n/d))
=

∑
d|n

φ(d)n2

d2
.
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When n1 and n2 are relatively prime, the divisors of n1n2 are the products of the divisors
of n1 and n2, hence the sum we have obtained is a multiplicative function of n. When n is
a prime power, say n = pr , we use φ(pj ) = pj − pj−1 for j ≥ 1 to evaluate the sum as

∑
d|n

φ(d)n2

d2
= p2r +

r∑
j=1

(p2r−j − p2r−j−1) = p2r + p2r−1 − pr−1.

The result follows.

Also solved by R. Bittencourt (Brazil), R. Brase, R. Chapman (U. K.), K. Gatesman, Y. J. Ionin, P. Lalonde
(Canada), O. P. Lossers (Netherlands), M. A. Prasad (India), I. Sfikas, N. C. Singer, A. Stadler (Switzerland),
M. Tang, GCHQ Problem Solving Group (U. K.), Missouri State University Problem Solving Group, NSA
Problems Group, and the proposer.

Divergence of a Series

12004 [2017, 755]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let
a1, a2, . . . be a strictly increasing sequence of real numbers satisfying an ≤ n2 ln n for all
n ≥ 1. Prove that the series

∑∞
n=1 1/(an+1 − an) diverges.

Solution by Nicholas C. Singer, Annandale, VA. For k ≥ 1, apply the Harmonic-Mean–
Arithmetic-Mean inequality to the positive numbers in {a2k+j − a2k+j−1 : 1 ≤ j ≤ 2k} to
obtain

1

a2k+1−a2k

+ 1

a2k+2−a2k+1
+ · · · + 1

a2k+1 −a2k+1−1
≥ 4k

a2k+1 −a2k

≥ 4k

a2k+1 −a1
.

Since a1 ≤ 0,

4k

a2k+1 − a1
= 4k

a2k+1 + |a1| ≥ 4k

22k+2(k + 1) ln 2 + |a1| = 1

4(k + 1) ln 2 + |a1|/4k
.

It follows that

∞∑
n=1

1

an+1 − an

=
∞∑

k=0

2k∑
j=1

1

a2k+j − a2k+j−1
≥

∞∑
k=0

1

4(k + 1) ln 2 + |a1|/4k
= ∞.

Editorial comment. Several solvers overlooked the possibility that an might be negative for
some (or all) n.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), R. Boukharfane (France), P. Bracken, R. Brase,
H. Chen, P. J. Fitzsimmons, D. Fleischman, E. J. Ionaşcu, M. Javaheri, P. Komjáth (Hungary), O. Kouba (Syria),
K. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany), V. Mikayelyan (Armenia),
P. Perfetti (Italy), Á. Plaza & K. Sadarangani (Spain), M. A. Prasad (India), J. C. Smith, O. Sonebi (France),
A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), J. Vinuesa (Spain), GCHQ Problem Solving Group
(U. K.), and the proposer.

A Suspicious Formula Involving Pi

12006 [2017, 970]. Proposed by Jonathan D. Lee, Merton College, Oxford, U. K., and Stan
Wagon, Macalester College, St. Paul, MN. When n is an integer and n ≥ 2, let an = �n/π�
and bn = �csc(π/n)�. The sequences a2, a3, . . . and b2, b3, . . . are, respectively,

1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, . . .

and
1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, . . . .

They differ when n = 3. Are they equal for all larger n?
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Solution by Albert Stadler, Herrliberg, Switzerland. The answer is no, as can be checked by
direct calculation for n = 80143857. As motivation for this answer, the Laurent expansion
of csc(πx) is 1/(πx) + πx/6 + · · · with all coefficients positive. Thus when n ≥ 2 we
have 0 < csc(π/n) − n/π ≤ csc(π/2) − 2/π < 1. It follows that bn − 1 ≤ an ≤ bn, and
furthermore that bn = an + 1 when there exists an integer m such that

0 <
m

n
− 1

π
<

π

6n2
. (∗)

Good candidates for m/n are given by the continued fraction convergents of 1/π ,
every second one of which is greater than 1/π . The continued fraction representation
of 1/π is [0; 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .], and so one may compute that
the first two convergents that satisfy (∗) are the second and 14th. These are 1/3 and
25510582/80143857, leading to an �= bn for n = 3 and n = 80143857.

Editorial comment. Direct computation shows that an = bn when 4 ≤ n ≤ 80143856.
It is natural to wonder whether the sequences differ infinitely often. The proposers

noted that by Hurwitz’s theorem there are infinitely many convergents to 1/π such that
| 1
π

− m
n
| < 1√

5n2 , which implies | 1
π

− m
n
| < π

6n2 . However, only even-numbered conver-
gents will be greater than 1/π , as needed for (∗). It seems likely, given how the continued
fraction of π is expected to behave, that there are infinitely many even-numbered conver-
gents among the ones that satisfy the condition of Hurwitz’s theorem, but this is currently
unresolved.

Also solved by A. Berele, R. Chapman (U. K.), S. Demers (Canada), G. Fera (Italy), O. P. Lossers (Nether-
lands), M. D. Meyerson, V. Mikayelyan (Armenia), M. Reid, C. Schacht, V. Schindler (Germany), J. C. Smith,
A. Stenger, A. Stewart, R. Stong, W. Stromquist, R. Tauraso (Italy), D. Terr, H. Widmer (Switzerland), L. Zhou,
Armstrong Problem Solving Group, GCHQ Problem Solving Group (U. K.), and the proposers.

An Application of the Phragmén–Lindelöf Principle

12009 [2017, 970]. Proposed by George Stoica, Saint John, NB, Canada. Find all con-

tinuous functions f : [0, 1] → R satisfying
∣∣∣∫ 1

0 exyf (x) dx

∣∣∣ < 1/y for all positive real

numbers y.

Solution by James Christopher Smith, Knoxville, TN. We claim that the only such function
is the constant 0. Let g(z) = ∫ 1

0 exzf (x) dx for all z ∈ C. Because f is continuous on
[0, 1], it is bounded and measurable, so g is an entire function.

We apply the Phragmén–Lindelöf principle to g(z) on the first quadrant D in the com-
plex plane. First, we note the estimate

|g(z)| ≤
∫ 1

0

∣∣exzf (x)
∣∣ dx ≤ Me|z|,

where M = ∫ 1
0 |f (x)| dx. Second, we claim that g is bounded on the real axis. Indeed,

when −∞ < y ≤ 1 we have |g(y)| ≤ Me and for y ≥ 1 we have |g(y)| ≤ 1/y ≤ 1.
And third, we claim that g is bounded on the imaginary axis. Indeed, for y ∈ R we have
|g(iy)| ≤ ∫ 1

0

∣∣eixyf (x)
∣∣ dx ≤ M . Therefore, by the Phragmén–Lindelöf principle, g(z) is

bounded in the quadrant D. Similarly, g(z) is bounded in each of the other three quadrants
as well.

Thus g(z) is a bounded entire function, so by Liouville’s theorem g(z) is constant.
Hence, for all n ≥ 1, we have 0 = g(n)(0) = ∫ 1

0 xnf (x) dx. By the Weierstrass approxi-
mation theorem applied to xf (x), we conclude that f is the constant function 0.

Also solved by K. F. Andersen (Canada), A. Stadler (Switzerland), G. Vidiani (France), GCHQ Problem Solv-
ing Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by October 31, 2019,
via the same link. More detailed instructions are available online. Proposed prob-
lems must not be under consideration concurrently at any other journal nor be posted
to the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12118. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Fn be the nth Fibonacci num-
ber, defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 when n ≥ 2. Compute

∞∑
n=0

1

F2mn + Fmi
,

where m is an odd integer and i = √−1.

12119. Proposed by Vu Thanh Tung, Nam Dinh, Vietnam. Let I be a real interval, and let
F : I × I → R be a function such that

∂3F

∂x ∂y2
≥ 0 ≥ ∂3F

∂x2 ∂y
.

For a positive integer n, suppose that a1, . . . , an are real numbers in I satisfying a1 ≥ a2 ≥
· · · ≥ an, and let an+1 = a1. Prove

n∑
i=1

F(ai, ai+1) ≥
n∑

i=1

F(ai+1, ai).

12120. Proposed by Michel Bataille, Rouen, France. For positive integers n and k with
n ≥ k, let a(n, k) = ∑k−1

j=0

(
n

j

)
3j .

(a) Evaluate

lim
n→∞

1

4n

n∑
k=1

a(n, k)

k
.

(b) Evaluate

lim
n→∞ n

(
4nL −

n∑
k=1

a(n, k)

k

)
,

where L is the limit in part (a).

doi.org/10.1080/00029890.2019.1602379
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12121. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania, and Kunihiko
Chikaya, Tokyo, Japan. For what values of k does

k(ax + bx + cx) +√
a(1 − b) + b(1 − c) + c(1 − a) ≥ 3k

hold for all x ∈ (0, 1) and all positive real numbers a, b, and c satisfying a + b + c = 3?

12122. Proposed by Marius Munteanu, State University of New York, Oneonta, NY. Let f

be a real-valued function on an abelian group G such that f (a + a) = 2f (a) and f (−a) =
f (a) for all a ∈ G. Prove that if

f (a) + f (b) + f (c) + f (a + b + c) ≥ f (a + b) + f (b + c) + f (c + a)

for all a, b, and c in G, then

f (a + b) + f (b + c) + f (c + a) + f (a + b + c) ≥ f (a) + f (b) + f (c)

for all a, b, and c in G.

12123. Proposed by Andrew Wu, student, St. Albans School, Washington, DC. Let ABC be
a triangle with AB �= AC and with incenter I . Let M be the midpoint of BC, and let L be
the midpoint of the circular arc BAC. Lines through M parallel to BI and CI meet AB

and AC at E and F , respectively, and meet LB and LC at P and Q, respectively. Show
that I lies on the radical axis of the circumcircles of triangles EMF and PMQ.

12124. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let p be a real
number greater than 1, and let a1, a2, . . . be a sequence of positive real numbers. Prove
that if

n∑
k=1

1

1 + a
p

k

= O

(
1

1 + a
p
n

)
,

then
n∑

k=1

1

1 + ak

= O

(
1

(1 + a
p
n )1/p

)
.

(Here, as usual, f (n) = O(g(n)) means that there exist M and N so that |f (n)| < Mg(n)

for all n ≥ N .)

SOLUTIONS

A Bird’s Eye View

12007 [2017, 970]. Proposed by Kadir Altintas, Afyon, Turkey, and Leonard Giugiuc,
Drobeta-Turnu Severin, Romania. Let G be the centroid of triangle ABC, and let M be an
interior point of ABC. Let D,E, and F be the centroids of sub-triangles CMB, AMC,
and BMA, respectively.
(a) Prove that the lines AD, BE, and CF are concurrent.
(b) Suppose that M �= G and that P is the point of concurrency in part (a). Prove that G,
P , and M are collinear, with P between G and M , and PM = 3PG.

Solution I by Don Chakerian, Davis, CA. The medians of a tetrahedron intersect at
its centroid, and each median is divided in the ratio 3:1. If M is any point not in the
plane of triangle ABC, then AD, BE, CF , and MG are medians of tetrahedron ABCM
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and therefore intersect at its centroid. This point P divides each median in the ratio 3:1.
The proposed problem is the limiting case where M lies inside ABC. Note that M need
not be interior to ABC. This problem generalizes to an n-dimensional simplex divided
into sub-simplices by a point M . The lines connecting vertices to the centroids of their
opposite sub-simplices concur at P with PM = nPG.

Solution II by Giuseppe Fera, Vicenza, Italy. Let Q be the center of the homethety H with
ratio −1/3 that sends M to G. Observe that G, Q, and M are collinear with PM = 3PG.
Take Q to be the origin, so the centroid D of triangle CMB satisfies

D = C + M + B

3
= C − 3G + B

3
= C − (A + B + C) + B

3
= −A

3
.

Thus D = H(A), and likewise E = H(B) and F = H(C). Since H is a homothety, AD,
BE, and CF are concurrent at its center, and so P = Q.

Also solved by H. Bailey, R. Barraso Campos (Spain), M. Bataille (France), A. Berele, Z. Bingsong, J. Cade,
R. Chapman (U. K.), H. Chen, I. Dimitrić, A. Fanchini (Italy), D. Fleischman, O. Geupel (Greece), E. P. Gold-
enberg, M. Goldenberg & M. Kaplan, J. Grivaux (France), M. Hajja (Jordan), Y. J. Ionin, K. T. L. Koo (China),
O. Kouba (Syria), S. S. Kumar, J. H. Lindsey II, G. Lord, O. P. Lossers (Netherlands), T. McDevitt, M. D. Mey-
erson, J. Minkus, C. G. Petalas (Greece), C. R. Pranesachar (India), M. Reid, C. Schacht, V. Schindler (Ger-
many), R. A. Simón, J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), Z. Vörös (Hungary),
M. Vowe (Switzerland), T. Wiandt, H. Widmer (Switzerland), L. Wimmer (Germany), S. Witt, L. Zhou, Arm-
strong Problem Solving Group, GCHQ Problem Solving Group (U. K.), and the proposer.

Special Commutative Rings

12010 [2017, 971]. Proposed by Greg Oman, University of Colorado, Colorado Springs,
CO, and Adam Salminen, University of Evansville, Evansville, IN. Given a ring with mul-
tiplicative identity 1, we say that a subring is unital if it contains 1. Find all commutative
rings R (up to isomorphism) such that R has a multiplicative identity, R is not a field, R

has a proper unital subring, and every proper unital subring of R is a field.

Solution by Allan Berele, DePaul University, Chicago, IL. The ring R must have the form
Zp × Zp or Zp[x]/(x2).

Each of these contains the unital subfield Zp. Any other unital subring must be a vector
space over Zp of dimension at least 2 and thus is all of R. Hence, these examples satisfy
the conditions.

Since the subring generated by 1 must be a field, its characteristic p must be nonzero.
Otherwise, R would contain a subring isomorphic to Z. If this subring is all of R, then R

does not have a proper unital subring, while if it is not all of R, then not every proper unital
subring is a field.

Since R is not a field, it contains a noninvertible element a. Since a is not invertible
and the subring generated by 1 and a is unital but not a field, this subring must be all of
R. Hence, the homomorphism from Zp[x] to R defined by mapping f (x) to f (a) for each
f (x) in the polynomial ring Zp[x] must be onto, so R is an image of Zp[x].

Since Zp[x] contains many subrings that are not fields, R must be isomorphic to
Zp[x]/I for a nonzero ideal I . Since Zp[x] is a principal ideal domain, I = (f (x)) for
some polynomial f (x). Let f (x) factor as �gi(x)ni , where each gi(x) is irreducible, so
R ∼= ⊕Zp[x]/(gi(x)ni ). We now deduce that R must be one of the claimed rings from the
following observations.

• R cannot be a product of more than two rings. If R = R1 ⊕ R2 ⊕ R3, then the subring
generated by the unit (1, 1, 1) and the element (1, 0, 0) cannot be a field (it contains the
zero divisors (1, 0, 0) and (0, 1, 1)) and cannot be all of R (it does not contain (0, 1, 0)).
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• If R = R1 ⊕ R2, then R = Zp × Zp. The subring generated by (1, 1) and (1, 0), which
equals the subring generated by (1, 0) and (0, 1), must be all of R.

• If R = Zp[x]/(g(x)n), then n = 2. We have n �= 1 since R is not a field. If n ≥ 3, then
R contains the proper unital subring generated by 1 and the nilpotent element g(x)n−1.

• If R = Zp[x]/(g(x)2), then R = Zp[x]/(x − a)2, and every such ring is isomorphic to
Zp[x]/(x)2. The set {a + bg(x)} is a unital subring and is not a field, so it must be all
of R. Hence it contains x, and this can only happen if g(x) has degree 1.

Also solved by A. J. Bevelacqua, R. Chapman (U. K.), S. M. Gagola, Jr., O. P. Lossers (Netherlands), M. Reid,
J. H. Smith, R. Stong, GCHQ Problem Solving Group (U. K.), Missouri State University Problem Solving
Group, NSA Problems Group, and the proposer.

Asymptotics of a Double Integral

12011 [2017, 971]. Proposed by Cornel Ioan Vălean, Teremia Mare, Romania. Calculate

lim
n→∞

(
1

n!

∫ ∞

0

∫ ∞

0

xn − yn

ex − ey
dx dy − 2n

)
.

Solution by Kenneth F. Andersen, Edmonton, AB, Canada. The limit equals 2. Note that
although the integrand is undefined on the line y = x, it extends to a function that is con-
tinuous on (0,∞) × (0,∞). Since the integrand is symmetric with respect to the line
y = x,

In =
∫ ∞

0

∫ ∞

0

xn − yn

ex − ey
dx dy = 2

∫ ∞

0

∫ ∞

y

xn − yn

ex − ey
dx dy.

With t = x − y, we have

ex − ey = ey(et − 1)

and

xn − yn = (t + y)n − yn =
n∑

j=1

(
n

j

)
t j yn−j ,

and so

In = 2
n∑

j=1

(
n

j

)∫ ∞

0
e−yyn−j dy

∫ ∞

0
t j

e−t

1 − e−t
dt

= 2
n∑

j=1

(
n

j

)∫ ∞

0
e−yyn−j dy

∫ ∞

0
t j

∞∑
k=1

e−kt dt

= 2
n∑

j=1

(
n

j

)∫ ∞

0
e−yyn−j dy

∞∑
k=1

∫ ∞

0
t j e−kt dt.

Since t j e−kt ≥ 0 for t ≥ 0, the interchange in summation and integration is justified by
Fubini’s theorem. The elementary integration formula∫ ∞

0
tme−at dt = m!

am+1
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for a > 0 and nonnegative integer m then shows

In = 2n!
n∑

j=1

∞∑
k=1

1

kj+1
= 2n!

∞∑
k=1

n∑
j=1

1

kj+1
= 2n!

⎛
⎝n +

∞∑
k=2

n∑
j=1

1

kj+1

⎞
⎠

= 2n!

(
n +

∞∑
k=2

(
1

k(k − 1)
− 1

kn+1(k − 1)

))
= 2n!

(
n + 1 −

∞∑
k=2

1

kn+1(k − 1)

)
.

Thus, we have

1

n!

∫ ∞

0

∫ ∞

0

xn − yn

ex − ey
dx dy − 2n = 2 − 2

∞∑
k=2

1

kn+1(k − 1)
.

Since
∞∑

k=2

1

kn+1(k − 1)
≤ 1

2n

∞∑
k=2

1

k(k − 1)
= 1

2n
,

the required limit is equal to 2, as claimed.

Also solved by A. Berkane (Algeria), R. Chapman (U. K.), H. Chen, G. Fera (Italy), J. A. Grzesik, E. A. Her-
man, J. H. Lindsey II, O. P. Lossers (Netherlands), I. Mező (China), V. Mikayelyan (Armenia), M. Omarjee
(France), J. C. Smith, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), Y. Xiang (China), and
the proposer.

A Power Series Involving Tails of e

12012 [2017, 971]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Let k be a nonnegative integer. Find the set
of real numbers x for which the power series

∞∑
n=k

(
n

k

)(
e − 1 − 1

1!
− 1

2!
− · · · − 1

n!

)
xn

converges, and determine the sum.

Solution by Vazgen Mikayelyan, Yerevan State University, Yerevan, Armenia. Let

Sk(x) =
∞∑

n=k

(
n

k

)(
e − 1 − 1

1!
− 1

2!
− · · · − 1

n!

)
xn,

and let In = (1/n!)
∫ 1

0 (1 − t)net dt . Since I0 = e − 1 and integration by parts gives In =
In−1 − 1/n!, we see that

In = e − 1 − 1

1!
− 1

2!
− · · · − 1

n!
.

In particular, since 0 < In < (1/n!)
∫ 1

0 et dt = (e − 1)/n!, we get

|Sk(x)| ≤
∞∑

n=k

(
n

k

)
e − 1

n!
|x|n = |x|k(e − 1)e|x|

k!

for all real x. Thus the series Sk(x) converges for all x.
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We now compute

Sk(x) =
∞∑

n=k

(
n

k

)
Inx

n =
∫ 1

0

∞∑
n=k

(1 − t)nxn

k!(n − k)!
et dt

= xk

k!

∫ 1

0
(1 − t)ket+(1−t)x dt = xke

k!

∫ 1

0
ske−(1−x)s ds.

This integral can be done by parts, giving

Sk(x) =

⎧⎪⎪⎨
⎪⎪⎩

e

(k + 1)!
, if x = 1;

xke

(1 − x)k+1

(
1 − ex−1

k∑
l=0

(1 − x)l

l!

)
, if x �= 1.

Also solved by K. F. Andersen (Canada), M. Bataille (France), A. Berkane (Algeria), R. Boukharfane (France),
K. N. Boyadzhiev, R. Chapman (U. K.), H. Chen, B. E. Davis, G. Fera (Italy), M. L. Glasser, N. Grivaux
(France), E. A. Herman, O. Kouba (Syria), P. Lalonde (Canada), J. H. Lindsey II, O. P. Lossers (Netherlands),
M. Omarjee (France), A. Pathak, P. Perfetti (Italy), J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso
(Italy), J. Vinuesa (Spain), Armstrong Problem Solving Group, and the proposer.

An Inequality in Symmetric Functions

12013 [2018, 81]. Proposed by David Stoner, student, Harvard University, Cambridge,
MA. Suppose that a, b, c, d, e, and f are nonnegative real numbers that satisfy a + b + c =
d + e + f . Let t be a real number greater than 1. Prove that at least one of the inequalities

at + bt + ct > dt + et + f t ,

(ab)t + (bc)t + (ca)t > (de)t + (ef )t + (f d)t , and

(abc)t > (def )t

is false.

Composite solution by the proposer and the editors. We prove a slightly strengthened form
of the contrapositive. Specifically, let x = at , y = bt , z = ct , u = dt , v = et , w = f t , and
s = 1/t . We show that if x + y + z ≥ u + v + w, xy + yz + zx ≥ uv + vw + wu, and
xyz ≥ uvw, then xs + ys + zs ≥ us + vs + ws for any s ∈ (0, 1), with equality if and only
if u, v,w is a permutation of x, y, z.

Let F be a symmetric function of x, y, z. We can view F as a function of the elementary
symmetric polynomials σ1 = x + y + z, σ2 = xy + yz + zx, and σ3 = xyz. The desired
result will follow if we show that for F(x, y, z) = xs + ys + zs , we have ∂F

∂σ1
, ∂F

∂σ2
, and ∂F

∂σ3
all positive. This uses the fact, proved in the lemma below, that we can join {u, v,w} to
{x, y, z} by a path along which each of the σk is nondecreasing.

Let us compute the signs of these partial derivatives. From the chain rule we have

∂F

∂x
= ∂F

∂σ1
+ (y + z)

∂F

∂σ2
+ yz

∂F

∂σ3
,

and symmetrically for the other two variables. Hence inverting this linear system gives
formulas for the partial derivatives of F with respect to the σk that can be summarized by
the formula

∂F

∂σk

=
∑
cyc

(−1)k−1x3−k

(x − y)(x − z)

∂F

∂x
,
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where the notation
∑
cyc

indicates that a sum is taken over all cyclic permutations of x, y, z.

(When two of x, y, z are equal, one can make sense of this formula by taking a limit.) In
particular for F(x, y, z) = xs + ys + zs we find

∂F

∂σk

=
∑
cyc

(−1)k−1sx2+s−k

(x − y)(x − z)
.

To determine the signs of these sums, we note that for any twice continuously differentiable
function g we have

∑
cyc

g(x)

(x − y)(x − z)
=
∫ 1

0

∫ 1−r

0
g′′(rx + sy + (1 − r − s)z) ds dr = 1

2
g′′(ξ)

for some ξ ∈ [min(x, y, z), max(x, y, z)]. Hence

∂F

∂σ1
= s2(s + 1)

2
ξ s−1

1 > 0,

∂F

∂σ2
= s2(1 − s)

2
ξ s−2

2 > 0, and

∂F

∂σ3
= s(1 − s)(2 − s)

2
ξ s−3

3 > 0.

Thus all three partial derivatives are positive as required.

Lemma. If {u, v,w} and {x, y, z} are unordered triples of nonnegative reals such that
x + y + z ≥ u + v + w, xy + yz + zx ≥ uv + vw + wu, and xyz ≥ uvw, then there is a
path from {u, v,w} to {x, y, z} along which all three elementary symmetric functions are
nondecreasing.

Proof. Associated to an unordered triple {x, y, z} we have a monic cubic polynomial
(X − x)(X − y)(X − z) = X3 − σ1X

2 + σ2X − σ3 with three nonnegative real roots and,
conversely, given such a polynomial we get an unordered triple. We find it more convenient
to work with paths between polynomials rather than paths between triples.

Let 0 ≤ x ≤ y ≤ z and 0 ≤ u ≤ v ≤ w. We first observe that if the graph of Y =
(X − u)(X − v)(X − w) lies entirely above the graph of Y = (X − x)(X − y)(X − z)

(for nonnegative X) — that is, (X − u)(X − v)(X − w) ≥ (X − x)(X − y)(X − z) for all
X ≥ 0—then we have one of the two orderings:

0 ≤ u ≤ v ≤ w ≤ x ≤ y ≤ z, (1)

0 ≤ u ≤ x ≤ y ≤ v ≤ w ≤ z. (2)

When (2) holds, any other cubic with graph between these two graphs (for nonnegative X)
also has three nonnegative real zeros (counted with multiplicity).

We highlight two special cases:
Case 1: Suppose that the triples {u, v,w} and {x, y, z} have the same value for σ2. For

nonnegative X, the graph of the cubic Y = (X − u)(X − v)(X − w) lies entirely above the
graph of Y = (X − x)(X − y)(X − z). Since the two cubics have the same value for σ2,
the zeros are ordered as in (2), so any cubic whose graph (for nonnegative X) lies entirely
between will also have three nonnegative real roots. Thus linearly interpolating σ1 and σ3

between them (keeping σ2 fixed) gives the required path.
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Case 2: Suppose that the triples have the same values for both σ1 and σ3. The graph
of the cubic Y = (X − u)(X − v)(X − w) lies entirely below the graph of the cubic Y =
(X − x)(X − y)(X − z) and again this ensures ordering in (2), so any interpolation has
three nonnegative real roots. Thus increasing σ2 keeping σ1 and σ3 fixed gives the desired
path.

Starting from an arbitrary triple {u, v,w} (and setting notation so that u ≤ v ≤ w), if
we increase w keeping u and v fixed, then all three σk can only increase. Thus we may
assume {u, v,w} and {x, y, z} have at least one σk equal. If this is σ2, then we are done by
Case 1. If it is σ3, then we switch to the path {u, v/t, tw} for t ≥ 1 (or the path {0, 0, t − 1}
if {u, v,w} = {0, 0, 0}). On this path σ3 is fixed but σ1 and σ2 only increase. Thus we may
follow this path until at least two of the σk agree with the values for {x, y, z}. At that point,
either Case 1 or Case 2 applies and we are done. Finally, if the triples have the same value
for σ1, then we follow the path

(ut , vt , wt ) = (u + t (v + w − 2u), v + t (w + u − 2v),w + t (u + v − 2w))

for 0 ≤ t ≤ 1/3. On this path σ1 is fixed and σ2 and σ3 only increase. To see this, note that

d(utvt + vtwt + wtut )

dt
= ut (2u − v − w) + vt (2v − w − u) + wt(2w − u − v)

≥ (ut + vt + wt)((2u − v − w) + (2v − w − u) + (2w − u − v))

3
= 0

and

dutvtwt

dt
= utvt (v + w − 2u) + vtwt (w + u − 2v) + wtut (u + v − 2w)

≥ (utvt + vtwt + wtut )((v + w − 2u) + (w + u − 2v) + (u + v − 2w))

3
= 0,

where the inequalities follow from the rearrangement inequality, since (u, v,w) and
(ut , vt , wt ) are ordered in the same way. Thus again we can follow this path until two of
σ1, σ2, σ3 match with {x, y, z} and then apply one of Case 1 or Case 2. �
No other correct solutions were received.

A Consequence of Hlawka’s Inequality and Levi Reduction

12015 [2018, 81]. Proposed by Dao Thanh Oai, Kien Xuong, Vietnam. Let ABC be a
triangle, let G be its centroid, and let D, E, and F be the midpoints of BC, CA, and AB,
respectively. For any point P in the plane of ABC, prove

PA + PB + PC ≤ 2(PD + PE + PF) + 3PG,

and determine when equality holds.

Solution I by Giuseppe Fera and Giorgio Tescaro, Vicenza, Italy. For each of the lines AB,
BC, and CA, define its inside to be the half-plane containing the interior of 
ABC. By
symmetry, it suffices to consider three regions for the location of P : 
BCG, �1, and �2,
where �1 is the intersection of the outsides of AB and AC, and �2 is the intersection of
the inside of AB, the inside of AC, and the outside of BC. All three regions include their
boundaries.

Since
−→
PA = 3

−→
PG − 2

−→
PD, we have PA ≤ 2PD + 3PG, with equality if and only if

P lies on the line segment GD. Thus it suffices to prove PB + PC ≤ 2(PE + PF) for
P in the three regions above. If P lies in 
BCG, then G lies in 
EFP , so

PB + PC ≤ GB + GC = 2(GE + GF) ≤ 2(PE + PF),
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where both equalities hold if and only if P = G. Now suppose that P is in �1 or �2.
Define point Q such that

−→
AQ = 2

−→
AP . Since P lies in 
BCQ, we have PB + PC ≤

QB + QC = 2(PF + PE), with equality if and only if P = Q = A. This completes the
proof and shows that equality holds if and only if P = G.

Solution II by Celia Schacht, student, Arizona State University, Glendale, AZ. Given a point
X, use the corresponding lower case letter x to denote

−→
PX. Let

�(a, b, c) = ‖b + c‖ + ‖c + a‖ + ‖a + b‖ + ‖a + b + c‖ − ‖a‖ − ‖b‖ − ‖c‖.
The desired inequality is �(a, b, c) ≥ 0.

We appeal to the following reduction theorem of F. W. Levi (see page 175 in D. S. Mitri-
nović (1970), Analytic Inequalities, Berlin: Springer). Let ki and pij be real constants
for 1 ≤ i ≤ m and 1 ≤ j ≤ r . If

∑m
i=1 ki |pi1x1 + · · · + pirxr | ≥ 0 for all real num-

bers x1, . . . , xr , then
∑m

i=1 ki‖pi1v1 + · · · + pirvr‖ ≥ 0 for all vectors v1, . . . , vr ∈ En

and any positive integer n. A necessary condition for equality in the conclusion is that∑m
i=1 ki |(pi1v1 + · · · + pirvr ) · u| = 0 for all unit vectors u in En, where v · u stands for

the inner product.
Let

δ(a, b, c) = |b + c| + |c + a| + |a + b| + |a + b + c| − |a| − |b| − |c|
for all real numbers a, b, and c. By Levi’s theorem, it is sufficient to show δ(a, b, c) ≥ 0,
the one-dimensional analogue of the desired result. To this end, fix real numbers b and
c, and let f (x) = δ(x, b, c). Notice that limx→−∞ f (x) = ∞ = limx→∞ f (x). Also, f

is a piecewise linear function of x and its critical points are 0, −b − c, −b, and −c. It
suffices to show that f is nonnegative at these critical points. Indeed, f (0) = 2|b + c| ≥ 0,
f (−b − c) = 0, and

f (−b) = |b − c| + |b + c| − 2|b| ≥ |(b − c) + (b + c)| − 2|b| = 0.

Similarly, f (−c) ≥ 0. This proves the inequality for δ(a, b, c).
Finally, we prove that equality holds if and only if P = G. If P = G, then a + b + c =

0, so �(a, b, c) = 0. Now suppose that P is not on the line AD. We may assume that P and
B are on the same side of AD. Let u be the unit vector perpendicular to AD, oriented so
that c · u > 0. Let a = a · u, b = b · u, c = c · u, and d = d · u. We have c > a = d > 0,
so a + c > 0. Also, d = (b + c)/2, so b + c > 0 and thus a + b + c > 0. Hence

δ(a, b, c) = a + 2(b + c) + |a + b| − |b| > a + |a + b| − |b| ≥ 0.

Thus �(a, b, c) > 0 by Levi’s theorem. Likewise, equality cannot hold if P is not on BE

or CF . Thus equality requires P = G.

Editorial comment. Hlawka’s inequality asserts that

‖y + z‖ + ‖z + x‖ + ‖x + y‖ ≤ ‖x‖ + ‖y‖ + ‖z‖ + ‖x + y + z‖
for all vectors x, y, and z. It can be proved via Levi’s theorem as in the solution by Schacht.
Most solvers noticed that the stated inequality follows immediately from Hlawka’s inequal-
ity by substituting x = b + c − a, y = c + a − b, and z = a + b − c.

Levi’s theorem can be proved by integrating over the unit sphere. In the special case of
this problem, the integration is over the unit circle, which was carried out by solvers Yury
J. Ionin and Richard Stong.

Also solved by M. Bataille (France), H. Chen (China), M. Dincă (Romania), Y. J. Ionin, J. H. Lindsey II,
O. P. Lossers (Netherlands), J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt,
J. Zacharias, L. Zhou, Davis Problem Solving Group, GCHQ Problem Solving Group (U. K.), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by November 30,
2019, via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

12125. Proposed by James Propp, University of Massachusetts, Lowell, MA.
(a) In the picture at right, nine equally
spaced points on a circle are joined by
nine chords, forming seven triangles.
Show that the sum of the areas of the
three outermost black triangles plus
the area of the innermost (equilateral)
black triangle equals the sum of the
areas of the other three triangles.
(b) Part (a) can be phrased as the asser-
tion that a certain self-intersecting 9-gon has signed area zero. For what values of n does
there exist a self-intersecting n-gon of signed area zero whose vertices coincide with the
vertices of a regular n-gon?

12126. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,” Bı̂rlad,
Romania. Let P(n) be the greatest prime divisor of the positive integer n. Prove that
P(n2 − n + 1) < P (n2 + n + 1) and P(n2 − n + 1) > P (n2 + n + 1) each hold for
infinitely many positive integers n.

12127. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania. Calculate∫ 1

0

(
Li2(1) − Li2(x)

1 − x

)2

dx,

where Li2 denotes the dilogarithm function, defined by Li2(z) = ∑∞
k=1 zk/k2.

12128. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. Let Fn be the nth Fibonacci number, defined by F0 = 0, F1 = 1, and
Fn+1 = Fn + Fn−1 for n ≥ 1. Find, in terms of n, the number of trailing zeros in the
decimal representation of Fn.

doi.org/10.1080/00029890.2019.1621132
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12129. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Compute√√√√
2 +

√
2 +

√
2 + · · · +

√
2 − √

2 + · · · ,

where the sequence of signs consists of n − 1 plus signs followed by a minus sign and
repeats with period n.

12130. Proposed by Dan Ştefan Marinescu, Hunedoara, Romania, and Mihai Monea,
Deva, Romania. Let P be a point in the interior of triangle ABC. Suppose that the lines
AP , BP , and CP intersect the circumcircle of ABC again at A′, B ′, and C ′, respectively.
Prove

S(BPC)

AP
+ S(APC)

BP
+ S(APB)

CP
≥ S(BPC)

A′P
+ S(APC)

B ′P
+ S(APB)

C ′P
,

where S(XYZ) denotes the area of triangle XYZ.

12131. Proposed by Michael Maltenfort, Northwestern University, Evanston, IL. Let m and
n be positive integers with n ≥ 2. Suppose that U is an open subset of Rm and f : U → Rn

is continuously differentiable. Let K be the set of all x ∈ U such that the derivative Df (x),
as a linear transformation, has rank less than n. Prove that if f (K) is countable, U \ K 	= ∅,
and f (U) is closed, then f (U) = Rn.

SOLUTIONS

Cycle of Powers

11665 [2012, 669]. Proposed by Raitis Ozols, student, University of Latvia, Riga, Latvia.
Let a = (a1, . . . , an), where n ≥ 2 and each aj is a positive real number. Let S(a) =
a

a2
1 + · · · + a

an
n−1 + a

a1
n .

(a) Prove that S(a) > 1.
(b) Prove that for all ε > 0 and n ≥ 2 there exists a of length n with S(a) < 1 + ε.

Solution by Traian Viteam, Punta Arenas, Chile. First, we prove the result for n = 2. We
show that if a, b > 0, then ab + ba > 1. If one of a and b is at least 1, this is clear, so we
henceforth assume 0 < a, b < 1. From Bernoulli’s inequality, we have

a1−b = (1 + (a − 1))1−b < 1 + (1 − b)(a − 1) = a + b − ab.

Hence ab > a
a+b−ab

. Similarly, ba > b
a+b−ab

, so

ab + ba >
a

a + b − ab
+ b

a + b − ab
= a + b

a + b − ab
> 1.

For n ≥ 3, we may assume by cyclic symmetry that a1 = max{a1, . . . , an}. Again,
when a1 ≥ 1 we are obviously done, so we may assume that ai is in (0, 1) for all i. We
then have

S(a) > a
a2
1 + a

a3
2 ≥ a

a2
1 + a

a1
2 > 1,

where the final step is the case n = 2.
For part (b), let ε be an arbitrary positive constant. Choose an = 1. We define

an−1, . . . , a1 inductively. Assume that we have defined positive reals an−k, . . . , an. Since
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limx→0 xan−k = 0, we can choose an−k−1 small enough so a
an−k

n−k−1 < ε/(n − 1). Once we
have defined a1, . . . , an in this way,

S(a) < (n − 1)
ε

n − 1
+ 1 = 1 + ε.

Editorial comment. The editors regret the delay in the appearance of this solution. The
case n = 2 of this inequality, from which the general case easily follows as shown above,
has appeared before. For example, it is inequality 3.6.38 on page 281 in D. S. Mitrinović,
(1970), Analytic Inequalities, Berlin: Springer-Verlag.

Also solved by K. F. Andersen (Canada), G. Apostolopoulos (Greece), R. Boukharfane (France), N. Caro
(Brazil) and O. López (Colombia), H. Chen, J. Chun (South Korea), P. P. Dályay (Hungary), V. De Angelis,
A. Ercan (Turkey), D. Fleischman, A. Habil (Syria), E. A. Herman, Y. J. Ionin, H. Katsuura & E. Schmeichel,
O. Kouba (Syria), J. Li, M. Omarjee (France), P. Perfetti (Italy), M. A. Prasad (India), R. Stong, M. Vowe
(Switzerland), GCHQ Problem Solving Group (U. K.), and the proposer.

Tight Pavings by Integer Rectangles

12005 [2018, 755]. Proposed by Donald E. Knuth, Stanford, CA. A tight m-by-n paving is
a decomposition of an m-by-n rectangle into m + n − 1 rectangular tiles with integer sides
such that each of the m − 1 horizontal lines and n − 1 vertical lines within the rectangle is
part of the boundary of at least one tile. For example, one of the 1071 tight 3-by-5 pavings
is pictured here:

Let am,n denote the number of tight m-by-n pavings.
(a) Determine a3,n as a function of n.
(b) Show for m ≥ 3 that limn→∞ am,n/mn exists, and compute its value.

Composite solution by Richard Stong, Center for Communications Research, San Diego,
CA, Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy, and O. P. Lossers,
Eindhoven University of Technology, Eindhoven, The Netherlands. The answers are
(a) a3,n = 27

4 3n − 20 · 2n + n2 + 13
2 n + 53

4 and (b) limn→∞ am,n/m
n = m2 m−1/(m!)2.

A paving is any decomposition as described in the problem statement, except for drop-
ping the requirement that the number of tiles is m + n − 1. We show that the minimum
number of tiles in a paving is m + n − 1. The pavings achieving this minimum number
of tiles are called tight. For convenience, we use gridline to mean one of the m + n − 2
horizontal or vertical lines that cross the rectangle internally at a positive integer distance
from the sides. An edge is a side of any rectangle in the paving. A segment is a maximal
connected union of edges along a single gridline. The condition for a paving is that every
gridline contains at least one edge.

Lemma. In a tight paving, no vertical segment crosses a horizontal segment (at an internal
point of both), and the edges on any gridline form a single segment.

Proof. In any paving, say that a tile T witnesses a horizontal gridline h if it is the leftmost
tile whose top is on h and witnesses a vertical gridline v if it is the highest tile whose left
side is on v. Note that (1) the tile U at the upper left corner witnesses no gridline, (2) each
gridline is witnessed by exactly one tile, and (3) no tile witnesses more than one gridline
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(the segments at the top and left of a tile T witnessing horizontal and vertical gridlines
would not continue leftward or upward, preventing the tiling from being completed).

These three observations imply that every paving has at least m + n − 1 tiles, so tight
pavings are those with the fewest tiles, and every tile other than U in such a paving wit-
nesses exactly one gridline. If two segments cross, then the crossing point is a corner of
four tiles, and the one on the lower right of these four would witness no gridline.

For the second statement, suppose by symmetry that a horizontal gridline h contains
more than one segment. Let T1 be the tile witnessing h, and let edge E be a leftmost edge
on the next segment along h. Since the segment containing E does not extend leftward,
the portion of h to the left of E is internal to some tile T2. Now the left endpoint of E is
the upper left corner of a tile T3 that does not witness the gridline for its top or left edge,
contradicting that every tile other than U witnesses a gridline. �
(a) An m-by-n rectangle has m − 1 horizontal gridlines. By the lemma, every tight paving
contains exactly one segment on each horizontal gridline. Let Hj denote the interval
obtained by projecting the segment from the gridline at height j onto the horizontal axis.

For m = 3, consider first the case where H1 = H2 (as in Figure 1, where x2 = 3). Since
neither horizontal segment extends and each gridline contains a single segment, there are
no horizontal edges not on these segments, so all the tiles to the left and right of these
horizontal segments have width 1 and height 3.

Figure 1. Horizontal segments of equal extent.

Now consider the vertical segments between the endpoints of the two horizontal seg-
ments. Since segments cannot cross, each of these x2 − 1 vertical gridlines contains a seg-
ment of length one in one of three possible places, and all such choices yield pavings. Each
insertion of a vertical segment increases the number of tiles by 1, so there are 3 + x2 − 1
tiles along the horizontal segments and n − x2 tiles outside them, totaling n + 2.

Letting N be the number of tight pavings in this case, we have N = ∑
x∈P1

3x2−1, where
P1 is the set of nonnegative integer triples (x1, x2, x3) with sum n such that x2 ≥ 1. Using
[zn]f (z) to mean the coefficient of zn in f (z), we have

N = [zn]
∑
x1≥0

zx1
∑
x2≥1

1

3
(3z)x2

∑
x3≥0

zx3 = [zn]
1

1 − z

z

1 − 3z

1

1 − z
.

There are four other cases, illustrated in Figure 2. The intervals H1 and H2 may have
no positive overlap, have overlap without containment, exhibit strict containment at both
ends, or be equal at one end. Due to reflections, the first three of these cases may occur in
two ways, the last in four ways.

These cases lead, in the same way as above, to four generating functions. For each case,
the contribution to a3,n will be a sum over nonnegative choices of the variables summing to
n, where variables giving lengths of portions of the horizontal segments must be positive.
For a variable x measuring a portion covered by both horizontal segments, the factor in the
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Figure 2. The remaining four cases.

number of choices is 3x−1; for a portion covered by only one of the horizontal segments, it
is 2x−1 (again because no two segments cross). We obtain the following contributions.

Case #Tilings Generating Function

0 (Figure 1)
∑

3x2−1 z

(1−z)2(1−3z)

1 (Figure 2) 2
∑

2x2−12x4−1 2z2

(1−z)3(1−2z)2

2 (Figure 2) 2
∑

2x2−13x3−12x4−1 2z3

(1−z)2(1−2z)2(1−3z)

3 (Figure 2) 2
∑

2x2−13x3−12x4−1 2z3

(1−z)2(1−2z)2(1−3z)

4 (Figure 2) 4
∑

2x2−13x3−1 4z2

(1−z)2(1−2z)(1−3z)

The sum of the five rational functions is z(1+3z)

(1−z)3(1−2z)(1−3z)
, which has partial fraction

expansion

27/4

1 − 3z
− 20

1 − 2z
+ 2

(1 − z)3
+ 7/2

(1 − z)2
+ 31/4

1 − z
.

Thus

a3,n = 27

4
3n − 20 · 2n + 2

(
n + 2

2

)
+ 7

2
(n + 1) + 31

4

= 27

4
3n − 20 · 2n + n2 + 13

2
n + 53

4
.

(b) Let λm = limn→∞ am,n/mn. Asymptotically, we can restrict to tight pavings where
H1, . . . , Hm−1 have a common subinterval of positive length. The reason is that the number
of tight pavings yielding no such overlap is less than n2(m−1)(m − 1)n−1 (and the ratio of
this to mn tends to 0 as n → ∞). To see this, note first that each of H1, . . . , Hm−1 can
be specified in fewer than n2 ways. For the vertical segments, since each gridline has one
segment and they don’t cross, the lack of a common horizontal overlap implies that there
are at most m − 1 ways to place each vertical segment (extending part (a)). Let âm,n be
the number of tight pavings of the m-by-n rectangle where H1, . . . , Hm−1 have a common
overlap.

For any paving counted by âm,n, we partition the interval [0, n] into three subintervals
of lengths k, d, and l, where d is the positive length of

⋂
Hi , k is the length of the part of
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Figure 3. Part of a tight paving with (m, k) = (7, 5) and multiset [13, 32, 51].

the gridlines to its left, and l is the remaining length to the right. Some Hi starts at k, and
some Hi ends at k + d.

The left ends of H1, . . . , Hm−1 form a multiset of size m − 1 from {0, . . . , k}, using k

at least once. With Hi = [ai, bi], let α1, . . . , αr in increasing order be the values occurring
as some ai , having multiplicities e1, . . . , er . Write the multiset as [αe1

1 , . . . , αer
r ].

The key restriction on the list a1, . . . , am−1 is that if ai = aj = β with i < j , then
at ≥ β for all t with i < t < j . Since Hi and Hj do not extend leftward of ai , the
points (β, i) and (β, j) lie on vertical edges. Since each vertical gridline contains only
one segment, (β, t) is internal to the vertical segment at horizontal position β. Since
bt ≥ k + d > β and segments cannot cross, at ≥ β.

With this restriction, we count the ways to form the list a1, . . . , am−1 using the multiset
[αe1

1 , . . . , αer
r ]. The restriction implies that the copies of αj in a1, . . . , am−1 occupy ej

consecutive blank positions among the m − 1 −∑r
i=j+1 ei blank positions left by placing

the copies of all αi with i > j . Since ej copies of αj must be placed, there are m −∑r
i=j ei

possible places to start the copies of αj , regardless of how the larger values were placed.
Since

∑r
i=1 ei = m − 1, the number of configurations of the left endpoints corresponding

to the given multiset is
∏r−1

j=1

(
1 +∑j

i=1 ei

)
.

Between the horizontal positions αj and αj+1 are αj+1 − αj − 1 vertical gridlines. No
horizontal segments end at these gridlines. Hence the segment on each such vertical grid-
line is a single edge joining two of the horizontal segments (including the top and bottom
edges) that start at position αj or earlier. That gives 1 +∑j

i=1 ei choices for the vertical
segment.

After forming the list a1, . . . , am−1 and placing the vertical segments, we have∏r−1
j=1

(
1 +∑j

i=1 ei

)αj+1−αj

ways to form the left part of the paving from the given mul-

tiset. Let sm,k denote the sum of these quantities over all multisets of size m − 1 chosen
from {0, . . . , k}.

We can write a multiset [αe1
1 , . . . , αer

r ] as [0f0 , . . . , kfk ] by including the multiplicities
of the unused elements, which equal 0. We then have

r−1∏
j=1

(
1 +

j∑
i=1

ei

)αj+1−αj

=
k−1∏
l=0

(
1 +

l∑
i=0

fi

)
=

k−1∏
l=0

cl,
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where cl = 1 +∑l
i=0 fi . The list c0, . . . , ck−1 is a weakly increasing integer list with val-

ues between 1 and m − 1. Over all choices of the multiset [αe1
1 , . . . , αer

r ] from {0, . . . , k},
we obtain all such lists. That is, sm,k = ∑

c∈Lm,k

∏k−1
l=0 cl , where Lm,k is the set of all k-

element nonnegative integer lists c such that 1 ≤ c0 ≤ · · · ≤ ck−1 ≤ m − 1.
Within the central overlap portion, each vertical gridline must have a single edge of

length 1; there are md−1 ways to place these. The right portion of the paving is constructed
symmetrically to the left portion, over an interval of length n − d − k. Thus

âm,n =
n∑

d=1

n−d∑
k=0

sm,ksm,n−d−km
d−1.

Replacing d with n − k − l, we write

λm = lim
n→∞

âm,n

mn
= lim

n→∞
1

m

∑
k+l<n

sm,k

mk

sm,l

ml
.

The key now is to replace the sum over a triangle of values with a sum over a square of
values, separating the sums over k and l. We have

�(n−1)/2
∑
k=0

�(n−1)/2
∑
l=0

sm,k

mk

sm,l

ml
≤
∑

k+l<n

sm,k

mk

sm,l

ml
≤

n−1∑
k=0

n−1∑
l=0

sm,k

mk

sm,l

ml
.

As n → ∞, the upper and lower bounds are the same; hence the limit of the middle expres-
sion must be the same as the limit of the outer expressions.

Thus λm = 1
m

(∑∞
k=0 sm,k/m

k
)2

. To turn this into the desired limit m2m−1/(m!)2, it suf-
fices to prove

∑∞
k=0 sm,k/m

k = mm−1/(m − 1)!. To do this, we compute

∞∑
k=0

sm,k

mk
=

∞∑
k=0

∑
c∈Lm,k

k−1∏
i=0

ci

m
=

m−1∏
q=0

∞∑
t=0

( q

m

)t =
m−1∏
q=0

1

1 − q/m
= mm−1

(m − 1)!
.

To justify the second equality here, note that the double sum
∑∞

k=0

∑
c∈Lm,k

encounters
every multiset of values chosen from {0, . . . , m − 1}. Over the full sum, any multiplicity
of a given value q is grouped with all possible multiplicities of other values. Hence we
can regroup the terms by the values, leading to the product of infinite sums for each of the
values.

Editorial comment. The sequence in part (a) appears as sequence A285361 at oeis.org.

Also solved by H. K. Pillai (India) and M. A. Prasad (India; part (a) only).

A Hyperbolic Limit of Trigonometric Matrices

12014 [2018, 81]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let a, b, c, and d be real numbers with bc > 0. Calculate

lim
n→∞

[
cos(a/n) sin(b/n)

sin(c/n) cos(d/n)

]n

.

Solution by Tamas Wiandt, Rochester Institute of Technology, Rochester, NY. The limit is[
cosh

√
bc√

c/b sinh
√

bc

√
b/c sinh

√
bc

cosh
√

bc

]
.
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Letting

An =
[

cos(a/n) − 1

sin(c/n)

sin(b/n)

cos(d/n) − 1

]
,

we have [
cos(a/n)

sin(c/n)

sin(b/n)

cos(d/n)

]
= I + An,

where I is the 2 × 2 identity matrix. When n is large enough, ‖An‖ < 1 and

log(I + An) = An − 1

2
A2

n + 1

3
A3

n − 1

4
A4

n + · · · .

Since

An =
[

O(1/n2) b/n + O(1/n3)

c/n + O(1/n3) O(1/n2)

]
,

we have log(I + An) = An + O(1/n2) and n log(I + An) = nAn + O(1/n). Since

lim
n→∞ n log(I + An) = lim

n→∞ nAn =
[

0 b

c 0

]
,

we obtain

lim
n→∞

[
cos(a/n) sin(b/n)

sin(c/n) cos(d/n)

]n

= lim
n→∞ exp(n log(I + An)) = exp

([
0 b

c 0

])
.

If bc > 0, then the matrix
[

0
c

b

0

]
has distinct eigenvalues

√
bc and −√

bc, and

[
0 b

c 0

]
=
[ √

b
√

b√
c −√

c

] [ √
bc 0
0 −√

bc

][ 1
2
√

b

1
2
√

c

1
2
√

b
− 1

2
√

c

]
,

where b, c > 0. Thus

exp

([
0 b

c 0

])
=
[ √

b
√

b√
c −√

c

][
e
√

bc 0
0 e−√

bc

][ 1
2
√

b

1
2
√

c

1
2
√

b
− 1

2
√

c

]

=
[

cosh
√

bc
√

b/c sinh
√

bc√
c/b sinh

√
bc cosh

√
bc

]
.

The case where b, c < 0 is similar.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), R. Chapman (U. K.), H. Chen, G. Fera
(Italy), D. Fleischman, C. Georghiou (Greece), J. Grivaux (France), A. Goel, E. A. Herman, Y. Hu (China),
O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), A. Minasyan (Russia), R. Nandan, M. Omarjee,
F. Perdomo & Á. Plaza (Spain), K. Schilling, J. Singh (India), J. C. Smith, A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), N. Thornber, E. I. Verriest, Z. Vörös (Hungary), A. Wentworth, GCHQ Problem Solving
Group (U. K.), Missouri State University Problem Solving Group, and the proposer.

A Symmetric Sum

12016 [2018, 81]. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso,
Università di Roma “Tor Vergata,” Rome, Italy. For nonnegative integers m, n, r , and s,
prove

s∑
k=0

(
m + r

n − k

)(
r + k

k

)(
s

k

)
=

r∑
k=0

(
m + s

n − k

)(
s + k

k

)(
r

k

)
.
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Solution by Nicole Grivaux, Paris, France. Let A(r, s) be the left side of the equation to
be proved. Throughout, we use the convention that

(
a

b

) = 0 whenever b > a ≥ 0. By the
Vandermonde identity and symmetry,(

r + k

k

)
=

r∑
i=0

(
r

i

)(
k

k − i

)
=

r∑
i=0

(
r

i

)(
k

i

)
.

Hence

A(r, s) =
r∑

i=0

(
r

i

) s∑
k=0

(
m + r

n − k

)(
s

k

)(
k

i

)

=
r∑

i=0

(
r

i

) s∑
k=0

(
m + r

n − k

)(
s

i

)(
s − i

k − i

)

=
min(r,s)∑

i=0

(
r

i

)(
s

i

) s∑
k=0

(
m + r

n − k

)(
s − i

k − i

)

=
min(r,s)∑

i=0

(
r

i

)(
s

i

)(
m + r + s − i

n − i

)
.

The second equality follows from
(
s

k

)(
k

i

) = (
s

i

)(
s−i

k−i

)
, while the fourth is another application

of the Vandermonde identity. Since the final form is symmetric in r and s, we conclude
A(r, s) = A(s, r), which is the desired equality.

Also solved by U. Abel (Germany), H. Almusawa & N. Alobaidan & R. Jacobs & D. Nuraliyev & J. Shive
& M. Apagodu, T. Amdeberhan & V. H. Moll, R. Chapman (U. K.), S. B. Ekhad, R. Evans, G. Fera (Italy),
D. Fleischman, O. Kouba (Syria), P. Lalonde (Canada), O. P. Lossers (Netherlands), J. C. Smith, A. Stadler
(Switzerland), R. Stong, M. Wildon (U. K.), GCHQ Problem Solving Group (U. K.), and the proposers.

Euler’s Totient is Sparse

12021 [2018, 179]. Proposed by Omar Sonebi, Lycée Technique, Settat, Morocco. Let φ be
the Euler totient function. Given a ∈ Z+ and b ∈ Z+, show that there exists n ∈ Z+ such
that an + b is not in the range of φ.

Solution by Li Zhou, Polk State College, Winter Haven, FL. Let d = gcd(a, b), with a = dr

and b = ds. Set t = r
∏d

i=1(is + 1); note that t is relatively prime to s. By Dirichlet’s
theorem, there is a prime p of the form tm + s for some m ∈ Z+. Let n = tm/r . We claim
that an + b, which equals dp, is not in the range of φ. If dp = φ(N) for some N ∈ Z+

having prime factorization
∏k

j=1 p
ej

j , then dp = ∏k
j=1 p

ej −1
j (pj − 1). Since p − 1 > d,

we conclude that p is a factor of pi − 1 for some i. Now pi = qp + 1 for some q with
1 ≤ q ≤ d. Since qp + 1 = q(tm + s) + 1 = (qs + 1) + qmr

∏d
i=1(is + 1), this requires

qp + 1 to have qs + 1 as a proper factor, so qp + 1 cannot be prime. This contradiction
completes the proof of the claim.

Editorial comment. Souvik Dey and Celia Schacht noted that the claim immediately fol-
lows from the more general result of S. S. Pillai (1929), On some functions connected with
φ(n), Bull. Amer. Math. Soc. 35: 832–836, which implies that if N(n) is the number of
positive integers up to n that are in the range of φ, then limn→∞ N(n)/n = 0.

Also solved by S. Chandrasekhar, A. Cheraghi (Canada), S. Dey (India), G. Fera (Italy), D. Fleischman,
K. Gatesman, Y. J. Ionin, J. Kim (South Korea), O. P. Lossers (Netherlands), M. Omarjee (France), M. Reid,
C. Schacht, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), AN-anduud Problem Solving Group
(Mongolia), GCHQ Problems Solving Group (U. K.), Missouri State University Problem Solving Group, and
the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by February 29, 2020,
via the same link. More detailed instructions are available online. Proposed prob-
lems must not be under consideration concurrently at any other journal nor be posted
to the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12132. Proposed by K. S. Bhanu and Mukta Deshpande, Institute of Science, Nagpur, India,
and P. G. Dixit, Modern College, Pune, India. Let n be a positive integer, and let X0 =
n + 1. Repeatedly choose the integer Xk uniformly at random among the integers j with
1 ≤ j < Xk−1, stopping when Xm = 1.
(a) What is the expected value of m?
(b) What is the expected value of Xm−1?

12133. Proposed by Daniel Hu, Los Altos High School, Los Altos, CA. Let ABCD be a
convex quadrilateral. Sup-
pose that lines AB and CD

meet at P , lines AD and BC

meet at Q, and AC and BD

meet at R. Prove that there
are infinitely many squares
with one vertex on each side
of ABCD if and only if
AC ⊥ BD and PR ⊥ QR.

12134. Proposed by Paul Bracken, University of Texas, Edinburg, TX. Evaluate the series

∞∑
n=1

(
n

( ∞∑
k=n

1

k2

)
− 1 − 1

2n

)
.

12135. Proposed by George Apostolopoulos, Messolonghi, Greece. Suppose that a triangle
in the plane has inradius r , circumradius R, angles A, B, and C, and corresponding medians
mA, mB , and mC . Prove

3
√

3
r2

R3
≤ sin3 A

mA

+ sin3 B

mB

+ sin3 C

mC

≤ 3
√

3(R − r)

8r2
.

doi.org/10.1080/00029890.2019.1642074
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uamm.
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12136. Proposed by Albert Stadler, Herrliberg, Switzerland. Prove

a2 + b2 + c2 ≥ a
4

√
b4 + c4

2
+ b

4

√
c4 + a4

2
+ c

4

√
a4 + b4

2
for all positive real numbers a, b, and c.

12137. Proposed by Nikolai Beluhov, Stara Zagora, Bulgaria. A polyomino is a region with
connected interior that is a union of a finite number of squares from a grid of unit squares.
Do there exist a positive integer n with n ≥ 5 and a polyomino P contained entirely within
an n-by-n grid such that P contains exactly 3 unit squares in every row and every column
of the grid?

12138. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Let P be
a nonconstant polynomial with complex coefficients, and let Q(x, y) = P(x) − P(y). Let
k be the number of linear factors of Q(x, y), and let R(x, y) be a nonconstant factor of
Q(x, y) whose degree is less than k. Prove that R(x, y) is a product of linear polynomials
with complex coefficients.

SOLUTIONS

A Slow Shuffle

12008 [2017, 970]. Proposed by P. Kórus, University of Szeged, Szeged, Hungary. You
hold in your hand a deck of n cards, numbered 1 to n from top to bottom. Shuffle them as
follows. Put the top card in the deck on the bottom and the second card on the table. Repeat
this step until all the cards are on the table.
(a) For which n does card number 1 end up at the top of the deck of cards on the table?
(b) Shuffle the deck a second time in the same way. For which n does card number 1 end
up at the top of the cards on the table?
(c)* Shuffle the deck a third time in the same way. For which n does card number 1 end up
at the top of the cards on the table?
(d)* For which n does this shuffle amount to a permutation consisting of a single cycle?

Solution to (a), (b), and (c) by Yury J. Ionin, Central Michigan University, Mt. Pleasant,
MI. Let τn(i) denote the final position of card i resulting from one shuffle. We express
τn as a composition of n − 1 permutations on the positive integers. For n ≥ 2, define a
permutation σn on the positive integers by

σn(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n − 1 if i = 1,

n if i = 2,

i − 2 if 3 ≤ i ≤ n,

i if i > n.

Here 1, . . . , n represent the initial deck in the hand, values starting with n + 1 represent
the initial deck on the table, and σn moves the top element to the bottom of the first deck
and the second element to the top of the second deck. Note that σ2 is the identity. Letting
τn = σ2 · · · σn, the first three parts of the problem ask for the values of n such that τn(1),
τ 2
n (1), or τ 3

n (1) equal 1.
We begin with a formula for τn(i). For any positive integer n, let f (n) be the largest

odd divisor of n; note that f (n) = n when n is odd. For n ≥ 2 and any positive integer i,
we claim

τn(i) =
{

1+f (2n+1−i)

2 if i ≤ n,

i if i > n .
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We prove this by induction on n. The case n = 2 holds by inspection, so consider n ≥ 3.
If i > n, then σk(i) = i for 2 ≤ k ≤ n, so τn(i) = i. When 3 ≤ i ≤ n, the induction
hypothesis yields

τn(i) = τn−1(i − 2) = 1 + f (2n − 1 − (i − 2))

2
= 1 + f (2n + 1 − i)

2
.

Note that τn(2) = n = 1
2 (1 + f (2n − 1)), as desired. Finally, for i = 1, the induction

hypothesis yields

τn(1) = τn−1(n − 1) = 1 + f (n)

2
= 1 + f (2n + 1 − 1)

2
.

(a) The formula for τ yields τn(1) = (1 + f (n))/2, so τn(1) = 1 if and only if f (n) = 1.
This occurs precisely when n is a power of 2.

(b) Since f (n) ≤ n, we have τn(1) ≤ (1 + n)/2 < n. Thus

τ 2
n (1) = τn

(
1 + f (n)

2

)
= 1 + f

(
2n + 1 − 1

2 (1 + f (n))
)

2
,

so τ 2
n (1) = 1 if and only if f (2n + 1 − (1 + f (n))/2) = 1.

We prove first that this cannot happen when f (n) ≡ −1 mod 4. If f (n) = 4m − 1, then
τ 2
n (1) = 1 if and only if f (2n + 1 − 2m) = 1, which cannot occur since 2n + 1 − 2m is

not a power of 2.
Hence we may assume f (n) = 4m + 1, where m ∈ N and n = 2k(4m + 1). Now

τ 2
n (1) = 1 reduces to f (2k+1(4m + 1) − 2m) = 1, requiring 2k(4m + 1) − m to be a

power of 2, say 2s . That is, (2k+2 − 1)m = 2s − 2k with s ≥ k.
Since 2k+2 − 1 and 2k are relatively prime, (2k+2 − 1) | (2s−k − 1). It is an exercise in

elementary number theory that (2a − 1) | (2b − 1) requires a | b. To see this, write b =
aq + r with 0 ≤ r < a. From the formula for a geometric series, 2a − 1 divides 2aq − 1,
so 2a − 1 divides 2r (2aq − 1), which equals 2b − 2r . Now 2a − 1 divides the difference
(2b − 1) − (2b − 2r ), which equals 2r − 1. Since r < a, this requires r = 0, so a | b. Thus
(k + 2) | (s − k), which implies (k + 2) | (s + 2).

From m = (2s − 2k)/(2k+2 − 1), we have 4m + 1 = (2s+2 − 1)/(2k+2 − 1). Since
n = 2k(4m + 1), we thus have the following answer: τ 2

n (1) = 1 if and only if n =
2k(2s+2 − 1)/(2k+2 − 1) with s ≥ k ≥ 0 and k + 2 dividing s + 2. The values under
1000 are the powers of 2 together with 5, 18, 21, 68, 85, 146, 264, and 341.

(c) Now consider the equation τ 3
n (1) = 1. By the formula for τn, we have τn(i) = 1 if

and only if 2n + 1 − i is a power of 2; that is, if and only if i = 2n + 1 − 2k for some
k with n < 2k ≤ 2n. (There is exactly one such k for each n.) Note also that τn(τn(1)) =
1
2

(
1 + f (2n + 1 − τn(1))

)
. Writing the condition τ 3

n (1) = 1 as τn(τn(1)) = τ−1
n (1), the

requirement reduces to

1

2

(
1 + f (2n + 1 − τn(1))

) = 2n + 1 − 2k,

or f (2n + 1 − τn(1)) = 4n + 1 − 2k+1. This requires that 2n + 1 − τn(1) =
2l (4n + 1 − 2k+1) for some nonnegative l, or τn(1) = 2k+l+1 − 2l + 1 − (2l+2 − 2)n.
Since τn(1) = (1 + f (n))/2, we require f (n) = 2k+l+2 − 2l+1 + 1 − (2l+3 − 4)n, which
implies n = 2m

(
2k+l+2 − 2l+1 + 1 − (2l+3 − 4)n

)
for some nonnegative m.

Thus the problem reduces to finding solutions of

(2l+m+3 − 2m+2 + 1)n = 2m(2k+l+2 − 2l+1 + 1), (∗)

where k, l,m are nonnegative integers and n < 2k ≤ 2n.
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If n is a solution, then 2l+m+3 − 2m+2 + 1 divides 2k+l+2 − 2l+1 + 1, so 2l+m+3 + 2l+1 +
1 ≤ 2k+l+2 + 2m+2 + 1. If m ≥ k, then 2l+m+3 = 1 +∑l+m+2

i=0 2i > 2k+l+2 + 2m+2 + 1.
Hence we require m ≤ k − 1.

It remains to ensure n < 2k ≤ 2n. By replacing n with 2k in (∗) and rearranging terms,
we have n < 2k if and only if 2k+l+m+2 + 2k + 2l+m+1 > 2k+m+2 + 2m, which is true for
l ≥ 0.

Similarly, by replacing n by 2k−1 in (∗), we have 2n ≥ 2k if and only if 2l+m+2 + 2k ≤
2k+m+2 + 2m+1. This inequality holds if and only if l < k or l = k and m + 1 ≥ k. We thus
have the following answer: τ 3

n (1) = 1 if and only if

n = 2m(2k+l+2 − 2l+1 + 1)/(2l+m+3 − 2m+2 + 1),

where 2l+m+3 − 2m+2 + 1 divides 2k+l+2 − 2l+1 + 1 and either l < k and m < k or l =
k = m + 1 (which gives n = 2m). The values under 1000 are the powers of 2 together with
3, 10, 14, 36, 51, 60, 136, 141, 248, 528, 819, and 910. To obtain infinitely many examples,
let (k, l,m) = (20t + 4, 1, 1) for t ≥ 0. The resulting value is (220t+8 − 6)/25.

Solution to (d) by Richard Stong, Center for Communications Research, San Diego, CA.
The values of n for which the shuffle is a full cycle are those n such that 4n + 1 is prime
and 2 is a primitive root modulo 4n + 1. In particular, the values of n under 100 are 1, 3,
7, 9, 13, 15, 25, 37, 43, 45, 49, 67, 73, 79, 87, 93, and 97 (see oeis.org/A137310).

To prove the result, we use an alternative description of the shuffle as an iterative process
on a pile of n cards. For n − 1 steps, indexed from j = 0 to j = n − 2, at step j take the top
two cards and reinsert them with j cards below them. Steps j through n − 2 do not change
the bottom j cards; these are the cards “on the table” during that time. The remaining n − j

cards are still “in the hand.” Putting the top two cards between these sets (and incrementing
j ) moves the top card to the bottom of the deck in hand and puts the next card on the table.
The j th step is an even permutation (two steps of rotating the top n − j cards up by one
step). Thus the permutation induced by the shuffle is even. It follows that the permutation
can be a full cycle only when n is odd.

We now express the shuffle as the permutation πn that maps each position to the index
of the card that occupies it. This is the inverse of τn, and it is a cycle if and only if τn is a
cycle. It is also convenient to index the cards and the positions by the set S of odd integers
from 1 to 2n − 1, treating πn as a permutation of S. That is, assign the card at position a

the value 2a − 1, which we call a′.
We use the formula for τn(i) to give a formula for πn(a

′), the modified value of the
card ending in position a. We claim πn(a

′) = 4n + 1 − 2u(a′)a′, where u(a′) is the unique
positive integer such that 2u(a′)a′ ∈ [2n + 2, 4n].

To see this, let i = 2n + 1 − 2u(a′)−1a′. We have 2n + 1 − i = 2u(a′)−1a′. Since a′ is
odd, it is the largest odd divisor of 2n + 1 − i; this is why we express πn as a permutation
of odd values. With f (2n + 1 − i) = 2a − 1, the formula 2τn(i) − 1 = f (2n + 1 − i)

yields τn(i) = a. Thus πn(a
′) = 2i − 1, as claimed.

We now show that the condition on n is necessary and sufficient for the shuffle to be a
full cycle.

Necessity. Suppose that πn is a cycle. Let p = 4n + 1. We have πn(a
′) ≡ −2u(a′)a′ mod p.

Hence any value we can reach starting from a′ = 1 by iterating πn has the form ±2v mod p.
If q is a proper odd prime factor of p, then we cannot reach q; thus p must be prime. Since
we have shown that n is odd and defined p = 4n + 1, we have p ≡ 5 mod 8. By the law of
quadratic reciprocity, 2 is a square modulo an odd prime p if and only if p is congruent to
1 or 7 modulo 8. Hence 2 is not a square.

In addition, Fermat’s little theorem implies that 2(p−1)/2 is congruent to ±1 modulo p.
The value is +1 if and only if 2 is a square. Hence −1 is a power of 2, modulo p. This
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means that all values we can reach have the form 2v mod p. For π to be a cycle, these
powers must include all odd numbers from 1 to 2n − 1. Since −1 and 2 are also powers
of 2 modulo p, we conclude that every nonzero value is a power of 2 modulo p, so 2 is a
primitive root.

Sufficiency. Again letting p = 4n + 1, suppose that p is prime and that 2 is a primitive root
modulo p. Since 2 is a primitive root, 2 cannot be a square modulo p, so p is congruent
to 3 or 5 modulo 8, again by quadratic reciprocity. Since p has the form 4n + 1, it follows
that p ≡ 5 mod 8 and n is odd.

We prove that π2
n , the result of shuffling twice, is a cycle; this implies that πn itself is

a cycle. Consider the application of πn in terms of the cycle of powers of 2 modulo p.
Suppose that πn(a

′) = b′, meaning that the card in position a after the shuffle is b. Since
πn(a

′) = 4n + 1 − 2u(a′)a′, we obtain b′ from a′ by multiplying by 2 successively to reach
the interval [2n + 2, 4n] and then subtracting from 4n + 1. Since a′ ≤ 2n − 1, the result is
odd and lies in S.

Modulo p, we have b′ ≡ −2u(a′)a′. Thus b′ is the negative of the value that is u(a′) steps
beyond a′ in the cycle of powers of 2. However, 2u(a′)a′ is not in S. Applying the shuffle
to obtain c′ from b′, we have c′ ≡ 2u(a′)+u(b′)a′. Thus π2

n moves each value some distance
along the cycle of powers of 2 and returns each element of S to another value that when
reduced modulo p lies in S.

Furthermore, π2
n (a′) is the first value after a′ in the cycle of powers of 2 that lies in S.

Since 2 is a primitive root modulo p, that cycle visits all of S. Hence π2
n is a cycle through

S, as desired.

Editorial comment. Because it is not known whether there are infinitely many primes for
which 2 is a primitive root (this is the Artin conjecture), it is not known whether there are
infinitely many examples for part (d). Several solvers observed that, given n, the card atop
the shuffled deck is the number that solves the Josephus problem for a circle of n soldiers
(see oeis.org/A006257).

Part (a) also solved by D. Fleischman, O. Geupel (Germany), and R. Prather. Parts (a) and (b) also solved
by T. Ayton & A. Lopez & R. Tuminello, N. Grivaux (France), J. H. Lindsey II, O. P. Lossers (Netherlands),
P. McPolin (UK), L. Meissner & E. Newman & R. Toth & S. Weigel, and the proposer. Parts (a), (b), and (c)
also solved by GCHQ Problem Solving Group (UK) and R. Stong. All four parts solved by Armstrong Problem
Solving Group.

Reducible Combinations of Elementary Symmetric Polynomials

12017 [2018, 82]. Proposed by Mowaffaq Hajja, Philadelphia University, Amman, Jordan.
For n ≥ 2, let R be the ring F [t1, . . . , tn] of polynomials in n variables over a field F . For
j with 1 ≤ j ≤ n, let sj = ∑∏j

i=1 tmi
, where the sum is taken over all j -element subsets

{m1, . . . , mj } of {1, . . . , n}. This is the elementary symmetric polynomial of degree j in
the variables t1, . . . , tn. Let f = ∑n

i=0 cisi for some c0, . . . , cn in F with c1, . . . , cn not all
0. Show that f is reducible in R if and only if either c0 = · · · = cn−1 = 0 or (c0, . . . , cn)

is a geometric progression, meaning that there is r ∈ F such that ci = rci−1 for all i with
1 ≤ i ≤ n.

Solution by Michael Reid, University of Central Florida, Orlando, FL. For sufficiency, f

factors as cn

∏n
i=1 ti if c0 = · · · = cn−1 = 0 and as c

∏n
i=1(1 + rti) if (c0, c1, . . . , cn) =

(c, cr, . . . , crn) with c, r �= 0.
For necessity, suppose that f is reducible, and let g be an irreducible factor. For each ti ,

since f has degree 1 in ti , g has degree 0 or 1 in ti . Moreover, since g is nonconstant, it has
degree 1 in at least one variable. We claim that g has degree 0 in all of the other variables.

To prove the claim, suppose otherwise. By symmetry, we may assume that g has degree
1 in both t1 and t2. Since f/g is not constant, g has degree 0 in tk for some k. Note that f is
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fixed by the automorphism of R that interchanges t2 and tk and fixes all other variables. The
image g′ of g under this automorphism also divides f . Note that R is a unique factorization
domain, and g and g′ are not constant multiples of each other since they have different
degrees in t2. Since f is divisible by both g and g′, it follows that f is divisible by gg′.
This is a contradiction, since gg′ has degree 2 in t1.

By the claim, g = a + btj for some j and some a, b ∈ F with b �= 0. Let gi = a + bti
for 1 ≤ i ≤ n. By symmetry, f is divisible by each gi . It follows that f = hg1 · · · gn with
h ∈ R. Since g1 · · · gn has degree 1 in each variable, h has degree 0 in each variable;
thus h is a nonzero constant. If a = 0, then f has the required form, with (c0, . . . , cn) =
(0, . . . , 0, hbn). If a �= 0, then f also has the required form, with ci = hanri , where r =
b/a �= 0.

Also solved by A. J. Bevelacqua, D. Fleischman, O. P. Lossers (Netherlands), J. C. Smith, R. Stong, Missouri
State University Problem Solving Group, and the proposer.

Exponentiating Until a Triangle Vanishes

12018 [2018, 82]. Proposed by Zachary Franco, Houston, TX. For n > 1, let k(n) be the
largest integer k for which there exists a triangle with sides of length nk , (n + 4)k , and
(n + 5)k . Find limn→∞ k(n)/n.

Solution by GCHQ Problem Solving Group, Cheltenham, UK. Since n < n + 4 < n + 5,
a triangle exists if and only if nk + (n + 4)k > (n + 5)k . For fixed n, consider

f (x) = (n + 5)x − (n + 4)x − nx,

whose derivative f ′(x) is

(n + 5)x log(n + 5) − (n + 4)x log(n + 4) − nx log(n)

= log(n + 4)((n + 5)x − (n + 4)x − nx) + (n + 5)x log
n + 5

n + 4
+ nx log

n + 4

n
.

At any point where f (x) ≥ 0, we have f ′(x) > 0. Therefore f (x) has at most one positive
zero. Now f (1) < 0, and f (x) → ∞ as x → ∞. Thus for each n, f (x) has a unique
positive zero K(n). For k < K(n) it follows that f (k) < 0, and a triangle exists. For
k > K(n) we have f (k) > 0, and no triangle exists. Thus K(n) − 1 ≤ k(n) ≤ K(n). Let
λ = λ(n) be the root of the equation(

1 + 5

n

)n λ

−
(

1 + 4

n

)n λ

= 1. (∗)

For large y, let g(y) = (1 + a
y
)y . Note that

log
(
g(y)

) = y log

(
1 + a

y

)
= y

(
a

y
− a2

2y2
+ a3

3y3
+ O(

1

y4
)

)
> a + log

(
1 − a2

y

)
.

Use this with a ∈ {5λ, 4λ} and y = nλ to deduce that for sufficiently large n and positive
λ,

e5λ >

(
1 + 5

n

)n λ

> e5λ

(
1 − 25λ

n

)
and e4λ >

(
1 + 4

n

)n λ

> e4λ

(
1 − 16λ

n

)
.

These inequalities imply

e5λ

(
1 − 25λ

n

)
− e4λ <

(
1 + 5

n

)nλ

−
(

1 + 4

n

)nλ

< e5λ − e4λ

(
1 − 16λ

n

)
.
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The middle term of the inequalities is 1 owing to (∗). Thus λ → μ as n → ∞, where μ

is the root of the equation e5μ − e4μ = 1, Setting X = eμ, we see that X is the unique
positive root of the quintic

X5 − X4 − 1 = (X2 − X + 1)(X3 − X − 1) = 0,

which is

X =
3
√

9 − √
69 + 3

√
9 + √

69
3
√

18
.

Since n λ − 1 ≤ k(n) ≤ n λ, the required limit must be μ, which is log X.
For 0 ≤ α < β, the method clearly generalizes to lengths nk , (n + α)k , and (n + β)k .

Also solved by K. F. Andersen (Canada), R. Chapman (UK), E. Donelson, G. Fera (Italy), D. Fleischman,
C. Gabor & J. Zacharias, O. Geupel (Germany), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Nether-
lands), K. Park (South Korea), F. Perdomo & Á. Plaza (Spain), M. Reid, N. C. Singer, J. C. Smith, A. Stadler
(Switzerland), R. Stong, R. Terr, Z. Vörös (Hungary), and the proposer.

An Exponential Diophantine Equation

12019 [2018, 82]. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran.
Find all positive integers n such that (2n − 1)(5n − 1) is a perfect square.

Solution by Sae Ho Jung, Seoul Science High School, Seoul, South Korea. The only such
integer is 1.

Let f (n) = (2n − 1)(5n − 1). Note that f (1) is a perfect square and that f (2) and f (3)

are not. Suppose that n ≥ 4 and that f (n) is a perfect square.
If n is odd, then (2n − 1)(5n − 1) ≡ 1 − 2n (mod 5), which is a quadratic residue mod-

ulo 5 only if n ≡ 1 (mod 4). In that case

(2n − 1)(5n − 1) ≡ (−1)(5 × 625(n−1)/4 − 1) ≡ 12 (mod 16),

since 2n ≡ 0 and 625 ≡ 1 (mod 16). Since 12 is not a quadratic residue modulo 16, we
conclude that f (n) is not a perfect square when n is odd and exceeds 4.

If n is even, then let n = 2k. Write 22k − 1 = dp2 and 52k − 1 = dr2, where d =
gcd(2n − 1, 5n − 1); we have (2n − 1)(5n − 1) = (dpr)2. However, 2k and 5k are both
now solutions for x in x2 − dy2 = 1. If d is a perfect square, then (2k)2 and dp2 are
squares differing by 1, which cannot happen. For nonsquare d, the equation x2 − dy2 = 1
is a Pell equation with solution set {(xi, yi) : i ≥ 0}, where (x0, y0) = (1, 0), (x1, y1) is a
so-called fundamental solution, and xi + yi

√
d = (x1 + y1

√
d)i for i ≥ 2. It is known that

these solutions satisfy the recurrence xi+1 = 2x1xi − xi−1 for i ≥ 1.
If x1 ≡ 0 (mod 5), then x2a ≡ x2a−2 ≡ · · · ≡ x0 ≡ 1 (mod 2) and x2a+1 ≡ x2a−1 ≡

· · · ≡ x1 ≡ 0 (mod 5). Neither can be satisfied when xi = 2k .
In the remaining cases, we show that xi can never be a multiple of 5 and hence cannot

be a power of 5. If x1 ≡ 1 (mod 5), then xi ≡ 1 (mod 5) for all i. If x1 ≡ 2 (mod 5),
then (x0, x1, x2) ≡ (1, 2, 2) (mod 5), and the pattern 1, 2, 2 (mod 5) repeats. If x1 ≡ 3
(mod 5), then (x0, x1, x2, x3, x4, x5) ≡ (1, 3, 2, 4, 2, 3) (mod 5), and that pattern repeats.
If x1 ≡ 4 (mod 5), then the values modulo 5 alternate between 1 and 4.

Thus f (n) is a perfect square if and only if n = 1.

Editorial comment. Many solvers noted that this result appears in László Szalay (2000), On
the Diophantine equations (2n − 1)(3n − 1) = x2, Publ. Math. Debrecen, 57(1–2): 1–9.

Also solved by M. Aassila (France), C. Boggs & E. J. Ionaşcu, S. Dey (India), K. T. L. Koo (China),
O. P. Lossers (Netherlands), M. Reid, J. P. Robertson, C. Schacht, A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), Z. Vörös (Hungary), and the proposer.
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An Inequality for the Brocard Angle

12020 [2018, 179]. Proposed by Erhard Braune, Linz, Austria. Let α, β, and γ be the radian
measures of the three angles of a triangle, and let ω be the radian measure of its Brocard
angle. (The Brocard angle of triangle ABC is the angle T AB, where T is the unique point
such that ∠T AB, ∠T BC, and ∠T CA are congruent.) Yff’s inequality asserts that 8ω3 is
a lower bound for αβγ . Show that ωπ3/4 is an upper bound for the same product.

Solution by Kyle Gatesman, student, Thomas Jefferson High School, Alexandria, VA, and
the editors. We prove the stronger inequality αβγ ≤ ωγ (π − γ ), in which γ is the largest
vertex angle of the triangle. Note that ωγ (π − γ ) reaches a maximum of ωπ2/4, which
is a smaller upper bound than the proposed ωπ3/4. Since π − γ = α + β, the stronger
inequality is equivalent to

1

ω
≤ 1

α
+ 1

β
.

To prove this, let f (x) = 1/x − cot x for x ∈ (0, π). Since f ′(x) > 0, we see that f (x)

is increasing. Furthermore,

f ′′(x) = 2
(
sin3 x − x3 cos x

)
x3 sin3 x

.

This is clearly positive for x ∈ [π/2, π). It is also positive for x ∈ (0, π/2), since

sin x > x − x3

6
and cos x < 1 − x2

2
+ x4

24

imply

sin3 x − x3 cos x > x3

((
1 − x2

6

)3

− 1 + x2

2
− x4

24

)
= x7

24

(
1 − x2

9

)
> 0.

Thus f is convex on (0, π). By Jensen’s inequality,

f (α) + f (β) + f (γ ) ≥ 3f (π/3) = 9/π − √
3.

By the well-known fact that ω ≤ π/6, we have 6/π − √
3 = f (π/6) ≥ f (ω). Adding

these two inequalities and invoking the well-known fact that cot α + cot β + cot γ = cot ω,
we obtain

1

α
+ 1

β
+ 1

γ
≥ 1

ω
+ 3

π
.

Since γ ≥ π/3, this immediately implies that 1
ω

≤ 1
α

+ 1
β

.

Editorial comment. The elegant symmetrical inequality

1

ω
+ 3

π
≤ 1

α
+ 1

β
+ 1

γ
.

appears in Abi-Khuzam, F. F., Boghossian, A. B. (1989), Some recent geometric inequal-
ities, Amer. Math. Monthly 96(7): 576–589, although the proof above is more direct in
establishing the convexity of f (x).

Also solved by P. P. Dályay (Hungary), G. Fera (Italy), L. Peterson, R. Stong, J. Zacharias, L. Zhou, GCHQ
Problem Solving Group (UK), and the proposer.
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An Identity of Euler, Revisited

12022 [2018, 179]. Proposed by Mircea Merca, University of Craiova, Craiova, Romania.
Let n be a positive integer, and let x be a real number not equal to −1 or 1. Prove

n−1∑
k=0

(1 − xn)(1 − xn−1) · · · (1 − xn−k)

1 − xk+1
= n

and

n−1∑
k=0

(−1)k
(1 − xn)(1 − xn−1) · · · (1 − xn−k)

1 − xk+1
x(n−1−k

2 ) = nx(n
2).

Solution by Warren P. Johnson, Connecticut College, New London, CT. For such real x,
let Sn(x) denote the left side of the first identity. In the sum Sn+1(x), write 1 − xn+1 as
1 − xn−k + xn−k

(
1 − xk+1

)
, so

1 − xn+1

1 − xk+1
= 1 − xn−k

1 − xk+1
+ 1 − (

1 − xn−k
)
.

Now

Sn+1(x) =
n∑

k=0

∏k
i=0(1 − xn−i )

1 − xk+1
+

n∑
k=0

k−1∏
i=0

(1 − xn−i ) −
n∑

k=0

k∏
i=0

(1 − xn−i ).

Almost all the summands of the last two sums cancel, leaving only 1 from the first term
of the middle sum and 0 from the last term of the last sum. Also, the upper index in the
first sum can be reduced by 1 because the last term is 0. Thus Sn+1(x) = Sn(x) + 1. Since
S1(x) = 1, the first identity follows by induction on n.

Replacing x by 1/x in the first identity gives

n =
n−1∑
k=0

∏k
i=0(1 − xi−n)

1 − x−k−1

∏k
i=0 xn−i

xk+1

xk+1∏k
i=0 xn−i

=
n−1∑
k=0

∏k
i=0(x

n−i − 1)

xk+1 − 1
x−n(k+1)x

∑k+1
i=1 i

=
n−1∑
k=0

(−1)k
∏k

i=0(1 − xn−i )

1 − xk+1
x(k+2

2 )−n(k+1).

Applying
(
k+2

2

) − n(k + 1) = (
n−1−k

2

) − (
n

2

)
and multiplying by x(n

2) yields the second
identity.

Editorial comment. Johnson noted that the first identity was published by Euler in 1753.
See paper E190, Consideratio quarumdam serierum, quae singularibus proprietatibus sunt
praeditae, in Opera Omnia, 1st series, vol. 14, pp. 516–541; a translation is available at
eulerarchive.maa.org.

Also solved by K. F. Andersen (Canada), M. J. S. Belaghi (Turkey), A. Berkane (Romania), R. Chapman (UK),
P. P. Dályay (Hungary), S. B. Ekhad, D. Fleischman, N. Grivaux (France), B. Karaivanov (USA) & T. S. Vas-
silev (Canada), K. T. L. Koo (China), O. Kouba (Syria), P. Lalonde (Canada), O. P. Lossers (Netherlands),
J. Minkus, V. Moll & T. Amdeberhan, M. Omarjee (France), M. Reid, A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), J. Van hamme (Belgium), S. H. Yu (South Korea), L. Zhou, GCHQ Problem Solving Group
(UK), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by April 30, 2020, via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12146. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Let n be an integer greater
than 1, and let [n] denote {1, . . . , n} as usual. Let π1, π2, . . . , πn! be a list of the n! permu-
tations of [n], ordered lexicographically with respect to the word πk(1)πk(2) · · ·πk(n). For
example, with n = 3, the 6 words in order are 123, 132, 213, 231, 312, and 321.
(a) For 1 ≤ k < n!, let ψk be the permutation of [n] defined by ψk(i) = j if and only if
πk(i) = πk+1(j). What is the cardinality of {ψk : 1 ≤ k < n!}?
(b) For 1 ≤ k < n!, let ϕk be the permutation of [n] defined by ϕk(πk(j)) = πk+1(j). What
is the cardinality of {ϕk : 1 ≤ k < n!}?
12147. Proposed by Luis González, Houston, TX, and Tran Quang Hung, Hanoi National
University, Hanoi, Vietnam. Let ABCD be a quadrilateral that is not a parallelogram. The
Newton line of ABCD is the line that connects the midpoints of the diagonals AC and BD.
Let X be the intersection of the perpendicular bisectors of AB and CD, and let Y be the
intersection of the perpendicular bisectors of BC and DA. Prove that XY is perpendicular
to the Newton line of ABCD.

12148. Proposed by Tibor Beke, University of Massachusetts, Lowell, MA. Let p be a prime
number, and let f be a symmetric polynomial in p − 1 variables with integer coefficients.
Suppose that f is homogeneous of degree d and that p − 1 does not divide d. Prove that
p divides f (1, 2, . . . , p − 1).

12149. Proposed by Mohammadhossein Mehrabi, Sala, Sweden. Let � be the gamma func-
tion, defined by �(x) = ∫ ∞

0 e−t t x−1 dt . Prove

xxyy �

(
x + y

2

)2

≤
(
x + y

2

)2

�(x)�(y)

for all positive real numbers x and y.

12150. Proposed by Péter Kórus, University of Szeged, Szeged, Hungary. Let X0, . . . , Xn
be independent random variables, each distributed uniformly on [0, 1]. Calculate the
expected value of min1≤k≤n |X0 −Xk|.

doi.org/10.1080/00029890.2019.1664219
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12151. Proposed by Leonard Giugiuc and Cezar Alexandru Trancanau, Drobeta Turnu
Severin, Romania, and Michael Rozenberg, Tel Aviv, Israel. Let A, B, C, and M be points
in the plane with A, B, and C distinct. Let A′, B ′, and C ′ be the reflections through M of
A, B, and C, respectively. Determine the minimum value of AB′/AB + BC′/BC + CA′/CA
under the constraint that
(a) A, B, C, and M are collinear.
(b) A, B, and C are not collinear.

12152. Proposed by George Stoica, Saint John, NB, Canada. Let f be a twice differentiable
real-valued function on [0,∞) such that f (0) = 1, f ′(0) = 0, and f (x)f ′′(x) = 1 for all

positive x. Find limx→∞ f (x)/(x
√

ln x).

SOLUTIONS

An Integral Involving Fractional Parts

12031 [2018, 277]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. (a) Prove

∫ 1

0

∫ 1

0

{
x

1 − xy

}
dx dy = 1 − γ,

where {a} denotes the fractional part of a, and γ is Euler’s constant.
(b) Let k be a nonnegative integer. Prove

∫ 1

0

∫ 1

0

{
x

1 − xy

}k
dx dy =

∫ 1

0

{
1

x

}k
dx.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA. We begin with (b). More
generally, we prove

∫ 1

0

∫ 1

0
f

({
x

1 − xy

})
dx dy =

∫ 1

0
f

({
1

x

})
dx

for any bounded measurable function f on [0, 1]. To prove this, we first change variables
to u = 1/x − y and v = y. Thus x = (u + v)−1 and y = v, and so we have dx dy =
(u + v)−2 dv du. Since u + v = 1/x ≥ 1, the new domain of integration consists of the
two regions {(u, v) : 1 ≤ u < ∞, 0 ≤ v ≤ 1} and {(u, v) : 0 ≤ u ≤ 1, 1 − u ≤ v ≤ 1}.
Therefore∫ 1

0

∫ 1

0
f

({
x

1 − xy

})
dx dy

=
∫ ∞

1

∫ 1

0
f

({
1

u

})
1

(u+ v)2
dv du+

∫ 1

0

∫ 1

1−u
f

({
1

u

})
1

(u+ v)2
dv du

=
∫ ∞

1
f

({
1

u

})
1

u(u+ 1)
du+

∫ 1

0
f

({
1

u

})(
1 − 1

u+ 1

)
du.

Since {1/u} = 1/u when u > 1, it remains to show
∫ 1

0
f

({
1

u

})
1

u+ 1
du =

∫ ∞

1
f

(
1

u

)
1

u(u+ 1)
du.
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To prove this, we substitute w = 1/u in the integral on the left side, and then, later,
u = 1/(w − j):

∫ 1

0
f

({
1

u

})
1

u+ 1
du =

∫ ∞

1
f ({w}) 1

w(w + 1)
dw

=
∞∑
j=1

∫ j+1

j

f (w − j)
1

w(w + 1)
dv

=
∞∑
j=1

∫ ∞

1
f

(
1

u

)
du

(1 + ju)(1 + (j + 1)u)

=
∫ ∞

1
f

(
1

u

)
1

u

∞∑
j=1

(
1

1 + ju
− 1

1 + (j + 1)u

)
du

=
∫ ∞

1
f

(
1

u

)
1

u(u+ 1)
du.

(a) By (b) and the asymptotic formula Hn = log n+ γ +O(1/n) for the harmonic num-
bers Hn,

∫ 1

0

∫ 1

0

{
x

1 − xy

}
dx dy =

∫ 1

0

{
1

x

}
dx =

∞∑
j=1

∫ 1/j

1/(j+1)

(
1

x
− j

)
dx

= lim
n→∞

n∑
j=1

(
− log j + log(j + 1)− 1

j + 1

)

= lim
n→∞ (log(n+ 1)− (Hn+1 − 1))

= lim
n→∞ (log(n+ 1)− (log(n+ 1)+ γ − 1)) = 1 − γ.

Editorial comment. The proposer and the GCHQ Problem Solving Group noted that when
k = 2, the value of the integral in (b) is log(2π)− γ − 1.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), H. Chen, G. Fera, K. Gatesman, M. L. Glasser,
J. A. Grzesik, O. Kouba (Syria), J. H. Lindsey II, Y. Mikayelyan (Armenia), T. Amdeberhan & V. H. Moll,
P. Perfetti (Italy), N. C. Singer, J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), L. Zhou,
GCHQ Problem Solving Group (UK), and the proposer.

An Oscillating Binomial Sum

12032 [2018, 277]. Proposed by David Galante (student) and Ángel Plaza, University of
Las Palmas de Gran Canaria, Las Palmas, Spain. For a positive integer n, compute

n∑
p=0

n∑
k=p
(−1)k−p

(
k

2p

)(
n

k

)
2n−k.

Solution by Pierre Lalonde, Kingsey Falls, QC, Canada. The value is 2n/2 cos(nπ/4). Inter-
changing the order of summation converts the sum to

n∑
k=0

(−1)k
(
n

k

)
2n−k

k∑
p=0

(−1)p
(
k

2p

)
.
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Since (1 ± i)k = ∑k
p=0(±1)p

(
k

p

)
ip, where i = √−1, cancellation in the binomial expan-

sions yields

1

2

(
(1 + i)k + (1 − i)k

) =
k∑

p=0

i2p
(
k

2p

)
=

k∑
p=0

(−1)p
(
k

2p

)
,

so the sum equals

1

2

n∑
k=0

(−1)k
(
n

k

)
2n−k

(
(1 + i)k + (1 − i)k

)
.

This sum contains the binomial expansions of (2 − (1 + i))n and (2 − (1 − i))n, so the
value is 1

2 ((1 − i)n + (1 + i)n). Finally, we compute

(1 + i)n + (1 − i)n

2
=

(√
2eiπ/4

)n +
(√

2e−iπ/4
)n

2

= 2n/2
enπi/4 + e−nπi/4

2
= 2n/2 cos(nπ/4).

Also solved by U. Abel (Germany), T. Amdeberhan & V. H. Moll, K. F. Andersen (Canada), M. A. Carlton,
R. Chapman (UK), P. P. Dályay (Hungary), G. Fera (Italy), D. Fleischman, K. Gatesman, M. Jones, O. Kouba
(Syria), K. T. L. Koo (China), O. P. Lossers (Netherlands), B. Lu, M. Omarjee (France), L. J. Peterson, R. Pratt,
N. C. Singer, J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Wildon, L. Zhou, GCHQ
Problem Solving Group (UK), and the proposers.

A Quadrilateral Inequality

12033 [2018, 277]. Proposed by Dao Thanh Oai, Thai Binh, Vietnam, and Leonard
Giugiuc, Drobeta Turnu Severin, Romania. Let ABCD be a convex quadrilateral with area
S. Prove

AB2 + AC2 + AD2 + BC2 + BD2 + CD2 ≥ 8S + AB · CD + BC · AD − AC · BD.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cus, Syria. Ptolemy’s inequality is AB · CD + BC · AD ≥ AC · BD. The AM-GM inequality
then gives

2 AC · BD ≤ 2(AB · CD + BC · AD) ≤ AB2 + CD2 + BC2 + AD2 (1)

and

2 AC · BD ≤ AC2 + BD2. (2)

Also,

0 ≤ (AB − CD)2 + (BC − AD)2 + (AC − BD)2. (3)

Adding (1), (2), and (3) and dividing through by 2 yields

2 AC · BD ≤ AB2 + AC2 + AD2 + BC2+BD2 + CD2

− AB · CD − BC · AD − AC · BD,

which is equivalent to

AB · CD + BC · AD − AC · BD + 4AC · BD

≤ AB2 + AC2 + AD2 + BC2 + BD2 + CD2. (4)
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The final step is to note that if θ is the angle between the diagonals AC and BD, then

S = 1

2
AC · BD · sin θ ≤ 1

2
AC · BD. (5)

The desired result follows from (4) and (5).
Equality holds when θ in (5) is a right angle and the right side of (3) is 0. These happen

only when the quadrilateral is a square.

Editorial comment. Solvers Richard Stong and Li Zhou noted the stronger inequality

AB2+AC2+AD2+BC2+BD2+CD2 ≥ 8S + 2
(
AB · CD + BC · AD − AC · BD

)

Also solved by E.. Bojaxhiu & E. Hysnelaj, P. P. Dályay (Hungary), D. Fleischman, K. Gatesman, H. Hyun
(South Korea), K. T. L. Koo (China), V. Mikayelyan (Armenia), Davis Problem Solving Group, J. C. Smith,
A. Stadler (Switzerland), R. Stong, B. Karaivanov (USA) & T. S. Vassilev (Canada), E. A. Weinstein,
M. R. Yegan (Iran), L. Zhou, Davis Problem Solving Group, GCHQ Problem Solving Group (UK), and the
proposer.

Multiples Without Large Digits

12034 [2018, 370]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,
IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Let N be any
natural number that is not a multiple of 10. Prove that there is a multiple of N each of
whose digits in base 10 is 1, 2, 3, 4, or 5.

Solution by Michael Reid, University of Central Florida, Orlando, FL. Let M be a natural
number greater than 1, and let L = M/q, where q is the smallest prime divisor of M . As
usual, let [n] = {1, . . . , n}. We prove the more general statement that every natural number
N that is not a multiple of M has a multiple whose base M expansion has entries only in
[L]. (In the given problem, (M, q, L) = (10, 2, 5).)

Lemma 1. If gcd(N,M) = 1, then N divides
∑t

i=0M
i for some nonnegative t .

Proof. With as = ∑s
i=0M

i , by the pigeonhole principle some two numbers among
a0, . . . , aN are congruent modulo N . Since N divides their difference, which has the
form Mjat , we see that N also divides at . �
Lemma 2. If A is a divisor of M such that gcd(A,M/A) = 1, then the Ak numbers whose
base-M expansions consist of k entries from [A] are distinct modulo Ak . In particular, one
of them is divisible by Ak .

Proof. We use induction on k; the claim is trivial for k = 1. For k ≥ 1, suppose that∑k
i=0 aiM

i and
∑k

i=0 biM
i are congruent modulo Ak+1. Since A divides M , the num-

bers akMk and bkMk are divisible by Ak . Hence
∑k−1

i=0 a
iMi and

∑k−1
i=0 biMi are congru-

ent modulo Ak . By the induction hypothesis, ai = bi for 0 ≤ i ≤ k − 1. Subtracting the
terms for i < k from the assumed congruence leaves akMk ≡ bkM

k modAk+1. Thus Ak+1

divides (ak − bk)M
k . SinceAk dividesMk , andM/A is relatively prime toA, we conclude

that A divides ak − bk . Since ak, bk ∈ [A], we have ak = bk . �
Now letN be a positive integer not a multiple ofM . For some prime p, the largest power

pb dividing N is less than the largest power pc dividing M . Write N as pbRS, where S is
the largest divisor ofN relatively prime toM . Thus every prime dividing R dividesM , and
p � R.

Let A = M/pc. Thus R divides some power of A, say Ak . Also A and M/A are rela-
tively prime. By Lemma 2, R divides some number B whose base-M expansion consists
of k entries from [A].
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Since S is relatively prime to M and thus also to Mk , Lemma 1 implies that S divides a
number C of the form

∑t
i=0(M

k)i . Now BC is a multiple of RS, and the base-M expansion
of BC consists of the expansion of B repeated t + 1 times. Hence all the entries of this
expansion lie in [A]. Finally, pbBC is a multiple of pbRS, which equals N . The entries in
the base-M expansion of pbBC are in {pb, 2pb, . . . , Apb}, which is contained in [L] since
Apb ≤ M/p ≤ M/q = L.

Editorial comment. The restriction of entries to [L] is in some sense sharp. If s is not a
multiple of q, then sL is not divisible by M , and the units position of every multiple of sL
is divisible by L and hence not in [L− 1].

On the other hand, when M is not squarefree, the set [L] can be reduced to a proper
subset. Suppose that M has prime factorization

∏r
i=1 p

ei
i , and let Ai = M/p

ei
i for i ∈ [r].

The proof shows that every N not divisible by M has a multiple whose base-M expansion
has all entries in the set

⋃r
i=1{pei−1

i , 2pei−1
i , . . . , Aip

ei−1
i }, which is a proper subset of [L]

when M has a repeated prime factor.
For the original problem, several readers employed the Euler phi-function. In particular,

when gcd(n, q − 1) = 1, the summed geometric series
∑φ(n)−1

i=0 qi (a q-analogue of φ(n))
is divisible by n, by Euler’s theorem. For example, when q = 10 and n = 77, we have
φ(77) = 60, and hence 77 divides

∑59
i=0 10i .

Some substantial papers have been written about the digit distribution of multiples of
integers. An example is Schmidt, W. M. (1983), The joint distribution of the digits of cer-
tain integer s-tuples, in Erdős, P., et al., eds., Studies in Pure Mathematics: To the Memory
of Paul Turán, Basel: Birkhäuser, pp. 605–622.

Also solved by R. Chapman (UK), P. P. Dályay (Hungary), D. Fleischman, K. Gatesman, O. Geupel (Germany),
E. J. Ionaşcu, D. Kim (South Korea), C. R. Pranesachar (India), A. Stadler (Switzerland), R. Stong, Y. Sun,
R. Tauraso (Italy), M. Tetiva (Romania), GCHQ Problem Solving Group (UK), and the proposers.

Solving a Cubic to Minimize a Rational Expression

12035 [2018, 370]. Proposed by Dinh Thi Nguyen, Tuy Hòa, Vietnam. Find the minimum
value of

(a2 + b2 + c2)

(
1

(3a − b)2
+ 1

(3b − c)2
+ 1

(3c − a)2

)

as a, b, and c vary over all real numbers with 3a �= b, 3b �= c, and 3c �= a.

Solution by Li Zhou, Polk State College, Winter Haven, FL. Let x = 3b − c, y = 3c − a,
and z = 3a − b. The hypothesis implies that x, y, and z are nonzero. The given expression
becomes F/52 where

F =
(

4(x2 + y2 + z2)+ 3(x + y + z)2
)(

1

x2
+ 1

y2
+ 1

z2

)
.

To search for the minimum of F , it suffices to consider x, y > 0 and z = −t < 0. By the
AM-GM inequality, 2(x2 + y2) ≥ (x + y)2 and

1

x2
+ 1

y2
≥ 2

xy
≥ 8

(x + y)2
,

with equality when x = y. Putting x + y = s, we then have

F ≥ (2s2 + 4t2 + 3(s − t)2)

(
8

s2
+ 1

t2

)
. (∗)
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Let r equal s/t , which is positive. The right side of (∗) becomes

5r2 − 6r + 47 − 48

r
+ 56

r2
,

which we denote f (r). Notice that limr→0 f (r) = limr→∞ f (r) = ∞ and

f ′(r) = 10r4 − 6r3 + 48r − 112

r3
= 2(r + 2)(5r3 − 13r2 + 26r − 28)

r3
.

According to the Cardano formula, the only positive zero ξ of f ′(r) is

13 + 3
√

4042 + 15
√

120585 + 3
√

4042 − 15
√

120585

15
,

which is approximately 1.56431. Hence the required minimum value is f (ξ)/52, which is

2062 + 3
√

4420439038 + 12661425
√

120585 + 3
√

4420439038 − 12661425
√

120585

5460
,

or approximately 0.8086454638.

Also solved by H. Chen, G. Fera, K. Gatesman, L. Giugiuc (Romania), O. Kouba (Syria), W.-K. Lai & J. Risher,
K.-W. Lau (China), L. J. Peterson, M. Reid, J. C. Smith, A. Stadler (Switzerland), R. Stong, D. B. Tyler, and
the proposer.

Metric Spaces with Few Isometry Types

12036 [2018, 370]. Proposed by Greg Oman, University of Colorado, Colorado Springs,
CO. Two metric spaces (X, d) and (X′, d ′) are said to be isometric if there is a bijection
φ : X → X′ such that d(a, b) = d ′(φ(a), φ(b)) for all a, b ∈ X. Let X be an infinite set.
Find all metrics d on X such that (X, d) and (X′, d ′) are isometric for every subset X′ of
X of the same cardinality as X. (Here, d ′ is the metric induced on X′ by d.)

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The Nether-
lands. If d(a, b) is independent of a and b when a and b differ, then (X, d) has the required
property. We show that this is the only case. Suppose that at least two nonzero distances
occur. Choose one of the distances, say δ, and define a coloring of the edges of the complete
graph with vertex set X by letting xy be red if d(x, y) = δ and blue otherwise.

Given a point p ∈ X, let R be the set of neighbors of p via red edges, and let B be the
set of neighbors of p via blue edges: X = {p} ∪ R ∪ B. Since X is infinite, R or B has the
same cardinality as X; suppose it is B. Let X′ = X \ R = {p} ∪ B. Since X′ has the same
cardinality asX, by assumption the metric spaces (X, d) and (X′, d ′) are isomorphic. Also
the edge-colored complete graph onX and the induced one onX′ are isomorphic. SinceX′
contains a vertex p incident only with blue edges, X also contains a vertex incident with
only blue edges.

Let Y denote the subset of X consisting of all points incident with at least one red edge.
The cardinality of Y must be smaller than the cardinality of X, because Y has no point
incident only with blue edges. Finally, let Y ′ = X \ Y ; the set Y ′ has the same cardinality
as X. The graph induced by Y ′ has only blue edges, which implies that the original graph
has only blue edges, contradicting our assumption.

The assumption thatR has the same cardinality asX leads to a contradiction in the same
way.

Editorial comment. Frederic Brulois and Gary Gruenhage provided a generalization: Let(
X

2

)
denote the family of 2-element subsets of X. Consider a function f :

(
X

2

) → S, where
S is any set. If X is infinite and for any subset Y of X with the same cardinality as X there
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is a bijection b : Y → X such that f ({y1, y2}) = f ({b(y1), b(y2)}) for all y1, y2 ∈ Y , then
f is a constant function.

Klaas Pieter Hart provided a different generalization: An infinite graphG that is isomor-
phic to all its induced subgraphs whose vertex sets have the same cardinality as G must be
the complete graph or have no edge.

Also solved by F. Brulois, G. Gruenhage, J. W. Hagood, K. P. Hart (Netherlands), J. H. Lindsey II, A. Pathak,
M. Reid, N. Sahoo, K. Schilling, R. Stong, and the proposer.

A Familiar Set Disguised

12037 [2018, 370]. Proposed by José Manuel Rodrı́guez Caballero, Université du Québec,
Montreal, QC, Canada. For a positive integer n, let Sn be the set of pairs (a, k) of positive
integers such that

∑k−1
i=0 (a + i) = n. Prove that the set

{
n :

∑
(a,k)∈Sn

(−1)a−k �= 0

}

is closed under multiplication.

Solution by GCHQ Problem Solving Group, Cheltenham, UK. Let A be the set defined in
the problem statement. Each (a, k) ∈ Sn satisfies

n = ka +
k−1∑
i=0

i = ka + k(k − 1)

2
,

and thus

2n = k(k + 2a − 1).

The factors k and k + 2a − 1 have opposite parity, and also k + 2a − 1 > k. Given n,
we can generate a pair (a, k) ∈ Sn by writing 2n = E ×O, where E is even and O is odd,
and setting k = min(E,O) and a = (|O − E| + 1)/2. The process is reversible, so we
have a bijection from Sn to the set of even/odd factorizations 2n = E ×O. We write these
as 2n = (2T u)× v, where u and v are both odd.

Note also that a + k = (E +O + 1)/2. If (2T u)+ v ≡ 1 (mod 4), then a + k is odd,
while if (2T u) + v ≡ 3 (mod 4), then a + k is even. Because (−1)a−k = (−1)a+k , we
have n ∈ A if and only if the number of even/odd factorizations resulting in a + k even is
different from the number resulting in a + k odd.

Let p be a prime factor of n. Switching p from u to v or vice versa does not change the
congruence class of 2T u or v modulo 4 if p ≡ 1 (mod 4). However, if p ≡ 3 (mod 4),
then the switch changes the sign of v and leaves the congruence class of 2T u unchanged,
so it changes the class of (2T u)+ v.

If some prime factor p congruent to 3 modulo 4 occurs in 2n with odd power, then for
any fixed distribution of the other factors, there are the same number of factorizations in
which p contributes an even number or an odd number of factors to v. Hence there are the
same number of factorizations with a + k even or odd, and n �∈ A.

Conversely, suppose that all such prime factors occur with even power. When all the
odd prime factors are in v, and u = 1, we have (2T u) + v ≡ 2T + 1 (mod 4), and the
class depends on whether T > 1. The class remains the same for any distribution of the
prime factors congruent to 1 modulo 4. Thus we need only consider multisets of the prime
factors congruent to 3 modulo 4, where the bound on the multiplicity of each is even. With
an even bound, the number of choices for the multiplicity of each such factor is odd. Hence
there are an odd number of multisets of the prime factors congruent to 3 modulo 4. With
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an odd number of choices, there cannot be the same number with even size as odd size.
Hence there will not be the same number of factorizations with a + k even and odd, and so
n ∈ A.

Since the product of two numbers whose prime factorizations have each prime factor
congruent to 3 modulo 4 occurring with even power also has the same property, A is closed
under multiplication.

Editorial comment. Several solvers noted that A is the set of all positive integers that can
be expressed as a sum of two squares.

Also solved by R. Chapman (UK), K. Gatesman, E. J. Ionaşcu, P. Lalonde (Canada), O. P. Lossers (Nether-
lands), J. C. Smith, and the proposer.

An Inequality with Medians

12038 [2018, 370]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let ABC
be an acute triangle with sides of length a, b, and c opposite angles A, B, and C,
respectively, and with medians of length ma , mb, and mc emanating from A, B, and C,
respectively. Prove

m2
a

b2 + c2
+ m2

b

c2 + a2
+ m2

c

a2 + b2
≥ 9 cosA cosB cosC.

Solution by Subhankar Gayen, Vivekananda Mission Mahavidyalaya, India. Let M be the
midpoint of BC. Suppose that AM intersects the circumcircle of �ABC atD. By the power-
of-the-point theorem, ma · MD = a2/4, and two applications of the law of cosines yields
a2/4 = (b2 + c2)/2 −m2

a . Hence b2 + c2 = 2ma (ma + MD). Since AD is a chord of the
circumcircle, ma + MD ≤ 2R, where R is the circumradius of �ABC. Hence 4Rma ≥
b2 + c2. Using this and the two other analogous inequalities yields

m2
a

b2 + c2
+ m2

b

c2 + a2
+ m2

c

a2 + b2
≥ b2 + c2

16R2
+ c2 + a2

16R2
+ a2 + b2

16R2

= a2 + b2 + c2

8R2

= sin2A+ sin2 B + sin2 C

2

= 1 + cosA cosB cosC,

where we have used the generalized law of sines in the second-to-last step and A+ B +
C = π to obtain the last equality.

We complete the proof by showing that 1 ≥ 8 cosA cosB cosC. This follows from
cos(x) cos(y) < cos2((x + y)/2) when x �= y, because this last inequality shows that
cosA cosB cosC cannot take its maximum value on a triangle ABC unless A = B = C =
π/3.

Note that the assumption that �ABC is acute is unnecessary and also that equality holds
only when �ABC is equilateral.

Also solved by H. Bailey, M. Bataille (France), H. Chen, G. Fera, L. Giugiuc (Romania), W. Janous (Aus-
tria), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, J. F. Loverde, M. Lukarevski (Macedonia),
P. Nüesch (Switzerland), P. Perfetti (Italy), C. R. Pranesachar (India), V. Schindler (Germany), D. Smith
(Canada), J. C. Smith, A. Stadler (Switzerland), R. Stong, M. Vowe (Switzerland), T. Wiandt, M. R. Yegan
(Iran), L. Zhou, T. Zvonaru (Romania), GCHQ Problem Solving Group (UK), and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Stan Wagon, Lawrence Washington, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by May 31, 2020, via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12153. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. For a real number x whose fractional part is not 1/2, let 〈x〉 denote the
nearest integer to x. For a positive integer n, let

an =
(

n∑
k=1

1〈√
k
〉
)

− 2
√

n.

(a) Prove that the sequence a1, a2, . . . is convergent, and find its limit L.
(b) Prove that the set {√n(an − L) : n ≥ 1} is a dense subset of [0, 1/4].

12154. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip, North Macedonia.
Let ra , rb, and rc be the exradii of a triangle with circumradius R and inradius r . Prove

ra

rb + rc

+ rb

rc + ra

+ rc

ra + rb

≥ 2 − r

R
.

12155. Proposed by Albert Stadler, Herrliberg, Switzerland. Let f : [0,∞) → [0, 1] be the
function that satisfies f (0) = 1, is differentiable on (0,∞), and has the following property:
If A is a point on the graph of f and B is the x-intercept of the line tangent to the graph of
f at A, then AB = 1.
(a) Prove

∫∞
0 f (x) dx = π/4.

(b) For n ∈ N, prove that
∫∞

0 x2nf (x) dx is a rational polynomial of π .

12156. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For positive integers m and n and
nonnegative integers r and s, prove

∑
0≤j1≤···≤jm≤r

(
n+s

n

)(
n+j1

n

)(
s+j1

s

)
∏m

i=1(n + ji)
=

∑
0≤j1≤···≤jm≤s

(
n+r

n

)(
n+j1

n

)(
r+j1

r

)
∏m

i=1(n + ji)
.

12157. Proposed by Nick MacKinnon, Winchester College, Winchester, UK. Show that
there are infinitely many positive integers that are neither the sum of a cube and a prime
nor the difference of a cube and a prime (in either order).

doi.org/10.1080/00029890.2020.1678347

January 2020] PROBLEMS AND SOLUTIONS 85

X
ia
ng
’s
T
ex
m
at
h



12158. Proposed by Hervé Grandmontagne, Paris, France. Prove∫ 1

0

(ln x)2 arctan x

1 + x
dx = 21

64
πζ(3) − 1

24
π2G − 1

32
π3 ln 2,

where ζ(3) is Apéry’s constant
∞∑

k=1
1/k3 and G is Catalan’s constant

∞∑
k=0

(−1)k/(2k + 1)2.

12159. Proposed by Rudolf Avenhaus, Universität der Bundeswehr München, Neubiberg,
Germany, and Thomas Krieger, Forschungszentrum Jülich, Jülich, Germany. Let � denote
the distribution function of a standard normal random variable, and let U denote its inverse
function. Let n be a positive integer, and suppose 0 < α < 1 and μ ≥ 0. Prove

�
(
U(α) − √

nμ
) ≤

(
�
(
U( n

√
α) − μ

))n

.

SOLUTIONS

An Even Number of Common Neighbors

12039 [2018, 371]. Proposed by Sandeep Silwal, Brookline, MA. Let G be a graph with
an even number of vertices. Show that there are two vertices in G with an even number of
common neighbors.

Solution by Aritro Pathak, graduate student, Brandeis University, Waltham, MA. We write
N(v) for the set of neighbors of v, and we write d(v) for the degree |N(v)| of v. Let G

have n vertices, and suppose that all pairs of vertices in G have an odd number of common
neighbors. The number p of paths of length 2 starting at a vertex v is

∑
u∈N(v)(d(u) − 1).

On the other hand, p is also the sum over all vertices u other than v of the number of
common neighbors of v and u. Since n is even, our assumption implies that p is odd.

If G has no vertex of odd degree, then in
∑

u∈N(v)(d(u) − 1) every summand is odd,
and the number of summands is even, so p is even, which is a contradiction.

Hence we may take v to be a vertex of odd degree. Now let q be the sum, over edges e

incident to v, of the number of triangles containing e. When e = uv, the summand is the
number of common neighbors of u and v. By hypothesis this is odd, and q is the sum of an
odd number of these terms. Hence q is odd. On the other hand, every triangle containing v

contributes 2 to the sum, so q is even. Again this is a contradiction, so the hypothesis that
all pairs of vertices have an odd number of common neighbors is false.

Editorial comment. Several solvers observed that this is problem 10 in Chapter 14 of
A. Engel (1998), Problem-Solving Strategies, New York: Springer. Gordon Royle raised
the question of classifying the graphs for which every pair of distinct vertices has an odd
number of common neighbors at mathoverflow.net/questions/17809/graphs-where-every-
two-vertices-have-odd-number-of-mutual-neighbours. This problem indicates that the
number of vertices must be odd, and various examples are known (starting with the
complete graphs), but a complete description seems difficult.

Also solved by O. Geupel (Germany), A. Goel, E. J. Ionaşcu, Y. J. Ionin, S. C. Locke, O. P. Lossers (Nether-
lands), H. Mikaelian (Armenia), M. Reid, J. C. Smith, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), and
the proposer.

A Series Condition

12040 [2018, 371]. Proposed by George Stoica, Saint John, NB, Canada. Find all con-
vergent series

∑∞
n=1 xn of positive terms such that

∑∞
n=1 xnxn+k/xk is independent of the

positive integer k.
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Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands. If
xn = αrn with α > 0 and 0 < r < 1, then xn+k/xk is independent of k and the geometric
series

∑
xn satisfies the conditions in the statement. We claim that these are the only such

series. Suppose that
∑

xn satisfies the conditions in the statement. We show that the series
is geometric.

Let
∑∞

n=1 xnxn+k = axk , and define the complex function f by f (z) = ∑∞
n=1 xnz

n. This
series converges uniformly on the closed unit disk in the complex plane, so f is continuous
on the closed disk and analytic on the open disk.

When zz = 1,

f (z)f (z) = af (z) + af (z) +
∞∑

n=1

x2
n,

or |f (z) − a|2 = a2 +∑∞
n=1 x2

n . Let A = (
a2 +∑∞

n=1 x2
n

)1/2
, and let b = a/A. Note that

0 < b < 1. Define g by g(z) = f (z)/A, so |g(z) − b| = 1 when |z| = 1. The composition
of the function z �→ g(z) − b with the transformation z �→ (z + b)/(bz + 1) maps the unit
disk into itself, maps 0 to 0, and maps |z| = 1 onto itself. According to the Schwarz lemma,
this composition is a rotation z �→ cz where |c| = 1, so

(g(z) − b) + b

b(g(z) − b) + 1
= cz.

It follows that g(z) = (1 − b2)cz/(1 − bcz), or f (z) = A(1 − b2)cz/(1 − bcz). This
yields xn = αrn for n ≥ 1, where α = A(1 − b2)/b and r = bc. Since xn > 0 for all n, we
conclude α > 0 and 0 < r < 1.

Also solved by K. F. Andersen (Canada), A. Stadler (Switzerland), R. Stong, and the proposer.

Counting Factors in a Square of Binomial Coefficients

12041 [2018, 466]. Proposed by Richard Stanley, University of Miami, Coral Gables, FL.
Let p be prime. For a positive integer c, let νp(c) denote the largest integer d such that pd

divides c. Let

Hm =
m∏

i=0

m∏
j=0

(
i + j

i

)
.

For n ≥ 1, prove

νp(Hpn−1) = 1

2

((
n − 1

p − 1

)
p2n + pn

p − 1

)
.

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans,
LA. Let s(k) denote the sum of the digits of k in base p, and let m = pn − 1. Applying
Legendre’s formula (p − 1)νp(k!) = k − s(k), we find

(p − 1)νp(Hm) =
m∑

i=0

m∑
j=0

(
s(i) + s(j) − s(i + j)

)

= 2pn

m∑
i=0

s(i) −
m∑

i=0

m∑
j=0

s(i + j). (1)
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Observe that 0 ≤ k ≤ m implies s(k + pn) = s(k) + 1. Reindexing with k = i + j to
simplify the double sum yields

m∑
i=0

m∑
j=0

s(i + j) =
m∑

k=0

(k + 1)s(k) +
m∑

k=0

(m − k)s(k + pn)

=
m∑

k=0

(k + 1)s(k) +
m∑

k=0

(pn − 1 − k)(s(k) + 1) (2)

= pn

m∑
k=0

s(k) +
m∑

k=0

(pn − k − 1) = pn

m∑
k=0

s(k) + pn(pn − 1)

2
.

Since the base-p representation of k realizes every n-tuple modulo p as it runs from
0 to pn − 1, we have

∑m
k=0 s(k) = npn−1p(p − 1)/2 = npn(p − 1)/2. Combining this

with (1) and (2) yields

(p − 1)νp(Hpn−1) = pn

(
npn(p − 1)

2

)
− pn(pn − 1)

2
= p2n (n(p − 1) − 1) + pn

2
,

which gives the desired result.

Also solved by N. Caro (Brazil), R. Chapman (UK), P. P. Dályay (Hungary), K. Gatesman, Y. J. Ionin, A. Jorza,
O. Kouba (Syria), P. Lalonde (Canada), J. H. Lindsey II, O. P. Lossers (Netherlands), J. H. Smith, A. Stadler
(Switzerland), R. Stong, R. Tauraso (Italy), GCHQ Problem Solving Group (UK), and the proposer.

A Generalization of Leuenberger’s Inequality

12042 [2018, 466]. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip, Mace-
donia. Let x, y, and z be positive real numbers. For a triangle with sides of lengths a, b,
and c and circumradius R, prove

x + y

cz
+ y + z

ax
+ z + x

by
≥ 2

√
3

R
.

Solution by Mohammad Reza Yegan, Tehran, Iran. Let A, B, and C be the angles opposite
the sides a, b, and c. We use the AM-GM inequality, Jensen’s inequality applied to the
concave function sin x on the interval [0, π ], and the generalized law of sines, which says
that a/ sin A = b/ sin B = c/ sin C = 2R, as follows:

x + y

cz
+ y + z

ax
+ z + x

by
= x

cz
+ y

cz
+ y

ax
+ z

ax
+ z

by
+ x

by

≥ 6 6

√
x

cz
· y

cz
· y

ax
· z

ax
· z

by
· x

by
= 6

3
√

abc
≥ 18

a + b + c
= 9

R(sin A + sin B + sin C)

≥ 3

R sin((A + B + C)/3)
= 3

R sin(π/3)
= 2

√
3

R
.

Editorial comment. Several solvers noted that we have equality if and only if x = y =
z and a = b = c. The proposer pointed out that the problem generalizes Leuenberger’s
inequality, which says that

1

a
+ 1

b
+ 1

c
≥

√
3

R
.
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Also solved by F. R. Ataev (Uzbekistan), M. Bataille (France), E. Bojaxhiu (Albania) & E. Hysnelaj (Aus-
tralia), R. Boukharfane (France), P. Bracken, P. P. Dályay (Hungary), D. Bailey, E. Campbell, C. Diminnie, &
T. Smith, G. Fera (Italy), K. Gatesman, S. Gayen (India), O. Geupel (Germany) E. J. Ionaşcu, W. Janous (Aus-
tria), K. T. L. Koo (China), O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands), D.-Ş. Marinescu
(Romania), V. Mikayelyan (Armenia), A. Pathak, D. Ritter, V. Schindler (Germany), J. Sim (South Korea),
J. C. Smith, A. Stadler (Switzerland), N. Stanciu (Romania), R. Stong, B. Karaivanov (USA) & T. S. Vassilev
(Canada), M. Vowe (Switzerland), J. Zacharias, L. Zhou, An-Anduud Problem Solving Group (Mongolia),
GCHQ Problem Solving Group (UK), and the proposer.

A Large Prime Factor

12043 [2018, 125]. Proposed by Max A. Alekseyev, George Washington University, Wash-
ington, DC. Let n and k be integers with n ≥ 3 and k ≥ 2. Prove that nk + 1 has a prime
factor greater than 2k.

Solution by Peter W. Lindstrom, Saint Anselm College, Manchester, NH. We use the follow-
ing theorem of Zsigmondy (K. Zsigmondy (1892), Zur Theorie der Potenzreste, J. Monat-
shefte für Math. 3(1): 265–284): For a, b,m ∈ N with gcd(a, b) = 1 and a > b, there is a
prime p such that p divides am − bm and p does not divide aj − bj for 1 ≤ j < m, with
the following exceptions: (i) m = 1 and a − b = 1, (ii) m = 2 and a + b is a power of 2,
and (iii) m = 6 and (a, b) = (2, 1).

Now take m = 2k, a = n, and b = 1. The hypotheses of the theorem hold, and because
m ≥ 4 and a ≥ 3, none of the exceptions apply. Hence there is a prime p that divides
n2k − 1 and does not divide nj − 1 for 1 ≤ j < 2k. This implies that the multiplicative
order of n mod p is 2k. By Fermat’s little theorem, 2k divides p − 1, and thus p > 2k.
Also, since p divides n2k − 1 and does not divide nk − 1, it divides nk + 1.

Also solved by R. Chapman (UK), S. Dey, S. M. Gagola, Jr., A. Goel, D. Kim (South Korea), O. Kouba (Syria),
M. Reid, J. P. Robertson, A. Stadler (Switzerland), R. Stong, B. Sury (India), An-Anduud Problem Solving
Group (Mongolia), NSA Problems Group, and the proposer.

Sums of Triples with One Pair Relatively Prime

12044 [2018, 466]. Proposed by Freddy Barrera, Colombia Aprendiendo, Bogota, Colom-
bia, Bernardo Recamán Santos, Universidad de los Andes, Bogota, Colombia, and Stan
Wagon, Macalester College, St. Paul, MN. Prove that any integer greater than 210 can be
written as the sum of positive integers a, b, and c such that gcd(a, b) = 1 but gcd(a, c) and
gcd(b, c) are both greater than 1.

Solution by NSA Problems Group, Fort Meade, MD. Given m ∈ N with m > 210, let p and
q be the smallest primes that do not divide m, with p < q. We find integers i and j such
that gcd(a, b) = 1 and a + b + c = m, where a = pi, b = qj , and c = pq.

We first prove 2pq ≤ m. If q ≤ 11, then 2pq ≤ 2 · 7 · 11 = 154 < m. If q = 13, then
2pq ≤ 2 · 11 · 13 = 286, but m is divisible by 2 · 3 · 5 · 7 · 11/p, and the smallest such m

greater than 210 is 330; hence m ≥ 330 ≥ 2pq. If q = 17, then 2pq ≤ 2 · 13 · 17 = 442
and m is divisible by 2 · 3 · 5 · 7 · 11 · 13/p, which is at least 2 · 3 · 5 · 7 · 11; that is, m is
divisible by 2310, so m ≥ 442 ≥ 2pq.

Finally, suppose q ≥ 19. Let pk be the kth-smallest prime. If q ≥ 19, then q = pk

with k ≥ 8. Also 2pq ≤ 2pk−1pk , and m is divisible by (1/p)
∏k−1

i=1 pi , which is at least∏k−2
i=1 pi . By Bertrand’s theorem, 2pj−1 > pj , so 32pk−3pk−2 > 2pk−1pk . Since k ≥ 8,

m ≥
k−2∏
i=1

pi ≥ p1p2p3p4pk−3pk−2 = 2 · 3 · 5 · 7pk−3pk−2 ≥ 32pk−3pk−2 > 2pk−1pk.

Since pk−1pk ≥ pq, we conclude m ≥ 2pq.
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With m ≥ 2pq, we have m = pqs + r , where s ≥ 2 and 0 ≤ r < pq. Because neither
p nor q divides m, neither divides r; so r ≥ 1 and gcd(pq, r) = 1. Let m′ = m − pq =
pq(s − 1) + r . Since s ≥ 2, we have m′ ≥ pq + r > pq and gcd(m′, pq) = gcd(r, pq) =
1. The integers m′ − qj for 1 ≤ j ≤ p are positive and distinct modulo p, so there is a
unique j with m′ − qj ≡ 0 mod p. Hence m′ = pi + qj for some positive i and some j

with 1 ≤ j ≤ p. Furthermore, since p does not divide m′, we have j < p.
A prime divisor of pi and qj must divide m′. Since m′ is not divisible by p or q, such a

divisor t cannot equal p or q. Thus t divides j . Since j < p, we have t < p. Since p is the
smallest prime not dividing m, it follows that t divides m. Hence t divides m − m′, which
equals pq. This requires t = p or t = q, a contradiction. Therefore, gcd(pi, qj) = 1 and
m = pi + qj + pq, as required.

Editorial comment. Stephen Gagola, Eugen Ionaşcu, the GCHQ group, and the proposers
showed that the only numbers not admitting a representation as in the problem are 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 24, 30, 36, 42, 48, 60, 84, 90, and 210.

Also solved by D. Fleischman, S. M. Gagola Jr., K. Gatesman, E. J. Ionaşcu, Y. I. Ionin, M. Reid, J. P. Robert-
son, GCHQ Problem Solving Group (UK), and the proposer.

An Alternating Iterated Sum

12045 [2018, 467]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Prove that the series

∞∑
n=1

(−1)n−1

(
n

( ∞∑
k=n+1

1

k2

)
− 1

)

converges to π2

16 − ln 2
2 − 1

2 .

Solution I by Giuseppe Fera, Italy. Let

pn =
∞∑

k=n+1

1

k2
, qn = npn − 1, s =

∞∑
n=1

(−1)n−1pn, and t =
∞∑

n=1

(−1)n−1qn.

We seek the value of t . Note that p1 = π2

6 − 1 and pn+1 = pn − 1
(n+1)2 . Thus

s =
∞∑

n=0

(−1)npn+1 = p1 −
∞∑

n=1

(−1)n−1pn +
∞∑

n=1

(−1)n−1

(n + 1)2

= π2

6
− 1 − s + 1 − π2

12
= π2

12
− s,

so s = π2/24. Next, since q1 = π2

6 − 2 and

qn+1 = (n + 1)pn+1 − 1 = (n + 1)pn − 1

n + 1
− 1 = qn + pn − 1

n + 1
,

we have

t =
∞∑

n=0

(−1)nqn+1 = q1 −
∞∑

n=1

(−1)n−1qn −
∞∑

n=1

(−1)n−1pn +
∞∑

n=1

(−1)n−1

n + 1

= π2

6
− 2 − t − s + 1 − ln 2 = π2

8
− ln 2 − 1 − t.
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Therefore, t = π2

16 − 1
2 ln 2 − 1

2 .

Solution II by Li Zhou, Polk State College, Winter Haven, FL. Let an = (−1)n−1n and

bn =
( ∞∑

k=n+1

1

k2

)
− 1

n
=

∞∑
k=n+1

(
1

k2
− 1

(k − 1)k

)
=

∞∑
k=n+1

−1

(k − 1)k2
.

By Abel’s summation formula,

N∑
n=1

anbn = ANbN+1 +
N∑

n=1

An(bn − bn+1),

where An = ∑n
k=1 ak = (−1)n−1�n/2�. As N → ∞,

|ANbN+1| ≤ N + 1

2

∞∑
k=N+2

1

(k − 1)k2
<

1

2

∞∑
k=N+2

1

k2
→ 0.

Thus the requested sum is

∞∑
n=1

anbn =
∞∑

n=1

An(bn − bn+1) =
∞∑

n=1

⌈n

2

⌉ (−1)n

n(n + 1)2
.

The odd terms of this final series sum to
∞∑

k=1

−k

(2k − 1)(2k)2
= −1

2

∞∑
k=1

(
1

2k − 1
− 1

2k

)
= −1

2
ln 2,

while the even terms sum to
∞∑

k=1

k

2k(2k + 1)2
= 1

2

∞∑
k=1

1

(2k + 1)2
= π2

16
− 1

2
.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), P. Bracken, R. Chapman (UK). H. Chen,
Ó. Ciaurri & M. Bello & M. Benito & E. Fernández & L. Roncal (Italy), K. Gatesman, M. L. Glasser,
J.-P. Grivaux (France), E. A. Herman, A. Jorza, K. T. Hun (South Korea), O. Kouba (Syria), P. Lalonde
(Canada), K.-W. Lau (China), L. Lipták, O. P. Lossers (Netherlands), J. Magliano, L. Matejı́čka (Roma-
nia), V. Mikayelyan (Armenia), R. Molinari, M. Omarjee (France), A. Pathak, P. Paolo (Italy), N. C. Singer,
J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, An-Anduud Problem Solving
Group (Mongolia), GCHQ Problem Solving Group (UK), and the proposer.

An Inequality for Moments

12046 [2018,467]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Sup-
pose that f : [0, 1] → R has a continuous and nonnegative third derivative, and suppose∫ 1

0 f (x) dx = 0. Prove

10
∫ 1

0
x3f (x) dx + 6

∫ 1

0
xf (x) dx ≥ 15

∫ 1

0
x2f (x) dx.

Solution by Kee-Wai Lau, Hong Kong, China. Let h(x) = 12(10x3 − 15x2 + 6x) − 6.

Since
∫ 1

0 f (x)dx = 0, the given inequality is equivalent to
∫ 1

0 h(x)f (x) dx ≥ 0. Integrat-
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ing by parts three times yields∫ 1

0
h(x)f (x) dx =

∫ 1

0

(
120x3 − 180x2 + 72x − 6

)
f (x) dx

=
∫ 1

0

(−30x4 + 60x3 − 36x2 + 6x
)
f ′(x) dx

=
∫ 1

0

(
6x5 − 15x4 + 12x3 − 3x2

)
f ′′(x) dx

=
∫ 1

0

(−x6 + 3x5 − 3x4 + x3
)
f ′′′(x) dx =

∫ 1

0
x3(1 − x)3f ′′′(x) dx,

which is clearly nonnegative, since f ′′′ is nonnegative by hypothesis.

Editorial comment. Most solutions used integration by parts in some form. Equality holds
if and only if f ′′′ = 0 so f (x) = a(x2 − 1/3) + b(x − 1/2). Erik Verriest’s solution used
calculus of variations. For n ≥ 4, if f (n)(x) ≥ 0, a similar inequality follows from∫ 1

0
xn(1 − x)nf (n)(x) dx = (−1)n

∫ 1

0
f (x)

dn

dxn

(
xn(1 − x)n

)
dx.

Also solved by K. F. Andersen (Canada), M. Bello & M. Benito & Ó. Ciaurri & E. Fernández & L. Ron-
cal, A. Berkane (Algeria), E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), P. Bracken, R. Chapman (UK),
P. P. Dályay (Hungary), L. Di Giacomo (Italy), E. A. Herman, T. H. Kim (South Korea), K. T. L. Koo
(China), O. Kouba (Syria), O. P. Lossers (Netherlands), D.-Ş. Marinescu (Romania), L. Matejı́čka (Slovakia),
L. Meykhanadzhyan (Russia), V. Mikayelyan (Armenia), A. Pathak, J. C. Smith, A. Stadler (Switzerland),
R. Stong, R. Tauraso (Italy), E. I. Verriest, T. Wiandt, L. Zhou, GCHQ Problem Solving Group (UK), and the
proposer.

Two Polygons Inscribed in Concentric Circles

12047 [2018, 467]. Proposed by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. Let C and D be concentric circles with radii r and R, respec-
tively, with r < R. Let A1A2 · · · An be a convex n-gon with perimeter p inscribed in C.
For 1 ≤ k ≤ n, let Bk be the intersection of the ray AkAk+1 with the circle D, where
An+1 = A1. Let q be the perimeter of the n-gon B1B2 · · ·Bn. Prove p/q ≤ r/R, and deter-
mine when equality holds.

Solution by the proposer. Let Bn+1 = B1. Applying Ptolemy’s inequality to the quadrilat-
eral OAi+1BiBi+1, we obtain

OAi+1 · BiBi+1 + OBi+1 · Ai+1Bi ≥ OBi · Ai+1Bi+1. (∗)

Since Ai+2 is between Ai+1 and Bi+1, we have Ai+1Bi+1 = Ai+1Ai+2 + Ai+2Bi+1. Also,
OAi+1 = r and OBi+1 = OBi = R. It follows that (∗) is equivalent to

r · BiBi+1 + R(Ai+1Bi − Ai+2Bi+1) ≥ R · Ai+1Ai+2.

Summing both sides as i varies from 1 to n, we obtain rq ≥ Rp. This is the desired inequal-
ity.

We now show that equality holds if and only if the polygon A1A2 · · · An is regular.
Clearly, rq = Rp if and only if there is equality in (∗) for every i, and this is equivalent to
the fact that the quadrilateral OAi+1BiBi+1 is cyclic for every i.

If the quadrilateral OAi+1BiBi+1 is cyclic for all i, then we have ∠OAi+1Ai+2 =
∠OAi+1Bi+1 = ∠OBiBi+1 and ∠OBi+1Bi = ∠OAi+1Ai . Since �OBiBi+1 is isosce-
les, ∠OBiBi+1 = ∠OBi+1Bi . It follows that ∠OAiAi+1 = ∠OAi+1Ai+2. Consequently,

∠AiOAi+1 = π − 2∠OAiAi+1 = π − 2∠OAi+1Ai+2 = ∠Ai+1OAi+2.
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This shows that ∠AiOAi+1 is independent of i, and hence the polygon A1A2 · · · An is
regular.

Conversely, if A1A2 · · ·An is a regular n-gon, then B1B2 · · · Bn is also a regular n-gon.
In this case, the ratio of the perimeters is equal to the ratio of the radii of the circumscribed
circles.

Also solved by D. Fleischman, R. Stong, L. Zhou, and An-Anduud Problem Solving Group (Mongolia).

Carmichael in a Taxicab

12048 [2018, 562]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann Arbor,
MI. Call an integer a special Carmichael number if it can be written as (6k + 1)(12k +
1)(18k + 1) for some integer k, with each of 6k + 1, 12k + 1, and 18k + 1 being prime.
Call an integer a taxicab number if it can be written as the sum of two positive integer
cubes in two different ways. Show that 1729 is the only positive integer that is both a
special Carmichael number and a taxicab number.

Solution by Albert Stadler, Herrliberg, Switzerland. Let p = 6k + 1, q = 12k + 1, and
r = 18k + 1. If k = 1, then (p, q, r) = (7, 13, 19) and n = pqr = 1729 = 123 + 13 =
103 + 93. Thus 1729 is both a taxicab number and a special Carmichael number. Suppose
that n is a special Carmichael number of the form pqr with k ≥ 2. Suppose also that
n is representable as a sum of two positive integer cubes: n = a3 + b3 = (a + b)(a2 −
ab + b2). We prove that this representation is unique (up to the order of the summands).
Begin with the inequalities

a2 − ab + b2 < (a + b)2 ≤ 4(a2 − ab + b2).

Multiply by a + b to get

pqr = n = a3 + b3 < (a + b)3 ≤ 4(a3 + b3) = 4n = 4pqr.

Since a + b divides n, also a + b is divisible by p, q, or r . The inequality (a + b)3 ≤
4pqr implies that a + b cannot be divisible by two of these primes, since p3q3 > 4pqr .
Therefore, a + b ∈ {p, q, r}. If a + b = p, then

(6k + 1)(12k + 1)(18k + 1) < p3 = (6k + 1)3,

which is a contradiction. If a + b = r , then

(18k + 1)3 = r3 ≤ 4(6k + 1)(12k + 1)(18k + 1),

which is equivalent to 12(k2 − k) ≤ 1, also a contradiction. Therefore, a + b = q =
12k + 1 and (a + b)2 − 3ab = a2 − ab + b2 = (6k + 1)(18k + 1). This implies that both
a + b and ab are determined by k, so the set {a, b} is determined uniquely by k. Therefore,
n has at most one representation as a sum of two cubes and cannot be a taxicab number.

Editorial comment. By eliminating k in the equations for a + b and a2 − ab + b2 and
reducing to a Pell equation, O. P. Lossers and John P. Robertson showed that if a special
Carmichael number other than 1729 is a sum of two positive integer cubes, then k must be
very large; Robertson obtained k > 105000.

Also solved by R. Boukharfane (France), R. Chapman (UK), J. Christopher, S. Das Biswas (India),
D. Fleischman, S. M. Gagola Jr., K. Gatesman, E. J. Ionaşcu, Y. J. Ionin, O. P. Lossers (Netherlands),
A. Pathak, M. Reid, J. P. Robertson, C. Schacht, J. C. Smith, R. Stong, R. Tauraso (Italy), GCHQ Problem
Solving Group (UK), and the proposer.
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