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10701. Proposed by Fred Galvin, University of Kansas, Lawrence, KS. Let G be a (finite,
undirected, simple) graph with vertex set V. Let C = {Cx: x € V} be a family of sets
indexed by the vertices of G. For X C V,let Cy = U,cxCy. Aset X C V is C-colorable
if one can assign to each vertex x € X a “color” ¢y € Cy so that ¢, # cy whenever x and y
are adjacent in G.

(a) Prove that if |Cx| > |X| whenever X induces a connected subgraph of G, then V is
C-colorable.

(b) Prove that if every proper subset of V is C-colorable and if |Cy| > [V]|, then V is
C-colorable.

(¢) For every connected graph G, find a family C = {C,: x € V}showing that the condition
|Cy| = |V| in part (b) cannot be weakened to |[Cy| > (V| — 1.

10702. Proposed by Kent D. Boklan, Baltimore, MD. What is the length of the longest
nonconstant arithmetic progression of integers with the property that the kth term (for all
k > 1) is a perfect kth power?

10703. Proposed by Jean Anglesio, Garches, France. Given triangle XY Z, let its incenter
be 1, its centroid C, its circumcenter O, its orthocenter H, the center of its nine-point circle
W, its Gergonne point (the point of concurrency of the segments joining each vertex to the
point of the incircle on the opposite side) G, and its Nagel point (the point of concurrency
of the segments joining each vertex to the point of an excircle on the opposite side) N. Let
S denote the intersection of the line /G with the Euler line (the line containing O, C, W,
and H), andlet T, U, and V denote respectively the intersections of line G with lines NO,
NW,and NH.

(a) Show that C lies one-third of the way from H to S (so that SO = HO).

(b) Show that ST : SI: SU : SV =10:15:18:30.

(c)Showthat NO : TO =3:1,NW :UW =5:3,and NH = V H. (We may now infer
that NH = 2 - O and that these segments are parallel.)

SOLUTIONS

A Doubly Rational Generating Function

10493 [1995, 930]. Proposed by Richard P. Stanley, Massachusetts Institute of Technology,
Cambridge, MA, and Christophe Reutenauer, Université du Québec, Montreal, Canada.
Fix a positive integer k. Let fi(m, n) be the number of m-tuples a = (ag, a1, ..., am-1)
of integers satisfying: (a) 0 < g; < n — 1 for all i, and (b) any k circularly consecutive
entries of a (i.e., a;, aj+1, . . . , Ai+k—1, Where the subscripts are taken modulo m so that they
lic between 0 and m — 1) are all distinct. Show that the generating function Fi(x,n) =

Y w1 Jx(m, n)x™ is a quotient of two polynomials in x and n.

Solution by Robin J. Chapman, University of Exeter, Exeter, U. K. Since fij(m,n) = n™,
the result is immediate for k = 1, so we restrict attention to k > 2. In the first part of
the solution, we obtain a recurrence that shows that F(x, n) is a rational function in x for
each n; we then study the dependence on n. In the second part, it is convenient to use zero
as a special symbol, so we adopt an equivalent formulation using only positive integers.
Thus, we note that f;(m, n) is the number of (m + k — 1)-tuples b = (b1, b2, ..., bpii—1)
such that (a) 1 < b; < n for all j, (b) any k consecutive elements of b are all distinct,
and (c) bj = by when 1 < j < k — 1. This number is n(n — 1) - - - (n — k + 2) times
the number of such b also satisfying b; = j for 1 < j < k — 1. Fix n as well as k. For
¢ = (ct, ..., ck—1), where the c; are distinct integers, define g(m; c) = g(m; i, ..., ck—1)
to be the number of (m + k — 1)-tuples b = (b1, b3,...,bpqk—1) suchthat 1 < b; <n
for all j, any k consecutive elements of b are all distinct, and b; = j and by, ; = c; for

956 PROBLEMS AND SOLUTIONS [December

This content downloaded from 128.235.251.160 on Mon, 5 Jan 2015 04:36:58 AM
All use subject to JISTOR Terms and Conditions




PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West

with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline, Ezra
A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton, Ira M. Ges-
sel, Bart Goddard, Jerrold R. Griggs, Douglas A. Hensley, Richard Holzsager, John R. Isbell, Robert
Israel, Kiran S. Kedlaya, Murray S. Klamkin, Fred Kochman, Frederick W. Luttmann, Frank B. Miles,
Richard Pfiefer, Leonard Smiley, John Henry Steelman, Kenneth Stolarsky, Richard Stong, Charles
Vanden Eynden, and William E. Watkins.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted problems should include
solutions and relevant references. Submitted solutions should arrive at that address
before June 30, 1999; Additional information, such as generalizations and refer-
ences, is welcome. The problem number and the solver’s name and address should
appear on each solution. An acknowledgement will be sent only if a mailing label
is provided. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

10704. Proposed by Wiliam G. Spohn, Jr.,, Ellicott City, MD. Show that there are infinitely
many pairs ((a, b, ¢), (a’, b’, ¢’)) of primitive Pythagorean triples such that |a — d’|, |b —
b'|, and |c — ¢'| are all equal to 3 or 4. Examples include ((12, 5, 13), (15, 8, 17)) and
(77, 36, 85), (80, 39, 89)).

10705. Proposed by D. W. Brown, Marietta, GA. A topological space has the fixed point
property if every continuous function from the space to itself has a fixed point. Is there a
‘countably infinite Hausdorff space with the fixed point property?

10706. Proposed by James G. Propp, University of Wisconsin, Madison, WI. Given a finite
sequence (ay, .. ., a,), define the derived sequence (by, ..., b,4+1) by b; =s —ai—| — a;,
where s = min)<j<p+1(ai—1 + a@;) + max<;<,+1(a;—1 + a;) and where we interpret both
ao and a, 4 as 0. Let Sp be the sequence (1) of length 1, and for n > 1 define Sy to be the
derived sequence obtained from Sx_;. Thus S; = (1, 1), $2 = (2,1, 2), S3 = (3, 2,2, 3),
and S4 = (5, 3,4, 3,5). Show that the middle term of S,, is a perfect square.

10707. Proposed by John Isbell, State University of New York, Buffalo, NY. Show that
(a) no vector space over an infinite field is a finite union of proper subspaces; and
(b) no vector space over an n-element field is a union of n or fewer proper subspaces.

10708. Proposed by the Western Maryland College Problems Group, Westminster, MD. Let
1 ™1 1 —cos(x +1)
=- -1 — ) dt
7o) 4[; t Og(l—cos()c—t))
for x € (0, ).

(a) Find the Fourier sine series for f.
(b) Find the L? norm of f.
(¢) Find limy_,0 f(x).
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10709. Proposed by Zoltdn Sasvdri, Technical University of Dresden, Dresden, Germany.
Let X be a standard normal random variable, and choose y > 0. Show that

e < Pr(a <=X<a+ )’) < e—ay+(l/2)ay3
Pr@a-—y=<X=<a)

when a > 0. Show that the reversed inequalities hold when a < 0.

10710. Proposed by Bogdan Suceava, Michigan State University, East Lansing, MI. Let
ABC be an acute triangle with incenter I, and let D, E, and F be the points where the circle
inscribed in ABC touches BC, CA, and A B, respectively. Let M be the intersection of the
line through A parallel to BC and DE, and let N be the intersection of the line through
A parallel to BC and DF. Let P and Q be the midpoints of DM and DN, respectively.
Prove that A, E, F, I, P, and Q are on the same circle.

SOLUTIONS

When O-H-I Is Isosceles

10547 [1996, 695). Proposed by Dan Sachelarie, ICCE Bucharest, and Viad Sachelarie,
University of Bucharest, Bucharest, Romania. In the triangle ABC, let O be the circum-
center, H the orthocenter, and I the incenter. Prove that the triangle O H[I is isosceles if
and only if

aS+b+3 R

3abc T2

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. We denote by MPV
the reference D. S. Mitrinovié, J. E. Pecari¢, and V. Volenec, Recent Advances in Geometric
Inequalities, Kluwer, 1989. Neither I O nor HI is ever as large as H O [MPV, p. 288], so
the only way triangle I H O can be isosceles is if O = HI. Also 10?2 = R —2Rr [MPV,
p. 279] and HI? = 4R? + 4Rr + 3r? — 5% [MPV, p. 280], where s is the semiperimeter.
Hence HI = 10 if and only if R2 — 2Rr = 4R? + 4Rr + 3r% — s2. This rearranges to
25(s2=3r2—=6Rr)/12Rrs = R/2r, or, usingabc = 4Rrs [MPV, p. 52] and a3+ b3 +¢3 =
25(s2 = 3r2 — 4Rr) [MPV, p. 52], to (a® + b3 + ¢3)/3abc = R/2r.

Editorial comment. Another condition equivalent to HI = IO, given in problem E2282
[1971, 196; 1972, 397] from this MoNTHLY, is that ABC has one angle equal to 60°.

Solved also by J. Anglesio (France), R. Barbara (Lebanon), F. Bellot Rosado (Spain), C. W. Dodge, J. S. Frame, Z. Franco,
M. S. Klamkin (Canada), W. W. Meyer, V. Mihai (Canada), C. R. Pranesachar (India), B. Prielipp, V. Schindler (Germany),
I. Sofair, M. Tabai (Morocco), T. V. Trif (Romania), M. Vowe (Switzerland), GCHQ Problems Group (U. K.), and the proposers.

The Divisible Differences Property

10553 [1996, 809). Proposed by Bjorn Poonen, Mathematical Sciences Research Institute,
Berkeley, CA, Jim Propp, Massachusetts Institute of Technology, Cambridge, MA, and
Richard Stong, Rice University, Houston, TX. Say that a sequence {(¢) = 41,491,932, - ..
of integers has the divisible differences property if (n — m)|(gn — gqm) for all n and m.

(a) Show that if (g) has the divisible differences property and lim sup |¢,|'/* < e — 1, then
there is a polynomial Q such that g, = Q(n).

(b) Show that there is a sequence (g) that has the divisible differences property and satisfies
lim sup |g»|'/* < e, for which g, is not given by a polynomial in 7.

(¢)* Isittrue that lim sup |g,|'/”* > e for all non-polynomial (g) with the divisible differences
property?
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PROBLEMS

10711. Proposed by Florian Luca, Universitdt Bielefeld, Bielefeld, Germany. A natural
number is perfect if it is the sum of its proper divisors. Prove that two consecutive numbers
cannot both be perfect.

10712. Proposed by Paul Deiermann, Lindenwood University, St. Charles, MO, and Rick
Mabry, Louisiana State University, Shreveport, LA. Let f(x) and g(y) be twice continuously
differentiable functions defined in a neighborhood of 0, and assume that f(0) =1, g(0) =
F(0)=g'(0) =0, f’(0) <0, and g”(0) > 0.

(a) For sufficiently small » > 0, show that the curves x = g(y) and y = rf(x/r) have
a common point (x,, y,) in the first quadrant with the property that, if (x, y) is any other
common point, then x, < x.

(b) Let (¢, 0) denote the x-intercept of the line passing through (0, ) and (x,, y,). Show
that lim, _, ¢+ #, exists, and evaluate it.

(c) Is the continuity of f” and g” a necessary condition for lim,_, o+ ¢, to exist?

10713. Proposed by Juan-Bosco Romero Mdrquez, Universidad de Valladolid, Valladolid,
Spain. Given a triangle with angles A > B > C, let a, b, and ¢ be the lengths of the
corresponding opposite sides, let r be the radius of the inscribed circle, and let R be the
radius of the circumscribed circle. Show that A is acute if and only if R +r < (b + ¢)/2.

10714. Proposed by Jet Wimp, Drexel University, Philadelphia, PA. Fora € (—n /2, 7/2),

define .
1 d
1) = = at
en®) e% cosa (da) (e €08 a)

for every nonnegative integer n, so that c,(¢) is a monic polynomial of degree n. Let G,

denote the (n + 1)-by-(n + 1) determinant |cj,~+k(t)|j k=0 1...n° Evaluate G,,.

10715. Proposed by Roger Cuculiére, Clichy, France. Choose ug > 1, and define u,,| =
un+Inu, forn € N. Find a closed-form expression a, such thatlim,_, oo (un — an) /n = 0.
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10716. Proposed by Michael L. Catalano-Johnson and Daniel Loeb, Daniel Wagner As-
sociates, Malvern, PA. What is the largest cubical present that can be completely wrapped
(without cutting) by a unit square of wrapping paper?

10717. Proposed by Marcin Mazur, University of Chicago, Chicago, IL. We say that a
its circumscribed sphere. We say that a tetrahedron is very rigid if it is determined just by
the areas of its faces and the radius of its circumscribed sphere.

(a) Prove that every tetrahedron with faces of equal area is rigid.

(b) Prove that a very rigid tetrahedron with faces of equal area is regular.

(¢)* Is every tetrahedron rigid?

(d)* Is every very rigid tetrahedron regular?

SOLUTIONS

Subtracting Square Roots Repeatedly

10568 [1997, 68]. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Let
n be a nonnegative integer. The sequence defined by xg = n and xz4; = x¢ — [ﬁ ]
for k > 0 converges to 0. Let f(n) be the number of steps required; i.e., xf(;) = O but
Xf(ny—1 > 0. Find a closed form for f(n).

Solution by Denis Constales, University of Gent, Gent, Belgium. Every positive integer n
can be written uniquely in the form p? — g, where p and g are integers satisfying p > 1
and0 < g <2p — 2 (take p = [/n ] and ¢ = p? — n). We call this standard form for n.
We obtain the desired formula in terms of these parameters p and g.

Using standard form, let n’ = n — [\/n ] = p? — (g + p). We distinguish two cases.
Casel: p—1<gq <2p—2. Werewriten' as (p — 1)2— (g —(p—1)). Since g > p— 1,
this expresses n’ in standard form with p’ = p —1and ¢’ = q — (p — 1) (when p > 2).
Case2: 0 < g < p — 1. Now ' = p2 — (g + p) is standard form for n’ with p’ = p and
g’ = q + p. The next value n’ = n’ — [v/n' |1 = p? — (¢ + 2p). Expressed in standard
form, thisis n” = (p — 1) — (g + 1) (when p > 2).

We have applied the transformation once in Case 1 and twice in Case 2. Thus

f(pz_q)={2+f((P—1)2—(q+1)) if0<g<p-2

1+ f(p—1*~(@—p+1) ifp-1<g<2p-2
whenever p > 2and 0 < g <2p — 2. The cases p < 2 occur for n € {1, 2, 3, 4}, where
f(n) =1,1,2,2, respectively. With the recurrence, these initial conditions define f. Our

closed form is
f(p*—q) = 2p—lloga(p+¢g)] -1 if0<g=<p-1
P 20 - llogag) -2 if p<q<2p-2

for integers p, g suchthat 1 < pand0 < g <2p — 2. Also, we set f(0) = 0.

The proof of the formula is immediate by induction, using the recurrence in the three
cases0 <g <p—2,9g=p—1,and p < g < 2p — 2. The only simplification needed
occurs in the second case, where [log,(2p — 1)] = 1 4 [log,(p — 1)1, which follows
immediately when p > 1.

Editorial comment. Robin J. Chapman and the GCHQ Problems Group expressed f(n)
using the single formula f(n) = |4n + om+3 _ 3] —(m+2), where m = [log,(v/n + 1)].
Solved also by T. Amdeberhan, K. L. Bernstein, R. J. Chapman (U. K.), D. A. Darling, M. N. Deshpande & N. N. Kasturiwale
(India), K. Ferguson, R. Holzsager, W. Janous (Austria), F. Kemp, P. G. Kirmser, N. Komanda, Y. Kong, J. H. Lindsey II,

W. A. Newcomb, C. R. Pranesachar (India), K. Schilling, J. H. Steelman, D. Trautman, X. Wang, D. Yuen, GCHQ Problems Group
(U. K.), Westmont Problems Group, and the proposer.
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PROBLEMS

10718. Proposed by David M. Bloom, Brooklyn College of CUNY, Brooklyn, NY. Let p be a
prime number with p =7 (mod 8),and let L, = {1, 2,3, ..., (p — 1)/2}. Prove that the
sum of the quadratic residues modulo p in L, equals the sum of the quadratic nonresidues
modulo p in L,. For example, the quadratic residues in L3 are 1, 2, 3, 4, 6, 8, and 9, and
the quadratic nonresidues in L33 are 5, 7, 10, and 11. Both lists sum to 33.

10719. Proposed by Jean Anglesio, Garches, France. Let A, I, and G be three points in the
plane. Let M denote the point 2/3 of the way from A to I, and let U and V be the circles
of radius |AM| each of which is tangent to AI at M. Show that when G is outside both U
and V, there are precisely two triangles ABC with incenter I and centroid G. Provide a
Euclidean construction for them. Show that when G is in the interior of U or V, there does
not exist a triangle A BC with incenter / and centroid G.

10720. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. A “binary maze”
is a directed graph in which exactly two arcs lead from each vertex, one labeled 0 and one

labeled 1. If by, by, .. ., by, is any sequence of Os and 1s and v is any vertex, let vb by - - - by,
be the vertex reached beginning at v and traversing arcs labeled by, by, ..., by, in order. A
sequence by, ba, ..., by of Os and 1s is a universal exploration sequence of order n if, for

every strongly connected binary maze on n vertices and every vertex v, the sequence
v, vbi,vb1by, ..., vb1by-- - by
includes every vertex of the maze. For example, 01 is a universal exploration sequence of
order 2, and it can be shown that 0110100 is universal of order 3.
(a) Prove that universal exploration sequences of all orders exist.
(b)* Find a good estimate for the asymptotic length of the shortest such sequence of order #.

10721. Proposed by Daniel A. Sidney, Massachusetts Institute of Technology, Cambridge,
MA. Let f(x) = sinx/x, and let m and n be nonnegative integers. Compute

o0 dm dn
[ s s s fwax
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10722. Proposed by Richard F. McCoart, Loyola College, Baltimore, MD.

(a) In how many ways can 2z indistinguishable balls be placed into » distinguishable urns,
if the first » urns may contain at most 2r balls for each r € {1, 2, ...,n}?

(b) Suppose that 0 < m < n. In how many of the ways enumerated in part (a) are exactly
m urns empty?

10723. Proposed by Christopher J. Hillar, Yale University, New Haven, CT. Let p be an
odd prime. Prove that Z{:ll 20.iP72 = Zlggl)/z iP=2 (mod p).

10724. Proposed by Serge Tabachnikov, University of Arkansas, Fayetteville, AR.

(a) Let P be a convex plane polygon with vertices Ay, ..., A,, and let [ be a continuous
transverse field of directions along the boundary 9 P. (This means that through every point
X € 9P there passes a line [(X) that intersects the interior of P and depends continuously
on X.) Letw; and B; be the angles between the line /(A;) and the adjacent sides A; A;_; and
A;Aj41, respectively. Assume that []] sine; = [/ sin B;. Prove that the lines I(X) cover
the interior of P twice, that is, every interior point of P belongs to at least two of these lines.
(b) Suppose n > 3, and let P be a convex polyhedron in n-dimensional space. As in (a), a
continuous transverse line field / is given along the boundary d P. This field has the property
that for every (n — 2)-dimensional face E of P there exists a hyperplane 7 (E) such that all
the lines /(X) with X € E belong to w(E). Prove that the lines /(X)) cover the interior of P
twice.

SOLUTIONS

Principal Ideals in Noetherian Rings

105341996, 510]. Proposed by Paul Arne @stver, Oslo University, Oslo, Norway. Suppose
that R is a Noetherian ring in which all maximal ideals are principal. Show that all ideals
in R are principal.

Solution by Robert Gilmer, Florida State University, Tallahassee, FL. If M = (m) is a
maximal ideal of R, then M /M? is a vector space over the field R/ M of dimension at most 1.
Hence there are no ideals of R properly between M and M2. From this it follows (R. Gilmer,
Multiplicative Ideal Theory, Queen’s Papers Pure Appl. Math. 90 (1992), Theorem 39.2)
that R=D| @ --® D, ® S| & --- D Sy is a finite direct sum of Dedekind domains D;
and special primary rings S;. To show that each ideal of R is principal, it suffices to show
that the D; and S; have this property. For S; this is part of the definition of a special primary
ring (Gilmer, p. 200). Moreover, D; inherits from R the property that each of its maximal
ideals is principal, and a Dedekind domain is a principal ideal domain whenever all of its
maximal ideals are principal.

Editorial comment. D. D. Anderson mentions a stronger result that appears in R. Gilmer and
W. Heinzer, Principal ideal rings and a condition of Kummer, J. Algebra 83 (1983) 285-292:
If R has the ascending chain condition on principal ideals and each maximal ideal of R is
principal, then every ideal of R is principal.

Solved also by Mahalal’el ben keinan (Israel), F. Calegari (Australia), J. E. Dawson (Australia), T. H. Foregger, O. Moubinool
(France), S. Sertoz (Turkey), and M. Tabai (Morocco).

A Telescoping Constraint

10566 [1997, 68]. Proposed by Gerry Myerson, Macquarie University, Australia. Let S be
a finite set of cardinality n > 1. Let f be a real-valued function on the power set of S, and
suppose that f(A N B) = min{ f(A), f(B)} for all subsets A and B of S. Prove that

D (=1 MAIF(A) = £(S) — max f(A),
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PROBLEMS

10725. Proposed by Vasile Mihai, Toronto, ON, Canada. Fix a positive integer n. Given a

permutationa of {1, 2, ..., n},let f(e) = > i (@) —a@+ 1))2, where a(n+1) = a(1).
Find the extreme values of f(«) as « ranges over all permutations of {1, 2, ..., n}.

10726. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Start in state 0.
For every nonnegative integer k, stay in state k¥ for X units of time, then go to state k + 1.
What is the probability of being in state s after ¢ units of time, assuming that Xy is distributed
exponentially (a) with mean 1/(k 4+ 1)?  (b) with mean 1 /2"?

10727. Proposed by Jean Anglesio, Garches, France. Let m be a fixed positive integer. For
a positive integer n, let s, (n) be the sum of the mth powers of the decimal digits of n. For
example, s3(172) = 13 + 73 + 23 = 352. Starting with any positive integer no, construct a
sequence of positive integers by setting ny = s, (ng—1) for every k > 1.

(a) Show that ng, n1, ny, . .. is eventually periodic.

(b) Show that only finitely many periods are possible as ng varies.

10728. Proposed by Titu Andreescu, American Mathematics Competitions, Lincoln, NE.
Determine all functions f: Z — Z satisfying

@+ +D) =Y + (o)’ + (f@)
for all integers x, y, and z.

10729. Proposed by David P. Bellamy and Felix Lazebnik, University of Delaware, Newark,
DE.LetI C R be an open interval, and let n be a positive integer. Characterize the functions
f: I — R that have a continuous nth derivative and satisfy

FO4pif® D4t puif +paf =0

for some continuous functions py, p2,..., ppon 1.
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10730. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. Fix an
integer n > 2. Determine the largest constant C(n) such that

Y m-x)zcm- min (xiy1 = xi)

I<i<j<n

2

for all real numbers x; < x3 < -++ < Xxp.

10731. Proposed by M. J. Pelling, London, England. Let A be an n-by-n real symmetric ma-
trix, and consider the quadratic form Q(x) = x T Ax for x € R”. Let C be thecube [—1, 1]*.
Prove that max,ec Q(x) is at least as large as the sum of the positive real eigenvalues of A.

SOLUTIONS

Connected Sets of Periodic Functions

10434 [1995, 170]. Proposed by Daniel Goffinet, Saint Etienne, France. Let P be the set
of nonconstant periodic mappings from R to R, endowed with the topology derived from
the supremum norm. Find the components of P.

Composite solution 1 by Kiran S. Kedlaya, Massachusetts Institute of Technology, Cam-
bridge, MA, Kenneth Schilling, University of Michigan, Flint, M1, and Arlo W. Schurle,
University of Guam, Mangilao, Guam. For any function f: R — R, define || f|| to be
sup{ | f(x)|: x € R}, which is taken to be co when the set of values of f is unbounded.

We first show that f and g are in different components of P if || f — g|l = oco. Let
B, = {k € P: ||k — g|l < oo}. By the triangle inequality B, is an open set, and if b ¢ By,
then the triangle inequality again shows that {z: |lz — k|| < 1} N By = @. Consequently
B, is both open and closed, and so the component of P containing any given g € P must
lie in By.

Conversely, if f — g is bounded for f, g € P, then there is an arc in P joining f
to g. First, suppose that f and g have a common period p. The standard path k;(x) =
(1 =1)f(x)+tg(x) for 0 <t < 1 consists of functions having p as a period, and since
| f — gl is finite, k; depends continuously on ¢. There is a danger that some k;(x) is a
constant function, but this can happen only if f is an affine function of g, that is, there are
constants A and B with f = Ag + B. In this case, the function s(x) that is equal to f(x)
except at integer multiples of p, where itis f(x) 4 1, is at bounded distance from both f
and g and is not an affine function of either. A path from f to g can be obtained by taking
the standard path from f to h followed by the standard path from 4 to g.

Suppose now that f and g have no common period. Let r be a period of f and let s be
a period of g. We wish to construct A that has both r and s as periods such that || f — A
(and hence also ||g — k]|) is finite. To do this, pick an arbitrary set of coset representatives
for R/(rZ + sZ), define h to agree with f at these values, and extend by periodicity. Then
for any x, let x = y + rm + sn, where y represents the coset containing x. Then

|h(x) = FOl=1fO) — f(y +sn)l
=1fO) - +g@y+sn)— f+sm <2[f—¢gl

Since f and h have common period r and || f — k|| is finite, there is a path from f to h, and
since h and g have common period s and ||k — g is finite, there is a path from 4 to g.

Composite solution Il by Fredric D. Ancel, University of Wisconsin, Milwaukee, WI, Phil
Bowers and John Bryant, The Florida State University, Tallahassee, FL, and the proposer.
We assume that “mapping” means “continuous function”. Then two functions in P belong
to the same component if and only if they have commensurate periods. As in solution I, the
components are path-components.
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A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton, Ira M.
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Proposed problems and solutions should be sent in duplicate to the MoNTHLY
problems address on the inside front cover. Submitted problems should include
solutions and relevant references. Submitted solutions should arrive at that ad-
dress before October 31, 1999; Additional information, such as generalizations
and references, is welcome. The problem number and the solver’s name and ad-
dress should appear on each solution. An acknowledgement will be sent only if a
mailing label is provided. An asterisk (*) after the number of a problem or a part
of a problem indicates that no solution is currently available.

PROBLEMS

10732. Proposed by M. N. Deshpande, Nagpur, India. Let n and k be positive integers
with k < n. Select a permutation 7 of n objects at random, and let the random variable X,
denote the number of objects that lie in cycles of 7 of length less than or equal to k. Find
the expected value and the variance of Xj.

10733. Proposed by Sung Soo Kim, Hanyang University, Ansan, Korea. Let {Ey}q4cq be
a partition of the unit interval / = [0, 1] into nonempty sets that are closed in the usual
topology. Is it possible that

(a) © is uncountable and E, is uncountable for each o« € Q7?

(b) 2 is uncountable but E, is countably infinite for each « € Q7?

(¢) €2 is countably infinite?

10734. Proposed by Floor van Lamoen, Goes, The Netherlands. Let ABC be a triangle
with orthocenter H, incenter I, and circumcenter O. Let [P, r] denote the circle with
center P and radius . Show that the radical center of [A, CA + AB], [B, AB + BC], and
[C, BC 4 CA] is the point obtained by reflecting H through O and then reflecting the result
through 1.

1073S. Proposed by Gustavus J. Simmons, Sandia Park, NM. If L, is the n-by-n matrix
with i, j-entry equal to (’]:11) then L2 = I, mod 2, where I, is the n-by-n identity matrix.

Show that if R, is the n-by-n matrix with i, j-entry equal to ("ll:l])’ then Rg = I, mod 2.

10736. Proposed by Mizan R. Khan, Eastern Connecticut State University, Willimantic, CT.
Foragivenn > 2, let M(n) = max{|a — b|:a,b e {1,2,...,n}andab = 1 mod n }.

(a) Find a closed-form expression U (n) such that M(n) < U (n) for all n, with equality in
infinitely many cases.

(b) Show that lim,_, oo M(n)/n = 1.

(¢)* Prove or disprove that lim,_, o log(n - M(n))/ logn =1/2.
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10737. Proposed by Hassan Ali Shah Ali, Tehran, Iran. Let m and n be positive integers
withn > 2m, and leta; < ay < --- < a, be positive integers such that

went i (5(0)C)

Show that there exist two different n-tuples (¢y, ..., €,) and (81, ..., 8,), with entries 0, 1,
and 2, such that Y"_; € = Yy & < 2m and Y, €0 = Yy 4.

10738. Proposed by Radu Theodorescu, Université Laval, Sainte-Foy, PQ, Canada. For
t >0, let my(t) = Y pooke™ tk /k! be the nth moment of a Poisson distribution with
parameter ¢t. Let ¢, (t) = m,(t)/n!. A sequence ag, a1, . . . is log-convex if a3+1 < anlny2
for all n > 0 and is log-concave if a,% +1 = nany2 forailn > 0.

(a) Show that mg(t), m(¢), ... is log-convex.

(b) Show that c(¢), c1(¢), ... is not log-concave when t < 1.

(¢) Show that co(¢), c1(?), . . . is log-concave when ¢ is sufficiently large.

(d)* Is co(t), c1 (), . . . log-concave when t > 1?

SOLUTIONS

Moments of Roots of Chebyshev Polynomials

10448 [1995, 360]. Proposed by Fu-Chuen Chang, National Sun Yat-sen University, Kaoh-
siung, Taiwan. Fix a positive integer n. Let x; = cos ((2i - D/ (2n)) forl <i <n,and
let ¢ = ‘rli p x!‘ for k£ € N. Show that
{0 ifk=1,3,...,2n—-1;
Ck =

)27 ifk=0,2,...,21 -2,

Solution I by Paul Deiermann, Louisiana State University, Shreveport, LA. When k = 0 and
n is odd, the term for j = (n + 1)/2 appears as 0°, which must be taken to be 1 to arrive at
the stated formula and our generalization. We show, for arbitrary integers k£ > 0, that
0 for k odd,
Ck=qyo7kym  (~1P( *) forkeven,

= k
p=—m pnt+3

where m = [k/(2n)]. The stated problem covers those k for which m = 0.

First note that x,, 1 _; = —x;, so the terms of the sum cancel in pairs when k is odd. We
may thus restrict to the case of k even. Since x; = (ei”(z-i —D/@n) 4 p=in@i=1)/ (2")) / 2, the
binomial theorem and a summation of a finite geometric progression imply

- ko 5 0~k in 221 —in 2=l k_2—k L (k i (k—2q) i 2 (q—k/2)j
D af =D 27T te =270 0 )er e
Jj=1 Jj=1

J=14=0

=2 ( )etﬂ —2q el - J=9- ( )etf—n 2q— et-n’l q—k/2)u

g=0 il Jj=1 q=0 q u=0

K ifg—k/2=pn,peZ

k s T n 1q p ’p b
—n—k 75 2q—k) _im(2g— .
=2 2(:)(61)612 q {_1_&=0 iftntq —k/2.
11=

| — i ZE (g—k/2)

Since k iseven, g —k/2 = pnimpliesq = pn+k/2. Then,0 < g < k gives—m < p < m.
Also, in this case, €7 4=k — gimp — (—1)P. Thus, we get

n m k
Y oxb=27%n ) (—1)1’( k).

Jj=1 p=—m pn+3
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Proposed problems and solutions should be sent in duplicate to the MoONTHLY
problems address on the inside front cover. Submitted problems should include
solutions and relevant references. Submitted solutions should arrive at that address
before November 30, 1999; Additional information, such as generalizations and
references, is welcome. The problem number and the solver’s name and address
should appear on each solution. An acknowledgement will be sent only if a mail-
ing label is provided. An asterisk (*) after the number of a problem or a part of a
problem indicates that no solution is currently available.

PROBLEMS

10739. Proposed by Oscar Ciaurri, Logrofio, Spain. Suppose that f: [0, 1] — R has
a continuous second derivative with f”(x) > 0 on (0, 1), and suppose that f(0) = 0.
Choose a € (0, 1) such that f/(a) < f(1). Show that there is a unique b € (a, 1) such that
f'@) = f(b)/b.

10740. Proposed by Charles Vanden Eynden, Illinois State University, Normal, IL. A
connected bipartite simple graph has a unique bipartition, meaning a partition of the vertices
into two independent sets. Let G be the set of such graphs that have no isomorphism that
interchanges the two sets of the bipartition. Is there a criterion that for each G € G selects
a well-defined set of the bipartition?

10741. Proposed by Tim Keller, Fair Oaks, CA. Is there an even base b for which there exist
square integers of the form dddd),? By dddd},, we mean the four-digit number in base b all
of whose digits are d. For odd b we have the examples 11117 = 202 and 4444, = 402,

10742. Proposed by Emre Alkan, University of Wisconsin, Madison, WI. Let us say that
a finite group G has the maximal property if, for any prime p that divides |G|, G has a
maximal subgroup H such that p|H| divides |G]|.

(a) Show that every finite solvable group has the maximal property.

(b) Show that there are infinitely many finite groups with the maximal property that are not
solvable.

(c¢) Show that there are infinitely many finite groups without the maximal property that are
not solvable.

10743. Proposed by Cdlin Popescu, Université Catholique de Louvain, Louvain-La-Neuve,
Belgium. Let p > 5 be prime, and let n be an integer such that (p + 1)/2 <n < p — 2.
Let R = > (—1)!(}), where the sum is taken over the quadratic residues i modulo p, and
let N = Y (—1)/ (;’), where the sum is taken over the quadratic nonresidues j modulo p.
Prove that exactly one of R and N is divisible by p.
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10744. Proposed by Peter Lindgvist, Norwegian University of Science and Technology,
Trondheim, Norway, and Jaak Peetre, University of Lund, Lund, Sweden. Fix p > 0, and
define functions S(x), C(x), and T (x) for sufficiently small x by

/S(x) dt fl dt /T(x) dt
x= —_—, X = —_—, X = —_—
o (1—¢tp)lP=D/p c) (1 —¢p)P=D/p 0 (14 tp)%/P

Show that S(x)? 4+ C(x)? = 1 and that T(x) = S(x)/C(x). The case p = 2 yields the
familiar trigonometric formulas.

10745. Proposed by M. J. Pelling, London, England. For n > 1, let f(n) be the number of
solutions (r, s, t) in positive integers to the Diophantine equation rst = n(r + s +¢).

(a) Prove that f(n) = O (n'/?1%) for every & > 0.

(b)* Prove that f(n) = O(n%) for every & > 0.

SOLUTIONS

Using the Walls to Find the Center

10386 [1994, 474]. Proposed by Jordan Tabov, Bulgarian Academy of Sciences, Sofia,
Bulgaria. Let a tetrahedron with vertices A, A3, A3, A4 have altitudes that meet in a point
H. For any point P, let P|, P>, P3, and P4 be the feet of the perpendiculars from P to
the faces AyA3A4, A3A4A1, A4A1A2, and A]A) A3, respectively. Prove that there exist
constants ap, az, a3, and a4 such that one has

alP_>P1 +a2ﬁ; +asﬁ’; +a4P_)P4 —PH
for every point P.

Solution by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, Canada. More
generally, let H and P be any two points in the space of the given tetrahedron and let Py,
Py, P3, P4 be the feet of the lines through P parallel to HA|, HA3, HAj3, H A4 in the faces
of the tetrahedron opposite Aj, A2, Az, A4, respectively. Then there exist constants ay, as,
as, a4, independent of P, such that

— —_— —_— —_  —
a\PPy+a;PP,+a3PP3+asPPy = PH.

Let V denote the vector from an origin outside the space of the given tetrahedron to any
point V in the space of the tetrahedron. Then H and P have the representations (barycentric
coordinates)

H=x1A| +xA +x3A3 +x4A4 (X1 4+x3+x3+x5=1),
P=uAl +uAr +usA3+usAs Wy 4+uy+us+us=1).

Since P; has the representation P = rpAs + r3A3 + r4A4, where rp +r3 +r4 = 1, we
must have
1Ay +r3A3 +r4Ag — P =2 (H—A)).

Since Aj, A3, A3, A4 are independent vectors, we get A1 = u; /(1 — x1), so that ﬁ)l =
®P—-P)=MH-—-ADu;/( — x1). Similarly,

(P,-—P)=(H—A,~)1u—ix fori =1,2,3,4.
— Aj
Choosing a; = 1 — x;, we obtain

> a® -P)=) u(H-A)=H-P=PH.

This proof generalizes to give an analogous result for n-dimensional simplices.

Solved also by J. Anglesio (France), R. J. Chapman (U. K.), M. Golomb, K. Hanes, N. Komanda, O. P. Lossers (The Netherlands),
and the proposer.
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problems address on the inside front cover. Submitted problems should include
solutions and relevant references. Submitted solutions should arrive at that ad-
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Problem 10743 [1999; 586] in the June—July 1999 issue was misstated. Here is the corrected
version.

10743. Proposed by Cilin Popescu, Université Catholique de Louvain, Louvain-La-Neuve,
Belgium. Let R = Z(—l)i('i'), where the sum is taken over alli € {0,1,...,n — 1} such
that i + 1 is a quadratic residue modulo p, and let N = 3" (—1)/ (;’), where the sum is taken

overall j € {0, 1, ..., n — 1} such that j + 1 is a quadratic nonresidue modulo p. Prove that
exactly one of R and N is divisible by p.

PROBLEMS

10746. Proposed by Stepan Tersian, University of Rousse, Rousse, Bulgaria. Prove that

/oo (e—.‘/v G/ _ gmxy (s/y)2+l) cossds =0,
0

for all positive real numbers x and y.

10747. Proposed by Athanasios Kalakos, Athens, Greece. Find all differentiable functions
J: R — R that are twice differentiable on an open interval containing 0, have exactly one
real root, satisfy f(1) = 1, and satisfy f'(f(¢t)) = 2f(¢) for every t € R.

10748. Proposed by Itshak Borosh, Douglas A. Hensley, and Joel Zinn, Texas A& M
University, College Station, TX. Let p and g be prime numbers, and let r be a positive
integer such that g|(p — 1), ¢ fr, and p > r?~!. Show that for any integers ai, as, . . ., ay,

if )i a;p—l)/q = 0 mod p, then [[;_; @; = 0 mod p.

10749. Proposed by Alain Grigis, Université Paris 13, Villetaneuse, France. Let ABC be
a triangle with a right angle at B and an angle of 7r/6 at A. Consider a billiard path in the
triangle that begins at A, reflects successively off side BC at P, off side AC at Q, off side
AB at R, off side AC at S, and then ends at B.

(a) Show that AP, QR, and SB are concurrent at a point X.

(b) Show that the angles formed at X measure 7 /3.

(c) Show that AX = XP 4+ PO+ QX =XR+ RS+ SX =2XB.
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10750. Proposed by Leonard Smiley, University of Alaska, Anchorage, AK. For a positive
integer m, express ZZ":I (n/ gcd(m, n))x™ as a rational function of x.

10751. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. Let n be a posi-
tive integér, and let S, be the set of all strings aj a3 - - - a, of positive integers satisfyinga; = 1
and a;4+) — a; € {1,—1,-3,=5,...}. For example, S5 = {12345, 12343, 12341, 12323,
12321, 12123, 12121}. Find |S,|.

10752. Proposed by Gh. Costovici, Technical University "Gh. Asachi”, lasi, Romania. For
n € N, let a, and b, be complex numbers, with each b,, # 0. Lets, =a; + a2+ -+ ay,
andlett, = (1 — by /byy1)ar + (1 —ba/bpy1)az + -+ -+ (1 = by /bn+1) an.

(a) Prove that if limy,_, o0 by +1/br, = 1 and Z;’f’:l |sn — t,]? converges for some g € (0, 1],
then Y02 | a, converges.

(b) Prove that if 320, [byt1/by — 1]" and 302 |sy — t,/"~D converge for some
r € (1, 00), then )_o2 | a, converges.

SOLUTIONS

A Zeta Function over a Recurrent Sequence

10486 [1995, 841]. Proposed by Joseph H. Silverman, Brown University, Providence, RI.
Leta,b > 0 and « > 1 be real numbers, and define Z(s) = 3,5 (aa" + ba™") ™" for
complex numbers s with positive real part,

(a) Prove that Z(s) has a meromorphic continuation to all of C.

(b) Find the poles of Z(s).

(¢) Find the residues of Z(s) at its poles.

Solution I by David Bradley, University of Maine, Orono, ME. Let o be the real part of s.
Write

o0 o0
Z&) =(a+b)~ + Y (ae" +ba™) "+ ) (bo" +ac") . (1)
n=1

n=1

Without loss of generality, assume that 0 < a < b. We first consider the case || > /b/a.
We then have the two binomial expansions

n —n\—§ G -5 _ —ns = =5 bk —2nk
(aa +ba ) = (1 _+_ba—la—2n)s =a o Z ( k )a_k—a + Em,n(s) (2)

k=0
and
s b—Sq— " o m—1 s ak —2k
(bo" +aa™) " = (1 + ab—1a—2n)* - ,; P P A

where m is a fixed positive integer and Ep, ,(s) = O(a~2"") and Fy n(s) = O(a~2"™).
Since || > +/b/a, it follows from (1)-(3) that

bk ak 00 00
Z(s)=(a+b)" + Z ( )(as+k + W) Za—n(y+2k) +0 Za—n((H—Zm)

n=1 n=1

, — —5 a—s—kbk +b—x—kak 0 B
= (a+b) +l;)<k> Tk ] + 0 Za n(o+2m) | 4)

n=1

Since E,,; 5 (s) and Fp, ,(s) are analytic for o > —2m, it follows by analytic continuation
that (4) is valid for o > —2m. Since m is an arbitrary positive integer, we conclude that
Z(s) has a meromorphic continuation to the entire complex plane.
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before March 31, 2000; Additional information, such as generalizations and refer-
ences, is welcome. The problem number and the solver’s name and address should
appear on each solution. An acknowledgement will be sent only if a mailing label
is provided. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

10753. Proposed by Louis Shapiro, Howard University, Washington, DC. An ordered tree
is arooted tree in which the children of each node form a sequence as opposed to a set. The
5 ordered trees with 3 edges are

AL

The number of ordered trees with n edges is the nth Catalan number (2"" ) /(n+1). Therefore,
if one draws each of the ordered trees with n edges, one draws a total of (:;”) nodes. Prove
that exactly half of these nodes are end-nodes (i.e., leaves with no children).

10754. Proposed by Paul Bracken, Université de Montréal, Montréal, PQ, Canada. Let
£(s) =3 72 k¥, and let p(s, n) = > reni1 k7. Show that for positive integers s > 2,

y—2

o0 p(s,k) 3 s 1322
; p —5;<s+1>—5;z<s—k>¢<k+1).

1075S. Proposed by Jiro Fukuta, Motosu-gun, Gifu-ken, Japan. An arbitrary circle O is
drawn through vertices B and D of a convex quadrilateral ABCD. Let O; be the circle
tangent to lines AB and AD and tangent to O internally at a point of O on the opposite
side of line BD from A. Let O, be the circle tangent to lines CB and CD and tangent to
O internally at a point of O on the opposite side of line BD from C. Let R, and R, be
the radii of circles O; and O, respectively, and let r; and 5 be the radii of the incircles of
triangles ABD and CB D, respectively. Prove that the quadrilateral ABC D is inscribable
in acircle if and only if r{ /R| +r2/Ry = 1.
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10756. Proposed by Douglas lannucci, University of the Virgin Islands, St. Thomas, VI,
Prove that

cos — = = + — [ cos [ = arccos ——= } + +/3 sin | = arccos —— \
7 6 6 3 23/7 3 27

10757. Proposed by Mark Kidwell, United States Naval Academy, Annapolis, MD. Given
integers ap, aj, 4z, . . ., ap wWitha; % Ofori > 1, write [ag; a1, aa, . . ., a,] for the continued
fraction 1

ay + I

a
1+az+

|

1

“tar

Every positive rational number has a unique representation as [ag; aj, aa, . . ., a,] if we re-
quire thatag > 0,a; > Ofor1 <i <n—1,anda, > 1(wecall this the standard representa-
tion), but it can have other representations [bg; by, b, . . ., by, ] if we permit negative values
for some of the b; or if we permit b,, = 1. For example, 11/3 =[3;1,2] =1[3;1,1,1] =
[4; —3]. Prove or disprove: If r is a positive rational number, r = [ap; ai, a2, ..., an]
is the standard representation, and r = [bg; by, ba, .. ., by,] is another representation, then
aot+ai+---+ay < |bol+|b1|+- - -+ |bm|, with strict inequality if any of the b; are negative.

10758. Proposed by Mark Sapir, Vanderbilt University, Nashville, TN. Prove that the sum
of the (decimal) digits of 9" cannot equal 9 whenn > 2.

10759. Proposed by Cdlin Popescu, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium. In triangle ABC, let h, denote the altitude to the side BC and let r,, denote the
exradius relative to side BC, i.e., the radius of the circle tangent to the extensions of sides
AB and AC and to the side BC externally. Define p, k., rp, and r. correspondingly. Prove
that Ar] +hyry +hir! <rjrp +rprl +rlr; for any integer n, and determine conditions

for equality.

SOLUTIONS

Common Eigenvector of Commuting Matrices

10633[1997, 975]. Proposed by Kiran S. Kedlaya, Princeton University, Princeton, NJ. Let
S be a commuting family of n-by-n matrices over an arbitrary field. Suppose the matrices
in S have a common eigenvector v, so that Mv = Apyv for all M € S. Prove that the
transposes of these matrices also have a common eigenvector with these eigenvalues, that
is, a vector w satisfying MTw = Ayw forall M € S.

Solution by Alain Tissier, Montmermeil, France. Let K be the field. Set¢p(M) = M — Ayl
and ¢(S) = {¢(M): M € S}. Thus ¢(S) is a commuting family of n x n matrices over
K having a common nonzero vector v such that ¢ (M)v = 0 for all p(M) € ¢(S). Since
d(M)T = MT — Ay, we have to prove only that the transposes of the matrices in ¢ (S)
have a common nonzero vector w satisfying d(M)Tw = 0 for (M) € $(S). Thus we
may suppose that Ay = O for every M.

If all matrices in S are nilpotent, then the collection of transposes is also a commuting
family of nilpotent matrices. In this case there is a nonzero vector w such that M7 w = 0 for
all M € S (section 3.3 of J. E. Humphreys, Introduction to Lie Algebras and Representation
Theory, Springer-Verlag, 1972). So we may assume that not all elements of S are nilpotent.

We proceed by induction on n. When n = 1 all the matrices are zero, so the conclusion
is true. Take n > 1, and suppose the result is true for 4-by-h matrices for each s < n. Let N
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PROBLEMS

10760. Proposed by Bruce Reznick, University of lllinois, Urbana, IL. A function f: N — C
is completely multiplicative if f(1) = 1 and f(mn) = f(m) f(n) for all positive integers
m and n. Find all completely multiplicative functions f with the property that the function
F(n) =) ;_, f(k) is also completely multiplicative.

10761. Proposed by Fred Galvin, University of Kansas, Lawrence, KS. Let G be a graph
with n vertices. For each vertex v, let f(v) be the maximum cardinality of an independent

set of neighbors of v. Show that >~ f(v) < n? /2, where the sum is taken over all vertices
of G.

10762. Proposed by Leroy Quet, Denver, CO. Let x; = 1, and form > 1 let xppyy =
(m+3/2)"! Y i XkXm+1—k- Evaluate limpy 00 Xpm /Xm 1.

10763. Proposed by Jean Anglesio, Garches, France. Let ABC be a triangle; let O be its
circumcenter, H its orthocenter, I its incenter, N its Nagel point, and X, Y, Z its excenters.
Let S be defined so that O is the midpoint of HS, and let T denote the midpoint of SN.
It is known that the orthocenter and the nine-point center of triangle XY Z are I and O,
respectively. Prove that

(a) the circumcenter of triangle XY Z is T'; and

(b) the centroid of triangle X Y Z is the centroid of SIN.

10764. Proposed by Ray Redheffer, University of California, Los Angeles, CA. Let A = (a;;)
be a real n-by-n matrix, and let x and y be real n-vectors satisfying Ax = y. Suppose that

Z max{a,«j, 0} <y <ai+ Z min{aij, 0}
J# J#
foralli € {1,2,...,n}. Showthatx; > Oforalli € {1,2,...,n}.
10765. Proposed by Peter J. Ferraro, Roselle Park, NJ. Let f, be the nth Fibonacci number,

defined by fi = fo = 1 and f,+2 = fa+1 + fu for n > 1. Fix positive integers k and n
withn > 2k + 1. Prove that | &/ f, | — L &/ fo—k + ¥/ fu—2x ] 1s O unless f, is a kth power,

when itis 1.
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10766. Proposed by Szildrd Andrds, Babes-Bolyai University, Cluj-Napoca, Romania. Let
x, ¥, and z be nonnegative real numbers. Prove that

@) (x +y + 2"yt < (0 + )P (y + )V (2 4 2
() (x + y + EHFD 22 3277 > (x4 )P (y 4 )0 (7 4 ) ek,

SOLUTIONS

Cramer’s Rule for Non-Square Matrices

10618 [1997, 768]. Proposed by S. Lakshminarayanan, S. L. Shah, and K. Nandakumar,
University of Alberta, Edmonton, Canada. Let A be a real m x n matrix of full rank with
m < n and let b be areal m x 1 matrix. For 1 <i < n, define

det(A¥AT) — det(4;A)

X =

det(AAT) /
where A} is obtained by replacing the ith column of A by b, and A; is obtained by deleting
the ith column of A. Show thatx = [x1, ..., x,]7 is a solution to the linear system Ax = b.

Solution by the GCHQ Problems Group, Cheltenham, U. K. We write A’ (b) instead of A}
to emphasize the role of the vector b; thus A (0) indicates A with its ith column zeroed out.
Observe that A;A] = A*(0)A”, by comparing corresponding entries.

Extend A to a nonsingular » X n matrix (é), where C is an (n — m) X n matrix whose
rows form an orthonormal basis for the orthogonal complement of the row space of A. That

is, each row of C has norm 1 and is orthogonal to all other rows of (é) We have

A\ (A\T _ [4AT 0 4 (AON(AY _(Aa®aT M
c)\c) "\ o 1 o c J\c) =\ o 1)
where I is the (n — m) X (n — m) identity matrix and M is some n X (n — m) matrix.
By substituting these computations into the definition of x;, canceling the nonzero factor

det (é) , and using the linearity of the determinant in its ith column, we obtain

et (PN et ((CMNQ@)  aer (M) —aer (*9)  aer (')

T aet (D)) det (3) det(y)
By Cramer’s rule, x is the solution to the linear system (é)x = (8), and hence x is a solution

to Ax = b.

Solved also by J. Fuelberth & A. Gunawardena, J. H. Lindsey II, M. Sharma & P. G. Poonacha (India), WMC Problems Group,
and the proposers.

An Identity for Strongly Connected Digraphs

10620 [1997, 870]. Proposed by James Propp, Massachusetts Institute of Technology,
Cambridge, MA. A digraph on a vertex set V is a subset A C {(v, w): v, w € V,v # w}
and is strongly connected if it is possible to get from any vertex a to every other vertex e
by a finite succession of arcs (a, b), (b, c), ..., (d,e) in A. Forn > 1, let E, (respectively,
0,,) denote the number of strongly connected digraphs on the vertex set V ={1,2, ..., n}
with an even (respectively odd) number of arcs. Show that E, — O, = (n — 1)! for all
n>1.

Solution I by the proposer, currently at University of Wisconsin, Madison, WI. The termi-
nology of the problem statement is somewhat nonstandard. In common usage, a digraph is
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PROBLEMS

10767. Proposed by Bruce Dearden and Jerry Metzger, University of North Dakota, Grand
Forks, ND. For integers n > 2 and m > [, how many invertible m-by-m matrices are there
modulo n?

10768. Proposed by Sung Soo Kim, Hanyang University, Ansan, Kyunggi, Korea.

(a) Show that there is a continuous function f: R — R such that f + g is not increasing
for any differentiable function g.

(b) Show that there is a differentiable function f: R — R such that f + g is not increasing
for any continuously differentiable function g.

(c) Show that, for any continuously differentiable function f: R — R, there is arcal analytic
function g such that f + g is increasing.

10769. Proposed by Christian Blatter, Ziirich, Switzerland. Determine the minimum num-
ber of colors necessary to color the points of a sphere in such a way that points at spherical
distance /2 (i.e., points that subtend a right angle from the center.of the sphere) get dif-
ferent colors.

10770. Proposed by Cdlin Popescu, Louvain-la-Neuve, Belgium. Suppose that m and n are
integers with | < m < ¢(m) + n, where ¢ (m) is the number of elements in {1, 2, ..., m}
that are relatively prime to m. Show that }_7_, (—1)!(})i™ is divisible by m.

10771. Proposed by Mowaffaq Hajja and Peter Walker, American University of Sharjah,
Sharjah, U. A. E. Evaluate fOI fO1 fol (1+u?+0v2+ wz)_2 dudvdw.

10772. Proposed by William C. Waterhouse, Pennsylvania State University, University
Park, PA. For any ordered field K, one can define the derivative of a function f: K — K
as usual by f'(x) = limy_, (f(y) — f(x)) /(y — x). Suppose that every f: K — K
with derivative identically zero is constant. Prove that K is isomorphic to the field of real
numbers.
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10773. Proposed by Jean Anglesio, Garches, France. Letag, ay, . . ., a be positive integers.
For 0 < i <k, let p;/q; be the fraction in lowest terms with continued fraction expansion

[ag, a1, . .., a;]. Find the continued fraction expansions of
2
Pe Py \/ P gk \/ PitPicy 4 [ _Pitad
ak k-1 N pe-1ak-1 '\ @} +ai, Pe_1+4at,
in terms of ag, ay, . .., ak.
SOLUTIONS
Tracking the Incenters

10631 (1997, 975]). Proposed by Greg Huber, University of Chicago, Chicago, IL. Given a
triangle T, let the intriangle of T be the triangle whose vertices are the points where the circle
inscribed in T touches T. Given a triangle Tp, form a sequence of triangles Ty, T1, T3, . ..
in which each T}, is the intriangle of T,,. Let d,, be the distance between the incenters of
T, and T,,+ ;. Find lim,_, o dy+1/d, When Ty is not equilateral.

Solution by the GCHQ Problems Group, Cheltenham, U. K. We show that d,,/d, — 1/4.
Let A, B, C be the angles of a triangle, r its inradius, R its circumradius, and d the distance
from its incenter to its circumcenter. Then
d* = R*> — 2Rr (1)
and
r = 4Rsin(A/2) sin(B/2) sin(C/2). )
(H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, MAA, 1967). Now let A’, B/, C’
be the angles of the intriangle of ABC (with A’ on side BC, etc.). Then A’ = /2 — A/2,
SO
A —7/3=(—1/2)(A —7/3), 3
and similarly for B’ and C’. From (3) we infer that triangle 7}, approaches equilateral as
n — oo. Forthe triangle T, with angles A,,, B,, C,,,definea, = A,—n/3,b, = B,—n/3,
cn = Cp — /3, and S, = a2 + b? + c2. Then (3) implies that Sy4+1/S, = 1/4. Also,
an+ b, +c, =0,s0 (a, + b, + ¢n)? = 0, and therefore
Sn = —2(anby + bycn + cnan). “4)

Now define U, = 1 — 8sin(A,/2) sin(B,/2) sin(C, /2). Using (1) and (2) and observing
that R,+| = ry, we obtain

1 \> R, U , , , U,
( "d:‘) = 12;51 l”]:l = 16sin?(A,/2) sin®(B, /2) sin*(C,/2) ("]:1 .5
Note that
2sin(A,/2) = 2sin(a,/2 + 7/6) = +/3 sin(a,/2) + cos(an/2)
3 1
=1+ £a,, — a2+ 0(@).
2 8
Therefore
V3 1 V3 1 V3 1
Un = 1—<1+——2—an —gag-{- 1+7bn —gbﬁ-i- 1+—2'—Cn—§(,‘,2,+
1 3 .
=3 Sy — Z(a"bn + bncp + cnan) + terms of degree 3 or higher
1
=3 Sn + terms of degree 3 or higher,
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PROBLEMS

10774. Proposed by Catalin Zara, Massachusetts Institute of Technology, Cambridge, MA.
Let F(1) = FQ2)=1and F(n) = F(n — 1) + F(n — 2) for n > 3. Show that

(F(F(1998))) + (F(F(1999))° = F(F(1997)) F (F (2000)).

10775. Proposed by Hadi Salmasian, Sharif University of Technology, Tehran, Iran. Sup-
pose that G is a finite group with n elements, let m be a natural number, and define
'G) = deG o(g)™™, where o(g) denotes the order of g. Prove that I'(G) > I'(Z,)
with equality if and only if G is isomorphic to Z,,.

10776. Proposed by Yongge Tian, Concordia University, Montreal, PQ, Canada. Suppose
that A is a real m-by-n matrix. Determine the minimum rank of A + i B, where B ranges
over all real m-by-n matrices.

10777. Proposed by Zafar Ahmed, Bhabha Atomic Research Centre, Mumbai, India. For
nonnegative integers m and n, evaluate

oo gm 1 ar 1
— —— ) —| —— ) dx
/é dx'”(l +x2) dx"(l +x2)

10778. Proposed by Paul Bateman, University of lllinois, Urbana, IL, and Dennis Eichhorn,
University of Arizona, Tucson, AZ. Let k be a fixed positive integer. For each integer n, let
ri (n) denote the number of solutions 0fi12+i%+- . -+i,§ = ninintegersiy, iz, ..., ig. Letdy
be the greatest common divisor of the infinite sequence of integers r¢ (1), 7, (2), r¢(3), . . ..
(a) Evaluate d.

(b) For each £, find the smallest positive integer ni; such that dj is the greatest common

divisor of the finite list of integers ry (1), ri(2), ..., ri(my).
10779. Proposed by Andrei Jorza, “Moise Nicoara” High School, Arad, Romania. Let
P(z) =3 ! _oaiz’ witha; € Cforeachi € {0, 1,...,n}. Prove that there is a z € C with

lz| = 1and [P(2)] = lap| + max lac| / [n/ k).
<ksn
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10780.* Proposed by Kiran Kedlaya, Massachusetts Institute of Technology, Cambridge,
MA. Let T be a triangle. Two circles in T are called partners if they are the incircles of
two triangles with disjoint interior whose union is T'. Every circle tangent to exactly two
sides of T has two partners. Let Cy, Ca, ..., Cg be disjoint circles such that C; and C;4
are partners for each i € {1, 2, 3, 4, 5}. Show that C¢ and C; are partners.

SOLUTIONS

Elliptic Curves to the Rescue

10612 [1997, 665]. Proposed by John P. Robertson, Anistics/Aon, New York, NY. Fermat
proved that there are no nontrivial 4-term arithmetic progressions all of whose terms are
integer squares.

(a) Find all 5-term arithmetic progressions such that all terms but the fourth are squares.
(b) Call two arithmetic progressions essentially different if the ratios of corresponding terms
differ. For each integer m > 6, show that there are infinitely many essentially different m-
term arithmetic progressions such that the first 3 terms and the mth term are squares.

Solution by the proposer. (a) Let two 3-term arithmetic progressions of rational squares be
equivalent if one is a nonzero rational multiple of the other. Each equivalence class other
than {(0, 0,0)} contains exactly one progression consisting of pairwise relatively prime
integers. To see this, we first multiply by the denominators to obtain an integer progression
with difference d. If two terms have a common odd prime factor p, then p divides their
difference, which is d or 2d. In either case, p divides the difference of consecutive terms.
Thus p and p? divide all three terms. If two consecutive terms are even, then the remaining
term is even and a factor of 4 can be removed. If the first and third terms are even but the
second is not, then modulo 4 we obtain (0, 1, 0), which is not an arithmetic progression.

Call rational numbers s and ¢ equivalent if {s,t} C {1,—1,00,0} ors € {t, —1/t,
¢+ D/ —=1),d—=1)/(1+1)}. Reflexivity is obvious; symmetry and transitivity are
easily checked by cases.

We first establish a bijection between the set of equivalence classes of 3-term arithmetic
progresssions and the set of equivalence classes of rational numbers.

If (az, b2, cz) is an increasing progression with a, b, ¢ positive and pairwise relatively
prime, then there are relatively prime positive integers p and g, with p > g and pq
even, such that (a2, b2, ¢?) = ((p* — ¢*> — 2pg)%, (p* + q¢»%, (p? — ¢* +2pq)?). This
follows because ¢2 — b?* = b%* — a? implies that ¢ and a have the same parity, and thus
((c —a)/2,(c + a)/2, b) is a Pythagorean triple of pairwise relatively prime integers.
Hence there exist p, g as described with {(c — a)/2, (c + a)/2} = {2pq, P qz} and
b= p2+q2. Note that settingt = p/q yields ((t2 —1=20%, 2+ D2 (2 -1+ 2t)2) =
(a?, b2, ¢*)/q*, so these are equivalent progressions.

Similarly, if (a2, b?, ¢?) is a decreasing progression with a, b, ¢ positive and pairwise
relatively prime, then there are relatively prime positive integers p and g, with p > g and
pq even, such that (a2, b%,¢?) = ((q2 — p?=2pq)?%, (p* + 422 (g% — p* + 2pq)2).
Setting 1 = g/p yields ((t2 — 1 —2)2, (¢ + D)%, (12 = 1 +2)%) = (a?, b?, ¢?)/p*, and
again these are equivalent progressions.

With ¢ = 0, we have (12,12, 12) = ((¢2 — 1 — 20)%, (12 + D)%, (12 — 1 + 21)?).

Algebraic manipulation shows that under the map sending s to ((s2 —1-25)2, (s2+1)2,
(s? — 1+ 25)?2), the four rational numbers ¢, —1/¢, (t + 1)/(t — 1), and (1 —1)/(1 + 1)
yield equivalent progressions.

Conversely, we claim that if progressions ((¢2 — 1 —2£)2, (¢ + 1)%, (12 — 1 +21)?)
and ((s2 —1=2)2,(s2+ 1%, (2 -1+ 2s)2) are equivalent, then s and ¢ are equivalent.
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solutions and relevant references. Submitted solutions should arrive at that address
before July 31, 2000; Additional information, such as generalizations and refer-
ences, is welcome. The problem number and the solver’s name and address should
appear on each solution. An acknowledgement will be sent only if a mailing label
is provided. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

10781. Proposed by Leonard Smiley, University of Alaska, Anchorage, AK. Prove that

Z (’Z’)ii—l(n _ i)n—i A Z <l -’j 1)(1 A 1)i—l(n _ i)n—i,

i=2 i=2
where 00 is taken to be 1.

10782. Proposed by Douglas lannucci, University of the Virgin Islands, St. Thomas, VI.
Let r and s be fixed positive integers. For n > 1, let P(r, s, n) be the probability that

ged(ay, az, ..., a,) is divisible by ged(by, ba, .. ., by), where the a; and b; are randomly
chosen integers from {1, 2, ..., n}. Prove that lim,_, P(r, s, n) exists and evaluate it.

10783. Proposed by Wu Wei Chao, Guang Zhou Normal University, Guang Zhou, China.
Let ABC D be a cyclic quadrilateral such that AD is not parallel to BC. Given points E
and F on the line CD, let G and H be the circumcenters of BCE and ADF. Prove that
the lines AB, C D, and G H are concurrent or parallel if and only if there is a circle through
A,B,E,and F.

10784. Proposed by Alberto Facchini and Francesco Barioli, University of Padova, Padova,
Italy.

(a) Let F be a field, let m and n be positive integers, and let By, By, ..., By, be n-by-n
matrices with entries in F. Suppose that ) ;.| B; is nonsingular. Prove that there exists a
subset S C {1,2, ..., m} with |S| < n such that ), _¢ B; is nonsingular.

(b)* Is the same result true if F is merely a division ring? (A matrix over a division ring F
is nonsingular if it is invertible in the ring of n-by-n matrices over F.)

10785. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. Let fy(z) =1,
and suppose that

(fo@ + fi@ + -+ f1-1@) (fu-1) + fu(@)) 2 = fu(2)

when n > 1. Find a formula for f,(z) that depends only on » and z.
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10786. Proposed by Leroy Quet, Denver, CO. Let {(r) be the Riemann zeta function
> %oy 1/K". Show that

> -1
r—D%0) =Y (rm+ 1)(’ j;"i 1 ) Com+r)—1)
m=1

for every integer r > 2.

10787. Proposed by Juan Arias-de-Reyna, University of Seville, Seville, Spain. What

is the expected value of (det(vl, U2, ..., v,,))z, if the vectors vy, vy, ..., v, are chosen
independently at random from

(a) the unit cube [0, 17" in R"?

(b) the cube [—1, 1]* in R*?

(c) the unit ball {(x1,...,xs): Y1 x? < 1}inR"?

(d) the generalized octahedron {(x1, ..., Xx): > ;—; |xi] < 1} inR"?

SOLUTIONS

On the Intersection of Z" with a Hyperplane

10639 [1998, 69]. Proposed by Warren Koepp, Texas A&M University, Commerce, TX. Let
n be a positive integer, and choose v € C". Let H, = {o € Z": v - o = 0} denote the
intersection of the hyperplane normal to v in C" with the n-dimensional integer lattice.

(a) Find the rank of H, as a (free abelian) subgroup of the additive group Z", in terms of
the coordinates of v.

(b) Choose vy, ..., vy € C*,andlet H ={x € Z": v; -a =0foralli = 1,..., k} denote
the intersection of the groups H,,. Show that there exists a vector v € Cvy + --- 4+ Cuy
such that H = H,,.

Solution by Robin Chapman, University of Exeter, Exeter, U.K.
(a) The rank of H,, is n —d,, where d, is the dimension over Q of the subspace of C spanned
by the entries of v. To see this, note that the rank 6f H, is the same as the dimension of
K, = {ad € Q": v-a = 0}, since each element of K, has a nonzero integral multiple in
K, NZ" = H,. Also K, is the kernel of the map ¢: Q" — C given by ¢(a) = « - v.
Since the dimension of the image of ¢ is d,,, the dimension of K, as a vector space over
isn —d,.
(b) We use induction to reduce to the case k = 2. Let L, be the image of Q" under ¢. We
show that there exists ¢ € C such that L,, N¢L,, = {0}. If no such ¢ exists, then for every
t there exist u; € Ly, and uy € Ly, such that ¢ = u;/uj. Since L,,, Ly, are countable and
C is not, this is impossible, so the claimed ¢ exists. i

Now let v = v| + tvp. We claim that H, = H,, N H,,. Certain‘iy H, 2 Hy, N Hy,. For
o € Hy,wehave 0 = o - v +ta - v2. Asa - v) € Ly, and —ta - vy € tL,,, both vanish.
Thus & € Hy,, N H,,, and the proof is complete.

Solved also by J. H. Lindsey II, NSA Problems Group, and the proposer.
When a Multiple of 71/2 is Close to an Integer

10640 [1998, 69]. Proposed by Michael A. Filaseta, University of South Carolina,
Columbia, SC. Observe that (7 /2)b? sin(1/b) < mb/2 for every positive integer b. Deter-
mine the six smallest positive integers satisfying (7/2)b?sin(1/b) < [mwb/2], where |x]
denotes the greatest integer not exceeding x.

Solution by Allen Stenger, Tustin, CA. Since (~7r/2)b2 sin(1/b) —nwb/2 — Qas b — o0, we
seek b so that 7wb/2 is slightly larger than an integer, so slightly that (7/2)b? sin(1/b) is
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appear on each solution. An acknowledgement will be sent only if a mailing label
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PROBLEMS

10788. Proposed by Howard M. Taylor, Towson, MD. Imagine a random walk on the
nonnegative integers that begins at 1 and that takes steps according to the following rule:
When located at n, the next location is chosen uniformly from {0, 1,...,n,n + 1}. The
walk ends when it first arrives at 0.

(a) What is the expected number of steps in the walk?

(b) What is the probability that the final step of the walk is from 1 to 0?

(c) For m € N, what is the probability that the walk never exceeds m?

10789. Proposed by Robin Chapman, University of Exeter, Exeter, U. K. The Bernoulli
numbers By, By, By, .. . are defined by x/(e* — 1) = 332 Bix¥/k!. Show that

& (=D m! m + 1) L om
Bam _;i(i+l)(m~i)!(m+i+1)! ;k

for each positive integer m.

10790. Proposed by Jean Anglesio, Garches, France. Given a real number x, let Ty be
the triangle whose vertices are (0, 0), (1, x), and (1, —x). For n > 1, let T, be the orthic
triangle of T,,_j, the triangle whose vertices are the feet of the altitudes of 7;,_;. Denote by
(0, uy,) the vertex of T, that is on the x-axis, and let f(x) = lim, o #,. Show that f(x)
exists for every x and that f is a continuous but nowhere differentiable function of x.

10791. Proposed by Antal Fekete, Memorial University of Newfoundland, St. John's, NF,
Canada. Show that

Qi + )" X, 2i)" Qi+ 1) @i
(Z (21+1)') - <; @7) <Z( Va +1)'> (Z(_ ) (2z>'>
are integers for every nonnegative integer n.
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10792. Proposed by Harold G. Diamond, University of Illinois, Urbana, IL, and Ferrell
S. Wheeler, Center for Computing Sciences, Bowie, MD. Let p: R — R denote the Dickman
function: p(u) =0foru <0, p(u) =1for0 <u <1, and p(u) is the continuous solution
of the differential equation up’(u) = —p(u — 1) for u > 1. Show that

1 d ds;
P(U)—P(M)‘FZ / / (u—Zs,)%---s—s.J
7

]<u
foru >v>0.

10793. Proposed by Florian Luca, Czech Academy of Sciences, Prague, Czech Republic.
Let o (n) be the sum of the divisors of the positive integer 7, and let ¢ (n) be the number of
positive integers that are less than » and relatively prime to n. Two positive integers m and
n are amicable if o (m) = o(n) = m + n.

(a) Show that if a is a positive integer, then a and ¢ (a) are not amicable.

(b) Show that if a and b are positive integers with » > 1, then a and (2” — 1)a + 1 are not
amicable.

(¢)* Find all positive integers a such that g and a 4+ 1 are amicable.

10794. Proposed by David S. Hough and Rodica E. Simion, The George Washington
University, Washington, DC. Let Fy , = (“':)/((s —Dn+ 1). When s = 2, these are the
Catalan numbers.

(a) When s is prime, for what values of n is F; , divisible by s?

(b)* For what values of n is F , divisible by 4?

(¢)* What can you say when s takes on other composite values?

SOLUTIONS

An Identity Involving Derangements

10643 [1998, 175]. Rroposed by David Callan, University of Wisconsin, Madison, WI. Let
D, = n! Z};O(—— 1)/ /j! denote the nth derangement number, the number of permutations
on 7 letters without fixed points. Show that for nonnegative integers » and k,

k min{n,k} .
k kN (k+n—j
2, (1) Dy =kl ) ( )( k )D”“-"'

=0 j=0

Solution I by Knut Dale and Ivar Skau, Telemark College, Bg, Norway. Let A = {1, ..., k}
and B = {k + 1, ...,k + n}; we show that both sides of the identity count the set P of
permutations of A U B with no fixed pointin B. Let D,y = |P].

On the left side, we group P by the number of fixed points. There are (1;) ways of
choosing j fixed points in A and Dyy,_; ways to define the permutation on the remaining
points. Thus Dy, x = Z./;=0 (];) Dign—j.

The right side also counts P. Letm = min{k, n}. Eachw € P swaps some A’ C A with
some B’ C B, mapping A — A’ toitself and B — B’ to itself. Letr = 'A" = 'B"; we have
0 < r < m. To form such a permutation, we choose A’ and B’ and swap them (temporarily
leaving them in order), permute the resulting k elements of the “new” A arbitarily, and then
permute the “new” B without leaving any of B — B’ fixed. For fixed r, we can do these

steps in ( )( )k D,,_,, ways. Our previous formula for D,,_; , yields

S S
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PROBLEMS

10795. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. A 3-dimen-
sional lattice walk of length n takes n successive unit steps, each in one of the six coordinate
directions. How many 3-dimensional lattice walks of length n are there that begin at the
origin and never go below the horizontal plane?

10796. Proposed by Floor van Lamoen, Goes, The Netherlands. Let ABC be a triangle,
and let the feet of the altitudes dropped from A, B, C be A’, B’, C’, respectively. Show that
the Euler lines of triangles AB’C’, A’BC’, and A’ B’C concur at a point on the nine-point
circle of ABC.

10797. Proposed by Paul Bateman, University of lllinois, Urbana, IL, and Jeffrey Kalb,
Phoenix, AZ. Let h and k be integers with k > 0, h +k > 0, and gcd(h, k) = 1. Forn > 1,
let L(n) be the least common multiple of the n numbers 4 +k, h + 2k, h + 3k, ..., h + nk.
Prove that

. log L(n) k 1
1 - -
= A o (k) Z m’

l<m=<k
ged(m k)=1

where ¢ (k) is the number of integers between | and k that are relatively prime to k.

10798. Proposed by Edward Neuman, Southern lllinois University, Carbondale, IL. Given
positive real numbers x and y, let A be their arithmetic mean, let G be their geometric mean,
and let L = (y — x)/(Iny — Inx) be their logarithmic mean. Prove that AL < G“ if both
x and y are at least e3/2 and that AX > G“ if both x and y are at most e*/2.

10799. Proposed by Curtis Herink, Mercer University, Macon, GA, and Gary Gruenhage,
Auburn University, Auburn, AL. Let « and A be infinite cardinals with ¥ > A. Let X be a
topological space with at least « open sets. Show that if every open cover of X containing
exactly x open sets has a finite subcover, then every open cover of X containing exactly A
open sets has a finite subcover.-
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10800. Proposed by Douglas lannucci, University of the Virgin Islands, St. Thomas, VI. A
positive integer n is triperfect if the sum of its divisors is 3n. An odd triperfect number must
be a square. Prove that the square root of an odd triperfect number cannot be square-free.

10801. Proposed by Paul R. Pudaite, Glen Ellyn, IL. Consider the following game played
by a gambler against a casino dealer: At the start of the game, the dealer places n + 1 green
balls and »n red balls into a bowl. The balls are to be drawn one at a time from the bowl
without replacement. The game ends when the bowl is empty. The gambler begins the
game with a bankroll of 1 unit of (infinitely divisible) money. Before each ball is drawn, the
gambler declares how much he bets; he may choose to bet any amount from 0 up to his entire
bankroll at that point. After the gambler declares the size of his wager, the dealer chooses
a ball from the bowl (not necessarily at random). If a green ball is drawn, the gambler
wins an amount equal to his bet; if a red ball is drawn, he loses his bet. The gambler seeks
to maximize his bankroll at the end of the game, while the dealer seeks to minimize the
gambler’s final bankroll. What is the gambler’s final bankroll, assuming optimal play by
both gambler and dealer?

SOLUTIONS

Pairs with Equal Squares

10654 [1998, 272]. Proposed by Richard P. Stanley, Massachusetts Institute of Technology,
Cambridge, MA.

(a) Let S, be the symmetric group on n letters, and let f (n) be the number of pairs (u, v) €
S, x S, such that u% = v2. Show that f(n) = p(yn!, where p(n) denotes the number of
partitions of n.

(b) Generalize to other finite groups.

Solution by Richard Ehrenborg, Cornell University, Ithaca, NY. In general, the number of
solutions is the order of the group G times the number of conjugacy classes C such that
C~! = C. For a solution pair (1, v), we rewrite the identity u? = v> asuv~™! = y~lv =
u v 'u = u= (wv=") "' u. Hence the element w = uv~! is conjugate to its inverse. To
obtain a solution pair, we first choose a conjugacy class C such that C~! = C. We can
choose the element w in |C| ways; note that w L also belongsto C. Since G acts transitively
on C by conjugation, there are |G| / |C| ways to choose u such that w = u~'w™!u. Letting
v = uw™! completes the desired pair. Thus we obtain |G| solution pairs for each such
conjugacy class. In the symmetric group S,,, the conjugacy classes are given by the cycle
structures. A permutation and its inverse have the same cycle structure, so each conjugacy
class is self-inverse. The number of conjugacy classes is the number of cycle structures,

which is the number of partitions of 7.

Editorial comment. The proposer noted that character theory can also be used, and Stephen
Gagola took this approach.

Solved also by R. J. Chapman (U. K.), S. M. Gagola, J. H Lindsey I, and the proposer.

Another Type of Lattice Path

10658 [1998, 366]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY.
Consider walks on the integer lattice in the plane that start at (0, 0), that stay in the first
quadrant (they may touch the x-axis), and such that each step is either (2, 1), (1, 2), or
(1, —1). For each nonnegative imteger n, how many paths are there to (31, 0)?
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PROBLEMS

10802. Proposed by Doru Caragea and Viviana Ene, Constanta, Romania. Let S be the set
of monic irreducible polynomials with degree 2000 and integer coefficients. Findall P € S
such that P (a)|P(a?) for every natural number a.

10803. Proposed by Stephen Penrice, Morristown, NJ. Let k and n be positive integers such
that k < n. Consider the following method for generating a permutation 7 of the integers
{1,2,...,n}. The values 7 (1), w(2), ..., m(k) are determined by randomly selecting a list
of k distinct integers from {1, 2, ..., n}, with all n!/(n — k)! such lists equally likely. The
remaining values are then assigned so that w(k + 1) < w(k +2) < --- < w(n). What is
the expected value of the random variable X; = n‘l(i ) foreachi with 1 <i < n? (From
1987 to 1989, the National Basketball Association used this method withk =3 andn =7
to determine the drafting order for teams that did not participate in playoff competition.)

10804. Proposed by Achilleas Sinefakopoulos, University of Athens, Athens, Greece. Let
ABC D be a convex quadrilateral with an incircle that contacts AB at E and CD at F. Show
that ABC D has a circumcircle if and only if AE/EB = DF/FC.

10805. Proposed by Antal Fekete, Memorial University of Newfoundland, St. John’s, NF,
Canada. Let B, be the nth Bell number, the number of partitions of {1, 2, ..., n}. Let [Z]
be the unsigned Stirling number of the first kind, the number of permutations of {1, 2, ..., n}
with k cycles. Prove that

n—1 ) n h h )
S [ B =3 () B
j=0 SN j=0 N

for each positive integer n and nonnegative integer h.

10806. Proposed by Hassan Ali Shah AL, Tehran, Iran. Prove that a complex number with
real part vk + 1 — 'k for some positive integer k cannot be a root of unity.
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10807. Proposed by Marc Deléglise, Université Lyon, Lyon, France. For positive parame-
ters u and v, evaluate

1 S (n
i . 2k, 2n—2k
nllm o kE_O (k>\/ 1 4 4nyskyin .

10808. Proposed by Enrico Valdinoci, University of Texas, Austin, TX. Prove that the series

Z,°1°=0 (cos(nx))"r diverges for all x € R if r < 2 but converges for almost every x € R
with respect to Lebesgue measure if r > 2.

SOLUTIONS

Intersecting Curves

10712 [1999, 166]. Proposed by Paul Deiermann, Lindenwood University, St. Charles,
MO, and Rick Mabry, Louisiana State University, Shreveport, LA. Let f(x) and g(y) be
twice continuously differentiable functions defined in a neighborhood of 0, and assume that
f0)=1,g0) = f'(0)=¢g0) =0, f'(0) <0,and g"(0) > 0.

(a) For sufficiently small r > 0, show that the curves x = g(y) and y = rf(x/r) have
a common point (x,, y,) in the first quadrant with the property that, if (x, y) is any other
common point, then x, < x.

(b) Let (¢, 0) denote the x-intercept of the line passing through (0, r) and (x,, y,). Show
that lim,_, 04 #, exists, and evaluate it.

¢) Is the continuity of f” and g” a necessary condition for lim,_, g4 ¢, to exist?
y

Solution by Alain Tissier, Montfermeil, France. The conclusions in (a) and (b) remain correct
even if we do not assume continuity of f” and g”. We retain only the continuity of the
first derivative and the existence and sign of f” and g” at zero. We prove a generalization,
weakening the hypotheses as follows: Assume that f is a continuous mapping on [0, a]
witha > Oand that f(x) = 1—Ax? 4+o0(x?)asx — 0 forsome p > Oand A > 0. Assume
also that g is a continuous mapping on [0, b] with b > 0 and that g(y) = uy? 4+ o(y?) as
y — 0 for some g > 1 and . > 0. The conditions on f and g in the problem statement
imply these hypotheses with p = g = 2,1 = —f"(0)/2, and . = g"(0)/2.

(a) With a and b sufficiently small, we may suppose f(x) > O on [0,a] and g(y) > O on
(0, b]. Let m > 0 be the maximum of f(x) on [0, a]. Foreachr > 0,let £, (x) =rf(x/r).
Then f, is a continuous mapping on [0, ra], f,(x) = r — Arl=PxP + o(xP), and the
maximum of f, on [0, ral is mr. Assume that r < b/m. Then f.(x) < b on [0, ral.

The function k, defined by h,(x) = g(f(x)) — x is defined and continuous on [0, ra],
and it satisfies h,(0) = g(r) > O and h,(ra) = g(rf(a)) — ra. Since g(rf(a)) = O(r?)
as r — 0 and since g > 1, we have g(rf(a)) = o(r). Hence there exists § > 0 so that
h,(ra) < 0if r < §. Assume that r < §. The function A, is continuous on [0, ra],
h,(0) > 0, and h,(ra) < 0, so by the intermediate value theorem there exists x, > 0 such
that h,(x,) = 0 and &,(x) > 0 on [0, x,). The curves y = f,(x) and x = g(y) have a

common point (x,, y,) with y, = f,(x,) and x, = g(y,), and every other common point
has a larger x-coordinate.

(b) We show that, in our more general setting, a finite nonzero limit exists if and only if
1/p + 1/q = 1, and then the limit is 1/(.uP~1). Since 0 < x, < ra, we have x, = O(r)
asr — 0. Hence y, = r — Ar!1=Pxf +0(x?) = O(r) asr — 0. We may use this to obtain
xr = g(y) =y + 00T = 0(r9) and y = r — ir'=Pxf 4 o(xf) = r + O(r'=P+P9)
as r — 0. This in turn leads to the further refinement x, = ur? + o(r?) and y, =
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problems address on the inside front cover. Submitted problems should include
solutions and relevant references. Submitted solutions should arrive at that address
before November 30, 2000; Additional information, such as generalizations and
references, is welcome. The problem number and the solver’s name and address
should appear on each solution. An acknowledgement will be sent only if a mail-
ing label is provided. An asterisk (¥) after the number of a problem or a part of a
problem indicates that no solution is currently available.

PROBLEMS

10809. Proposed by David Beckwith, Sag Harbor, NY. For |x| < 1, prove that

o0 xn(n+1)/2 o n

X
D e B e

n=1

10810. Proposed by Juan-Bosco Romero Mdrquez, Universidad de Valladolid, Valladolid,
Spain. Consider a convex quadrilateral with no parallel sides. On each side AB, select a
point T as follows: Draw lines from A and B parallel to the opposite side. Let A" and B’
be the new points where these lines intersect the sides neighboring AB. Let T be the point
where AB intersects A’ B’. Prove that the four points selected in this way are the corners of

a parallelogram. ,
A A

B’ B

10811. Proposed by Phil Tracy, Liverpool, NY. Let G be a simple graph whose longest path
has ends x and y and has length [. Let s be the sum of the degrees of x and y. Show that the
distance from x to y (the length of the shortest path from x to y) is at most max{l —s +2, 2}.

10812. Proposed by Yehuda Pinchover and Simeon Reich, The Technion, Haifa, Israel.

(a) Let (V,|-|) be a normed space. For C = 3+/3, prove that the function p(x, y) =
lx — y|/(Ix] y]) satisfies the inequality

px,y) =C(px,2)+p(z,y)) forall x,y,zeV\{0} (%)

(b)* Find the smallest constant C such that (*) holds for all normed spaces.
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10813. Proposed by Fred Richman, Florida Atlantic University, Boca Raton, FL. Let F be
an arbitrary field, and let V be the vector space of 2-by-2 matrices over F. Given A and B in
V,let Sa g = {C: AC = CB}. Show that the vector space S4 p cannot be 3-dimensional,
but that every 2-dimensional subspace of V is S4_p for some A and B.

10814. Proposed by Razvan Satnoianu, Oxford University, Oxford, United Kingdom. Let
P be apointin the interior of triangle ABC. Letr, s, t be the distances from P to the vertices
A, B, C, respectively, and let x, y, z be the distances from P to the sides BC, CA, AB,
respectively.

(a) Prove that ¢” + gq* + g’ + 3 > 2(¢* + q” + g%) forany g > 1.

(b) Prove that g+ + g+t 4+ 4" 4+ 6 > ¢ 4+ ¢% +q%* +2(¢* +¢* +¢?) forany g > 1.

10815. Proposed by Barbara S. Bertram and Otto G. Ruehr, Michigan Technological
University, Houghton, MI. Let

o0
F(x)=2x ) ne™™

n=1

for x > 0. Show that F(s +t) < F(s)F(t) whens,t > 0.

SOLUTIONS

Permutation Parameters with the Same Distribution

10634 [1998, 68]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY, and
Ira M. Gessel, Brandeis University, Waltham, MA. For each permutation 7w of {1, 2, ..., n},
define

maxjump(r) = max (mw; — i),
1<i<n
maxinv(mw) = max [{k:m > mi,k <i}|, and
I<i<n

0 fr=mn—-1n-2...321),

maxrise(r) = .
() {maxlsign—l(ﬂi—l—l — ;) otherwise.

Show that these parameters have the same distribution.

Solution by David Callan, Madison, WI. We first show that maxjump and maxrise have the
same distribution. The standard cycle form of a permutation lists its cycles in order so that
the smallest element in each cycle occurs first and these smallest elements are in decreasing
order. For example, (46)(3)(1752) is the standard cycle form for the permutation whose
word form is 7136245. Let 7 be the permutation whose word form is obtained by writing 7
in standard cycle form and erasing the parentheses (4631752 in our example). The cycles of
7 can easily be recovered from 7 ; they start wherever an entry is smaller than all preceding
entries. Hence 7w +—> 7 defines a bijection. If ; > i, then 7r; immediately follows i in 7.
Conversely, if i = 7; < j41, then 7; = ;1. Thus the positive jumps of 7 are the same
as the positive rises of 77, and maxjump(w) = maxrise(7).

We now prove that maxjump(w) = maxinv(m ~!) and hence that maxjump and maxinv
have the same distribution. When j = 7; > i, we seek inversions at j in 7 . The values
of k less than j that satisfy th_l > 7r]._1 all belong to {m;+1,...,m,}. Atmosti — 1 of
the numbers less than j appear in {7, ..., 7}, and hence at least (j — 1) — (i — 1)
of them appear later (strict inequality may hold, as when w = 7136245 and i = 4). For
each positive jump 7; = j, there are thus at least j — i inversions at j in 7!, and hence
maxjump(r) < maxinv(z ~1).
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West

with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline,
Ezra A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton,
Kevin Ford, Zachary Franco, Ira M. Gessel, Jerrold R. Griggs, Douglas A. Hensley, John R. Isbell,
Kiran S. Kedlaya, Murray S. Klamkin, Fred Kochman, Frederick W. Luttmann, Vania Mascioni,
Frank B. Miles, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, Kenneth
Stolarsky, Richard Stong, Charles Vanden Eynden, and William E. Watkins.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted problems should include
solutions and relevant references. Submitted solutions should arrive at that ad-
dress before February 28, 2001; Additional information, such as generalizations
and references, is welcome. The problem number and the solver’s name and ad-
dress should appear on each solution. An acknowledgement will be sent only if a
mailing label is provided. An asterisk (*) after the number of a problem or a part
of a problem indicates that no solution is currently available.

PROBLEMS

10816. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. A Motzkin path
of length n is a lattice path from (0, 0) to (n, 0) with steps (1, 1), (1, 0), and (1, —1) that
never goes below the x-axis. For n > 2, show that the number of Motzkin paths of length
n with no (1, 0) steps on the x-axis is equal to the number of Motzkin paths of length n — 1
with at least one (1, 0) step on the x-axis.

10817. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. Forn > 2,

let x1, x2, . .., x, be nonnegative real numbers summing to 1. Choose j € {1,2,...,n—1}
and a real number o > 1. Prove that
N (a+ D>

-« o
———=n "(n+1)%
k=1 (xk+j + 1)a

where subscripts are taken modulo 7, and determine conditions for equality.

10818. Proposed by Cezar Joita, State University of New York, Buffalo, NY.

(a)Let g: R — R be a continuous function such that lim,—, » g(x) —x = co and such that
the set {x : g(x) = x} is finite and nonempty. Prove that if f: R — R is continuous and
f og = f,then f is constant.

(b) Suppose that g: R — R is a quadratic function such that {x: g(x) = x} is empty. Find
a nonconstant continuous function f: R — Rsuch that fo g = f.

10819. Proposed by Olaf Krafft, Rheinisch-Westfillische Technische Hochschule, Aachen,
Germany. Let m and n be integers with m > 2 and n > 1. Show that

mn . mm(n-l)-l—l n—l/2.
n) = (m—1)m=De-1"
10820. Proposed by M. Mirzavaziri, Ferdowsi University, Mashhad, Iran. Let f(m) be the

least natural number with exactly m divisors. Find a formula for f () in terms of f(m/p),
where p is the least prime divisor of m.
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10821. Proposed by Gerard J. Foschini, Bell Laboratories, Holmdel, NJ. Find a sequence
of functions fi, f2, ... in L3[0, 1] that satisfies the following conditions.

(1) For all € € (0, 1), the space spanned by {fi.¢, f2.¢, - .-} is La[e, 1], where f;, ¢ is the
restriction of f;, to [e, 1].

(2) The space spanned by {f1, f2, ...} has an infinite-dimensional orthogonal complement
in L,[0, 1].

10822. Proposed by Jeffrey Lagarias, AT&T Laboratories, Florham Park, NJ, and Jade
Vinson, Princeton University, Princeton, NJ.

(a) Let f(z) = 1/(2 — z2). Prove that all periodic points of f are real.
(b) More generally, set fi(z) = 1/(A — z2). For which positive real values of A does f;
have only real periodic points?

SOLUTIONS

The Asymptotics of the Birthday Problem

10665 [1998, 464]. Proposed by Jerrold R. Griggs, University of South Carolina, Columbia,
SC. For positive integers s and ¢, let P(s, t) denote the probability that a random function
f: S — T isinjective, where S, T are sets with |S| = s, |T| = ¢, and, foreach x € S, f(x)
is chosen uniformly and independently from 7. For example, P (n, 365) approximates the
probability that, in a class with n students, no two students have the same birthday.

(a) Show that P(s,t) — 0 ass — oo if t ~ ks for some constant £ > 1.

(b) What happens to P(s,t) ass — oo ift ~ cs? for some constant ¢ > 0?

Solution I by Darryl K. Nester, Bluffton College, Bluffton, OH. Since P(s,t) =
[I52a(t —i)/t, we have —In P(s, ) = — Y 5_} In(1 — i /1).
(a) Since —In(1 — x) > x for x € (0, 1), we have
s—1 .
i (—-Ds s-—1
—InP e ~ o.
In (s,t)>zt n P as s — 0o

i=1

Thus —In P(s,t) — oo as s — co, which yields P(s,t) — 0.

(b) We show that P(s,t) — e 1/29) as 5§ — 0o0. Note that —In(1 — x) < x + x2 for
x € (0, 1/2). Since t ~ cs?, for all sufficiently large s we have (s — 1)/t < 1/2, and thus

(s—1s L sl g2 (s—1s (s—1s@2s—1)
‘ —;;<—lnP(s,t)<Z(;+;—2-)= + .

2t - 2t 6¢2
i=1

For ¢t ~ cs2, both bounds are asymptotic to 1/(2c¢).

Solution II by Sung Soo Kim, Hanyang University, Ansan, Kyunggi, Korea. If b > a, then
(x —b)(x +b) < (x —a)(x + a). Thus,

- s/2 _ o _ K
(l_stl) 5P(s,t)=t(t 1)---(¢ s—|—1)<(1_s 1)'

s - 2t

(a) If t ~ ks for some constantk > 1,then 0 < P(s,t) < (1 — 1/(4k))* for all sufficiently
large s, and P(s,t) — O.
(b) If t ~ ¢s? for some constant ¢ > 0, then for all sufficiently large s,

s/2 s
1 1
(l‘m)—s) =Fen= (“m) |

where £(s) is positive and tends to 0. Both bounds tend to e~1/(29),
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Edited by Gerald A. Edgar, Daniel H. Ullman, and Douglas B. West
with the collaboration of Paul T. Bateman, Mario Benedicty, Paul Bracken, Duane M. Broline,
Ezra A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Kevin Ford, Zachary
Franco, Ira M. Gessel, Jerrold R. Griggs, Douglas A. Hensley, John R. Isbell, Kiran S. Kedlaya,
Murray S. Klamkin, Fred Kochman, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Richard

Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, Kenneth Stolarsky, Richard Stong,
Charles Vanden Eynden, and William E. Watkins.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted problems should include
solutions and relevant references. Submitted solutions should arrive at that address
before March 31, 2001; Additional information, such as generalizations and refer-
ences, is welcome. The problem number and the solver’s name and address should
appear on each solution. An acknowledgement will be sent only if a mailing label
is provided. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

10823. Proposed by George E. Andrews, Pennsylvania State University, University Park, PA.
Given S = {aj,az, ..., a}, whereq; € Nforalliand1 <a; <ay <--- < gy <n,define
o(S)tobe{a;—1,a—1,...,a,—1}ifa; # 1and{1,2,...,n]\{a2—1,a3—-1, ..., a,—1}
if a; = 1. Prove that ¢"+1(S) = S for every nonempty subset S of {1,2, ..., n}.

10824. Proposed by Ho-joo Lee, Kwangwoon University, Seoul, South Korea. Suppose that
P is a point in the interior of triangle ABC such that /PAB = /PBC = /PCA = 30°.
Prove that ABC is equilateral.

10825. Proposed by Carl Miller, Duke University, Durham, NC. Given real numbers x
and y, define Sx(x, y) for k € Z by So(x,y) = x, Si(x,y) = y, and the recurrence
Sp(x,y) = Su_1(x, y) + Sy—2(x, y) for all n € Z. Show that

x24+xy —y2
inflSn(x,y)Is\ﬁ y-r|
nez 5

and determine when equality holds.

10826. Proposed by Félix Martinez-Giménez, Universidad Politécnica de Valencia, Valen-
cia, Spain. Given an infinite matrix A = (g;, j)i, jen of real numbers satisfying 0 < a; ; <
a;,j+1 foralli, j € N, we say A satisfies condition (*) if for every n € N, there exists m € N
such that Zi N @i,n/@i,m is convergent. For any real number 6 > 0, prove that A satisfies
condition () if and only if A® satisfies condition (x), where A©® is the matrix whose i, j

entry is a? i

10827. Proposed by Ulrich Abel, Fachhochschule Giessen-Friedberg, Friedberg, Germany.
Forn € Nand x > 0, let

n ok _
fuy =L

k=1 k

Prove that lim, o0 SUp,.. 1 fn(x) exists.
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10828. Proposed by David Beckwith, Sag Harbor, NY. Given a set M of natural numbers,
there is a unique subset A C M, whose elements we call the additive atoms of M, such
that every element of M can be written as ) ¢ s for some S C A, while no element of A
can be written as a sum of two or more distinct elements of A. For example, the additive

atoms of {1, 2, 3, ...} are the powers of 2. For m > 1, what are the additive atoms of
mm+1,m+2,...1?

10829. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria. For a

positive integer m, let f(m) = Y .-, m/ ged(m, r). Evaluate f (m) interms of the canonical
factorization of m into a product of powers of distinct primes.

SOLUTIONS

Periodic Points and Forests

10666 [1998, 464]. Proposed by David Callan, University of Wisconsin, Madison, WI. Let
r and n be positive integers withr < n, and let [n] denote {1, 2, ..., n}. Wesay thatx € [r]
is a periodic point of a function f: [r] — [n]if f k(x) = x for some k > 1.

(a) How many of the n” functions from [r] to [n] have at least one periodic point?

(b) How many of the n(n — 1) --- (n — r + 1) injective functions from [r] to [n] have no
periodic points?

Solution I by David Beckwith, Sag Harbor, NY. The answer to (a) is rn”~1, and the answer
tob)is(n—D!/(n—1—-r)l.

Given a function f: [r] — [n], let S be a largest subset of [r] such that the restriction
of f to S is a permutation. The number of periodic points of f is |S|. If f has m periodic
points, then S can be chosen in (;l) ways, and for each choice, f can be defined on S in m!
ways.

(a) Let ' (r, n) denote the number of functions with no periodic point, with a’(0, n) = 1.
Counting the functions from [r] to [n] by periodic points yields Y, _o ([ Ym!d'(r —m, n) =
n”, and thus

r r

1
Z ———'a'(r —m,n) = n_'
—h = m)! r!
The terms for m > 0 form the full summation when r is replaced with r — 1; hence they
total n”~1/(r — 1)!. Canceling these yields a’'(r, n) = n" — ro™~ L,

(b) Let b(r, n) denote the number of injective functions with no periodic point. Counting
the injective functions by periodic points yields Y ., _o (7 )m!b(r —m,n—m) = (7)r!, and

m=0
thus
r

1 n
Zmb(r—m,n—m)= (r)

m=0
The terms for m > 0 form the full summation when r is replaced with  — 1 and n is replaced
with n — 1; hence they total ('r’:}) Canceling these yields b(r, n) = r! ((’r') — (;’:i)) =
(n—1DYmn—1-r)

Solution II by Anchorage Math Solutions Group, University of Alaska, Anchorage, AK. We
extend each function f: [r] — [n] to a function f’: [n] — [n] by letting all points of
[n] — [r] be fixed points. In the functional digraph of f’, the digraph on vertex set [n]
containing an arc from i to j if and only if f'(i) = j, each element of [n] — [r] is the root
of a component that is a tree (except for the self-loop at the root). Any other component

contains a cycle of elements from [r]. Thus f has no periodic point if and only if f’ has
only its n — r tree components.
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Ezra A. Brown, Richard T. Bumby, Glenn G. Chappell, Randall Dougherty, Roger B. Eggleton,
Kevin Ford, Zachary Franco, Ira M. Gessel, Jerrold R. Griggs, Douglas A. Hensley, John R. Isbell,
Kiran S. Kedlaya, Murray S. Klamkin, Fred Kochman, Frederick W. Luttmann, Vania Mascioni,
Frank B. Miles, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman, Kenneth
Stolarsky, Richard Stong, Charles Vanden Eynden, and William E. Watkins.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted problems should include
solutions and relevant references. Subimitted solutions should arrive at that address
before April 30, 2001; Additional information, such as generalizations and refer-
ences, is welcome. The problem number and the solver’s name and address should
appear on each solution. An acknowledgement will be sent only if a mailing label
is provided. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

10830. Proposed by Floor van Lamoen, Goes, The Netherlands. A triangle is divided by
its three medians into 6 smaller triangles. Show that the circumcenters of these smaller
triangles lie on a circle.

10831. Proposed by George E. Andrews, Pennsylvania State University, University Park,
PA, and P. Paule and A. Riese, University of Linz, Linz, Austria. Given positive integers m
and n, let Dy, ,(a, b, ¢, d) be the determinant of the following matrix: On the main diagonal,
there are m entries of a followed by n entries of d. The entries on the diagonal of length n
above the main diagonal are all b. The entries on the diagonal of length m below the main
diagonal are all ¢. All other entries are 0. For example

ra 00 0 0 b 0 07
0 a 00 00 bH O
0 0a 00 0 0 b
pesane a5 094 000 !
0 0 c 00 d 0O
00 0 ¢c 00 d O
0 000 ¢c 0 0 4dJ

Let g = gcd(m, n),r =m/g, and s = n/g. Prove that
Dwa(a,b,c,d) = (a"d" — (=1 *b*c")E.

10832. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Evaluate
i ( Kk 1 )
— .
=1 kle 2k
10833. Proposed by Charles Vanden Eynden, Illinois State University, Normal, IL. Let r

be a positive integer. Prove that there are infinitely many integers £ > r! with the property
that j!/(j — r)! does not divide k!/(k — r)! whenever r! < j < k.
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10834. Proposed by Sung Soo Kim, Hanyang University, Ansan, Korea. For n € N, let M,
be the set of n-by-n matrices with nonnegative entries and with zeroes on the diagonal. De-
fine a binary operation o on M, by setting the i, j-entry of Ao B equal to minj<x<y @ik +by;.
For A € M,, define a sequence of matrices recursively by setting Ay = A and setting
Agy1 = ApoAfork > 1. Showthat A, 0 Ay = A;0 A, forallr,s e N.

10835. Proposed by Anna Dyubina, Tel Aviv University, Tel Aviv, Israel, and Pierre de
la Harpe, Université de Genéve, Genéve, Switzerland. Let G be the group defined by
the presentation that has an infinite sequence bg, by, by, . .. of generators and an infinite
sequence blbobl—1 = bzblbz_1 = b3bybs 1 — ... of relations. Show that G is not finitely
generated.

10836. Proposed by Jon A. Wellner, University of Washington, Seattle, WA. Show that

2
Tk+1) k=il (k — j)!
232§ 2% 2% j
Ar (=27 Z Tk+1/2) 4+Zx W(Z( ATy (2k-—2j)!)

for all x € [0, 1).

SOLUTIONS

Bernoulli, Stirling, and Stirling

10700 [1998, 955]. Proposed by Leroy Quet, Denver, CO. Let c(m, n) be the unsigned
Stirling numbers of the first kind, the number of permutations of {1, 2, ..., m} with n
cycles. Let S(m, n) be the Stirling numbers of the second kind, the number of partitions of
{1,2,...,m} with n blocks. Let B(n) be the nth Bernoulli number, defined by x /(e* — 1) =
Y o2 o B(n)x™/n!. Show that

4 LnIS@r, n) 1 3
;(—1) e (q_l)'ZB(r-l-n 1)e(q, n)

for all positive integers r and g.

Solution by Robin Chapman, University of Exeter, Exeter, U. K. We use the following three
formulas:

k-1 m .
B(m — ; .
Z " = Z (mTll) (m) Kitt (for every nonnegative integer m), 1
i i
j=0 i=0
q -1
Z c(g,n)x" =q! (x +a ) (for every positive integer ¢), and 2)
q
n=1

,
x" = Z S(r, n)n! (x) (for every positive integer r), 3)
— n

where ():) =x(x—-1Dx—-2)---(x—t+1)/t!forx e Randr € N.

For a polynomial f, let f (k) = % ;f;(l) f(j) when k is a positive integer. For f(x) =
x™, (1) yields
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ences, is welcome. The problem number and the solver’s name and address should
appear on each solution. An acknowledgement will be sent only if a mailing label
is provided. An asterisk (*) after the number of a problem or a part of a problem
indicates that no solution is currently available.

PROBLEMS

10837. Proposed by Ho-joo Lee, Kwangwoon University, Seoul, South Korea. et m and
n be positive integers, and let (k) be the number of integers in {1,2, ...,k — 1} that are
relatively prime to k. Prove that, for some positive integer a, each of ¢(a), p(a + 1),
pa+2),...,p(a+ n)is amultiple of m.

10838. Proposed by Florian S. Pdrvdnescu, Slatina, Romania. Let M be any point in the
interior of triangle ABC, and let D, E, and F be points on the perimeter such that AD, BE,
and CF are concurrent at M. Show that if the triangles BMD, CME, and AMF all have
equal areas and equal perimeters, then ABC is equilateral.

10839. Proposed by Beresford N. Parlett, University of California, Berkeley, CA. Let A
be a symmetric positive definite matrix with bandwidth 2b — 1. Thus, when b = 1, A is
diagonal, and when b = 2, A is tridiagonal. Prove that the largest eigenvalue of A is no
greater than the maximum of all sums of b consecutive entries on the main diagonal of A.

10840. Proposed by Jiansheng Yang and Shulin Zhou, Peking University, Beijing, P. R.
China. Ts the series ) oo ; x" /(1 + x™)" uniformly convergent on the interval [0, 1]?

10841. Proposed by Erwin Just, Bronx Community College, Bronx, NY. Let R be a ring
with the property that, for every x € R, there is an integer n = n(x) > 4 such that
x+x2+x3 = x" +xn+1 +xn+2'

(a) Prove that x3"®)~2 = x for every element x € R.

(b) Prove that multiplication in R is commutative.

(¢) Prove that every element of R has finite additive order.

10842. Proposed by Bruce Reznick, University of llinois, Urbana, IL.

(a) Let n be a positive integer not equal to 1,2, 3, or 5. Show that there is at least one k
with O < k < n such that (37) is not divisible by (}).

(b) Let m be a positive integer. Show that there is a positive integer N, such that, whenever
n > N,,, there is at least one k with 0 < k < n such that (22) is not divisible by (Z)
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10843. Proposed by Andrew Vince, University of Florida, Gainesville, FL. Define amapping
f:100,1) = [0,1) by f(x) = 2x (mod 1). Find sup; 4y=1/2A(4 N F~LA), where A
denotes Lebesgue measure and the supremum is taken over all sets A that are the union of
finitely many intervals and that satisfy A(A) = 1/2.

SOLUTIONS

The Maximum Length of a Powerful Arithmetic Progression

10702 [1998, 956). Proposed by Kent D. Boklan, Baltimore, MD. What is the length of the
longest nonconstant arithmetic progression of integers with the property that the kth term
(for all k > 1) is a perfect kth power?

Solution by John P. Robertson, St. Paul Re, New York, NY. The longest such progression has
length 5.

For an example of a sequence of length 5, take the sequence {1, 9, 17, 25, 33} and multiply
each of its terms by 32453011241720,

Suppose there were such a progression of length 6. Let the second, third, and sixth terms
be a2, b3, and c®, respectively, so 3a? = 4> — ¢®. If ¢ # 0, then taking x = 12(b/c?) and
y = 36(a/c3) yields y? = x3 — 432, with x and y rational. This elliptic curve has only two
rational points (L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969,
p. 247). These are x = 12, y = =36, both of which produce a constant progression.

If ¢ = 0, then the progression would be {5r, 4r, 3r, 2r, r, 0} for some nonzero integer r.
This would make both 4r and 2r squares, which is impossible.

Solved also by J. Manoharmayum (U. K.), M. Reid, GCHQ Problems Group (U. K.), and the proposer with N. D. Elkies.
A Union of Proper Subspaces?

10707 [1999, 67]. Proposed by John Isbell, State University of New York, Buffalo, NY.
Show that

(a) no vector space over an infinite field is a finite union of proper subspaces; and

(b) no vector space over an n-element field is a union of n or fewer proper subspaces.

Composite solution by Julio Kuplinsky, Montclair, NJ, and Leon Mattics, Semmes, AL. Let
V be a vector space over afield K. We show that, if K has atleast n elements and Sy, ..., S,
are proper subspaces of V such that V = | Ji_; S, then r > n + 1. Parts (a) and (b) then
follow immediately.

Let r be the smallest possible number of proper subspaces Sj, ..., S, of V whose union
is V. Clearly r > 2. Also S; € |Jj_, S; by the minimality of r. Hence we may choose
v e S; — Ui, Si. Similarly, we may choose w € S — Si.

For A € K, we now have Av + w ¢ Si, since S is a subspace and w ¢ Sj. If A and p
are distinct elements of K such that both Av +w and v + w are in §;, then (A — u)v € ;.
This yields v € S;, which is a contradiction.

Since K contains at least n elements, we conclude that there are at least n subspaces in
the union other than S;, and hencer > n + 1.

Editorial comment. These results have appeared previously. David Callan cites K. P. S.
Bhaskara Rao and A. Ramachandra Rao, Unions and common complements of subspaces,
this MonTHLY 98 (1991) 127-131. Frank Dangello, Lenny Jones, and Mike Seyfried re-
fer to D. B. Leep and G. Myerson, Marriage, magic, and solitaire, this MonTHLY 106
(1999) 419-429. Stephen Gagola points out a similarity to his problem E 2785 [1979, 592,
1980, 672] of this MoNTHLY. Robert Gilmer mentions A. Bialynicki-Birula, J. Browkin, and
A. Schinzel, Collog. Math. 7 (1959) 31-32 and R. D. Bird, Simultaneous complements in
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Bracken, Ezra A. Brown, Randall Dougherty, Roger Eggleton, Dennis Eichhorn,
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problem indicates that no solution is currently available.

PROBLEMS

10914. Proposed by Giovanni Falcone, University of Palermo, Italy. Given two
cyclotomic polynomials ®,, and &, with m s n, find the smallest natural number

k such that integer polynomials a and b with the property that a®,,+b®,, identically
equals k.

10915. Proposed by C. P. Rupert, Durham, NC. Given nonzero polynomials p and
q in Z[x] satisfying p* +mg # 0 for 1 < m < 4, define polynomials ¢, recursively
by tpy2 = ptny1 + gtn, with initial conditions to = 0 and ¢; = 1. With p denoting
the Mobius function, prove for n > 1 that the polynomial s, € Q[z] defined by
sn(x) = g tfi‘(n/d) actually belongs to Z[z].

10916. Proposed by Gertrude Fhrlich, University of Maryland, College Park, MD.
Available are two beakers A and B, having volumes a liters and b liters, respectively,
a source of water, and a drain. Water may be poured into the beakers from the
source or from each other, either filling the receiving beaker or emptying the source
beaker, and beakers may be emptied into the drain. Using only these operations,
show that if a and b are relatively prime positive integers, then for every integer m
with 1 < m < b it is possible to reach a state in which beaker B contains m liters.

10917. Proposed by Jirgen Grofi and Gétz Trenkler, University of Dortmund,
Germany. Let P and Q be n-by-n self-adjoint, idempotent matrices, that is, P* =
P = P? and Q* = Q? = Q. Equivalently, P and Q are orthogonal projections of
the same dimension. Show that the product P(Q is an orthogonal projection if and
only if all nonzero eigenvalues of P + Q are greater than or equal to 1.

10918. Proposed by Matthias Beck, State University of New York, Binghamton
NY. Prove that for all positive integers a and b,

o+ (-2 (0l = b4 (et (1)1 mod 4.

10919. Proposed by Michael Becker, University of South Carolina Sumter, SC. Let
H(t) = [}° 5111(;’2) dt, and let F(k) = [;°t**+1e~*H(t) dt. Find a formula for F'(k)
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West

with the collaboration of Paul T. Bateman, Mario Benedicty, Itshak Borosh, Paul
Bracken, Ezra A. Brown, Randall Dougherty, Roger Eggleton, Dennis Eichhorn,
Tamés Erdélyi, Kevin Ford, Zachary Franco, Christian Friesen, Ira M. Gessel, Jer-
rold R. Griggs, Kiran S. Kedlaya, Frederick W. Luttman, Vania Mascioni, Frank B.
Miles, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, John Henry Steelman,
Kenneth Stolarsky, Richard Stong, and Charles Vanden Eynden.

Proposed problems and solutions should be sent in duplicate to the MONTHLY prob-
lems address on the inside front cover. Submitted solutions should arrive at that
address before July 81, 2002. Additional information, such as generalizations and|
references, is welcome. The problem number and the solver’s name and address
should appear on each solution. An acknowledgement will be sent only if a mailing
label is provided. An asterisk (*) after the number of a problem or a part of a
problem indicates that no solution is currently available.

PROBLEMS

10921. Proposed by David M. Bloom, Brooklyn College CUNY, New York, NY.
Let ¢, = (Ln’;z J). Prove that

i n
E k CkCn—k = CnCn+1-
k=0

10922. Proposed by Mizan R. Khan, Fastern Connecticut State University, Willi-
mantic, CT. For each positive integer n, let dx(n) denote the largest divisor of n
that is relatively prime to k. Show that

A G N
nee ka Ok (n)

10923. Proposed by Stephen B. Gray, Santa Monica, CA. Given a full-dimensional
simplex S in R™, a step is an affine transformation that takes S into a new simplex
S’ by fixing all but one vertex and moving the remaining vertex parallel to the
hyperplane determined by the others.

(a) Prove that every triangle in R? can be made equilateral in at most two steps.
(b) Prove that for every postive integer n there exists a positive integer N, such
that every full-dimensional simplex in R™ can be made regular in at most N,, steps.

10924. Proposed by A. J. Sasane, University of Groningen, The Netherlands. A
regular polygon of 2001 sides is inscribed in a circle of unit radius. Prove that its
side and all its diagonals have irrational lengths.

10925. Proposed by David Callan, University of Wisconsin, Madison, WI. Define
a 0,1-matrix A, with rows and column indexed by the binary n-tuples with no two
consecutive 1s, such that position (u,v) is 1 if and only if v is 0 in each position
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where u has a 1 or has a 0 immediately preceded by a 1. A; and Ay are shown.
Prove that the permanent of A, is 1.

00 01 10

01 0 /1 1 1

0 (1 1 011 0 1
1 (1 0) 10\1 0 o0

10926. Proposed by Harold Diamond, University of Illinois, Urbana, IL. Let x
and y be real numbers with z # y and zy > —1. Show, for suitable K, that

tan~! y — tan~! z has the continued fraction expansion

1

K
* 1

R
7K + ...

3K +
5K

(The coefficients in the numerators continue with successive squares, those in the
denominators are the consecutive odd numbers.)

10927. Proposed by Jeffrey C. Lagarias, E. M. Rains, and N. J. A. Sloane, AT&T
Labs, Florham Park, NJ. Define a sequence (a) by letting a; = 1, as = 2, and ag = 3,

and for n > 3 letting a,, be the smallest integer among those not already used such

that ged(an—1,ar) > 3. The sequence begins 1,2,3,6,9,12,4,8, 16,20, 5,10, 15, . ...

Prove that it is a permutation of N.

SOLUTIONS

Continued Fractions for Some Quadratic Surds

10773 [1999, 964]. Proposed by Jean Anglesio, Garches, France. Let ag,a1, ..., ax
be positive integers. For 0 < ¢ < k, let p;/¢; be the fraction in lowest terms with con-

tinued fraction expansion [ag, a1, ..., a;]. Find the continued fraction expansion of
\/pkplc—l Pk Pi +Pi_q and P; +4F
arqr—1" V Pe—1qk—1’ \ g + g1’ Pi_1 + i
in terms of ag,aq, ..., a.

Solution by Reiner Martin, New York, N.Y. We show that the following four ex-
pansions have the desired values (overlining indicates periodic parts).

a = [ao,al,...,ak_1,2ak,ak_1,...,a1,2a0],
g = [ak,ak_l,...,a1,2a0,a1,...,ak_1,2ak],
7 = [a’())aly'"7a’k—l)ak:;ak‘,7ak:—1)'“)a‘172a0:|7
Jj = [ak,ak_l,...,al,ao,ag,al,...,ak_1,2ak] .
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problems address on the inside front cover. Submitted solutions should arrive at
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tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11474. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Valentin Vornicu, Aops-MathLinks forum, San Diego, CA. Show that when x,
v, and z are greater than 1,

l—w(x)x2+2yzr(y)y2+21x + F(Z)22+2xy > (F(X)F(y)l—w(z))xy+yz+zx‘

11475. Proposed by Omer Egecioglu, University of California Santa Barbara, Santa

Barbara, CA. Let hy = Zl;:l %, and let D,, be the determinant of the (n + 1) x (n + 1)
Hankel matrix with (i, j) entry hitjifor0 <i, j <n.(Thus, D; = —5/12and D, =
1/216.) Show that forn > 1,

[T, i Z (=DJ/(n+j+ D'+ Dhjy

D, = : . .
i = JIG+ Dl = )t

11476. Proposed by Panagiote Ligouras, “Leonardo da Vinci” High School, Noci,
Italy. Let a, b, and c be the side-lengths of a triangle, and let r be its inradius. Show

a’bc X b%*ca N c*ab -
b+c)yb+c—a) (c+a)c+a—-—b) (@+b)la+b—c)

18r2.

11477. Proposed by Antonio Gonzdlez, Universidad de Sevilla, Seville, Spain, and José
Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela. Several boxes sit in a row,
numbered from 0 on the left to n on the right. A frog hops from box to box, starting
at time O in box 0. If at time 7, the frog is in box k, it hops one box to the left with
probability k/n and one box to the right with probability 1 — k/n. Let p,(k) be the
probability that the frog launches its (# + 1)th hop from box k. Find lim;_, o, ps; (k)
and lim; _, o, poi41 (k).

doi:10.4169/000298910X475032
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11478. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let K be a field of characteristic zero, and let f and g be relatively prime
polynomials in K[x] with deg(g) < deg(f). Suppose that for infinitely many A in
K there is a sublist of the roots of f + Ag (counting multiplicity) that sums to 0.
Show that deg(g) < deg(f) — 1 and that the sum of all the roots of f (again counting
multiplicity) is O.

11479. Proposed by Vitaly Stakhovsky, National Center for Biotechnological Informa-
tion, Bethesda, MD. Two circles are given. The larger circle C has center O and radius
R. The smaller circle c is contained in the interior of C, and has center o and radius r.
Given an initial point P on C, we construct a sequence (P;) (the Poncelet trajectory
for C and c starting at P) of points on C: Put P, = P, and for j > 1, let P; be the
point on C to the right of o as seen from P;_; on a line through P;_; and tangent to c.
For j > 1, let w; be the radian measure of the angle counterclockwise along C from
Pj—l to Pj. Let

1 k
Q(C,c, P) = lim — i
(C,c, P) kggo Tk ; Wj
(a) Show that 2(C, ¢, P) exists for all allowed choices of C, ¢, and P, and that it is
independent of P.
(b) Find a formula for Q2(C, ¢, P) in terms of r, R, and the distance d between O
and o.

11480. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technol-
0gy, Damascus, Syria. Let a, b, and c be the lengths of the sides opposite vertices A,
B, and C, respectively, in a nonobtuse triangle. Let 4, h;,, and &, be the corresponding
lengths of the altitudes. Show that

h, 2+ hy, 2+ h. 2>9
a b c — 4’

and determine the cases of equality.

SOLUTIONS

Powerful Polynomials

11348 [2008, 262]. Proposed by Richard P. Stanley, Massachusetts Institute of Tech-
nology, Cambridge, MA. A polynomial f over a field K is powerful if every irreducible
factor of f has multiplicity at least 2. When ¢ is a prime or a power of a prime, let

P,(n) denote the number of monic powerful polynomials of degree n over the finite
field F,. Show that for n > 2,

Pq(n) — an/ZJ + ql_n/2jfl _ q|_(n71)/3j.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Let
A,(n) and S, (n) be the numbers of monic and monic square-free polynomials of de-
gree n over I, respectively. Introduce the ordinary generating functions:

Ag) =D A mx", Py(x) =Y Py(m)x", S,(x) =) Sy(m)x".
n=0 n=0 n=0
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A monic polynomial g of degree 2n over I, is a square if and only if g = f2, where
f is a monic polynomial over F, of degree n. Thus the ordinary generating func-
tion for monic polynomials that are squares is A, (x?). Since any polynomial can be
written uniquely as a square times a square-free polynomial, A, (x) = A, (x*)S, (x).

Ay (x)
Hence S, (x) = Aq"(xz).

so A, (x) => 02 q"x" = #, and it follows that S, (x) = lliqq’; )
Any powerful polynomial can be written uniquely as a square times the cube of a
square-free polynomial. As before, the number of cubes of square-free polynomials

having degree 3n equals the number of square-free polynomials of degree n. Thus

A straightforward counting argument shows that A, (n) = ¢",
2

1 1—gx® T4+x+x24x7 x4+x24x°
P =A,(HS, (x*) = = - '
7 (%) g (X7)Sq(x7) 1 —gx21—gx? 1 —gx? 1 —gx3

Expanding,

00
§ : 2 2m+1 2m+2 2m+3 3m+1 3m+2 3m+3
Pq(x): qm(xm+xn1 4 X2 p yImE3 _ y3mAl oy 3md2 o 3m )’

m=0
and the coefficient of x” is as claimed.

Also solved by R. Chapman (U. K), P. Corn, O. P. Lossers (Netherlands), J. H. Smith, A. Stadler (Switzerland),
B. Ward (Canada), BSI Problems Group (Germany), GCHQ Problems Group (U. K), Microsoft Research
Problems Group, and the proposer.

Popoviciu’s Inequality Again

11349 [2008, 262]. Proposed by Cezar Lupu (student), University of Bucharest,
Bucharest, Romania. In triangle ABC, let h, denote the altitude to the side BC and let
r, be the exradius relative to side BC, which is the radius of the circle that is tangent
to BC and to the extensions of AB beyond B and AC beyond C. Define hy, h,, rp,
and r. similarly. Let p, r, R, and S be the semiperimeter, inradius, circumradius, and
area of ABC. Let v be a positive number. Show that

3 %
20 +hyry +hlr))y <rlry +r)rl +rlr) + 38" (4Ri—r> )
Solution by Elton Bojaxhiu, Albania, and Enkel Hysnelaj, Australia. Let a, b, and
¢ be the side lengths of triangle ABC. Recall that h, = 2S/a, r, = S/(p — a), and
symmetrically for b and ¢, while S = pr = abc/(4R) = /p(p —a)(p — b)(p — ¢).
Putting everything in terms of a, b, and ¢ and simplifying verifies that

SU4R + 1)

(p—a)p—b)+(p—b)(p—c)+(p—op—a)=

Writingx =1/(p —a),y=1/(p —b),and z = 1/(p — ¢), we obtain
3p 3Sxyz 28%xyz 5
= s hara: s rarb:Sxy'
4R+r x+y—+z y+z

Letting f(x) = 1/x" and plugging these in, the desired inequality is equivalent to

2l (5) o (57) = (%)

Sf(X)+f(y)+f(Z)+3f<

xX+y+z
— )
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Since f(x) is convex for x > 0, this is an instance of Popoviciu’s inequality (S.
Savchev and T. Andreescu, Mathematical Miniatures, Mathematical Association of
America, 2003, pp. 19-20).

Editorial comment. P4l Péter Déalyay and GCHQ Problem Solving Group provided
(quite different) proofs of Popoviciu’s inequality. Michel Bataille noted the paper: V.
Cirtoaje, “Two generalizations of Popoviciu’s Inequality,” Crux Mathematicorum with
Mathematical Mayhem, vol. 31 no. 5 (2005) 313-318.

Also solved by M. Bataille (France), R. Chapman (U. K.), P. P. Dalyay (Hungary), R. Stong, M. Tetiva (Ro-
mania), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

A Partially Random Permutation

11350 [2008, 262]. Proposed by Bhavana Deshpande, Poona College of Arts, Science
& Commerce Camp, Pune, India, and M. N. Deshpande, Nagpur, India. Given a pos-
itive integer n and an integer k with 0 < k < n, form a permutation (ay, ... , a,) of
(1, ..., n) by choosing the first k£ positions at random and filling the remaining n — k
positions in ascending order. Let E, ; be the expected number of left-to-right maxima.
(For example, Es; =2, E3, = 11/6, and E4, = 13/6.) Show that £,y — E,x =
1/(k+1).

Solution by Richard Stong, Center for Communications Research, San Diego, CA.
Consider the following way of generating permutations: Choose a random permuta-
tion (by,...,b,). Set a; = b; for 1 <i < k, and sort the elements by, ..., b, to
produce a1, ... , a,. This is equivalent to the algorithm given in the statement, since
(b1, ..., by) is arandom choice of the first k positions. For j < k, the probability that
b; is a left-to-right maximum is the probability that b; is the largest of {by, ..., b;},
whichis 1/j. For j > k, the probability that b; becomes a left-to-right maximum of a
is the probability that b; is the largest of {by, ... , by, b;}, whichis 1/(k + 1). Hence

k
1 n—=k
En = § - PR
. ( ])+k—|—l

j=1
from which the claim follows immediately.

Editorial comment. Christopher Carl Heckman noted that the formula for E, ; yields

B k+1—n
Ckk+ Dk +2)]

Ey i1 — Enk

and Stephen Herschkorn obtained the following recurrence (free of n) for the variance
V..« of the number of left-to-right maxima:

2k

Vigok = 2Vosik + Vo = ——————=.
+2.k +1k = AT Dk T2

Also solved by M. Andreoli, D. Beckwith, B. Bradie, R. Chapman (U. K.), P. Corn, C. Curtis, K. David &
P. Fricano, J. Ferdinands, J. Freeman, J. Guerreiro & J. Matias (Portugal), C. C. Heckman, S. J. Herschkorn,
G. Keselman, J. H. Lindsey II, O. P. Lossers (Netherlands), K. Mclnturff, R. Mosier, D. Nacin, J. H. Nieto
(Venezuela), D. Poore & B. Rice, R. Pratt, B. Schmuland (Canada), A. Stadler (Switzerland), M. Tetiva (Ro-
mania), L. Wenstrom, BSI Problems Group (Germany), CMC 328, GCHQ Problem Solving Group (U. K.),
and the proposers.
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Forcing Three Integers with Zero Sum

11351 [2008, 262]. Proposed by Marian Tetiva, National College “Gheorghe Rosca
Codreanu,” Birlad, Romania. Given positive integers p and ¢, find the least positive
integer m such that among any m distinct integers in [— p, ¢] there are three that sum
to zero.

Solution by Brian Rice (student), Harvey Mudd College, Claremont, CA, and Daniel
Poore (student), Pomona College, Claremont, CA. The answer is max{p, q} + c,
where ¢ = 3 if p and ¢ are even and equal, and ¢ = 2 otherwise.

We may assume that p < ¢, since the problem is symmetric with respect to nega-
tion. For the lower bound, note that [—p, ¢] contains ¢ + 1 nonnegative integers,
and no three of them sum to 0. When p = g = 2k, we need a larger set: choose
{—=2k,...,—k, k, ..., 2k}, which consists of the 2k + 2 numbers with largest abso-
lute value. The magnitudes of any two of these numbers with the same sign sum to
more than the magnitude of any other, so no three sum to 0.

For the upper bound, first note that since there are ¢ distinct nonzero absolute
values, the pigeonhole principle implies that any set containing 0 and at least g + 1
other elements has three elements that sum to zero. Thus we need only show that if
X C [—p, q] — {0} such that no three integers in X sum to O, then |X| < g + 1+,
where § = 1 if ¢ is even and p = ¢, and § = 0 otherwise. We consider three cases.

Case 1: p and q are equal and odd. We prove by induction that | X| < g + 1. For
g = 1 thisis immediate. Forg > 1,letY = X N{—¢q,—(¢g —1),qg —1,q}.If Y| <2,
then | X| < g + 1 by the induction hypothesis, so we may assume that |Y| > 3. Now Y
has two elements with the same sign; we may assume that it has two negative numbers,
so —q € X.For 1 <i < (g — 1)/2, it follows that only one element from {i, g — i}
lies in X. Hence at most (¢ + 1)/2 positive integers are in X, with equality only if
q €X.

If ¢ € X, then by symmetry X contains at most (¢ + 1)/2 negative integers, so
|X| < g + 1, as desired. Otherwise, ¢ — 1 € X, since |Y| > 3. Now X cannot con-
tain —i and —q + 1+ i, for 1 <i < (g — 3)/2. Altogether X contains both —¢g and
—q + 1, at most (¢ — 1)/2 positive integers, at most one from each of (¢ — 3)/2
pairs of distinct negative integers summing to —(g — 1), and possibly the integer
—(q — 1)/2. Hence again | X| < g + 1.

Case 2: p and q are equal and even. By Case 1, [ X N[—g +1,g — 1]| < ¢g,and X
has at most two other elements. Hence | X| < g + 2, as desired.

Case 3: p <q — 1. If g is even, then X — {gq} € [—(¢ — 1), g — 1], so by Case
LI X—{gq}l <(@—1)+1=gq.If g is odd, then X C [—¢q, g] and Case 1 yields
IX| < g+ 1.

Also solved by D. Beckwith, C. Curtis, P. P. Ddlyay (Hungary), J. Ferdinands, J. H. Lindsey II, J. H. Nieto
(Venezuela), T. Rucker, B. Schmuland (Canada), J. Simpson (Australia), M. Tiwari, BSI Problems Group
(Germany), GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

Taylor Remainder Limit

11352 [2008, 263]. Proposed by Daniel Reem, The Technion-Israel Institute of Tech-
nology, Haifa, Israel. Let I be an open interval containing the origin, and let f be
a twice-differentiable function from / into R with continuous second derivative. Let
T, be the Taylor polynomial of order 2 for f at 0, and let R, be the corresponding
remainder. Show that

lim Ry(u) — Ry(v)
(M»v>;>(0’0) (u — v)Vu? +v?
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Solution by the BSI Problems Group, Bonn, Germany. Let g(t) = Ri(t)/t =
(f'(t) = f(0)/t — f"(0) fort € I\ {0}, and g(0) = 0. Note that g is continuous on
I and

Ry(u) — Ry(v) = /u R, (t)dt = fu tg(t)dt.

Without loss of generality, suppose # > v. By the Cauchy—Schwarz inequality,

(Rz(u) - Rz(U))2 =< (/” t? dt) </” g (1) a’t)
2 2 u
= ((u — v)%) (/ g (1) dt) .

Since uv < (u? +v?)/2,

(Ro() — Ry (v))’
(u — v)2(u? +v?)

1 u 1
= 2(u — v) /U gz(t) dt < 5 max{gz(t) 1t e [v,u]}_

This tends to 0 as (u#, v) — (0, 0) since g is continuous at 0 and g(0) = 0.

Editorial comment. The GCHQ Problem Solving Group provided a generalization. If
f is k times differentiable with continuous kth derivative, and Ry is the remainder term
in the Taylor approximation to f of order k at 0, then

Ri(u) — Ry (v)

im =0.
(,0)—0,0) (u — v)(u2 L v2)(k—1)/2
UuFv

Also solved by R. Bagby, R. Chapman (U. K.), P. P. Dalyay (Hungary), P. J. Fitzsimmons, J.-P. Grivaux
(France), J. Guerreiro & J. Matias (Portugal), E. A. Herman, G. Keselman, J. H. Lindsey II, O. P. Lossers
(Netherlands), K. Schilling, B. Schmuland (Canada), A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania),
GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.

An Integral Inequality

11353 [2008, 263]. Proposed by Ernst Schulte-Geers, BSI, Bonn, Germany. For s > 0,
let f(s) = fooo (1+x/s) e dx and g(s) = f(s) — «/s7/2. Show that g maps R*
onto (2/3, 1) and is strictly decreasing on its domain.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. De-
fine k(1) =t —log(l + 1) for + > 0. Note that k£ is increasing, differentiable, and
unbounded on [0, c0). Let & be the function on [0, co) given by h(u) = k= (u?/2).
From the limiting properties of &, it follows that lim,_, ., 2 (#) = oco. Note also that
u?/2 = h(u) — log(1 4 h(u)), so that h'(u) = u/h(u) + u, and thus A’ is positive
on [0, co). Moreover, h is analytic in a neighborhood of 0, as it is the inverse of
the function p given by p(t) = +/2k(t), which is analytic in a disk about 0. From
the Lagrange inversion theorem, /# has a Taylor’s series expansion, and we compute
h(u) = u + (1/3)u* + O(u?), from which it follows that 4(0) = 0, h’(0) = 1, and
h”(0) = 2/3. We claim that for u > 0, h(u)? > u?(1 4+ h(u)). Indeed, from the defini-
tion of 4 this is equivalent to

h2
log(14+h) —h+ ———= > 0.
og(1+h) +2(1+h)2/3 >
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Equality holds at & = 0, so it suffices to show that the left side is a strictly increasing
function of £, that is,

1 14 h h?
— - >
1+h (I+h)?3 31+ h)53

or (multiplying out and canceling a factor of /)

0

2
1+§h> (1 + h)*3,

which follows from Bernoulli’s inequality. This proves the claim.
Now substituting x = sh(t/4/s) yields

00 00 t
f(S) — / e—x+slog(l+x/s) dx = ﬁ/ e_[2/2h/ <_> dr.
0 0 Vs

Since [ e/ dt = /7]2 we have

d . _d t B+ h) = s
i (40 (52) =)= (am =) ==

and this last is negative. Here we have written i for h(t/./s ) and have used h* >
t3(1 + h) /s from the claim proved above. It follows that g is a decreasing function
of s and in fact that the integrand is decreasing. Hence the monotone convergence
theorem yields

. _ > 7t2/2 " o _ z
lim g(s) = e th"(0)dt = h"(0) = 3
§—00 0

From the original definition and monotone convergence, we conclude that
oo
lim g(s) = lim f(s) = f e lim (1 +x/s)°dx =1.
s—0t s—0t 0 s—0t

Thus g decreases from 1 to 2/3 as claimed.
Also solved by R. Bagby, P. Bracken, J. Grivaux (France), F. Holland (Ireland), P. Perfetti (Italy), B. Schmuland
(Canada), A. Stadler (Switzerland), B. Ward(Canada), Y. Yu, and the proposer.

An Absolute Value Sum

11354 [2008, 263]. Proposed by Matthias Beck, San Francisco State University, San
Francisco, CA, and Alexander Berkovich, University of Florida, Gainesville, FL. Find
apolynomial f in two variables such that for all pairs (s, ¢) of relatively prime integers,

s—1 1—1

ZZ |mt —ns| = f(s,1).

m=1 n=1

Solution I by Byron Schmuland, University of Alberta, Edmonton, Alberta, Canada.
Let A denote the expression to be evaluated. From —(mt — ns) = (s —m)t — (t — n)s,
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we see that each nonzero contribution |m¢ — ns| occurs once with mt — ns > 0 and
once with mt — ns < 0, using symmetric indices. Therefore, it suffices to double the
positive contributions: A = 2 3"~ S/ Gyt — pg). The inner sum, call it A,,, eval-
uates to mt |mt/s| — %s lmt/s|(lmt/s] + 1).

Now let mt = sq,, + r,, where 0 <r, <s —1,s0 \mt/s] = (mt —r,)/s. Thus

1 s—1

1 1
Ap=t(s = DQ@s =35 =) + ~ D ruls = 1)

s—
m=1 m=1

A=2

When s and ¢ are relatively prime, the remainders r,, for 1 <m < s — 1 are distinct
and take on all nonzero values, so

s—1 s—1
;rm(s —rpy) = mz;m(s —m) = é(s — Ds(s+ D).

Summing the contributions and simplifying yields

s—1 1—1

ZZ'”” —ns| = é(s — 1)@t —1)@2st —s —1t —1).

m=1 n=1

Solution Il by Allen Stenger, Alamogordo, NM. Let s and ¢ be relatively prime positive
integers. A nonnegative integer is called representable if it can expressed as a linear
combination of s and ¢ with nonnegative integer coefficients; otherwise it is nonrepre-
sentable. T. C. Brown and P. J.-S. Shiue (A remark related to the Frobenius problem,
Fibonacci Quarterly 31 (1993) 32-36) showed that the sum of all nonrepresentable
positive integers is

%(s—l)(t—l)(Zst—s—t— 1). (1)

This was recently reproved by A. Tripathi (On sums of positive integers that are not of
the form ax + by, this MONTHLY 115 (2008) 363-364).

We show that the positive values of m¢ — ns in our sum are the nonrepresentable
positive integers. As in solution I, the negative values of mt — ns are the negatives of
the positive values, so the desired sum is twice (1).

Fix a positive integer a. By the Chinese remainder theorem, the integer solutions
(m, n) tomt —ns = a are {(my + ks, ng + kt): k € Z} for a fixed solution (mg, ng).
The nonrepresentable a are those for which no solution has m > 0 and n < 0. There
is one solution with 0 < m < s — 1. If the corresponding »n is nonpositive, then a is
representable. If it is positive, then a is nonrepresentable, since increasing m requires
increasing 7.

Hence the positive values of mt —ns with 0 <m < s —1 and n > 0 are the
nonrepresentable numbers. If m = 0, then m¢ — ns is negative, and if n > ¢ then
mt —ns < (s — 1)t — st < 0. Thus the nonrepresentable numbers indeed are exactly
the positive values of mt — ns in our sum.

Also solved by R. Chapman (U. K.), P. Corn, P. P. Ddlyay (Hungary), A. Fok, J. R. Gorman, J. Guerreiro
and J. Matias (Portugal), S. J. Herschkorn, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands),
K. Schilling, R. A. Simén (Chile), J. Simpson (Australia), A. Stadler (Switzerland), R. Stong, R. Tauraso
(Italy), M. Tetiva (Romania), B. Ward (Canada), H. Widmer (Switzerland), J. B. Zacharias, GCHQ Problem
Solving Group (U. K.), Microsoft Research Problems Group, NSA Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamés Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, Laszl6
Liptak, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted solutions should arrive at
that address before July 31, 2010. Additional information, such as generaliza-
tions and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11488. Proposed by Dennis I. Merino, Southeastern Louisiana University, Hammond,
LA, and Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, FL.

(a) Show that if k is a positive odd integer, and A and B are Hermitian matrices of the
same size such that A* + B¥ = 21, then 21 — A — B is positive semidefinite.

(b) Find the largest positive integer p such that for all Hermitian matrices A and B of
the same size, 2”~! (A? + B?) — (A + B)? is positive semidefinite.

11489. Proposed by Panagiote Ligouras, “Leonardo da Vinci” High School, Noei,
Italy. Let ay, a;, and a, be the side lengths, and r the inradius, of a triangle. Show that
0,2 Ai+1di+2

> 18r7.
Jo~ (i1 + ai2) (i) + Gi2 — a;)

11490. Proposed by Gdabor Mészdros, Kemence, Hungary. A semigroup S agrees with
an ordered pair (i, j) of positive integers if ab = b’/a’ whenever a and b are distinct
elements of S. Find all ordered pairs (i, j) of positive integers such that if a semigroup
S agrees with (7, j), then S has an idempotent element.

11491. Proposed by Nicolae Anghel, University of North Texas, Denton, TX. Let P be
an interior point of a triangle having vertices Ay, A, and A,, opposite sides of length
ap, ay, and a, respectively, and circumradius R. For j € {0, 1, 2}, let r; be the distance
from P to A;. Show that
I 1
-+ > .
aé a% ag - R

ro ry

11492. Proposed by Tuan Le, student, Freemont High School, Anaheim, CA. Show that
for positive a, b, and c,
Jad+b b+ A+ ad - 6(ab + bc + ca)
a? + b? b2+ ¢? A2+a? T (a+b+o)Va+bbFolct+a)
doi:10.4169/000298910X480135
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11493. Proposed by Johann Cigler, Universitit Wien, Vienna, Austria. Consider the
Hermite polynomials H,, defined by

H,(x,s) = Z (2k>(2k_])n( s)kxm2,

0<k=<n/2

where m!! = ]_[km/z(m — 2i) for positive m, with (—1)!! = 1. Let L be the lin-
ear transformation from Q[x, s] to Q[x] determined by L1 = 1, Lx*s/ = x*Ls/
for j,k > 0, and LH,,(x,s) = 0 for n > 0. (Thus, for example, 0 = LH,(x,s) =
L(x* —s) = x> — Ls, so Ls = x°.) Define the tangent numbersT, bg tanz =
> o0 D121 /(20 + 1)), and the Euler numbers E,, by sec(z) = Y 20 720

n=0 @)%
(a) Show that

LHoyyi(x,5) = (—1)" T x>
(b) Show that
E2" 2n

o

11494. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Let A be the
Glaisher-Kinkelin constant, given by

A = lim p~" /22112 "2/41_[k" 1.2824 ... .

n— 00 7

Show that
00 (=" 1 A3
g(\/ﬂ(n/e)") T 21/ A

SOLUTIONS

A Reciprocal Diophantine Equation

11355 [2008, 365]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann
Arbor, MI. Determine for which integers a the Diophantine equation

I 1 1 a

Xy z xyz
has infinitely many integer solutions (x, y, z) such that gcd(a, xyz) = 1.

Solution by Eric Pité, Paris, France. Suppose first that a is odd. Let x = an + 2,

y = —(an+1),and z = a — xy = a’n* + 3an + a + 2, where n is any integer such
that xyz # 0 (there are inﬁnitely many such n). Since x + y=1landz =a —xy =
“X+"}y, we have Ml 5 + = Z. Also ged(a, y) = 1, and both ged(a, x) and ged(a, z)

divide 2, but s1nce ais odd we have gcd(a, xyz) = 1.

If a is even and gcd(a, xyz) = 1, then x, y, and z are odd. Now xy + yz 4 zx is odd
and cannot equal a. Hence there is no solution when a is even, and there are infinitely
many when a is odd.

Also solved by D. Beckwith, B. S. Burdick, S. Casey (Ireland), R. Chapman (U. K.), K. S. Chua (Singapore),
P. Corn, C. Curtis, K. Dale (Norway), D. Degiorgi (Switzerland), J. Fresan (Spain), D. Gove, E. J. Ionascu
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& A. A. Stancu, I. M. Isaacs, T. Keller, K. Kneile, O. Kouba (Syria), O. P. Lossers (Netherlands), S. Me-
skin, A. Nakhash, J. H. Nieto (Venezuela), C. R. Pranesachar (India), K. Schilling, B. Schmuland (Canada),
A. Stadler (Switzerland), R. Stong, J. V. Tejedor (Spain), M. Tetiva (Romania), V. Verdiyan (Armenia), B. Ward
(Canada), BSI Problems Group (Germany), Con Amore Problem Group (Denmark), GCHQ Problem Solving
Group (U. K.), Microsoft Research Problems Group, Northwestern Univ. Math Problem Solving Group, and
the proposer.

Integral Inequalities

11360 [2008, 365]. Proposed by Cezar Lupu, student, University of Bucharest, Bucha-
rest, and Tudorel Lupu, Decebal High School, Constanta, Romania. Let f and g be

continuous real-valued functions on [0, 1] satisfying the condition fol f)gkx)dx =
1 1 1 1 \? I 1 \? 1 AT
0. Show that [, f? [ & = 4<fo £l g> and [; f? (fo g) +5 & (fo f)
2
1 1
4 (fo £l g) :
Solution by Nate Eldredge, University of California San Diego, San Diego, CA. Let
(u,v) = fol u(x)v(x)dx. By scaling, we may assume (f, f) = (g, g) = 1. Leta =
(f, 1) and b = (g, 1). The desired inequalities then read 1 > 4a’bh* and b*> + a*> >

4a’b®. Bessel’s inequality yields 1 > a? + b?, and a® + b*> > 2ab is trivial. Hence
1 > a® + b* > (a® + b*)? > 4a’b?, which proves both inequalities.

A%

Editorial comment. Charles Kicey noted that the inequalities are best possible: let
f(x) =/2/2+ cosmx and g(x) = /2/2 — cos .

Also solved by U. Abel (Germany), K. F. Andersen (Canada), R. Bagby, A. Bahrami (Iran), M. W. Botsko,
S. Casey (Ireland), R. Chapman (U. K.), H. Chen, J. Freeman, J. Grivaux (France), J. Guerreiro & J. Ma-
tias (Portugal), E. A. Herman, G. Keselman, C. Kicey, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), J. H. Nieto (Venezuela), M. Omarjee (France), J. Rooin & M. Bayat (Iran), X. Ros (Spain), K.
Schilling, B. Schmuland (Canada), A. Shafie & M. F. Roshan (Iran), A. Stadler (Switzerland), R. Stong, R.
Tauraso (Italy), J. V. Tejedor (Spain), P. Xi and Y. Yi (China), Y. Yu, L. Zhou, GCHQ Problem Solving Group
(U. K.), Microsoft Research Problems Group, NSA Problems Group, and the proposers.

Supremum of a Nonlinear Functional

11366 [2008, 462]. Proposed by Nicolae Anghel, University of North Texas, Denton,
TX. Let ¢ : R — R be a continuously differentiable function such that ¢ (0) = 0 and
¢’ is strictly increasing. For a > 0, let C, denote the space of all continuous func-
tions from [0, a] into R, and for f € C,,let I(f) = fxa:o (P(x)f(x) —xop(f(x))) dx.
Show that [ has a finite supremum on C, and that there exists an f € C, at which that
supremum is attained.

Solution by Eugen J. lonascu, Columbus State University, Columbus, GA. For ev-
ery x € [0,a] we let g,(u) = ¢(x)u — x¢p(u), defined for all u € R. The deriva-
tive is g/ (u) = ¢(x) — x¢'(u). By the mean value theorem, ¢ (x) = ¢(x) — ¢(0) =
(x —0)¢'(c,) for some ¢, between 0 and x. If x > 0, then g, (u) = x(¢'(c) — ¢'(u)).
Because ¢’ is strictly increasing, c, is uniquely determined, and g, attains its max-
imum at c,. If x = 0, then g, = 0, and we simply define ¢y, = 0. This gives us a
function x +— ¢, which we denote by f;. Clearly

¢ (px)/x), if0<x=<a,
0, ifx=0.

fox) =
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This function is continuous at every positive point x, since ¢’ is continuous and strictly
increasing. Also, because 0 < ¢, < x for x > 0, this function is also continuous at 0.
Thus, fy € C,. Forall f € C,, we have

1) = /0 o (f(0) dx < /0 ¢ (folo)) dx = 1(fo).

This inequality answers both parts of the problem.

Editorial comment. Richard Bagby noted that it is not necessary to explicitly assume
the continuity of ¢’. If ¢ is differentiable everywhere, then ¢’ has the intermediate
value property by Darboux’s theorem, and every monotonic function on R with the
intermediate value property is continuous.

Also solved by R. Bagby, M. W. Botsko, P. Bracken, R. Chapman (U. K.), P. J. Fitzsimmons, J.-P. Gabardo
(Canada), J.-P. Grivaux (France), J. Guerreiro & J. Matias (Portugal), E. A. Herman, R. Howard, G. Keselman,
J. H. Lindsey II, O. P. Lossers (Netherlands), K. Schilling, A. Stadler (Switzerland), R. Stong, M. Tetiva
(Romania), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

Points Generated by the Nine Points

11370 [2008, 568]. Proposed by Michael Goldenberg and Mark Kaplan, Baltimore
Polytechnic Institute, Baltimore, MD. Let Ay, Ay, and A, be the vertices of a non-
equilateral triangle 7. Let G and H be the centroid and orthocenter of T, respectively.
Treating all indices modulo 3, let B, be the midpoint of A;_ A1, let Cy be the foot
of the altitude from Ay, and let D; be the midpoint of A H.

The nine-point circle of T is the circle through all B, C;, and D;. We now introduce
nine more points, each obtained by intersecting a pair of lines. (The intersection is not
claimed to occur between the two points specifying a line.) Let P, be the intersection
of Bk_leH and Bk+1Ck—1a Qk the intersection of Ck—le-H and Ck-l—le—h and Rk
the intersection of C,_;Cyy and D;_ Dy, ,.

Let e be the line through {Py, P;, P>}, and f be the line through {Q,, O, 0,}.
(By Pascal’s theorem, these triples of points are collinear.) Let g be the line through
{Ro, R, Ry}; by Desargues’ theorem, these points are also collinear.

(a) Show that the line e is the Euler line of T.

(b) Show that g coincides with f.

(c) Show that f is perpendicular to e.

(d) Show that the intersection S of e and f is the inverse of H with respect to the
nine-point circle.

Solution by the proposers. (a) Let k, m,n be 1, 2, 3 in some order. Applying Pappus’s
theorem to points B,,, C,,, A, online A; A, and to points B,, C,, A,, online A;A,,, we
get that the three points Py, G, and H, defined by P, = B,,C, N B,C,,, G = A,,B,, N
A,B,,and H = A,,C,, N A, C,, are collinear. So all P, lie on the Euler line GH.

(b) Let N be the nine-point circle. Consider the cyclic quadrilateral C,,C, D,, D,,.
Because H =C,,D, N C,D,, O, =C,D,nC,D,, and R, = C,,C, "\ D, D,, we
conclude that points Q; and Ry are on the polar of H with respect to N (see Theorem
6.51, p. 145, in H. S. M. Coxeter and S. L. Greitzer, Geometry Revisited, Mathematical
Association of America, Washington, DC 1967). So f and g coincide.

(¢) By the definition of polar, we have NH L fore L f.

(d) This also follows from the definition of polar.

Editorial comment. Most solvers proceeded analytically. Some solvers simplified the
algebra by using complex numbers or determinants. Some used Maple to help.
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Also solved by P. P. Dalyay (Hungary), D. Gove, J.-P. Grivaux (France), R. Stong, GCHQ Problem Solving
Group (U. K.).

For Grid Triangles, the Brocard Angle is Irrational in Degrees

11375 [2008, 568]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania. The first Brocard point of a triangle ABC is that interior point 2
for which the angles QBC, QCA, and Q2A B have the same radian measure. Let w be
that measure. Regarding the triangle as a figure in the Euclidean plane R?, show that
if the vertices belong to Z x Z, then w/m is irrational.

Editorial comment. The claim follows from combining several well-known results.

(a) cotw = cot A + cot B + cot C = (a® + b* + ¢?)/4S > /3, where S is the area
of the triangle. The first equality is shown in [1]; see also [S5] and [7]. The second
is an easy consequence of the law of sines and the law of cosines. The inequality
is due to Weitzenbdock [2], also proved in [8].

(b) Because the cotangent is decreasing on (0, w/2), we conclude that w < /6.
This is also deduced in [1] and [7].

(c) The squares of the sides (by the distance formula), the area S (by Pick’s The-
orem), and all six trigonometric functions of the angles (by various elementary
trigonometric relationships) are rational because the vertices belong to Z x Z.

(d) Every angle in (0, 7r/2) that is a rational multiple of 7 and has rational trigono-
metric functions is larger than 7 /6 (using Lambert’s theorem; see also [6]); so
w cannot be a rational multiple of 7.
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Jerry Minkus showed that a similar result can be obtained for triangles whose ver-
tices lie in the set of vertices of the unit triangular tiling of the plane, except that
of course equilateral triangles (for which w = 7/6) must be excluded. He also con-
jectured a generalization. Given a square-free positive integer d other than 3, let the
lattice L, be defined by {h + ké: h, k € Z}, where § = i~/d when d is congruent to
lor2mod4,and § = (—1 + iﬁ)/z when d = 3 (mod 4). The conjecture is that if
the vertices of triangle ABC lie on L,, then the Brocard angle w of triangle ABC is
an irrational multiple of 7.

Solved by R. Chapman (U. K.), P. P. Dalyay (Hungary), V. V. Garcia (Spain), J.-P. Grivaux (France), O. Kouba
(Syria), J. Minkus, A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), GCHQ Problem Solving Group,
and the proposer.
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Riemann Sums Don’t Converge?

11376 [2008, 664]. Proposed by Proposed by Bogdan M. Baishanski, The Ohio State
University, Columbus, OH. Given a real number a and a positive integer n, let

S, (a) = Z b
! an<k<(a+1)n V kn — an? ‘
For which a does the sequence (S, (a)) converge?

Solution by Vitali Stakhovsky, Rockville, MD. The sequence (S, (a)) converges if and
only if a is rational. Letting j = k — |an], an < k < (a + 1) n becomes 1 < j < n,
50 8, (@) =n" 2 Y (j —{an) ™ = (1 = n{an) ™2 + T, (@), where T, (a) =
n2Y_, (j—{an})”"? For j = 2,

2(VitT=Vi) <P =G~ lan
<2(Vi—1-Vi=2)<(G=1"",

whence
2n~1/? <Vn +1-— x/i) < T,(a) < 2n'*n =2

and lim,_, T, (a) = 2. Thus, S, (@) converges if and only if (n — n {an})~"/* does;
that is, it converges when R, (a) = n — n {an} has a positive limit, finite or infinite. If a
is rational, then writing a = p/q with p and q relatively prime yields 1 — {an} > 1/q,
SO R, (a) > n/q — oo and S, (a) converges.

If a is irrational, then its continued fraction convergents p;/q; satisfy 0 < a —
pe/qx < 1/q;¢ for even k, and 0 < py/qy —a < 1/g} for odd k. Thus for even &,
{qra} < 1/q; so that R, (a) > g — 1; on even k, this subsequence tends to infinity.
For odd k, on the other hand, {g;a} > 1 — 1/g; so that R, (a) < I; this subsequence
remains bounded. Thus (R, (a)) has neither a positive nor infinite limit, and therefore
(S, (a)) diverges.

Editorial comment. Several solvers noted that S, (a) is a Riemann sum for the expres-

sion fa”H dx/+/x — a, which evaluates to 2. Since the integral is improper, it need not
equal the limit of its Riemann sums.

Also solved by R. Chapman (U. K.), P. P. Dalyay (Hungary), J.-P. Grivaux (France), S. James (Canada), G.
Kouba (Syria), J. H Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany), P. Perfetti (Italy), E. Pité
(France), M. A. Prassad (India), N. Singer, A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), M. Wildon
(U. K.), BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), NSA Problems Group,
Northwestern University Math Problem Solving Group, and the proposer.

An Infinite Product for the Exponential

11381 [2008, 665]. Proposed by Jésus Guillera, Zaragoza, Spain, and Jonathan Son-
dow, New York, NY. Show that if x is a positive real number, then

0 n ; 1/n
e =T] ( (kx + 1)<‘“”1(k)> .
n=1 \k=0

Solution by BSI Problems Group, Bonn, Germany. Let f, be the nth factor. Using

“kd X oo 0] _ —kxt
log(1 + kx) = / Yy _ / / ke gy gy — / ST e,
o l+ky o Jo 0 t
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we find
m(l_e—xt)n B
1 = 1)<+l log(1 + k ——/ — e 'dt.
og f, Z( ) ()og<+x) . P

For ¢t > 0 we have

—xt)n

/' —log(1—(1—e™)) =uxt

=345

as N — oo. Hence, by the monotone convergence theorem,
N 00
Xt
log l_[f,, —>/ —e'dt = x.
n=1 0 4

Also solved by R. Bagby, D. Beckwith, R. Chapman (U. K.), H. Chen, Y. Dumont (France), M. L. Glasser,
R. Govindaraj& R. Ramanujan & R. Venkatraj (India), J. Grivaux (France), O. Kouba (Syria), O. P. Lossers
(Netherlands), A. Plaza & S. Falcon (Spain), R. Pratt, N. C. Singer, A. Stadler (Switzerland), V. Stakhovsky,
R. Stong, M. Tetiva (Romania), M. Vowe (Switzerland), L. Zhou, GCHQ Problem Solving Group (U. K.), and
the proposers.

Can You See the Telescope?

11383 [2008, 0757]. Proposed by Michael Nyblom, RMIT University, Melbourne, Aus-
tralia. Show that

3 [1+n2+2nvn2+4n+3
ZCOS

T
(n+1)(n+2) 3

Solution by Simon J. Smith, La Trobe University, Vendigo, Victoria, Australia. In fact,
the answer is 71 /6. To see this, let

1 ( 1 ) .1 \/l’l2 =+ 2n
6, = cos = sin _

n—+1 n—+1

so that

ZN: i 1+/n2+2n/n?2+4n+3
cos
(n+1D(n+2)

= E cos™' (cos 6, cosB,,1 + sinb, sin b, )

N
Z ' (cosBuri — 6,)) = Ons1 — 61,

which converges to /2 — 7 /3 = /6 as N — oo.

Also solved by Z. Ahmed (India), B. T. Bae (Spain), R. Bagby, M. Bataille (France), D. Beckwith, M. Bello-
Herndndez & M. Benito (Spain), P. Bracken, B. Bradie, R. Brase, N. Caro (Brazil), R. Chapman (U. K.), H.
Chen, C. Curtis, P. P. Ddlyay (Hungary), Y. Dumont (France), J. Freeman, A. Gewirtz (France), M. L. Glasser,
M. Goldenberg & M. Kaplan, J.-P. Grivaux (France), E. A. Herman, C. Hill, W. P. Johnson, D. Jurca, O.
Kouba (Syria), V. Krasniqi (Kosova), G. Lamb, W. C. Lang, K.-W. Lau (China), O. P. Lossers (Netherlands),
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G. Martin (Canada), K. Mclnturff, M. McMullen, R. Nandan, A. Nijenhuis, M. Omarjee (France), E. Pité
(France), A. Plaza (Spain), C. R. Pranesachar (India), M. T. Rassias (Greece), A. H. Sabuwala, V. Schindler
(Germany), A. S. Shabani (Kosova), N. C. Singer, A. Stadler (Switzerland), R. Stong, J. Swenson, M. Tetiva
(Romania), J. V. Tejedor (Spain), D. B. Tyler, Z. Voros (Hungary), M. Vowe, J. B. Zacharias, BSI Problems
Group (Germany), FAU Problem Solving Group, Szeged Problem Solving Group “Fejéntalaltuka” (Hungary),
GCHQ Problem Solving Group (U. K.), Hofstra University Problem Solvers, Microsoft Research Problems
Group, Missouri State University Problem Solving Group, NSA Problems Group, Northwestern University
Math Problem Solving Group.

Angles of a Triangle

11385 [2008, 757]. Proposed by José Luis Diaz-Barrero, Universidad Politécnica de
Catalufia, Barcelona, Spain. Let ag, o1, and o, be the radian measures of the angles of
an acute triangle, and for i > 3 let o; = «;_3. Show that

2
012

—L— (3+2tan’ ai)l/4 > 34/3.

i—o Yi+1lit2

Solution by Rob Brase, Lincoln, NE. We may assume oy < «; < . Then

o _ of _ o
< < and

10y a0y Qg
(2 4+ 2tan’ ) /* < (2 4 2tan’ o)) /* < (2 4 2 tan” o) /4.
By Chebyshev’s inequality,
Z aiiz (3 4+ 2tan’ ;)4 > 1 [Z O{i’z] [2(3 + 2 tan’ a,-)l/4] .
Q102 3 o1

Calculation shows that the second derivative of (3 + 2 tan? §)!/4 is positive on (0l7 /2).
Apply the AM—GM inequality to the first factor and Jensen’s inequality on the second
factor to obtain

e e awar]

1042

S Y N | P LR A N
-3 10 00y Oply 3

_3 (3 + 2 tan? (%))”4 — 343,

Note: equality holds only if g = oy = o, = /3.

Also solved by B. T. Bae (Spain), D. Barali¢ (Serbia), M. Bataille (France), D. Beckwith, M. Can, C. Curtis,
P. P. Dalyay (Hungary), P. De (India), Y. Dumont (France), O. Faynshteyn (Germany), V. V. Garcia (Spain), M.
Goldenberg & M. Kaplan, J.-P. Grivaux (France), H. S. Hwang (Korea), B.-T. Iordache (Romania), O. Kouba
(Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), P. Perfetti (Italy), E. Pité (France), M. A. Prasad (India),
S. G. Séenz (Chile), V. Schindler (Germany), A. S. Shabani (Kosova), A. Stadler (Switzerland), R. Stong, V.
Verdiyan (Armenia), Z. Voros (Hungary), M. Vowe (Switzerland), L. Zhou, “Fejéntalaltuka Szeged” Problem
Group (Hungary), GCHQ Problem Solving Group (U. K.), Hofstra University Problem Solvers, Microsoft
Research Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamds Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, L4sz16
Lipték, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted solutions should arrive at
that address before August 31, 2010. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11474. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Valentin Vornicu, Aops-MathLinks forum, San Diego, CA. (Correction) Show
that when x, y, and z are greater than 1,

C0) 290 () D (@72 > (DT () (@)
11483. Proposed by Eric Pité, Paris, France. (Correction) The word “nonnegative”
should read “positive.”

11495. Proposed by Marc Chamberland, Grinnell College, Grinnell, IA. Let a, b, and
¢ be rational numbers such that exactly one of a’b + b*c + c*a, ab® + bc* + ca®, and
a® 4+ b> + ¢ + 6abc is zero. Show thata + b + ¢ = 0.

11496. Proposed by Benjamin Bogosel, student, West University of Timisoara, Timi-
soara, Romania, and Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia. For a matrix X with real entries, let s(X) be the sum of its entries. Prove that if A
and B are n x n real matrices, then

n(s(AA") +s(BB") —s(AB")s(A"B)) >
s(AAT)(s(B))* + s(BB")(s(A))* — s(A)s(B) (s(AB") + s(A" B))..

11497. Proposed by Mihdly Bencze, Brasov, Romania. Given n real numbers x1, ... , x,
and a positive integer m, let x,,,1 = x1, and put

n n

2 2 m 2m

A= E (xk_xkxk+1+xk+]) , B=3 E X
k=1 k=1

Show that A < 3"B and A < (3" B/n)".

doi:10.4169/000298910X480865
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11498. Proposed by Y. N. Aliyev, Qafqaz University, Khyrdalan, Azerbaijan. Let
ABCD be a convex quadrilateral. A line through the intersection O of the diagonals
AC and BD intersects the interior of edge BC at L and the interior of AD at N.
Another line through O likewise meets AB at K and C D at M. This dissects ABC D
into eight triangles AK O, KBO, BLO, and so on. Prove that the arithmetic mean
of the reciprocals of the areas of these triangles is greater than or equal to the sum of
the arithmetic and quadratic means of the reciprocals of the areas of triangles ABO,
BCO,CDO, and DAO. (The quadratic mean is also known as the root mean square;
it is the square root of the mean of the squares of the given numbers.)

11499. Proposed by Omran Kouba, Higher Institute for Applied Science and Technol-
0gy, Damascus, Syria. Let H, be the nth harmonic number, given by H, = Y ,_, 1/k.
Let

Se =D (="' (logk — (Hiw — Hy))

n=1

Prove that for k > 2,

Si= " liogat Llogk = T ka(k-i—l oy cot (BLZ D7
CT Tk RO T e L N\ )

11500. Proposed by Bhavana Deshpande, Poona College, Camp Pune, Maharashtra,
India, and M. N. Deshpande, Institute of Science, Nagpur, India. We have n balls,
labeled 1 through n, and n urns, also labeled 1 through n. Ball 1 is put into a randomly
chosen urn. Thereafter, as j increments from 2 to n, ball j is put into urn j if that urn is
empty, otherwise, it is put into a randomly chosen empty urn. Let the random variable
X be the number of balls that end up in the urn bearing their own number. Show that
the expected value of X isn — H,_;.

11501. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let

3
+ =+

1—az 1—iz 1+iz

g(Z)=1—1_ ;

Show that the coefficients in the Taylor series expansion of g are all nonnegative if and
only if a > V3.

SOLUTIONS

An Unusual GCD/LCM Relationship

11346 [2008, 167]. Proposed by Christopher Hillar, Texas A&M University, College
Station, TX, and Lionel Levine, University of California, Berkeley, CA. Let n be an
integer greater than 1, and let S = {2, ... , n}. For each nonempty subset A of S, let
mT(A) = HjeA Jj. Prove that when £ is a positive integer and k < n,

nlcm({l, vy n/il}) = ged({m(A): |A] =n —k}).
i=k
(In particular, setting k = 1 yields ]_[;’:1 lem({1, ..., n/il}) =nl)
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Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove that both sides equal [], p™», where e, (n, k) = i, |log,(n/i)] and the
product runs over all primes (only finitely many primes contribute). Let v, (n) denote
the maximum r such that p” divides n.

For the left side, letting /(x) = lem({1, ..., [x]}), we have v,(/(x)) = |_10gp xj,
since p” divides /(x) if and only if x > p". Hence [[_, [(n/i) =[], pr™".

For the right side, let (by, ..., b,_;) be the result of putting (v,(2),...,v,(n)) in
nonincreasing order. The number of terms with v, (k) > r equals the number of mul-
tiples of p” in S, namely |n/p"]. Thus b, > r if and only if K < n/p”, and hence
b, = Llogp(n/k)J. The smallest value of v,(w(A)) such that [A| =n — k will be
achieved when A consists of exactly the elements of S corresponding to by, ... , b,_;.
Hence

n—1
vy(ged({r(A): [Al =n—k})) = Zbi =e,(n, k),
i=k
using the fact that the term for i = n in the summation for e,(n, k) always equals 0.
Applying this formula over all primes shows that the right side also equals [ ], p .

Also solved by D. R. Bridges, J. H. Lindsey II, O. P. Lossers (Netherlands), M. A. Prasad (India), T. Rucker,
K. Schilling, A. Stadler (Switzerland), M. Tetiva (Romania), S. Vandervelde, B. Ward (Canada), GCHQ Prob-
lem Solving Group (U. K.), NSA Problems Group, and the proposers.

Some Triangle Inequalities

11363 [2008, 461]. Proposed by Oleh Faynshteyn, Leipzig, Germany. Let m,, my,

and m. be the lengths of the medians of a triangle 7'. Similarly, let 1,, I, I., hy, hyp,

and A, be the lengths of the bisectors and altitudes of 7, and let R, r, and S be the
circumradius, inradius, and area of 7. Show that

Ll Il n 1.1,

I 1, I,

>3@2R —r),

and

malb mbIc mcla 5/4
> 3%/4/8.
he + hq + hy, —

Solution by GCHQ Problem Solving Group, Cheltenham, U. K. We write a, b, ¢ for
the lengths of the three sides, and s = (a + b + ¢)/2 for the semiperimeter. We will
write ) or [] for a three or six term sum or product, respectively, over permutations
of the triangle, with three terms if the sum is formally independent of the direction
of the cycle, and six if not. Thus, Y ab denotes ab + bc + ca while Y a’b = a’b +
b*c + c?a + ab® + bc? + ca®. We use several results from (or easily deduced from)
Geometric Inequalities by Bottema et. al. (Nordhoff, Groningen, 1969), including:

28 A
1, = - , abc =4Rrs, I = H sin —
(b + c)sin(A/2) 4R

Zaz =2(s> —4Rr — %), Zazb = 2s(s> —2Rr +r?),

ZazbZC = 4Rrs(s*> +4Rr + 1),

Z(sz = 2s(s* +r* + 6Rr> + 8R*r? 4+ 2r%s* — 10Rrs?),

Za4b = 2s(s* — 3r* — 14Rr® — 8R?*r? — 2r%s®> — 6Rrs?).
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The first inequality must be reversed. In fact, we will show that

16 1,1, I,1. 1.1,

—Q@R-—-r) < + <3@2R —r).

9 c Ia b

We begin with
28 28
L1, 0 sin(A/2) (c+a)sin(B/2)
Z L. 28
c (a+b) sin(C/2)

2S5

_ 2.2C
~ [+ b [[sin(A/2) 2 (a+bysin 2

Now
2Z(a+b) sin’ Z(a—i—b) (1 — cos C)

:220 —I—ZZab—ZazcosC—2ZabcosC.

But2) abcosC =) (a*+b*—c?) =) a* so

2 a*+2) ab—2) abcosC = () _a)’ =4s’

and
1
ZazcosC=7 a3bccosC_—Za c@*+b*—c%
abc
:2 b (Za c—|—22azb2 Zazc3>
abc
= 1R [s —3r* — 14Rr> — 8R*r* — 2r%s®> — 6Rrs> + 4Rr (s> +
r
4Rr 4+ r?) — (s*4+r*+6Rr>+8R* 1> +2r°s> — 10Rrs2)]
B 2Rs? —ARr? — 3 — rs?
= 7 .
Therefore

C 2Rs> +4Rr? + 13 + rs?
2 b)?sin® = = .
Z(a-i— )~ sin > F

Furthermore, [[(a + b) = Y a*bh + 2abc = 2s(s* + 2Rr + r?) and []sin(A/2) =
r/(4R). Hence

Lly Ll I, 2QRs*+4Rr* 471’ 4rs?)
I I, I, s2 4+ 2Rr +r?

()

Now by Geometric Inequalities (5.9), 4R*> + 4Rr + 3r? > s> > r(16R — 5r). For our
lower bound: 2Rs* + 36Rr?> + 17rs> + 17r> > 32R*r + 26Rr*> + 17rs> + 1713 >
32R%r, so 9(2Rs?> + 4Rr> +rs®> + 1) > 8Q2Rs> + 4R*r — rs?> — r?) = 8(s* +
2Rr +r?)(2R — r). Hence

1,1 Il. 1.1, 16
b b > — (2R —r).
I, 1, Iy 9
April 2010] PROBLEMS AND SOLUTIONS 373

This content downloaded from 146.201.208.22 on Thu, 21 Mar 2013 00:23:09 AM
All use subject to JSTOR Terms and Conditions




For our upper bound: R > 2r, so 0 < (R — 2r)(24R + 10r)r = 24R*r — 38Rr> —
1073, and hence 44R?*r — 10Rr*> > 20R?*r + 28Rr?* 4 20r3. Therefore 2Rs”> + 12R*r
> 44R’r — 10Rr?> > 20R?*r + 28Rr* 4+ 20r3 > 8Rr* + 5rs*> + 5r°, and 3(2R —
r)(s> + 2Rr 4+ r?) = 6Rs* + 12R*r — 3rs> — 3r3 > 4Rs> + 8Rr? 4 213 + 2rs’.
This inequality, in combination with (), gives

1,1 Il 1.1,
b ble |
1, 1, Iy

Now consider the second inequality. By elementary calculus, a function of the form
f(x) = x? + 21 /x achieves its minimum at x = A'/3, so f(x) > 31%/3.
Letting A = [ [m,1,/ h., we have

mgl, 2 mzlh2 myly, myl, sz,,2 h, 5
=) —5-+2 = —=2 4+ 2) > On*,
(L) = ot oy Bttt - 37 (e it ) =

Denote the exradii of T by r,, r,, and r.. By Geometric Inequalities (8.21) and (6.27),
we have m,mym. > r,ryr. = S?/r = Ss. By (8.7) we have

<3@2R —r).

8a’b>c? A 8a’b’c? s(s —a)
LIl = —— COS — = —————
[I(a+b) 2 Jla+b) bc
_ 8a’b*c? Ss B 8abcSs _ 32RsS?
" [la+b) abc  J[a+b) J[a+b)
28 85 283
hohpyh, = —_— = —=

a abc ~ Rrs’

Now

32RsS? Rrs 16R?rs? myl, 2 16Rrs® \
p _ and (Y s o (L8 )
[[(@a+b) 283 [(a +b) h, [I(a +b)

By (5.5) and (5.1), s> > 3r(4R +r) = 3r(9r) = 27r%,s0 s > 3/3r. By (5.8) s <
4R?> + 4Rr +3r?, and thus s> +2Rr +r> < 4R?> + 6Rr +4r> <4R?> + 3R>+ R*> =
8R?. Hence [[(a + b) = >_a’b + 2abc = 2s(s*> — 2Rr +r?) + 8Rrs = 2s(s> +
2Rr +r?) < 2s5(8R?) = 16R?s. This leads to 3+/3([J(a + b))*> < s(16R%s)*> =
256R*s3. Now 313/283 = 315/2;2¢3 "and

4.2 .6 2.3\ 2/3 2
315/2,3 3 < 799 256R*r*s 3529 < 9( 16R*rs ) - <Z malb> ’
T ([Me+b) “\[le+pn/) -~ he
so that finally 3/4/S < Y m,1I,/ h..

Also solved by V. V. Garcia (Spain) and R. Stong.

A Multiple of a Prime

11364 [208, 461]. Proposed by Pdl Péter Ddlyay, Szeged, Hungary. Let p be a prime
greater than 3, and let ¢ be the integer nearest p /6.
(a) Show that if p = 61 + 1, then

2t—1 ' 1 1
(b — 1)!;<—w (3]. ot +2) _0 (mod p).
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(b) Show that if p = 61 — 1, then

2t—1 i 2t—2 i
(—1)/ =D/ \
(p—D! <§ T - ;:O 3j+2> =0 (mod p).

Jj=0

Solution by Robin Chapman, University of Exeter, Exeter, U. K. The desired congru-
ence in both cases is

-1
— 1! Z ) _o (mod p), (1)
k=

where
0 ifk=0,3 (mod6),
x (k) = 1 ifk=1,2 (mod6),
—1 ifk=4,5 (mod 6).

Note that x (k) = (¢* — ¢7%)/~/=3, where ¢ = ¢™/3 = 1(1 4+ +/=3). Letting
F(z) = Y./~ 2*/k, we have

"i xk) _F@) = FE™
V=3

For the value on the right, note that F'(z) = > /_ 11 e Zp : ,0 F'(1 —z) =
Y10 (=DM (71])2k. Note also that (”}') = (=1)/ (mod p). Hence F'(1 — 2) =
pG(z) + F'(z) (mod p), where G is a polynomial having integer coefficients and
degree at most p — 2. We conclude that

2)

d
d_z(F(Z) —F(l—=2))=-pG(2). (3)
Let G(z) = Y 7~ byz*! with each by, € Z. Integrating (3) from 0 to z gives
p—1 by .
F@Q—FQ -2+ F()=-— —z.
@—F(1-2+F1)=—p kZ:lj .

Setting z = ¢ and using 1 — ¢ = ¢! yields
1 - by k
F)—F(& ' )=—-F()— —Z.
¢ ¢ p;k

Since p is odd, F(1) = (” 1)/2( +53) = ;(;;—11)/2 k(p” 5 It follows that

(p — D! F(1) is a multiple of p We conclude that in the context of algebraic inte-
gers, (p — D! (F(¢) — F(¢™")) =0 (mod p). Multiplying by +/—3 yields a rational
integer, and dividing by —3 (justified by p > 3) and invoking (2) yields the desired
congruence (1).

Editorial comment. Stong showed also that (p — D! F(¢) = (p— D!F(H =0
(mod p), which leads to (p — 1)! Z,f;ll @ = 0 (mod p) for every integer s.

Also solved by J. H. Lindsey II, M. A. Prasad (India), A. Stadler (Switzerland), R. Tauraso (Italy), M. Tetiva
(Romania), A. Wyn-Jones, GCHQ Problem Solving Group (U. K.), and the proposer.

April 2010] PROBLEMS AND SOLUTIONS 375

This content downloaded from 146.201.208.22 on Thu, 21 Mar 2013 00:23:09 AM
All use subject to JSTOR Terms and Conditions




Relating Two Integer Sequences

11365 [2008, 462]. Proposed by Aviezri S. Fraenkel, Weizmann Institute of Science,
Rehovot, Israel. Let t be a positive integer. Let y = /12 + 4, a = %(2 +y —1t), and

B = 1(2 4 y + ). Show that for all positive integers ,

—2
nB] = [(lna] +n(t = D)a] +1 = [(lna] +n(r = 1) + Da| - 1.

Solution I by Donald R. Bridges, Woodstock, MD. Letting € = (y — t)/2, we have
a=1+4+eand B =141+ €. Note that 1> < y? < (t +2)?, so y and € are irrational
and0 < e < 1.

We write the expressions in terms of €. For the first, [n8| = n + nt + |ne]. For the
second,

lna] +n(t —1) =nt + |ne|,
(lna] +n(t — 1))a = nt + |ne| + nte + |ne| €.

Squaring both sides of v/12 + 4 = t + 2¢ yields te + €> = 1, so nte + ne? = n. Also,
nte + |nel| € > nte 4+ (ne — 1)e, so the floor of the last displayed expression is nt +
lne] +n —1,since 0 < € < 1. This proves the first equality.

To compute the rightmost expression in the problem statement, begin with

(lna] +n(t —1)+ Do = nt + |ne] + 1+ nte 4+ |ne + 1] €.
Since nte + |ne + 1) € < nte + ne®> + € < n + 1, we obtain the desired equality

[(lna] +n(t — 1)+ D) = [nf] + 1.

Solution II by the proposer. First, observe that « and 8 are irrational numbers satisfy-
ingl <o < Bando + B = ofp, and that as aresult, 8 > 2. It is well known that under
these conditions, AU B = N, where A = {|na]| : n > 1}and B = {|nB] : n > 1}.

Since B > 2, the set B does not contain consecutive integers. Hence each term of
B lies between two consecutive terms of A. That is, for each positive integer n there
exists m such that |[m« ], |nf], and | (m + 1)« ] are consecutive integers. Given n, the
problem is to determine m.

Among the integers from 1 to |nfS], exactly n lie in B, so |[n] — n lie in A. There-
fore, m = |nB| — n. Thus

L(nB) —n)e], LB, L((lnB] —n) + 1) a]

are consecutive integers. It remains only to show that [n8| —n = |na| +n(t — 1).
This reduces to \_%n(y + t)_| = \_%n(y — Z)J + nt, which is true.

Editorial comment. The claim that A U B = N in Solution II is well known; the pro-
poser cited A. S. Fraenkel, How to beat your Wythoff games opponent on three fronts,
Amer. Math. Monthly 89 (1982) 353-361. The result is so astonishing and yet easily
proved that we include a short proof for the reader’s pleasure.

First note that a + b = ab is equivalent to j—l + % = 1. Also, a,b > 1. For any
k € N, the number of terms less than k in A U B is |k/a] + |k/b], since a and b are
irrational. We compute

2oL bl 2o

Similarly, A U B contains k terms less than k 4 1. Hence there is exactly one term less
than k& + 1 but not less than k; it equals k.
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Also solved by R. Chapman (U. K.), P. Corn, C. Curtis, J. H. Lindsey II, O. P. Lossers (Netherlands),
M. A. Prasad (India), A. Stadler (Switzerland), R. Stong, GCHQ Problem Solving Group (U. K.), and the
proposer.

An Exponential Inequality

11369 [2008, 567]. Proposed by Donald Knuth, Stanford University, Stanford, CA.
Prove that for all real ¢, and all o« > 2,

e —2< (e + ef')a - 2%,

Solution by Knut Dale, Telemark University College, Bg, Norway. For t € R and
a>0,let f(t,a) = ((¢ +eH* —2% — (e* + e —2). Since f(0,x) =0 and
f(—t, ) = f(t, ®), we need only consider ¢ > 0. Write

, Sinhx

ft,a)= af {(ex +e™) — (™" — e_“x)} dx
0

cosh x
1
= oe/ (e" + efx)“{g(x, 1) — g(x, a)}dx,
0
where g(x, o) = (e** — e ") /(e + e *)*. Let x > 0 and observe that g(x, a) > 0,
g(x,2)=g(x,1) > 0,and g(x, 0) = g(x, c0) = 0. Note that

ag(x, o) In(e* +e¢™) +x 5
o~ 7 O : ; O(X.
o g In(e® + e %) —x - *)

Likewise, equivalence holds if we replace “>" with “=" or with “<” throughout (x).
ince e~** is an increasing function of «,
S 2ax funct f

In(e* +e™) +x

In(e¥ +e=) — x

20x

has a unique solution « in the interval (1, 2). Thus, as a function of «, g(x, ) increases
from O to a maximum in (1, 2) and then decreases towards 0. Hence f (¢, «) > O for
ae(0,1)U(@2,00), f(t,a) <O0fora € (1,2),and f(¢t,a) =0 fora € {0, 1, 2}.

Editorial comment. Grahame Bennett (Indiana University) provided an instructive so-
lution including a general context for this inequality. That solution is now incorporated
into a paper, appearing in the current issue of this MONTHLY (see p. 334).

Also solved by F. Alayont, K. Andersen (Canada), R. Bagby, G. Bennett, D. & J. Borwein (Canada), P. Bour-
don, P. Bracken, R. Chapman (U. K.), H. Chen, P. P. Dalyay (Hungary), K. Endo, G. C. Greubel, J. Grivaux
(France), J. A. Grzesik, S. J. Herschkorn, M. Hildebrand, F. Holland (Ireland), A. Incognito & T. Mengesha,
V. K. Jenner (Switzerland), O. Kouba (Syria), K.-W Lau (China), W. R. Livingston, O. P. Lossers (Nether-
lands), K. Mclnturff, K. Nagasaki (Japan), T. Nakata (Japan), O. Padé (Israel), P. Perfetti (Italy), A. Plaza
& J. M. Pacheco (Spain), D. S. Ross, V. Rutherfoord, B. Schmuland (Canada), A. Stadler (Switzerland), R.
Stong, R. Tauraso (Italy), M. Tetiva (Romania), M. Thaler (Australia), J. Vinuesa (Spain), Z. Voros (Hungary),
T. Wilkerson, Y. Yu, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), Microsoft
Research Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamés Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, Laszl6
Liptak, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted solutions should arrive at
that address before September 30, 2010. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11502. Proposed by Pdl Péter Ddlyay, Dedk Ferenc High School, Szeged, Hungary.
For a triangle with area F', semiperimeter s, inradius r, circumradius R, and heights
hg, hy, and h,., show that

2Fs 10r(5R —r)
Sthe +hy +he) > R—+ 18r > ——.
’

11503. Proposed by K. S. Bhanu, Institute of Science, Nagpur, India, and M. N. Desh-
pande, Nagpur, India. We toss an unbiased coin to obtain a sequence of heads and tails,
continuing until r heads have occurred. In this sequence, there will be some number R
of runs (runs of heads or runs of tails) and some number X of isolated heads. (Thus,
withr = 4, the sequence HHT HT T H yields R = 5 and X = 2.) Find the covariance
of R and X in terms of r.

11504. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let N
be a positive integer and x a positive real number. Prove that

N N—m+1xk m
Z% Z A >1+x+-+x".

m=0 k=1

11505. Proposed by Bruce Burdick, Roger Williams University, Bristol, RI. Define {a,,}
to be the periodic sequence given by a; = a3 = 1,a, =2, a4 = a¢ = —1, as = =2,
and a, = a,_¢ forn > 7. Let { F,,} be the Fibonacci sequence with F| = F, = 1. Show
that

Z ay Fy For— i (=D _r
=1 2k -1 e Frntok—1 Fint3k—1 4
doi:10.4169/000298910X486003
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11506. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY. Show that for
positive integers m and n with m 4+ n < mn, and for positive a and b,

] T oo xl/n bl/m _ xl/m . T o] xl/m al/n _ xl/n
sin (—) dx = sin (—) dx.
n’/ Jiox+a b—x m/ Jo_ox+b a-—x

11507. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let n be a positive integer and let R be a plane region of perimeter 1. Inside
R there are a finite number of line segments the sum of whose lengths is greater than
n. Prove that there exists a line that intersects at least 2n 4 1 of the segments.

11508. Proposed by Mihdly Bencze, Brasov, Romania. Prove that for all positive inte-
gers k there are infinitely many positive integers n such that kn + 1 and (k + 1)n + 1
are both perfect squares.

SOLUTIONS

Special Divisors of Factorials

11358 [2008, 365]. Proposed by Marian Tetiva, National College “Gheorghe Rosca
Codreanu,” Bdrlad, Romania. Let d be a square-free positive integer greater than 1.
Show that there are infinitely many positive integers n such that dn? 4 1 divides n!.

Solution I by O. P. Lossers, Technical University of Eindhoven, Eindhoven, The Nether-
lands. The condition that d is square-free is unnecessary. Consider the following fac-
torization: x'% 4+ 1 = p(x)q(x)r(x) (obtained from the factorization of x2' — 1 in
irreducible cyclotomic polynomials), where

p)=1+x—x>—x—x7T — xS+ x0p X" 24 xB
oM 16 17 18 19 403 a0

gx) =1—x +x° —x" + x"2 + 2 —x¥ + 1% — 2 + 27,

r) =1—x+x"+x° —x®4+ 2" —x¥ + 7 + 2 —xP 42" -

L6 T2 226 o831 2%

R S e T S A i S Al S A AU S

34 105d52
b

For x > 2, we have p(x) < x® < q(x) < x** < r(x) < x32. Taking n = a

where a > 1 is any integer, we have
dn*+1={da>)'® +1= p(daz)q(daz)q(da2).

This product divides n!, since the three factors are different and all three are less than
a'%d3?, which is at most n.

Solution Il by Joao Guerreiro, student, Insituto Superior Técnico, Lisbon, Portugal.
We prove the claim for every positive integer d. Let

n=dk*d+1)*+k(d+1)+1,

where k is a positive integer greater than 1. We claim that all such n have the prop-
erty that dn”® + 1 divides n!. With n so defined, we put m = dn”? + 1 and factor the
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expression for m, obtaining
m =d[dk*(d+1)> + k(d + 1) + 1 + 1
= [dk*(d + 1)* + 1][d°k*(d + 1)* + d + 2dk(d + D] + dk*(d +1)* + 1
= [dk*(d + 1)* + 11(d + D[d°k*(d + 1) + 2dk + 1]
For k > 1, we also have
d+1<dk*(d+1)+2dk+1 <dk*d+1D*+1 <n.
Since these quantities are distinct integers less than n, their product m divides n!.

Solution III by GCHQ Problem Solving Group, Cheltenham, U. K. The Pell equation
y? — dn* = 1 has infinitely many positive integer solutions (y, n). If (¥, N) is any
solution, then an infinite family of solutions is generated using (y — nv/d) = (¥ —
N+/d)" for r € N. This follows immediately from the standard result that, if (yo, n¢)
is the smallest positive solution, then (y — n+/d) = (yy — nov/d)* for k € N generates
all positive solutions.

For some solution (Y, N) with ¥ > 3+/d, generate solutions (y,, n,) as above. Use
only odd r, so that Y divides y,. Also make r large enough so that y, > 2Y2.

Let (y,n) be the solution given by any such r. Let s = y/Y, so s > 2Y. Since
y? =dn?+1 < 3dn’, we have y < 3n+/d. Dividing by ¥ and using ¥ > 3+/d yields
s <n/2.

Since y*> = Y2s%, we have (dn®> +1) | Y -2Y -5 -2s. Since 2Y < s < n/2, these
four factors are distinct and less than n. Thus their product divides n!.

Editorial comment. Most solvers used solutions to the Pell equation. John P. Robert-
son proved a more general result: whenever d and c are integers not both 0, there are
infinitely many positive integers n such that dn* + ¢ divides n!. The proposer gener-
alized this further: if a, b, and c are not all 0, then there are infinitely many positive
integers n such that an? + bn + ¢ divides n!. The proposer asks whether the result
extends to polynomials of higher degree.

Also solved by S. Casey (Ireland), R. Chapman (U. K.), K. Dale (Norway), P. W. Lindstrom, U. Milutinovi¢
(Slovenia), J. P. Robertson, B. Schmuland (Canada), N. C. Singer, A. Stadler (Switzerland), R. Stong, Mi-
crosoft Research Problems Group, and the proposer.

A Weighted Sum in a Triangle

11368 [2008, 462]. Proposed by Wei-Dong Jiang, Weihai Vocational College, Weihai,
ShanDong, China. For a triangle of area 1, let a, b, ¢ be the lengths of its sides. Let
s = (a + b + ¢)/2. Show that the weighted average of (s — a)?, (s — b)?, and (s — ¢)?,
weighted by the angles opposite a, b, and ¢ respectively, is at least 1/+/3.

Solution by Richard Stong. We begin with a computational lemma.
Lemma. If x, y,z > Oand xy + yz + zx = 1, then

yzarctanx  zx arctany n Xy arctan z - 2

x y 2 T3

Proof. Leta = (2+/3 —3)/8 ~ 0.98, B = o — 3/4 > 0. Calculus shows that for
t > 0, we have (arctant)/t > o — Bt Using this, we conclude that the left side of (1)
is at least (xy + yz + zx)a — (x%yz + y*zx + z°xy)B. Applying

ey

(@a+b+c)=a*>+b*+c*+2(ab + be + ca) > 3(ab + be + ca)
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(a corollary of the Cauchy—Schwarz inequality), we get
1
x?yz 4+ yizx + 22xy = (xy)(x2) + (y2)(yx) + (2x)(zy) < g(xy + vz + 2x)°.

Since xy + yz + zx = 1, the left side of (1) is at least o — 8/3 = 27 /+/3. O

Now consider a triangle AABC. Let a, b, ¢ be the lengths of the sides opposite
A, B, C, respectively. Let x =r/(s —a), y =r/(a — b), and z = r/(s — c), where
r is the inradius. The tangents to the incircle from vertex A have length s — a, so
A = 2 arctan x, and symmetrically for the other two vertices. By Heron’s formula, the
area K is given by K> = s(s — a)(s — b)(s — c¢). But also K = rs, 50

yz r(s —a) B rs(s —a)?
x (s=b)(s—c¢) K2

and two other similar equations. Thus the desired inequality follows from the lemma.

= (s —a)’,

Editorial comment. Some solvers pointed out that the problem concerns a weighted
sum not a weighted average, and that the weighted average version is false.

Also solved by J. Grivaux (France), K. Mclnturff, Con Amore Problem Group (Denmark), GCHQ Problem
Solving Group (U. K.), and the proposer.

Glaisher—Kinkelin Infinite Product

11371 [2008, 567]. Proposed by Ovidiu Furdui, University of Toledo, Toledo, OH. Let
A denote the Glaisher-Kinkelin constant, given by

A = lim p~"2/2n/2-1/12,0%/4 ﬁkk —1.2824... .

n— 00
k=1

Evaluate in closed form

o0

AT (e +1/mm) "

n=1

Solution by Richard Stong, Center for Communications Research, San Diego CA. The
terms in the infinite product tend to 1, so it suffices to show that the even-numbered
partial products converge. Using Stirling’s formula and the definition of A, we obtain

N
1 1
Z logk =logN!= NlogN — N + ilogN—I- 510g(2n)+0(1/N},

k=1

N N(N +1) N2 1
E klogk = ————1ogN — — + —log N +1log A + O(1/N).
— 2 4 12

Therefore
2N L N 2N 1 1
(—=D)*logk =2 log(2k) — logk = —log N + —logm + O(1/N),

2N N 2N
> (=Dfklogk =2 "2klog(2k) — > klogk
k=1 k=1 k=1

1 1
= NlogN + Nlog2+ ZlogN— Elog2+3logA+O(1/N).
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Subtracting twice the second equation from the first yields Ziil(—l)k*l(ﬂc -
1) logk = —2N log(2N) — 6log A + £ log(27?*) + O(1/N). Therefore

N w ([ 1 K\ D - N o B N
g T]le T+ = > (=D (klog(k + 1) — klogk — 1)

k=1 k=1

2N
— Z (—D)¥(klog(k + 1) — klogk)
k=1

2N

=2N1og2N + 1) + Y (="' 2k — 1) logk

k=1

2N +1

1
= 2N log ( ) —6log A + c log(27*) + O(1/N).
The first term on the right tends to 1. Exponentiate both sides and multiply this result
by A® to see that the desired limit is 2'/%¢ /7.

Also solved by J. Borwein (Canada), B. Bradie, B. S. Burdick, R. Chapman (U. K.), P. P. Délyay (Hungary),
G. C. Greubel, J. Grivaux (France), O. Kouba (Syria), J. H. Lindsey II, W. R. Livingston, P. Perfetti (Italy),
A. Stadler (Switzerland), M. Tetiva (Romania), GCHQ Problem Solving Group (U. K.), Microsoft Research
Problems Group, and the proposer.

Fibonacci Fixed Points

11373 [2008, 568]. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn,
NY. Let S, be the symmetric group on {1, ..., n}. By the canonical cycle decomposi-
tion of an element 7 of §,,, we mean the cycle decomposition of 7 in which the largest
entry of each cycle is at the beginning of that cycle, and the cycles are arranged in
increasing order of their first elements.

Let v¥,: S, — S, be the mapping that associates to each = € §, the permuta-
tion whose one-line representation is obtained by removing the parentheses from the
canonical cycle decomposition of . (Thus the permutation (iigg ) has one-line repre-
sentation 34521 and canonical cycle representation (42)(513) and is mapped by /s to

42513.) Describe the fixed points of 1, and find their number.

Solution by John H. Lindsey II, Cambridge, MA. Let f(n) be the number of fixed
points of ,,.

If 7 is a fixed point of v, such that 7 (n) = n, where n > 1, then 7|, ,—1} is a
fixed point of ,_;. Conversely, every fixed point 7w of i, ; may be extended to a
fixed point of ¥, by setting 7 (n) = n. Hence there are f(n — 1) fixed points 7 of ¥,
with 7 (n) = n.

Let & be a fixed point of v, such that w(n) < n, where n > 2. Since n is the
largest element of its cycle, this cycle in the canonical representation appears as
(n,t(n),...). Thus the one-line representation of ¥, (;r) ends with n, w(n),....
Since 7 is a fixed point of ¥, and the one-line representation of 7 ends with w(n), it
must end with n, 7 (n). Thus w(n — 1) = n, and the cycle of 7 containing n has only
the two elements n and n — 1. Furthermore, 7| ,—2 is a fixed point of v,_,, and
conversely every fixed point of i, , yields a fixed point of ¥, by adding the cycle
(n,n—1).

Thus f(n) = f(n — 1)+ f(n —2) forn > 2, with f(0) = f(1) =1, so f(n) is
the (n + 1)st Fibonacci number, and the fixed points of i, are products of disjoint
transpositions of consecutive integers.
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Editorial comment. Marian Tetiva pointed out that a related problem, also proposed
by Emeric Deutsch, appeared as problem 1525 in the June 1997 issue of Mathematics
Magazine, solved by José Nieto on pages 227-228 of the June 1998 issue (volume 71).
That problem asks about the fixed points for a similar mapping in which the canonical
representation for permutations puts the smallest entry of each cycle last, with the
cycles in increasing order. There are 2"~! fixed points for that mapping.

Also solved by R. Bagby, D. Beckwith, J. C. Binz (Switzerland), R. Chapman (U. K.), M. T. Clay, P. Corn,
C. Curtis, P. P. Dalyay (Hungary), K. David & P. Fricano, M. N. Deshpande & K. Laghale (India), A. Incog-
nito, C. Lanski, O. P. Lossers (Netherlands), R. Martin (Germany), J. H. Nieto (Venezuela), R. Pratt, M. Reid,
K. Schilling, E. Schmeichel, B. Schmuland (Canada), P. Spanoudakis (U. K.), R. Stong, J. Swenson, R. Tauraso
(Italy), M. Tetiva (Romania), BSI Problems Group (Germany), Szeged Problem Group “Fejéntalaltuka” (Hun-
gary), GCHQ Problem Solving Group (U. K.), Houghton College Problem Solving Group, Missouri State
University Problem Solving Group, NSA Problems Group, and the proposer.

Circle Radii Related to a Triangle

11386 [2008, 757]. Proposed by Greg Markowsky, Somerville, MA. Consider a tri-
angle ABC. Let O be the circumcircle of ABC, r the radius of the incircle, and s
the semiperimeter. Let arc (BC) be the arc of O opposite A, and define arc (CA) and
arc (A B) similarly. Let O, be the circle tangent to AB and AC and internally tangent
to O along arc (BC), and let R4 be its radius. Define Og, O¢, Rp, and R similarly.
Show that

1 1 1 52
aRy, bR cRc "~ rabc’

Solution by George Apostolopoulos, Greece.
Let K be the center of D4, so
AK = R,/ sin(A/2). Also
AO =R, 0K =R — R4, and
/{OAK = (/B — /C)/2.

The law of cosines gives OK? = AO* + AK* —2- OA - AK - cos LOAK, or put
another way,

R R B-C
(R—Ry)? =R+ —2— —2R—"—cos
sin“(A/2) sin(A/2) 2
Therefore
R 2R B—-0C)/2
R4 R = A cos(( )/2)
sin*(A/2) cos((B + C)/2)
Equivalently,
_ 4R sin(A/2) sin(B/2) sin(C/2) . r _ rbc
AT cos2(A/2) T cos2(A/2)  s(s—a)
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Similarly, Ry = rca/(s(s — b)) and Rc = rab/(s(s — c)). Thus

1 1 1 s(s—a) s(s—b) s(s—c)
+ = + +
aR, bRy cRc¢ rabc rabc rabc
3’ —s(a+b+c) 5
B rabc " rabc’

Also solved by B. T. Bae (Spain), D. Baralic (Serbia), M. Bataille (France), M. Can, C. Curtis, P. P. Dalyay
(Hungary), P. De (India), Y. Dumont (France), O. Faynshteyn (Germany), V. V. Garcia (Spain), M. Goldenberg
& M. Kaplan, J. Grivaux (France), J. G. Heuver (Canada), E. J. Ionascu, B. T. lordache (Romania), O. Kouba
(Syria), J. H. Lindsey II, A. Nijenhuis, P. Niiesch (Switzerland), V. Schindler (Germany), E. A. Smith, A.
Stadler (Switzerland), R. Stong, M. Tetiva (Romania), G. Tsapakidis (Greece), D. Vacaru (Romania), Z. Voros
(Hungary), M. Vowe (Switzerland), J. B. Zacharias & K. Greeson, L. Zhou, Szeged Problem Solving Group
“Fejéntalaltuka” (Hungary), GCHQ Problem Solving Group (U. K.), and the proposer.

Complex Hermitian Matrix

11396 [2008, 856]. Proposed by Gérard Letac, Université Paul Sabatier, Toulouse,
France. For complex z, let H,(z) denote the n x n Hermitian matrix whose diagonal
elements all equal 1 and whose above-diagonal elements all equal z. For n > 2, find
all z such that H,(z) is positive semi-definite.

Solution by Mark Wildon, University of Bristol, Bristol, U. K. If z is real, then Z'f [
is an eigenvector of H,(z) with corresponding eigenvalue 1 + (n — 1)z, while for k €
{2,...,n}, e, — e is an eigenvector of H,(z) with corresponding eigenvalue 1 — z.
This shows that 1 4+ (n — 1)z and 1 — z are the only eigenvalues of H, (z). Hence H, (z)
is positive semi-definite if and only if

Now suppose that z is not real. By replacing H,(z) with its transpose, we may
assume that Im z > 0. Under this assumption, we shall prove that H,(z) is positive
semi-definite if and only if

arg(z — 1) =

arg z — D
g +(n )
n n

(where for Im z > 0 we take 0 < argz < 7).
We first claim that H,(z) is singular if and only if

(i) ==
1—-2 z

Let w = (1 —z)/(1 —%) and v € C". The difference between the ith and (i + 1)st
components of vH, (z) is (1 — z)v; — (1 — Z)v;41. Hence v H,(z) has constant compo-
nents if and only if v is a scalar multiple of the vector (1, w, w?, ..., w" ). The first
component of (1, w, w?, ..., w" ") H,(z) is

Z(w"—w)—i—w—l_Zw"—z

l+zZw+w’ +- 4w = = :
w—1 w—1

This vanishes if and only if w" = z/z, which proves the claim.
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If A € Ris an eigenvalue of H, (z) then (provided A # 1), the matrix H,(z/(1 — 1))
is singular. Hence H, (z) has an eigenvalue less than zero if and only if there exists a

A < O such that
1—)—z\" 2
l-x-32) 7’

argz  km
ag@+k—D:—§—+?—

or equivalently, if and only if

for some A < 0 and k € Z. As A decreases from 0 to —oo, the argument of z + A — 1
increases from arg(z — 1) to 7. Hence if this equation has a solution, it has one with
k =n — 1 and a solution exists if and only if

arg z n—Dm
arg(z — 1) < f —1—( ) ;

n

This proves our claimed criterion for H,(z) to be positive semi-definite.

Also solved by R. Chapman (U. K.), P. P. Ddlyay (Hungary), A. Stadler (Switzerland), R. Stong, T. Tam, S. E.
Thiel, F. Vial (Chile), E. I. Verriest, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.),
and the proposer.

A Max and Min Inequality

11397 [2008, 948]. Proposed by Grahame Bennett, Indiana University, Bloomington,
IN. Suppose a, b, c, x, y, z are positive numbers such that a +b+c=x+y +z
and abc = xyz. Show that if max{x,y,z} > max{a, b, c}, then min{x, y, z} >
min{a, b, c}.

Solution by Marian Tetiva, Birlad, Romania. For ¢ = ab + ac + bc and r = xy +
xz + yz, the identity

t—a)t=b)(t =) =t =x)t = y)t —2) = (g =1t )]

follows from the hypotheses. If x = max{x, y, z} and z = min{x, y, z}, for example,
and we replace 7 in (1) by x and z, then we obtain

(x —a)(x —=b)(x —¢) = (g — r)x, z—a)z=b)(z—c)=(¢9 =)z,

respectively. Since x > max{a, b, c}, it follows that ¢ —r = (x —a)(x — b)(x —
c)/x > 0, which implies (z —a)(z — b)(z —c) = (g — r)z > 0. This implies that
z > min{a, b, c}.

Editorial comment. Richard Stong remarked that if a < b < c and x < y < z, then
a<x<y<b=<c=<z

Also solved by B. M. Abrego, M. Afshar (Iran), K. Andersen (Canada), D. Beckwith, D. Borwein (Canada), R.
Brase, P. Budney, R. Chapman (U. K.), J. Christopher, P. Corn, C. Curtis, L. W. Cusick, P. P. Ddlyay (Hungary),
Y. Dumont (France), D. Fleischman, T. Forgics, J. Freeman, D. Grinberg, J. Grivaux (France), E. Hysnelaj &
E. Bojaxhiu (Australia & Albania), B.-T. lordache (Romania), K.-W. Lau (China), J. H. Lindsey II, O. P.
Lossers (Netherlands), M. Nyenhuis (Canada), E. Pité (France), C. Pohoata (Romania), M. A. Prasad (India),
R. E. Rogers, J. Schaer (Canada), B. Schmuland (Canada), R. A. Simén (Chile), A. Stadler (Switzerland), J.
Steinig (Switzerland), R. Stong, S. E. Thiel, V. Verdiyan (Armenia), E. I. Verriest, J. Vinuesa (Spain), Z. Voros
(Hungary), S. Wagon, H. Widmer (Switzerland), Y. Yu, J. B. Zacharias, Armstrong Problem Solvers, GCHQ
Problem Solving Group (U. K.), Microsoft Research Problems Group, NSA Problems Group, Northwestern
University Math Problem Solving Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamds Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, L4sz16
Lipték, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted solutions should arrive at
that address before October 31, 2010. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11496 (April, 2010, p. 370) Correction: On the left, square s(AAT) and s(BBT).

11509. Proposed by William Stanford, University of lllinois-Chicago, Chicago, IL. Let
m be a positive integer. Prove that

m2—m=+1 (1n2—2m+1) 1

§ : k—m

S mCrYy

11510. Proposed by Vlad Matei, student, University of Bucharest, Bucharest, Roma-
nia. Prove that if [ is the n-by-n identity matrix, A is an n-by-n matrix with rational
entries, A # I, p is prime with p =3 (mod 4), and p > n + 1, then A? + A # 2].

11511. Proposed by Retkes Zoltan, Szeged, Hungary. For a triangle ABC, let f4 denote
the distance from A to the intersection of the line bisecting angle BAC with edge
BC, and define fp and fc similarly. Prove that ABC is equilateral if and only if

fa=Js= Jc.

11512. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. Let N
be a nonnegative integer. For x > 0, prove that

N o [Ntk mn
Z% Z A >1+x+-+xV.

m=0 k=1
11513. Proposed by Pdl Péter Ddlyay, Szeged, Hungary. For a triangle with area F,
semiperimeter s, inradius r, circumradius R, and heights 4,, h;, and A, show that

2sF 10r(5R —
S(hg +hy +he) > ;—+18r2u-
r

doi:10.4169/000298910X492862
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11514. Proposed by Mihaly Bencze, Brasov, Romania. Let k be a positive integer, and
letay, ... ,a, be positive numbers such that Zl'.':l af‘ = 1. Show that
Zai+ nl > =Wk §ognlk,
[lioa

i=1

11515. Proposed by Estelle L. Basor, American Institute of Mathematics, Palo Alto,
CA, Steven N. Evans, University of California, Berkeley, CA, and Kent E. Morrison,
California Polytechnic State University, San Luis Obispo, CA. Find a closed-form ex-
pression for

o0

Z 4" sin* (2_”9) .

n=1

SOLUTIONS

An Old Four-Squares Chestnut

11374 [2008, 568]. Proposed by Harley Flanders and Hugh L. Montgomery, Univer-
sity of Michigan, Ann Arbor, MI. Let a, b, ¢, and m be positive integers such that
abcm = 1 + a* + b* + 2. Show that m = 4.

Solution by Afonso Bandeira and Joel Moreira, Universidade de Coimbra, Portugal,
and Jodo Guerreiro, Instituto Superior Técnico, Portugal. Viewing the equation mod-
ulo 4 shows that 4 divides m. Let n = m /4. Now suppose there is a solution with
n > 1. Let (a, b, ¢) be such a solution where a + b + ¢ is minimal. Name the values
sothata > b > c.

Now a is a solution to the quadratic equation x> — x(4bcn) + (b> 4+ c> + 1) = 0.
By Vieta’s formula, another solution is a’, where a’ = 4bcn — a. If a’ > a, then a* +
b2+ 2+ 1 =4dabcen > 2a%,andsoa®> <b>+c2+1<2b*+1.Nowa? <a’+1<
2b* 4+ 2 < 4b?%, so a < 2b. This yields 4abcn > 2a’cn > 4a*> > a> + b*> + > + 1,
which contradicts (a, b, ¢) being a solution.

Thus (¢, b, ¢) is a solution that contradicts the minimality of a + b + ¢. We con-
clude that n > 1 is impossible, son = 1 and m = 4.

Editorial comment. We print this proof because of its brevity. A. Hurwitz showed in
Uber eine Aufgabe der unbestimmten Analysis, Arch. Math. Phys. 3 (1907) 185-196,
that xlz + x% + 4+ x,% = kx1x, ...x, has no solution in positive integers if k > n,
from which the present claim follows directly. This reference was supplied by each
of S. Gao, W. C. Jagy, J. H. Jaroma, and J. P. Robertson. A new proof of Hurwitz’s
theorem may be found in S. Gao, C. Caliskan, and S. Rong, Some properties of n-
dimensional generalized Markoff equation, Congr. Numer. 177 (2005) 217-221.

Also solved by R. Chapman (U.K.), J. Christopher, P. Corn, S. Gao, H. S. Hwang & K. J. Kim (Korea),
1. M. Isaacs, W. C. Jagy, J. H. Jaroma, O. Kouba (Syria), O. P. Lossers (Netherlands), E. Pité (France),
C. R. Pranesachar (India), J. P. Robertson, B. Schmuland (Canada), N. C. Singer, R. Stong, H. T. Tang,
M. Tetiva (Romania), Fisher Problem Group, Szeged Problem Solving Group “Fejéntaldltuka” (Hungary),
GCHQ Problem Solving Group (U.K.), Microsoft Research Problems Group, NSA Problems Group, and the
proposers.

Perpendicular Half-Area

11392 [2008, 855]. Proposed by Omran Kouba, Higher Institute for Applied Science
and Technology, Damascus, Syria. Let the consecutive vertices of a regular n-gon P
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be denoted Ay, ..., A,_1, in order, and let A, = A,. Let M be a point such that for
0 < k < n the perpendicular projections of M onto each line Ay Ay lie interior to the
segment (Ay, Asy1). Let By be the projection of M onto Ay A . Show that

—

n—

1
Area(A(M A By)) = EArea(P).
k

Il
=

Solution by Pdl Péter Ddlyay, Szeged, Hungary. AY

Select as unit of length the
radius of the circumcircle of
the regular n-gon. Use the
coordinate system x Oy in the
plane so that vertex A; has
coordinates (x;, yr) with

X = cos(2km/n) and

v = sin(2km /n) for

0 <k <n.Let M have
coordinates (p cos ¢, p sin¢).
Fix one index k. If the axes of Ay
coordinate system x Oy are
rotated by the angle

((2k + l)n)/n — 1, then we
obtain the axes of a new
coordinate system X OY. Note
LXOM = ¢ — ((2k + 1)m)/n + 7. Let Hy be the point where By M crosses OY, and
let C; be the midpoint of the segment A; A ;. Since the axes of the coordinate system
X OY are parallel to ByM and A, A, respectively, we have

Qk+Dr n)
n

Y

Ak+l

1 )
AyBy = A, Cy — B.Cy = EAkAkH — psin ((Z) —

= sin (%) 4+ p sin (([) — 7(2]( + 1)71) ,

n

BkM = CkO + HkM = CkO + p cos <¢ —

:cos(%)—pcos(q&—m).

n

2k + Dm —i—rr)

n

Therefore,

2 Area(A(M Ay By)) = AyBy - BiM

= (s # om0 E57) ) (o () = reon (o= 557

2
zésin<27ﬂ)+psin<¢—m>—%sin(Zq&—w). (1)

n n

Recall that for o, 8 € R and 8 # 2sm with s € Z,

sin(a + kB) = % sin (a + %(n — 1),3) .

—

n—

k

Il
=}
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Thus, since n > 3 implies that 277 /n # 2s7w with s € Z, and since ¢ — 2(k + 1) /n =
(¢ — 27 /n) — 2km/n, we have

n—1 n—1
Zsin (<¢_ 2(k + l)n)) —0— Zsin <2¢_ 22k + l)n).
=0 n n

k=0

Summing both sides of (1) over k, we obtain the required result:

n—1
2 Arca(AMABY) = 3 sin (2—”> :

k=0 n
and this last expression gives the area of P.

Also solved by M. Bataille (France), D. Beckwith, R. Chapman (U.K.), C. Curtis, J. Freeman, D. Grinberg, J.-P.
Grivaux (France), K. Hanes, E. A. Herman, S. Hitotumatu (Japan), E. J. Ionascu, L. R. King, P. T. Krasopoulos
(Greece), J. H. Lindsey II, O. P. Lossers (Netherlands), V. Mihai (Canada), C. R. Pranesachar (India), M. A.
Prasad (India), R. A. Russell, A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), J. Vinuesa (Spain),
A. Vorobyov, Z. Voros (Hungary), M. Vowe (Switzerland), GCHQ Problem Solving Group (U.K.), Microsoft
Research Problems Group, and the proposer.

Concurrent Lines

11393 [2008, 856]. Proposed by Cosmin Pohoata, student, National College “Tudor
Vianu,” Bucharest, Romania. In triangle ABC, let M and Q be points on segment
AB, and similarly let N and R be points on AC, and P and S, points on BC. Let
d; be the line through M, N, d, the line through P, Q, and d5 the line through
R, S. Let p(X,Y, Z) denote the ratio of the length of XZ to that of XY. Let m =
p(M,A,B),n=p(N,A,C), p=p(P,B,C),q=pQ, B, A), r=pRR,C,A),
and s = p(S, C, B). Prove that the lines (d;, d,, d3) are concurrent if and only if
mpr +ngs +mq +nr + ps = 1.

Solution by Michel Bataille, Rouen, France. We use barycentric coordinates rela-
tive to (A, B, C), and accordingly we write U (u;, u,, u3) as an abbreviation for
“U = (u1A+uyB 4+ usC)/(uy + uy + uz).” (When u; +u, +uz = 0 we obtain a
“point at infinity”’). With this convention we have M (m, 1,0), N(n,0, 1), P(0, p, 1),
0,q,0), R(1,0,r),and S(0, 1, s). The equation of line d; is

n
0|=0, that is, X =my+nz.
1

N = =
o — 3

Similarly, the equation of line d, is y = pz + gx, and the equation of line d; is z =
rx + sy. These three lines are parallel (concurrent at a point at infinity) or concurrent
(literally) if and only if

m -1 s |=0.
n p -1
This can be rewritten as
mpr +ngs +mq +nr + ps =1, (%)

so this is a necessary condition for concurrence of d;, d5, ds.
Conversely, suppose that (x) holds. If d;, d,, d; were parallel, then the point at in-
finity on d,, namely (n — m, —1 — n, 1 + m), would also lie on d, and d3. This means
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mg=1l4+n+p+mp+gnandnr =145+ m-+sn+rm.Since m, n, q,r,s are
nonnegative, it follows that mg + nr > 2. But mq + nr < 1 follows from (x). This
contradiction shows that dy, d,, d; cannot be parallel, and must instead be concurrent.
Also solved by R. Chapman (U.K.), P. P. Dalyay (Hungary), M. Goldenberg & M. Kaplan, D. Grinberg, J. Gri-
vaux (France), S. Hitotumatu (Japan), B.-T. lordache (Romania), O. Kouba (Syria), J. H. Lindsey II, R. Nandan,
C. R. Pranesachar (India), R. Stong, M. Tetiva (Romania), R. S. Tiberio, A. Vorobyov, Z. Vorés (Hungary),
J. B. Zacharias, GCHQ Problem Solving Group (U.K.), and the proposer.

Jensenoid Inequalities

11399 [2008, 948]. Proposed by Biaggi Ricceri, University of Catania, Catania, Italy.
Let (2, F, i) be a measure space with finite nonzero measure M, and let p > 0.
Let f be a lower semicontinuous function on R with the property that f has no global
minimum, but for each 1 > 0, the function# — f(¢) + A|7|” does have a unique global
minimum. Show that exactly one of the two following assertions holds:

(a) For every u € L”(£2) that is not essentially constant,

1 1/p
My ((ﬁfgluml”du) ><fgf(u(x))du,

and f(t) < f(s) whenevert > Oand —t < s < t.
(b) For every u € L?(S2) that is not essentially constant,

1 1/p
My (— (ﬁ /Q Iu(X)IPdM) )< fg F)) du,

and f(—t) < f(s) whenevert > Oand —t < s <.

Solution by Julien Grivaux, student, Université Pierre et Marie Curie, Paris, France.
First note that we may assume that p = 1. Indeed, let6: R — R be defined by 6(¢r) =
signum(#)|¢|?, and let f(t) = f(6~'(t)) and u(t) = O(u(t)). Then

/Qf(ﬁ(t)) :/Qf(u(t)) and f(i/gﬁi\) =f<:I: </Q |u|p>1/p>'

We may also assume without loss of generality that M = 1.
For A > 0, let ¢ (1) be the unique value where the function ¢ +— f () + A|f| reaches
its minimum.

Lemma 1. The function ¢ is continuous on (0, 00).

Proof. Let A be positive and let (1,) be a sequence of positive numbers converging
to A. Letting ¢, = ¢ (A,), we have f(t) + A,|t| > f(t,) + Anlt.]. Let A be such that
0 <Xty < Xtandm = infr (f(t) + Xolt|). Now

f(tn) + )"nltnl S f(tn) + )"0|tn| + ()‘n - )"0)|tn| =m+ ()\'n - )‘O)ltnl-

This proves that for all ¢, (A, — Ao)|t,| < f(t) + A, |t| — m, so that for n large enough
that A, — Ao > 3(A — Ag), taking t = 0 gives |t,| < 2(f(0) —m)/(A — Ag). Thus (t,)
is bounded. Let ¢’ be a limit point of (#,). There exists a subsequence (fy,) which
converges to t’. Forall t in R, f(¢) + A,|t| = f(t,) + A,lt,|. By lower semicontinuity,
for all ¢,

F(©) + Alt| = Gminf [ £(1) + Ayelt]] = liminf [ £ (tyo) + Apoo [ty |]
= liminf f(ty) + Alt'| = f(") + Alt'].
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By the uniqueness of the minimum, ' = ¢ (1). Since (z,) is bounded we conclude that
(t,) converges to ¢ (1). This shows that ¢ is continuous. [ |

Lemma 2. lim;_, ;, ¢ (1) = 0 and limy_, o+ |¢p (X)| = 4-00.

Proof. Let (A,) be a sequence such that lim,,_,,, A, = +00, and let ¢, = ¢ (A,). For
t € R, we have f(t,)/A, + |t,| < f(t)/A, + |t], and in particular f(z,)/A, + |t,] <
f(0)/A,. Let A be a fixed positive value, and let m = infg[ f(¢) 4+ Aolt]|]. Now f(#,) >
m — Aoltyl, s0 (1 = Ao/A)t,| < (f(0) — m)/A,. Therefore lim,_, o 1, = 0.

For the other claim of the lemma, let (A, ) be a positive sequence that tends to zero,
lett, = ¢(X,), and let ¢’ be a limit point of (#,,) (if one exists). The argument of Lemma
1 proves that for any real z, f(¢t) > f(¢'). That makes f(¢') a global minimum for f,
contrary to the hypothesis. Since (t,) has no limit point, lim,,_, «, |#,| = +00. [ |

From these two lemmas, we see that the range of ¢ contains (0, co) or (—o00, 0)
(but not both). We will show that in the first case conclusion (a) holds. Similarly, the
second case leads to (b).

Assume the range contains (0, 00), and let m(X) = infg (f(t) + A|t|). Now f(t) >
sup, (m(k) — k|t|). Ift =¢(A),then f(dp(X)) = m(A) — Alp(A)]. Thus f is the point-
wise supremum of a family of affine functions on (0, 00), so f is convex there. We
claim that f is actually strictly convex. Indeed, if f is affine on some interval [a, b]
with 0 < a < b, then we can choose A such that the function f; given by f;(¢) =
f (@) + Alt| reaches its infimum at a point of (a, b). Since f; is is affine on this in-
terval, it is minimized at an interior point only if it is constant on that interval, which
contradicts the uniqueness of the minimum point.

Let s, ¢ be given with t > 0 and —¢ < s < t. There exists A such that r = ¢(1).
Thus

F()+Als| > f(2) +Alt] = f(2) + Als|.

We obtain f(s) > f(¢). (If —t < s <t, we obtain f(s) > f(¢).) For the integral
inequality, we have —[u(x)| < u(x) < [u(x)]. So f(u(x)) = f(lu(x)]). Since f is
convex, Jensen’s inequality yields

/J(u)z/gf(lul)zf(fglul)-

It is a strict inequality since u is not essentially constant and f is strictly convex.

Also solved by R. Stong.

Squares On Graphs

11402 [2008, 949]. Proposed by Doru Catalin Barboianu, Infarom Publishing,
Craiova, Romania Let f :[0,1] — [0,00) be a continuous function such that
fO)= f(1)=0and f(x) >0 for 0 < x < 1. Show that there exists a square
with two vertices in the interval (0,1) on the x-axis and the other two vertices on the
graph of f.

Solution by Byron Schmuland and Peter Hooper, University of Alberta, Edmonton, AB,
Canada. Extend f by letting f(x) = Ofor x > 1. Define g(x) = f(x + f(x)) — f(x)
for x > 0. If there exists x € (0, 1) with g(x) = 0, then a square as required exists with
vertices

(x,0), &+ ()0, &, f), &+ f),f(x).
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Now g is continuous, so to show that such x exists we will show that y, z € (0, 1)
exist with g(y) > O and g(z) < 0. Let z be a value where f takes its maximum. Then
(@) > f(z+ f(z)),sothat g(z) < 0.Since 0+ f(0) =0 < z < z+ f(z), by conti-
nuity there is a value y € (0, z) so that y + f(y) = z. Hence g(y) = f(y + f(y)) —
f=r@—-fy =0

Editorial comment. Pal Péter Dalyay (Hungary) noted a generalization: Given any
p > 0, there exists a rectangle with base-to-height ratio p having two vertices on the
x-axis and the other two vertices on the graph of f.

Also solved by B. M. Abrego & S. Ferndndez-Merchant, F. D. Ancel, K. F. Andersen (Canada), R. Bagby,
N. Caro (Brazil), D. Chakerian, R. Chapman (U.K.), B. Cipra, P. Corn, C. Curtis, P. P. Dalyay (Hungary), C.
Diminnie & R. Zarnowski, P. J. Fitzsimmons, D. Fleischman, T. Forgacs, O. Geupel (Germany), D. Grinberg, J.
Grivaux (France), J. M. Groah, E. A. Herman, S. J. Herschkorn, E. J. Ionascu, A. Kumar & C. Gibbard (U.S.A.
& Canada), S. C. Locke, O. P. Lossers (Netherlands), R. Martin (Germany), K. McInturff, M. McMullen,
M. D. Meyerson R. Mortini M. J. Nielsen, M. Nyenhuis (Canada), A. Plaza & S. Falcén (Spain), K. A. Ross,
T. Rucker, J. Schaer (Canada), K. Schilling, E. Shrader, A. Stadler (Switzerland), R. Stong, B. Taber, M. Tetiva
(Romania), T. Thomas (U.K.), J. B. Zacharias & K. Greeson, BSI Problems Group (Germany), GCHQ Problem
Solving Group (U.K.), Lafayette College Problem Group, Microsoft Research Problems Group, Missouri State
University Problem Solving Group, Northwestern University Math Problem Solving Group, NSA Problems
Group, and the proposer.

A Trig Series Rate

11410 [2009, 83]. Proposed by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria. For 0 < ¢ < 7/2, find

1 [e e} _1 n—1 .32
)lci_r)l(l)x_2 Elogcosqﬁ—l—;( n) 512171)((1;;) sin®(n¢)

Solution by Otto B. Ruehr, Michigan Technological University, Houghton, MI1. We be-
gin with three elementary identities. The first is

> P _ r(r+1)sin2¢ )
2" sin'ng = (=)= +4rsin¢] ®

n=1

This is derived by writing sin® n¢ in terms of exponentials and summing the resulting
geometric series. Now divide (i) by r and integrate with respect to r to get

ir” Sin n D oo [ (L= 77 +4r sin” ¢
—sin“ng = - .
n 408 (1—r)?

n=1

(ii)
Differentiate (i) with respect to r to obtain

0 _1\2 2 )
S nrtlsintng = — 1 [(r I = 20" + Dsin ‘/’] i)
n=1

20 =71 2| [(1=r)2+4rsin®¢)?
The limit at » = —1 in (ii) gives us

00 _1 n—1 1
E i sin’ ng = —= log cos ¢.
n 2

n=l1

Now we can write the requested limit as

Ly 2 " sin"nx] .,
lim x lim — 1= sin“ ng.
x—=0 re—1t £ n nx?

n=
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Here we have anticipated the divergent series that would result if the lim, ., were
taken directly. Since the series as written is convergent, by the regularity of the Abel
summation process it is equal to its Abel sum. Now, for |r| < 1, we can bring the outer
limit under the sum, which yields

1 o0
Iim — nr'" sin® ne.
PO

r——1t

From (iii) we obtain i tan” ¢ as the desired limit.

Also solved by R. Bagby, D. H. Bailey & J. M. Borwein (Canada), D. Beckwith, P. Bracken, R. Chapman
(U.K.), H. Chen, P. P. Ddlyay (Hungary), J. Grivaux (France), F. Holland (Ireland), K. L. Joiner, G. Keselman,
A. Stadler (Switzerland), R. Stong, E. I. Verriest, and the proposer.

A Minimum Determinant

11415 [2009, 180]. Proposed by Finbarr Holland, University College Cork, Cork, Ire-
land. Let (Ay, ..., A,) be alist of n positive-definite 2 x 2 matrices of complex num-
bers. Let G be the group of all unitary 2 x 2 complex matrices, and define the function
F on the Cartesian product G” by

F(U)=F(U,,...,U,) =det (Z Uk*AkUk> .

k=1

Show that
min F(U) = ZO'](Ak) : Zsz(Ak),
UeG =1 =1

where 01(A;) and 0,(A ;) denote the greatest and least eigenvalue of A, respectively.

Solution by Roger A. Horn, University of Utah, Salt Lake City, UT. 1t suffices to
assume that the matrices A; are positive semidefinite and therefore Hermitian. Let A =
YU UFA U, a =) 01(A;), and B =) 02(A;). Note that « > B > 0 and
(x+pB)/2>p.Let A =01(A) and © = 0,(A), sothat L > pand L + u =tr(A) =
Y w(UFAU) =30 A =)0 (01(A) 4+ 02(A) = o + B.

For Hermitian matrices C and D, Weyl’s inequality ensures that 0,(C) + 0,(D) <
02(C + D). From this along with the definition of A it follows that u = 0,(A) >
Yo (UrAUy) = Y7 02(A;) = B. Since detA = Au, we want to determine
minfAu : A+ p =aoa+ pand A > pu > B}. That is, for f(u) = (¢ + B — wWu,
we require min{ f(u) : B < u < %(a + B)}. Clearly, f'(u) = o+ B8 —2u > 0 for
ne B, %(oz + B)1, so the minimum value of f(u)is f(B8) = af.

If the unitary matrices are chosen such that UA;U; = diag(o,(A;), 02(A;)) for
i=1,...,n,then A = diag(w, B), and it follows that det(A) = «pf.

Also solved by R. Chapman (U.K.), M. J. Englefield (Australia), J.-P. Grivaux (France), E. A. Herman, O.
Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Stong, M. Tetiva (Romania), E. I. Verriest,
GCHQ Problem Solving Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamés Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, Laszl6
Liptak, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the inside front cover. Submitted solutions should arrive at
that address before December 31, 2010. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11516. Proposed by Elton Bojaxhiu, Albania, and Enkel Hysnelaj, Australia. Let T be
the set of all nonequilateral triangles. For T in 7, let O be the circumcenter, Q the
incenter, and G the centroid. Show that inf;c+ Z0GQ = /2.

11517. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Tudorel Lupu, Decebal High School, Constanta, Romania. Let f be a three-
times differentiable real-valued function on [a, b] with f(a) = f(b). Prove that

(a+b)/2 b (b o a)4
/ f(x)dx—/ f(x)dx
a (

< ——— sup [f" (x|
a+h))2 192 rejap

11518. Proposed by Mihaly Bencze, Brasov, Romania. Suppose n > 2 and let
A, ..., A, be positive numbers such that ) ", _, 1/A; = 1. Prove that

() | N 1 S !
+ ) — |t — =z -
o ;Ak 3 /le n— D — 1)
11519. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Find

o0 o0 m Hn+m
DD (=

n=1 m=1

where H, denotes the nth harmonic number.

11520. Proposed by Peter Ash, Cambridge Math Learning, Bedford, MA. Let n and k
be integers with 1 < k < n, and let A be a set of n real numbers. Fori with 1 <i <n,
let S; be the set of all subsets of A with i elements, andleto; = ) _ s max(s). Express
the kth smallest element of A as a linear combination of oy, ... , 0,.

doi:10.4169/000298910X496796

August—September 2010] ~ PROBLEMS AND SOLUTIONS 649

This content downloaded from 146.201.208.22 on Wed, 27 Mar 2013 20:10:44 PM
All use subject to JSTOR Terms and Conditions




11521. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let n be a positive integer and let Ay, ..., A,, By,...,B,,Cy,...,C, be
points on the unit two-dimensional sphere S,. Let d (X, Y) denote the geodesic distance
on the sphere from X to Y, and let e(X, Y) be the Euclidean distance across the chord
from X to Y. Show that

(a) There exists P € Sy suchthat ) ., d(P,A;)) =) ,_ d(P,B) =) _ d(P,C)).
(b) There exists Q € S, suchthat > 7, e(Q, A;) =Y /_, e(Q, By).

(c) There exist a positive integer n, and points Ay, ... , A,,By, ..., B,,Cy,...,C,on
Sy, such that forall R € Sy, > 7, e(R, A;), Y\, e(R, B;),and ) _;_, e(R, C;) are not
all equal. (That is, part (b) cannot be strengthened to read like part (a).)

11522. Proposed by Moubinool Omarjee, Lycée Jean Lurcat, Paris, France. Let E
be the set of all real 4-tuples (a, b, ¢, d) such that if x, y € R, then (ax + by)* +
(cx +dy)? < x* 4 y?. Find the volume of E in R*.

SOLUTIONS

Cevian Subtriangles

11404 [2009, 83]. Proposed by Raimond Struble, North Carolina State at Raleigh,
Raleigh, NC. Any three non-concurrent cevians of a triangle create a subtriangle. Iden-
tify the sets of non-concurrent cevians which create a subtriangle whose incenter coin-
cides with the incenter of the primary triangle. (A cevian of a triangle is a line segment
joining a vertex to an interior point of the opposite edge.)

Solution by M. J. Englefield, Monash University, Victoria, Australia. Label the vertices
of the primary triangle ABC in counterclockwise order, and let / be the incenter.
The following construction identifies the required triples of cevians. Take an arbitrary
cevian AA’ not passing through 7 and consider the circle « centered at I tangent to
AA’, say at P,. There are two points on « for which the line joining them to B is
tangent to «. Choose for Pp the one that is counterclockwise from P, on «, and take
B’ to be the intersection of the line through B and Pz with AC. Similarly choose Pc
to lie counterclockwise from Py on «, and let C’ be the intersection of AB with the
tangent from C to k at Pc. By construction, « is the incircle of the subtriangle.

Editorial comment. Little attention has been given to the subtriangle that is the topic of
this problem. If the non-concurrent cevians divide the sides of AABC inratios A, [, v,
Routh’s theorem gives the area of the subtriangle as (Apuv — 1)2/((Ap + A + 1) (v +
uw+ D(vA + v + 1)) times the area of ABC. It is also known (H. Bailey, Areas and
centroids for triangles within triangles, Math. Mag. 75 (2002) 371) that the centroids
of the two triangles coincide if and only if A = p = v.

Also solved by R. Chapman (U. K.), C. Curtis, J. H. Lindsey 1I, M. D. Meyerson, J. Schaer (Canada), R. A.
Simon (Chile), R. Stong, Con Amore Problem Group (Denmark), GCHQ Problem Solving Group (U. K.), and
the proposer.

A Limit of an Alternating Series

11412 [2009, 179]. Proposed by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria. Let f be a monotone decreasing function on [0, 00)
such that lim, ., f(x) = 0. Define F on (0, c0) by F(x) = Z:O:O(—l)"f(nx).

(a) Show that if f is continuous at O and convex on [0, c0), then lim,_ o+ F(x) =

F0)/2.
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(b) Show that the same conclusion holds if we drop the second condition on f from (a)
and instead require that f have a continuous second derivative on [0, co) such that

fooo [ f"(x)] dx < oo.
(¢) Dropping the conditions of (a) and (b), find a monotone decreasing function f on

[0, co) with f(0) > O such that
limsup sup F(y) = f(0), limsup inf F(y)=0.

x—0t O<y<x x>0t O<y<x

Solution by Richard Bagby, New Mexico State University, Las Cruces, NM. For [ a
monotone decreasing function on [0, co) with lim,_,», f(x) = 0, define

Fe) =Y (=1 fx) = Y [f@nx) = f(@n+ Do)l x>0,
n=0

n=0

By the alternating series test, the series defines F'(x) with 0 < F(x) < f(0).
(a) If f is convex, then for each x > 0, the difference f(kx) — f((k + D)x) is a
nonincreasing function of the positive integer k. Therefore, we have

F(x) = Y [f(@n+ Dx) = f(2n+2)x0)] = £(0) — F(x),

n=0

as well as

Fx) < f(0)— f(x) + Z[f((2n — Dx) = f2nx)] =27(0) — f(x) — F(x).
n=1
Thus we see that f(0) < 2F(x) <2f(0) — f(x) for all x > 0 when f is convex. In
particular, lim, o+ F(x) = % f(0)if f(x) is also continuous at the origin.
(b) Suppose that instead of assuming that f(x) is convex, we assume that f €
C?[0, 00) with [;7|f"(x)|dx < co. Observe that since f(x) — 0 as x — 00, we
may write

1 1 &
F) =20+ D DL (x) = f((n+ D))
n=0
1 1 o0 (2n+2)x J (2n+1)x J
— O - / o /
SO+ 2;[/(2”+1)x f/(t)de /2 1) t]

1 1 o) 2n+1)x X B
zzf(0)+§n2_0:/2nx (/0 f(s+t)ds)dt

1 1 X o0 (2n+1)x ,
=§f(0)—|—5f0 2/2 (s +1)dt ) ds.

n=0 v enx

This implies that

1
‘F(X)—Ef(o)

'x * "
< Efo | /()] dt,

s0 once again F(x) — 1 f(0) as x — 0 from the right.
(¢) A simple choice of a monotone decreasing function f with f(0) > 0 for which

limsup F(x) = f(0), limigf F(x)=0
x—0

x—07F
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isgiven by f(x) =1for0 <x < land f(x) =0 for 1 <x < oo. For each positive
integer k, we then have F(1/(2k)) = 1 and F(1/(2k + 1)) = 0.

Also solved by M. Bello-Hernandez & M. Benito (Spain), N. Caro (Colombia), R. Chapman (U. K.), P. P.
Dalyay (Hungary), P. J. Fitzsimmons, J. Grivaux (France), J. H. Lindsey II, O. P. Lossers (Netherlands), K.
Schilling, R. Stong, Szeged Problem Solving Group “Fejéntaldltuka” (Hungary), GCHQ Problem Solving
Group (U. K.), Microsoft Research Problems Group, and the proposer.

A Definite Hyperbolic
11418 [2009, 276]. Proposed by George Lamb, Tucson, AZ. Find

> t2gech’t
/ secht
_eo @ — tanht

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. The answer is % (Log3 (Z%:) + JrzLog(Z%:)), where Log is the prin-
cipal branch of the logarithm defined on the complex plane cut along the negative real
numbers. The formula is valid for every complex number a witha ¢ [—1, 1].

For a ¢ [—1, 1] the integral is convergent. Denote its value by 7 (a). Compute

for complex a with |a| > 1.

@ /"O 2 dt f‘x’ 4r2e* dt
a) = =
_o (acosht — sinht) cosht oo ((@a—De* +a+ D +1)

_1/00 x%e* dx - 1 ; a+1
T 2) (@a=Der+a+De+1) 2a-1" \a-1)’

with

L x2e* dx
J(b) = / .
o (¥ +D)(e* + 1)

In order to evaluate J (b) for b € C \ (—o0, 0], let

@+ e
- (1 —ed)(b—e?)

F(z)

For large positive R, consider the contour yx consisting of a positively oriented rect-
angle ABC D with vertices A, B,C, D at —R —in, R —in, R +im,and —R +im,
respectively. The only points inside the rectangle yx where the denominator of F van-
ishes are 0 and Log b, but 0 is a removable singularity for F' and Log b is a simple
pole with residue

Log’h + n%Log b

Res(F, Log b) = =

The residue formula says that

2mwi 3 5
F(z)dz = ——(Log’b + n“Log b).
. b—1
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However,

R R
/ F(z)dz—i—/ F(z)dzz/ F(x—in)dx—f F(x +im)dx
AB CD —

R —R

_ /R (c+in) +m2(x +in) — (x —in)? —7?(x —im))e” .
~ (1+e) b+ e *

_/R x%e* dx
:67Tl 9
_r (I +e¥)b+eY)

SO

. Y e x2e* dx oy
nggo </AB F(z)dz—l—/CDF(z)dz) = 6mi /_oo TS EYD = 6miJ (D).

Next, [, F(z2)dz =i [T F(R+it)dt,soif R > 1+ |b], then

Rz 2 R2 2 2\ R
<2r sup |F(R+in)| <21 :”( R+”)e .
tel—m,7] (e® —1)(e® — |b])

/ F(z)dz
BC

Therefore, limpg_, o ch F(z)dz = 0. Similarly, limg_, « fDA F(z) dz = 0. Combining
our results, we conclude that

i 2mi 3 5
6wiJ(b) = ﬁ(Log b+ m~Log b),
or, equivalently,
J(b) = ;(Log% + 7°Log b)
3(b—-1) )

Therefore, as claimed, we get

a—1 a—+1 1 s(a+1 » a—+1
1 =—J = — [ Log’ | —— L R .
(@ == (a—l) 12( o8 (a—1)+” Og<a—1)>

Also solved by R. Bagby, D. H. Bailey & J. M. Borwein (U.S.A. & Canada), D. Beckwith, R. Chapman (U. K.),
H. Chen, P. Corn, Y. Dumont (France), M. L. Glasser, J. Grivaux (France), J. A. Grzesik, K. McInturff, L. A.
Medina, P. Perfetti (Italy), A. Plaza (Spain), O. G. Ruehr, A. Stadler (Switzerland), V. Stakhovsky, R. Stong,
N. Thornber, GCHQ Problem Solving Group (U. K.), and the proposer.

A Triangle Construction

11419 [2009, 276]. Proposed by Vasile Mihai, Belleville, Ontario, Canada. Let G
be the centroid, H the orthocenter, O the circumcenter, and P the circumcircle of a
triangle A BC that is neither isosceles nor right.
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Let A’, B’, and C’ be the orthic
points of ABC, that is, the respec-
tive feet of the altitudes from A, B,
and C. Let A, be the point on P such
that AA, is parallel to BC, and de-
fine By, C; similarly. Let A} be the
point on P such that A, A/ is parallel
to AA’, and define B}, C| similarly
(see sketch).

Show that

(a) AjA), B\Bj, and C,C] are con-
current at the point / opposite H
from O on the Euler line H O.

(b) A{A’, ByB’, and C,C’ are concur-
rent at the centroid G.

(c) the circumcircles of OA A}, OB By, and OC,C| (which are clearly concurrent
at O) are concurrent at a second point K lyingon HO, and |OH| - |OK| = abc/p,
where a, b, and c are the edge lengths of ABC, and p is the perimeter of A;B,C;.

Solution by Paul Yiu, Florida Atlantic University, Boca Raton, FL.
(a) Each of the lines A;A}, B B{, and C,C] is the reflection of an altitude in the
perpendicular bisector of the corresponding side, and these bisectors each contain the
circumcenter O. Since the altitudes intersect at the orthocenter H, these reflected lines
intersect at the reflection of H in O.
(b) Let D be the midpoint of BC. Since AA| and BC are parallel and AA, =2 - DA/,
the lines A; A’ and A D intersect at a point that divides each of A{A" and AD in the
ratio 2 : 1. This point is the centroid G of triangle ABC. The same holds for B; B’ and
c.C.
(c) The inverse of the line A A in the circumcircle P is the circle O A, A). This circle
contains the inverse K of I in P. The same holds for the lines B, B| and C;C]. Note
that |OH|-|OK| =|0I|-|OK| = R?, where R is the circumradius.

If ABC is acute, then the angles of A|B,C, are 1 —2A, 7w — 2B, and & — 2C. The
perimeter p of triangle A; B, C; is given by

p =2R(sin2A +sin2B + sin2C) = 2a cos A + 2bcos B + 2ccos C

a2(b2 + 6‘2 _\ a2) + b2(c2 +a2 _ bZ) + C2(a2 + b2 _ 6‘2)
abc

abc ~ \R ) abc  R*’

_16A? (abc)2 1 abc
Therefore, R* = abc/p.
This formula is correct only for acute triangles. If angle A is obtuse, the angles of
triangle A B,C, are 2A — m, 2B, and 2C.

Also solved by M. Bataille (France), J. Cade, R. Chapman (U. K.), P. P. Ddlyay (Hungary), M. Goldenberg
& M. Kaplan, J.-P. Grivaux (France), J. G. Heuver (Canada), L. R. King, O. Kouba (Syria), J. H. Lindsey 1I,
O. P. Lossers (Netherlands), R. Minkus, C. R. Pranesachar (India), R. Stong, M. Tetiva (Romania), Z. V6ros
(Hungary), L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.
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Matrix Normality

11422 [2009, 277]. Proposed by Christopher Hillar, The Mathematical Sciences Re-
search Institute, Berkeley, CA. Let H be a real n x n symmetric matrix with dis-
tinct eigenvalues, and let A be a real matrix of the same size. Let Hy = H, H, =
AHy — HyA, and H, = AH, — H,A. Show that if H; and H, are symmetric, then
AA" = A'A; that is, A is normal.

Solution by Patrick Corn, St. Mary’s College of Maryland, St. Mary’s City, MD. 1f
we conjugate Hy, Hy, H,, and A by the same orthogonal matrix, then the hypotheses,
definitions, and conclusion remain unchanged. There exists an orthogonal matrix that
diagonalizes Hy, since H, is a real, symmetric matrix. Without loss of generality, then,
we may assume that Hj is diagonal with distinct entries.

Since H, is symmetric, it follows that AHy, — HyA = (AHy — HyA)' = HyA' —
A"H,, and thus (A + A")Hy = Hy(A + A"). Since the matrix A + A’ commutes with
Hy, it must be diagonal. Now write A = D + S, where D = (1/2)(A + A") is diagonal
and S = (1/2)(A — A") is skew-symmetric.

Since H, is symmetric, we have H{(A + A") = (A + A")H,, and H|D = DH,.
That is, (AHy — HyA)D = D(AH, — HyA). Since D and H, commute, AH, —
HyA = SHy — H,S, and then (SHy — HyS)D = D(SHy — HyS),so Hy(DS — SD) =
(DS — SD)Hy. Thus DS — SD commutes with Hy, so it must be diagonal. However,
DS and S D both have zero diagonals, since S does, and therefore DS = SD.

Expanding and using DS = S D, we conclude that

AA'—A'A= D+ 8D +8)— (D' +S)YD+S)=2(SD—DS)=0.

This gives the desired result.

Also solved by R. Chapman (U. K.), C. Curtis, P. P. Dalyay (Hungary), A. Fok, S. M. Gagola Jr., M. Goldenberg
& M. Kaplan, D. Grinberg, J.-P. Grivaux (France), E. A. Herman, R. Howard, O. Kouba (Syria), C. Lanski,
J. H. Lindsey II, O. P. Lossers (Netherlands), A. Muchlis (Indonesia), J. Simons (U. K.), J. H. Smith, R. Stong,
E. L. Verriest, L. Zhou, GCHQ Problem Solving Group (U. K.), and the proposer.

A Lobachevsky Integral

11423 [2009, 277]. Proposed by Gregory Minton, D. E. Shaw Research, LLC, New
York, NY. Show that if n and m are positive integers with n >m and n — m even, then
I CZO x " sin"x dx is a rational multiple of 7.

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA. We
use induction on m. Let I (n, m) = fooo x~"sin" x dx. First, for any odd positive inte-
ger n = 2k + 1, we recall that

1

/ sin(ax) dx — T
0 X 2

1 & 2k + 1
sin?* ! x = o Z(—l)k—l< + ) sin ((2k — 2i + 1)x)
i=0

and

for a > 0. Hence

Qg e [2k 41
[Qk+1,1) = Z(;(—l) ( l_ )n
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is a rational multiple of 7. For m = 2, note that integration by parts gives

*® gin" ! x cosx
I(n,2)=n/ — dx.
0 X

Using the product to sum formula for sine and cosine, for n = 2k we can expand

sin?*~! x cos x as

k—1
22:_1 T (Zki— 1) (‘sin (2 = 20)x) + sin (& — 21 = 2)x) ),
i=0

SO

ko (1/2k—1\ & 2k —1
1(2k,2) = = —k
(2k,2) = 5 2<k_1)+;< ) ks
is also a rational multiple of . For m > 2, integrating by parts twice leads to

n? nn—1)
Inm+1)=—Inm—1)+ ——I(n—2,m—1).
m(m —1) m(m — 1)
When n — (m 4 1) is even and nonnegative, the right side is a rational multiple of
7 by the induction hypothesis. Therefore, the left side is also such a multiple, which

completes the proof.

Editorial comment. The integrals I (n, m) were apparently first considered by N. L.
Lobachevskii, Probabilité des résultats moyens tirés d’observations répétées, J. Reine
Angew. Math. 24 (1842) 164-170.

T. Hayashi, in “On the integral fooo % dx,” Nieuw Arch. Wiskd. (2) 14 (1923)
13-18, gave the following explicit evaluation:

_ n(_l)(n—m)/Z i(n n -l
T m) = S o — 11 ij;n;l)/z(_l) (,) (5 - J)

which for m = 1 or 2 simplifies to

7 (k- D! T (2k
I1Ck+1,1) = 2k+1 k! = 22k+1 <k>
T (2k —3)! T (2k—2
1 2k,2 = &% = )
k.2 =% (k —1)! 22k1(k—1>

and these more than suffice for the current problem.

Also solved by K. F. Andersen (Canada), R. Bagby, M. Bataille (France), D. Beckwith, D. Borwein (Canada),
K. N. Boyadzhiev, R. Buchanan, R. Chapman (U. K.), P. Corn, J. Dai & C. Goff, P. P. Ddlyay (Hungary),
Y. Dumont (France), G. C. Greubel, J. Grivaux (France), J. A. Grzesik, E. A. Herman, G. Keselman, J. Kolk
(Netherlands), T. Konstantopoulis (U. K.), O. Kouba (Syria), I. E. Leonard (Canada), J. H. Lindsey II, O. P.
Lossers (Netherlands), Y. Mikata, M. Omarjee (France), E. Pité (France), A. Plaza (Spain), R. E. Rogers,
O. G. Ruehr, J. Simons (U. K.), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Tetiva (Romania),
N. Thornber, E. I. Verriest, Z. Voros (Hungary), M. Vowe (Switzerland), H. Widmer (Switzerland), L. Zhou,
Columbus State University Problem Solvers, GCHQ Problem Solving Group (U. K.), Microsoft Research
Problems Group, NSA Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamas Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, Laszl6
Liptak, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the back of the title page. Submitted solutions should arrive
at that address before February 28, 201 1. Additional information, such as gen-
eralizations and references, is welcome. The problem number and the solver’s
name and address should appear on each solution. An asterisk (*) after the num-
ber of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

11523. Proposed by Timothy Chow, Princeton, NJ. Given boxes 1 through n, put balls
in k randomly chosen boxes. The score of a permutation 7 of {1, ..., n} is the least
i such that box 7 (i) has a ball. Thus, if 7 = (3,4, 1, 5, 2) with (n, k) = (5, 2), and
boxes 1 and 4 have balls, then 7 has score 2.

(a) A permutation r is fair if, regardless of the value of k, the probability that 7 scores
lower than the identity permutation equals the probability that it scores higher. Show
that 7 is fair if and only if for each i in [1, n], either 7(i) > i and 7~ '(i) > i, or
m(i) <iand 77'(i) <i.

(b) Let f(n) be the number of fair permutations of {1, ..., n}, with the convention
that f(0) = 1. Show that Z:O:O f(n)x"/n! = e* sec(x).

(¢) Assume now that n = m?® with m > 2, and the boxes are arranged in m rows of
length m?. Alice scans the top row left to right, then the row below it, and so on, until
she finds a box with a ball in it. Bob scans the leftmost column top to bottom, then the
next column, and so on. They start simultaneously and both check one box per second.
For which k are Alice and Bob equally likely to be the first to discover a ball?

11524. Proposed by H. A. ShahAli, Tehran, Iran. A vector v in R" is short if ||v] < 1.
(a) Given six short vectors in R? that sum to zero, show that some three of them have
a short sum.

(b)* Let f(n) be the least M such that, for any finite set 7 of short vectors in R” that
sum to 0, and any integer k with 1 < k < |T|, there is a k-element subset S of T such
that || Y, s vll < M. The result of part (a) suggests f(2) = 1. Find f(n) forn > 2.

11525. Proposed by Grigory Galperin, Eastern Illinois University, Charleston, IL, and
Yury Ionin, Central Michigan University, Mount Pleasant, MI.
(a) Prove that for each n > 3 there is a set of regular n-gons in the plane such that
every line contains a side of exactly one polygon from this set.

doi:10.4169/000298910X515820
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(b) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly one circle from the set?

(c) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly two circles from the set?

(d) Is there a set of circles in the plane such that every line in the plane is tangent to
exactly three circles from the set?

11526. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Prove that there is no function f from R? to R? with the property that

If ) = fOIl = llx =yl forall x, y € R?

11527. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia. Prove that in an acute triangle with sides of length a, b, c, inradius r, and circum-
radius R,

a’ b? c?

b2—|—c2—a2+c2+a2—b2+a2+b2—c

3
> .
272

‘=.|>U

11528. Proposed by Alina Sintamdrian, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let p, a, and b be positive integers with a < b. Consider a sequence
(x,) defined by the recurrence nx,.; = (n + 1/p)x, and an initial condition x; # 0.
Evaluate

. Xan + Xan+1 + te + Xbn
lim .

n—o0 nxan

11529. Proposed by Walter Blumberg, Coral Springs, FL. For n > 1, let A, =
(32221 LEJ) —n% Let p and ¢ be distinct primes with p = ¢ (mod 4). Show

n

that A,y = A, + A, — 2.

SOLUTIONS

Splitting Elements of Set Systems

11372 [2008, 568]. Proposed by Jennifer Vandenbussche and Douglas B. West, Uni-
versity of Illlinois at Urbana-Champaign, Urbana, IL. In a family of finite sets, let a
splitting element be an element that belongs to at least two of the sets and is omit-
ted by at least two of the sets. Determine the maximum size of a family of subsets of
{1, ..., n} for which there is no splitting element.

Solution by David Gove, California State University, Bakersfield, CA. The maximum
size is n + 1. Consider a largest such family. Removing x from the sets it lies in and
adding it to the others yields another such family. Hence we may assume that each
element appears in at most one of the sets. If any of the sets has more than one element,
then we can obtain a bigger family by replacing that set by its singleton subsets. Thus
the family consisting of the empty set and the singleton sets is a largest such family.

Editorial comment. By the argument above, there are 2" extremal families. Marian
Tetiva sent a thorough discussion of a more general problem. Let g,(n) be the maxi-
mum size of a family of subsets of {1, ..., n} such that every element appears in at
most s sets or avoids at most s sets; the stated problem is g;(n) = n + 1, and clearly
go(n) = 1. By the complementation argument above, we may equivalently seek the
largest family such that every element appears in at most s sets. Tetiva proved a bound
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and conjectured equality. Intuitively, the idea is that one should take all the small sets
until the bound on the number of appearances of each element is reached. For example,
ifs = Zle (7:11) then one should take all the sets of size at most k. When s is not of
this form, the exact solution is more difficult.

Also solved by D. Beckwith, P. Corn, D. L. Craft, C. Curtis, P. P. Ddlyay (Hungary), K. David & P. Fricano,
D. Degiorgi (Switzerland), J. Gately, J. Guerreiro (Portugal), H. S. Hwang (Korea), K. Kneile, J. H. Lindsey II,
O. P. Lossers (Netherlands), R. Martin (Germany), M. D. Meyerson, J. H. Nieto (Venezuela), R. E. Prather,
T. Rucker, V. Rutherfoord, K. Schilling, E. Schmeichel, B. Schmuland (Canada), R. Stong, J. Swenson,
M. Tetiva (Romania), B. Tomper, Fisher Problem Group, Szeged Problem Group “Fejéntalaltuka” (Hungary),
GCHQ Problem Solving Group (U. K.), Houghton College Problem Solving Group, Microsoft Research Prob-
lems Group, NSA Problems Group, and the proposers.

A Determinant Generated by a Polynomial

11377 [2008, 664]. Proposed by Christopher Hillar, Texas A&M University, College
Station, TX and Lionel Levine, Massachusetts Institute of Technology, Cambridge, MA.
Given a monic polynomial p of degree n with complex coefficients, let A, be the
(n + 1) x (n + 1) matrix with p(—i + j) in position (i, j), and let D, be the determi-
nant of A,. Show that D, depends only on 7, and find its value in terms of n.

Solution by John H. Lindsey II, Cambridge, MA. The value of D, is (n!)"™!, which
we prove by induction on n. The result is trivial when n = 0. For n > 0, use indices
0, ..., n for the rows and columns of A,,. In A, let C; be column j and R; be row i.
Given a function f, define Af by Af (k) = f(k + 1) — f(k). By induction on n, if f
is a monic polynomial of degree n, then A" f(x) = n! for all x.

Replacing C, with Z?:O ('j’) (—1)"~/C; does not change the determinant, but it turns
the ith entry of column n into A" p(—i), which equals n!. Now for 0 <i <n — 1 in
order, subtract the next row from R;, replacing R; with R; — R;,. This puts 0 in the last
column, except for the last row. For j < n, the new entry a; ; is p(—i + j) — p(—i —
1 + j), which equals Ap(—i — 1 + j). Since Ap has leading coefficient n, the upper
left (n — 1)-by-(n — 1) block has the form nA s, where f(x) = (1/n)Ap(x —1).

Since f is a monic polynomial with degree n — 1, by the induction hypothe-
sis Dy = (n — 1)!". Expanding the altered D, down the last column yields D, =
n'n(n — D" = n"th,

Editorial comment. Solvers used a variety of methods, including Vandermonde deter-
minants. Roger Horn proved a substantial generalization. Given a matrix A, let p(A)
denote the entrywise application of the polynomial p to A; that is, the (i, j)-entry of
p(A) is p(a; ;). For x € C"*!, let A(x) be the matrix givenby a; ; = x; + j — 1. If p
is a monic polynomial of degree n, then

(_1)|_(11-0—1)/2J(n3)'l
det p(A) = ([ i —x)) | —=7—. (1)
i~ [T !

which depends only on x and n, not p. The originally stated problem is the case x =
©,—1,...,—mT.

Also solved by D. Beckwith, R. Chapman (U. K.), P. Corn, P. P. Dalyay (Hungary), J. Grivaux (France), J. Hart-
man, C. C. Heckman, R. A. Horn, R. Howard, G. Keselman, O. Kouba (Syria), S. C. Locke, O. P. Lossers
(Netherlands), K. McInturff, J. H. Nieto (Venezuela), E. Pité (France), C. R. Pranesachar (India), M. A. Prasad
(India), N. C. Singer, J. H. Smith, A. Stadler (Switzerland), V. Stakhovsky, R. Stong, T. Tam, M. Tetiva (Ro-
mania), B. Tomper, M. Vowe (Switzerland), L. Zhou, BSI Problems Group (Germany), FAU Problem Solving
Group, GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposers.
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The Column Space of a Very Nilpotent Matrix

11379 [2008, 664]. Proposed by Oskar Maria Baksalary, Adam Mickiewicz Univer-
sity, Poznani, Poland, and Gotz Trenkler, Technische Universitdit Dortmund, Dortmund,
Germany. Let A be a complex matrix of order n whose square is the zero matrix. Show
that R(A 4+ A*) = R(A) + R(A*), where R(-) denotes the column space of a matrix
argument.

Solution by M. Andreoli, Miami Dade College, Miami, FL. Note first that A2 =0
implies R(A) € N (A), where N'(A) is the nullspace of A. This holds because y =
Ax implies Ay = A%x = 0.

For y € R(A + A*), there exists x such that y = (A + A*)x = Ax + A*x. Hence
y € R(A) + R(A*), and we conclude that R(A + A*) C R(A) + R(A%).

Conversely, for y € R(A) + R(A*), there exist vectors x; and x, such that y =
Ax; + A*x,. Since N'(A*) and R(A) are orthogonal complements in C", there exist
vectors u € R(A) and v € N'(A*) such that x; — x, = u + v. Since R(A) € N (A),
we have u € N(A). Letting x = x; — u = x, + v, we have

(A+AYYx =Ax+A"x = A(x; —u) + A*(x, +v)
= Axl — Au + A*Xz + Afv = Ax1 + A*Xz = y.
Thus y € R(A + A*), and hence R(A) + R(A*) C R(A + A*).

Also solved by M. Bataille (France), P. Budney, R. Chapman (U. K.), P. Corn, C.-K. Fok, J. Freeman, J.-
P. Grivaux (France), J. Hartman, E. A. Herman, R. A. Horn, O. Kouba (Syria), C. Lanski, J. H. Lindsey II,
O. P. Lossers (Netherlands), R. Martin (Germany), I. Pinelis, E. Pité (France), N. C. Singer, J. H. Smith,
R. Stong, J. Stuart, F. Vrabec (Austria), BSI Problems Group (Germany), GCHQ Problem Solving Group
(U. K.), and the proposers.

A Generalized Binomial Coefficient

11380 [2008, 665]. Proposed by Hugh Montgomery, University of Michigan, Ann
Arbor, M1, and Harold S. Shapiro, Royal Institute of Technology, Stockholm, Sweden.
Forx e R, let (}) = & ]_[];;:](x — j). Fork > 1, let a; be the numerator and ¢, the de-
nominator of the rational number (_}(/ 3) expressed as a reduced fraction with ¢, > 0.
(a) Show that ¢, is a power of 3.

(b) Show that ¢, is odd if and only if & is a sum of distinct powers of 4.

Solution by Stephen M. Gagola Jr., Kent State University, Kent, OH. We prove more
generally that if m > 1 and m + 1 is a power of a prime p, and the rational number

(_lk/ ’") has numerator a; and denominator g, in lowest terms with g, > 0, then

(a’) all prime factors of ¢, divide m, and
(b') p 1 a if and only if k is a sum of distinct powers of m + 1.
The stated problem is the case m = 3, where p = 2.

(a’) For clarity, let ¢, = (_lk/ m) = ai/qx. In the formal power series ring Q[[x]],
[e¢]
A0 =3 cat. ()
k=0
Therefore,
oo [e¢] mn oo
YDt =40 = (Z ckxk> =X D e, @
k=0 k=0 k=0
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where the inner sum extends over all m-tuples (iy, ... ,i,) of nonnegative integers
summing to k. Exactly m such m-tuples have k as an entry. Equating coefficients of x*
in (2) then yields

me+ Y iy e, = (—DF, 3)

where the sum extends over m-tuples (iy, ... , i,,) with sum k and entries less than k.
Let R, = Ui>0(l/mi)Z. Note that R,, is the subring of QQ consisting of all rational
numbers whose denominators factor into primes dividing m. Also, co = 1,50 ¢y € R,,.
Since m is a unit of R,,, (3) yields ¢, € R,, for all k, inductively. Thus (a") follows.
(b’) View (1) and (2) above in the formal power series ring R, [[x]]. We write
f(x) = g(x) when f(x) — g(x) = ph(x) for some power series h(x) € R, [[x]].
Since f(x)? = f(x?) forall f(x) € R,[[x]], also f(x)"*! = f(x"*!). Therefore,

0 o m+1
Yoaxt =0+ = A+ +0)7")" = (1 +x) (chxk>
— k=0

(1+ x) ZC Sy Dk _ Z(C XD oy Dk @)

k=0

We conclude that ¢, = Omod p if k is not congruent to O or 1 modulo m + 1, and the
same holds for a;.

Note thatcy = 1 and c; = —1/m = 1 mod p. Hence p divides neither ay nor a;. For
k > 1,if m + 1 divides k or k — 1, then write k = (m + 1)k’ + €, where € € {0, 1}.
Note that & is a sum of distinct powers of m + 1 if and only if £ is. The congruence in
(4) implies that ¢, = ¢ mod p, and (b’) follows by induction.

Also solved by R. Chapman (U. K.), H. Chen, P. Corn, P. P. Ddlyay (Hungary), Y. Dumont (France), E. Errthum,
S. M. Gagola Jr., J. H. Lindsey II, O. P. Lossers (Netherlands), J. Minkus, M. A. Prasad (India), B. Schmuland
(Canada), N. C. Singer, J. H. Smith, A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), Z. Voros (Hun-
gary), BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), NSA Problems Group, and
the proposers.

Convergence of a Prime-denominated Series

11384 [2008, 757]. Proposed by Moubinool Omarjee, Lycée Jean-Lurcat, Paris,
France. Let p, denote the nth prime. Show that

>

n=1

(— 1)ij

converges.

Solution by Greg Martin, University of British Columbia, Vancouver, CA. Let Sy =
ZN (_I;—im. It suffices to show that the subsequence {S,2_,: M > 1} converges,

n=1

since Sy is between Sy, and S, y2 for N between M? —1and (M +1)> — 1.

However, S)2_; = Zm _, Ty, Where
m?—1 m%—1
(_1)LﬁJ - 1
L=y, St Y
n=m-n?  Pr nem—1)2 Pn
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Since {T,,: m > 1} alternates in sign, it suffices to show that lim 7,, = 0, by the alter-
nating series test. Using the crude inequality p, > n, we obtain

m2—1 m2—1
1 1 2m — 1
|T,.| < S l= ——,
n=(%:1)2 no (m—1) n:(mzl)z (m —1)*

and thus lim 7,, = 0.
A similar proof works if the sequence of primes is replaced by an arbitrary sequence

g satisfying g, /+/n — 00.

Editorial comment. Many solvers used detailed information about the distribution of
the prime numbers, but the proof above shows that this is unnecessary.

Also solved by R. Bagby, H. Chen, P. P. Ddlyay (Hungary), Y. Dumont (France), V. V. Garcia (Spain), S. James
(Canada), O. Kouba (Syria), K. Y. Li (China), J. Oelschlager, P. Perfetti (Italy), E. Pité (France), A. Plaza
(Spain), C. R. Pranesachar (India), M. T. Rassias (Greece), V. Schindler (Germany), B. Schmuland (Canada),
N. C. Singer, A. Stadler (Switzerland), R. Stong, T. Tam, R. Tauraso (Italy) & M. Lerma, D. B. Tyler, J. Vinuesa
(Spain), Z. Voros (Hungary), GCHQ Problem Solving Group (U. K.), and the proposer.

Capturing Eigenvalues in an Interval

11387 [2008, 758]. Proposed by Oskar Maria Baksalary, Adam Mickiewicz Univer-
sity, Poznarni, Poland, and Gotz Trenkler, Technische Universitdit Dortmund, Dortmund,
Germany. Let C, , denote the set of n x n complex matrices. Determine the shortest
interval [a, b] such that if P and Q in C,, are nonzero orthogonal projectors, that is,
Hermitian idempotent matrices, then all eigenvalues of PO + Q P belong to [a, b].

Solution I by O. P. Lossers, Eindhoven University of Technology, Einhoven, The
Netherlands. The eigenvalues of PQ + QP lie in [—%, 2]. The matrix P + Q is Her-
mitian, and hence there is an orthonormal basis of its eigenvectors. The eigenvalues
of P 4+ Q are real and in [0, 2], since |(P + Q)x| < |Px| + | Qx| < 2|x|. The matrix
PQ + QP equals (P + Q)> — (P + Q) and thus has the same eigenvectors as P + Q,
with eigenvalues of the form A> — A with 0 < A < 2. It follows that the eigenvalues of
PO+ QP liein [—1/4,2].

The maximum is attained when P and Q both equal the identity matrix, while the
minimum is attained for the projections on two lines intersecting at an angle of /3.

Solution Il by Fuzhen Zhang, Nova Southeastern University, Fort Lauderdale, FL.
Since (PO + QP)x| < |PQOx|+ |QPx| < 2|x| for all x, the eigenvalues are at most
2. For the lower bound, write X > Y if X and Y are Hermitian and X — Y is positive
semidefinite. Note that

1\’ 1 1
0§(P+Q—51) =P2+Q2+ZI+PQ+QP—P—Q=Zl—i—PQ—i—QP.

It follows that PQ + QP > —il , and therefore each eigenvalue of PQ + QP is at
least —Alf.
For the extreme cases, taking P = Q = I gives the largest eigenvalue 2. Setting

P=[}0]and Q =1 [\}g *?] yields —1 as an eigenvalue.
Editorial comment. The partt PQ + QP > —4—111 of this problem appeared in F. Zhang,

Linear Algebra: Challenging Problems for Students (2nd ed.), Johns Hopkins Univer-
sity Press, Baltimore, 2009, p. 81.
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Also solved by R. Chapman (U. K.), J. Freeman, J.-P. Grivaux (France), J. Hartman, E. A. Herman, O. Kouba
(Syria), T. Laffey & H. gmigoc (Ireland), J. H. Lindsey II, M. Omarjee (France), R. Stong, S. E. Thiel,
N. Thornber, Szeged Problem Solving Group “Fejéntaldltuka” (Hungary), GCHQ Problem Solving Group
(U. K.), and the proposers.

Distinct Multisets with the Same Pairwise Sums

11389 [2008, 758]. Proposed by Elizabeth R. Chen and Jeffrey C. Lagarias, Univer-
sity of Michigan, Ann Arbor, MI. Given a multiset A = {a,, ..., a,} of n real num-
bers (not necessarily distinct), define the sumset S(A) of Atobe {a; +a;: 1 <i <
Jj < n}, a multiset with n(n — 1)/2 not necessarily distinct elements. For instance, if
A=1{1,1,2,3},then S(A) ={2,3,3,4,4,5}.
(a) When n is a power of 2 with n > 2, show that there are two distinct multisets A
and A, such that S(A;) = S(A,).
(b) When n is a power of 2 with n > 4, show that if  distinct multisets A, ... , A, all
have the same sumset, thenr < n — 2.
(c*) When n is a power of 2 with n > 4, can there be as many as 3 distinct multisets
with the same sumset?

(Distinct multisets are known to have distinct sumsets when 7 is not a power of 2.)

Solution by BSI Problems Group, Bonn, Germany.

(a) We recursively construct multisets A,, and B,, of size 2" for m > 0. For m > 0,
choose arbitrary positive c,,. Let Ag = {0} and By = {co}. For m > 0, let A,, =
A U{b+cy: be B, 1} and B, = B,_1U{a+c,: a € A,_1}. Inductively,
|[Anl = |By] =2 and S(A,,) = S(B,,). Also min A,, = 0 < min B,,, which yields
A,, # B,.

(b) First we prove three claims. Let A = {ay, ... ,a,} with gy <--- < a,, and let
S(A) =1{s1, ..., Sn—ny2} With 51 < -+ < $5,6-1) 2.
Claim I: a, + a3 € {s3,...,s,}. Since a; + a; < a; + a3 < a, + as, we have a, +

as > s3. Also, the only sums that can be strictly smaller than a, 4 a3 are {a; + a;: 2 <
i <n}. Thusa, + a3 <s,.

Claim 2: Let B = {by, ... ,b,} withb, < --- <b,. Ifa; = by and S(A) = S(B),
then A = B. We prove a; = b; by induction on i. Let A(i) = {a;, ...,a;} and B(i) =
{by,...,b;}.If A(i — 1) = B(i — 1), then a; + a; and b, 4 b; are both minimal among
S(A) — S(A(l — 1)) Thus iy = bi+|.

Claim 3: Let B = {by,...,b,} with by < --- < b,. If a, + a3 = by + b3 and
S(A) = S(B), then A = B. Since the two smallest sums from the two sets are
equal, a; +a, = s; = by + b, and a; + a3 = s, = b; + b;. With the hypothesis
a, + a3 = b, + b3, we have a; = b;. Claim 2 now applies.

Given these claims, let A', ..., A”~! be multisets of size n having the same sum-
set. Write AX = {a}k), . ,a®} with afk) < ... <a®.By Claim 1, there are at most
n — 2 values for the sum of the second and third smallest elements. By the pigeonhole
principle, there exist distinct k£ and / such that ag() + aék) = ag) + agl). By Claim 3,
Ay = A;. Thus at most n — 2 multisets can have the same sumset.

(c) The answer is yes. Let A = {0,4,4,4,6,6,6,10}, B =1{2,2,2,4,6,8, 8, 8}, and
C ={1,3,3,3,7,7,7,9}. With exponents denoting multiplicity, S(A), S(B), and
S(C) all equal {4®, 6,83 1010, 123 140 16®}.

Editorial comment. The GCHQ Problem Solving Group solved part (a) by letting A,
be the set of nonnegative integers less than 2n whose binary expansion has an even
number of ones and setting A, = {0, 1, ...,2n — 1} — A;. This results from the con-
struction given above by setting ¢,, = 2".
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For part (c), Daniele Degiorgi gave the example A = {0,6,7,9, 11, 13, 14, 20},
B =1{1,5,6,8,12,14,15,19}, and C = {2,4,5,9, 11, 15, 16, 18}, showing that it
can be solved with sets (i.e., multisets with no repeated elements).

It remains open whether there are quadruples of multisets of size greater than 2
with the same sumset, or whether there are triples of multisets of any size greater than
2 other than 8 with the same sumset. Richard Stong showed that the search for such
triples can be restricted to multisets whose size is an odd power of 2.

Also solved by D. Degiorgi (Switzerland), R. Stong, and the GCHQ Problem Solving Group (U. K.). Parts (a)
and (b) solved also by O. P. Lossers (Netherlands), M. A. Prasad (India), Microsoft Research Problems Group,
and the proposers.

Tetrahedral Cevians

11405 [2009, 82]. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Let P be
an interior point of a tetrahedron ABCD. When X is a vertex, let X’ be the intersection
of the opposite face with the line through X and P. Let X P denote the length of the
line segment from X to P.

(a) Show that PA- PB-PC-PD > 81PA"- PB'- PC'- PD’, with equality if and
only if P is the centroid of ABCD.

(b) When X is a vertex, let X” be the foot of the perpendicular from P to the plane of
the face opposite X. Show that PA- PB - PC-PD =81PA" - PB"- PC"- PD" if
and only if the tetrahedron is regular and P is its centroid.

Solution by Kit Hanes, Bellingham, WA. We will consider the more general case of an
n-simplex with vertices Ay, ..., A,. Let P be a point in the interior, and let A; be the
point where the line A; P meets the face opposite A;. We will show that [],_, PA; >
n" T T, PA,, with equality if and only if P is the centroid of the simplex. Let P =
apAg + - -+ a,A, where ay + - - - + a, = 1 and each q; is positive. For each j, A’j is
a convex combination of the A; with A; omitted and P is a convex linear combina-
tion of A; and A;.. Hence P =a;A; + (1 — aj)A’j. Hence PAj/PA’j = —aj)/a;.
The inequality of (a) is equivalent to []_o(1 —a;) > n"*' [])_,a;. This inequality
follows by applying the arithmetic-geometric mean inequality
l—aj a+--+a+--+a —

= >4ag...a;j...a,
n n

to each term separately and taking the product. (Here, the hats indicate that the hatted
term is to be skipped.) Equality holds if and only if all the a; are equal, and hence
a; = 1/(n+ 1) for all i and P is the centroid of the simplex. For part (b), note that
PA; > PA! with equality if and only if A} = A7, i.e., if and only if the line PA; is
an altitude of the simplex. Hence the stated equality holds exactly when P is both the
centroid and the orthocenter of the simplex. That this is equivalent to the simplex being
regular is half of Problem 11087 from this MONTHLY, December, 2005.

Editorial comment. Part (a) of this problem is the generalization from triangles to
tetrahedra of Problem 11325, this MONTHLY, November, 2007.

Also solved by S. Amghibech (Canada), M. Bataille (France), M. Can, R. Chapman (U. K.), P. P. Dalyay
(Hungary), O. Geupel (Germany), M. Goldenberg & M. Kaplan, J. Grivaux (France), K. Hanes, J. G. Heuver
(Canada), B.-T. Iordache (Romania), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), J. Schaer
(Canada), R. Stong, M. Tetiva (Romania), Z. Voros (Hungary), M. Vowe (Switzerland), GCHQ Problem Solv-
ing Group (U. K.), and the proposer.
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Proposed problems and solutions should be sent in duplicate to the MONTHLY
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at that address before March 31, 201 1. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11501. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. (Cor-
rection) Let

3
g(Z):l_ 1 +;+ 1 -

1—az 1—iz 1+iz

Show that the coefficients in the Taylor series expansion of g about 0 are all nonnega-
tive if and only if a > V3.

11530. Proposed by Pdl Peter Ddlyay, Szeged, Hungary. Let A be an m X m matrix
with nonnegative entries a; ; and with the property that there exists a permutation o
of {1, ..., m} for which [[_, a; - > 1. Show that the union over n > 1 of the set of
entries of A" is bounded if and only if some positive power of A is the identity matrix.

11531. Proposed by Nicusor Minculete, “Dimitrie Cantemir” University, Brasov, Ro-
mania. Let M be a point in the interior of triangle ABC and let A, A,, A3 be positive
real numbers. Let R,, Ry, and R. be the circumradii of triangles M BC, MCA, and
M A B, respectively. Show that

2 2 2 IMA| IMB| |MC|
)VlRa + )\sz + )L3Rc = )Vl)‘2)\3 + + .

A Ao A3
(Here, for V = A, B, C, |[M V| denotes the length of the line segment MV . )

11532. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Ro-
mania, and Vicentiu Rddulescu, Institute of Mathematics “Simon Stoilow” of the
Romanian Academy, Bucharest, Romania. Find all prime numbers p such that there
exists a 2 x 2 matrix A with integer entries, other than the identity matrix /, for which
AP + AP ..+ A = pl.

doi:10.4169/000298910X521724
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11533. Proposed by Erwin Just (emeritus), Bronx Community College of the City Col-
lege of New York, Bronx, NY. Let t be a positive integer and let R be a ring, not neces-
sarily having an identity element, such that x 4+ x**! = x* + x!%*! for each x in R.
Prove that R is a Boolean ring, that is, x = x2 for all x in R.

11534. Proposed by Christopher Hillar, Mathematical Sciences Research Institute,
Berkeley, CA. Let k and n be positive integers with k < n. Characterize the n x n
real matrices M with the property that for all v € R" with at most k nonzero entries,
M also has at most k nonzero entries.

11535. Proposed by Marian Tetiva, Birlad, Romania. Let f be a continuously differ-
entiable function on [0, 1]. Let A = f(1) and let B = fol x~Y2 f(x) dx. Evaluate

. ! "k (k= 1)? (k —1)2
nlgggn(/o f(X)dx—kZ;(ﬁ— e >f< 2 ))

in terms of A and B.

11536. Proposed by Mihaly Bencze, Brasov, Romania. Let K, L, and M denote the
respective midpoints of sides AB, BC, and CA in triangle ABC, and let P be a point
in the plane of ABC other than K, L, or M. Show that

|[AB| |BC| |CA]| - |[AB| - |BC| - |CA|
|PK| |PL| |PM| — 4/PK|-|PL|-|PM|
where |U V| denotes the length of segment UV

SOLUTIONS

The Number of k-cycles in a Random Permutation

11378 [2008, 664]. Proposed by Daniel Troy (Emeritus), Purdue University—Calumet,
Hammond, IN. Let n be a positive integer, and let Uy, ... , U, be random variables
defined by one of the following two processes:

A: Select a permutation of {1, ..., n} at random, with each permutation of equal
probability. Then take Uy to be the number of k-cycles in the chosen permutation.

B: Repeatedly select an integer at random from {1, ... , M} with uniform distribu-
tion, where M starts at n and at each stage in the process decreases by the value
of the last number selected, until the sum of the selected numbers is . Then take
U to be the number of times the randomly chosen integer took the value k.

Show that the probability distribution of (Uy, ... , U,) is the same for both processes.

Solution by O.P. Lossers, Eindhoven University of Technology, Netherlands. First we
introduce a standard notation for the permutations: in each cycle put the lowest num-
ber in front, and list the cycles with the first elements in decreasing order. Next we
count the permutations of n objects where the last cycle has length k. The last cycle
starts with 1, and the other k — 1 elements are arbitrary, in any order. Hence there are
(n — 1)!/(n — k)! ways to fill the last cycle, and then the permutation can be completed
in (n — k)! ways. Hence the number of permutations in which the last cycle has length
k is (n — 1)!, independent of k. It follows that the length of the last cycle is uniformly
distributed, and the remaining cycles are produced by the same process on the remain-
ing n — k elements. Hence the production of cycle lengths from back to front under
process A emulates process B.
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Editorial comment. Erich Bach noted that the use of process B to generate the cycle
lengths of random permutations has appeared before, such as in E. Bach, Exact Anal-
ysis of a Priority Queue Algorithm for Random Variate Generation, Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA), 1994, 48-56.

Also solved by E. Bach, D. Beckwith, R. Chapman (U. K.), S. J. Herschkorn, J. H. Lindsey II, R. Martin
(Germany), J. H. Nieto (Venezuela), M. A. Prasad (India), K. Schilling, J. H. Smith, P. Spanoudakis (U. K.),
R. Stong, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), and the proposer.

When HI = 10

11398 [2008, 948]. Proposed by Stanley Huang, Jiangzhen Middle School, Huaining,
China. Assume acute triangle ABC has its middle-sized angle at A. Suppose further
that the incenter / is equidistant from the circumcenter O and the orthocenter H. Show

that angle A has measure 60 degrees and that the circumradius of / BC is the same as
that of ABC.

Composite solution by the Editors. The restriction to acute triangles appears to be
unnecessary.

V. V. Garcia (Huelva, Spain) pointed to Problem E2282, this MONTHLY, April
1972, pp. 397-8, where it is shown that (excepting only equilateral triangles, for
which /O = 0, and not excluding right or obtuse triangles) H1/1 O is (1) less than 1,
(2) equal to 1, or (3) greater than 1, according as the middle-sized angle of the triangle
is (1) greater than, (2) equal to, or (3) less than 60°. Geometrically, this means that
with respect to the perpendicular bisector A of the Euler segment, / is (1) on the H
side of A, (2) on A, or (3) on the O side of A. Thus when [ is equidistant from O and
H,i.e., on A, the middle-sized angle must be 60°.

The second claim of this problem is too humble. Actually, when angle A has mea-
sure 60°, the reflection C’ of the circumcircle C of ABC across BC, which of course
has the same radius, contains not only / (making it the circumcircle of B/ C) but also
O and H. A proof of this expanded claim was submitted to this MONTHLY in 1998 by
W. W. Meyer as part of a solution to Problem 10547. Here, we will give a proof based
on the solution by Jerry Minkus (San Francisco, CA): Let the angles at A, B, and C
be «, B, and y, respectively. We have shown that « = 60°.

Claim. / lies on C'. Proof. Designate the midpoint of BC as M. Let P be the
point on the opposite side of BC from A at which the perpendicular bisector of BC
meets C. Triangles BP M and C P M are congruent, so arcs B P and C P are congruent.
Therefore angles BAP and CAP are congruent. Thus AP is the angle bisector of
BAC, and therefore A P contains /.

It is known that R? — 1 0% = 2Rr, which may also be observed by constructing the
diameter of C through I. Thus IA-IP = (R+ OI)-(R— OI) = R> — OI* = 2Rr.
Since I A = r/sin(a/2), we have I P = 2R sin(«/2). Similarly, BP and C P are also
equal to 2R sin(«/2). Hence B, C, and [ all lie on a circle about P. When Ea = 60°,
the radius of that circle is R, because sin(60°/2) = 1/2. Hence P is the reflection in
BC of 0, and the circle just referenced containing B, C, and [ is the circle C'.

Claim. O lies on C'. Proof. O and P are reflections of each other in BC.

Claim. H lies on C'. Proof. Note that AH = 2R cos «. This may be seen by ex-
tending ray C O to meet C, say at Q. Then since C Q is a diameter, its length is 2R,
angle CBQ isright, and /BQC = /BAC = «,s0 BQ = 2R cosa. Now BQ is par-
allel to AH, and similarly, A Q is parallel to BH. Thus AH B Q is a parallelogram and
AH = BQ = 2R cosa. Here we have o = 60° and cos 60° = 1/2,s0 AH = R. We
may conclude that AO P H is a parallelogram, since A H is parallel to O P and of the
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same length. (It is in fact a rhombus.) It follows that PH = AO = R. Thus as claimed
H lieson C'.

Editorial comment. The Blundon result from E2282 may be strengthened in an inter-
esting way due to Francisco Bellot Rosado (Spain), who submitted it to this MONTHLY
in 1998 as part of a solution to Problem 10547: Let G denote the centroid of the tri-
angle. The incenter / always lies inside the circle whose diameter is G H, because the
angle GI H is always obtuse. Since the perpendicular bisector A of the Euler segment
O H divides the circle of Bellot Rosado into a larger and a smaller piece, [ is (1) in the
larger piece, (2) on line A, or (3) in the smaller piece, according as the middle-sized
angle of ABC is (1) greater than, (2) equal to, or (3) less than 60°.

Also solved by M. Bataille (France), R. Chapman (U. K.), C. Curtis, Y. Dumont (France), D. Fleischman,
V. V. Garcia (Spain), D. Grinberg, J.-P. Grivaux (France), E. Hysnelaj (Australia) & E. Bojaxhiu (Albania), O.
Kouba (Syria), J. H. Lindsey II, J. Minkus, R. Stong, M. Tetiva (Romania), D. Vacaru (Romania), Z. Voros
(Hungary), M. Vowe (Switzerland), J. B. Zacharias & K. Greeson, GCHQ Problem Solving Group (U. K.),
Microsoft Research Problems Group, and the proposer.

An Alternating Series

11409 [2009, 83]. Proposed by Paolo Perfetti, Mathematics Department, University
“Tor Vergata,” Rome, Italy. For positive real o and g, let

N n a+k10gk
g ’ ’N _ 1 1) .
(o, B, N) ;I’l og(n)(—=1) g B+ (k+ 1)log(k + 1)

Show that if 8 > «, then limy_, », S(a, B, N) exists.

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA. Let
o = klogk. Write

an=wn]‘[ﬂzbn]‘[(1—ﬂ_“), where b, = LEe2)n
v B @i S B+ wx B+ @1

and suppose 8 > «. We will prove that
o
(=D"a, converges,
n=2
solimy_ o S(c, B, N) exists. By the alternating series test of Leibniz, and noting a,, >
0, it suffices to prove

(i) a,.1/a, < 1 for all sufficiently large n, and
(ii) a, —» Oasn — oo.

(i) From the definition of a,, in (1),

Apy1 O (@ + ©py1)

ay B wn(13+wi1+2) '

soa,y1/a, < 1isequivalentto w,; o + (a)ﬁ 411 — Wp Wy12) < w, B. Calculation shows

a)ﬁ+1 — W, Wpr = (logn)*> +logn + 1+ o(1). Because B > o and w,4; ~ w, =
n log n, the required result follows.

(ii) Because lim,,_, o, b, exists, to show lim,_, ., a, = 0 it suffices to show that the

infinite product
(-2
B+ w

k=3
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diverges to zero. Recall that if 0 < ¢, < 1 for all k and ) -, ¢; diverges, then
[TeZ, (1 — ¢x) diverges to 0. In the present case, the divergence of

=1 &
Zw_k Z3klogk

k=3

shows that the infinite product in (2) diverges to 0. (That the sum diverges is well
known, as it follows from the integral test or Cauchy condensation test.)

Also solved by S. Amghibech (Canada), P. Bracken, R. Chapman (U. K.), P. P. Ddlyay (Hungary), D. Grinberg,
J. Grivaux (France), E. A. Herman, O. Kouba (Syria), J. H. Lindsey II, A. Stadler (Switzerland), R. Stong, M.
Tetiva (Romania), BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), and the proposer.

A Fix for a Triangle Inequality

11413 [2009, 179]. Proposed by Mihdly Bencze, Brasov, Romania. Let6; for 1 <i <5
be nonnegative, with Z? 0, =m,04 =0,,and 05 = 0,. Let S = Z?:l sin 6;. Show that

3 1 1 1
S < L— —4 lr£11a<x3<s1n <@(95 — 9,-+1)) cos<59i+2> + ﬁsinz(ﬁ(n — 39,-+2)>> .

Solution by Richard Stong, San Diego, CA. (The originally published statement had
a misprint, with “2” where “(4)” now stands.) If A, B,C > 0with A+ B+ C =,
then

S =sinA +sin B 4 sinC = 4 cos(A/2) cos(B/2) cos(C/2).
Hence
S + 4sin*((A — B)/4) cos(C/2) = 4cos*((A + B)/4) cos(C/2)
= 4cos’(mr — C)/4) cos(C/2).
Applying the identity
4cos(x + 2y) cos>(x — y) + 8sin® ycosx = 4cos’ x — 4sin® y cos(x — 2y)
withx =nw/6and y = (w — 3C)/12, we have

-C —-3C 343 -3C 2 —3C
+ 4+/35in’ T = V3 —4sin? cos
12 2 12 6

C T
4 cos 3 cos’

or, combined with the above,

— B C —3C 343 - 3C 2 —3C
cos§+4x/§sin2n12 = ;/_—4sin2n cos il .

A
S + 4sin’
12 6

Since 0 < C < &, the last cosine is nonnegative, and hence

-3C _ 3V3

12 - 2

Apply this result three times, taking (A, B, C) to be (6, 6,, 65), then (6,, 65, 6;), and
finally (65, 01, 6,), to obtain the desired result.

A—B C
S+4sinzTcos§+4\/§sin2n

Editorial comment. Some solvers corrected the problem by showing that it holds as
originally printed but with the inequality reversed.
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Also solved by R. Bagby, P. P. Ddlyay (Hungary), J. H. Lindsey II, GCHQ Problem Solving Group (U. K.),
and Microsoft Research Problems Group.

Blundon’s Inequality Improved

11414 [2009, 179]. Proposed by Marian Tetiva, National College “Gheorghe Rosca
Codreanu,” Birlad, Romania. Let ABC be a triangle with largest angle at A, let A also
denote the measure of that angle, let ¢ = cot(A/2), and let s, r, and R be the semi-
perimeter, inradius, and circumradius of the triangle, respectively. Show that Blundon’s
Inequality s < 2R + r(3+/3 — 4) can be strengthened to

N3
s52R+r<3\/§—4—(‘/§47CC)>.

Solution by Oliver Geupel, Briihl, NRW, Germany.

Lemma. If a, b, ¢ are positive real numbers such that a + b + ¢ = abc and ¢ =
min{a, b, ¢}, then (a — 1)(b — 1)(c — 1) < 6+/3 — 10 — (v/3 — ¢)*/(2¢).

Proof. Note that ba = (abc)/c > (abc)/(a + b + ¢) = 1, and similarly bc > 1 and
ca > 1. Thus at most one of the numbers a, b, ¢ can be less than 1. Hence a > 1 and
b > 1. The equality a + b + ¢ = abc yields ¢ = (a + b)/(ab — 1). We must show that
ifa,b > 1and ab > 1, then f(a, b) < 0, where

Fla,b) = (a—1)b— 1)<;’b+_bl _ 1) —(6v/3—10) — (“/i((‘;l;__ll));a(i“;f)f.
Puta =1+ xand b = 1 4 y with x, y > 0, and rewrite the function as
FA+x,14y) ==2x+y+2)(x+y+xy (x*y
H(6v/3 — 12)xy + (6v/3 — 10)(x + y)) .

Observe x + y > 2, /xy and substitute t = ,/xy to reduce the inequality to p(t) > 0
forallt > 0, where p(t) = t*+ (6\/3 —12)> + (12\/5 — 20)t. This follows from the
factorization p(t) = 1(t — (+/3 — 1))2(t + 243 = 2). [

In triangle ABC, the numbers a = cot(A/2), b = cot(B/2), and ¢ = cot(C/2) sat-
isfya+b+c=s/r =abc,ab+ bc+ca = AR+ r)/r,and ¢ = min{a, b, c}. By

the lemma,

s=%[(a—1)(b—1)(c—1)+ab+bc+ca+l]

N3
5(6\/_—10—(“/g 2 +4R+r+1>
2 2c

v

r

N3
:2R+r(3x/§—4—(‘/§4760)>.

Equality holds if and only if the triangle is equilateral.
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Editorial comment. Richard Stong proved the stronger inequality

_ _ 2
s52R+r<3f3—4—9(2 V3) (B3-o )

8 c?

Also solved by J. H. Lindsey II, C. R. Pranesachar (India), R. Stong, GCHQ Problem Solving Group (U. K.),
and the proposer.

Closed-Form Definite Integral

11416 [2009, 180]. Proposed by Yaming Yu, University of California Irvine, Irvine,
CA. Let f be the decreasing function on (0, co) that satisfies

fx)e /™ = xe™.

(To visualize, draw a graph of the function xe™ and a horizontal line that is tangent to
it or crosses it at two points; if one of these points is x, then the other is f(x).) Show
that

2

f SOy o dx = 2
0

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. From the definition of f, we have f(x)/x = e¢/®~*. Writing u =
f(x)/x and eliminating f(x) gives x = logu/(u — 1), so that as x increases from
0 to oo, u decreases from oo to 0. The integral to be computed, call it A, can then
be written as A = fooo u®(x)dx (with « = 1/6). Integrating first by parts and then
changing variables from x to u in the resulting integral gives

o0 . . ) ooua—llogu
A= u“(x)dx = xu®(x) 0—|—a ——du.

=0 - u-—1

Here we could refer to Gradshteyn & Ryzhik (formula 4.254.1) and Abramowitz &
Stegun (formula 6.4.7). In this special case, though, there is a simpler solution. For
0 < o < 1 the integral converges. The first term on the right-hand side is zero because
itis equal to u® log(u)/(u — 1)|°__,. Split the second term into two parts:

1 a—ll 00 a—21
0 1—u 1 l—l/u

Expand (1 — u)~" and (1 — 1/u)~! as geometric series, then integrate:

o0 o0 1

Z n+a)2 Zl(n—l—l—a)f

=0

Using the Hurwitz zeta function notation ¢ (s, a) = Z:io(n + a)~*, for arbitrary
o in (0, 1) this can be written as «(¢(2, @) + ¢(2, 1 — «)). Starting with the known
fact that ¢(2) = ¢(2, 1) = 72/6, elementary calculations give ¢ (2, 1/2) = 3¢(2) and
£(2,1/3) +¢(2,2/3) = 8¢(2), so that £ (2, 1/6) + ¢(2,5/6) is given by

6 2
3 0 @ok/6) =Y @ k/3) —£(2,1/2) —£(2, 1) = (36 — 8 — 3 — 1)¢(2) = 4.
k=1 k=1

The required sum is thus 4aw? = 272 /3.
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Also solved by R. Bagby, D. Beckwith, P. Bracken, B. S. Burdick, P. Corn, L. Gerber, M. L. Glasser, J. Grivaux
(France), E. A. Herman, F. Holland & T. Carroll (Ireland), K. McInturff, O. G. Ruehr, V. Rutherfoord, R. Stong,
J. B. Zacharias, BSI Problems Group (Germany), GCHQ Problem Solving Group (U. K.), Microsoft Research
Problems Group, and the proposer.

An Integral-Derivative Inequality

11417 [2009, 180]. Proposed by Cezar Lupu (student), University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanta, Roma-
nia. Let f be a continuously differentiable real-valued function on [0, 1] such that

U5 f(x)dx = 0. Show that [) (f'(x))*dx > 27 ( I8 f(x)dx)z,

Solution by Moubinool Omarjee, Paris, France. Let h(x) be the continuous, piecewise
linear function given by

—X, 0<x<1/3,
h(x)={32x—1, 1/3<x<2/3,
1—x, 2/3<x<1.
Integrating by parts gives

2/3

1 1 1
f h(x)f'(x)dx = f f(x)dx —3 fx)dx = f fx)dx,
0 0 0

1/3

and we compute that

! 1
2
/ h(x)"dx = —.
0 27

Hence the Cauchy-Schwarz inequality applied to & and f’ reads

2

1 1
/ (F'()dx > 27 ( / f(x)dx) ,
0 0

Editorial comment. Several solvers remarked that this problem generalizes with
essentially the same proof. In the simplest form, suppose that ¢(x) is an inte-

grable function with fol ¢ (x)dx =1, and define h(x) = —x + [; ¢(t)dt and C =
fol h(x)? dx. For any continuously differentiable real-valued function f on [0, 1] such
that [ f(x)¢(x)dx = 0, one has

1 1
C/ (f'(x))dx > (/ f(x)dx)
0 0

More generally, this holds with ¢ (x) dx replaced by a signed Borel measure.

as desired.

2

Also solved by K. F. Andersen (Canada), R. Chapman (U. K.), P. P. Ddlyay (Hungary), P. J. Fitzsimmons,
0. Geupel (Germany), J. Grivaux (France), G. Keselman, O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers
(Netherlands), D. S. Ross, R. Tauraso (Italy), P. Venkataramana, E. 1. Verriest, FAU Problem Solving Group,
GCHQ Problem Solving Group (U. K.), St. John’s University Problem Solving Group, and the proposers.
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Gamma Products

11426 [2009, 365]. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY.
Find

ra/14ro/14ra1/14)

I'3/14)(5/14)(13/14)°

where I" denotes the usual gamma function, given by I'(z) = fooo t e dt.

Solution by Matthew A. Carlton, Cal Poly State University, San Luis Obispo, CA. The
multiplication formula for the gamma function may be written as

I'(2z)
F(z+1/2)
Apply this with z equal to each of the six values in the original expression, e.g.

ra/mn
r@/mn

[(z) =27 -27%

r(1/14) =27 - 277

The numerator of the original expression can then be written
C/7Hro/Hraai/7)
L@/ DHrE/Hro/7
s 1 LA/ - 4/70(4)7) 432

= 87‘[ — =
8 T'4/7)-1/70(1/7)

(2ﬁ)3 . 2—1/7—9/7—11/7 i

Similarly, the denominator simplifies to 2773/2. Thus the quotient is 2.

Editorial comment. Some solvers provided generalizations. The most interesting and
complete was from Albert Stadler (Switzerland). Let p be an odd prime, and denote

the Legendre symbol by (%) Then
_ 1 ifp=1 d 8
b ok (B -~ ifp= (mod 8),
l_[ r > = g(p) P ) lfp =5 (mOd 8)9 (*)
k=1 b 2T (5)5 i p=7 (mod 8),

where ¢(p) denotes the fundamental unit and %(p) the class number of the real
quadratic field Q(,/p ). The case p = 3 (mod 8) was not resolved. The fundamental
unit £(p) = (x + y/p)/2 is a solution of Pell’s equation x* — py* = 4 with the
property that both x and y are positive and y is minimal. The result asked for here is
the case p = 7. Other examples (p = 5, 13, 17):

r(1/10T'©9/10)  3++/5

r@3/100(7/100 2
I'(1/26)I"(3/26)I"(9/26)I"(17/26)I"(23/26)I"(25/26) 11+ 3+/13
I'(5/26)T(7/26)T'(11/26)T'(15/26)'(19/26)T"(21/26) 2 '

T(1/34)T(9/34)T(13/34)T(15/34)T(19/34)T(21/3HT(25/30)T(33/34)
T'(3/34)1(5/34)T(7/34)T(11/34)[ (23/34) [ (27/34)T(29/34) (31/34)

Since the values in () are algebraic numbers, we have a corollary: If p is an odd prime
# 3 (mod 8), then the p — 1 numbers I'((2k — 1)/(2p)), 1 <k < p,k #(p —1)/2,
are algebraically dependent.
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Also solved by Z. Ahmed & M. A. Prasad (India), K. F. Andersen (Canada), R. Bagby, B. Bauldry, D. Beck-
with, P. Bracken, M. A. Carlton, R. Chapman (U. K.), H. Chen, C. K. Cook, P. Costello, P. P. Ddlyay (Hungary),
F. Flores & F. Mawyer, M. R. Gopal, D. Gove, G. C. Greubel, D. Grinberg, J. Grivaux (France), J. A. Grze-
sik, C. C. Heckman, E. A. Herman, D. Hou, R. Howard, E. Hysnelaj (Australia) & E. Bojaxhiu (Albania), G.
Keselman, T. Konstantopoulis (U. K.), O. Kouba (Syria), V. Krasniqi (Kosova), H. Kwong, G. Lamb, O. P.
Lossers (Netherlands), R. Martin (Germany), K. McInturff, A. Nijenhuis, O. Padé (Israel), R. Padma (India),
C. R. Pranesachar (India), H. Riesel (Sweden), I. Rusodimos, O. A. Saleh & S. Byrd, A. S. Shabani (Kosova),
M. A. Shayib, N. C. Singer, A. Stadler (Switzerland), R. Stong, T. Tam, R. Tauraso (Italy), Z. Voros (Hun-
gary), M. Vowe (Switzerland), Z. Wenlong (China), Con Amore Problem Group (Denmark), GCHQ Problem
Solving Group (U. K.), Microsoft Research Problems Group, NSA Problems Group, and the proposer.

An Equilateral Condition

11427 [2009, 365]. Proposed by Viorel Bdandild, C.A. Rosetti High School, Bucharest,
Romania. In a triangle ABC, let m be the length of the median from A, [ the length
of the angle bisector from B, and & the length of the altitude from C. Let a, b, and
¢ be the lengths of the edges opposite A, B, and C, respectively. Show that ABC is
equilateral if and only if a*> + m? = b> + [> = ¢* + h>.

Solution by Bianca-Teodora lordache, student,“Carol I” High School, Craiova, Ro-
mania. If ABC is equilateral, then a = b = ¢ and m = [ = h, so the equations hold.
We must prove the converse. Let m,, [,, and h, denote the lengths of the median, angle
bisector, and altitude, respectively, corresponding to the edge a, and define similar no-
tation for edges b and ¢. We must prove that

a+ml=b+l;=c"+h = a=b=c.
Claim 1. a> + m? < b* + mj <= a < b. Indeed,
2, 206> + %) —a? - 3a? +2b% + 2¢?
4 B 4 '
Hence a®> + m2 < b* + m} <= 3a®> + 2b* + 2¢* < 3b> + 2a*> + 2¢* & a*> <
b* &< a <bh.

Claim 2. a*> + h? < b*> + h} <= a < b. Using h, = 2S/a, where S is the area of
ABC, we have a* + h? = a* 4+ 45%/a?, so

a2+m§=a

212 2
a’+hl <b+h; = (bz—az)% >0<=b=>a.

Also recall that h, <1, < m, and similarly for b, c. Next suppose that a> + m?> =

b* + I} = c* + h2. We have a* + m2 = ¢ + h? < ¢* + m2, s0 a < ¢ from Claim 1.

We have ¢? + h? = b? + [} > b> + h3, so b < ¢ by Claim 2. From the Heron formula,

168> =(@@a+b+c)(—a+b+c)a—b+c)a+b—c)=2> a’h* - a*, using

> for sums over cyclic permutations of the triangle. Now a? + m? = ¢* + h? so

3a® 4 2b* + 2¢? 2+22a2b2—2a4
—c ’

4 4¢?
so c2(3a® + 2b* — 2¢?%) = 2(a*b* + b*c? + c*a?) — (a* + b* + ¢*) and thus
A(? —a®) = (b —a»>. (1)

Since ¢? > b*> > b*> — a? and ¢* — a*> > b* — a?, for equality in (1) we must have

¢®> —a* = b*> — a* = 0. This shows a = ¢ and a = b as required.

Also solved by R. Bagby, M. Bataille (France), H. Caerols (Chile), R. Chapman (U. K.), G. Crandall, P. P.
Dalyay (Hungary), D. Fleischman, D. Gove, J. Grivaux (France), O. Kouba (Syria), J. H. Lindsey II, J.
McHugh, J. Minkus, M. A. Prasad (India), A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), Z. Vros
(Hungary), GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, and the proposer.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Itshak Borosh, Paul Bracken, Ezra A. Brown, Randall
Dougherty, Tamas Erdélyi, Zachary Franco, Christian Friesen, Ira M. Gessel, Laszl6
Liptak, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bogdan Petrenko,
Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky, Richard
Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Vandervelde,
and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the back of the title page. Submitted solutions should arrive
at that address before April 30, 201 1. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11537. Proposed by Lang Withers, Jr., MITRE, McClean, VA. Let p be a prime and a
be a positive integer. Let X be a random variable having a Poisson distribution with
mean a, and let M be the pth moment of X. Prove that M = 2a (mod p).

11538. Proposed by Marian Tetiva, National College “Gheorghe Rosca Codreanu,”
Birlad, Romania. Prove that a finite commutative ring in which every element can
be written as a product of two (not necessarily distinct) elements has a multiplicative
identity.

11539. Proposed by William C. Jagy, MSRI, Berkeley, CA. Let E be the set of all
positive integers not divisible by 2 or 3 or by any prime g represented by the quadratic
form 4u® 4+ 2uv + 7v>. (Thus, the first few members of E are 1, 5, 11, 17, 23, and 25.)
Show that 4x? 4+ 2xy + 7y + z° is not in {2n°, —2n°, 32n3, —32n3} for n € E and
X,v,z € 7.

11540. Proposed by Marius Cavachi, “Ovidius” University of Constanta, Constanta,
Romania. Let n be an integer greater than 1, other than 4. Let p and g be positive

integers less than n and relatively prime to n. Let a = SSZ2/" Show that if a* is
cos(2mwg/n)

rational for some positive integer k, then a* is either 1 or —1.

11541. Proposed by Nicusor Minculete, “Dimitrie Cantemir” University, Brasov, Ro-
mania. Let M be a point in the interior of triangle ABC. Let R,, R;,, and R, be the
circumradii of triangles M BC, MC A, and M A B, respectively. Let [M A|, M B|, and
|M C| be the distances from M to A, B, and C. Show that

|IMA| |IMB| IMC|
Rb+Rc Ra+Rc Ra+Rb

3
< —.
-2

11542. Proposed by Cezar Lupu, student, University of Bucharest, Bucharest, Roma-
nia, and Vicentiu Rddulescu, Institute of Mathematics “Simion Stoilow” of the Ro-
manian Academy, Bucharest, Romania. Show that for x, y,z > 1, and for positive

doi:10.4169/000298910X523434
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o By,
2x? +y)T (@) + 2y* + 20T () + 22° + 1)) ()
>x+y+2aT® 4+ yI(y) +z200(2),
and
B(x, o) "2 B(y, B) 7 B(z, y)T
> (B(x, ) B(y, B)B(z, y))" .
Here, B(x, «) is Euler’s beta function, defined by B(x, o) = fol 711 — ) de.

11543. Proposed by Richard Stong, Center for Communications Research, San Diego,

CA. Letx, y, z be positive numbers with xyz = 1. Show that (x> + y> 4+ z°)? > 3(x” +
7.7

y' +zh).

SOLUTIONS

A Euclidean Path

11390 [2008, 855]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann
Arbor, MI. Let G be the undirected graph on the vertex set V of all pairs (a, b) of
relatively prime integers, with edges linking (a, b) to (a + kab, b) and (a, b + kab)
for all integers k.

(a) Show that for all (a, b) in V, there is a path joining (a, b) and (1, 1).

(b)* Call an edge linking (a, b) to (a + kab, b) or (a, b + kab) positive if k > 0, and
negative if k < 0. Let the reversal number of a path from (1, 1) to (a, b) be one more
that the number of sign changes along the path, and let the reversal value of (a, b)
be the minimal reversal number over all paths from (1, 1) to (a, b). Are there pairs of
arbitrarily high reversal value?

Solution by M. D. Meyerson and M. E. Kidwell, U.S. Naval Academy.

(a) Suppose first that a and b are positive; we may assume thata < b. Letc = b — a.
Note that b and c are relatively prime (if d divides both, then it also divides a); hence
there are integers m and n such that mb + nc = 1. We may choose m positive and n
negative, since increasing m by ¢ and decreasing n by b does not change mb + nc. We
can link (a, b) to (a, c) via two negative edges, since (a, b — mab) = (a,b —a(l —
nc)) = (a,b —a + nac) = (a, ¢ + nac). We can similarly link (b, a) to (c, a) via two
negative edges. By the Euclidean algorithm, we can thus reach (1, 1) via only negative
edges.

If ab = 0 then there is a negative edge from one of (—1, 1), (1, —1), or (1, 1) to
(a, b).

If exactly one of {a, b} is negative, then we can add (—2)ab to the negative compo-
nent of (a, b) to reach a pair with positive components via a negative edge, followed
by linking as above to (1, 1). If both a and b are negative, then to make at least one
coordinate positive we must use a sufficiently large positive multiple of their prod-
uct, after which we can reach (1, 1) via only negative edges. This process misses four
points, (0, 1) and (%1, 0), which can easily be linked to (1, 1) via at most two edges.

(b)* By the process in part (a), we can reach (1, 1) via only negative edges unless a
and b are both negative, in which case we only need to use one positive edge to start
after which we can reach (1, 1) using only negative edges. Thus there is always a path
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from (a, b) to (1, 1) with reversal number at most 2, so there are no pairs (a, b) of
arbitrarily high reversal value.

Editorial comment. The sign of an edge is well defined; if the link can be viewed from
both ends, then the corresponding choices for k are equal and thus have the same sign.

Both parts also solved by P. Corn, K. Schilling, B. Schmuland (Canada), R. Stong, A. Vorobyov, and the Texas
State University Problem Solvers Group. Part (a) also solved by D. Klyve & C. Storm, M. A. Prasad (India),
GCHQ Problem Solving Group (U.K.), Microsoft Research Problems Group, and the proposer.

A Congruence for Vanishing Modular Sums

11391 [2008, 855]. Proposed by Marian Tetiva, National College “Gheorghe Rosca
Codreanu,” Birlad, Romania. Let p be a positive prime and s a positive integer. Let n
and k be integers such that n > k > p* — p*~!, and let xi, ..., x, be integers. For
1 < j < n, let m; be the number of expressions of the form x; +---+ Xi with
I <i; <--- <ij <n that evaluate to 0 modulo p, and let n; denote the number
of such expressions that do not. (Set my = 1 and ny = 0.) Apart from the cases
(s,k)=(1,p—1)and s = p = k = 2, show that

k .
Z(—l)/(" B 'J‘ " J)mk_j =0 (mod p),
j=0

and show that the same congruence holds with n;_; in place of m,_;.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We
prove a much stronger statement. Let X = {x;, ..., x,}, and let g; be the number of
j-element subsets of X whose sum is congruent to ¢ modulo p. Forn > k > 1 +
s(p — 1), we prove that

k ‘ -k .
Y -1y (” ) i )qk_,» =0 (mod p°), (1)
j=0

except in the excluded cases. The desired result for m;_; is the case a = 0, and the
result for n;_; follows by summing the remaining residue classes.
We first show that it suffices to prove the case n = k, which reduces to

k
Y (=1)g-; =0 (mod p*) )

j=0
for k > 1+ s(p — 1). Assume (2), then, and let [n] denote {1, ... ,n}. For § C [n],
let S* ={T € S: Y ,.;x; =a (mod p)}. For general n and k, (2) implies, modulo
r'

0=>" (,ko(_l)j > 1):2(—1)1 Yooy

Scin] Tes* Teln* TSSC[n]
IST=k IT|=k—j IT|=k—j ISI=k

k . k .
» n— (k- j) =kt
=Sy ( Y ) EZ(-D’( . ’)qkj-
=0 Telnl* J =0 J
\T|=k—j
This proves that (1) follows from (2). To prove (2), we work in the ring Z[¢]/(t? — 1),
where 7 = 1. In this ring, let

f<’>=l_[<1—f’“>=(1—t)kl_[(1+t+---+ﬂ*l).

xeX xeX
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The terms in the expansion of f have the form (—1)"'T],_, ¢, where Y C X. For
fixed a, (—1)/g; is the contribution to the coefficient of  in the expansion of f due
to Y of size j and sum congruent to ¢ mod p, and lezo(—l)jqj = [t*] f (). We now
show that each coefficient of f is a multiple of p°®, from which (2) follows. To see that
each coefficient is a multiple of p*, we show that when k > (p — 1)s, every coefficient
of (1 — t)* is a multiple of p°.

First we construct a polynomial 4 (¢) such that (1 —¢)” = p - (1 —t)h(¢).Forp =2
wehave (1 —1)>=1—2t +1t> =2 —2t =2(1 — t). For odd p, we have

(p=1)/2

p—1
p P >
(1—1)P =1+ ; <k><—1)kzk — 1P = ; (k)(—l)kzk(l — P72y

(p=1)/2

=p-(-0 Y (i)/p(—l)kz"u I T )

k=1

Now induction on s and the previous result imply when k > s(p — 1) that (1 — 1)* =
p* - (1 —t)*=s@w=Dp (t) for some polynomial /(t).

Also solved by R. Chapman (U.K.), D. Grinberg, J. H. Lindsey II, and the proposer.

Runs Versus Isolated Heads in Coin Tossing

11394 [2008, 856]. Proposed by K. S. Bhanu, Institute of Science, Nagpur, India, and
M. N. Deshpande, Nagpur, India. A fair coin is tossed n times, with n > 2. Let R be
the resulting number of runs of the same face, and X the number of isolated heads.
Show that the covariance of the random variables R and X is n/8.

Solution by Michael Andreoli, Miami Dade College, Miami, FL. Define binary n-
tuples U and V by letting U, = 1 if and only if an isolated head occurs at toss &,
and V; = 1 if and only if a run begins at toss k. Now X = >, Uy and R = ), Vj.
Because E(U;) = P(U, = 1), we have E(U,) = E(U,) = 1/4 and E(U;) = 1/8 for
2 <k <n—1.Similarly, E(V}) =1 and E(V;) = 1/2 for 2 < k < n. It follows that
EX)=m+2)/8and E(R) = (n+ 1)/2.

Because E(U;V;) = P(U; = 1 and V; = 1), we obtain

e E(U\V)) =E(U,V,) =1/4and E(U,V;) =1/8for3 < j <n;

e E(U,Vi)=EWU,V,)=1/4and E(U,V;) =1/8for2 < j <n—1;and

efor2<i<n-—1landl <j <n,

_J1/8 it je{l i i+ 1)
EWUV) = {1/16 otherwise.
Therefore,
n n n n—1 n n
EXR) =) Y EWUV)=) EWV)+) Y EUV)+) EUY)

i=1 j=I j=1 i=2 j=I1 j=1

n+2+(n—2)(n—|—3)+n+2_n2+5n+2
8 16 8 16 ‘

It follows that

24 5p 42 2 |
Cov(XR) = E(XR) — E(X)E(R) = _ +16”+ _”;r ”;r zg,
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Also solved by D. Beckwith, M. A. Carlton, N. Caro (Brazil), R. Chapman (U.K.), M. P. Cohen, C. Curtis,
P. J. Fitzsimmons, N. Grivaux (France), C. C. Heckman, S. J. Herschkorn, G. Keselman, J. H. Lindsey II,
K. McInturff, E. Orney & S. Van Gulck (Belgium), A. Plaza & J. J. Gonzalez (Spain), M. A. Prasad (India),
R. Pratt & E. Lada, K. Schilling, B. Schmuland (Canada), A. Stadler (Switzerland), J. H. Steelman, R. Stong,
R. Tauraso (Italy), Armstrong Problem Solvers, GCHQ Problem Solving Group (U.K.), Microsoft Research
Problems Group, and the proposer.

Finite Subgroups of Continuous Bijections of [0,1]

11395 [2008, 856]. Proposed by M. Farrokhi D.G., University of Tsukuba, Tsukuba
Ibakari, Japan. Prove that if H is a finite subgroup of the group G of all continuous
bijections of [0, 1] to itself, then the order of H is 1 or 2.

Solution by Jeffrey Bergen, DePaul University, Chicago, IL. If g € G, then g is contin-
uous and injective. Hence g is monotonic, by the intermediate value theorem. There-
fore, either (i) g(0) = 0 and g(1) = 1 or (ii) g(0) = 1 and g(1) = 0.

Setg? =gogandg"t! = gog"forn > 1.1f g(0) = O and g(a) > a for somea €
[0, 1], then the sequence a, g(a), g*(a), ... is increasing. Similarly, if g(0) = 0 and
g(a) < a, thena, g(a), g*(a), ... is decreasing. Therefore, if g(0) = 0 and g(x) # x
for some x € [0, 1], then g does not have finite order. We conclude that if g € H and
g(0) = 0, then g is the identity map.

Next, if fi, f» € H with f1(0) = f>(0) = 1, then fj o f, € H with fj o f5(0) =0.
Our previous argument shows that f; o f>(x) = x, and so both f, and f; are inverses
of fi. Since inverses are unique in a group, it follows that f| = f,. As a result, H
contains at most one element other than the identity map, and so H has order either 1
or 2, as claimed.

Also solved by M. Barr (Canada), M. Bataille (France), D. R. Bridges, P. Budney, B. S. Burdick, N. Caro
& F. Valenzuela (Brazil), R. Chapman (U.K.), L. Comerford, P. Corn, P. P. Dalyay (Hungary), D. Grinberg,
J. P. Grivaux (France), K. Hanes, E. A. Herman, S. P. Herschkorn, E. J. Ionascu, J. Konienczny, O. Kouba
(Syria), J. Kujawa & K. Shankar, J. H. Lindsey II, O. P. Lossers (Netherlands), A. Magidin, R. Martin (Ger-
many), S. Metcalfe, V. Pambuccian, J. W. Pfeffer, E. Pité (France), J. Schaer (Canada), B. Schmuland (Canada),
N. C. Singer, V. Stakhovsky, J. H. Steelman, R. Stong, T. Tam, M. Tetiva (Romania) J. Vinuesa (Venezuela),
G. Wene, M. Wildon (UK), N. Wodarz, Armstrong Problem Solvers, BSI Problems Group (Germany), Szeged
Problem Group “Fejéntaldltuka” (Hungary), GCHQ Problem Solving Group (U.K.), McDaniel College Prob-
lems Group, Microsoft Research Problems Group, Missouri State University Problem Solving Group, North-
western University Math Problem Solving Group, NSA Problems Group, and the proposer.

A Riemann (Zeta) Sum

11400 [2008, 948]. Proposed by Paul Bracken, University of Texas—Pan American,
Edinburg, TX. Let ¢ be the Riemann zeta function. Evaluate ) -, f(ﬁ'i) in closed
form.

Solution by Oliver Guepel, Briihl, NRW, Germany. The sum is log(2m) — % Since
summation of absolutely convergent series can be interchanged, we have

2. ¢(2n) 4 i > 1
—nm+1) =~ knn+1)
a k=2 n=1 n k2 k=2 n=1 n+ 1 k2
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:1—ilog(l—%)—i—i(l—kkzl()g(l_é))

k=2

=1+ lim Y " [1+4 (&’ — 1) (log(k + 1) — 2logk + log(k — 1))] .

n—oo
k=

With f(n) = n? — 1 and g(n) = logn, this last line can be written as
L+ lim Y (1 + f(R)(gk + 1) = 2g(k) + gk — D).
k=2

Now put A(n) = f(n — 1)g(n) — f(n)g(n — 1). In general, h(n + 1) — h(n) =

fm)(gn+1) —2¢mn)+gn — 1) —gm)(f(n+1) =2f(n) + f(n —1)). Here,
the second difference of f is identically 2, so

f)(gn+1) —2gn)+gn—1)) =h(n+1) — h(n) +2logn.
Thus

L+ ) (14 fR)(glk + 1) — 2g (k) + gk — 1))
k=2

=n+ Z (h(k+1) —h(k) +2logk) =n+h(n+1) —h(2) + 2log(n!)
k=2

=n+ (n*>—1logn+ 1) — (n*> + 2n) logn + 2log(n!).

A straightforward application of Stirling’s formula yields log 27 — 1 as the limit. It

2
also follows now from

i £@n) =log2m — 1
n(2n+1)

n=1

(this MONTHLY 94 (1987), p. 467) that we have the rational sum

2 t@en) 1
Z(n+1>(2n+1>‘5'

n=1

Also solved by K. F. Andersen (Canada), R. Bagby, M. Bataille (France), D. Beckwith, B. S. Burdick, R. Chap-
man (U.K.), H. Chen, P. Corn, G. Crandall, P. P. Dalyay (Hungary), B. E. Davis, Y. Dumont (France), O. Fur-
dui (Romania), M. L. Glasser, G. C. Greubel, J. Grivaux (France), N. Grossman, J. A. Grzesik, E. Hysnelaj
(Australia) & E. Bojaxhiu (Albania), G. Keselman, O. Kouba (Syria), G. Lamb, O. P. Lossers (Netherlands),
K. McInturff, M. Omarjee (France), P. Perfetti (Italy), E. Pité (France), A. Plaza & S. Falcén (Spain), C. Po-
hoata (Romania), M. A. Prasad (India), P. R. Refolio (Spain), O. G. Ruehr, V. Rutherfoord, B. Schmuland
(Canada), N. C. Singer, S. Singh, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. R. Teske, M. Tetiva
(Romania), J. Vinuesa (Spain), M. Vowe (Switzerland), BSI Problems Group (Germany), GCHQ Problem
Solving Group (U.K.), Microsoft Research Problems Group, NSA Problems Group, and the proposer.

A Characterization of the Identity Matrix

11401 [2008, 949]. Proposed by Marius Cavachi, “Ovidius” University of Constanta,
Constanta, Romania. Let A be a nonsingular square matrix with integer entries. Sup-
pose that for every positive integer k, there is a matrix X with integer entries such that
X* = A. Show that A must be the identity matrix.
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Solution by Microsoft Research Problems Group, c/o Peter Montgomery, Redmond,
WA. For k € N, let X, be an integer matrix such that X{ = A. Let p be a prime that
does not divide det A. Viewing X; mod p as an element of the general linear group G
over the field ¥, Legendre’s theorem implies that X ,LG‘ = [/ mod p for all k. Setting
k = |G| yields A = X|g| = I mod p. That is, all entries of A — I are divisible by p.
Since there are infinitely many choices for p, we obtain A = 1.

Also solved by P. Budney, N. Caro (Brazil), R. Chapman (U.K.), P. P. Dalyay (Hungary), D. Grinberg, J. Gri-
vaux (France), E. A. Herman, J. Konieczny, K. Koo, T. Laffey & H. §mig0c (Ireland), J. H. Lindsey II,
O. P. Lossers (Netherlands), A. Nakhash, S. Pierce, E. Pité (France), C. Pohoata (Romania), V. Rutherfo-

ord, R. A. Simon (Chile), N. C. Singer, R. Stong, T. Tam, M. Tetiva (Romania), T. Thomas (U.K.), Z. V6ros
(Hungary), J. Young, GCHQ Problem Solving Group (U.K.), NSA Problems Group, and the proposer.

A Double Factorial Sum

11406 [2009, 82]. Proposed by A. A. Dzhumadil’daeva, Almaty, Republics Physics and
Mathematics School, Almaty, Kazakhstan. Let n!! denote the product of all positive
integers not greater than n and congruent to n mod 2, and let O!! = (—1)!! = 1. Thus,
7! = 105 and 8!! = 384. For positive integer 7, find

n

3 <’:><2i — DI Qm— i) — DI

i=0
in closed form.

Solution I by Kenneth F. Andersen, University of Alberta, Edmonton, Alberta, Canada.
The sum is 2"n!. To see this, let f(x) = (1 —2x)~"?and g(x) = (1 — 2x)~! for |x| <
1/2. Induction shows that the ith derivatives of f and g are given by
FOx) = @2i — DI —2x) V>
. . 4 3)
gP(x) =21 (1 —2x)7 !

for each nonnegative integer i. In particular, @ (0) = (2i — 1)!!, so

n n

3 (?)(21' —Di@En—2i D=3 (’Z)f“')(O)f("—”(O).

i=0 i=0

Since g = f?2, the Leibniz rule for the nth derivative of a product shows that the latter
sum is g™ (0). In view of (3), this equals 2"n!.

Solution Il by Ulrich Abel, University of Applied Sciences Giessen-Friedberg, Fried-
berg, Germany. First note that

2
Y 2l 21’1—21 n - 2l i n — n
Zo:(l>( n—i )Z[Z]<;<i>z> = [2"1((1 = 40)7")* = 4".

Using (2k — 1)!! = (2k)!/(2Xk!), the original sum becomes

(" Gt (Gn — 20 a2y 2V (72 2o = 2,
i) 21! 2n=t(n —1i)! —\i n—i

i=0

Also solved by 65 other readers.
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Some Intermediate Value Variants

11429 [2009, 365]. Proposed by Cezar Lupu, student, University of Bucharest,
Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanta, Roma-
nia. For a continuous real-valued function ¢ on [0, 1], let T¢ be the function map-
ping [0, 1] — R given by T¢(t) = ¢(t) — fotqb(u) du, and similarly define S by
So(t) =tp(t) — fot u@ (u) du. Show that if f and g are continuous real-valued func-
tions on [0, 1], then there exist numbers a, b, and ¢ in (0, 1) such that each of the
following is true:

Tf(a) = Sf(a),

1

1
T'g(b) fu)ydu =Tf(b) /_Og(u)du,

u=0

1 1
Sg(c) /_0 Jf@)du = Sf(c) /_Og(u) du.

Solution by Richard Stong, Center for Communications Research, San Diego, CA.

Lemma. Ifh is continuous on [0, a], and h(a) = 0, then there exists a € (0, o) such
that h(a) = foa h(u)du.

Proof. Let H(t) = e™' fot h(u)du. Note that H(0) = 0, and H is continuously dif-
ferentiable with H'(t) = e "(h(t) — fot h(u) du). Thus it suffices to find an a € (0, «)
with H'(a) = 0.If no such a exists, then H(t) is monotone, and hence J (t) = H(t)? is
monotone increasing and in particular J («) > 0. This gives the contradiction J'(«) =

2H(a)H' (o) = —2e™* (foa h(u) du)2 = -2J(x)? < 0. [ |

Let F = [ f(t)dt, G = [, g(t)dr. Applying the lemma to (1) = (1 — 1) f (1)
with ¢ = 1 gives a € (0, 1) such that (1 —a) f(a) = foa(l —u)f(wm)duor Tf(a) =

Sf(a). Applying the lemma to h(t) = f(t)G — g(¢t) F, and noting that fol h(t)dt =0
implies the existence of some « € (0, 1) with A(«x) = 0, gives b € (0, 1) such that

b b
F)G —gb)F 2/ fu)duG —/ g()duF,
0 0

or Tf(b)G = Tg(b)F. Applying the lemma to h(t) = tf(t)G — tg(t) F, and noting
that the « found in the previous case still works, gives ¢ € (0, 1) such that

cf(c)G —cg(o)F = /‘Cuf(u) duG — /cug(u) duF
0 0

or Sf(c)G = Sg(c)F.

Also solved by K. F. Andersen (Canada), R. Bagby, R. Chapman (U.K.), W. J. Cowieson, P. P. Ddlyay (Hun-
gary), E. A. Herman, B.-1. Iordache (Romania), O. Kouba (Syria), J. H. Lindsey II, P. Perfetti (Italy), GCHQ
Problem Solving Group, and the proposers.
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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Doug Hensley, Douglas B. West
with the collaboration of Mike Bennett, Itshak Borosh, Paul Bracken, Ezra A. Brown,
Randall Dougherty, Tamas Erdélyi, Zachary Franco, Christian Friesen, Ira M. Ges-
sel, Laszl6 Liptdk, Frederick W. Luttmann, Vania Mascioni, Frank B. Miles, Bog-
dan Petrenko, Richard Pfiefer, Cecil C. Rousseau, Leonard Smiley, Kenneth Stolarsky,
Richard Stong, Walter Stromquist, Daniel Ullman, Charles Vanden Eynden, Sam Van-
dervelde, and Fuzhen Zhang.

Proposed problems and solutions should be sent in duplicate to the MONTHLY
problems address on the back of the title page. Submitted solutions should arrive
at that address before May 31, 2011. Additional information, such as general-
izations and references, is welcome. The problem number and the solver’s name
and address should appear on each solution. An asterisk (*) after the number of
a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

11544. Proposed by Max A. Alekseyev, University of South Carolina, Columbia, SC,
and Frank Ruskey, University of Victoria, Victoria, BC, Canada. Prove that if m is a
positive integer, then

m-+k 5
Z¢(2k+ )L2k+ J m>.

k=0
Here ¢ denotes the Euler totient function.

11545. Proposed by Manuel Kauers, Research Institute for Symbolic Computation,
Linz, Austria, and Sheng-Lan Ko, National Taiwan University, Taipei, Taiwan. Find a
closed-form expression for

Z( 1)( >s(n+k k),

where s refers to the (signed) Stirling numbers of the first kind.

11546. Proposed by Kieren MacMillan, Toronto, Canada, and Jonathan Sondow, New
York, NY. Let d, k, and g be positive integers, with k odd. Find the highest power of 2

.. d
that divides > n?

11547. Proposed by Francisco Javier Garcia Capitdn, 1.E.S Alvarez Cubero, Priego
de Cordoba, Spain, and Juan Bosco Romero Mdrquez, University of Valladolid, Spain.
Let the altitude A D of triangle ABC be produced to meet the circumcircle again at E.
Let K, L, M, and N be the projections of D onto the lines BA, AC, CE, and EB, and
let P, O, R, and S be the intersections of the diagonals of DKAL, DLCM, DMEN, and
DNBK, respectively. Let | X Y| denote the distance from X to Y, and let «, 8, ¥ be the

doi: 10.4169/amer.math.monthly.118.01.084
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radian measure of angles BAC, CBA, ACB, respectively. Show that PORS is a rhombus
and that |QS|?/|PR|* = 1 4 cos(2p) cos(2y) /sin* .

11548. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Roma-
nia, and Tudorel Lupu, Decebal High School, Constanta, Romania. Let f be a twice-
differentiable real-valued function with continuous second derivative, and suppose that
f(0) = 0. Show that

2

1 1
/ (f"(x))*dx > 10( f(x)dx) .
-1 1

11549. Proposed by Marian Tetiva, National College “Gheorghe Rosca Codreanu,”
Birlad, Romania. Determine all continuous functions f on R such that for all x,

FU(f(x) —3f(x)+2x =0.

11550. Proposed by Stefano Siboni, University of Trento, Trento, Italy. Let G be a
point inside triangle ABC. Let «, 8, y be the radian measures of angles BGC, CGA,
AGB, respectively. Let O, R, S be the triangle’s circumcenter, circumradius, and area,
respectively. Let | XY| be the distance from X to Y. Prove that

|GA| - |GB| - |GC|(|GA| sina + |GB| sin 8 + |GC| siny) = 25(R* — |GO|?).

SOLUTIONS

A Consequence of Wolstenholme’s Theorem

11382 [2008, 665]. Proposed by Roberto Tauraso, Universita di Roma “Tor Vergata,”

Rome, Italy. For k > 1, let H; be the kth harmonic number, defined by H;, = le‘: 1/j.
Show that if p is prime and p > 5, then

(Two rationals are congruent modulo d if their difference can be expressed as a reduced
fraction of the form da/b with b relatively prime to a and d.)

Solution by Douglas B. Tyler, Raytheon, Torrance, CA. Let S = {1,2, ..., p — 1}. All
summations are over k € S. Note that

(T -) -2 (n-g) T me Xy

Since H; — % = H,_,, the right side telescopes to —H;fl +> k% Since p > 3, it
suffices to show that H}_, and )" -5 are both congruent to 0 modulo p?.

Modulo p, the reciprocals of the elements of S form a permutation of S, so H,_; =
Yk'=Yk=3p(p—1)=0 (mod p). Thus H,_; = 0mod p*.

By reversing the index in one copy of the sum, modulo p? we have

1 p® —3p*k + 3 pk? 3pk? 1
2 — = = —— =3 e E——
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It remains to show Y m = Omod p. This sum is congruent to ) _LH Modulo p,
the reciprocals of the fourth powers of S form a permutation of the fourth powers of

S,s0) k% = > k*mod p. It is well known that the sum over S of the rth powers is a
5

polynomial of degree r + 1in p. In fact, )" k* = & — %4 + %3 — 35, easily proved by

induction. With no constant term, the polynomial has value 0 mod p when p > 5.

Editorial comment. That H,_; = Omod p, and that Z,’{’;ll k3 = 0mod p?, could have
been established by an appeal to Wolstenholme’s theorem.

Also solved by R. Chapman (U. K.), P. Corn, P. P. Dalyay (Hungary), Y. Dumont (France), O. Kouba (Syria),
J. H. Lindsey 1II, O. P. Lossers (Netherlands), M. A. Prasad (India), N. C. Singer, A. Stadler (Switzerland),
R. Stong, M. Tetiva (Romania), GCHQ Problem Solving Group (U. K.), and the proposer.

Groups with Arbitrarily Sparse Squares

11388 [2008, 758]. Proposed by M. Farrokhi D.G., University of Tsukuba, Tsukuba
Ibakari, Japan. Given a group G, let G* denote the set of all squares in G. Show that
for each natural number 7 there exists a finite group G such that the cardinality of G
is n times the cardinality of G°.

Solution by Richard Stong, San Diego, CA. When G has odd order, every element is a
square, so |G|/|G?| = 1. For order 2, only the identity is a square, so |G|/|G?| = 2.
Let p be an odd prime, and let s be the largest integer such that p = 1 mod 2°. The
multiplicative group (Z/pZ)* of nonzero congruence classes modulo p is cyclic of
order p — 1 and has an element a of order 2°. Hence a® ' = —1mod p, and no smaller
power of a satisfies this congruence. Now consider the group H,, with presentation

Hy=(x,y:x’ =y"" =1, yxy™! =x9).

Every element of this group can be written uniquely as x’y¢ for b € Z/pZ and c €
7./2517, and the multiplication law is

xbl yclxbzycz — xb1+aclb2yc1+c2

with operations in the exponents of x and y taken mod p and mod 2°*!, respectively.
Setting b = by = b, and ¢ = ¢; = ¢, we see that the squares in H), are precisely
the elements of the form x”!*+49y2¢ Hence, if x#y” = (x?y)?, then y is even and
either c = /2 or ¢ = y/2 4+ 2°. Since a> = 1, both possibilities give the same value
of 1 4+a¢. If y # 25 (that is, if ¢ # 2°~!), then 1 + a¢ is nonzero and all choices of
B give squares. If y = 2%, then ¢ = £2°7! and 1 + a2 = 0, so only B = 0 gives a
square. Thus [H;| = (2 — 1)p + 1. Note that p = 1 +2° mod 2!, 50 2 — 1)p + 1
is indeed a multiple of 2°*!. Hence

|H,l  2'p p

H 2 —Dp+1 r,

where r), is the integer ((2° — 1)p + 1)/(2°*") and rp < D.
If G and H are finite, then the set of squares in G x H is G> x H?, 50
G xH| _ |G| |H]
(G x H)?|  |G* |H?

The result now follows by induction on n. We have given examples for n = 1 and
n = 2,soconsidern > 3. When n is even, let G/, be an example with |G,,/2|/|G§/2| =

86 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 118

This content downloaded on Wed, 13 Mar 2013 08:39:39 AM
All use subject to JSTOR Terms and Conditions




n/2;now G, x Z/27 is the desired example for G,. When n is odd, let p be an odd
prime divisor of n, let m = nr,/p < n (with r, as above), and let G,, be an example
with |G,,|/|G2| = m.Now G,, x H, is the desired example for G,.

Also solved by A. J. Bevelacqua, R. Martin (Germany), L. Reid, D. B. Tyler, NSA Problems Group, and the
proposer.

A Nonexistent Ring

11407 [2009, 82]. Proposed by Erwin Just (emeritus), Bronx Community College of
the City University of New York, New York, NY. Let p be a prime greater than 3. Does
there exists a ring with more than one element (not necessarily having a multiplicative
identity) such that for all x in the ring, > 7_ x*~! = 0?

Solution by O.P. Lossers, Eindhoven University of Technology, Eindhoven, The
Netherlands. We prove that no such ring R exists by showing that the assumption

P x¥71' =0 for all x yields R = {0}, contradicting the hypothesis that |R| > 2.
Multiplying by x? yields Y7 x**! = 0, and then x***! = x by subtraction. Now
x4 = x21x2Hl = x2P=1x = x2P. We conclude that all positive even powers of x?”
are equal. Next compute

0=

)4 )4
2i—1 j—
(x2p) — E x2(21 Dp — psz.
i= i=1

i=l

Since x?7! = x, we have px = px*’™ = (px??)x = O0x = 0. Thus (x 4+ x)” =

x? 4+ x?. Now
2x = 2x)T = 2x[(x + x)P)? = 2x(x” + x7)? = 2x4x?P = 8x*PT! = 8x.

Therefore, 6x = 8x — 2x = 0, and we already know that px = 0. Therefore, 0 =
gcd(6, p)x = x. Since x is an arbitrary element of R, it follows that R = {0}.

Also solved by E. P. Amendariz, N. Caro (Colombia), R. Chapman (U. K.), Y. Ge (Austria), D. Grinberg,
J. H. Lindsey II, A. Sh. Shabani (Kosova), R. Stong, C. T. Stretch (Ireland), N. Vonessen, FAU Problem
Solving Group, NSA Problem Group, and the proposer.

Summing to kth Powers

11408 [2009, 83]. Proposed by Marius Cavachi, “Ovidius” University of Constanta,
Constanta, Romania. Let k be a fixed integer greater than 1. Prove that there exists an
integer n greater than 1, and distinct integers ay, ... , a, all greater than 1, such that
both ijl aj and Z'}Zl @(aj) are kth powers of a positive integer. Here ¢ denotes
Euler’s totient function.

Solution by C. R. Pranesachar, Indian Institute of Science, Bangalore, India. We
first choose a and b such that 2a + 6b = (2k + 2)* and a + 2b = (2k)*, both kth
powers of integers. Solving the linear system yields a = 3(2k)* — (2k + 2)f =
253k — (k + 1) and b = %((2k + 2)F — 2(2k)F) = 28 1((k + 1)k — 2k*). Since
2 <(1+ %)k < 3 for k > 1, it follows that a and b are positive integers. Express the
even integers 2a and 2b as sums of distinct positive powers of 2:

20 =2" 427 4 ... 427, l<r<rn<--<nm
2b =251 4252 4 ... 4 DS, 1<si<s<--- <35,
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Leta; =27 for 1 <i <land g1 j =3-2% for1 < j <m.Letn =1[+m, and
consider ay, ... ,a,, which are clearly distinct. Note that Z’;:l aj =2a+ 6b =
(2k 4+ 2)*. Since p(2") = 2" 'and p(3 - 2") = 2",

n

[ m
D pla) =) 2 4> 2 =a+2b = (20"
i=1 j=1

h=1

Editorial comment. The GCHQ Problem Solving Group used distinct powers of 3, dis-
tinct numbers of the form 3 - 2", and distinct powers of 2 to show that there are distinct
numbers ay, ... , a,, all greater than 1, such that Z'}Zl a; = s and Z'}Zl p(a;) =t,
provided that s /2 < t < 8s/15.

Also solved by P. P. Dalyay (Hungary), A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), GCHQ
Problem Solving Group (U. K.), and the proposer.

An Inequality

11430 [2009, 366]. Proposed by He Yi, Macao University of Science and Technology,
Macao, China. For real x, ... , x,, show that

X n X2 n n X,
L+xi  14+xi+x3 14+ x7 4 +x?

< J/n.

Solution by Kenneth F. Andersen, University of Alberta, Edmonton, AB, Canada. Let-
ting xo = 1, we have

n xZ_ n 1 1
J < —
]2:1:(1+x12+---+x]2-)2 _; XXX i
1

a4
The Cauchy—Schwarz inequality shows that, as required,
1/2
n n X2 /

) 1/2
Xj J

< 1 < J/n.

Zl+xl2+..._|_xj2,_ 12_1: Z(1+x12+...+x12)2 Vn

=1 j=1

Editorial comment. This problem is known. (1) It was a Romanian proposal for the
IMO 2001; two solutions are on page 676 of The IMO Compendium (Springer, 2006).
(2) It was part of the Indian Team Selection Test for the 2002 IMO; a solution was
published in Crux Mathematicorum with Mathematical Mayhem 35 (2009) 98. (3) It
was Problem 1242 in Elementa der Mathematik 63 (2008) 103.

Also solved by A. Alt, M. S. Ashbaugh & S. G. Saenz (U.S.A. & Chile), R. Bagby, M. Bataille (France), D.
Borwein (Canada), P. Bracken, M. Can, R. Chapman (U. K.), H. Chen, L. Csete (Hungary), P. P. Ddlyay (Hun-
gary), J. Fabrykowski & T. Smotzer, O. Geupel (Germany), J. Grivaux (France), E. Hysnelaj & E. Bojaxhiu
(Australia & Albania), Y. H. Kim (Korea), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands),
J. Moreira (Portugal), P. Perfetti (Italy), C. Pohoata (Romania), M. A. Prasad (India), A. Pytel (Poland), H.
Ricardo, C. R. & S. Selvaraj, J. Simons (U. K.), A. Stadler (Switzerland), R. Stong, M. Tetiva (Romania), D.
Vacaru (Romania), E. I. Verriest, M. Vowe (Switzerland), A. P. Yogananda (India), GCHQ Problem Solving
Group (U. K.), Microsoft Research Problems Group, and the proposer.
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Shur and Definite

11431 [2009, 336]. Proposed by Finbarr Holland and Stephen Wills, University Col-
lege Cork, Cork, Ireland. A matrix is Schur invertible if all its entries are nonzero, and
the Schur inverse is the matrix obtained by taking the reciprocal of each entry. Show
that an n x n complex matrix A with all entries nonzero has the property that it and its
Schur inverse are both nonnegative definite if and only if there are nonzero complex
numbers ay, ... , a, such that for 1 < j, k < n, the (j, k)-entry of A is a;ax.

Solution by Eric Pité, Paris, France. Let Abe ann x n complex matrix with all entries
nonzero such that it and its Schur inverse are both nonnegative definite. Such an A
is a Gramian matrix, i.e., there exist v, ... , v, € C" such that a; ; = (v;, vy) for all
(J, k).

Using the Cauchy-Schwarz inequality, for 1 < j, k < n we have

2 2 2
lajil” < llvjll*llvell” = a;, jaxx.

The Schur inverse is also Gramian, so 1/|aj,k|2 < 1/(aj jarx) as well. Hence in all
these applications of the Cauchy-Schwarz inequality we have equality. It follows that
the vectors vy, ..., v, are all proportional. Hence we can write v; = a;u for some
common unit vector # and complex numbers ay, ..., a, and the (j, k)-entry of A is
a.,-a_k.

The converse is clear: if y is the vector (ay,...,a,), then A = yiT and vT Av =
[{y,v)|> > 0,50 Ais nonnegative definite, and similarly for its Schur inverse.

Also solved by P. Budney, R. Chapman (U. K.), P. P. Dalyay (Hungary), N. Grivaux (France), E. A. Herman,
0. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), A. Muchlis (Indonesia), R. Stong, M. Tetiva
(Romania), Con Amore Problem Group (Denmark), and the proposer.

Interior Evaluation and Boundary Evaluation

11432 [2009, 463]. Proposed by Marian Tetiva, National College “Gheorghe Rosca
Codreanu,” Birlad, Romania. Let P be a polynomial of degree n with complex coeffi-
cients and with P (0) = 0. Show that for any complex « with |¢| < 1 there exist com-
plex numbers zi, ... , Z,12, all of norm 1, such that P(«) = P(z;) + -+ - + P(2412)-

Solution I by O. P. Lossers, Technical University of Eindhoven, Eindhoven, The Nether-
lands. We prove something stronger. Given o we prove the existence of z1, ..., Z,42
suchthat|z;| = landz} +--- + Z§+2 = o' for 1 < k < n. Thus, for every polynomial

P of degree n with P(0) = 0, we have P(x) = Z'}ﬁ P(z;).
To any list of numbers (zi, ..., Z,+2) we associate the polynomial Q given by
Q(z) = [1{F}(z — ;). and numbers ; given by 7, = 377 z%. The numbers m; and

the coefficients c¢; in the expansion Q(z) = Z'}ié(—l)i cjz””*j are related by the

Newton identities: ¢o = 1, and
k(—=D¥ep + mco — meyer + -+ (=D 'mic,1 =0 forl <k <n+2.

We want 7, = o for 1 < k < n. This can only happen if ¢; = @ and ¢; = 0 for
2 < j < n. We must therefore choose Q(z) of the form z"*? — az"*! + Az + B. We
take Q(z) = "2 — az"™' — @z + 1. With this choice of Q, each z; satisfies z"*' =
(z — 1)/(z — a). The expression on the right side of this equation is the value at z of
a Mobius transformation that maps the inside of the unit disk to the outside and vice
versa, so |zj| =1forl < j <n+2.

Solution Il by Richard Stong. We prove something stronger. If k is any integer >
2, then there exist zq, ..., zx of norm 1 with P(«@) = P(zy) +---+ P(zx). Let B =
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{P(z): |z] = 1}and F = {P(z): |z| < 1}. Both sets are closed and bounded, and since
P is an open map (L. Ahlfors, Complex Analysis, Corollary 1, p. 132), the boundary
dF of F is a subset of B. Also, F and B are both path connected, since both are the
continuous image of a path connected set.

Lemma. Forany p,q € F there exist w,z € B such that p+q = w + z.

Proof. Let m = %(p + ¢g). It will suffice to show that B N (2m — B) # , because
givenw € BN (2m — B), we make take z = 2m — w and have w, z € Bwithw 4+ z =
2m = p + g. Observe next that 9(2m — F) € 2m — B). Now d0(F U 2m — F)) #
B. If 0F Nd(2m — F) # 0, we are done. Otherwise, after replacing u by 2m — u if
necessary, we may assume the existence of u# such that u € dF, u ¢ 2m — F. Thus
ueB ué¢2m—F,2m—ue€ d2m— F), and 2m —u ¢ F. On the other hand,
p € FN(2m — F) because 2m — p = q. Since 2m — F is path connected, there is
a path in 2m — F from 2m —u to p. Since 2m —u ¢ F and p € F, there is a v
along the path such that v € dF, whence v € (2m — F) N B. Finally, since B too is
path connected, there is a path in B from u ¢ 2m — F to v, and it contains a w in
d(2m — F). This puts w € 2m — B) N B. [ |

Now taking p = P(«) and ¢ = P(0) = 0 in the lemma, we get P(«) = P(z;) +
P(w), where z; and w have norm 1. Next, taking p = P(w) and g = 0, we get
P(w) = P(z2) + P(w'), where again z, and w’ have norm 1. Continuing in this way,
we see that for any kK > 2 we can write P(a) = P(z;) + -+ P(z;) with all z; of
norm 1.

Also solved by R. Ch